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Abstract

This paper discusses state and promising directions of automated object extraction in photogrammetric computer vision
considering also practical aspects arising for digital photogrammetric workstations (DPW). A review of the state of the art shows
that there are only few practically successful systems on the market. Therefore, important issues for a practical success of
automated object extraction are identified. A sound and most important powerful theoretical background is the basis. Here, we
particularly point to statistical modeling. Testing makes clear which of the approaches are suited best and how useful they are for
praxis. A key for commercial success of a practical system is efficient user interaction. As the means for data acquisition are
changing, new promising application areas such as extremely detailed three-dimensional (3D) urban models for virtual television or
mission rehearsal evolve.
© 2007 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
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1. Introduction

It took a few decades to highly automate (i.e.,minimize
human work) orientation determination and the genera-
tion of digital surface models (DSM) or digital elevation
models (DEM). This has led to digital photogrammetric
workstations (DPW) (Heipke, 1995), which have been
introduced in the market on a larger scale at the middle/
end of the nineties and have become the standard for
photogrammetric processing. Compared to this, the
situation is much more difficult for object extraction.
There are only few successful (semi-) automated systems
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in the market. Baltsavias (2004) cites most prominently
the systems for building extraction InJect of INPHO
GmbH (Gülch et al., 1999) and CC-Modeler of CyberCity
AG (Grün andWang, 2001). Additionally, the systems for
road update and verification ATOMIR (Zhang, 2004) and,
particularly, WIPKA-QS (Gerke et al., 2004) are on the
verge of becoming operational.

This paper addresses reasons for this deficit of viable
practical systems, but also points on issues we consider
important to improve the situation and introduce object
extraction on a larger scale also in practical applications.
To begin with, we show how the difficulties of object
extraction have been underestimated in (photogrammet-
ric) computer vision from the very beginning but also
point to recent developments in this context. While
some of the latter are mostly important only for close
range applications, which we see as an evolving market
for DPW (cf. Section 4), advances in the exploitation of
metry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V.
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redundancy and in stereo matching are of importance for
DSM/DEM generation in topographic applications.

Legend has it, that in the 1950s scientists from the
field of artificial intelligence thought, that the solution of
the vision problem was a matter of a graduate student
project. This estimation then shifted from five years to
twenty years and then to much longer. Today, there is a
large body of knowledge in different fields as diverse as
psychology (Kosslyn, 1994) and the use of geometry in
computer vision with the milestone “cookbook” (Hart-
ley and Zisserman, 2003), but still we might be only at
the beginning of understanding the basic problems.

There is progress not only in the high level
understanding, i.e., interpretation, area, but also in the
modeling of the image function. Köthe (2003) has for
instance shown that the well known operator of Förstner
and Gülch (1987) does not take into account the
frequency doubling implicit in the squaring of the
Hessian matrix. For detailed structures this can lead to
missing exactly those points one is interested in or to a
bad localization of the points. The SIFT operator of
Lowe (2004) offers scale and rotation-invariant features
which can be robustly matched under affine distortion,
noise, and illumination changes, largely extending the
scope of matching procedures. One particularly relevant
example using it is the commercial “Autostitch”
program for the construction of panoramas insensitive
to the ordering, orientation, scale and illumination of the
employed images (Brown and Lowe, 2003).

Pollefeys et al. (2004) have shown that it is possible to
fully automatically reconstruct the pose and calibrate
images of cameras of which the only thing known is,
that they are perspective. This opens up new application
areas particularly in close range and gives additional
flexibility. Pollefeys et al. (2004) also demonstrated the
importance of redundancy in matching, an issue recently
propagated by Leberl and Thurgood (2004) for robust
DSM/DTM generation from images of digital aerial
cameras, claiming that one can obtain results with a
quality similar or even superior to laser scanning. Nistér
(2004) presents a direct solution for the five-point
relative orientation problem allowing for real-time
orientation without approximate values by making use
of given calibration information. Particularly the
possibility to generate approximate values is very
helpful for close range as it allows for full automation
also for a freely moving camera without any markers.
Finally, the test of Scharstein and Szeliski (2002) on
stereo matching has sparked a large number of new
approaches for matching, using, e.g., the powerful graph
cut technique of Kolmogorov and Zabih (2001), or
cooperative disparity estimation as in (Mayer, 2006),
opening ways for obtaining meaningful DSM also in
complex urban areas.

This paper rests on a recent survey of Baltsavias
(2004) which summarizes important points for the
practical use of object extraction. Our goal is to deepen
some points, yet give enough overview of the area to
make the paper self-contained. Although focusing on
aerial imagery and aerial laser-scanner data, we also deal
with satellite imagery, hyper spectral data, and terrestrial
video sequences or laser-scanner data. To limit the
scope, we do not consider radar data.

The prerequisite for highly productive object extrac-
tion is appropriate modeling (cf. Section 2), which in our
case comprises the strategy, data sources including data
from geographic information systems (GIS), statistics
with and without geometry, and learning. While a lot of
basic scientific work ends with the visual presentation of
specific examples, there is a recent tendency to evaluate
the performance of the approaches by means of different
tests giving way to the design of the user interaction for
semi-automated systems described in Section 3. As
technical developments are useless without markets,
Section 4 gives an idea about future markets and what
other areas, particularly visualization from computer
science, envisage. The paper ends up with conclusions.

2. Modeling

Modeling is the key for the performance of any
approach for automated or semi-automated object extrac-
tion. Basically, modeling consists of knowledge about the
objects to be extracted. Additionally, in most cases it is
necessary to analyze also their mutual spatial and topologic
relations as well as their relations to additional objects,
which a customer might not be interested in to extract, but
which give important clues for the recognition of an object,
e.g., even though one is just interested into roads in city
centers, one might only find them, when one knows, where
the cars are (Hinz, 2003).

Instead of analyzing the assets and drawbacks of
individual approaches (Mayer et al., 1998; Mayer, 1999),
we will concentrate on a number of issues we consider
important to improve object extraction in the remainder of
this paper. Overall we believe, that only by a detailed
modeling of many objects of the scene and their relations,
it will ultimately be possible to mostly reliably extract
objects from imagery, laser-scanner data, etc.

2.1. Strategy and scale

Experience shows, that the sequence of operations
employing the knowledge about the objects and their
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relations is extremely important for an efficient, but also
successful extraction. It is for instance well known, that
markings are an important clue to find roads. Unfortu-
nately, in images with a ground pixel size of about 0.25 m
markings very often correspond to very faint bright lines.
Extracting the latter in open rural space results in millions
in the fields and meadows leading to an infeasible
grouping problem. On the other hand, one can first
produce hypotheses for roads in the form of lines in
images of a reduced resolution of for instance 2 m, i.e.,
images on a higher level of an image pyramid. Then one
verifies the roads in the form of directed homogeneity
such as in (Baumgartner et al., 1999). Inside the generated
hypotheses the markings can be extracted and grouped
reliably (Hinz and Baumgartner, 2003), giving the
hypotheses a high evidence for actually being roads.

We term the basic concepts behind a sequence of
operations controling the extraction a “strategy”. Ideally,
objects exist

• which are easy to extract,
• can be extracted reliably, and
• which have a large positive influence on the inter-
pretation of the whole scene.

The basic idea is to find cues for objects which allow
to focus the attention to specific areas, such as
hypotheses for roads to extract markings (cf. above).
Unfortunately, this kind of objects does not always exist
and if, it is not always easy to identify them.

In the above example on roads, scale plays an im-
portant role. Coarse to fine approaches have long been
used for orientation determination and in image matching
(Heipke, 1995). For linear objects it was shown in (Mayer
and Steger, 1998), that by changing scale from fine to
coarse by means of the linear scale-space (Lindeberg,
1994), one can often eliminate interfering objects such as
cars and trees together with their shadows from roads.
Other means are irregular pyramids, as for instance
implemented in eCognition of Definiens GmbH (Benz
and Schreier, 2001). A comparison of different means is
given in (Blaschke and Hay, 2001).

Our experience is that a multi-scale approach is in many
cases useful. Depending on the type of object, smoothing
with the linear scale-space, elimination of interfering details
by means of gray-scale morphology (Köthe, 1996), or a
combination of both such as in (Kimia et al., 1995) is most
suitable. In (Mayer and Steger, 1998) we give an example
for the application of the latter on road extraction, while in
(Mayer, 1998) we show that this is advantageous because it
preserves the elongatedness of roads while at the same time
suppressing most other objects.
2.2. Data sources and GIS data

In recent years, DPW have included means to deal
with high resolution satellite imagery such as IKONOS
or Quickbird together with aerial imagery, possibly
digital, for instance from Leica's ADS40 (Fricker,
2001), Vexcel's Ultracam (Leberl et al., 2003), or Z/I
imaging's DMC (Madani et al., 2004). The advantages
of digital imagery including economic aspects are
highlighted in (Leberl and Thurgood, 2004).

To use data which comprise information more
explicit for the problem is a very efficient means to
make the extraction more robust and reliable. These are
most importantly color, or more generally spectral data,
as well as three-dimensional (3D) data. McKeown et al.
(1999) and Mikhail (2000) show the advantages of
using aerial hyperspectral data allowing for reasoning
about the materials of the objects. Both make also use of
DSM information.

Concerning 3D, often highly reliable data from laser
scanners are the data source of choice. Early experi-
ments on the extraction of buildings from laser-scanner
data where conducted by Weidner and Förstner (1995).
Recently, laser-scanner data are more and more fused
with aerial imagery. For it, the establishment of a
common reference frame plays an important role to
arrive at rich features (Schenk and Csathó, 2002). Work
such as (Rottensteiner, 2003) uses additionally to the
integration with aerial imagery sophisticated segmenta-
tion methods and a consistent model estimation scheme.
In Straub (2004) DSM data from laser scanners partially
together with reflection properties in the infrared is used
for the extraction of individual trees.

A very important source often neglected in more
theoretical work are GIS data. Brenner (2000) uses two
dimensional (2D) polygons, from which straight
skeletons are generated, in conjunction with laser-
scanner data to efficiently and reliably extract buildings.
In (Gerke et al., 2004) a two stage process is employed
to verify given road data. After extracting reliable roads
in the first stage using strict parameters, topologic
information is used to restrict the further analysis in a
way that relaxed parameters can be used leading to a
more complete verification and therefore a higher
efficiency. Zhang (2004) employs color and stereo
data together with extensive modeling, comprising, e.g.,
context, occlusions, and shadows. He is making heavy,
yet intelligent use of given GIS data, leading to an
impressive performance for the update of road data.

One reason that the potential of using GIS informa-
tion is not exploited is, that one cannot absolutely rely
on it, as it might be outdated and unprecise and therefore
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might lead to wrong conclusions. There is always a
trade-off between accepting wrong, because changed
objects, and rejecting correct, because unchanged
objects. Therefore, as for instance (Zhang, 2004)
demonstrates, even when using additional information
from GIS, reality needs to be modeled very deeply, so
that the objects can be extracted reliably also under
complex circumstances. Additional reasons hindering
the widespread use of GIS data are the plethora of data
models and formats and the different policies and legal
requirements of cities, regions, and countries.

2.3. Statistical modeling

The deficits of a mainly deterministic modeling, for
instance based on semantical networks (Niemann et al.,
1990), have been known for a long time. There have been
heuristic attempts by adding for instance believe values.
Yet, more sound ways of including statistical modeling
have been proposed for object extraction only recently, for
instance Bayesian networks in (Growe et al., 2000) or
(Kim andNevatia, 2003). The work on dynamic Bayesian
networks of Kulschewski (1999) has been interesting in
terms of statistically modeling objects and their relations.
Though, manually generated ideal data were used and
thus the feasibility of the approach to copewith realworld,
noisy, and unreliable data is hard to judge. Taillandier and
Deriche (2004) proposed a Bayesian approach penalizing
complex models via minimum description length (MDL).
A very generic model with only a few constraints is
employed withMDL being used to balance good fit to the
data with the need to generalize according to architectural
modelsmuchmore abstract than the images. The potential
of this approach is shown with impressive results for 45
buildings in a block of six images.

Until recently, semantical modeling was also often
lacking the capability to visualize the actual contents of
the knowledge modeled. The quality of the modeling,
e.g., by a semantical network, could only be judged by
looking at interpretation results and it was difficult to
judge how much a component contributed to the results.

By the advent of Reversible Jump (RJ) Markov
Chain Monte Carlo (MCMC) (Green, 1995) there is a
means for statistical modeling which can also be used in
a generative way for simulation. The jumps in
RJMCMC make it possible not only to use distributions
for the parameters of objects and relations, but also to
introduce new objects or relations and to delete them by
being able to change the number of parameters, which is
not feasible for standard MCMC Neal (1993). The
jumps are called reversible, because for every jump
generating a new object there needs to exist a backward
jump, allowing to eliminate the object. Because of this,
RJMCMC has the following outstanding features:

• The modeling is extended in a sound way to deal with
the uncertainty of objects as well as their relations
even when it is not known beforehand, which and
how many objects exist.

• It is possible to sample into the distribution allowing
to simulate objects and their relations according to
the model. Thus, one can check from the outcome, if
the given model really describes what it is supposed
to describe. I.e., in stark contrast to most modeling
schemes, one can check the model without analyzing
given data.

That the ideas of RJMCMC are practically feasible and
meaningful was shown by work on building facade inter-
pretation of Dick et al. (2004) as well asMayer and Reznik
(2007), road extraction by Stoica et al. (2004), and vege-
tation extraction by Andersen et al. (2002). Dick et al.
(2004) and Stoica et al. (2004) demonstrate, that one can
produce realistically looking facades or roads, respectively,
by starting from a few basic primitives, such as a window
and a door, or a road piece, and then sampling into the
distribution.

Another important issue of statistical modeling is self-
diagnosis. Förstner (1996) introduced the “traffic light
paradigm”. Results which are correct (green) are distin-
guished from certainly incorrect results (red) and results,
which might be correct, but should be checked (yellow).
The idea is that a calling routinewill get back information if
it can rely on a result (green), if the result might be correct
(yellow), or if there was no meaningful result (red). Self-
diagnosis is based on statistical modeling. The more one
knows about the deterministic and stochastic structure of
the problem, themore reliable self-diagnosis will be. Gerke
et al. (2004) have built their approach for road verification
on top of the traffic light paradigm.

2.4. Geometry and statistics

An area of statistics linked to problems often geo-
metrical in nature is concerned with the large number of
blunders in the data, automation in vision often has to
deal with, especially when using matching algorithms.
This has sparked the development of techniques which
approach the problem differently from how most
photogrammetrists would do this. Especially popular
is the random sample consensus, or short RANSAC
approach of Fischler and Bolles (1981) and its variants
for instance based on the geometric information
criterion (GRIC) of Torr (1997).
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The basic idea is to take a larger number of random
samples consisting of the (assumed to be small) minimum
number of observations necessary to solve the problem. All
these samples lead to solutionswhich are then checkedwith
a given acceptance criterion against the rest of the
observations. Finally, the solution is taken, which is in
correspondence with the largest portion of observations.
This technique is extremely useful for applications such as
the estimation of the epipolar geometry (Hartley and
Zisserman, 2003), for aero-triangulation (Schmidt and
Brand, 2003), or to find planes (and also spheres and cones)
in a large number of 3Dpoints (Bauer et al., 2003; Schnabel
et al., 2006), as it can deal with data of which only a few
percent are correct, far below the breakdown point of 50%
for (traditional) robust statistical approaches such as M-
estimators. This is feasible, because of the restrictive
assumptions of a small minimum number of parameters
needed to solve the problem as well as of a given
acceptance criterion to decide if an observation is correct.

Computer vision has understood many of the geomet-
ric problems of the imaging process over the last decade
very well. Early results are summarized in (Faugeras,
1993), while the state of the art is given by (Faugeras and
Luong, 2001) and (Hartley and Zisserman, 2003). Heuel
(2004) has presented work where statistics is linked with
geometric algebras making it possible to statistically test
uncertain geometric relations such as incidence, parallel-
ism or orthogonality, which is used for the reconstruction
of buildings in the form of polyhedra.

2.5. Learning

From a practical, but also from a theoretical point of
view automatic learning, i.e., the automatic generation of
models from given data or from experience, is of big im-
portance as it avoids the tedious manual process of model
generation. The latter is one of the most important reasons,
why an automated extraction of objectswith awider variety
of appearances does not seem to be feasible yet.

For learning one has to distinguish between very
different degrees ranging from the mere adaptation of
parameters to the fully automatic generation of models for
objects such as buildings including their parts, their
(topological) structure, and their geometry (Englert, 1998).

Unfortunately, learning is, after standard textbooks
have been introduced a long while ago (Michalski et al.,
1984, 1986), still not advanced enough to reliably deal
well with real world problems as complex as object
extraction. Yet, this is not a surprise as object extraction
is a large part of the overall vision problem which is
even after a lot of research by extremely skilled humans
not really well understood.
Also for learning statistics might come to help.
Hidden Markov Models (HMM) have made possible a
break-through in the interpretation of written and
spoken text. Instead of describing words and their
relations structurally (grammar) and semantically, it was
found for many applications to be sufficient to analyze
the statistical dependencies of very few neighboring
words based on HMM (Ney, 1999).

For image understanding the higher complexity
makes learning much more difficult. Yet, recently,
inspired by the success of the statistical learning of
local relations for text, approaches based on learning the
appearance of small image patches and their mutual
spatial relations have given means to extract objects
such as cars (Agarwal et al., 2004). In Leibe and Schiele
(2004) the segmentation of the detected objects as well
as scale-invariance was introduced. The system of Fei-
Fei et al. (2006) based on Bayesian decisions can learn
more than one hundred object categories incrementally
from a small number of training examples. The
Bayesian decisions allow to improve recognition by
integrating a given prior from earlier experiments,
possibly done on other, unrelated objects.

Concerning another popular means for learning,
namely artificial neural networks, additionally to neuro-
fuzzy extensions used for 3D object recognition and
reconstruction as in (Samadzadegan et al., 2005), we
particularly refer to the discussion in a recent survey on
statistical pattern recognition by Jain et al. (2000). There
it is stated, that “many concepts in neural networks,
which were inspired by biological neural networks, can
be directly treated in a principled way in statistical
pattern recognition.” On the other hand, it is noted that
“neural networks, do offer several advantages such as,
unified approaches for feature extraction and classifica-
tion and flexible procedures for finding good, moder-
ately nonlinear solutions.”

3. Testing and user interaction

Key factors determining the practical usefulness of a
system are thorough testing as well as an optimized user
interaction. Yet, testing is only useful after having
obtained a profound theoretical understanding of the
problem. There are different issues, where testing can
help significantly:

• It becomes evident what the best approaches can
achieve and therefore, what the state of the art is.

• The strengths but also the weaknesses of competing
approaches become clearly visible and the whole
area can flourish by focusing on promising
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directions, abandoning less promising ones, and by
identifying unexplored territory.

• Testing usually strongly motivates all people in-
volved. By trying to outperform other approaches
one learns much about the possibilities but also the
limits of one's own approach.

Unfortunately, it is not always easy to define what to
actually test. This is most critical for practical issues, such
as the effectiveness of semi-automated compared tomanual
approaches. It depends on many factors some of them
needing lots of effort for optimization if the real potential of
an approach is to be revealed. But also for automated ap-
proaches there is a large number of factors which influence
the test and, therefore, also which approaches perform well
and which not. For roads for instance the preferred
characteristics of the terrain plays an important role.

Our experience shows that for many applications two
basic measures are suitable for evaluation of the test
results, namely “correctness” and “completeness”
(Heipke et al., 1997).

For approaches relevant for DPW, testingmust be done
against real world data. If the goal is to evaluate the whole
production chain, ground truth data should be gathered
from the 3D reality. In many cases one just wants to know
how much worse than a human the automated system is.
Then, benchmarking against manually digitized ground
truth data is the way to go. To avoid the bias of individual
operators, one can match against the results of more than
one operator such as in (Martin et al., 2004).

Together with Emmanuel Baltsavias of ETH Zurich
we have set up a test on “Automated extraction,
refinement, and update of road databases from imagery
and other data” under the umbrella of EuroSDR
(European spatial data research — http://www.eurosdr.
net; formerly known asOEEPE). On one hand, wewanted
to learn the data specification needs of important data
producers, mainly national mapping and cadastral
agencies (NMCA) and their customers. On the other
hand, existing semi- and fully-automated systems for road
extraction have been evaluated based on high quality
image data against given, manually digitized ground truth
data (Mayer et al., 2006a,b).

After thoroughly testing an approach, the next step
towards an operational system is often to design an
optimized user interaction. To limit the scope, we do not
deal here with multi-spectral classification, which is
well understood and for which powerful commercial
products such as ERDAS IMAGINE from Leica
Geosystems or ENVI from Research Systems Inc. are
available. Closer to our intentions is eCognition of
Definiens GmbH as it deals with objects, not pixels.
Because it aims more at similar applications as the
former two products, we will not treat it here either.

For general purpose DPWas well as GIS, functionality
for automated object extraction is very limited. According
to Baltsavias (2004), the only more widely known
systems actually useful for practice because offering the
most automation are the systems InJect of INPHOGmbH
(Gülch et al., 1999) and CC-Modeler of CyberCity AG
(Grün and Wang, 2001). Though, both are limited with
this respect, that they are restricted to building extraction.

Baltsavias (2004) points out, that it is clear why full
automation is not feasible today, but asks “why are
important-for-the-practice semi-automated approaches
so rare?”We will give some additional ideas why this is
the case, but we will also point on ways how to change
this situation.

Basically, as pointed out above, automating object
extraction is extremely difficult and therefore error-
prone. Only a limited number of the approaches
developed over the last two decades has been developed
so far that they work for a larger number of data sets and
are ready for testing (cf. above). But even if there was a
larger number of approaches with reasonable perfor-
mance in real world tests, there is another issue which
makes the preparation of an approach for practice even
more problematic than the usual 1:10:100 relation in
industry between proof of concept: stable prototype:
product level: This is the dependence of the user
interaction on the performance level and the strategy of
object extraction used by the system.

With this we mean, that to build a highly effective
interactive system, the interaction needs to be tailored
for a fixed level of extraction. If the level of extraction
improves, it is not unlikely, that the interaction of the
system will have to be considerably different, implying
larger changes to the software, but also possibly for the
production chains of the customers. Seen the other way
around more positively, Baltsavias (2004) recommends
to design the control including human interaction to
build systems that are useful for practice.

A reaction to the difficulties of fully-automated
object extraction without user interaction is a restriction
to problems where the computer assists the user on-line.
This is the case for InJect, but only partly for CC-
Modeler. For roads, this idea has been promoted early
(Grün and Li, 1994; Heipke et al., 1994), but nowadays
it seems that roads are, e.g., in open rural areas, so easy
to extract, that it is a good idea to do it fully-automated.
On the other hand, in urban areas, but also in shadows or
at complex crossings, roads are so difficult to extract,
that only fully-automated offline processing can be
imagined to deal with them today.

http://www.eurosdr.net
http://www.eurosdr.net


219H. Mayer / ISPRS Journal of Photogrammetry & Remote Sensing 63 (2008) 213–222
For practically relevant systems, we believe, that the
human has to be in the loop. We also think that in many
cases it is beneficial to use one or two fully-automated
offline processes, probably preceded or interrupted, but
in any case followed by manual interaction. The
generation of work-flows defining the offline-phases,
but also very importantly the information to be given to
the automated procedure by user interaction preceding
it, is essential for the overall performance.

It is often more costly in terms of user interaction time
to correct complex failures, than to manually acquire a
situation from scratch. Therefore, it is a good idea, to use
as a basis for human interaction a version where the
completeness is still high, butwhere very few complicated
errors, especially in terms of topology occur.

A related issue is self-diagnosis. In this context it is
slightly different from the ideas presented on statistical
modeling above (cf. Section 2.3) as it makes use of
additional knowledge about the strengths and weak-
nesses of human interaction. For a semi-automated
system the correct objects (green) have to be actually
correct with a probability sufficient for the application,
so that they do not have to be checked any more. For
the “yellow” results, the situation is more complicated.
It should be avoided to offer the operator a lot of
objects. Also results with a high likelihood of complex
topologic errors should not be presented to the
operator. Helpful might be, though, to offer a small
number of choices, one of which is with relatively high
probability correct.

An efficient semi-automated system could comprise
real-time tools, which help to improve the results
obtained fully automatically. A good way, yet needing
much effort to implement and again depending on the
current state of an automated system, is to make use of
the results of automated extraction.

Eventually, testing, this time on a very practical level,
comes into play again. Only by customizing the system for
specific customers will make clear the strengths but also
weaknesses of thewhole complex chain of semi-automated
object extraction. The overall goals are maximal efficiency
and, often even more important, minimal cost.

Because of the large costs, the high risks, the depen-
dence on in-depth knowledge, as well as on specific
production environments to be tuned for, practical semi-
automated object extraction is and will be in many cases
first developed in cooperation of academia and data
producers, especially NMCA. The main DPW devel-
opers will probably join in only after reasonable success
and especially versatility will have been demonstrated.
The above cooperation of academia and NMCA on a
larger scale would be a large achievement, because as
Baltsavias (2004) notes, at academia there is often a
“lack of practical spirit.”

4. Application areas

Recently, DPW have included means to efficiently
handle high resolution satellite imagery, multi- and
hyperspectral, as well as laser-scanner data together with
aerial imagery. There is also an interest to integrate tools
to handle terrestrial imagery. We give examples for
current work in this area which shows the potential
particularly for highly-detailed 3D city models possibly
including vegetation.

In the ISPRS Istanbul congress there has been
considerable interest into detailed 3D visualization. Haala
(2004) deals with the orientation of a panoramic sensor
with a large field of view and high resolution to efficiently
obtain texture for given 3D building data including its
automation based on approximate values for orientation
fromGPS and an inertial sensor. Böhm (2004) presents the
generation of occlusion free texture for facades by
removing moving and also static objects given a small
number of images based on background estimation. In (von
Hansen et al., 2004) it is shown how given planar facades
can be enrichedwith depth information by guidedmatching
in several terrestrial images to improve the realism of
visualization. Jülge and Brenner (2004) present a semi-
automatic process for the extraction of window hypotheses
from terrestrial laser-scanner data, e.g., suitable for the
registration of different scans.

In the vision and graphics area a recent issue of the
IEEE Journal of Computer Graphics and Applications
edited by Ribarsky and Rushmeier (2003) focuses on
3D reconstruction and visualization. The paper starts
with the statement “We have entered an era where the
acquisition of 3D data is ubiquitous, continuous, and
massive.” Highly-detailed 3D city models from high
resolution terrestrial images, dense video sequences, and
terrestrial laser-scanner data are seen to be useful for
virtual television, tourism, but also mission rehearsal for
fire fighting or security and rescue scenarios.

Even though there is one photogrammetric paper by
Rottensteiner (2003) on building extraction from laser-
scanner data also in conjunction with aerial imagery in the
above IEEE journal issue, the survey on large-scale urban
modeling byHu et al., (2003) shows, that the awareness of
the work done in photogrammetry is not big. As usual,
this can only be changed by submitting papers in this area,
but also by going to the particular conferences.

One of the first and largest projects in the area of the
production of highly-detailed 3D city models from
terrestrial images and laser-scanner data is the city-scanning
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project at MIT initiated by Teller (1999). Some of the most
advanced approaches using images only are (Dick et al.,
2004), (Werner and Zisserman, 2002), and (Mayer and
Reznik, 2006, 2007). Dick et al. (2004) use advanced
statistical modeling in the form of RJMCMC (cf. Section
2.3) allowing for the faithful reconstruction of complete
models from samples of parts the object. Werner and
Zisserman (2002) show what can be achieved assuming
that an object ismade up of planes (facades or roofs), which
are partially vertically oriented, have some parallel
structures in front of them (columns) or behind them
(windows, doors), and which can be symmetrical (e.g., the
two roofs of a dormer window). Mayer and Reznik (2006,
2007) derive facade planes from 3D points, detect and
delineate windows via an appearance based approach
(Leibe and Schiele, 2004), and estimate their depth based
on plane sweeping (Werner and Zisserman, 2002). Other
approaches such as (Früh and Zakhor, 2003) combine
terrestrial and aerial imagery aswell as laser-scanner data to
produce 3D models with a good fidelity seen from the top
but also from the ground.

A complementary area is the extraction of vegetation
in cities. While it is useful information for city admin-
istrations, it is extremely important for the generation of
realistic visualizations. In Andersen et al. (2002)
RJMCMC is used to find trees in aerial laser-scanner
DSM employing knowledge about the spatial interaction
of individual trees. Straub (2004) models the shape of
trees to extract them from aerial laser-scanner DSM
possibly togetherwith reflection properties in the infrared.
Shlyakhter et al. (2001) obtain treemodels from terrestrial
image sequences based on an L-System (Mĕch and
Prusinkiewicz, 1996) which can be animated for instance
by wind, and adapted to the seasons. In (Huang and
Mayer, 2007) MCMC is used in conjunction with L-
systems to reconstruct the 3D branching structure from
terrestrial image sequences of unfoliaged deciduous trees.

5. Conclusions

We have presented a number of issues we consider
important to make automated object extraction become a
part ofDPW. These are naturally themodels and strategies
of the automated processes. To improve them, thorough
testing is needed, promoting competition between
approaches, making clear what way should be taken.
Most importantly, though, one should start, or at least start
to think about, how to integrate the semi-automated
systems into DPW to build efficient systems for practice.
We have also shown that automated object extraction
offers new possibilities such as highly-detailed 3Dmodels
in cities including additional objects such as vegetation.
Finally, for practical applications we recommend to
consider the following three techniques, which overcome
limits in their respective areas and have beenwidely found
to work reliably for a broad range of situations: The SIFT
operator (Lowe, 2004) allows robust scale- and rotation-
invariant point extraction and matching, extending the
range of problems where automatic point correspon-
dences can be used. The 5-point algorithm (Nistér, 2004)
for calibrated direct orientation gives approximate values
for relative orientation under many circumstances.
RANSAC (Fischler et al., 1981) is a versatile tool for
robust estimation even for well below 50% correct data. It
is suitable for many problemswith few parameters and for
which a (local) acceptance criterion for correct data can be
defined, such as image orientation or the determination of
planes, spheres, and cones from 3D point clouds.
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