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ABSTRACT 

Embodiments of the present disclosure relate to a recurrent 
framework based on Recurrent Highway Networks (RHNs) 
for sequence modeling using batch normalization. In certain 
embodiments, constraints within the RHNs are relaxed to 
reduce or avoid gradient vanishing or exploding by normal­
izing the current transition units in highway layers. 
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82 

(LSTM) a group of people standing around a parking meter. } 
(RHN) a group of people standing next to each other. 0 (BN_RHN) a young man riding a skateboard down a street. 8 

(G.l) a person is doing a trick on a skateboard. 

82 

(LSTM) a box with a donut and a cup of coffee. } 
(RHN) a birthday cake with a picture of a dog on it. 
(BN _ RHN) a plate with a doughnut and a cup of coffee. 80 
(G.l) A bag with a hot dog inside of it 

FIG.4 

82........r-

(RHN) a red stop sign sitting on the side of a road. 80 

(LSTM) a red stop sign sitting on top of a metal pole. } 

(BN_RHN) a stop sign with a street sign attached to it. 
(G.T.) Street corner sign above a red stop sign. 

82 

(LSTM} a bus driving down a street next !o a tall building. } 
(RHN) a group of people riding bikes down a street. 80 (BN_ RHN) a dty street filled with lots of traffic. 
(G.T.) A group of people walking down a sidewalk near a bus. 
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SYSTEM AN METHOD FOR 
BATCH-NORMALIZED RECURRENT 

HIGHWAY NETWORKS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

[0001] This application is a non-provisional of, and claims 
priority to, U.S. provisional application No. 62/500,347, 
filed on May 2, 2017. 

BACKGROUND 

[0002] The present disclosure relates to computer vision, 
and more particularly, to systems and methods for batch­
normalized recurrent highway networks for object recogni­
tion and image captioning. Deep learning methods, such as 
Convolutional Neural Networks (CNNs), are often used in 
various pattern recognition tasks, such as optical character 
recognition or image matching. CNNs, and other neural 
networks, may be improved by increasing the depth of the 
networks, thereby reducing error on competitive benchmark 
testing. Yet, as the depth of these networks increases, 
training may be challenging because the distribution of each 
layer's input will change during training. Moreover, increas­
ing the depth for Recurrent Neural Networks (RNNs), which 
are already deep in time domain, typically does not provide 
significant advantages because the state update modeled by 
certain internal function mapping in modem RNNs is usu­
ally represented by non-linear activations. Additionally, for 
RNNs, gradients are unstable and may vanish or explode 
over time. 
[0003] To combat problems associated with gradients, 
techniques such as batch normalization may be used. Batch 
normalization can address the internal covariate shift prob­
lems associated with CNNs, particularly feed forward 
CNNs, by normalizing the layer inputs per mini-batch. As 
such, training may be sped up because of more aggressive 
learning rates, stable models may be created which are not 
as susceptible to parameter initialization, and vanishing and 
exploding gradients may be reduced. Moreover, certain 
batch normalization techniques may be applied to RNNs to 
obtain faster convergence, although these techniques do not 
improve the generalization of performance on sequence 
modeling tasks. For example, batch normalization may be 
used on the input-to-hidden transitions and/or the hidden­
to-hidden transitions to reduce covariate shifts between time 
steps. 
[0004] Additionally, focus in neural networks is placed on 
controlling gradient behavior by modifying network struc­
tures. For example, establishing networks with stochastic 
depth enables training of short networks and also using deep 
networks at test time. Elements of this approach may be 
applied to residual networks to reduce training time and 
improve test error. Additionally, in certain configurations, 
CNNs may receive benefit from an interface to explicitly 
constructed memory mechanisms interacting with a CNN 
feature processing hierarchy. Correspondingly, the convolu­
tional residual memory network may be used as a memory 
mechanism which enhances CNN architecture based on 
augmenting convolutional residual networks with a Long 
Short-Term Memory (LSTM) mechanism. Weight normal­
ization may be used for recurrent models, such as LSTMs 
compared to batch normalization. It improves the condition­
ing of the optimization problem and speeds up convergence 
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of stochastic gradient descent without introducing any 
dependencies between the examples in a mini-batch. Simi­
larly, layer normalization normalizes across the inputs on a 
layer-by-layer basis at each time step. This stabilizes the 
dynamics of the hidden layers in the network and accelerates 
training, without the limitation of being tied to a hatched 
implementation. 
[0005] Further gradient control may be obtained with the 
introduction of highway layers. Recurrent Highway Net­
works (RHN s ), based on highway layers, relax the limitation 
of training deep RNNs. Specifically, a highway network 
defines two nonlinear transforms: the transform gate and 
carry gate. These gates express how much of the output is 
produced by transforming the input and carrying it, respec­
tively. By coupling the transform gate and carrying gate, a 
highway layer can smoothly vary its behavior between that 
of a plain layer and that of a layer which simply passes its 
inputs through. Due to this gating mechanism, a neural 
network can have paths along which information can flow 
across several layers without attenuation. Thus, highway 
networks, even with hundreds of layers, can be trained 
directly using stochastic gradient descent. These networks, 
when used with a variety of activation functions, have been 
shown to avoid the vanishing or exploding gradient prob­
lem. Highway layers have achieved success in the fields of 
speech recognition and language modeling. 
[0006] Highway layers have contributed to the establish­
ment of RHNs that have long credit assignment paths, not 
just in time, but also long in space (per time step). By 
replacing the LSTM cell in the recurrent loop, the RHN 
layer instead stacks the highway layers inside the recurrent 
units. By increasing recurrence depth, additional non-linear­
ity strengthens the ability of the recurrent network without 
slowing down the convergence. Compared to regular RNNs, 
RHNs provide more versatile ways to deal with data flow in 
terms of transforming and carrying information. It has been 
theoretically proven that coupling a carrying and transform­
ing gate effectively controls the gradient. However, such a 
constraint may limit the power of the network to some 
extent. Hence, new solutions are needed to overcome these 
problems by potentially relaxing the constraints in RHNs. 

SUMMARY 

[0007] Applicant has recognized the problems noted 
above and has conceived and developed embodiments of 
system and method, according to the present disclosure, for 
object recognition and image captioning. According to an 
embodiment of the present invention, a computer-imple­
mented method for object recognition and image captioning 
is provided. The method comprises first loading a pre­
trained model into a computing network. Next, the method 
receives, identifies, or selects a digital image input on which 
to perform object recognition and captioning in accordance 
with the methods described herein. The digital image must 
therefore contain one or more objects. Next, the method 
comprises batch normalizing the digital image input and 
applying one or more non-linear transforms to the digital 
input image to generate one or more transform outputs from 
the computing network. The method lastly combines the one 
or more transform outputs to generate a final output from the 
computing network. In an exemplary embodiment, the final 
output contains a caption describing the content of the 
digital image input. In other embodiments, the method 
comprises additional features. For example, the pre-trained 
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model may contain parameters for the computing network 
nodes. The computing network incorporated into the meth­
ods of the present invention may be multi-layer neural 
networks. More specifically, an exemplary multi-layer neu­
ral network is a Recurrent Highway Network (RHN), or 
alternatively, a batch-normalized RHN. One advantage of 
embodiments of the present invention is that the constraints 
within the Recurrent Highway Network are relaxed to 
reduce or avoid gradient vanishing or exploding by normal­
izing the current transition units in highway layers. 
[0008] According to another exemplary embodiment, 
another computer-implemented method for object recogni­
tion and image captioning is provided. Such method com­
prises, as a first step, receiving a digital image input, wherein 
the digital image input containing one or more objects. Next, 
the method calls for batch normalizing the digital image 
input and applying one or more non-linear transforms to the 
digital input image to generate one or more transform 
outputs. And, lastly, the method comprises combining the 
one or more transform outputs to generate a final output. 

BRIEF DESCRIPTION OF DRAWINGS 

[0009] The features of the invention will become more 
readily apparent and may be better understood by referring 
to the following detailed description in conjunction with the 
drawings, which include: 
[0010] FIG.1 is a schematic diagram of an embodiment of 
a recurrent neural network, in accordance with embodiments 
of the present disclosure; 

[0011] FIG. 2 is a schematic diagram of an embodiment of 
a batch normalized recurrent highway network, in accor­
dance with embodiments of the present disclosure; 

[0012] FIG. 3 is a graphical representation of loss change 
during training, in accordance with embodiments of the 
present disclosure; and 

[0013] FIG. 4 is a schematic diagram of an embodiment 
example results, in accordance with embodiments of the 
present disclosure. 

DETAILED DESCRIPTION 

[0014] The foregoing aspects, features, and advantages of 
the present disclosure will be further appreciated when 
considered with reference to the following description of 
embodiments and accompanying drawings. In describing the 
embodiments of the disclosure illustrated in the appended 
drawings, specific terminology will be used for the sake of 
clarity. However, the disclosure is not intended to be limited 
to the specific terms used, and it is to be understood that each 
specific term includes equivalents that operate in a similar 
manner to accomplish a similar purpose. 
[0015] When introducing elements of various embodi­
ments of the present disclosure, the articles "a," "an," "the," 
and "said" are intended to mean that there are one or more 
of the elements. The terms "comprising," "including," and 
"having" are intended to be inclusive and mean that there 
may be additional elements other than the listed elements. 
Any examples of operating parameters and/or environmen­
tal conditions are not exclusive of other parameters/condi­
tions of the disclosed embodiments. Additionally, it should 
be understood that references to "one embodiment," "an 
embodiment," "certain embodiments," or "other embodi­
ments" of the present invention are not intended to be 
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interpreted as excluding the existence of additional embodi­
ments that also incorporate the recited features. 
[0016] Embodiments of the present invention relate to a 
recurrent framework based on Recurrent Highway Networks 
(RHN s) for sequence modeling using batch normalization. 
In certain embodiments, constraints within the RHNs are 
relaxed to reduce or avoid gradient vanishing or exploding 
by normalizing the current transition units in highway 
layers. These methods simultaneously improve network 
performance while avoiding the vanishing and exploding 
gradient problems. 
[0017] FIG. 1 is a schematic block diagram of an embodi­
ment of a Recurrent Neural Network (RNN) 10. RNN s make 
use of information in sequence-for example, input data that 
has a temporal relationship, such as video streams and batch 
image data. Instead of independent inputs and outputs, 
RNNs use outputs from a previous node in subsequent 
nodes, performing the same task on every element with the 
input being dependent on the output of the previous node, 
which is fed into subsequent nodes. The RNN 10 consists of 
L layers 12 and T time states 14. Each node 16 in the layer 
12 IE{ 1, 2, ... , L} and time state 14 tE{ 1, 2, ... , T} takes 
input 18 represented by xz' and output 20 represented by oz', 
respectively, with a non-linear transformation Hat a hidden 
state 22 represented by sz'. Omitting the bias term for 
simplicity, the hidden state 22, which is fed into other 
portions of the RNN, can be represented as 

(1) 

where the non-linear activation H is typically specified by 
hyperbolic tangent function tan h, and W His the associated 
weight matrix. Accordingly, the output 20 at each time state 
14 can be retrieved while additional information can be fed 
into subsequent nodes 16, along with the inputs 18. 
[0018] FIG. 2 is a schematic block diagram of an embodi­
ment of a batch normalized Recurrent Highway Network 
(RHN) 30. In highway networks, the training process is 
facilitated by using adaptive computation. RHNs use high­
way layers instead of Long Short-Term Memory (LSTM) in 
regular RNNs. Batch normalized highway layers 32 are 
illustrated in the dotted box of FIG. 2. The highway layers 
32 include transform gates 34, labeled as "T" and carry gates 
36, labeled as "C". These gates determine how much infor­
mation is transformed and carried to the output, as repre­
sented by Equations (2) and (3) below, 

(2) 

(3) 

where t, c are the output of the transform and carry gate 
respectively. In operation, T and C are defined as a sigmoid 
function in Equation (4) 

(4) 

and W n W care corresponding weights. The RHN layer with 
recurrence depth D is defined as 

(5) 

where 0 implies the element-wise product. 
[0019] As illustrated in FIG. 2, each recurrent loop (in a 
particular highway layer 32) includes two inputs. A first 
input 38 is represented by an output of the last recurrent unit 
in a previous loop. In the illustrated embodiment, the first 
input 38 is represented by sn'- 1

. The second input 40 is 
represented by x'. Each of these inputs 38, 40 is batch 
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normalized 42 before further processing, as represented by 
BN. Thereafter, the inputs 38, 40 are processed by the 
transform gate 34, the carry gate 36, and a nonlinear 
transform 44, represented by H. As shown in FIG. 2, 
subsequent processing through the node as represented by 
Equation (5) illustrates an output 46 from the node. This 
output 46 is then utilized as the input 38 for subsequent 
operations along the depth of the RHN layer. 
[0020] In the embodiment illustrated in FIG. 2, each 
recurrent loop takes the output of the last recurrent unit in 
the previous loop (sd-l ~as input, and the time-varying data 
x' is only fed into the recurrent loop to the recurrence depth, 
d=l. According to Gergorin circle theorem, all eigenvalues 
of the temporal Jacobian are preferably set to 1 across time 
steps in order to keep the gradient flow steady. In this case, 
the Gergorin circle radius is reduced to 0 and each diagonal 
entry of temporal Jacobian is set to 1. This is accomplished 
by coupling the carry gate to the transform gate by setting 
C=1-T, as a constraint, in order to prevent an unbounded 
"blow-up" of state values which leads to more stable train­
ing. However, this constraint may limit the ability of the 
gates to freely learn parameter values and imposes a mod­
eling bias which may be suboptimal for certain tasks. 
[0021] Because of its ability to control the gradient during 
back propagation, batch normalization is incorporated to the 
inputs 38, 40 of each recurrent loop. This allows relaxation 
of the C=1-T constraint, while simultaneously making gra­
dients less prone to vanishing or exploding. Specifically, in 
batch normalization, the mean and variance are extracted 
across each channel and spatial locations. Each individual in 
the batch is normalized by subtracting the mean value and 
dividing by variance, and the data are recovered by shifting 
and scaling the normalized value during training. Accord­
ingly, each final output 46 may be fed through the RNN 10. 
[0022] FIG. 3 is a graphical representation 60 of an 
embodiment of an experimental operation of an RHN of the 
present invention, like RHN 30 from FIG. 2. The graphical 
representation 60 graphs loss 62 vs. training steps 64. 
Testing of the RHN was performed on an image captioning 
task. The evaluation was carried out on the popular 
MSCOCO captioning dataset. This dataset contains approxi­
mately 80,000 training images, approximately 40,000 vali­
dation images, and approximately 40,000 test images. With 
this data set, ground truth captions are only available for 
training and validation sets. In order to efficiently use the 
available data, the validation set is split into three parts: 85% 
of the images are merged into the training set, 10% are used 
for testing, and the remaining 5% are used as a validation set 
for hyperparameter tuning. All the experimental results are 
evaluated using the MSCOCO caption evaluation server. 
[0023] When evaluating the data, experimental results are 
compared against metrics. Four different metrics were used 
for evaluation. First, BLEU is a metric for precision of word 
n-grams between predicted and ground truth sentences. 
Second, ROUGE-L takes into account sentence level struc­
ture similarity naturally and identifies the longest co-occur­
ring sequence inn-grams automatically. Third, METEOR 
was designed to fix some of the problems found in the more 
popular BLEU metric, and also produces good correlation 
with human judgment at the sentence or segment level. It has 
several features not found in other metrics, such as stem­
ming and synonymy matching, along with the standard exact 
word matching. Fourth, CIDEr computes the average cosine 
similarity between n-grams found in the generated caption 
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and those found in reference sentences, weighting them 
using TF-IDF. In practice, METEOR is more semantically 
preferred than BLEU and ROUGE-L. 
[0024] In the training phase, the <START> token is added 
at the beginning of the sentence and the <END> token at the 
end of the sentence so that the model can generate captions 
of varying lengths. In inference mode, the caption genera­
tion is started with <START> and the word combination 
with highest probability will be selected. The word embed­
ding size and number of RHN neurons per layer are empiri­
cally set to 512. Based on empirical results, the evaluation 
adopted the recurrence depth D=3. However, in other 
embodiments, different recurrence depths may be used. 
Stochastic gradient descent is employed for optimization, 
where the initial learning rate and decay factor are set to 0.1 
and 0.5, respectively, and the learning rate decays exponen­
tially every 8 epochs. The initial time state vector is 
extracted from the Inception v3 model and all the other 
weight matrices are initialized with a random uniform 
distribution. The training process minimizes a softmax loss 
function. The proposed network is implemented using Ten­
sorFlow and trained on a server with dual GeForce GTX 
1080 graphics cards. However, it should be appreciated that 
other networks and servers may be used. 
[0025] The results of the MSCOCO imaging caption data­
set are reported in Table 1. The evaluation metrics described 
above are evaluated with relationship to LSTM, RHN, and 
BN_RHN (i.e., batch normalized RHNs according to the 
present invention). The evaluation extracted an image fea­
ture vector as initialization of the hidden state using the same 
Inception v3 model, and lock the parameters in it (without 
fine-tuning) in all test models. Of the three test models 
(LSTM, RHN, and BN_RHN), LSTM denotes the im2txt 
model using regular LSTM cells, RHN denotes the image 
captioning generation performed by original RHNs, and 
BN_RHN in the present disclosure with batch normalization 
instead of the C= 1-T constraint in RHN cell. Table 1 
illustrates that the BN_RHN is the best performing model. 
METEOR and CIDEr are generally considered the most 
robust scores for captioning. The higher BLEU-4 and 
METEOR scores, due to fluency of language in the image 
captions, can be attributed to the RHN depth. More depth 
increases the complexity that helps learn the grammatical 
rules and language semantics. The LSTM employs a mecha­
nism with input, output, and forget gates to generate com­
plex captions. The present invention demonstrates better 
performance than LSTM, which may indicate that simpli­
fYing the gate mechanism and increasing depth do not affect 
performance for image captioning. The test model with 
RHN cells benefits from having less parameters during 
training, and good gradient control, in a simple way. The 
present invention BN_RHN achieves better results than 
original RHN, because the gate value model biases are more 
flexible, and batch normalization guarantees the steady 
gradient flow in back propagation. 

TABLE 1 

Model LSTM RHN BN_RHN 

BLEU-1 0.706 0.688 0.710 
BLEU-2 0.533 0.512 0.541 
BLEU-3 0.397 0.377 0.408 
BLEU-4 0.298 0.281 0.311 
ROUGE-L 0.524 0.511 0.533 
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TABLE !-continued 

Model 

METEOR 
CIDEr 

LSTM 

0.248 
0.917 

RHN 

0.241 
0.864 

BN_RHN 

0.254 
0.955 

[0026] Returning again to FIG. 3, a comparison was also 
made based on the speed of convergence. FIG. 3 illustrates 
the loss change during training, or deep learning, for each of 
the three lest models. The BN_RHN model 66, as described 
by the various embodiments herein, achieves the steady loss 
fastest among all three models. Adding batch normalization 
allows a more aggressive learning rate and achieves faster 
convergence. Furthermore, during back propagation in the 
original LSTM 68 and RHN 70 models, a gradient norm 
clipping strategy is adopted to deal with exploding gradients 
and a soft constraint for the vanishing gradients problem to 
generate reasonable captions. For BN_RHN, this restriction 
can be relaxed. This confirms that the present invention is 
effective on gradient control. It should be appreciated that in 
FIG. 3, all dark curves are smoothed by a factor of0.8, while 
light curves are not smoothed. 
[0027] FIG. 4 is a graphical representation of captions 80 
obtained from image files 82 using the LSTM, RHN, and 
BH_RHN models. In FIG. 4, "G.T." in captions 80 repre­
sents the ground truth. The image files 82 illustrated in FIG. 
4 were picked randomly. As illustrated in FIG. 4, the 
captions generated utilizing the BH_RHN are improved over 
the RHN model. For example, the BN_RHN model 
describes the object in the image more accurately than the 
other models and can generate better descriptions of the 
image even for very complex images than the other models. 
Additionally, the captions generated by the BN_RHN model 
have better grmar and language semantics due to the 
increased depth of recurrent network. Accordingly, embodi­
ments of the present invention illustrate a method that 
provides improved results while also enabling more aggres­
sive learning rates and faster convergence. 
[0028] The foregoing disclosure and description of the 
disclosed embodiments is illustrative and explanatory of the 
embodiments of the invention. Various changes in the details 
of the illustrated embodiments can be made within the scope 
of the appended claims without departing from the true spirit 
of the disclosure. 

1. A computer-implemented method, comprising: 
loading a pre-trained model into a computing network; 
receiving a digital image input, the digital image input 

containing one or more objects; 
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batch normalizing the digital image input; 
applying one or more non-linear transforms to the digital 

input image to generate one or more transform outputs 
from the computing network; and 

combining the one or more transform outputs to generate 
a final output from the computing network. 

2. The method of claim 1 wherein the pre-trained model 
contains parameters for the computing network nodes. 

3. The method of claim 2 wherein the computing network 
is a multi-layer neural network. 

4. The method of claim 3 wherein the multi-layer neural 
network is a Recurrent Highway Network. 

5. The method of claim 4 wherein the multi-layer neural 
network is a batch-normalized Recurrent Highway Network. 

6. The method of claim 5 wherein the constraints within 
the Recurrent Highway Network are relaxed to reduce or 
avoid gradient vanishing or exploding by normalizing the 
current transition units in highway layers. 

7. The method of claim 1 wherein the final output contains 
a caption describing the content of the digital image input. 

8. A computer-implemented method, comprising: 
receiving a digital image input, the digital image input 

containing one or more objects; 
batch normalizing the digital image input; 
applying one or more non-linear transforms to the digital 

input image to generate one or more transform outputs; 
and 

combining the one or more transform outputs to generate 
a final output. 

9. The computer-implemented method of claim 8, 
wherein batch normalizing occurs at one or more highway 
layers of a recurrent highway network. 

10. The computer-implemented method of claim 9, 
wherein the one or more highway layers comprise a trans­
form gate and a carry gate. 

11. The computer-implemented method of claim 10, 
wherein the transform gate is coupled to the carry gate. 

12. The computer-implemented method of claim 9, 
wherein the digital image input is an output of a prior 
processing loop in the recurrent highway network. 

13. The computer-implemented method of claim 8, 
wherein batch normalizing the digital image input comprises 
extracting a mean and a variance across each charmel and 
spatial location. 

14. The computer-implemented method of claim 13, 
wherein batch normalizing the digital image input comprises 
subtracting the mean of the digital image input and dividing 
by the variance of the digital image input. 

* * * * * 


