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ABSTRACT

The Digital Imaging and Remote Sensing laboratory's Image Generation model, DIRSIG, was validated in the long wave
infrared (LWIR, 8-13.3 um) and midwife infrared (MWIR, 3-5 um) pass bands. Truth data was collected for all components
of the thermal and radiometric submodels including a complete set of meteorological and radiometric data. Truth
temperatures were collected using a bank of thermistors and truth radiance images were collected with calibrated InSb
(MWIR) and HgCdTe (LWIR) detectors. Sensor spectral response functions were also included in the radiometric analysis.

Relative error contributions to the total temperature/radiance digital count were investigated for each component in the
multi-spectral model. Largest contributions were found to be wind speed, air temperature, visible emissivity, and fractional
sky exposure for the thermal model and atmospheric transmission, temperature, and emissivity for the radiance model. An
overall comparison of truth and synthetic images yields RMS errors of as low as 1.8° C actual temperature and 5°C (LWIR)
and 6°C (MWIR) apparent temperature.

1. Background

Synthetic image generation (SIG) models are used to address a broad range of problems. They can be used as a tasking
aid to determine what combination(s) of spectral range, look angle, time of day, etc., enhance the occurrence of a specific
phenominum (i.e. target recognition). Many different combinations can produce synthesized images in a cost-effective
manner as compared to taking aerial training data. Other applications of SIG include sensor development, training, reverse
engineering, and the evaluation of automated or semi-automated exploitation algorithms.

From a scientific standpoint, a major value of synthetic image generation is that it can provide a complete end-to-end
model of the image chain. The extent to which a modeled scene matches an actual scene provides a measure of how well the
imaging process is understood. Conversely, the mismatch between a modeled and an actual scene can provide clues to where
our understanding of the physical or engineering principles is flawed. That is why it is essential to perform a validation
analysis on a SIG model as a whole as well as on the sub-components which comprise the image chain. This manuscript
details such an analysis on the Rochester Institute of Technology’s (RIT) Digital Imaging and Remote Sensing (DIRS)

laboratory’s Synthetic Image Generation (DIRSIG) model.1,2,3

This experiment represents the first test of the quantitative integrity of the DIRSIG model. As such, it is not intended to
show how good or how bad the model is, but to point out limitations in the model and areas in need of attention as part of
ongoing research and development activities to improve the SIG modeling process.

2. DIRSIG Model Overview

DIRSIG was originally written for the infrared region of the electromagnetic spectrum, but has since been expanded to
include visible radiation. Its full range is 0.4-14 pm, and follows the image chain based primarily on first-order physical
principles. A complete description of the model can be found in reference [2]. The validation of DIRSIG reported here only
covers the LWIR (8-13.3 um) and MWIR (3-5 um) portions of the spectrum.

Fig. 1 gives a generalized block diagram of the submodels within DIRSIG. The geometry submodel contains the
physical information of the objects in the target scene including spatial information (size, location, and orientation) and
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material attributes (e.g. emissivity, conductivity, etc.). The ray-tracer submodel relates the target scene with the sensor and
the source (e.g. look-angle, time-of-day, and spectral range). Rays are cast from sensor to target to determine the type of
interaction involved (e.g. specular bounce to sky, specular bounce to background, diffuse hit, or ray cast to sky) and to gather
the pertinent parameters for computing object temperature and impinging radiance. The sensor submodel takes the radiance
information received at the front end of the sensor and passes it through a sensor response function.

Geometry | Sensor

Submodel } { Submodel
Ray-Tracer Final
{ Submodel Image

Thermal Radiometry
Submodel a-] Submodel

Fig. 1. Block diagram of the submodels within DIRSIG. Exchange of information is indicated by the solid
lines with arrowheads showing direction of flow.

The other two submodels---the guts of DIRSIG---are the subject of this validation analysis. In the thermal submodel,
surface temperatures of target objects are computed from temporal, meteorological, and material information. The thermal
model incorporates a modified version of the Air Force Infrared Simulated Image Model (AIRSIM) known as THERM.45
In the radiometry submodel, atmospheric contributions to the radiance impinging on the target and sensor (e.g. transmission,
upwelled and downwelled radiance, etc.) are extracted from a radiometric database created particularly for the time, location,
and atmospheric condition of the synthetic scene. The radiometric database comprises spectral vectors of radiance
components extracted from the output of the Air Force Geophysics Laboratory (AFDGL)/ Spectral Sciences Inc. MODTRAN
Atmospheric Transmission/Radiance Code. 67

3. Validation Procedure

The validation of the thermal and radiometric submodels is divided into two parts. The first tests the sensitivity of
DIRSIG to the numerous input parameters needed for THERM and the radiometry submodels. The second tests DIRSIG’s
overall absolute and relative accuracy in predicting object radiance values and temperatures. The method of determining the
sensitivity of THERM differs from the method used for the radiometry submodel, since the radiance is computed through an
analytical equation while the temperature is determined through numerical methods. Since object temperatures need to be
determined before a total radiance value can be computed, the validation of THERM is presented first.

The identified input parameters for THERM, and the means by which a truth value could be measured or estimated for
comparison, are listed in Table 1. The parameters can be put into two groups: weather (or environmental) parameters, which
are external factors impacting an object’s temperature, and object (or material) parameters, which are internal factors
controlling an object’s temperature. In order to reach a steady-state temperature for the time of day for which the image is
formed, 24 hours of prior weather knowledge must be input to THERM. This weather data can also be predicted by THERM,
given the proper location, time, date, and standard weather forecast data. Therefore, as part of the validation, THERM’s
weather predictions were also tested against meteorological data.

Truth temperatures and imagery was collected in two experiments including all of the parameters necessary for input to
THERM and DIRSIG. The experiments ran for forty-eight hour periods on the dates of October 5, 6, and 7, 1990 and June
22 and 23, 1992. A diagram of the June 1992 experiment is shown in Fig. 2. Imagery was captured from the roof of the RIT
Center for Imaging Science building in order to simulate airborne sensor collections. LWIR imagery was collected using an
Inframetrics IR camera containing a single Mercury/Cadmium/Telluride (HgCdTe) detector which was cooled by liquid
nitrogen to a temperature of 77K within a cryogenic dewar. The image was scanned using electromechanical servos. During
each time interval, five frames of the image were grabbed using Werner Frei software on an Image Technology board. These
frames were then averaged to reduce noise artifacts which appear in individual images.

MWIR imagery was also gathered during the June 1992 collection with a Platinum Silicide (PtSi) 2-D array video

compatible IR imager8 supplied by the ARMY Night Vision Laboratory. Visible images were also collected using a CCD
camera for purposes of determining facet sun/shadow histories during the October 1990 collection. Sun/shadow history is
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used to better estimate object temperatures. During the June 1992 collection, four separate images in different bands (red,
green, blue, and SWIR) were collected by the CCD camera using different filters. These images were used for a validation

study of DIRSIG's predictions in the visible region of the electromagnetic spectrum.? All images were collected every half
hour, stored on computer hard drive, and backed up on magnetic tape.

Table 1 Thermal Sub Model Variables: Truth and Prediction Sources

Inputs to Thermal Model Environmental Model Inputs to Thermal Model
Environmental Prediction Output Validation Temperature Prediction
Value Source Value Source Value Source
Sunrise Time Longitude, Air Temperature | Thermometer Density Available
Latitude, Day Literature
Sunset Time of Year from Air Pressure ,Barometer Specific Heat Available
Ephemeris Literature
Sunrise Air Weather Relative Hygrometer Thermal Available
Temperature Humidity Conductivity Literature
Peak Air Service Dew Point * Exposed Area Estimate
Temperature
Time of Peak Air Report Wind Speed Anemometer Visible Available
Temperature | Emissivity Literature
Air Pressure | Direct Insolation | Pyronometer** Thermal Emissometer
| Emissivity
Humidity I Diffuse Pyronometer** | Self-Generated Available
I Insolation Power Literature
Dew Point | Sky Exposure Estimate Thickness Measurement
Wind Speed | Cloud Type Estimate Slope Measurement
Sky Exposure | Rain Type Estimate Azimuth Measurement
Cloud Type | Rain Rate Rain Gauge Sun/Shadow Visible Imagery
| History
Rain Type | Rain Estimate Plus all of the environmental model
l Temperature outputs and their corresponding
Rain Rate V experimental values as a function of
Rain Engineering time.
Temperature Estimate

* Thermal model computes dew point based on air temperature and relative humidity
** Eppley Precision Pyronometers
+ YSI Thermistors

Temperatures of objects in the scene were recorded by thermistors on fifteen minute intervals. The thermistors were
calibrated using a water bath of known temperature. As a check, the thermal images taken with the LWIR sensor were
converted via the Planck equation to apparent temperature. For both collections, object dimensions, angles and locations
within the scene were measured, and radiosonde data was obtained from the Buffalo Airport for October 4-7, 1990 and June
22-24, 1992. To test THERM’s weather parameter predictions, complete diurnal weather data from six days: June 23 and 24,
1987; October 6 and 7, 1987; and October 5 and 6, 1990, was used. Meteorological data was collected at fifteen minute

intervals. The 1987 data were from an USAF collection at Wright Labs where similar ground truth data were available. 10
3.1 Weather Parameters

Since the computation of temperature from environmental variables (and object parameters, for that matter) do not result
from an analytic equation, a method was developed to determine THERM's sensitivity to variations in individual parameters.
THERM was first run with the generic object and weather parameters to establish 'base’ temperatures for all objects. The
RMS error associated with one weather variable was randomly added to or subtracted from the time dependent nominal value
in the weather file while all other variables remained nominal. An RMS error was computed between the new temperature
output and the 'base' temperatures. Table 2 lists the predicted RMS (column A) and measured errors (column D) associated
with the weather variables input to THERM and the RMS errors in output temperature resulting from these input errors
(columns C and E, respectively). The truth data for the weather parameter tests were the temperatures of 11 objects as
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Roof Measurements Ground Measurements Cameras
Air Temperature Wind Speed Visible with filter wheel
Relative Humidity Sample Temperatures (Thermistors) 8-14 um
Barometric Pressure Objects:  Water,  Car Tire, Car Window, 3-5 um
Cloud Cover (amount, type) Grass, Asphalt Car Door, Car Roof, ——————
Solar Radiation (total, sky) Reflector, Sand, Concrete, Painted Wood Pyronometers
Sky Radiance (in band) Surface Leaving Radiance (in band) f\
; e e
Rainfall Amount
r 4
North
Blackbody Range

Laboratory

Meterological
Station

Asphalt

Work Station
for Display

Anemometer

Grass Reflector

Fig. 2 Validation Experiment
computed by THERM using the measured diurnal weather files.

Note that for the prediction errors, both a bias value (column B of Table 2) and an RMS error are listed for each variable.
For some variables, THERM tends to make optimistic or pessimistic predictions, resulting in a bias when compared to the
actual data . For these cases, the bias was added to the true weather variable and then the RMS error was randomly added to
or subtracted from the nominal weather parameter value.

The errors resulting from THERM's prediction of the weather are greater than those errors resulting from variability in
the measured data. One way to improve upon the prediction errors is to edit THERM's output weather. If the user has some
idea of the weather patterns for the day being modeled, he can adjust the data predicted by THERM. It must be noted that
THERM predicts the weather well when modeling stable days such as a typical sunny day with few clouds. THERM cannot
predict rapidly changing weather conditions because it only works from values averaged over a 24 hour period unless it is
manually edited by the user (e.g. a forecast of a clear morning, and a cloudy afternoon, can be approximated to improve
prediction performance). Depending upon the application of DIRSIG, this limitation may or may not be problematic. For
training use and prediction of optimum imaging times, THERM's limitations are not critical. Many different scenarios can be
defined with acceptable results from DIRSIG. However, in modeling of actual imagery collected under unknown or
unmeasured conditions, the expected errors will increase.

The most important variables (i.e. those that have the greatest impact on the error in output temperature) are air
temperature, wind speed, and direct and diffuse insolation. When running THERM in the predictive mode, the critical
weather parameters should be paid particular attention. Also note that for either method of weather generation, wind speed
should be carefully watched. Even relatively small changes in wind speed (which THERM cannot predict) or errors in
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measured wind speed can have large effects on resulting object temperatures due to the convective cooling (or warming)
nature of the wind.

Table 2 Weather Parameter Errors and Resulting Temperature Errors

A B C D E

Variable Prediction | Prediction | Temperature || Measurement | Temperature

RMS Error Bias Error Error Error
Air Temperature (°C) 1.57 0.63 1.09 0.2 0.10
Air Pressure (mbar) 1.87 -0.05 0.002 0.2 0.002
Humidity (%) 0.14 0.05 0.18 0.2 0.007
Dew Point (°C) 3.57 1.46 0.27 NA NA
Wind Speed (m/sec) 1.31 -0.02 0.31 1.11 0.30
Direct Insolation (%) 10.20 -4.47 091 Precision: 0.04 0.006

Accuracy: 0.2
Diffuse Insolation (%) 8.06 -3.16 1.68 Precision: 0.04 0.005
Accuracy: 2.0
Sky Exposure (as fraction) 0.21 0.00 0.36 Il 0.05 0.07
Cloud Type (#) 1 0 0.14 0ifCT =0,1,7,8 0.05
1if CT#0,1,7,8

Precipitation Type (#) None NA NA None NA
Precipitation Rate (cm/hr) 0.06 0.00 0.10 0.013 0.009
Precipitation Temperature (°C 7.14 -5.35 0.16 2 0.014
Total Error (RSS) (no Rain) (°C) - 227 I - [ o3 |
Total Error (RSS) (rain) (°C) - 2.28 If - 0.33

3.2 Object Parameters

The objects chosen for validation were selected so that materials with various thermal properties were represented. Each
of these materials had at least five different listings of objects parameters from which the predicted parameter variation was
computed. When an object is being modeled and is not available for measurement, its intrinsic physical characteristics must

be estimated. Lists of parameters for many different objects have been compiled for this situation.’ Many similar objects on
these lists have varying parameters. The 'predicted' object parameter errors are the variations of each parameter within each
group of materials. 'Measurement' errors of object variables are those associated with the accuracy and precision to which a
variable can be measured in an experiment. Some object parameters such as thickness and orientation can be measured very
precisely. Other values are in manufacturer specifications or general material property tables found in thermodynamic and
heat transfer literature. However, these references rarely list the variance associated with the given parameter value. For
those easily measurable parameters, the actual measurement accuracy and precision are listed in the error table. For the other
variables, a conservative estimate of 10% error in the given value was used for the sensitivity testing. The tests were run in
the same manner as the weather sensitivity tests: error was added to one parameter at a time, object temperatures were
computed by THERM, then RMS errors between these output temperatures and the truth temperatures were calculated. The
average error due to each variable over all objects is listed in Table 3.

The object parameters whose errors have the greatest impact on output temperatures computed by THERM are visible
emissivity (i.e. solar absorption), exposed area, and azimuth angle. The error associated with self-generated power is
misleading, since only passive facets were fully tested during this study. Therefore, this output temperature error is not a true
representation of THERM's ability to predict temperatures of active facets. If active facets were included in this study, the
temperature error would most likely be much higher. The high error due to prediction variability in thermal conductivity is
due to one or two materials having a wide range of thermal conductivities listed in the literature. This large variability
inflated the resulting temperature error. Comparing the error due to measurement variability of thermal conductivity to the
error due to measurement variability in the other object parameters shows that the error due to thermal conductivity is not as
critical as the errors in the variables listed above.

Error due to azimuth angle variability is easily understandable. The azimuth of a facet determines the amount of solar

loading the facet receives throughout the day. Relatively small errors can significantly increase or decrease the amount of
solar energy the facet receives, thus affecting the facet's temperature. Exposed area is a difficult parameter to deal with. Itis
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used as the fraction of the facet area exposed to the environment. This parameter is not measured in a straightforward
manner, but is estimated by the user. Again, small changes in the exposed area can have a significant effect on the facet's

temperature, since they significantly impact the radiation load on the surface.

Table 3 Object Parameter Errors and Resulting Temperature Errors

Variable Prediction | Temperature lLMeasurement Temperature
Error Error Error Error
Specific Heat (L/cm/°C) Varies 0.0188 10% 0.0718
Density (kg/m3) Varies 0.0865 |l 10% 0.072
Thermal Conductivity (L-cm/hr/°C) Varies 0.4362 | 10% 0.0477
Thickness (cm) 20% 0.1023 0.1 0.0363
Visible Emissivity (as fraction) Varies 0.7774 10% 0.3934
Thermal Emissivity (as fraction) Varies 0.1983 0.025 (~5%) 0.0624
Self-Generated Power (L) Varies 0.2488 10% 0.0236
Exposed Area (as fraction) 20% 0.5634 10% 0.2809
Slope 7.5° 0.1219 3° 0.0456
Azimuth 7.5° 0.2905 3° 0.1012
Total Error (passive) (°C) - 1.1265 - 05137 |
Total Error (active) (°C) - 1.1536 - 0.5142

Note that the magnitudes of the errors due to measured errors in object parameters are greater than those of the errors due
to measured weather parameter variability. This reinforces the statement that the object parameters should be the primary
focus when running THERM with measured meteorological data. Assuming that the weather and object related temperature
errors are independent, THERM's combined sensitivity to variations in weather and objects parameters for passive facets is:
2.54 °C (prediction) and 0.61°C (measurement).

When it is important to predict true object temperatures, the definition of accurate object parameters is critical. The
values obtained in the literature are for generic or typical materials and do not account for things such as age or differing
chemical composition which may effect the actual physical parameter. Therefore, a process of deriving optimum object
parameters was created in order to correct documented material values for the specific targets observed in the experimental
scenes.

In deriving optimum object parameters for the experimental scene, four parameters were varied to fine-tune THERM's
output temperatures. These parameters were exposed area, visible emissivity, thickness and thermal conductivity. Visible
emissivity is the fraction of visible insolation that is absorbed by a material. Exposed area is the fraction of an object's area
which is exposed to environmental effects such as sun, sky, wind, and rain. The exposed area was adjusted based on the
shadowing of a facet due to nearby objects. The thermal emissivity, slope, and azimuth were kept constant once the basic
values were determined because they were known to sufficient accuracy. THERM combines the heat capacity (defined as the
product of the material's specific heat and density) and thickness parameters into one variable, thermal mass, for its
temperature calculations. Thermal mass is a measure of the resistance of a material to changes in its thermal environment.
Another combined parameter is the Biot number, which is the product of thickness and the calculated heat transfer rate,
divided by the object's thermal conductivity. It is a measure of the insulating properties of a material. When deriving optimal
object parameters, the thickness was usually varied while the heat capacity was held constant to adjust an object's thermal
mass. A byproduct of this procedure was a change in the Biot number. If this change produced undesirable effects, the
thermal conductivity was varied to readjust the Biot number to a more reasonable value.

Once the other parameters were appropriately defined based on physical characteristics of the material, these four
variables were adjusted individually and in combination for fine-tuning. The final combinations which resulted in the
smallest RMS error (between computed and measured temperatures) were used as inputs to THERM. Table 4 lists the RMS
errors computed between THERM's prediction of object temperatures (using either optimum parameters or generic
parameters taken directly from available literature) and the actual object temperatures measured by thermistors.
Temperatures were computed using both full meteorological data and forecast weather values predicted by THERM.

THERM predicts object temperatures quite accurately when the total weather history is known and the object parameters

have been fine tuned to fit the actual objects in the scene. However, it is a rare situation in which all weather and object
information is known. More realistically, the user will have generic object profiles and perhaps an outline of the weather
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conditions for the day being modeled. In this case, THERM can generally predict object temperatures to within 3.5°C. It can
be seen by comparison of the errors in Table 4 that it is very important to have a good profile of the object parameters.

Table 4 RMS Errors between Thermistor Truth and THERM Prediction Values for October 6, 1990 and June 23, 1992 (24
hours / day on 15 minute centers)

Observed Meteorological Data Predicted Meteorological Data

Object Optimized Generic Optimized Generic
Aluminum™ 1.23 1.52 1.67 5.06
Brick™ 1.78 1.90 2.06 5.00
Car Roof (white)* 1.63 2.09 2.93 5.94
Car Side (white)* 291 4.59 2.52 4.15
Car Window™™ 249 8.44 7.78 10.58
Concrete Pane]* 1.04 1.13 1.70 5.25
Roof Gravel® 1.36 1.59 1.35 5.30
Sand™* 1.14 1.45 490 5.21
Tire™™* 3.36 6.22 9.49 7.28
Water™ 1.05 3.45 1.62 7.24
Windshield™™* 2.27 7.24 5.03 9.39
Wood Pane]* 1.23 1.77 1.54 7.13

* 10/6/90 only (cloudy, low dynamic range)
** Parameters optimized for 6/23/92 (partly cloudy, high dynamic range), results include RMS errors for targets on both days

4. Radiometry Validation

Since DIRSIG is a versatile SIG program, able to simulate a scene from a variety of known and unknown information,
four error types were defined for the sensitivity analysis. Ideal errors (I) include factory specifications of the instrumentation
used to collect truth data with the assumption that the model is error free. THERM measurement errors (M) were determined
using measured environmental data and optimal object parameters to predict best-case object temperatures. THERM
prediction errors (P) were determined using predicted weather data and generic object parameters to determine worst-case
object temperatures. The final error set, clouds/daytime (C/D), includes errors induced in the radiometric variables by
LOWTRAN?7 when clouds were present in the actual scene (LWIR), or when the image is synthesized during daylight hours
(MWIR). These last three error types use DIRSIG and truth data comparisons to determine the error of the individual
quantity.

The general equation for governing radiance is given by:
Eg Es
L=3eL,+(1-¢) Iy — cos(85)+ FLp +(1=F)| €gLyg + I — cos(05)(1-¢€5) | |17, + L, )
where the sources for input into the radiometry submodel, and measured or estimated sources for comparison, are defined

below in Table 5 and described in the following subsections.

All variables were taken to be independent with the exception of 7,and L, which are inversely correlated. Standard

error propagation techniques were used for sensitivity analysis using the independent and correlated variables.!1 The error in
total radiance is

2
GL =\/;,(%I;O'x) +2(xter’n) s X = E,L/I',IB,IT,E_\.”X TI’OS’F’LD’LU’LTB’GB’EB’ 12. (2)
X
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where 9L O is the partial derivative of L with respect to variable x,

o, is the error in variable x, and

_ dL \ JL
xterm=py . L, \ oz, 01,0x, 3)
is the cross-term in terms of the correlation coefficient,
! )k:(AL ), (A1) 4
=— T
Pryt, koL, 0y, v),\AT2), 4

with (Ax),l the difference of truth and test values for variable x in time period n of k total time periods. The resulting cross

term is negative so it reduces the overall error in radiance by correcting for the independent error contributions of the
inversely correlated variables. The correlation coefficient between 7,and L; was determined to be -0.96 in the LWIR

region and -0.98 in the MWIR region.

Table 5 Radiometry Submodel Variables: Truth and Prediction Sources

Inputs to Radiometry Submodel Validation
Value Source Source
€ - Target Emissivity DIRS Database Emissometer
L - Target Radiance due to Temperature Thermal Submodel Thermistor
IT & IR - Sun/Shadow Histories Ray tracer Submodel Visible Imagery
Es/nt*T1 - Solar Insolation LOWTRAN Pyronometer*
Og - Target Slope Geometry Submodel Measurement
F - Shape Factor Geometry Submodel Estimate
Lp - Downwelled Radiance LOWTRAN Spectroradiometer**
LTAB - Ave. Background Radiance due to Temperature Thermal Submodel Thermistor
OB - Background Slope Geometry Submodel Measurement
€B - Background Emissivity DIRS Database Emissometer
1) - Targe'tL-Sensor Transmission LOWTRAN Radiometric Ground Truth
Ly- Directional Upwelled Radiance LOWTRAN Radiometric Ground Truth
Lp* -Directional Downwelled Radiance LOWTRAN Spectroradiometer**
ﬁT_'B - Background Radiance due to Temperature Thermal Submodel Thermistor

* EpplgPrecision Pyronometer
** Infrared Systems Spectroradiometer

Four ray-interaction types are modeled within DIRSIG, as cast from the sensor to a target object. Examples of objects
used in the analysis for each case are given in parentheses. In Case 1, the ray hits a diffuse target (grass). When this occurs,
Lysp replaces Lpp in Eq. 1 as the average thermal radiance of all the background objects which are in the direct line-of-sight

of the target hit point and L, is the integrated sky radiance. In Case 2, the ray hits a specular target (water), and reflects to

the sky. Here, L, is the directional downwelled sky radiance (I:D) and F =1, so the background terms in Eq. 1 are

eliminated. In Case 3, the ray hits a specular object (asphalt) and reflects to hit a background object (car door) and F =0 .
In Case 4, the ray completely misses the scene---so the only contribution to the total radiance is the directional upwelled
radiance term, L;. In making individual radiometric parameter sensitivity analyses, the wavelength-dependent quantities

had to be integrated over the appropriate band pass. Therefore, the errors represent the average error.

4.1 Emissivity (€S, €B):
The normal and angular emissivities of many objects in the ray-traced scene were measured using emissometers

developed at RIT.12 The error in these measured angular emissivities is 0.025 emissivity units (Ideal, Measured). For
targets for which no emissivity data were available, angular emissivity was approximated by using values from similar
objects which have been measured. The resulting prediction error (P, C/D) is estimated to be 0.05 emissivity units.
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4.2 Thermal Radiance (LT, LB, LTAB):

The error in thermal radiance was determined three ways: actual measurements of object temperatures with thermistors
(1), predicted temperatures via THERM using optimal parameters (M), and using generic parameters (P, C/D). Propagation
of these temperature errors through Planck’s equation yields the errors in radiance due to temperature. These errors are listed
in Table 6

Table 6 Radiance Error Resulting from Error in Object Temperature for an Object at 300K

Error Type T (°C) LWIR MWIR

L (W/m2-sr) % Error L (W/m2-sr) % Error
Thermistor (I) 300+0.14 54.84+0.10 0.2% 1.506 + 0.007 0.5%
THERM (M) 300+ 0.61 54.8+0.5 0.9% 1.51+£0.03 2.0%
THERM (P) 300+ 2.54 54819 3.6% 1.51£0.14 9.0%
4.3 Shape Factor (F):

The shape factor is the percentage of sky exposure as viewed from the target. It is determined through the ray tracing
submodel and its value is the ratio of the number of hits to sky to the number of rays cast over the hemisphere. A
conservative estimate of the error in the ray tracer submodel for sky exposure, as compared to the actual sky exposure, is
10% for the ideal case (I), 20% for the other cases (M, P, C/D).

4.4 Solar Insolation (E§*11*cos(0)/r):

LOWTRAN?7’s prediction of solar insolation was compared to pyronometer data taken during the data collections. The
pyronometer was sensitive in the 0.285-2.8 um region. An RMS error over time between the pyronometer data and these
predicted values was then computed. It is assumed that the prediction error in other passbands (MWIR) is proportional to this
error, so a percent error was determined by dividing the RMS error by the range in insolation values.

LOWTRANT7 predicts well on cloud-free days, with an average error of 17.7% (M, P). However, errors as high as 50%
occur for "cloudless day" predictions of cloudy days (C/D). For the ideal case (I), instrument specifications were used. In the
LWIR region of the electromagnetic spectrum, the exoatmospheric solar radiance (Eg) is negligible.

4.5 Downwelled Radiance (Lp”*, Lp):

Directional downwelled radiance measurements were made as a function of wavelength with an Infrared Systems
Spectroradiometer. Measurements were made at zenith angles of 8, 30, 45, 60, and 90 degrees, at each azimuth angle of 0,
90, 180, and 270 degrees (North, East, South, and West, respectively). Since the scattered solar radiance is negligible in the
LWIR bandpass, the directional downwelled radiance is azimuthally invariant ( Lp(West) = Lp(East), etc.). On relatively
cloud-free days, the comparison of truth and predicted L, is relatively good. However, on a day were clouds roll in from the
west with the sensor facing west, LOWTRAN7’s computation of L becomes progressively worse compared to truth, since
no cloud data was input to LOWTRANT7.

Prediction error of downwelled radiance is assumed to be proportional to the errors in directional downwelled radiance
over all zenith and azimuth angles. In the LWIR band pass, the percent error for L, is 18.8% for cloud-free days (M, P).

For cloudy days, this error is as high as 60% (C/D).

In the MWIR measurements, a noticeable difference occurs between daytime collection and nighttime collection. At
night, the directional downwelled radiance looks similar to the LWIR case, with the radiance being approximately
azimuthally invariant. During the day, however, since solar information is important in the MWIR region, the directional
downwelled radiance is no longer azimuthally invariant, but depends upon the location of the sun. In the MWIR band pass,
the error in L, is 12.7% at night (M, P) and 54% in the daytime (C/D). For both MWIR and LWIR, ideal errors (I) were
taken from instrument specifications. This error was determined to be 2% from the available spectroradiometer
documentation.

4.6 Upwelled Radiance and Atmospheric Transmission (Ly, 12):

The radiance leaving the surface objects in the scene was measured on the ground using hand-held field radiometers
(Lground)- At the same time, the scene was imaged by the Inframetrics (LWIR) and Mitsubishi (MWIR) cameras. Digital
counts of the targets measured on the ground were extracted from the images. The radiance reaching the sensor was
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computed from the digital counts using blackbody calibration data (LSensor). Ly and 7, were then determined through

L,.=L

'sensor ‘ground 7'-2 + Lu (6)

where 7, is the atmospheric transmission along the path from target to sensor and L;;is the upwelled radiance. The ground
and sensor radiance values for all targets were plotted for certain objects in the scene so that the slope of the resulting line is
7, and the y-intercept is Ly;. The error between LOWTRAN’s prediction of 7,and the measured 7, values is 3.2% (LWIR)
and 8.5% (MWIR) for all error types. Note that the path lengths here are very short and these errors may not be indicative of
errors over longer path lengths.

Variations in the surface leaving radiance due to wind, changing cloud cover, and the angle at which the radiometer was
held during measurements resulted in a large error in the measurement of Lgepsor. Errors which caused slight variations in
the slope ( 7, ) resulted in large errors in the extraction of the intercept ( L) since the data used was relatively far from the
intercept. Therefore, the computed L;; values were unacceptable. Due to the similarity of the physics involved in modeling
upwelled and downwelled radiance, it is reasonable to assume that the errors in LOWTRAN’s prediction of directional
upwelled radiance are proportional to the prediction errors of directional downwelled radiance, so these errors were used.

4.7 Target-to-Sensor and Target-to-Background Angles (6s, 6B):
As in the thermal submodel testing, measurement errors of the target-sun path angles for both primary and background
targets were estimated at +3° (I), while unmeasured or simulated targets were estimated to be +7.5° (M, P, C/D).

4.8 Sun/Shadow Ratio (IT, IB):
Investigation of the shadows in the visible images taken during the data collections and the ray-traced shadows in
DIRSIG output images indicate that the ray-tracer correctly predicts the placement of sun shadows over time. Therefore, the

error in the sun/shadow history flag was set to zero.

Table 7 is a summary of the measured or estimated errors of the terms in Eq. 1, while Tables 8 and 9 show the
contribution to the total radiance error from each parameter as propagated through Eq. 1 through Eqgs. 2-4 for each ray
interaction type. Case 4 (ray missing scene) is not included in Tables 8 and 9 because for this case, 0, = 0, and, in the

validation process, no rays missed the scene (i.e. no sky was seen in the sensor’s FOV). Equivalent apparent temperature is
listed in parentheses in Tables 8 and 9.

Table 7 Individual Radiometric Variable Errors

Error Type Es EB LT,L1_3, LTAlB F Egt1 cos(0) | Lp, Lp», LL | T2 0s, 6B
L Ideal 0.025 0.2% 10% - 2% 3.2% 3.0°
W | Measured 0.05 1.5% 20% --- 18.8% 3.2% 7.5°
I Predicted 0.05 3.6% 20% - 18.8% 3.2% 7.5°
R ] Cloud 0.05 3.6% 20% --- 60% 3.2% 7.5°
M | Ideal 0.025 0.5% 10% 0.2% 2% 8.5% 3.0°
W | Measured 0.05 3% 20% 17.7% 12.7%* 8.5% 7.5°
I Predicted 0.05 9% 20% 17.7% 12.7%* 8.5% 7.5°
R ] Clouds/ Daytime 0.05 9% 20% 50%T 54%** 8.5% 7.5°
* Night time
** Day time
T Clouds

In the LWIR region, the main contributors to the error in radiance are 7, (especially for cases I and M), €, and Ly
(especially for cases P and C). For cloudy days, the error in L;; becomes important, which reflects the need for a better

modeling of clouds in the LWIR window to produce more accurate sky radiance values. In the MWIR region, the main
errors in radiance come from 7,, xterm, Ly (M), and L;(P, C/D). The error contribution from xterm is large, due, in part,

because the error in Ly is large. Consequently, the value of the xterm helps offset the errors in Lyand 7,. The effects of the

xterm are felt more strongly in the MWIR bandpass and are probably the strongest contributor to the MWIR apparent
temperature errors being lower than those for the LWIR bandpass in some cases.
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Table 8 Error Contributions in W/m?2-sr for LWIR Radiometry Variables. Overall rankings are listed for each variable. The
total radiance is converted to temperature (°C) through Planck’s equation and is listed in parentheses.

Variable Case 1 (Diffuse hit) Case 2 (Specular hit Case 3 (Specular bounce) Rank
I M P C 1 M P C I M P C

[ 0.70 | 0.70 140 | 140 | 0.57 | 0.57 1.15 1.15 § 0.31 0.31 0.62 | 0.62 2

LT 0.08 | 0.53 1.47 147 | 0.06 | 043 1.18 1.18 | 0.08 | 0.56 1.54 1.54 3

F 038 | 0.75 | 0.75 | 0.75 - - - --- - - - -—- 4

LpLpr | 003 | 028 | 028 | 0.63 | 0.07 | 0.65 | 0.65 1.47 - - - - 6

L 1.0 1.0 1.0 1.0 075 | 075 | 0.75 | 0.75 1.22 1.22 1.22 1.22 1

Ly 0.02 | 016 | 0.16 | 054 ] 0.02 | 0.16 | 0.16 | 054 | 0.02 | 0.16 | 0.16 | 0.16 8

€B - - -—- -—- -—- -— - - 0.11 0.11 023 | 0.23 7

LTB -—- --- -—- -—- -—- -—- -—- - 0.01 0.05 | 0.13 | 0.13 9

- (xterm) § 0.002 | 0.215 | 0.062 | 0.234 ] 0.003 | 0.122 | 0.225 | 0.174 } 0.008 | 0.089 | 0.089 | 0.150 5
L 1.28 153 | 238 | 243 | 095 1.13 1.90 | 2.32 1.26 133 | 2.04 | 2.01
(1.92) | (2.29) ] (3.57) ] (3.65) 1 (1.43) | (1.74) | (2.85) | (3.48) | (1.89) | (2.00) | (3.06) | (3.02

Table 9 Error Contributions in W/m2-sr for MWIR Radiometry Variables. Overall rankings are listed for each variable.
The total radiance is converted to temperature (°C) through Planck’s equation and is listed in parentheses.

Variable Case 1 (Diffuse hit) Case 2 (Specular hit) Case 3 (Specular bounce) Rank
| M P C/D 1 M P C/D | M P C/D
Ly 0.011 | 0.067 | 0.067 | 0.325 | 0.010 { 0.063 | 0.063 | 0.297 | 0.010 | 0.062 | 0.062 | 0.294
Lp, Lp” | 0.000 | 0.003 | 0.003 | 0.013 | 0.007 | 0.046 | 0.046 | 0.218 --- --- -—- -—-
Egti/m | 0.000 | 0.004 | 0.004 --- 0.000 | 0.038 | 0.038 --- 0.000 | 0.017 | 0.017 -
Lt 0.008 | 0.048 | 0.144 | 0.135 ] 0.005 | 0.032 | 0.095 | 0.091 § 0.025 | 0.147 | 0.442 | 0.442
LTB 0.000 | 0.001 | 0.002 | 0.001 --- - --- 0.001 | 0.003 | 0.001 | 0.010 10
Og 0.001 | 0.004 | 0.004 - 0.015 0.036 - 0.004 | 0.010 | 0.010 | 0.010

Alolan|w

0.036

7
6h — | — | — | — | — | — | — | — [0000]0001]0001]|0001]| 12
F 0.001 | 0,002 0002 {0001 | — | — | — | — 1 — | — | — | —
€ 0.013 | 0.013 | 0.027 | 0.003 | 0.017 | 0.017 | 0.035 | 0.007 | 0.057 | 0.057 | 0.115 | 0.173

€B 0.000 | 0.000 | 0.001 -—- -—- --- — --- 0.001 | 0.001 | 0.003 | 0.006 11
i) 0.141 | 0.141 | 0.141 | 0.131 § 0.138 | 0.138 | 0.138 | 0.120 | 0.438 | 0.438 | 0.438 | 0.408 1

-xterm | 0.001 | 0.009 | 0.009 | 0.042 ] 0.001 | 0.009 | 0.009 | 0.035 ] 0.004 | 0.026 | 0.026 | 0.117 2
0.594 | 0.477

L 0.132 | 0.092 | 0.165 | 0.241 | 0.126 | 0.090 | 0.126 | 0.287 | 0.433 | 0.410
Q7D 19 {214 | 3.17) § (1.67) | (1.19) | (1.68) | (4.07) ] (2.59) | (2.46) | (3.55) | (2.97)
To reduce the error in 7,, LOWTRANT7’s prediction of atmospheric variables must be optimized. The intervening

atmosphere can be well defined by using radiosonde data either from the location and day being predicted or data
characteristics of the day being modeled. The inversion layer near the earth’s surface can be corrected by using air
temperature, air pressure, and dew point values measured on the ground. Predictions made for clear, cloud-free days also
reduce the error not only in 7,, but also in the upwelled and downwelled radiance terms, when compared to predictions for

cloudy days.

The emissivity error can be reduced by expanding the database of existing measured emissivities. Reduction of this error
results in approximately a 50% reduction in the emissivity error contribution to final radiance error (cf. Table 7). As a result,
the error in final radiance would be reduced by 20% when measured emissivity values are used.

The error of F was exaggerated in the sensitivity analysis (c¢f. Table 7). This error has since been reduced by developing

a search routine which casts out rays from the target at different angles and directions. This routine determines any
neighboring occluding objects and computes an estimate of the percentage of sky the facet ‘sees’, thus eliminating the
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guesswork on the part of the user. This routine was implemented for the MWIR analysis.

Another important consideration for final radiance error reduction is accurate temperature prediction (LWIR) and
atmospheric modeling (MWIR). Primarily, object parameters must be well defined. When at all possible, measured data
should be used. Suggestions for improvement include a more advanced thermal model which would include temperature
effects from adjacent objects, while still maintaining a sound basis of first principle physics for ease of object parameter
description. Increasing the available database of not only emissivity values, but of all object parameters would also aid in
error reduction by eliminating the guesswork in assigning facet parameters.

5. Absolute and Relative Radiometric Validation

For the overall comparison between DIRSIG and truth radiance values, DIRSIG was run using measured weather data
and optimal material parameters to generate images over a 24-hour period. Figures 3 and 4 show actual truth and DIRSIG
images at 10am, EDT, for LWIR and MWIR passbands, respectively. Visually, comparison between truth and DIRSIG is
very good. An RMS error over time of the difference between DIRSIG and truth radiance values was determined for each
object in the scene. In order to compare both MWIR and LWIR RMS radiance values on a similar scale, radiance values
were converted to % radiance error by dividing RMS error by the average (truth) radiance over the time range for each object
(¢f. Fig. 5). On average, the % RMS MWIR radiance error is 10% higher than that for the LWIR bandpass. The radiance
RMS error was also converted to an apparent temperature error through Planck’s equation to gain a better physical intuition
of DIRSIG’s comparison with truth (cf. Fig. 6). The average RMS apparent temperature error is 5°C (LWIR) and 6°C
(MWIR) and includes errors from the thermal model.

LWIR Truth LWIR DIRSIG MWIR Truth MWIR DIRSIG

Fig. 3 LWIR Validation images for 10am EDT. Fig. 4 MWIR truth DIRSIG images for 10am EDT.
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Fig. 5 RMS radiance error as a percent of average truth radiance
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In theory, the errors displayed in Figs. 5 and 6 should be comparable to those predicted for the THERM measurement
mode (M). However, June 23 was a partly cloudy day with cloud amounts increasing during the afternoon. Therefore, the
results in Figs. 5 and 6 are more comparable to a combination of the M and C/D propagation methods. It must be noted that
the theoretical error propagation serves more as a sensitivity indicator than as a predictor of absolute radiance error.

One thing that stands out in Figs. 5 and 6 is that while the RMS apparent temperature error in the radiance measured
from the water target is lowest in the LWIR bandpass, it is the highest in the MWIR bandpass. A plot of truth vs. DIRSIG
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radiance for water in the MWIR bandpass shows that the major contributor of the error in DIRSIG radiance occurs during
sunlit hours. In addition, since the RMS temperature error and the RMS apparent temperature error in the LWIR bandpass is
low, the errors in the water radiance are most likely due to the spectral components of the radiometry. Most notably, the
emissivity for water for the view angle in the scene in the LWIR is 0.97 emissivity units, compared to 0.71-0.73 emissivity
units in the MWIR. This implies that the emissivity of the water in the MWIR may be too low (making the reflectance too
high). The effects of a too-high reflectivity are to under emphasize the temperature of the object in the total radiance
equation and over emphasize the contributions of sky radiance, thus driving up the value of total radiance. Similar effects are
seen in the plots of the red panel and of sand objects. These effects are reduced at night.
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Fig. 6 RMS apparent temperature error

In summary, the overall validation of DIRSIG gives positive results. Not only can the model produce realistic looking
scenes, it also produces radiometrically correct images to within 5°C (LWIR) and 6°C(MWIR) apparent temperature. As it
exists now, DIRSIG is a very powerful tool in modeling synthetic images. Using this validation of a truth test image, we can
now expand scene composition and scenarios with confidence, changing weather, time of day, season, climate, look angle,
and a variety of other parameters to mimic different imaging conditions.

Most importantly, this validation has also shown us what areas of DIRSIG are weak and could use more work. Steps are
underway already to put clouds directly into DIRSIG scenes for more accurate thermal and radiance computations as
compared to LOWTRAN7's and THERM's blanket treatment of clouds. A more in-depth study of reflectance of objects,
including full BDRF scans of materials, should lead to better reflectivity (and emissivity) assessment as well as a
determination of diffuse and specular components. More accurate angular IR emissivity measurements for materials in the
MWIR bandpass are needed--especially for sand and water. Other improvements to the existing model should include
laterally conducting thermal computations, where each facet's temperature is altered by its neighbor's, adding a time-
dependency to self-generated power (active facets) so that residual heat from an inactive source which was active in the past
can be imaged, and adding motion to objects in a scene.

Finally, we should point out that this paper has emphasized absolute temperature and radiance errors. In many cases, it is
much more important for the relative contrast between objects, or the rank order!3 among several objects, to be correct. An
assessment of DIRSIG relative to this rank order criteria has also yielded very positive results. 14
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