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Image Restoration by the Method of Least Squares
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The restoration of optical images, as well as the unfolding of spectroscopic and other data that have been
convolved with a window function or an instrumental impulse response, can be viewed as the solution of an
integral equation. Solution of such an integral equation when the data are corrupted by noise or experimental
error is treated as the problem of finding an estimate that is a linear functional of the data and minimizes
the mean squared error between the true solution and itself. The estimate depends on assumptions about
the spectral densities of the images and the noise, the choice of which is discussed. Coherent optical processing
and digital processing are described.
INDEX HEADINGS: Image restoration; Fourier transform.

1. IMAGE RESTORATION AS THE SOLUTION
OF AN INTEGRAL EQUATION

THE degradation suffered by images in optical
1systems can often be described as a convolution

of the true or geometrical image with a spread function.'
Let Jo(r) be the illuminance at a point r= (xy) of the
image plane if there were no degradation, and J(r) be

*Present address: Department of Applied Electrophysics, Uni-
versity of California, San Diego, La Jolla, California 92037.

1 E. L. O'Neill, Introduction to Statistical Optics (Addison-
Wesley Publishing Co., Reading, Mass., 1963), p. 20.

the actual illuminance. Then at least over
region, or "isoplanatism-patch, "2

J(r) = fS(r')Jo(r-r')d2r',

a limited

(1. 1)

where S(r) is the spread function and d2r'= dx'dy' the
differential of area. (All integrals can be taken over the
infinite plane if the integrands are properly defined.)

2 P. B. Fellgett and E. H. Linfoot, Phil. Trans. Roy. Soc.
A247, 369 (1955).
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It is convenient to normalize the spread function so
that

JS(r) d2r=1. (1.2)

If the system were perfect, the spread function would
be a two-dimensional delta-function, S(r)=5(r), and
J(r) would equal Jo(r).

Other impairments of an image can also be expressed
as convolutions. If an image moving with velocitv v
in the x direction is recorded photographically in an
exposure of duration T, the transmittance of the de-
veloped film is a function of an integrated illuminance
given in Eq. (1.1), where the spread function can be
taken as

S(r)=S(x,y)= (vft'8)-(y), -1 vT<x< 'vT, (1.3)

=0, IxI>kvT.

The restoration of the true image Jo(r) can be con-
sidered as the solution of the integral Eq. (1.1), whose
kernel is the spread function S(r), assumed known. The
method that first presents itself is to apply the two-
dimensional Fourier transform. Putting3

j(Q) = J (r) exp (-ix * r)d2 r,

(1.4)

s(>))= fS(r) exp(-ix*r)d2 r,

we can write the solution of the integral equation as

MJo(r) fio(s) exp (fa*rd~w/(27r)1,

(1.5)
jo (X) = j (o,)/s (cO

This method often does not work because the illumi-
nance J(r) cannot be measured precisely enough. In-
deed, the illuminance J(r) actually observed is given
not by Eq. (1.1), but by

J(r)= S(r')Jo(r-r')d2r'+N(r), (1.6)

where N(r) represents experimental error, background
radiation, and, in photography, the effect of granularity
of the emulsion. We can encompass all these in the
term spatial noise. The noise N (r) cannot be known in
advance and differs from experiment to experiment.

Most optical spread functions attenuate high spatial
frequencies; Is (w) ->0 as 1X1 OX. An instructive
analogy is the passage of a signal through a low-pass
filter. To restore the original signal, the output must

In general we shall use a lower-case letter to denote the Fourier
transform of a spatial function designated by the corresponding
upper-case letter.

be passed through the inverse filter, which amplifies
the high frequencies. By this time, however, noise has
inevitably been added, and it contains frequencies far
beyond those of the signal. These noise frequencies are
so strengthened by the inverse filter as to blot out the
desired restoration.

An attempt to treat the optical problem by Fourier
transforms as in Eq. (1.5) is frustrated in the same
way. A further difficulty arises when, as with the kernel
in Eq. (1.3), the Fourier transform s(w) of the spread
function contains zeros at finite values of o. Because of
the noise, the Fourier transform j(o) does not vanish
at the same values of o, and the quotient j(i)/s(G)
acquires troublesome infinities.

The solution of such integral equations involving ex-
perimental data is a common problem in physics. It
arises in nuclear and optical spectroscopy, in photom-
etry, in astronomy, and indeed wherever a finite in-
strumental response or entrance window convolves with
the quantity to be measured. A method of avoiding
certain of the difficulties in optics has recently been
demonstrated by Harris.4 Other approaches have been
given by Trumpler and Weaver,5 Kahn,6 Phillips,7 and
Twomey.',' Here we propose a method that makes use
of 'the statistical properties of the noise. It is based on
the theory of minimum-mean-square prediction and
estimation.

2. AN ESTIMATED SOLUTION OF THE
INTEGRAL EQUATION

With the spatial noise N(r) unknown, Eq. (1.6) can-
not be solved directly; the most that can be done is
to produce an estimate Io(r) of the solution. If both
the image illuminance Jo(r) and the noise N(r) are
viewed as spatial stochastic processes, the best estimate
is naturally defined as the one that maximizes the pos-
terior probability density of Jo(r), given J(r), as de-
termined by Bayes's rule.10

The processes Jo(r) and N(r) are independent. If
they were also gaussian, with zero means and known
covariances, the posterior probability density would be
greatest for the linear estimate

So(r) = M (r')J(r-r')d2 r', (2.1)

in which the estimating kernel M(r) is chosen so as to

4J. L. Harris, Sr., J. Opt. Soc. Am. 56, 569 (1966).
5 R. J. Trumpler and H. F. Weaver, Statistical Astronomy

(University of California Press, Berkeley, Calif., 1953), Ch. 1.4, p.
95 ff.

6 F. D. Kahn, Proc. Cambridge Phil. Soc. 51, 519 (1955).
'D. L. Phillips, J. Assoc. Comp. Mach. 9, 84 (1962).

S. Twomey, J. Assoc. Comp. Mach. 10, 97 (1963).
9 S. Twomey, J. Franklin Inst. 279, 95 (1965).
10 For continuous processes such as these, a probability density

must be treated by a limiting procedure as samples of the process
are taken closer and closer together in the plane. The assertions
of the text remain valid.
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minimize the mean squared error

E= E[Io(r)-Jo(r)]2 (2.2)

between the estimate and the true illuminance, E denot-
ing an expected value.'"

Although the noise may often be at least approxi-
mately treated as a gaussian process, the images to be
restored rarely fall into that category. Nevertheless, if
an estimator is optimum for a class of gaussian processes
whose structure resembles that of the finest images to
be encountered, it can be expected to be effective when
applied to these images as well. It is admitted that a
detailed statistical specification of the class of images
anticipated would lead, if the optimization problem
could be solved, to a superior estimator; but it would
almost certainly be more complicated than the linear
estimator of Eq. (2.1), and of restricted applicability
besides. The linear estimator that minimizes the mean-
squared error, Eq. (2.2), therefore recommends itself
as an initial step in the search for good image restoration.

The integral in Eq. (2.1) may be said to represent
the action of a restoring filter, and such a linear estimate
may be indeed be realizable by coherent optical proces-
sing.'2" 3 If the illuminances are sampled at discrete
points, a discrete counterpart obtained by approxi-
mating the integrals in Eqs. (1.6) and (2.1) by sum-
mation formulas can be executed by a digital com-
puter. The estimating kernel M(r) depends on the
spread function S(r) and on the properties of the images
and the noise. We turn to the problem of calculating it.

Of the limited region in which the degradation of the
image can be described by Eq. (1.1) there is no reason

to favor one part over another, and the stochastic
processes representing the images Jo(r) and the noise
N(r) may as well be taken as spatially stationary. Since
it is chiefly the deviation

zJo(r) = Jo(r) - EJo(r)

from an over-all mean illuminance that is of interest,
the representative processes can without loss be taken
to have zero mean values.

The mean value EJo(r), which for a spatially ergodic
process is equal to the limit as A goes to infinity of the
spatial average A-'fAJo(r)d2 r, over a region of area
A, does not usually contribute to the identification of
an image, and we need not be concerned with its esti-
mation. With the mean value of the noise N(r) taken
as 0, however, a good estimate of the mean of Jo(r),
in view of Eq. (1.2), is simply the integral of the ob-
served illuminance J(r) over a large region of the image
plane, divided by the area of that region.

The independent, zero-mean gaussian processes
zŽJo(r) and N(r) are completely characterized by their
spatial covariance functions

lo(r) = EAJo(r') AJo(r'+ r)

b.(r)= EN (r')N(r'+ r)
(2.3)

or by the Fourier transforms of these, soo(o) and (

which are the spatial spectral densities of the image and
noise processes, respectively. When Eqs. (1.6) and (2.1)
are substituted into the error expression of Eq. (2.2)
and expected values are formed, the mean-squared
error becomes

E =40, (0)- r)(+r)d1sdr+ M (M2)

{f fS (r1)S (r2)I'O ('r1+ r- 2- r2)d2rid 2 r2 +I) (11-1 2) }d2srd212(2.4)

This can be written, as in the usual treatment of Wiener
filtering,'4, 5

E= | (m)- o Y (w)

+ (PO) (Pn )/y (o) } d2(,/ (27r)2,

11 D. Middleton, An Introduction to Statistical Communication
Theory (McGraw-Hill Book Co., New York, N. Y., 1960),
Section 21.4, p. 994 ff.

12 L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello,
Trans. IRE IT-6, 386 (1960).

3 A. Vander Lugt, Trans. IEEE IT-10, 139 (1964).
14 N. Wiener, The Extrapolation, Interpolation and Smoothing of

Stationary Time Series (John Wiley & Sons, Inc., New York, N. Y.,
1949), p. 84.
1' H. W. Bode and C. E. Shannon, Proc. IRE 38, 417 (1950).

l]so (X)+ I m( () l 2E Is(,) I 2Go(w)+ ,p(.)]}d2w/(2ir)2 .

with
'y ((b) = I s (W1) I 2 500 ((.) + f n ((i),

from which it is evident that the Fourier transform
m(w) of the estimating kernel that minimizes the mean-
squared error E is

The minimum mean-squared error -qttained by this
estimator M(r) is then

Emin= E [I| s( M) | 2 ,o (W))d+ 2 7(W))(26

Xs&o(,w))sn(,w)d2,w/(27r)2. (2.6)

m(w) = [l s(w) 12o(6)+ o(,-1s* () O(Q). (2.5)
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over separate regions of area A whose diameters are
much greater than the correlation distance of the spatial
noise. The sample variance of the values of Jan so ob-
tained provides an estimate of the product A Sn,.

As an example we show in Fig. 1 the spatial frequency
\j~ U response in (X) of the restoring filter for an image moving

with velocitv v in the x direction. The kernel of the
integral equation is given in Eq. (1.3); its Fourier
transform is

s(Q)= (sinu)/n, a= (coae), u= lvTaz. (2.8)

FIG. 1. Restoring filter for a moving image. u=- vTwT.

There remains the question of what covariance func-
tions or spectral densities to adopt for the images Jo(r)
and the spatial noise N (r). For the images there is
usually a certain distance S representing the size of the
finest details that should be resolved. The smaller this
dimension a, the larger the minimum error Ernin. Noth-
ing is to be gained by adopting a value of a smaller
than the distances over which the features of the images
Jo(r) change significantly. Thus a corresponds to a cor-
relation distance for the stochastic processes represent-
ing the images. Their covariance function to(r) has
widths in x and y of the order of 6, and their spectral
density sco(w) widths in each direction of the order of
27r/5. Since little more than this can usually be said
about the images, a plausible choice for the spectral
density p0o(w) is simply

yo0(w)=4ir02/W2, kI •<W=2ir/8

=-, )l >W,

Since here the spreading occurs only in the x direction,
it is reasonable to cut off the spectral density soo(,) of
the representative image processes only in the w,
direction and to put

00(6) = r72/W, -W<• < IW,

=0, 1WJ.>W. (2.9)

Any distortion in the y direction due to the finite
aperture of the imaging system is left unamended. The
restoring filter now has the spatial-frequency response

œn({) =u(sinu)/(sin 2u+Bu2), I |C K[<WV

=0, co > W, (2.10)
u= 'vTwo, B= W<wu/7ra2,

which is plotted vs it in Fig. 1 for a ratio B=0.1. It is

(2.7)

where o2 =Var Jo(r) is the mean-squared deviation of
the image illuminances from their average value.

The noise N (r) usually has finer structure than the
images to be restored. Its correlation distance is much
smaller than S and its spectral density sP Ga) much
broader than scoO(). In most cases there is little reason
to take yn Ga) as anything but constant, 7G(W) =--
This choice corresponds to assuming that the variations
N(r) are like what the communications engineer calls
white noise. Measurements of the illuminance J(r) how-
ever close together have components N(r) that are
statistically independent, as is to be expected when
experimental error and stray incoherent background
radiation are taken into account.

The spatial frequency response in>(a) of the restoring
filter depends on the ratio Yin1 /o, which is now a con-
stant, but a rough estimate of this ratio usually suffices.
The spectral density q'n of the noise can be estimated
after substituting for the images Jo(r) a completely
blank source producing the same average illuminance.
A large number of measurements are then made of the
integrated illuminance

JT= J(r)d2r

a

a

a)

0.4 0.6

Frequency b1 I u 1

FIG. 2. Restoring filter for a slit-diffracted image.
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E

0 0.5 1.0 1.5 2.0
Ratiov = 1Tb of t1-oge Baotoidth to Width of Slit

FIG. 3. Minimum mean squared error in restoration:
slit diffraction.

symmetrical about u= 0 and is to be cut off at a value
of n equal to 'vTW.

The restoration of an image that has suffered dif-
fraction at a slit can also be viewed from the present
standpoint. Let incoherent light be passing through an
infinite slit of width a from an object that can be sup-
posed at infinity. The image is then focused on a plane at
a distance F from a cylindrical lens. Then if b= 27ra/XF,
where X is the wavelength of the light, the spread func-
tion is

S(r)= 2(7rbx 2)-l sin2 (bx/2)a(y). (2.11)

Its Fourier transform is

s(o)=1-h'Icoxj, IcoA ( b,

= 0, I wxJ >b,

which is the convolution with itself of a rectangular
function of width b. Thus b can be identified with the
optical bandwidth of the system.

If we take the noise as having a uniform spectral
density 4on and attribute to the geometrical image the
same spectral density as in Eq. (2.10), the frequency
response of the restoring filter is, by Eq. (2.5),

m(o) =[(1-b-'| z|)%-B}1 (1-h' I a2),

|co, < min (W,b),

=0, lx >min(W,b)
B= WVVo/ir&.

Figure 2 shows this response function for a value of
B=0.1.

The minimum mean-squared error Emin is obtained
by substituting s(w) into the one-dimensional form of
Eq. (2.6), which after integration yields

Emin/c2 = (f/w) ( tan1l(jh')-tanrlr'- (1-w)]},

o<w( 1,

=(f/w)Etanr1 (j-h)+±& 1 (w--)], w>1 (2.14)

w= W/b, 3= Bt .

This is plotted in Fig. 3 vs wo= Wo/b for B=j3 2=o0, 0.1,
1.0. For W/b=O, Emin/o 2=B/(1+B). In the limit of
no noise at all, B -> 0,

Emin/cr2  0<On<6 O< <b,

Emin/1 2* 1-b/W, W>b.

Thus if the width a of the slit is greater than XEW/27r,
the representative image processes can be restored per-
fectly in the absence of noise, but not if a<NFW/27r.

The spatial response m(X) of the restoring filter for
circular diffraction looks much like that shown in Fig. 2,
but it appears difficult to evaluate the minimum mean-
squared error analytically.

3. THE DATA PROCESSING

Optical Filtering

The image might be restored optically by use of
coherent light, as described by Cutrona et al.'2 and
Vander Lugt.13 A transparency must be prepared whose
amplitude transmittance deviates from a reference value
by an amount proportional to the illuminance J(r).
Plane parallel coherent light passes through the trans-
parency and thence to a convergent lens. In the focal
plane beyond the lens is a second transparency whose
amplitude transmittance is proportional to the func-
tion m(X) of Eq. (2.5). The coordinates x in the focal
plane are related to so by

x= XFa/27r,

where ? is the wavelength of the coherent light and F
is the focal length of the lens.

The field amplitude of the light falling on this trans-
parency is the Fourier transform j(w) of J(r), and the
transmitted light has a field amplitude m(o)j(o). This
light then passes through a second lens whose focal
plane coincides with that of the first. The emergent
light has a field amplitude proportional to the estimate
Jo(r), which can be obtained by allowing the light to
fall on a photographic plate of known characteristics.
The limitation of the spectral density 9o0(6) of the
images to a spatial band of radius II= W, as in Eq.
(2.7), corresponds to placing an aperture stop in the
common focal plane of the two lenses.

Unless mn(o) is real and positive, preparation of the
filter transparency may be difficult. Holographic tech-
niques' 6 might be applied, however, by making the
amplitude transmittance proportional to

g +m (o) expihr a + m*()exp (-io- a),

where p. is a constant large enough to prevent this ex-
pression from becoming negative, and where a is a
suitable vector. The field amplitude of the transmitted
light is then proportional to

j(io)D+m(o) expio- a+m*(Q)exp(-iG).a)J;

after Fourier transformation by the second lens, the
restored image is displaced by the vector a from a replica
of the original image.

16 G. W. Stroke, An Introduction to Coherent Optics and lHolog-
raphy (Academic Press, New York, London, 1966), p. 79ff.
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Digital Processing

If the values of the illuminance J(r) are sampled at
a rectangular grid of points, and if the illuminance
Jo(r) of the restored image is desired only at the inter-
sections of a similar rectangular grid, the integrations
in Eqs. (1.6) and (2.1) are replaced by finite sum-
mations obtained by applying a quadrature formula
such as Simpson's or the trapezoidal rule. Taking the
points in each grid in a certain fixed order we can write
the resulting equations in matrix form,

J=SJo+N, JO=MJ, (3.1)

where J, JO, and N are column vectors of sample values,
of the functions J(r), Jo(r), and N(r), respectively.
S and M are matrices and Jo is a column vector of
estimated illuminances at the grid points on the re-
stored image. The number n of points at which the
illuminance J(r) is measured is generally larger than
the number in of points at which the illuminance Jo(r)
is to be estimated. The matrix S is then nXm, and the
matrix M is mXn.

The elements of the estimating matrix M are to be
chosen to minimize an average error that can be written

E=TrEG(Jo-Jo)(Jo-Jo), (3.2)

where again E denotes the expected value. Here in-
dicates the transpose of a matrix, and G is a positive-
definite, symmetric error matrix. The simplest kind of
error matrix is the identity matrix I, which weights
errors at all points equally.

The matrix M that minimizes the error E turns out
to be independent of the precise form of G. Under as-
sumptions akin to those made in Sec. 2, it is given by"7

M= Vo0S(SPO0S+ Vn)-i, (3.3)

and the minimum error is

Emin=TrG(spo-MSpoo). (3.4)
Here

o= EAJoAJo, AJ 0=J 0 - EJ, (3.5)

no= ENN,

are covariance matrices of the sampled image and
spatial noise processes. The derivation of Eq. (3.3) is
a straightforward exercise in differential calculus.

Equivalent to taking the spatial noise N(r) to be
white is the assumption that the covariance matrix
SOn is diagonal: son= soj, where I is the identity matrix.
If the spacings of the grid of points at which the re-
stored image Jo(r) are evaluated are of the order of the
desired resolution distance 8, the matrix -OQ can also
be taken as diagonal: po= @oI; for if structural varia-
tions in the image Jo(r) take place in distances of the

17 R. Deutsch, Estimation Theory (Prentice-Hall, Inc., Engle-
wood Cliffs, N. J., 1965), p. 66.

order of 8, values of the representative stochastic proces-
ses at points separated by a must be nearly uncorrelated.

Under these assumptions the column vector Jo of
estimated illuminances and the minimum error E are
given by

J0 = S(SS+aI)-1 J= (SS+aI)-1SJ, (3.6)

a= f,- n/(0°

Ernin,= @pnTrG(SS+aI)-t. (3.7)

In the limit @oo>>@on the a priori density of the image
illuminance is so broad as to be nearly uniform, and in
effect no prior knowledge of the strength of the image
relative to that of the noise is being assumed. We then
find that the best estimate of the illuminances is given
by the column vector

Jo= (SS)-'SJ, a<<1, (3.8)

and the minimum error is

Emin= yofTrG(SS)-'. (3.9)

This estimate represents a solution of the linear equa-
tions J= Sh by the method of least squares.1 The con-
tinuous counterpart of this procedure is to take the
response mn(w) of the restoring filter equal to 1/s(a) for
I X • < W, and to 0 for o x 4 > W. It may be unsafe if
the Fourier transform s(w) of the spread function has
any zeros in the region I I < W.

The mXn matrix (SS+al)-1S yielding the esti-
mate Jo as in Eq. (3.6) has elements significantly dif-
ferent from zero only in places that connect points in
the image plane separated by distances of the order of
the width of the spread function S(r). Hence although
the images contain such a large number of grid points
that they tax the storage capacity of a digital computer,
the images to be processed can be broken down into
sections of a size governed by the dimensions of the
spread function, which is usually much smaller.

If it is desired to smooth the solution, as when it is
being evaluated at points spaced by somewhat less than
the "correlation distance" a of the true image, a co-
variance matrix po that is nondiagonal can be used
without greatly increasing the amount of computation.
A possible form might be

o= I jo, l I = I @o exp(- Irr-r.I/ 11I).

The noise is still assumed white, t°n= 0Ij. The esti-
mates are then given by vector

JO, (9s,+ s~(on0-1)-19j,

and the mninimiumi-mean-squared error by

EminE = (@nTrG(SS+ (@nPOo')t.

18 A. Reiz, Arkiv Mat. Astron. Fysik 29A, #29, 1 (1943).
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An estimate of this form was proposed by Twomey on
somewhat different grounds.8' 9

One-dimensional convolution-integral equations, such
as arise in spectroscopy and photometry, can be
treated in the same digktal iashion. The linear equations
that replace them after sampling are of the same form
as those in Eq. (3.1), and what we have said about the
nature of the covariance functions can usually be
applied to those other domains as well.

As a one-dimensional example, we present the con-
volution of a gaussian function

Jo(x)= (2ir)- exp(-x 2 /2) (3.10)

with a rectangular kernel of width S=1.5 and height
1. What corresponds to the geometrical image is now
the function

(3.11)

which was calculated at the 71 points Xk=kn, -35<k
<35, n=0 .1 2 5, to yield a set of pristine data zk=J,(x,).
The data vector J consisted of the 71 numbers

JIk= [(zt+ek')
2-fet"%2] 4 , -35<k<35, (3.12)

where the ek', ekC were 142 pseudorandom numbers
generated by a computer in such a way as to be approxi-
mately normally distributed with mean 0 and standard
deviation 0.001. The data J3 -were formed as in Eq.
(3.12) to ensure their being positive, as are the data
in any experiments in which an intensity of some kind
is being measured.

The values of the estimate foc(x) were sought at 29
points xj=jk, -14<j<14, h=0.25. The solution was
assumed equal to 0 outside the interval -3.5<x<3.5;
the true solution, Eq. (3.10), is less than 10-3 for
I x I >3.5. To put the integral equation into the form of
Eq. (3.1), the integral was approximated by Simpson's
rule, which involves replacing the integrand over each
interval of length 2k by a parabola passing through
the values of the integrand at the two end-points and
at the midpoint. The results of applying the method of
Eq. (3.6) to these data are plotted in Fig. 4 along the
curve of the true solution Jo(x). Two values of a, 0
and 6.25-10-1, were used, with only slightly different
results.

The results obtained above may be compared with
those from the direct method of solving an integral
equation with such a rectangular kernel. It employs
the relation

sd-J,/dx=Joist+ H) -JoyxzS), (3.13)

which is obtained by differentiating the integral equa-
tion. If we denote by Jkt' the numerical derivative of
the data at the kth point, we can write Eq. (3.13) in the

O.:

0 1
Displacement, x

FIG. 4. Restoration of a gaussian function.
O:a==O, 40:a=6.25 10-3.

form
Jok&= J- 6 ±4, k-IS -29<k<0,

0<k<299
(3.14)

in which the spacing of the data is q=0.125=S/12.
By assuming Jok=O, Ik! >35, we should be able to
derive values of the solution for I k • < 29 by numerically
differentiating the data Ak, starting from each end of
the set, and substituting into Eq. (3.14). The numerical
differentiation formula was obtained by differentiat-
ing Newton's forward interpolation formula, ten terms
of which were used."9 Applied to the pristine data
Zk =J 0 (Xk), this method produced the correct solution
with three-figure accuracy over most of the range.
Applied to the very same data J.; as were used in calcu-
lating the points on Fig. 4, it yielded a set of positive
and negative numbers varying over a range from -1.4
to +1.5 and bearing no resemblance whatever to the
true solution. It is necessary to smooth such fluctuations
in order to obtain a useful solution, although how best
to do so in this case is not apparent.
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