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Detection of gaseous effluent plumes from airborne platforms provides a unique challenge to the
remiote  sensing conpmnity.  The measured signatures are a complicated combination of
phenomenology including effects of the avnosphere, spectral characteristics of the background
miaterial under the plume, lemperature contrast between the gas and the surfuce, amd the
concentration of the gas. All of these quantities vary spatially further complicating the detection
problem. In complex scenes simple estimation of a “residual” spectrum wmay not be possible due to
the variability in the scene background. A conumon detection schemie uses a matched filter
Jormalisi to campare laboratory-measured gas absorption spectra with measured pixel radiances.
This methodology can not account for the variable signanre strengths due to concentration path
length and temperature contrast, nor does it take imto accownt measived signatures that are
observed in both absorption and emission in the same scene. We have developed a physics-based,
Forward model 1o predict in-scene signatures covering a wide range in gas / surface properties. This
target space Is reduced to a set of basis vectors using a geowmetrical model of the space.
Carresponding backgrowd basis vectors are derived to describe the non-plume pixels in the image.
A Generalized Likelihood Ratio Test is then used to discriminate between plume and non-plunie
pixels. Several species can be tested for iteratively. The algorithmi is applied to airborne LWIR
hyperspectral bnagery collected by the Airborne Hyperspectral Imager (AHI) over a chemical
Ffacility with some ground truth. When compared to results from a cliutter maiched filter the physics-
based signaiure approach shows significanily improved performance for the data set considered
here.
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1. Introduction

Airborne hyperspectral imagery in the longwave infrared (LWIR) provides a useful tool
for interrogation of gaseous effluents in the atmosphere. Molecular gases typically
exhibit unique spectral absorption features in this spectral regime (8 — 12 um) allowing
for both detection and species identification given a sensor with an appropriate spectral
response. However, the physics underlying the at-sensor signature phenomenoclogy is
complicated and exploitation of such imagery to detect and characterize gaseous effluents
is challenging. Under some circumstances a “residual spectrum”™ can be computed by
measuring or estimating the background spectrum and simply removing this signature
from the on-plume measurement. This methodology is not possible for many realistic
scenarios such as measurements in a complex industrial facility where there are many
materials in the background and the spatial/spectral variability of the background is high.
Detection in these scenarios requires a target signature that is well matched to the at-
sensor radiance measurement. Such a methodology is presented here.

Detection of plumes in hyperspectral imaging applications has been previously studied.
Ifarraguerri (1998)" describes a passive standoff chemical agent detection system in
which Principle Components Analysis (PCA) and Convex Cone Analysis are used to
detect plume pixels in the scene. The Projection Pursuit algorithm has been developed by
Ifarraguerri & Chang (1998)° for unsupervised detection of gascous plumes. They show
that in a LWIR hyperspectral imager, an SFg plume is readily detectable in “early”
projections. Matched filter detection of weak gas plumes was investigated by Funk, et al.
(2001)" on synthetic data. They show that the signal-to-clutter ratio is increased using a
modified k-means clustering algorithm that in turn improves the matched filter detection.
Recently, Foy & Theiler (2004)* considered Independent Component Analysis (ICA) as a
method of detecting plumes in passive hyperspectral and active LIDAR imagery. They
show that it can be effective for weak plumes in characterizing the background clutter
and thus improves the ability of matched filters to detect the plume pixels. All of these
methods rely on the statistical differences in the scene and do not account for the physics
of the target signatures.

Gittins & Marinelli (1998)° describe the AIRIS system used for standoff detection of
chemical agents. The AIRIS sensor is typically deployed as a ground-based sensor
staring across a field of regard allowing for an accurate estimate of the background
radiance to be made. Thus, a residual spectrum can be estimated and matched to known
gas target species laboratory-measured spectraﬁ. Cosofret, et al. (2004) describe how the
AIRIS system has been used successfully to detect methane leaks in a horizontal viewing
geometry with a standoff of as much as 200 m.

The method presented here is based off previous research into the use of physics-based
target signatures in a scheme where detection is performed in the native image radiance
space. Healey & Slater (1999)" and Thai & Healy (2002)° first presented the method as a
way to overcome deficiencies in atmospheric compensation of visible / near infrared /
shortwave infrared (Vis / NIR / SWIR) hyperspectral imagery. In this case, variability in
the at-sensor target signature manifestations is modeled through variability in properties
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of the atmosphere. The method was shown to provide improved detection results
particularly for targets in difficult illumination conditions (i.e., in shadow). lentilucci &
Schott (2005)10 and Ientilucci (2005)11 extended this method to use a more realistic
forward target model, a more tightly constrained set of input parameters to the forward
model, and included the use of an “infeasibility” metric as a false alarm mitigation tool.

These methods were limited to the reflective portion of the electromagnetic spectrum, but
have been extended to the LWIR by O’Donnell, ef al. (2004, 2005)'*". The variability
in the target signatures was modeled with variations in the gas concentration and
temperature state instead of the atmospheric contributions to the signal. This work used
synthetic data over a range of gas temperatures and concentrations and considered both
single-species and mixed-species plumes. The research presented here extends this work
to application to real LWIR hyperspectral imagery of plumes in a complex, industrial
facility.

This paper is presented in the following way. Section 2 describes the phenomenology
underlying the at-sensor signature manifestations for pixels affected by the presence of a
gas plume and the physics-based model used to predict the target signatures. Section 3
presents the detection algorithm implemented. Section 4 describes the test data used and
the detection methodology comparison investigated. Section 5 presents the results from
the testing and the paper concludes with a brief summary of the work.

2. Physics-Based Target Model

Typical target detection in visible / near infrared / short-wave infrared (Vis / NIR /
SWIR) hyperspectral imagery uses a matched filter formalism'* where the reflectance
spectrum of the target of interest is matched to each pixel in an atmospherically
compensated image. This provides good detection results if the image can be accurately
transformed into the pixel reflectance space. Another methodology uses physics-based
models to predict target signatures in the image radiance space™ ™", Here, uncertaintics
in the atmospheric and illumination conditions on a per-pixel basis are built into a
forward model predicting not one, but several target manifestations in the image radiance
space. In this manner, a target sub-space is built up describing the possible target
signatures in the image. This space is reduced through either statistical or geometric
methods'® to a set of basis vectors or end-member spectra. The background space of the
image is similarly characterized and every pixel is tested as to whether it is more “like”
the background space or more “like” the target space. In this manner, a likelihood map of
target detections can be created.

This physics-based signature detection methodology has been applied here to the
detection of gaseous effluents in longwave infrared (LWIR) imagerylz'm. Here, the
variability in the at-sensor signature is not based in illumination and atmospheric
uncertainties, but rather in the gas concentration path length and temperature contrast
with the surface. For any release, these physical parameters will vary spatially within the
scene and thus, a matched filter detection scheme with a single target spectrum may not
be optimal.
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The longwave infrared spectral regime is dominated by thermal emission from both solid
surfaces and the atmosphere. Gas plumes can be detected through their unique spectral
absorption and emission characteristics. The absorption spectrum of a gas can be
measured in the laboratory'®. Such signatures determine the “location” of the spectral
signature of gases, but not the magnitude or “direction” (i.e., whether the gas feature is
observed in emission of absorption). These are determined by the gas concentration path
length and the temperature contrast between the column of gas and the surface beneath
the column. For an observed pixel that does not contain the effects of a gas plume, the at-
sensor radiance can be approximated as

L(A) =&, (A)B(A.T) T (A)+ L, (1) (1)

where L{A) is the measured radiance as a function of wavelength 4, £(4) is the surface
spectral emissivity, B(A,T,) is the Planckian blackbody radiance for the surface at a
temperature 7, 7,,(A) is the atmospheric transmission, and L,(A) is the atmospheric
upwelling radiance. Atmospheric downwelling radiance that is reflected off the surface
is ignored and the surface pixel is assumed to have only a single material at constant
temperature.

The at-sensor signature of a pixel containing the effects of a layer of gaseous effluent
containing a single species can be approximated in the following way. We write the at-
sensor measured radiance as

L(A)={e (MB(AT )z (A= (A B(AT, 7w (A)+ L. (2) (2)

where subscripts g refer to the gas plume quantities. Further simplifications can be made.
The gas emissivity can be related to the concentration path length of the gas and the
absorption coefficient of the gas species by

£, (A)=ck(A). 3)

Here the units of ¢ are parts-per-million-meter (ppm-m) and the units of k(4) are 1/[ppm-
m]. Additionally. for optically thin gas layers. the gas transmission can be approximated
as

2 (/1):1783 (’1) (4)
These simplifications lead to a radiance model of a pixel containing a layer of gas that
can be written as

L(A)={e (A)B(AT 1= ck (A} +ck(A) B(A.T, )} 2u (A)+ L. (A). (5)

Re-arranging terms in this model demonstrates some signature phenomenology that leads
to the physics-based signature detection approach for the gas detection problem. If the
at-sensor radiance is written as

L(A)={& (A)B(AL )+ ck(A) B(AT, ) - £ (A)B(AL) [} 2 () + L (A) (6)



Detection of Gaseous Effluents Using Physics-Based Signatures 805

we see that the signature strength of the gas depends on several factors. First, there will
only be unique signatures in spectral regions where the gas has absorption / emission
features as measured in k(A). Outside these spectral regions, the gas is transparent.
Second, the magnitude of the signature is dependent on two factors. The concentration
path length of the gas, c, scales the overall signature strength as long as the concentration
is low enough that the gas is optically thin. Also, the temperature contrast between the
layer of gas and the surface below the layer is of dramatic importance as it not only
influences the “strength™ of the feature, but also the “shape” of the feature. One can
casily see from eq. 6 that for pixels where the gas temperature is greater than the effective
temperature of the surface, the gas signature will be in emission. In pixels with a lower
gas temperature than the surface effective temperature, the gas signature will be in
absorption. This also gives rise to the phenomena that for optically thin plumes where
the gas temperature is equal to the effective surface temperature, there is ro signature due
to the gas regardless of the concentration path length of the layer. This signature
variability based on concentration path length and temperature contrast with the surface
motivates a detection scheme that does not search for a single target signature, but many.
Downwind from the release point, as the gas cools and diffuses, the signatures may be
dramatically different from those near the stack where the concentration and temperature
are the greatest.

The previously mentioned radiometric model of a pixel containing a layer of gas is
implemented in the detection scheme described here with one further definition. The gas
temperature is described explicitly in terms of a temperature contrast with the surface
temperature by writing it as

T, =T.+AT (7)

where A7 is the difference between the surface and gas temperatures. Of course,
accurately estimating the surface temperature without knowledge of the surface material
emissivity is a problem in and of itself, so an approximate method is used here. The goal
in the physics-based signature prediction model is to generate a large number (several
hundred) of target signature manifestations that describe (or bound) the possible ways in
which the signature could appear in the scene. These manifestations are then searched
for in the image and compared with a characterization of the background to contrast each
pixel as more “target like” or more “background like™.

3. Detection Algorithm

The detection scheme implemented here uses the physics-based model shown in equation
6 to generate a large number of target signature manifestations. The atmosphere is not
varied (as was the case in the reflective implementation of this approachg'g‘m‘”). Instead,
a single estimate of the atmospheric contributions to the at-sensor signal is used in the
forward model. The surface temperature is estimated through the identification of a
“background” region of interest assumed to be free of the effects of the gas layer. but
representative of the materials in the scene. Over this region, the brightness temperature
spectrum, T,(A) is computed for each pixel by inverting the Planck function for each
wavelength in the pixel. The maximum brightness temperature in each pixel 7, .., is then
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compiled into a list, and the mean value of the set of 7}, ., is computed over the region.
This value is used as an estimate to the surface temperature in equation 6. The
background material in the forward model is assumed to be a blackbody.

The variability in the predicted radiance signatures derives from computing the signatures
over a range of concentration path lengths and AT7. Typically, the concentration path
length is varied from between (0.1 [ppm-m] and 100 [ppm-m], simulating cases of very
high and relative low concentrations. A7 is generally allowed to vary between -10K and
+10K. The range of each parameter is subdivided into a fixed number of intervals (10
were chosen in this study). Signatures are then predicted for every combination of
concentration path length and temperature contrast. In this way, signatures are predicted
for hot, dense portions of the plume as well as cool, diffuse portions of the plume and a
range of possibilities in between.

Once the target space is created, it is reduced to a set of end member spectra using a
geometric projection scheme. The Maximum Distance Method (MaxD)" is used to
determine the extrema spectra that define the convex hull enclosing the data in the space.
For this work, the target space was reduced to cight end member spectra. The
background is characterized in a similar way. The background region of interest
described above is reduced to a set of background end member spectra using the same
MaxD) procedure as the target space. Here, the background was characterized with 15
end member spectra. Efforts were not made to optimize the background or target space
characterizations in terms of the number of end member spectra used to describe the
space. Research into this topic is ongoing.

Given the background and target space characterizations, a test is applied to each pixel to
determine the likelihood that it contains the effects of the target gas in question. The test
used is the Generalized Likelihood Ratio Test, GLRT"® The GLRT as formulated here is
based on the matched subspace detector, MSD, written as

xT (PBJ‘—PZJ‘)X

MSD(x)= p—
x"Pilx

(8)

where x is the test pixel vector, and Py’ represents the projection matrix orthogonal to the
subspace Y. The subscript Z denotes the subspace matrix containing the background
space basis vectors augmented with the target space basis vectors and the subscript B
represents the background basis vectors. The GLRT is then written as

GLR{x)}= [MSD(x)H]% (9)

where g is the number of bands in the pixel spectrum. The use of other detectors within
the physics-based signatures scheme is under investigation.

The detection scheme is run iteratively on several gas species of interest for a single
scene. Separate target spaces are created for each species using the same input
parameters to the signature model and the individual species’ laboratory absorption
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spectrum. As a result, individual detection planes are generated for each target species
considered. Mixed plumes are not considered in the detection scheme (i.e., target
signatures containing mixtures of gases are not generated and used in the detection
process for this study).

4. Test Data

The data used in this study were collected with the Airborne Hyperspectral Imager (AHI)
by the University of Hawaii as part of an experiment for the US Environmental
Protection Agency. AHI is a longwave infrared (LLWIR) pushbroom imager that collects
256 cross-track pixels in 256 spectral channels ranging from 8-11.5 um". The data
collection also used a color infrared (CIR) line scanner producing images for context.
Imagery of an industrial facility with known release points was collected during April
2004. Ground truth of the releases consists of the general locations of the releases and
the list of species possibly contained in the plumes. No controlled release experiments
were performed. All plumes in the imagery were live releases. As such, exact
knowledge of the locations and constituent species is unknown making the declaration of
“detections” relatively subjective.

Several flightlines were collected during the flight campaign, including both day and
night flights, as well as flights at several altitudes. The data used here were collected
during the day and were at an altitude of 5000 ft providing a ground sample distance
(GSD) of approximately 2 m. Preprocessing of the data was required to remove known
bad bands from the data (e.g., at the beginning and end of the spectral region covered)
and image edge effects. The data were not spectrally binned for this application as is
sometimes done with AHI data to improve the signal-to-noise ratio. Here, the native
spectral resolution of the sensor was used.
For comparison, a simple clutter matched filter was applied to the data as well as the
physics-based signatures algorithm. The clutter-matched filter was implemented as
d
_d'Yzx
I

CMF (x) -
d'L:d

(10)

where d is the target spectrum of interest, here taken to be the laboratory-measured gas
absorption spectrum, x is the de-meaned pixel under test, and X is the background
covariance. Both the mean and covariance of the background were estimated from the
same set of pixels used to characterize the background in the physics-based approach
described above (i.e., the background region of interest).

5. Results

The physics-based signature detection scheme was applied to the dataset as described
above.

Application of the physics-based signatures detection requires an estimate of the
atmospheric contributions to the at-sensor signatures (see eq. 6). Here, the atmosphere
used was the MODTRAN mid-latitude summer model™ for the appropriate sensor
altitude, day of the year, and time of day. No attempt was made to optimize the
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atmosphere for the data. Improvements in the match between the atmosphere used in the
target space prediction and that actually contributing to the data should improve the
detection results.

Target signatures used were taken from a commercially available database of laboratory-
measured absorption spectralﬁ and were convolved with the spectral response of the
sensor (as were the atmospheric contributions described previously). Target species were
determined from the ground truth listing of potential releases provided with the dataset.
Species in the target library used were methane, propane, butane, ethane, sulfur dioxide,
ethylene, propylene, and benzene.

A region of the facility expected to contain methane and ethane releases was investigated
as described above and the results are shown below. The physics-based signatures
approach and the clutter-matched filter were applied to this image. Figure 1 shows the
CIR image of the area and the corresponding 10.5 [lm band from the AHI hyperspectral
cube. The region is very cluttered containing several background materials: roads, soils,
several structures, cooling towers, and extensive metal piping. The full detection images
for both target species and both methods are also shown.

(a) (b) (c) (d)

Figure 1: (a) Color IR image of the [acility investigated [or propane and ethane releases. (b) 10.5 tm band of
the corresponding area [rom the AHI hyperspectral cube.  (c) Physics-based signatures detection image [or
ethane. (d) Physics-based signatures detection [or methane. (¢) Clutter matched [ilter detection of ethane. ()
Clutter maiched [ilter detection ol methane. The physics-based signature detection images are thresholded to
show the top 5% of detection in the image and the clutler matched [ilter results are thresholded to show the top
10% ol detections in the image.

In the full detection images, several features of note are apparent. The clutter matched
filter results are highest on the very “bright” objects in the scene. This is a common
source of false alarms for this method as it is essentially a projection operator and the test
statistic can be large for pixels with a large vector magnitude regardless of spectral
similarity to the target spectrum. The physics-based signatures method detects false
alarms on two different types of pixels. The diagonal stripe through the center of the
detection image corresponds to the surface feature seen in the image. This material may



Detection of Gaseous Effluents Using Physics-Based Signatures 809

not have been correctly characterized in the background ROI and as such, the detection
scheme has difficulty differentiating it from the target space. The vertical stripes
correspond to sensor artifacts in the imagery itself. The physics-based method predicts
signatures in the radiometric space of the sensor, but here, sensor artifacts or mis-
calibrations were not included in the model. Consequently, the manifestations of the
targets in these pixels were not correctly predicted and the detection scheme has
difficulty distingunishing between target and background. Closer inspection of the
physics-based signature detection results show three isolated regions of a high detection
statistic outside these regions, described in more detail below (the detections are spatially
small making them difficult to distinguish in the full-size images shown in Figure 1).
The first is of an ethane release and the remaining two show methane releases. Of
particular note is the observation that the physics-based detections are at approximately
the same detection level as the false alarms making mitigation relatively simpler. No
other species in the target library were detected at appreciable levels.

Figure 2 shows a region highlighting an ethane detection in the physics-based signatures
method. The corresponding region in the clutter matched filter detection is also presented
along with the higher resolution CIR image of the area providing scene context of the
detection.

(a) (b)

Figure 2: Zoom ol the region showing the ethane detection. {a) Physics-based signatures detection. (b) Clutler
malched [ilter detection. (c) CIR image ol region of detection [or contlexl. The detection images are perlectly
registered (they are based on the same input LWIR image) but the CIR image is not and has a dilferent spatial
resolution. The detections are approximately in the center of the CIR image.

Here, the detection using the physics-based signatures algorithm produces a small,
compact, plume-shaped object with a conical shape indicative of a source and diffusion
downwind. The detection strength across the plume in the physics-based signature result
is relatively uniform and continuous. This is in contrast to the clatter matched filter
results which, while showing strong detections, are discontinuous and do not exhibit the
same spatial characteristics.

Figure 3 shows one of the two methane releases detected in this region of the facility.
Again, the clutter matched filter results are shown as well as the higher resolution CIR
image to provide scene context. Here, the clutter matched filter results (thresholded to
only show the top 10% of all detections) do not show any detection of methane. If the
matched filter has detected the plume, it is so far below the highest detections in the
image that it is not observable at this level. Similar to the ethane detection above, the
plume detected in the physics-based signatures detection scheme is small, compact, and
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(a) (b) (c)

Figure 3: Zoom of the region showing the [irst methane detection. {a) Physics-based signatures detection. {b)
Clutter maiched filter detection. {c) CIR image of region of detection [or contexl. The detection images are
perlectly registered (they are based on the same input LWIR image) but the CIR image is not and has a dillerent
spatial resolution. The detections are approximalely in the center of the CIR image.

has spatial characteristics indicative of a small release diffusing due to the effects of the
local wind.

Figure 4 shows results for the second methane plume detection with the physics-based
signatures detection algorithm. Again, the clutter-matched filter fails to detect any
methane at this level while the physics-based signatures algorithm detects a spatially
compact, well-defined source.

(a) (b)

Figure 4: Zoom ol the region showing the second methane detection. (a) Physics-based signalures detection.
(b) Clutier maiched filter detection. {c) CIR image of region of detection [or contexl. The detection images are
perlectly registered (they are based on the same input LWIR image) but the CIR image is not and has a dillerent
spatial resolution. The detections are approximalely in the center of the CIR image.

6. Summary

An algorithm for the detection of gaseous effluents from airborne LWIR hyperspectral
imagery of complex scenes has been developed based on the use of physics-based
signature predictions. This method accounts for the complex phenomenoclogy underlying
the gas signatures manifested at the sensor including variations in the gas concentration
path length and temperature contrast with the surface. Detection results for imagery of a
facility collected with the AHI airborne LWIR hyperspectral sensor have been presented
for both the physics-based signatures approach and the more common clutter matched
filter. In the latter case, the target spectrum was the laboratory-measured gas absorption
spectrum, a common approach used when a “residual” spectrum is easily estimated.
Here, due to the complex nature of the scene such an approach is more difficult and the
physics-based approach has been shown to outperform the simple matched filter.
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While the physics-based approach provides detections where the clutter matched filter
does not, it is also important to note the nature of the false alarms generated by each
method. The clutter-matched filter is essentially a projection operator and is susceptible
to false alarms on pixels with large spectral magnitude (i.e., “bright” pixels). The
physics-based approach tends to false alarm on background materials not well
characterized and on sensor artifacts. The latter is because the detection is in the native
radiance space of the image and in the presence of miscalibration or artifacts, the
predicted signatures will not match well with the measurement.

Improvements to the algorithm are under investigation. Incorporation of real background
materials in the target model (as opposed to the assumed blackbody used here) could
improve performance. Additionally, target and background space characterization, as
well as a detection scheme, that uses a geometric model has not been sufficiently proven
to be the optimal method for detection of gas plume in LWIR imagery. Other methods,
such as unstructured detection schemes will be tested to characterize performance.
Finally, no efforts were made here to optimally estimate the atmospheric contributions to
the at-sensor target signature predictions. Use of more accurate estimates of these
quantities will better match the target signatures to the measured signatures and should
improve performance over that presented here.
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