
IMGS cmake Build Environment

Carl Salvaggio, Ph.D.

Rochester Institute of Technology
College of Science

Chester F. Carlson Center for Imaging Science
54 Lomb Memorial Drive

Rochester, NY 14623-5604, USA

A general-purpose, skeletonized build environment for developing C++ functions and appli-
cations for imaging-related purposes can be found at

https://github.com/csalvaggio/rit

This repository is specifically seeded to be used for the classes IMGS.180/Introduction to
Computing and Control, IMGS.361/Image Processing and Computer Vision I, and IMGS.362/Image
Processing and Computer Vision II, however, this environment can be used and expanded
for any imaging-related C++ code developed.

This build environment takes advantage of several cmake functions, authored by Dr. Philip
Salvaggio, that were developed to provide convenient shorthand notations for cmake man-
agement. These cmake functions are located at

rit

cmake

CMakeUtils.cmake

CompilerFlags.cmake

Executables.cmake

Libraries.cmake

Options.cmake

These cmake functions allow for the easy insertion of additional C++ functions throughout
the directory structure developed for the Image Processing and Computer Vision sequence
of classes.

An exemplar of the general directory structure is depicted below

1

rit

build

cmake

CMakeLists.txt

imgs

apps

bilateral filter

CMakeLists.txt

bilateral filter.cpp

CMakeLists.txt

CMakeLists.txt

ipcv

bilateral filtering

BilateralFilter.cpp

BilateralFilter.h

CMakeLists.txt

CMakeLists.txt

numerical

physics

plot

radiometry

third party

README.md

You will notice that there are many CMakeLists.txt files throughout this directory struc-
ture. Let’s take a look at each of them, and their including subdirectory, and discuss their
purpose.

Let’s begin with
rit

CMakeLists.txt

imgs

This file should remain untouched for the most part. It’s purpose is to incorporate the
cmake functions referred to above, define the rit project, the required version of cmake, the
default user-defined project library prefix, find the required packages, set the standards to
be followed, and to add the imgs subdirectory, at this current level, to the project.

Listing 1: imgs/CMakeLists.txt

cmake_minimum_required(VERSION 3.1)

project(rit VERSION 0.0.0)

2

include(GNUInstallDirs)

include(cmake/CMakeUtils.cmake)

rit_set_library_prefix("librit_")

find_package(Boost REQUIRED

COMPONENTS

program_options

iostreams

filesystem

system

)

find_package(Eigen3 REQUIRED NO_MODULE)

find_package(OpenCV REQUIRED)

set(CMAKE_CXX_STANDARD 17)

set(CMAKE_CXX_STANDARD_REQUIRED ON)

add_subdirectory(imgs)

The next CMakeLists.txt file,
rit

imgs

apps

CMakeLists.txt

ipcv

adds the apps and ipcv subdirectories to the environment. Like the previous file, this file
should not need to be modified.

Listing 2: imgs/imgs/CMakeLists.txt

add_subdirectory(apps)

add_subdirectory(ipcv)

add_subdirectory(numerical)

add_subdirectory(physics)

add_subdirectory(plot)

add_subdirectory(radiometry)

add_subdirectory(third_party)

The ipcv directory exists to contain C++ functions that perform image processing and com-
puter vision tasks. The other directories contain functions that perform tasks relevant
to their titles. These functions, each housed in their own directory, typically represent

3

an action that produces a result. For example, the BilateralFilter.cpp code in the
bilateral filtering directory shown below takes an input image and produces a bilateral
filtered version of that image in the destination parameter or the returned object.

rit

imgs

ipcv

bilateral filtering

BilateralFilter.cpp

BilateralFilter.h

CMakeLists.txt

CMakeLists.txt

ipcv.h

The CMakeLists.txt file at the ipcv directory level adds the bilateral filtering direc-
tory to the environment

Listing 3: imgs/imgs/ipcv/CMakeLists.txt

add_subdirectory(bilateral_filtering)

Any additional functions that are to be included in the ipcv directory should have an entry
just like the one shown above included in this CMakeLists.txt file. The same is true for
functions added to the other topical area directories.

The CMakeLists.txt file that is located in the bilateral filtering directory contains the
following

Listing 4: imgs/imgs/ipcv/bilateral filtering/CMakeLists.txt

rit_add_library(ipcv_bilateral_filtering

SOURCES

BilateralFilter.cpp

HEADERS

BilateralFilter.h

)

target_link_libraries(ipcv_bilateral_filtering

PUBLIC

opencv_core

)

This file is specific to the function being defined, and names the library that is created for
the individual function. The defined cmake function rit add library defines the name of
the library to be created for the function in this directory. The library name should consist
of the prefix ipcv followed by the name of the containing directory.

4

The SOURCES and HEADERS should define the names of the C++ and corresponding header
files (named using camel-case format).

The defined cmake function target link libraries lists the current library being created
along with any additional public libraries that are needed by the function being defined (in
this case, the core OpenCV library).

The aggregate header file, ipcv.h, should be modified to include the header file defined here,
namely

Listing 5: imgs/imgs/ipcv/ipcv.h

/** Aggregate interface file for IPCV library

*

* \file ipcv/ipcv.h

* \author Carl Salvaggio, Ph.D. (salvaggio@cis.rit.edu)

* \date 17 Mar 2018

*/

#pragma once

#include "ipcv/bilateral_filtering/BilateralFilter.h"

This should be repeated for each function/header added to the ipcv directory.

One last set of CMakeLists.txt files to look at are those in the apps directory. The apps

directory contains user-level applications to perform stand-alone tasks or tasks involving
those functions defined in the ipcv directory.

For the following tree
rit

imgs

apps

bilateral filter

bilateral filter.cpp

CMakeLists.txt

CMakeLists.txt

the CMakeLists.txt at the apps level contains an entry for each application being developed.
For example,

Listing 6: imgs/imgs/apps/CMakeLists.txt

add_subdirectory(bilateral_filter)

Add an entry to this file each time you create a new application.

The CMakeLists.txt in the application directory

5

Listing 7: imgs/imgs/apps/bilateral filter/CMakeLists.txt

rit_add_executable(bilateral_filter

SOURCES

bilateral_filter.cpp

)

target_link_libraries(bilateral_filter

Boost::filesystem

Boost::program_options

rit::ipcv_bilateral_filtering

opencv_core

opencv_highgui

opencv_imgcodecs

)

is similar to the one located in each of the ipcv directories, except that this file uses the
defined cmake function rit add executable to define the user-level executable file that can
be run.

Of particular note here, you must modify the name of the executable to be created (in this
case blilateral filter) as well as the source file name under the SOURCES designation. You
must also include all libraries that are required for linking, including any libraries created in
the ipcv directory (in this case rit::ipcv bilateral filtering).

Compilation of the project must occur in the build directory. If this directory does not
exist, create it at this location

rit

build

In the build directory, type the command cmake .. the first time (and any time after which
you may delete and recreate this directory). The following structure will be created

rit

build

bin

build.ninja

CMakeCache.txt

CMakeFiles

cmake install.cmake

imgs

lib64

rules.ninja

All function-specific libraries created will be located in the lib64 directory. The user-level
applications will be located in the bin directory. For example, for the application described
above, the user may type bin/bilateral filter to execute that application while located

6

in the build directory.

7

