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Demosaicing is an important part of the image-processing chain
for many digital color cameras. The demosaicing operation con-
verts a raw image acquired with a single sensor array, overlaid with
a color filter array, into a full-color image. In this paper, we report
the results of two perceptual experiments that compare the percep-
tual quality of the output of different demosaicing algorithms. In the
first experiment, we found that a Bayesian demosaicing algorithm
produced the most preferred images. Detailed examination of the
data, however, indicated that the good performance of this algo-
rithm was at least in part due to the fact that it sharpened the im-
ages while it demosaiced them. In a second experiment, we silenced
image sharpness as a factor by applying a sharpening algorithm to
the output of each demosaicing algorithm. The optimal amount of
sharpening to be applied to each image was chosen using the re-
sults of a preliminary experiment. Once sharpness was equated in
this way, an algorithm developed by Freeman based on bilinear in-
terpolation combined with median filtering, gave the best results.
An analysis of our data suggests that our perceptual results cannot
be easily predicted using an image metric.
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I. INTRODUCTION

In most consumer digital cameras, thefull-color image
provided to the end user is specified by the responses of dis-
tinct red-green-blue (RGB) sensor classes at each pixel. Typ-
ically, however, the full-color image is not acquired directly.
Rather, the camera captures the image using a single sensor
array on which RGB color filters have been superposed. The
use of interleaved color filters creates three distinct sensor
classes, but at each individual pixel, the response of only
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Fig. 1. Typical mosaic pattern. Each pixel in the overall sensor
array is overlaid with a single color filter. Separate filter classes are
labeled as R, G, and B to indicate red, green, and blue, respectively.

one class is available. This is called a mosaiced design and
a typical [1] filter arrangement is shown in Fig. 1. When a
mosaiced design is used, the capturedraw imagemust be
processed to produce a full-color image. This processing is
called demosaicing and consists of estimating at each pixel
the responses of the sensor classes that are not directly avail-
able at that pixel.

The demosaicing operation is usually implemented by the
camera electronics and in this sense the mosaiced design
and demosaicing operation are transparent to the end user.
Nonetheless, it is well known that the use of a mosaiced
design can lead to aliasing artifacts in the final demosaiced
image [2]. Often, these artifacts manifest themselves as chro-
matic mottle or splotches in the vicinity of high spatial fre-
quency luminance variation in the image (see Fig. 2). In gen-
eral, the magnitude of the mosaicing artifacts depends on the
image content, the optics of the camera, the pixel density of
the sensor array, the mosaicing pattern, and the demosaicing
algorithm applied.

A number of different demosaicing algorithms are avail-
able in the literature [3]–[9]. As shown in Fig. 2, use of dif-
ferent algorithms can lead to different demosaicing artifacts.
In general, however, little is known about the relative efficacy
of different demosaicing algorithms. This is particularly true
if one is interested in the perceptual quality of the images
provided to the end user. In this paper, we report the results
of perceptual experiments designed to compare the efficacy
of different demosaicing algorithms. For these experiments,
we started with full-color images, mosaiced them by deleting
two of the three RGB values at each pixel, and then demo-
saiced them with different algorithms.
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Fig. 2. Example results from different demosaicing methods.
(a) Full-color original image is compared to the results of applying
(b) and (c) two different demosaicing algorithms to a mosaiced
version of the original. Full-color image itself was obtained by
subsampling a high-spatial resolution mosaiced image acquired
with a Kodak DCS200 (see Section III-A). Mosaicing artifacts can
be observed in the two demosaiced images, but the output of the
two algorithms differs in detail.

The rest of this paper is organized as follows. In Section II,
we describe the demosaicing algorithms whose performance

Fig. 3. Pixels used for bilinear interpolation of green image plane.
Missing green value at the center pixel (labeled G) is obtained
by taking the mean of the known green value at the neighboring
locations where there is a green sensor (labeledG ,G ,G ,G ).

we studied. Then we describe the experimental methods we
used to assess image quality and the results of two experi-
ments. In the first experiment, we evaluated the performance
of four demosaicing algorithms. These were used in conjunc-
tion with a simple color balancing algorithm that served to
render the RGB camera images for display on a color mon-
itor. One striking result of the first experiment was that demo-
saiced images sometimes appeared better than the full-color
images from which they were derived. Visual examination
of the images suggested that this effect arose because some
of the demosaicing algorithms not only estimated missing
sensor values, but also sharpened the image. In the second
experiment, we equated the sharpness of the experimental
images by adding a sharpening operation to the image-pro-
cessing pipeline. This operation served to separate demo-
saicing per se from other effects of the demosaicing algo-
rithms. After we present the results of the second experiment,
we conclude with some general comments.

II. DEMOSAICING ALGORITHMS

The demosaicing algorithms used in most commercial
cameras are proprietary. For the experiments presented here,
we studied four demosaicing algorithms that were available
to us. These are described below.

A. Bilinear Demosaicing

Bilinear interpolation may be used as a demosaicing algo-
rithm if each color plane is treated independently. It is per-
haps the simplest demosaicing algorithm and, thus, serves as
a useful baseline for comparison. Fig. 3 illustrates bilinear in-
terpolation for the G sensor class of the mosaic pattern shown
in Fig. 1. Each pixel without a G sensor is surrounded by four
pixels with G sensors as shown in Fig. 3. Thus, the missing
value may be obtained from the surrounding G sensor re-
sponses as: . For the R and
B sensor classes, missing values are similarly estimated as
linear combinations of available R and B sensor responses,
respectively. Bilinear demosaicing has the feature that each
estimated value depends only on responses from the same
sensor class. It would provide a near-optimal solution if the
R, G, and B responses were statistically independent, as then
responses from one sensor class would provide no predic-
tive information about responses in another. For natural im-
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ages and typical choices of R, G, and B sensor spectral sensi-
tivities, however, such statistical independence of responses
across sensor classes does not hold [2], [10]–[12]. The other
demosaicing algorithms we considered attempt to take ad-
vantage of the correlations between responses in different
sensor classes.

B. Freeman Demosaicing

In the mosaic pattern shown in Fig. 1, the G sensor class
is sampled at a higher rate than the R and B sensor classes.
Thus, one might expect that the result of bilinear interpola-
tion would be more accurate for the G sensor class than for
the R and B sensor classes. Freeman’s [6] algorithm is de-
signed to take advantage of this intuition by using the inter-
polated G image to modify the interpolated R and B images.
The algorithm begins with bilinear interpolation applied sep-
arately to each sensor class, as described above. The G image
plane resulting from bilinear interpolation is then used di-
rectly as the output G image plane. For the R and B image
planes, however, the result of bilinear interpolation is mod-
ified before output. First two difference image planes R-G
and B-G are created. These may be thought of as representa-
tions of the chromatic content of the image. Since mosaicing
artifacts are generally manifest as small chromatic splotches,
median filtering the R-G and B-G planes will tend to elimi-
nate them. In the Freeman algorithm, such median filtering is
applied. Finally, R and B output planes are created by adding
the G plane to the median filtered R-G and B-G planes. In the
final output image, the R and B values estimated from the
median filtered R-G and B-G planes are used only at pixels
where there is no R or B sensor value directly available. In
our implementation of the Freeman algorithm, we used a 5

5 median filter.
As reported below, the performance of the Freeman al-

gorithm in Experiment 1 was very bad. We determined that
the cause of this was that the R, G, and B sensor classes had
very different mean responses in our images. The patented
Freeman algorithm is sensitive to this differential scaling.
Scaling the R, G, and B sensor planes to have the same
mean before applying the Freeman algorithm and undoing
this scaling afterwards produced much better results and
we used this modification in Experiment 2. We refer to
the two versions of the Freeman algorithm as Freeman 1
and Freeman 2, respectively. A visual comparison of their
performance is shown in Fig. 4.

C. Bayesian Demosaicing

The Bayesian demosaicing method we used is described in
more detail elsewhere [8], [9], [13]. The basic idea is to use
the raw image data together with prior information about the
spatial and chromatic structure of natural images to obtain
the demosaiced full-color image. In the Bayesian approach,
scene parameters (in our case, the full-color image) are es-
timated from observed data (in our case the raw image) to-
gether with a prior distribution over the scene parameters.
To implement a Bayesian algorithm, one must specify both
the prior and a likelihood function which describes the re-
lation between the scene parameters and the observed data.

Fig. 4. Comparison of (a) Freeman 1 and (b) Freeman 2
demosaicing algorithms. The difference between the two versions
is that in the Freeman 2 algorithm the output of each sensor class
is normalized before demosaicing and rescaled after demosaicing.
Demosaicing artifacts are considerably more salient in the output of
the Freeman 1 algorithm.

For notational convenience, we denote the scene parameters
by the vector . The data available for estimation are the re-
sponses of the mosaiced sensor array, which we denote by
the vector . The likelihood is specified by the probability
distribution : this gives the probability that image data

will be recorded given that the full-color image was. The
prior is specified by a distribution : this gives the proba-
bility that any particular full-color image was present when
the data were acquired. Given the likelihood and the prior,
Bayes’ rule may be used to compute a posterior distribution

, where is a normalizing constant.
The posterior yields how likely it is that the full-color image
was given observed data. An estimate for the full-color
image may then be obtained from the posterior distribution,
e.g., by taking its mean.
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In Bayesian image processing, specification of the likeli-
hood function is generally straightforward. In our case, we
incorporated optical blur in the form of a point spread func-
tion, a small amount of additive sensor noise, and the mo-
saic pattern itself into the computation of the likelihood. The
point spread function was taken as a circularly symmetric
Gaussian with a standard deviation of one pixel.

Specification of the prior is the second important compo-
nent in developing a Bayesian algorithm. Given our current
limited understanding of the statistical properties of natural
scenes, specifying a prior involves as much art as it does sci-
ence. We assumed that the full-color images were separable
in space and color, so that: 1) the color statistics at each pixel
were governed by the same distribution and 2) the spatial
statistics in each color plane were the same. The color sta-
tistics were taken to be trivariate Gaussian. The spatial sta-
tistics were also taken to be multivariate Gaussian, with co-
variance matrix based on the assumptions that: 1) the spatial
properties of the image are separable in the row and column
dimensions and 2) that in each dimension, the spatial proper-
ties are characterized by a first-order Gauss–Markov process
with the same space parameter for the row and column di-
mensions. Given these assumptions, the spatial statistics are
specified by the correlation between nearest neighbor pixels
within each image plane. This method of specifying full-
color image priors is described in detail in a separate report
[13].

We studied two versions of the Bayesian algorithm. They
differed primarily in how the parameters of the prior distribu-
tion were obtained. In the first version (Bayesian 1), we set
the prior parameters using a bootstrapping method.1 First,
we used bilinear demosaicing to produce a full-color ver-
sion of the image. We then analyzed the result of bilinear
interpolation to obtain the mean and covariance matrix of the
RGB responses. These parameters determined the color por-
tion of the prior. In addition, we obtained the average correla-
tion between neighboring pixels in each image plane. Given
the Gauss–Markov assumption, this single parameter deter-
mined the spatial portion of the prior. In the second version
(Bayesian 2), the color priors were set in the same way as for
the first. The spatial parameter, however, was simply set to
a value of 0.70, considerably lower than the value found in
any of the images we examined. Specifying a lower correla-
tion has the effect of increasing the prior probability of high
spatial frequencies in the image.2 For both the Bayesian 1
and Bayesian 2 algorithms, the estimates at each pixel were
obtained from the mean of the posterior obtained when the
Bayesian analysis was applied to a 55 image region sur-
rounding that pixel.

It is worth noting the Bayesian algorithms could modify
sensor values for sensor classes and locations where a
directly measured value was in fact available in the raw
image.

1We would like to thank D. Keren for suggesting the bootstrapping ap-
proach.

2In addition, the Bayesian 2 algorithm assumed a circular symmetric
rather than anx�y separable Gauss–Markov model, but this change had
only a minor effect on the algorithm’s performance.

Fig. 5. Experimental setup. On each trial, the subject viewed two
images of the same scene. Images had been processed differently.
Subject indicated which image appeared the most appealing by
clicking the mouse on the box below one or the other image.

III. EXPERIMENT 1

A. Methods

There are a number of perceptual criteria that could
be used to evaluate the performance of demosaicing algo-
rithms. For example, one could ask which algorithm pro-
duced images that were most perceptually similar to the true
full-color image. Our interest was in evaluating algorithms
for use in consumer cameras, however, and we thought that
the appropriate perceptual question to ask was which algo-
rithm produced images that were most pleasing to the sub-
jects. The following paragraphs describe our experimental
methods.

Observers viewed images presented on a 21-in monitor
(HP P1100) in a room illuminated by fluorescent ceiling
lights. These viewing conditions were chosen because they
seemed typical of the conditions under which many con-
sumers would view digital photographs. On each trial of the
experiment, subjects viewed two images of the same scene
(see Fig. 5). The two images had been processed differently
and the subject was asked to indicate which image was the
most appealing in the sense that it was the one he or she
would prefer to put in a photo album. Subjects were not
allowed to respond until after they had viewed the images
for at least two seconds.

We used five different images of each scene. We refer to
one of the images as thenonmosaicedimage. This image was
obtained by subsampling a high spatial resolution mosaiced
image. The high-resolution images were acquired in Santa
Barbara, CA, and Palo Alto, CA, under various daylight con-
ditions using a Kodak DCS200 camera and a 50-mm lens.
The native resolution of the DCS200 is 15241012 pixels.
The interface software for the camera allows access to the
data in raw form: no demosaicing, no color correction, no
gamma correction, and no tone mapping have been applied
to this raw data (see [14]). Before subsampling, a proprietary
algorithm was then applied to the raw image data to eliminate
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artifacts that were present in some of the images because of
saturated responses at individual pixels. This procedure only
affected the values of saturated pixels. Each color plane of
the resulting high-resolution raw image was then separately
downsampled by a factor of two using bilinear interpola-
tion. By reducing the resolution, we ensure that color sensors
from each class sample the image at a high enough rate to
minimize mosaicing artifacts in the subsampled image. After
subsampling, some of the images were cropped so that they
could be seen side by side at the native 12801024 pixel
resolution of our graphics display hardware.

The other four images of each scene were derived from
the nonmosaiced image. The procedure was to first mosaic
the nonmosaiced image according to the pattern shown in
Fig. 1 and then to apply one of the demosaicing algorithms
described in the previous section. For Experiment 1, we
createdBilinear, Freeman 1, Bayesian 1, and Bayesian 2
images for each scene by applying the corresponding algo-
rithm.

Before use in the experiment, each image was rendered
for display on our monitor using standard methods for color
balancing and gamma correction [2]. Images of ten different
scenes were used. All of the images used in Experiment 1 are
available for download on the world wide web.3 Note that in
our image-processing pipeline, demosaicing was performed
first followed by color balancing and gamma correction. The
images on the web site are those used in the experiment, not
those input to the demosaicing algorithms.

During an experimental session, each of the images of a
particular scene was presented once in conjunction with each
of the other images of that scene. Thus, there were a total of
100 trials per session (ten scenes and ten possible compar-
isons per scene). The order of presentation of the 100 pos-
sible trials was randomized in each session. On each trial,
which image was presented on which side of the display was
also chosen randomly.

Nine subjects participated in Experiment 1. Each subject
participated in one experimental session. All subjects had
color-normal vision as tested with the Ishihara plates [15]
and all reported that they had normal or corrected to normal
visual acuity. The subjects were paid volunteers recruited by
advertisement on the University of California, Santa Barbara,
campus. All were undergraduate students. Although the sub-
jects were informed that the purpose of the experiment was to
improve our understanding of how image processing affects
image quality, all were naive as to the experimental design
and the nature of the image processing under study. Indeed,
no instructions were given about the types of artifacts likely
to be visible in the images, so that subjects would not artifi-
cially focus on any particular aspect.

Subjects viewed the screen from 60 cm. At this distance,
the full 1280 1024 pixel display subtended 36 29 of
visual angle. The size of the individual images varied from
image to image. Across all the experiments, the smallest
image linear dimension was 12and the largest was 22.

3http://color.psych.upenn.edu/depreference

(a)

(b)

(c)

Fig. 6. Experiment 1 results. (a) Preference by subject, averaged
over images. Preference score is the percentage of times a given
image type was chosen as preferred. Along the abscissa, the image
types are ordered as follows: nonmosaiced, bilinear, Bayesian 1,
Bayesian 2, and Freeman 1. (b) Preference by image, averaged
over subjects. Image numbers here and elsewhere in the paper
refer to those used to identify individual scenes are available.4

(c) Preference scores averaged over both images and subjects. Error
bars show+=�1 SEM.

B. Results

For each subject and scene, the results of the experiment
may be expressed as the percentage of times that the result
of each method was chosen on trials where it was presented.

4http://color.psych.upenn.edu/depreference
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Thus, each method can be assigned a score between 0% and
100%. The higher the percentage, the more preferred the
method. Fig. 6 shows the preference scores obtained in Ex-
periment 1.

Fig. 6(a) shows data for each subject, averaged over all the
scenes. There is good consistency across subjects. For seven
of the nine subjects, the rank ordering of the image types
was the same: Bayesian 2 (most preferred), Nonmosaiced,
Bayesian 1, Bilinear, and Freeman 1 (least preferred). For
subject SC, Bayesian 1 was the most preferred algorithm. For
subject KY, Freeman 1 was preferred to Bilinear.

Fig. 6(b) shows data for each scene, averaged over all the
subjects. There is also good consistency across scenes. This
view of the data tells a very similar story. The Bayesian 2
is the most preferred image type for all scenes, followed by
Nonmosaiced and Bayesian 1. The Bilinear and Freeman 1
algorithms performed poorly. Which one produced the least
favored results varied from scene to scene.

Fig. 6(c) shows the overall mean data along with the
standard errors of the mean. The overall ordering computed
in this way matches that shown by most individual subjects:
Bayesian 2 (most preferred), Nonmosaiced, Bayesian 1,
Bilinear, and Freeman 1 (least preferred). Although the
Freeman 1 algorithm performed worse on average than
the Bilinear algorithm, the individual scene analysis above
suggests that this ordering will vary with the choice of
scenes studied in the experiment.

C. Discussion

The results of Experiment 1 show a great deal of consis-
tency. This tells us that there is sufficient agreement across
both individual subjects and across scenes for meaningful
statements to be made about algorithm performance. If it had
been the case that the rank ordering of the different algo-
rithms varied greatly across either subjects or scenes, then
we would have learned that it is not possible to make general
statements about which algorithm is best. Such a situation
would greatly complicate optimization of camera design be-
cause it would be necessary to match the image processing
to the preferences of individual consumers and to vary the
processing depending on scene content. Another way to say
this is that it is possible to obtain meaningful image pref-
erence data with a modest experimental investment. It does
remain possible that more individual variability would have
been observed if we had used a more heterogeneous popula-
tion of subjects (e.g., wider range of cultural backgrounds or
ages).

Two aspects of the experimental results surprised us. First,
the Bayesian 2 algorithm produced images that were more
pleasing than the nonmosaiced images from which they were
derived. Second, the Freeman 1 algorithm performed very
badly, doing no better than simple bilinear demosaicing. This
surprised us since the Freeman 1 algorithm was designed
explicitly to remove artifacts present after bilinear demo-
saicing.

As noted above, the failure of the Freeman 1 algorithm to
perform well led us to look in more detail at our implementa-
tion. Although we had correctly implemented the algorithm

as described in the patent [6], that implementation did not
perform well with our particular camera. It was the poor per-
formance of the Freeman 1 algorithm that motivated us to de-
velop the Freeman 2 algorithm. This version handles a more
diverse set of camera sensor designs than the original version
and we used it in Experiment 2 below.

We also tried to understand how it could be that a mo-
saiced and then demosaiced image could be preferred to the
original nonmosaiced image. After obtaining the results of
Experiment 1, we examined the individual images in some
detail. Although the Bayesian 2 images contained mosaicing
artifacts not present in the nonmosaiced images, the Bayesian
2 images also appeared to be sharper than their nonmosaiced
counterparts. Image sharpness (or blurriness) is known to
be an important factor influencing image quality judgments.
[16]–[18]

Recall that the Bayesian algorithms try to estimate the
incident full-color image and that the likelihood function we
used contained information about the optical point spread of
the camera. Because of this the Bayesian processing not only
demosaics the image, it also sharpens it. In the Bayesian 2
algorithm, the correlation parameter of the spatial compo-
nent of the prior was set to a low level, indicating that high
spatial frequencies were likely to be present in the incident
image. Such a choice of prior has the effect of encouraging
the algorithm to sharpen the image. Apparently, the good
performance of the Bayesian 2 algorithm was driven by
its sharpening properties as well as its demosaicing per-
formance. Note that the sharpening accomplished by the
Bayesian algorithm is deeply embedded in its design, so
that it is not obvious that one can perform optimal Bayesian
demosaicing without also allowing the algorithm to sharpen
the image. Although we could manipulate parameters such
as the specified optical point spread function (see below)
to reduce the amount of sharpening performed by the algo-
rithm, this would also affect the algorithm’s demosaicing
performance.

The results of Experiment 1 led us to conclude that a fair
comparison of demosaicing methods ought to be one that si-
lenced the role of image sharpness in the preference judg-
ments. Thus, we conducted Experiment 2.

IV. EXPERIMENT 2

A. Introduction

The purpose of Experiment 2 was to compare demosaicing
methods in a manner that eliminated the role of image sharp-
ness. Since we did not know how to prevent the Bayesian
algorithms from sharpening the images (see Section III), we
decided to postprocess all the images with a sharpening al-
gorithm so that sharpness was equated. This procedure also
compensates for any blurring or sharpening implicit in the
other demosaicing algorithms. Some degree of such blurring
or sharpening is to be expected, since all the algorithms com-
bine information across neighboring pixels to accomplish de-
mosaicing. Our hope was that by sharpening all the images,
we would better isolate the demosaicing performance of the
individual algorithms.
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A number of different algorithms are available for sharp-
ening images. Most of these are based on spatial or spectral
filtering of the images to enhance high frequencies. It is be-
yond the scope of this paper to provide a survey of sharp-
ening methods. Information on such methods is available
elsewhere [17], [19]. What we required was a method that
allowed us to parametrically vary the degree of sharpening
performed by the algorithm. Since we had already discovered
that the Bayesian approach provided an effective means of
sharpening images, we modified our Bayesian demosaicing
algorithm so that it could also be applied to full-color images.
To vary the amount of sharpening applied by the algorithm,
we varied the size of the optical point spread function used to
compute the likelihood function fed to the Bayesian
calculation. Specifying a large point spread function has the
effect of telling the algorithm that more high-frequency in-
formation has been removed from the raw image data and,
thus, increases the extent to which the algorithm attempts to
restore such information in the estimated full-color image.

B. Preliminary Experiment

The relationship between sharpness and image quality is
not trivial. If one starts with a blurry image and applies a
moderate amount of image sharpening, image quality typi-
cally improves. As the degree of sharpening is increased fur-
ther, however, image quality will deteriorate (see Fig. 7). The
optimal amount of sharpening to apply varies from image to
image and we are unaware of methods that automatically de-
termine the optimal amount. Since we wanted to compare im-
ages when each had been optimally sharpened, we conducted
a preliminary experiment to determine this optimal amount
for each of our experimental images. Fig. 8 shows the results
for three scenes. Note that the optimal amount of sharpening
varies both across scenes and across image types. It makes
sense that less sharpening would be required for the output
of the Bayesian 2 method, since, as noted above, this method
has the intrinsic property of substantially increasing image
sharpness. The variation across algorithms may arise because
each effectively applies a different level of intrinsic blurring
or sharpening. Although there was some variability between
subjects in the preferred amount of sharpness, we took the av-
erage across subjects to determine the optimal level of sharp-
ening for each individual image to be used in Experiment 2.
These optimal levels should be regarded as specific to the
resolution of our image set and display device. In addition,
note that the optimally sharpened version of even the non-
mosaiced image is not artifact free. Rather, it represents the
best tradeoff between the benefits of sharpness and the costs
of other artifacts introduced through the sharpening process.

In the preliminary experiment, five subjects adjusted
image sharpness so that the adjusted image appeared most
pleasing. For each adjustment, subjects could choose the
degree of sharpness by selecting one of eight precomputed
versions of the same image. The precomputed images were
shown one at a time on the same equipment used in the
main experiments. The precomputed sharpness levels were
chosen to span a range of sharpening from no sharpening
to obviously oversharpened (as judged by the first author).

Fig. 7. Effect of varying image sharpness. (a) Portion of
an unsharpened nonmosaiced image. (b) Same image area
optimally sharpened as determined by our preliminary experiment.
(c) Oversharpened version of the same image area. Oversharpened
version corresponds to the largest specified point spread function
used. Note that this version does not have the appearance typical
of oversharpening with other algorithms (e.g., unsharp masking).
Rather, the oversharpened image appears somewhat blurred.

Sharpening was applied after demosaicing and before color
balancing and gamma correction.

We ran the preliminary experiment for each image type
(Nonmosaiced, Bilinear, Bayesian 1, Bayesian 2, and
Freeman 2) of each scene to be used in Experiment 2. The
five subjects in the preliminary experiment were the first
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(a) (b)

(c)

Fig. 8. Results of preliminary experiment. (a) Scene 1. (b) Scene
4. (c) Scene 11. Each panel shows the results of the preliminary
experiment for one scene. Each bar shows the optimal sharpening
level for a single image type. Along the abscissa the image types are
ordered as follows: Nonmosaiced, Bilinear, Bayesian 1, Bayesian 2
and Freeman 2. The ordinate provides the standard deviation of the
circularly symmetric Gaussian point spread function expressed in
pixels. The error bars show+=�1 SEM.

author, the last author, and three members of the laboratory.
These subjects were not particularly naive, but for this pur-
pose, we did not feel this was a disadvantage. The sharpness
judgments were made for all individual images in a single
experimental session. Within the session, individual images
(different scenes and image types) were presented once each
in random order.

C. Methods

The methods for Experiment 2 were identical to those of
Experiment 1. As described above, the images were sharp-
ened after demosaicing and before they were rendered for
monitor display. Nine rather than ten scenes were used. We
reduced the number of scenes to shorten the experimental
session so that subjects could finish in a one hour time block.
Eight of the scenes were also used in Experiment 1. The
nonmosaiced version of the ninth scene was acquired with
a Nikon D1 digital camera with a 28–70-mm zoom lens. The
native resolution of the D1 is 1324 2012 pixels. The D1
also allows access to the image data in raw form, although it
was necessary to undo a white balancing operation that had
been applied by the camera. The images shown to subjects
in Experiment 2 are also available at the web site.

In Experiment 2, the Freeman 2 algorithm was substituted
for the Freeman 1 algorithm.

Ten additional naive subjects participated in Experiment
2. Again, these were all undergraduate students. Data from
one subject were excluded because a subsequent test with the
Ishihara plates revealed that he was color deficient. The other
nine subjects were color normal as assessed by the plates
and had normal or corrected to normal visual acuity by self-
report.

(a)

(b)

(c)

Fig. 9. Experiment 2 results. Same format as Fig. 6. (a) Preference
by subject. (b) Preference by image. (c) Average preference.

D. Results

The results of Experiment 2 are presented on Fig. 9 in the
same format as Fig. 6. A survey of the figure reveals more
variation across subjects and images than was seen in Experi-
ment 1. We believe this occurred because once sharpness had
been equated, the differences between the algorithms’ out-
puts were more subtle. This idea is supported by the fact that
the range of quality scores across algorithms is compressed
in Experiment 2 relative to Experiment 1, both for individual
subject and individual image data.
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Although there is less consistency in Experiment 2, there is
still considerable regularity in the data. In general, the non-
mosaiced image is preferred to all of the mosaiced–demo-
saiced versions. This statement is true for seven of nine in-
dividual subjects, five of nine individual images, and for the
mean data. The fact that the nonmosaiced image looks good
to subjects is reassuring and suggests that our sharpening op-
erations worked as intended. Of the demosaicing algorithms,
the Freeman 2 algorithm was the most preferred, followed
by the Bayesian 2, Bayesian 1, and Bilinear algorithms, re-
spectively. The differences between algorithms were small,
however. Note that the standard errors of the means are large
compared to the differences between Bilinear, Bayesian 1,
and Bayesian 2 algorithms.

V. DISCUSSION

We have described experiments that compare the percep-
tual quality of the output of various image-processing algo-
rithms. In our experiments, we defined perceptual quality in
terms of which image subjects found most pleasing in the
sense that they would most like to put it in their photo album.
Our main focus was to compare the efficacy of demosaicing
algorithms. Here, we summarize the main conclusions from
our experiments.

First, image preference experiments of the sort presented
here are feasible and give meaningful results: when the dif-
ferences between different images of the same scenes are
large enough (as in Experiment 1), the results are very regular
both across subjects and across images. Note that the image
differences in Experiment 1 were within the range that one
would routinely encounter when comparing algorithm per-
formance—the images used in this experiment represented
the output of reasonable algorithms. Indeed, the results of
Experiment 1 helped us to improve several algorithms and
led us to a second round of experimentation in which the dif-
ferences between algorithms were narrowed.

Second, we learned in Experiment 1 that when comparing
image-processing algorithms, it is important to be aware of
the possibility that preference judgments are not based on
the aspect of the image of interest to the experimenter. In
Experiment 1, we intended to learn about the detrimental ef-
fect of mosaicing artifacts, but in the event subject judgments
were driven by image sharpness. This was possible because
sharpening was a collateral side effect of some of the demo-
saicing algorithms. We believe this point is likely to be of
general relevance when comparing image-processing algo-
rithms. Results of image preference experiments are prob-
ably most useful when used in conjunction with careful ex-
amination of the images themselves. Surprising results in the
preference experiments may lead to insights for algorithm
development. In our case, we learned that sharpened images
with demosaicing artifacts (i.e., Bayesian 2 images) looked
better than nonsharpened images with no artifacts (i.e., non-
mosaiced images). This fact directed our attention to com-
bining demosaicing with image sharpening.

Third, once image sharpness was equated, the differences
between demosaicing algorithms were fairly small for our

Table 1
S-CIELAB Distances Between NonMosaiced and
Demosaiced Images

Distances Were Computed Using the Displayed Images and With
Respect to the Monitor’s White Point. Display MTF was not Mea-
sured or Taken Into Account in Computation of Distances.

image set. Nonetheless, the Freeman 2 algorithm was the
most effective of those we considered.

One thing we did not do in our experiments was sys-
tematically vary the properties of the nonmosaiced images
themselves. Nor did we vary the resolution of the display.
Given our current rudimentary understanding both of demo-
saicing and of image preference, it is probably wise not to
generalize our conclusion about which algorithm works best
much beyond the particular cameras and display we studied.
Camera optical quality, pixel density, sensor spectral sensi-
tivities, mosaic pattern, pixel noise, and display resolution
could all plausibly interact with the choice of demosaicing
algorithm. In addition, the interaction between sharpening
and demosaicing probably depends on the particulars of
image acquisition. In particular, variation in the focus and
depth of field of the nonmosaiced image could have a
substantial effect on the results. For any particular choice of
camera design parameters, however, our methodology can
be used to evaluate algorithm performance for any scenes of
interest. We have recently invested considerable effort in the
development and validation of a digital camera simulator [2]
so that such experimentation could be performed without
having to build camera prototypes.

We close with a few remarks about the relation between our
data and image metrics. Although we have found that it is fea-
sible to conduct psychophysical studies on image preference
and to use these as part of algorithm development, it would be
desirable if it were possible to compute the perceptual quality
of an image by comparing it to a baseline image using some
sort of image comparison metric. For example, if it were the
case that the most preferred images were the ones most sim-
ilar (according to some metric) to the nonmosaiced version of
the image, then algorithm evaluation would be simplified be-
cause it would not be necessary to run the perceptual exper-
iments. The results of Experiment 1 clearly falsify this pos-
sibility, since the Bayesian 2 image is in fact preferred to the
nonmosaiced image. Moreover, when we computed the av-
erage distance between the output of each of the algorithms
and the nonmosaiced image using the S-CIELAB[20] image
metric, the Bayesian 2 algorithm had the highest average dis-
tance, followed by the Bayesian 1, Freeman 1, and Bilinear al-
gorithms in that order (see Table 1): the images most different
from the nonmosaiced version were the most preferred. Thus,
for the images and algorithms studied in Experiment 1, the
use of the S-CIELAB metric (and probably any other current
metric) in conjunction with a baseline nonmosaiced original
image would provide a highly inaccurate prediction of actual
image quality.
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In Experiment 2, sharpness was removed as a salient factor
and the nonmosaiced image was the most preferred, making
it more plausible that an image metric could predict the re-
sults. Here, the differences between images were mainly the
mosaicing artifacts. We evaluated whether the S-CIELAB
color image metric (between the sharpened output of each
algorithm and the sharpened nonmosaiced image) predicted
the rank ordering of the algorithms. Again, the answer was
no. Although the Freeman 2 algorithm did have the smallest
average error, the Bayesian 2 algorithm, which was the next
most preferred, had the largest. Perhaps this should not be
surprising, given that the S-CIELAB metric is derived from
threshold-level judgments of image difference, rather than
the sort of image preference judgments used here. It is also
possible that better prediction of preference would be ob-
tained with current metrics if instead of comparing to the
actual nonmosaiced image one compared to an hypothetical
ideal (most preferred) baseline image of the scene.
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