Extracting straig‘h‘t'roadstructure in urban
environments using IKONOS satellite imagery

Abstract. We discuss a fully automatic technique for extracting roads in
urban environments. The method has its bases in a vegetation mask
derived from multispectral IKONOS data and in texture derived from pan-
chromatic IKONOS data. These two techniques together are used to
distinguish road pixels. We then move from individual pixels to an object-
based representation that allows reasoning on a higher level. Recogni-
tion of individual segments and intersections and the relationships
among them are used to determine underlying road structure and to then
logically hypothesize the existence of additional road network compo-
nents. We show results on an image of San Diego, California. The
object-based processing component may be adapted to utilize other ba-
sis techniques as well, and could be used to build a road network in any
scene having a straight-line structured topology. © 2002 Scciety of Photo-
Optical Instrumentation Engineers. [DOL 10.1117/1.1496785] .
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1 Introduction

With the advent of the satellite IKONOS comes the oppor-
tunity to utilize high-resolution, commercial satellite data
for the purposes of large-scale feature extraction and analy-
sis. The relative spectral response curves for the IKONOS
bands are shown in Fig. 1. With its 1-m resolution panchro-
matic band and its highly coregistered 4-m resolution mul-
tispectral bands, IKONOS offers a unique opportunity to
combine panchromatic and multispectral data to derive a
greater amount of information for use in automated feature
extraction methods. For additional detail concerning the
properties of IKONOS satellite imagery, refer to Ref. 1.

The extraction of roads and, subsequently, road net-
works from imagery is a difficult and complex task. Roads
can be either dark or bright in comparison to their back-
ground, either narrow or wide in size, exhibiting either high
or low contrast, highly variable surfaces or very smooth
surfaces. We realize that even with the additional informa-
tion offered by the multiple bands of IKONOS, there will
still be no single method that will be successful in extract-
ing all types of roads from this imagery. Instead, we believe
that a number of techniques developed for different classes
of roads will lead to a many-branched solution for road
extraction that will be effective for a wide range of road
types. Our recent focus within this overall solution frame-
work has been on the extraction of primarily linear streets
in urban environments. These streets are characterized by
recognizable spatial relationships between neighboring in-
tersections, and our method takes advantage of these rela-
tionships to build a vectorized road network.

2 Background

Fully automatic, highly accurate extraction of road net-
works has long been an elusive goal. As a compromise to

full automation, many procedures begin with two or more
user-selected road points and wrack the. path of the road
among these points;2’3 others require starting vectors ‘and
track the roads from there;*~% and yet others use a series of
user-supplied seed points and derive roads from snake-
based alpproaches"’8 or dynamic programming methods.’
On the fully automated end of the scale are methods that
derive such seed points automatically.'%!! Other automated
methods use information from low-level processing to iso-
late linear structures,'? or they combine the results of dif-
ferent low-level processes at different resolutions to extract
the roads.*"® There are also artificial intelligence-based ap-
proaches that use similar low-level processes followed by
symbolic or meta-level reasoning about the extracted
objects.!>1

Our approach is similar to some of the latter processes in
that we follow low-level, pixel-based techmiques with
higher-level reasoning to extract networks of roads.

3 Extracting Roads from Imagery of Urban
Environments

As stated before, our recent focus has been in the extraction
of roads from urban environments. As a basis for this ex-
traction, we utilize low-level pixel techniques that are not
specific to urban environments and which can be applied to
data with either a well-structured underlying network or a
seemingly random one.

‘When it comes to identifying road pixels, we can find
them both by looking for them directly or, conversely, by
ruling out their existence. Each of our basis techniques uti-
lizes one of these two approaches. We first compute a veg-
etation mask from the muitispectral data. This tells us
where there are no roads, and offers the benefit both of
reduced false positives and reduced computational time in
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Fig. 1 IKONOS spectral response curves.

the subsequent (and more compute-intensive) road-pixel-
finding technique. We apply this vegetation mask to the
panchromatic data and look specifically for road pixels in
the remainder of the image.

Given a set of pixels for the image that is considered to
be ‘“‘road,” we can group them into objects that correspond
to real-world road components such as road segments and
intersections. From these components, we determine a local
road network pattern (if one exists) and use it along with
the existing road network components to hypothesize and
verify the presence of missing portions of the road network.

3.1 Vegetation Masking

Masking the vegetation in an image prior to further pro-
cessing is important for the reduction of both false alarms
and processing time. The red and near-infrared bands are
instrumental in the identification of vegetation in imagery.
Our procedure for deriving the vegetation mask uses the
spectral average, the difference between the red and green
bands, and the ratio of the near-infrared to the spectral av-
erage as discriminators for vegetation. All three of these
measures are taken at the pixel level and compared to a
series of corresponding thresholds to determine whether or
not a pixel is composed of vegetation. The binary mask
resulting from this operation is resampled using bilinear
interpolation to match the resolution of the panchromatic
image. This enables direct correspondence between the
mask and the panchromatic pixels in subsequent process-
ing.

3.2 Panchromatic Texture Measurement

A road should be relatively straight when considered at any
local point, as well as being smooth and displaying a low
variance along the trajectory of the road. In response to
these characteristics, we developed a matched filter to de-
termine the existence and nature of a potential road pixel.

In this approach, a rectangular filter is extended from
and rotated a full 360 deg about each potential road pixel of
the image (those pixels that remain after vegetation mask-
ing). At discrete intervals about the pixel, the variance over
the rectangular window is calculated. For most areas, a fil-
ter size of 3X20 pixels and 16 to 18 discrete points is
appropriate. The size of this rectangular filter may be ad-
justed based on observation of the input image, as can the
number of intervals for which to calculate the variance.
When the values of the variances at the discrete locations
are graphed in a linear fashion, locations at which the filter
lay along a section of road will be identifiable as low points
or “valleys” in the texture graph (see Fig. 2 for illustra-
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Fig. 2 Panchromatic texture measurement. The illustration in (a)
shows how the texture filter is applied to the image, while (b) shows
a graph of the corresponding texture values, taken at 18 discrete
locations over 360 deg about the pixel.

tion). If these valleys are significant enough in terms of
depth and width, we assume that the pixel under scrutiny is
part of a road. For each of these road pixels, we save two
pieces of information. One is the number of valleys in its
texture mapping. This indicates the nature of the pixel:
whether it is part of a two-directional road segment or a
three- or four-directional road intersection. The other piece
of information is the set of discrete locations at which these
valleys occur; this gives directional information useful for
the grouping of road pixels into objects for higher-level
reasoning.

3.3 Recognizing and Utilizing Underlying Road
Network Structure

Many cities, particularly in the United States, contain road
structures that follow a set, repetitive, and sometimes even
recursive pattern. In any given local area, this pattern can
be defined by the spatial relationship between a single in-
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Fig. 3 Knowledge conceming the underlying road network structure
enables us to identify missing components; (a) shows how undetec-
ted road pixels affect the initial road extraction, while (b) illustrates
that the underlying road network structure can be used to hypoth-
esize and verify missing information.

tersection and its n neighbors, if the relationship of that
intersection to its neighbors is characteristic of the local
neighborhood.

To get to the point where we can take advantage of these
spatial relationships, we must first derive and recognize
them. The product of the low-level pixel processing is a
determination of the nature of the local road component
(two-way segment versus three- or four-way intersection)
and the direction of the road at that pixel. Given these two
pieces of information, we can group pixels together into
objects that potentially correspond to intersections and the
road segments between those intersections. As objects, we
can analyze them to see which ones will be useful for ex-
tracting the underlying road network. Here, the geometric
characteristics of the objects become important. For ex-

Fig. 4 Example results: a panchromatic image of San Diego, Cali-
fornia, with the extracted road network overlaid on the data in white.
Image size is approximately 1100X 1100 pixels.

ample, the only objects that we can be certain are road
segments are those which are straight and which are fairly
compact in structure. We use size, eccentricity, and length
to determine which two-directional (road segment) objects
will contribute to our estimate of the underlying road net-
work structure. Likewise, to be sure that an intersection is
part of our road network, there must be a nuinber of
incoming/outgoing road segments arranged in some spatial
pattern about it. Once we have established these “recogniz-
able” components, we can use them to determine the un-
derlying road network structure.

To derive the road network structure, the spatial relation-
ships between neighboring intersection objects are used.
Through utilization of the connecting road segment objects,
we can derive the following spatial description for an inter-
section A:

has-neighbor A N, has-neighbor A N, ... has-neighbor A N,
distance d, distance d, distance d,
angle 6, angle 6, angle 6,

where intersection N, represents a neighbor of intersection
A, d, is the Buclidean distance from A to N, 6, is the
angle measured between the line from A to N, and the
horizontal, and x={1,2,3,4} for a valid intersection object.
If there are enough intersection objects in a local area with
a spatial description similar to A, then that spatial descrip-
tion becomes the estimate of the underlying road network
structure.

The recognition of these spatial relationships not only
allows us to derive a good straight-line approximation of
the road centerlines in the image, it also benefits us by
providing a framework within which to propose hypotheses
concerning the existence of missing road network structure.
If we have identified the spatial pattern of the underlying
road network, we can select intersection objects that fit this
spatial pattern and then hypothesize the existence of “miss-
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ing” neighbors. As an example, consider Fig. 3, a zoom
showing a small section of our results. In Fig. 3(a), notice
how our network is interrupted: in the vicinity of two of the
road intersection areas. Because of the crosswalks at those
intersections, our variance-based texture measure detects
no road pixels. However, because there is enough surround-
ing structure to identify the undetlying road network, the
system is able to hypothesize the existence of intersections
in those areas and verify them using the patterns of incom-
ing road segments as proof, adding those intersections to
the symbolic road network representation, as shown in Fig.
3(b).

4 Results

Current efforts are under way to characterize performance
in a number of urban environments, using an array of ex-
amples from not only the United States, but from nations
and continents on various parts of the globe. We show the
results of our road extraction on a piece of imagery taken of
the San Diego, California area (see Fig. 4). As you can see,
this road extraction technique works quite well in this class
of urban environment. For this particular scene, 73 inter-
sections were initially identified, and 14 more were hypoth-
esized and verified using the road network estimate and
existing objects. The entire process ran in approximately 1
min for the 1100 1100 scene shown in Fig. 3. In compari-
son to hand-digitized roads of the same area used as ground
truth, the automated method extracted 82.9% of the streets
with an rms, error of 1.0 pixel and introduced one false
alarm. Much of the missing structure is in the lower left
corner of the image, where there are many cars. This high
concentration of vehicles is detrimental to the texture mea-
sure used in low-level processing, and its effects naturally
carry over to the object-level processing. The addition of
complementary basis techniques to the system in the future
will assist in overcoming problems such as this.

5 Conclusions and Recommendations

The road extraction process explained here works well in
urban areas exhibiting a straight-line, gridded road network
structure. Current efforts are underway to test the method
on a wide variety of images to determine precisely the class
or classes of road for which it works well, to determine
what portion(s) of our many-branched solution it will sat-
isfy.

There are certain weaknesses in the process due to the
low-level basis technique used to classify the pixels as road
or nonroad. That technique requires predetermination of
road width, and it is tuned for the detection of roads having
a specific level of contrast and a low along-road variance.
Other basis techniques must be integrated to perform the
pixel classification to make the higher-level algorithm suit-
able for extracting road networks for a wider range of road
classes.
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