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A Temperature and Emissivity Separation Algorithm
for Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) Images

Alan Gillespie, Shuichi Rokugawa, Tsuneo Matsunaga, J. Steven Cothern, Simon Hook, and Anne B. Kahle

Abstract— The Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) scanner on NASA’s Earth Ob-
serving System (EOS)-AM1 satellite (launch scheduled for 1998)
will collect five bands of thermal infrared (TIR) data with a
E poise equivalent temperature difference (N EAT) of <0.3 K to
estimate surface temperatures and emissivity spectra, especially
over land, where emissivities are not known in advance. Tempera-
ture/emissivity separation (TES) is difficult because there are five
measurements but six unknowns. Various approaches have been
ased to constrain the extra degree of freedom. ASTER’s TES
algorithm hybridizes three established algorithms, first estimating
the normalized emissivities and then calculating emissivity band
ratios. An empirical relationship predicts the minimum emissivity
| rom the spectral contrast of the ratioed values, permitting recov-
erv of the emissivity spectrum. TES uses an iterative approach to
re;no\’e reflected sky irradiance. Based on pumerical simulation,
TES should be able to recover temperatures within about +15K
. and emissivities within about +0.015. Validation using airborne
simulator images taken over playas and ponds in central Nevada
demonstrates that, with proper atmospheric compensation, it is
possible to meet the theoretical expectations. The main sources of
uncertainty in the output temperature and emissivity images are
the empirical relationship between emissivity values and spectral
contrast, compensation for reflected sky irradiance, and ASTER’s
precision, calibration, and atmospheric compensation.

Index Terms— Algorithms, emission, image analysis, infrared
imaging, remote sensing, temperature measurement.

1. INTRODUCTION

AND surface temperatures are important in global-change
studies, in estimating radiation budgets, in heat-balance
| studies, and as control for climate models. Emissivities are
strongly indicative, even diagnostic, of composition, especially
for the silicate minerals that make up much of the land
surface. Surface emissivities are thus important for studies of
soil development and erosion and for estimating amounts and
changes in sparse vegetative cover for which the substrate

Manuscript received October 31, 1997; revised March 18, 1998. This work
was supported by the NASA EOS Project and ERSDAC.

A. Gillespie and J. S. Cothern are with the Department of Geological
Sciences, University of Washington, Seattle, WA 98195-1310 USA (e-mail:
alan @rad.geology.washington.edu).

S. Rokugawa is with the Faculty of Engineering, University of Tokyo,
Bunkyo-ku, Tokyo, 113 Japan.

T. Matsunaga is with the Geological Survey of Japan, Tsukuba, Ibaraki,
305 Japan.

S. Hook and A. B. Kahle are with the Jet Propulsion Laboratory, California
institute of Technology, Pasadena, CA 91109 USA.

Publisher Item Identifier S 0196-2892(98)04808-6.

is visible. They are also important for bedrock mapping and
resource exploration.

A new algorithm for determining land-surface temperatures
(T) and emissivity (¢) spectra for multispectral thermal in-
frared (8-12 um) images has been developed for use with
data from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), scheduled to be launched
in 1998 on the first of NASA’s Earth Observing System
polar-orbiting spacecraft EOS-AM1. This temperature and
emissivity separation (TES) algorithm relies on an empirical
relationship between spectral contrast and minimum emissiv-
ity, determined from laboratory and field emissivity spectra to
equalize the number of unknowns and measurements so that
the set of Planck equations for the measured thermal radiances
can be inverted. TES is adaptable to multispectral images from
imaging systems other than ASTER.

The key goals of TES are to 1) estimate accurate and
precise surface temperatures, especially over vegetation, water,
and snow and 2) recover accurate and precise emissivities
for mineral substrates. The TES algorithm is designed to
produce “seamless” images—in other words, there should
be no artifactual discontinuities, such as can be introduced
by classification. TES embodies the simplest approach fea-
sible, consistent with the above goals. T (one band) and ¢
(five bands) images will be available as standard products
from EOS. v

Thermal infrared (TIR) radiances vary with both T" and «,
which therefore must be recovered from the measurements.
Surface temperatures are independent of wavelength and can
be recovered from even a single band of radiance. data,
provided atmospheric characteristics can be specified and the
surface emissivity is known. Except for water, vegetation, and
snow or ice, however, the emissivity of the land surface is not
known a priori, but must be determined along with the temper-
ature. The inversion for T and ¢ is therefore underdetermined;
there is always at least one more unknown than the number of
measurements. Separation of T' and ¢ data from the measured
radiances thus requires additional information, determined
independently. In the TES algorithm, the additional constraint
comes from the regression of minimum emissivity to spectral
contrast calculated from laboratory spectra. At least three
or four spectral bands are required to measure the contrast
in images. Therefore, it is necessary to make multispectral
measurements to determine land surface temperatures. This
is not the case for sea-surface temperature estimation, for
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example, because the emissivity spectrum of water is well
known a priori.

The minimum number of bands necessary to recover land
surface temperatures may be too small for surface composition
mapping; because emissivity spectra of geologic materials
can be quite complex, many emissivity studies require as
many spectral bands in the TIR window as possible. Current
engineering limitations prevent TIR imaging spectroscopy
from satellite, and multispectral sensors with a handful of
spectral bands are a compromise.

This paper presents the TES algorithm, results of a valida-
tion experiment, and TES T and ¢ images calculated from six-
band airborne Thermal Infrared Multispectral Scanner (TIMS)
images [1] processed to simulate ASTER data. Discussion
focuses on the theoretically predicted and experimentally
determined precision and accuracy estimates as well as on
the fundamental factors limiting TES performance.

II. ASTER IMAGING SYSTEM

ASTER includes a five-band multispectral TIR scanner
designed for recovery of land-surface “kinetic” temperatures
and emissivities, not just temperatures over homogeneous
surfaces of known emissivity, such as water. It is designed
to obtain a global emissivity map of the land surface, but
it will also recover surface temperatures and emissivities
for requested localities for the entire six-year lifetime of
EOS-AM1. With a TIR spatial resolution of 90 m and a
VNIR resolution of 15 m, ASTER acts as a high-resolution
. complement to other EOS imaging experiments. Because of
their high resolution, ASTER T and ¢ data can be verified by
field experiments and, at the same time, be used to understand
the averaged responses of the lower resolution scanners.

ASTER has three bands in the visible and near-infrared
(VNIR) spectral range (0.5-0.9 pm) with 15-m spatial
resolution, six in the shortwave infrared (SWIR: 1.6-2.4
pm) with 30-m resolution, and five in the thermal infrared
(TIR: 8-12 um), with 90-m resolution [2], [3]. These 14
bands are collected in three down-looking telescopes that
may be slewed +8.5° (SWIR, TIR) or +24° (VNIR) in
the cross-track direction. Combined with the field-of-view
(FOV) of £2,5°, the maximum TIR view angle is thus
11°. An additional backward-viewing telescope with a single
band duplicating VNIR band 3 will provide the capability
for same-orbit stereogrammetric data. The five TIR bands
(ASTER bands 10-14) have spectral ranges of 8.125-8.475,
8.475-8.825, 8.925-9.275, 10.25-10.95, and 10.95-11.65 yum,
respectively. ASTER'’s estimated TIR radiometric accuracy at
300 K is 1 K; at 240 K it is 3 K. Radiometric precision
(noise equivalent temperature difference or NEAT) at 300 K
is <0.3 K [4].

The ASTER team located all five TIR bands within the
8-14-um atmospheric window to maximize geologic informa-
tion. Because no spectral bands are located at the edges of the
window, where atmospheric water absorbs ground emittance, it
is not possible to estimate atmospheric profiles and parameters
directly from ASTER images. The ASTER instrument team
does compensate all measurements for atmospheric transmis-
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sivity and path radiance and reports values for downwellir,
sky irradiance, all determined independently from other E%):
data [5], so it is, in principle, possible to calculate accurg
values of T' and . Nevertheless, actual ASTER T and = du
may have complex patterns of inaccuracies because neither th.
atmospheric sounding nor the Moderate Resolution Imagin,
Spectroradiometer (MODIS) atmospheric profiles [6] availab}. ;
from the EOS-AM1 platform are at the 90-m scale of t
ASTER TIR images. ’
The ASTER instrument is being provided by the Japanes
Government under the Ministry of International Trade an:
Industry (MITI). The ASTER project is implemented throug
the Earth Remote Sensing Data Analysis Center (ERSDAC
Tokyo, Japan, and the Japan Resources Observation Syster

Organization (JAROS), Tokyo, a nonprofit organizations unde: po
MITIL. JAROS is responsible for the design and developmer do
of the ASTER instrument, which will be built by the Nipper T
Electric Company (NEC), Yokohama, Japan, the Mitsubish ¢
Electric Corporation (MELCO), Kamakura, Japan, Fujits..| ele
Tokyo, Japan, and Hitachi, Tokyo, Japan. 3;:

M

III. BACKGROUND

A surface radiates energy in proportion to its temperatur
(T') and emissivity (¢). On the earth, atmospheric- opacit
restricts the TIR measured by spacecraft to spectral window-
at wavelengths of 3-5 and 8-14 um. ASTER bands 10-14 lic
within the TIR window of 8-14 pm. The basic problem it
estimating T and ¢ is that the data are nondeterministic; ther
are more unknowns than measurements because there is "
¢ for each image band, plus T and atmospheric parameter: |
This is the case even if the scene is isothermal and consist
of a single material of uniform texture and topographic slop
and aspect. Consequently, even if atmospheric parameters ax
measured independently, at least one additional degree It
freedom must be constrained independently of ASTER. Ther
are several ways to constrain the extra degrees of freedom
resulting in a variety of approaches and algorithms to
and ¢ separation. Below, the important equations governin:
TIR remote sensing and previous solutions are reviewed. Th
TES algorithm is then introduced and its performance |
evaluated.

A. Conceptual Framework for TIR Remote Sensing

Temperature is not an intrinsic property of the surface:!
varies with the irradiance history and meteorological cond'I ,
tions. Emissivity is an intrinsic property of the surface and !
independent of irradiance. The radiance from a perfect emitt¢' '
(i.e., a blackbody for which £ = 1) increases, approximatel) 3
exponentially, with temperature, as described by Planck’s La% :
The radiance R emitted from a real surface, however, is less b i
the factor e: Ry = £, B, where B is the blackbody radianc |
and A is wavelength (um). Within its 90-m pixels, ASTER
integrates radiance émitted from a number of surface element*
potentially having different temperatures and composition®
The emitted radiance is attenuated during passage thrOuShZ
the atmosphere, which also emits TIR radiation. Some of Ih.‘f
radiance is emitted directly into the scanner (“path radiance |



vin
0-14
ble:
ic; tH
re is;
ametf
Consy)
lic si¢
sters |
:greed

Teedd
15 to;
we

ed. T

rfaces

1 confl
e andgs

t emiy
ximatg
k’s L]
s less]
radian
ASTE
lemen
ositiof
throu
e of

liance' @

clLLESPIE et al.: TES ALGORITHM FOR ASTER IMAGES
b}

come strikes the ground and is then reflected into the scanner.
For most, perhaps all, terrestrial surfaces viewed from near the
jocal zenith, the reflectivity p and ¢ are related by Kirchhoff’s
faw: px =1-—&x A simplified expression for the measured

cadiance L is

Ly x =Ty <Er,y.ABx(Tx,y) + 0z,y,2

(Sl:,y_,\ +% Z Z R;+m,y+n,z\)>

m=-—00 n=—00

+ ST,‘ v ¢))
where
r.y position in scene (m);
S, downwelling atmospheric irradiance, normalized by

7 st (Wm~2 pm~! sr™1);
R incident radiance emitted from adjacent scene
elements (Wm~2 pm™! );
T atmospheric transmissivity (dimensionless);
S upwelling atmospheric path radiance
(Wm~2 pm~! sr71).

It has been assumed that the land surface is Lamber-
tian, emitting TIR radiance equally in all directions, even
though this assumption is not strictly necessary to solve (1)
or quantitatively interpret the ASTER emissivity data. This
assumption appears to be valid for the restricted range of
scan angles planned for ASTER (<11°), but may not be for
other imaging systems with wider FOV’s. Even for ASTER,
at the edges of the images exitance angles of as much as 50°
may be encountered locally on steep slopes. To the extent the
assumption is violated, it will be difficult to relate ASTER ¢
images from data taken at different viewing angles.

For most terrestrial surfaces, ~0.7 < ¢ < 1.0, although
surfaces with € < 0.85 are probably restricted to deserts [7].
Radiance emitted at 10 zm from a surface at 300 K is on the
order of 10 Wm~2 um~! sr!. For a sea-level summer scene,
tvpical order-of-magnitude values of the atmospheric variables
estimated by the MODTRAN3 atmospheric model [8]-[10]
are 7 ~ T0%, S; ~ 2.4, and S| ~ 3.7 Wm™? pum~" st~ 1.
One effect of S| is to reduce the spectral contrast of the
ground-emitted radiance because of Kirchhoff’s Law. It is
necessary to compensate for atmospheric effects, including S|
reflected from the ground, if 7 and ey are to be recovered
accurately. Incident radiance from adjacent scene elements
(pixels) varies with terrain roughness, but it is typically less
than S| and is usually ignored. Therefore, the remote-sensing
problem reduces to L ~ teB(T) + 7pS| + S;. Equation (1)
ignores the effects of the atmospheric point spread function,
as does TES.

Equation (1) describes only the radiance at a single wave-
length and only the radiance from homogeneous isothermal
surfaces. In practice, the radiance is measured over a band
of wavelengths; however, errors due to this integration are
small. At the 90-m scale of ASTER TIR pixels, many terres-
trial surfaces consist of multiple components having different
emissivity spectra and temperatures. Strictly speaking, each
component adds to the number of unknowns, while the number
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of measurements is unchanged. ASTER TIR measurements
for such complex surfaces are not sufficient to estimate all of
the unknowns: instead, it is necessary to determine only an
effective T and ¢ spectrum for each pixel.

B. Previous Approaches

Inversion of the TIR equations for T and ¢ have been at-
tempted uvsing deterministic and nondeterministic approaches.
The former are restricted to areas for which one or more of the
unknowns can be specified. Historically, the chief reason for
TIR measurements has been to estimate temperatures. This
task is deterministic for important scene types for which &
is not in question: the ocean [11], snowfields and glaciers,
and closed-canopy forests. However, deterministic solutions
require that the atmospheric parameters in (1) be measured
directly and the measured radiance corrected for them, and
this is not always feasible. Most ocean-temperature studies
have utilized data from the Advanced Very High Resolution
Radiometer (AVHRR), which has two TIR bands (4 and
5) at 10.3-11.3 pm and 11.5-12.5 pm, respectively, thereby
“splitting” the TIR spectral window. Joint analysis of the two
“split-window” bands can compensate for atmospheric effects
while solving for T [123-[14]. Split-window algorithms rely on
empirical regression relating surface radiance measurements to
water temperatures. A version of the split-window algorithm
has been developed for EOS/MODIS images [15], [16].

Several authors have examined extending the “split-
window” technique to land surfaces [171-{19]. However,
mixed results may be obtained over unvegetated surfaces due
to unknown emissivity differences between bands. Inaccuracy
of <0.001 in £ between AVHRR bands 4 and 5, for example,
can lead to errors in T of 0.5 K [17], [18], [20]. In general,
land emissivities cannot be estimated this closely and must be
measured if accurate kinetic temperatures are to be recovered.
As a result, the usefulness of split-window methods for land is
limited to areas for which the emissivities are known a priori;
elsewhere the nondeterministic nature of TIR remote sensing
must be addressed head-on. Many geologic studies, however,
have utilized enhancements such as decorrelation stretching
that do not recover T and = [21], [22]. A spectral-unmixing
approach has been used to separate a nonlinear measure of T
from . but the separation is imperfect {23].

In all. we examined 14 inversion methods for the general
land-surface problem in creating TES [24]. These algorithms
determine spectral shape but not T, require multiple obser-
vations under different conditions, assume a value for one
of the unknowns, assume a spectral shape, or assume a
relationship between spectral contrast and €. All require inde-
pendent atmospheric correction. The temperature-independent
spectral indexes (TISI) [25], thermal log residuals and alpha
residuals [26], and spectral emissivity ratios [27], [28] all
recover spectral shape and therefore require modification for
the purposes of TES, which requires recovery of spectral
amplitude and temperature as well as shape. The day-night
method [29] measures the same scene in two or more bands at
different times, thereby increasing the number of unknowns by
one (the second temperature; the emissivity is unchanged) but
doubling the number of measurements, making the problem
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NEM - Normalized Emissivity Method
RAT - Ratio

MMD - Min-Max Difference

QA - Quality Assurance

NEM Module RAT Module
° Subtract - ° Calculate
reflected S N spectrum

° Estimate T

¢ Calculate MMD

QA Module
° Flag TES failures
° Estimate accuracies

and precisions for
Tand €

MMD Module

. v
¢ Determine €min

° Calculate Tand €

Fig."l. Basic design of the TES algorithm.

overdetermined. In practice, however, this approach magnifies
measurement “noise” and requires highly accurate (<1 pixel)
registration between the two images. Other techniques have
been based on an assumed value for a “model” emissivity
at one wavelength [30], or an assumed maximum emissivity
value at an unspecified wavelength (normalized emissivity
method: NEM) [31], [32]. These approaches are unsatis-
factory for ASTER because inaccuracies tend to be high
(£3 K) and tilts are introduced into the ¢ spectra by errors
in the assumed emissivity value. Finally, the “alpha-derived
emissivity” (ADE) method utilizes an empirical relationship
between the standard deviation and mean emissivity to restore
amplitude to the alpha-residual spectrum, thereby recovering
T also [26], [33], [34]. The alpha-residual method relies on
Wien’s approximation (exp(z) ~ 1 =~ exp(z)), takes the
logarithm of both sides of the simplified (1), and then takes
the difference of the terms for each band and the band-
average to relate ¢ to R, independent of T. In both the
alpha-residual and ADE methods, however, the use of Wien’s
approximation introduces slope errors into the e spectrum,
detectable by ASTER. The Mean-MMD method is based
on a regression of laboratory emissivity values onto the
maximum-minimum apparent emissivity difference (MMD),
similar to and derived from the ADE approach. The apparent
emissivities may be calculated by the model emissivity or
NEM’s. The MMD is converted to a mean emissivity by means
of the regression, and the individual recovered emissivities
may be rescaled accordingly. The Mean-MMD method avoids
Wien’s approximation and therefore has lesser slope errors in
the recovered emissivities than the ADE spectra [35].

The instrument team for EOS/MODIS has developed a
sophisticated approach to TES that is adaptable to scene
circumstances; one path is the day-night approach, and in
another, emissivities are specified by classifying VNIR/SWIR
data [36], [37]. Although important scene types, such as vege-
tation, are readily identified in the VNIR and have well-known
€ spectra, thereby eliminating the indeterminacy, classification
is ineffective for many geological materials. It also creates
sharp boundaries in images of gradual transitions.

N
OUTPUT IMAGES:
Tande

IV. TES ALGORITHM

The TES algorithm combines attractive features of three :
precursors and some new features (Fig. 1). It is most closely
related to the Mean-MMD method. Essentially, TES uses the -
NEM algorithm to estimate T, from which emissivities are
estimated and ratioed to their mean, producing 3 values. The '
B spectrum preserves the shape, but not the amplitude, of the
actual emissivities. To recover the amplitude and, ‘hence, 2
refined estimate of the temperature, the MMD is calculated and !
used to predict the minimum emissivity (¢yi,). TES operates
on ASTER “land-leaving” TIR radiance data (L), which have ,
already been corrected for atmospheric 7 and S; [5]. The |
same ASTER standard product also reports S|, which cannot ;
be removed without knowledge of . TES removes reflected |
S| iteratively [38]. TES also differs from precursors in the
following ways:

1) refining the value of the maximum local emissivity £ max

used in the NEM, pixel by pixel;

2) correcting inaccuracies in £y, for graybodies |
(e.g., vegetation) caused by errors in MMD due 10
NEAT; '

3) using the first-generation TES T and ¢ values to refine
the correction for S|, leading to more accurate second-
generation estimates.

Finally, TES estimates and reports pixel-by-pixel accuracies
and precisions for 7 and ¢ in a “quality assurance” of
QA data plane that is part of the ASTER standard produc!
(sec below). Presentation of TES herein is necessarily brief:
more complete documentation is available from NASA {24}
In Fig. 1 and the subsequent discussion, the TES code i '
subdivided into modules named for the algorithms from which
they are derived. The significant advance of the TES algorith®
is to produce, for the first time, unbiased and precise estimate®
of emissivities and, therefore, improved estimates of surfact
temperatures for the land surface.

Numerical modeling suggests that, for most scenes, ¢
TES algorithm can recover temperatures to within ~1.5 K-
assuming accurate radiometric measurements. Emissivities ¢af
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Fig. 2. Flow diagram of the TES algorithm, simplified in places. L' = B(T)+pS, tie. L' = R+pS)). R here is the estimated surface-emitted radiance,
nominally corrected for 5|; R is the final corrected value. Tests for divergence (Div) and convergence (Con) determine if the correction for reflected 5| will
work. Div is [AZR/Ni2] > t;; Conis |[AR/A# <t (AR/Ai = R| | — R!). Parameters £, and ¢ are settable threshold values: ¢ is the iteration number.
The nominal value for Tnax in the NEM module is refined if the spectral variance is small. The value for sy, found in the MMD module is compensated
for measurement error. Finally, the TES = data are used to refine R and the NEM T. Quality Assurance (QA) is specific to the ASTER project and consists of
calculating TES performance and product characteristics and encoding them in a resenved data plane. Details of the of cmax refinement are shown in Fig. 3.

be recovered to within ~0.015. TES's performance over land
and sea are comparable. ASTER TES temperature recovery
is less accurate than the MODIS split-window algorithm for
sea surfaces because ASTER resolution is better by an order
of magnitude and its SNR is accordingly lower. ASTER’s
data acquisition plan, however, is focused on the land surface.
Major limitations on algorithm performance arise from two
main sources, in addition to sensor performance: 1) the relia-
bility of the empirical relationship between emissivity values
and spectral contrast and 2) the compensation for atmospheric
factors. Measurement accuracy and precision contribute to
TES errors but, individually at least, to a lesser degree.

TES accuracies and precisions are of the same size, but
arise from different sources. Inaccuracies are due mainly
to errors in atmospheric compensation, which are probably
largely systematic; imprecision arises mainly from scatter
in the £yin-MMD regression. Systematic errors across all
five ASTER bands affect T directly, but random errors (or
systematic errors that are focused in a single band) affect
apparent spectral contrast and, therefore, . The €4,in-MMD
regression partly buffers ¢ against pan-ASTER radiometric and
atmospheric inaccuracies because the amplitude is supplied
from independent data. Instead, radiometric inaccuracies tilt
the apparent ¢ spectrum, as does Wien’s approximation.
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Fig. 3. Flow diagram of the part of the TES algorithm in which £,y is refined (Fig. 2).

B. Theoretical Basis for the TES Algorithm

Figs. 2 and 3 are flow diagrams of the TES algorithm.
Below, the steps of the TES algorithm are presented in
sufficient detail to permit regeneration of the processing code.
The input ASTER image data sets consist of “land-leaving
TIR radiance,” L', and sky irradiance S|, together comprising
an ASTER standard product (AST09) [S]. L’ differs from the
radiance measured at the spacecraft L (1) in that it has been
compensated for atmospheric absorption and path radiance.
These calibrated data have also been compensated for ASTER
filter transmissivities and other instrument effects. Several
TES parameters may be adjusted from their default values
as the need arises. These parameters are identified in Fig. 1

and below. The output data sets consist of the five emissivil}
images (ASTOS5), corresponding to ASTER bands 10-14 and |
a single image of surface temperature T' (ASTOS8).

1) Estimating the Surface Temperature and Subtracting Re¢ |
flected Sky Irradiance (NEM Module): The kinetic or “ther |
modynamic” temperature is estimated using the normalized
emissivity approach. Essentially, a value for the maximum
local emissivity €., is assumed to calculate a temperature |
and the other emissivities. A value of 0.99, near the uppef
end of the emissivity range for water, snow, and vegetation:
is assumed to start with. If the NEM estimates of ¢ have lo%
contrast, it is likely that the initial assumption is nearly correc!
and an empirically based process, described below, is used ¢
refine ep.x. If the contrast is high, the surface is probably |
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rock or soil, and a lower value of €.« = 0.96, characteristic
for those materials, is assumed and processing is restarted. For
rock and soil, this lower default value cannot be refined. For all
materials in the ASTER spectral library, 0.94 < epax < 1.00.
Therefore, the estimated kinetic temperatures should be within
+3 K at 340 K, and within +2 K at 273 K.

Upon entry to the NEM module, ground-emitted radiance
R is estimated R = L' — (1 — emax)- The NEM temperature,
Txg in (2), is taken to be the maximum temperature Tj
estimated from the radiances R, for the different image bands
p (b = 10-14 for ASTER)

-1
C2 C1€max
==1{1 =
Ty )\b ( n (WRb)\g + 1)) , TNEM max(Tb)

" By(Tnem)

where ¢; and ¢ are the constants from Planck’s Law. Once
T, is known, NEM emissivities, £; in (2), are calculated and
used iteratively to reestimate R. This process is repeated until
the change in R between steps is less than a settable threshold
value o, or until the number of iterations exceeds a limit
N (Fig. 2). The current default value for ¢3 is the radiance
equivalent to the NEAT and N = 12. If the slope of R
versus iteration increases (such that |A? R/Ai?|, where ¢ is the
jteration number, exceeds a different settable threshold value
t;) correction is not possible. Execution of TES is aborted,
and the NEM T and ¢ values are reported. Correction for Sy
is typically <1 K, unless the sky is warmer than the ground
or humidity is high. Correction has the effect of increasing
contrast in the emissivity spectrum, with the lowest values
of ¢ being reduced the most. It follows that error introduced
during correction also depends on ¢, such that it is possible
to recover accurate temperatures from the high-¢ image band
even if the rest of the spectrum is inaccurate.

For samples with low contrast, €max may' be refined to
improve accuracy. For near-graybodies, measurement error
is the dominant source of spectral variance: the best value
for emax Minimizes the variance v of the NEM emissivities.
Plotting v against £, yields an upwards-opening parabola. A
new value of &y may be found by calculating v(3 3 5) ™2
for &max = 0.92, 0.95, and 0.97, in addition to 0.99, and fitting
a parabola to the data. If this curve, v(% > €5) 72 VErsus Emax,
has a minimum for 0.9 < emax < 1.00, it indicates the best
estimate of emax. In this case, the NEM module is executed
with this final estimate to find new NEM emissivities.

2) Ratio Algorithm (RATIO Module): The relative emis-
sivities 3y are found by ratioing the NEM emissivities (2) to
their average '

2

€b

By = €65 [Zeb]_lv b =10, 14. (3)

Because emissivities themselves are generally restricted to
0.7 < g < 1.0, 0.75 < B, < 1.32. The errors in 3 due
to inaccuracy in the NEM T are systematic but less than the
random errors due to NEAT for 240 < T < 340 K. Warping
of the 3 spectrum is below the threshold of detectability for
ASTER data.
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3) Estimating TES Emissivities and Temperature (MMD
Module): The 3 spectrum must next be scaled to actual
emissivity values.” and the surface temperature must be
recalculated from these new emissivities and from the
atmospherically corrected radiances. These TES T and ¢
values comprise the ASTER Standard Products. An empirical
relationship predicting emin from MMD is used to convert
B to 5. We established this regression using laboratory
reflectance and field emissivity spectra [39], as discussed
below.

The first step in the MMD module is to find the spectral

contrast
MMD = max(8) — min(), b=10-14 4)

from which the minimum emissivity is predicted and used to
calculate the TES emissivities

Emin = 0.994 — 0.687 + MMD" 7, ¢, = ﬂb( © min )
min(fp)
b=10-14. (5)
Provided that the actual emissivity contrast in a scene element
is much greater than the apparent contrast, due only to mea-
surement error, MMD is an unbiased estimate. For graybodies,
however, MMD is dominated by measurement error and is
no longer unbiased. That is, as the true spectral contrast is
reduced to zero, MMD is also reduced, but to a positive limit
whose value depends on the NEAT. It is possible to correct
the apparent MMD pro forma, as specified by Monte Carlo .
simulations

MMD' = [MMD? - ¢cNEA?] !, c=152  (6)

where MMDY' is the corrected contrast, NEAe = 0.0032 is
calculated from NEAT = 0.3 K at 300 K, and the coef-
ficient ¢ was determined empirically. Equation (6) improves
the accuracy of TES for graybodies, but at the expense of
precision. We have found that if MMD <0.03, the loss of
precision becomes unacceptable. Therefore, when this is the
case. MMUD' is not calculated and €,,;, is not found from 3),
but instead is set to 0.983, a value appropriate for water and
close to values for vegetation canopies (although higher than
values for individual leaves), and processing continues.

This assignment of a model e, value essentially is a
kind of classification of the TIR data for graybodies (&min
is assigned a default, representative value) and rocks and soils
with high spectral contrast (TES is allowed to work as de-
signed). In performing this classification, the goal of seamless
output data products is jeopardized; step discontinuities may be

_encountered in transition areas between, for example, forests

and arid steppes. If this turns out to be true, it may be possible
to minimize the impact by adjusting the coefficient c in (6).
Up to this point, we have calculated a temperature with the
NEM module Txgum and a TES emissivity spectrum. TNEm
is likely to be in error by up to ~3 K because the assumed
value of £, mMay have been inaccurate, especially for rocks,
and even after all of the efforts to refine the estimate. This
inaccuracy can be reduced by recalculating T, this time from
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the measured, atmospherically corrected radiances R and the
maximum value of the TES emissivity spectrum
EprCy

-1
Co
= 1 —_—
=% (“ (mmg * 1))

where b* is the ASTER band for which emissivity ¢ i
maximum (and correction for S is minimal). '

4) Final Correction for Sky Irradiance and Bias in 3: The
TES ¢ values are more accurate than the NEM values that
were used to estimate reflected S|. Recalculation of reflected
S|, based on the TES ¢ spectrum, therefore, can improve the
accuracy of the T and e output products. The TES ¢ values
are used to make a final, single (noniterative) correction to R,
and then new estimates of NEM ¢ are derived and used to
recalculate the 3 spectrum (3). The improved TES = and T
are then calculated as before. For a variety of simulated and
real radiance measurements, the “refined” TES emissivities
changed by as much as 0.01; therefore, this final correction
is worth doing. Experience shows that there is little gain with
iteration.

5) QA: The TES algorithm applied to ASTER data will
report on its performance and on the accuracy and precision
of its T and ¢ products. The report will take the form of a
header record and a 3-byte data plane. QA data will include
flags to report on the optional paths through TES, described
above, and flags marking defective pixels. Of central interest,
however, is the reliability of the TES T and ¢ data, as tested by
numerical simulation and by algorithm execution on different
images simulated from laboratory and field spectrometer data
[39]. TES performance depends strongly on the ratio of S | to
L’ or Rand on MMD, indicators that can be assessed pixel-
by-pixel during operation. This information, together with the
results of the numerical simulations, will be used to assign
each pixel to an accuracy and precision category, which is
then reported in the QA data. There will be three categories,
each of temperature accuracy and temperature precision within
1.0 K, 1.0-2.0 K, and >2.0 K. There will be equivalent
categories for emissivity: within 0.01, 0.01-0.02, and >0.02.
TES performance is affected by the proximity of clouds;
for daytime data, this information will be estimated from a
classification of ASTER, VNIR, and SWIR data and will be
reported in the QA plane.

@)

C. Regression of €;, onto MMD

The relationship between emissivity and spectral contrast
was established by analysis of 86 laboratory TIR reflectance
spectra [45], equivalent to emissivity by Kirchhoff’s Law. The
data were converted to ASTER five-band pseudospectra, and
€min Was found for each sample. Radiances were estimated,
scaling emissivities by blackbody radiances calculated for
T = 300 K, and 3 spectra and its MMD were calculated.
The emin data were then regressed to the MMD values.
They are empirically related by a simple power law [Fig. 4;
(5)]. The regression parameters are insensitive to temperature.
Although the regression parameters are defined empirically,
the relationship itself is reasonable and physically predictable
if deviation from blackbody behavior is due to molecular
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Fig. 4. Empirical relationship between =,,;,, and MMD. The regression i

based on 86 laboratory reflectance spectra of rocks, soils, vegetation, snow.
and water, provided by [45). Ninety-five percent of the samples fall withiz
+0.02 emissivity units of the regression line. The &p,3,~MMD relationship

follows a simple power law: £, = 0.994 — 0.687 MMD® 737 (parameter |

2

r< is the regression coefficient; n is the number of samples).

resonance localized in narrow reststrahlen features. The re-
gression chosen for the TES algorithm uses &p;, rather than
mean emissivity, as in the Mean-MMD algorithm, because it
improved the correlation. The MMD was used because, for
most spectra, it was just as good and faster to calculate than
other measures of spectral complexity, such as variance.

The critical assumption that this regression applies to the
entire gamut of surface materials has been tested and appears
to be valid. A different set of 31 reflectance spectra [40], {41]
yielded nearly identical regression coefficients [46], as did
145 field emissivity spectra of and playa and alluvial surfaces
from Railroad Valley, NV [47], and 91 Australian rocks, all
measured using the Jet Propulsion Laboratory’s uFTIR spec-
trometer [39]. Finally, hundreds of airborne MIRACO,LAS
CO; laser reflectance spectra, with a narrower window than
the five ASTER TIR bands, yielded a regression having similar
overall characteristics, but different coefficients [48].

Total scatter (95% or two standard deviations) about the
regression line is about +0.02 emissivity units, equivalent t©
+1.2 K. This source of error in the ASTER temperature and
emissivity products is intrinsic to the scene and cannot be
reduced by increased measurement precision. Coincidentally.
this is about the magnitude of imprecision, due to ASTER
measurement error, evaluated by Monte Carlo techniques. l'_
is also comparable to the predicted systematic inaccuracy of
the ASTER TIR data of 1 K. The addition of one or two
extra bands does not appear to greatly reduce the scatter:
reduction of the number of bands to four likewise affects the
imprecision little, depending on the choice of bands, but with
further reduction to three it can increase greatly.

D. Characterizing Atmospheric Effects

Compensating for atmospheric absorption and emittanct

relies on other instruments, especially MODIS, as discussed
above. ASTER itself was not designed to measure atmospheric
characteristics. Essentially, MODIS atmospheric water vapof
and temperature profiles are combined with surface elevations

%
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deri\'ed from a global digital elevation map, used to character-
ize concentrations of well-mixed gases, such as CO2, and the
cnsemble is used to drive the MODTRAN3 atmospheric model
o predict 7. Sy and S| for the five ASTER bands. The MODIS
emperature profiles may be accurate within 1.9 K and the
jotal column water within 10% [6]. A 20% uncertainty in total
column water corresponds to uncertainties in the ASTER land-
jeaving radiances (L") of 4.4% (band 10) or <2.3% (bands
11-14), and the atmospheric temperature uncertainty leads to
errors in L' of a little less [5]. Because the atmospheric errors
are highly correlated from band to band, the impact on TES is
smaller than might be imagined; the chief effect is to change
MMD by ~2%, equivalent to an error of 0.004 emissivity units
in Zmin if MMD = 0.3, decreasing to zero for graybodies. The
error at MMD = 0.3 corresponds to about 0.2 K. Atmospheric
gncertainties that are uncorrelated from band to band, however,
will have a larger effect on MMD, and this time the effect is
jarger for graybodies; for example, if the uncorrelated part is as
jarge as 0.01 emissivity units, the error in emin for graybodies
is 0.019, dropping to ~0.007 for MMD = 0.3.

The anticipated errors are roughly equivalent to 1 K or so
in the ASTER temperature product—about the same amount
atributable to scatter in the e, versus MMD regression.
This rough equivalence, however, presumes that the low-
resolution (5-km) MODIS atmospheric profiles are actually
representative of the local atmosphere at the 90-m ASTER
scale. To the extent that this is not the case, errors in the
atmospheric characterization may be the dominant source
of uncertainty in the ASTER temperature and emissivity
products.

E. Performance in the Presence of Uncompensated
Armmospheric Effects

If atmospheric correction is inaccurate, the residual effects
can degrade the performance of TES. ASTER band 10 is
more affected by atmospheric absorption and emission than
the other ASTER bands, by about a factor of two, because it
is located closest to the edge of the TIR atmospheric window.
Numerical simulation suggests that, under these conditions,
TES performance may be improved by eliminating ASTER
band 10 and running TES on ASTER bands 11-14. This neces-
sitates using different e,,,;,~-MMD regression coefficients and
different test values and constants throughout the algorithm.
Aliernative regressions for different subsets of bands have been
calculated and are included in the TES code, but they are not
reported here. For ASTER bands 11-14, the scatter about the
regression line is nearly identical to the scatter for the five-
band case, such that little precision is lost by dropping band
10. Once the TES T has been found from the subset of bands,
it is used to calculate the emissivity spectrum for all five bands,
including ASTER band 10. As TES is currently implemented,
the four-band option (ASTER bands 11-14) can be invoked
by user control if band 10 results are found by the user to be
flawed. There is no code in place to recognize this condition
automatically, except in the case for which the QA data from
the L’ product indicate that band 10 data were not acquired
ot loct in francmission to earth. For most other band subsets.

the performance is degraded due to excessive scatter about
the regression line.

V. PERFORMANCE OF TES

TES processes an ASTER image (~650 x 650 pixels) in
4.8-6.0 min on a DEC Alpha-3000/900 computer running at
275 MHz. We have tested the reliability of the TES products
by 1) numerical simulation and 2) processing six calibrated,
atmospherically corrected TIMS images for which field data
were available. In the first approach, radiances estimated from
library spectra using Planck’s Law are passed through TES.
These results give the most insight into the workings of the
TES algorithm itself. The TIMS images may provide a more
realistic test, but their preparation naturally involves the oppor-
tunity for error unrelated to TES. Difficulties encountered have
included minor shifts in TIMS band wavelengths, requiring
periodic recalibration, high-frequency temperature fluctuations
in the onboard blackbodies due to turbulent flow of air across
the instrument bay, necessitating construction of air dams, and
sensing of the fuselage bay walls at high scan angles. These
effects are all correctable in principle.

A. Numerical Simulation Results

Overall, the TES algorithm operating on error-free input
radiances can recover temperatures for a wide range of sur-
faces within ~1.5 K of the correct value and emissivities
within ~0.015. For numerically simulated radiance emitted
from surfaces at 300 K, based on the field emissivity spectra
in our library, 95% (two standard deviations) of the recov-
ered temperatures were within 1.5 K and 68% (one standard
deviation) were within 0.3 K, for example. In comparison,
NEM temperatures recovered by simply assuming that the
emissivity for a given band has its average library value of 0.97
are accurate to 1.7 K. However, TES uncertainties are far
less sensitive to ground temperature than NEM uncertainties
are. This is a crucial advantage in areas of rugged relief
because sun-facing (warm) and shadowed (cool) hillslopes will
appear the same. If the ground temperature of vegetation is
hypothetically increased from 240 to 340 K, the accuracy of
TES T changes from —0.6 to —1.0 K, whereas the accuracy
of NEM T changes from —1.0 to —2.0 K.

A second advantage of TES is its decreased sensitivity
t0 Emax, compared to the NEM algorithm, for which T is
simply proportional to the assumed value. If enay is varied
over 0.94-1.00, NEM T values will vary by ~4 K, and
NEM = spectra will change amplitude by ~0.06. In contrast,
TES T and e values will vary by only ~0.5 K and <0.01.

This decreased sensitivity to assumptions, and the iterative

correction for reflected sky irradiance, is the major strength of
the TES approach.

TES performance is not related to scene composition in
general, but to the scatter about the ey;,-MMD regression
line, scatter that is largely independent of MMD (Fig. 4).
Monte Carlo simulation shows that the scatter of recovered
temperatures due to measurement error (N EAT) is about the
same as that due fo the inherent scatter about this regression
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Fig. 5. Impact of S| on apparent emissivities. The effect is greater for lower
emissivities, even after accurate correction. Shown above: TES emissivity
spectra for quartzite at 245, 248, and 343 K (effective sky temperature =
243 K).

line. Therefore, reducing N EAT further will have little effect
on TES results.

Although simple in concept, TES is a complex algorithm
that performs differently for different surface compositions,
surface temperatures, and atmospheric conditions. Compar-
isons to the NEM performance (above) are one way of
indicating TES’ capabilities in a general way. It is also helpful
to examine the processing of a single radiance spectrum,
in this case, a graybody (Fig. 5) similar to vegetation. For
this example, a Monte Carlo experiment was run 30 times,
such that the “measured” radiances are affected by different
amounts of measurement “noise.” The “truth” spectrum has an
emissivity of about 0.995; the NEM emissivities, calculated
erroneously assuming that emax = 0.97, average about 0.965,
an error of about 0.03. In this instance, TES was started using
this assumption, so this spectrum is also the starting point for
TES. The successively higher, less-erroneous curves labeled
TES-1(a) and (b) show spectra at intermediate processing
stages, together reducing the error to 0.02. The next step
was refining £may and recalculating a new NEM spectrum,
which slightly overestimates the “correct” emissivities. A final
pass (TES 2) through the remainder of the TES algorithm
actually overcorrects, ending with an error of about 0.01. In
this instance, the recalculated NEM curve provides the best
approximation to the “truth,” but this is not generally so
because of the sensitivity of the NEM to e.x. As described
above, the initial assumed value for e, would be 0.99
instead of 0.97, but this example illustrates the capability for
TES to iteratively improve its results and gives a sense of the
magnitude of changes that are possible.
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Fig. 6. Changes in apparent emissivity during execution of successive step-
in TES. The plot shows the mean of 30 apparent emissivity spectra calculate.
for a graybody measured with ASTER NEAT (Monte Carlo experimen:
“Truth” is calculated correctly assuming T = 300 K. The lowest curve is the
NEM spectrum assuming 7,ax = 0.97. The next two higher curves (TES-:
a, b) show the improvement obtained by the first pass through TES: for a. the
apparent MMD was used, but for b the corrected value was (minimizing r-
The top curve (filled squares) is the recalculated NEM spectrum obtained b: |
refining €max. The remaining curves (TES-2 a, b) are TES spectra based o
the recalculated NEM temperature.

Fig. 6 illustrates the magnitude of the compensation for sk
irradiance on a spectrum of quartzite for a cold sky approx- |
imated by a 243 K blackbody. Three quartzite temperature:
are indicated: 245, 248, and 343 K, illuminated by the 243 K
sky. The third case corresponds roughly to a sunlit desert soil
and it is essentially unaffected by reflected sky irradiance: the
colder surfaces are affected more. Even for'a wide range of
surface temperatures, emissivity adjustment is on the order of
0.05 or less, even for deep reststrahlen features.

The numerical simulations assure us that, in general, TES
outperforms NEM and the other TES algorithms. The majo!
sources of uncertainty are the regression, the atmospheric
correction, and measurement error. These are all independen:
of each other and all roughly the same size. In general, th
compound errors are probably close to +1.5 K and 0.01°
emissivity units. Numerical simulation results are discussed
at greater length by Gillespie er al. [24].

B. Tests on Simulated ASTER Images

Three ASTER images (Fig. 7) were simulated from cali
brated TIMS overflights in clear air of Castaic Lake and Lake
Tahoe, both in California, and of the south coast of Hawa
[42]. These images are used to test T and ¢ recovery OVel
water targets (low MMD). Three additional images have bect
prepared over a single geologic target, the playa in Railroad
Valley and test recovery over land areas having high MMD
(Figs. 8 and 9). TIMS has similar N EAT and spectral band*
to ASTER. Radiosonde atmospheric probes and Reagan Suf
Photometer measurements of total water vapor, together with
LOWTRAN 7 and MODTRAN2 and 3 atmospheric model*
[81-[10], [43], were used to estimate 7. S; and S| at th¢
time of overflight [44]. In addition, S | was measured b}
the Jet Propulsion Laboratory’s uFTIR spectrometers, using .
gold and bronze reflectance standards. These data were used
to correct field spectra for reflected skylight. Surface radian % .
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fig. 7. TES temperature images from simulated ASTER images acquired by airborne TIMS, with NEAT = 0.2°K (1], over (a) Castaic Lake, CA
(~000 m amsl; ~1130 PST, 9 March 1994), (b) Lake Tahoe, CA (~2000 m amsl; ~1030 PDT, 23 May 1995), and (c) the south coast of Hawaii
(~0400 HST, 1 October 1988). Subscene size: 100 x 200 pixels. Resolution is ~5.5-7.5 m/pixel; subscenes are about 1.2 km across; north is to the

top

wa

temperatures were measured with calibrated, insulated, and
temperature-controlled Everest radiometers (+£0.5 K); water
emperatures were measured with buoys. Field temperature
and atmospheric data were measured concurrently with the
TIMS overflights, except as noted.

The Castaic Lake image [Fig. 7(a)] is of a reservoir, the
earthen dam that impounds it, and sparsely vegetated hills
[44]. Forty-nine buoy measurements of lake surface temper-
atures averaged 287.9 + 0.3 K. TIMS radiances, with cor-
rect emissivities specified, indicate a water temperature of
289.0 £+ 1.6 K, suggesting inaccurate atmospheric compensa-
tion. TES T was ~290.6 K, and the average emissivities were
correspondingly low (by ~0.05). We attribute the inaccurate
atmospheric compensation to incorrectly calibrated hygristors
in the Radiosondes, a problem that was corrected in 1997.

The Lake Tahoe image includes the lake and forested, snowy

mountains, in addition to Dollar Point, a subdivision shown
in Fig. 7(b). Field measurements of water, air, and melting
snow temperatures were ~280.3, ~283.1, and ~ 273.1 K,
respectively. TES T values of water, forest and snow were
281.0 + 0.4, 283.9 + 0.6, and 273.7 & 0.4 K, respectively.
Assuming forest and air temperatures were the same, the mean
TES T’s were systematically 0.6-0.8 K too high, but within the
uncertainty predicted from the numerical simulation studies.
TES ¢ spectra for Lake Tahoe were consistent with Castaic
Lake. .
The Hawaii image shows an active lava flow entering the
ocean near Kapa’ehu, accounting for the plume-like patterns in
the water and for the wide range of temperatures there. A cloud
of steam drifts west (left) from the entry point. Radiometric
ocean temperatures measured three days before overflight were
~296 K, rising to ~330 K near the lava [44]. TES T ocean
temperatures were 305 + 0.6 K, ~9 K higher than the earlier
(three days) radiometric temperatures. Emissivities recovered
for the ocean were too low by 0.05-0.02 (bands 10 and 12,
respectively). Uncorrected absorption and emission by SO;
and other gases from the lava may account for some of the
discrepancies.

Railroad Valley images for three successive years
(1995-1997) were analyzed. Fig. 8 shows the playa, shallow
ponds surrounded with reeds, and alluvial fans in 1996.
Fig. 8(a)~(c) show radiance, TES T, and TES ¢ images,
respectively; Fig. 8(d) is a decorrelation-stretched false-color
version of the same scene, indicating clearly the spectral

_ Water temperatures were measured from buoys and Radiosonde atmospheric profiles were made, all at the time of overflight for Castaic Lake and
Lake Tahoe. Radiometric temperatures were measured for the ocean near the lava entry point in the Hawaii image, but only three days before the image
s made. Radiosonde data at the time of overflight were available from Hilo.

homogeneity of the playa validation site (A). Results from
1995 to 1996 were consistent with those from California and
Hawaii. Running TES without band 10 cut pond temperature
discrepancies in half, indicating inaccurate atmospheric
water profiles. After correcting the Radiosonde hygristor
calibration in 1997, TES emissivities for the pond and playa
sites were brought into agreement with laboratory and field
measurements (Fig. 9). Precisions for ¢ for homogeneous
areas on the images were <0.006. We attribute some of
the rms “error” of 0.018 for the playa to difficulties in
comparing spectra made at different scales (6.4 m versus
10 cm). TES pond temperatures were 290.8 + 04 K, 1.7 K
less than the buoy temperatures. Because of evaporation,
water skin temperatures may be as much as 4 K lower than
buoy temperatures. TES temperatures of 314.2 & 0.3 K
(6/1/96) for playa site A were indistinguishable from the
field temperatures, 314.3 + 0.9 K, measured with the Everest
radiometers during overflight and assuming that ¢ = 0.93.

Correcting for sky irradiance in the TES algorithm reduced
apparent water temperatures by ~0.2 K for the California and
Nevada sites and ~0.5 K for Hawaii.

VI1.. DiSCUSSION AND CONCLUSIONS

TES is designed to minimize systematic errors in temper-
ature and emissivity and to limit errors in the tilt and shape
of recovered emissivity spectra. This is accomplished largely
through compensation for reflected sky irradiance and recourse
to an empirical relationship between emissivity contrast and
amplitude to eliminate the indeterminacy of the inversion prob-
lem. This constraint turns out to be better than.the assumptions
used in other algorithms we inspected; in particular, it is an
improvement over the assumption (that €.y is known) in
the NEM approach and Wien’s approximation in the ADE
approach. The NEM and ADE algorithms are hybridized to

-form the basis for TES. The biggest difference between TES

and NEM performance is in the reduced sensitivity of TES to
scene temperature, especially in the emissivity product, and the
shape, especially the tilt, of the TES emissivity spectra is more
faithful than the ADE spectra. Because TES compensates for
reflected sky irradiance, TES emissivity spectra have higher
contrast than NEM or ADE spectra.

Numerical simulations and field validation studies with
TIMS aircraft data suggest that TES performs within its
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Fig. 8. TES results from simulated ASTER data acquired by TIMS over Railroad Valley, NV, playa (1435 m amsl) ~1100 PDT, 1 June 1996. Resolution
is 15 m/pixel: (a) TIMS Radiance data, simulated ASTER band 13 (10.6 um), showing test areas for which field temperatures and laboratory reflectance
spectra were measured: A is the playa center; B and C are shore: D is the yardangs; and E is the ponds. (b) Temperature image recovered by TES. (¢
Emissivity image, ASTER band 12, recovered by TES. (d) False-color decorrelation-stretched image made from ASTER bands 10 = B, 12 = G, and 13 =
R. Decorrelation stretching subdues correlated radiance variations due to scene temperatures and exaggerates spectral differences.
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Fig. 9. TES emissivity pseudospectra (1000 PDT, 23 June 1997) compared to emissivity spectra, Railroad Valley playa. Water spectrum: average value from
[45]. Playa spectrum: average +1 standard deviation for 99 field emissivity spectra of playa, Site A. Darker solid bars: TES ¢ values for ponds, Site E-
Lighter bars: TES ¢ values for playa, Site A. Height of the bars indicates +1 standard deviation; width indicates the half-amplitude ASTER bandwidths. Watef

temperatures were measured with buoys, playa temperatures were measured wi

th Everest radiometers, and Radiosonde profiles were measured, all at the time

of overflight. Emissivity spectra were measured in the field the day of overflight, and samples were collected the day before overflight for later measurement
in the laboratory. Total column water at the time of overflight was 0.39 g/em?, rising to 0.71 gfem? 2 h later.

design specifications to recover temperatures and emissivities
within 1.5 K and 0.015. In all four experiments for which
concurrent Radiosonde water-vapor profiles were suspect, the
emissivity inaccuracies were worst in ASTER band 10, the
band most influenced by atmospheric effects. Deleting band
10 while running TES improved agreement with field tem-
perature measurements, suggesting that this strategy may be
of general use when atmospheric compensation is uncertain.
This modification is without substantial statistical effect on

the output precisions, unless the maximum emissivity occurs
in band 10 because the different &p;,-MMD regression has
similar scatter to the five-band case.

Scatter about the €pi,-MMD regression line appears to be
property of natural surfaces and not experimental artifact. It i
a fundamental feature of TES that limits its performance. For
high MMD scenes, the scatter is coincidentally and roughl)
equivalent to the ASTER NEAT of 0.3 K and to engineering
predictions of ~ 1 K radiometric accuracy. Errors due to scattef
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about the regression line are most serious for graybodies,
«ch as vegetation and water. For these important scene types,
random measurement errors affecting MMD can be amplified
in the final T and e products, leading us to treat them by
forcing €min t0 a specified value to minimize the effect on 7.

fmprovements in ASTER sensitivity and noise levels would
anslate into improved TES precision for natural graybodies.
However, even for NEAT = 0, TES could not match the
securacy of dedicated split-window sea-surface temperature
algorithms because these presume that ¢ is known and TES
J(;eS not. For geologic surfaces, the inherent variability on the
zmin-MMD plane, not the NEAT, is the greater source of
gncertainty.

Atmospheric compensation may be the effective limit on
TES performance with ASTER data during the EOS mission.
For many, perhaps most scenes, the critical parameters are
atmospheric transmissivity and path radiance. Errors in cor-
rection for these parameters propagate directly into T and
:. The ASTER TIR atmospheric compensation algorithm [5],
based on MODIS atmospheric profiles, introduces uncertain-
ties equivalent to radiometric errors of a few percent. For
dry or thin atmospheres, the contribution to TES uncertainty
is roughly the same as that due to the regression and mea-
surement error, probably less than 2 K; for humid air, the
gncertainty may be greater. It is worth emphasizing that,
although not an attribute of the TES algorithm itself, errors
due to atmospheric compensation will be a major concern in
any implementation of the algorithm.

For many scenes, sky irradiance reflected from the scene
is of minor significance; for example, at Castaic Lake, it
accounted for only 0.2 K. For humid atmospheres or warm
atmospheres over cold scenes, however, the correction for
# reflected sky irradiance may be larger, even the most important
g factor limiting TES performance. Uncorrected sky irradiance
distorts TES emissivity spectra, but affects temperatures to a
lesser degree. ‘

Most soil or rock surfaces, and open-canopy vegetation,
§ contain multiple components at the 90-m scale of ASTER
' pixels. Therefore, performance of TES for mixed pixels is of
1 interest. Mixtures of scene materials fall near the e,,;,-MMD
regression line if the endmembers do also. Potential sources
of error include a mixture of blackbody cavity radiation from
rough surfaces, since ideal blackbodies fall above the regres-
sion line. Theoretical studies with radiosity models suggest
that these effects will be minor because multiple-scattering
contributions rarely exceed ~20% of the total radiance from
natural surfaces. ,

It may be useful to apply TES to multispectral TIR images
from a variety of imaging systems. To be effective, TES
probably requires at least three or four bands of data; numerical
simulations show that uncertainties become larger as the
number of bands is reduced further. It is possible for TES
' run, for example, on only four of the five bands acquired
by ASTER, with little degradation in performance, whereas
for two bands, the products are only half as precise. On
the other hand, as the number of bands is increased, the
scatter about the en;,-MMD regression line is reduced until it
asymptotically approaches a limit of about 40% of the scatter
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for the ASTER case. This limit is effectively reached with
30 bands of TIR data (8-12 ym). From this viewpoint, there
is little motivation to reduce NEAT below about 0.1 K.
since performance is limited to about +0.3 K (one standard
deviation) by the regression anyway. The chief benefit of
“noiseless” data would be to improve TES performance over
vegetation, snow, and water. This is a significant improvement,
if only because much of the land surface is heavily vegetated.
However. it is safe to conclude that major improvements
in atmospheric characterization must accompany improved
sensors if those improvements are to be translated into more
reliable temperature and emissivity data.

TES requires further testing on calibrated, atmospherically
corrected TIR data before routine use by the remote-sensing
community. However, we conclude that TES is a useful
and general algorithm for recovering land-surface temperature
and emissivities from multispectral TIR imaging systems.
The fundamental limitations are the variability in the ep;,-
MMD relationship for natural surfaces and atmospheric char-
acterization and correction. Future refinements of TES may
be possible, but performance characteristics reported in this
discussion are probably close to their ultimate limits for
ASTER. Even with ideal noiseless, hyperspectral instruments,
together with perfect atmospheric compensation, uncertainties
can only be reduced by a factor of two or three with the TES
approach.
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