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Genetic algorithm for optical pattern recognition
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A genetic algorithm is used to generate binary reference functions for optical pattern recognition and classification.
Procedures based on the properties of convex functions can be implemented directly on hybrid electro-optical
systems. Computer simulations demonstrate the efficiency of this novel approach.

Most of the traditional procedures for the construc-
tion of synthetic discriminant functions for optical
pattern recognition are derived by analytic formula-
tions.! An alternative approach?3 is based on itera-
tive numerical techniques that are used to implement
nonlinear functions of the data involved in the genera-
tion of the required synthetic discriminant function.
The recently introduced concept of an entropy-opti-
mized filter>* led to optical correlators of excellent
discrimination. The entropy-optimized filters were
first constructed by using a gradient descent algo-
rithm, which became cumbersome when additional
constraints were introduced, and then simulated an-
nealing methods® had to be applied.

The above-mentioned algorithms are suitable for
conventional serial computations, and they do not ex-

ploit the massive parallelism available in optical sys- .

tems even if a large fraction of the computations are
performed optically.® The purpose of this Letter is to
introduce into this field the genetic algorithm™® (GA),
which replaces serial procedures with a parallel ap-

proach.

A short review of an iterative procedure for spatial
filter generation in a 4-f optical pattern recognition
system is followed by the adaptation of GA to such an
architecture. The promising results of the computer
simulation experiments described below indicate the
power of the new method and lay the groundwork for a
proposed electro-optical implementation.

The complex amplitude distribution over the out-
put plane of a coherent optical correlator is given by

clxgs ¥o) = ] f f(x, y)h*(x + %, ¥ + yo)dxdy,

(1

where h(x, y) is the spatial filter function and f(x, y) is
the input function. In a joint-transform correlator
h(x, y) is used as a reference function, while in a 4-f
correlator its Fourier transform is the filter.

We intend to discriminate between two sets of pat-
terns, {f,2(x, ¥)} and {f.F(x, v)}, by generating a filter
that produces a strong and narrow peak for patterns of
the first class and a uniform distribution for patterns

-of the second class. In a most general sense we may

o
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define a distribution function over the output plane by
the relation

B(x,y) = ,,,‘C Lo, ) ’ 2)

J : J:m L[e(x, y)ldxdy

where £ is a nonlinear operator over c(x, y) such that
L]c(x,y)] is anonnegative quantity on (x,y). Herewe
take L to be the absolute value operator suitable for
intensity detection. The distribution & has all the
properties of a probability density for which one may
define a general entropy function,® given by

S j_: r ¥[aGyldedy, @)

-0

where ¥ is a strictly convex function.! The entropy
function is maximized for a uniform distribution of ¢
and minimized when a single narrow peak is obtained.
Converting all functions into digitized form, x = m,
y — n, we represent the various functions as two-
dimensional matrices of N X N pixels requiring an
array of 2N — 1) X 2N — 1) pixels in the correlation
plane. A single steep peak over the correlation plane
at some point, denoted by (&, 1), is represented by the
ideal distribution »

#(m, n) = {1 at(m =.k,n== De (domamof@),
0 otherwise

4)
while a uniform distribution due to a rejected pattern
has the form
S S
(2N - 1)?
For each proper convex function ¥ the general entro-

py function has its upper and lower bounds.? Taking
for the present example the convex function

¥(x) = %%, (6.

we obtain

%(m,n) = Y (m, n). (5)

© 1991 Optical Society of America



(a) (b)

Fig. 1- Input training set: (&) the pattern to be detected
(tlgé letter H), (b) the pattern to be rejected (the letter E).

Fig. 2. Two different members of the population of refer-
ence functions. Black represents +1, white represents —1.

-1
(2N - 1)?

where the indices D and R denote the square entropy
due to patterns from the D and R subsets, respectively.

If we follow Ref. 3, a cost function defined by the
relation

M=fZDSD—;SR ®)

has its ideal minimum determined by the ideal values
given in Eqgs. (7).

Considering M to be a functional of a specific filter
function, we seek a reference function hger(i, j) that
will minimize the cost function,

Mmin = M[hGEF(l’ ])]- (9)

Since currently available gpatial light modulators
(SLMs) operate best in a binary mode, we restrict our
actual filter function to this mode. However, for high-
er performance,’ with a proper system modification,
we can use the effective values hG, ) e -1, BV i, ]
To use a GA one should have the following features’:
(i) a chromosomal representation of solutions to the
problem, generally binary; (ii) an evaluation function

Sglm =-1, Sﬁxax = ’ N
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that gives the fitness of the population; or (iii) combi-
nation rules (genetic operators) to produce new struc-
tures from old ones—reproduction, crossover, and
mutation.

If we regard the cost function in Eq. (8) as a fitness
value for a given spatial filter function, our process
lends itself quite readily for implementation by GA,
where each binary filter function constitutes a mem-
ber of the population. The algorithm used is summa-
rized as follows:

(1) Start: Selectat random a population of m mem-
bers (binary functions) {h1, ha, - - s h..} and evaluate
the values of the cost functions, M; i =1, 2, ..., m}.
Compute the average value of the cost function ¢ = 1/
m LM Seta discrete time parameter ¢ to zero.
Define a probability P for a mutation to occur and set
it to some Prax-

(2) Crossover/mutate: Select the function h; that
corresponds to the minimal cost function, Mi. Pick
from the populationa function h; at random. The two
functions, h; and h;, are the parents to be used for
generating an offspring function. Select a random
integer k between 0 and n, where n is the dimension of
the vectors h representing the filter functions. Create
the offspring function, A, by taking the first k ele-
ments from one of the parents, randomly, and the
remaining n — k elements from the other parent. In-
duce a mutation (inverting the sign of the elements)
with probability P on each element of the offspring
vector h.. Evaluate the offspring cost function, M..
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Fig. 3. Output correlafion intensity with (a) the refere
function produced by GA (discrimination ratio of 1:1.1)
(b) the original function as reference (discrimination rati
1:2.7).
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Fig. 4. Joint-transform correlator architecture for electro-
optical implementation of learning algorithm. One of the
reference functions and the training set are presented on the
upper SLM, and the control computer (not shown) analyzes
the output signal detected by the lower charge-coupled-
device (CCD) camera.

(3) Reproduce: Pick at random a function h4 from
the population subject to the constraint M = 6. Re-
place hy in the population with h. and update the
average value of the cost function, § — 8 + (1/m)(M. —
My).

(4) Setting parameters: Set the new parameters, ¢
—t+ 1and P— P,.s(1/t). Terminate the procedure
when adequate discrimination is achieved (a predeter-
mined value of M). If P> P, g0 to step (2); other-
wise go tostep (1). Selection of the parameters r, Pry,
and Pp..x depends on the particular problem at hand.
In most cases tested the procedure was terminated
much before Py, was reached.

In our simulation experiments the input pattern was
asshowninFig. 1. A function h(x,y) was generated to
detect pattern (a) and to reject pattern (b). Two mem-
bers of the final population are shown in Fig. 2. These
filters vield a discrimination ratio of 1:7.1 as shown in
the correlation results of Fig. 3(a). For comparison,

Fig. 3(b) shows the correlation plane for g binariz
matched filter having a discrimination ratio of 1:2 7ed
To improve the filter generation process we Dl‘;n;o.
an electro-optical learning architecture as shown o
the schematic diagram of Fig. 4. Owing to the limitg
tions of the joint-transform correlator,!! all the pixei
values of the candidate binary filters are stored in the
computer memory and are presented sequentially ¢,
the system, following the algorithm described, The
selected filter function is presented on the upper SLM
side by side with the patterns of the training set, anci
the correlation peaks are detected over the output
plane by the charge-coupled-device camera. The cost
function is calculated and the genetic operations are

performed by the controlling computer.

(After the original submission of this Letter the
electro-optical system was implemented as describeq
and also in a 4-f architecture.)

This research was performed within the Technion
Advanced Opto-Electronics Center established by the
American Technion Society, New York.
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