Quantitative assessment of flow velocity-estimation
algorithms for optical Doppler tomography imaging

Daqing Piao, Linda L. Otis, Niloy K. Dutta, and Quing Zhu

We present a quantitative comparison of three categories of velocity estimation algorithms, inch
centroid techniques (the adaptive centroid technique and the weighted centroid technique), the g,
window filtering technique, and correlation techniques (autocorrelation and cross correlation).
introduce, among these five algorithms, two new algorithms: weighted centroid and sliding-wi,
filtering. Simulations and in vivo blood flow data are used to assess the velocity estimation accur
of these algorithms. These comparisons demonstrate that the sliding-window filtering technig
superior to the other techniques in terms of velocity estimation accuracy and robustness to n
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1. Introduction

Optical Doppler tomography (ODT) is a functional
extension of optical coherence tomography (OCT) and
it permits measurements of depth-resolved blood flow
in turbid biological media.*® OCT utilizes the am-
plitude of the interference signal between a sample
and a scanning reference mirror to provide the mor-
phology structure image of the biology tissue,! while
ODT realizes phase-sensitive detection of the inter-
ference signal by tracking Doppler shifts arising from
the moving scatterers inside the tissue. Recently,
several research groups have investigated different
velocity estimation algorithms, which can be classi-
fied into three major categories as a short-time
Fourier-transform-* method, a filtering method® and
a Hilbert-transform”8 method. The short-time
Fourier-transform method extracts local Doppler
shifts by measuring the spectrum centroid of the in-
terference signal. However, it is shown in Ref 5
that the spectrum centroid gives rise to unavoidable
velocity-estimation inaccuracies when scatterer dis-
tributions in the flow field fluctuate. The adaptive
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short-time Fourier-transform technique introdu
in Ref. 5 calculates the spectrum centroid only
frequencies distributed symmetrically around

spectrum peak within the Doppler bandwidth, :
has achieved high-fidelity depth-resolved meast
ments of velocities in turbid media. The filter
method introduced in Ref. 6 is implemented by
herent demodulation at multiple frequencies follov
by low-pass filtering, and it partially accommoda
the broadband requirement of ODT. The Hilbt
transform method or cross-correlation method cal
lates a cross correlation between sequential A-s
lines and estimates velocity changes from the ph
of the cross-correlation function.”8 The auth
have reported high sensitivity of the method in €
mating slow-moving blood flows.

In this paper we present the first quantitative cc
parison of three categories of velocity-estimation
gorithms, including centroid techniques (
adaptive centroid technique’ and the weighted ¢
troid technique), the sliding-window filtering t¢
nique, and correlation techniques (autocorrelat
and cross correlation’8). The comparisons
based on estimation accuracy of the flow velod
The weighted centroid and sliding-window filter
algorithms are, to our knowledge, first introduce
this paper. The autocorrelation technique has 19
been used in ultrasound blood velocity meast
ment.*!  In ultrasound, it calculates the normali’
mean frequency shifts from successive pulses U8
the complex autocorrelation function of lag one "
depth direction. Because of its simplicity in c0®
tation and consequently in hardware impleme”

,;



most ultrasound scanners use this method.
ly, the autocorrelation technique has been im-

Velocity-Estimation Algorithms and Relevant

nsi'derations ' .
snventional OCT, the detected interference signal
‘ eneral, filtered with a narrow bandpass filter
d Hilbert transformed to obtain the complex am-
itude of the backscatter?d hght. The _narrow
andpass filter provides a high signal-to-noise ratio
SNR) and averaging is not necessary. In ODT,
~ iwwever, the detection of ﬂqw-mduced frequency
shift requires & bandpass filtering of a brogder band-
width, resulting in a significant degradatlor} of the
- GNRin the B-scan image and a lower dynamic range
inthe corresponding flow image.® Averaging, there-
 fore, is necessary in ODT to improve .the SNR and to
g’ pursue high-fidelity flow-velocity estgnatmn.

By taking into account the averaging, we express
| the detected two-dimensional (2-D) interference sig-
“nal after Hilbert transformation as

2,.:(t) = |20 |exp(joi), (€))

where ¢ is the time argument along the depth scan-
ning direction, k represents the lateral dimension of
the kth A line, i is the index of the repeated A-line
measurements, and o is the angular frequency of
. signal reflected from the target. For a stationary
target, 0 = w, = 27f,, where f, is the fundamental
modulation frequency generated by the reference
~arm.  For a moving scatterer, o = 0wy = w, = 27(f, *
f), where £, is the Doppler shift generated by the
moving scatterer. The velocity of the moving scat-
terer v, is given ag513

, c
Vg = e (2)
wy 2, cOS O

where ¢ is the velocity of light in free space, Mg is the
refractive index of the sample, and 6 is the angle
between the light beam and the scatterer velocity
vector.  Because the flow velocity v, is proportional
 the Doppler shift w,, we will estimate o or equiv-
dlently o = 0y + o, throughout this paper.

A Fourier-Transform Techniques

L Centroiq Techniques

“oting the power spectrum of 2 2,:(t) with P;, ;(0), we
“press the mean angular frequency, or the centroid
€ power spectrum, as'4

J‘“‘ P (w)dw
L ®
f P, (w)do

-

Be N .
te;tau% 2. ,(t) represents a signal whose spectral con-
$ Change with time whenever there is a moving

—

scatterer in the local region, the local Doppler spectra
could be obtained by applying a short-time Fourier
transform (STFT) to the time-dependent detected sig-
nal.t If we use STFT, ,(t,, ») to represent the dis-
crete STFT of the sampled interferometric signal
Z,,(t,), where t, = nt_ and t, is the sampling interval,
the local power spectra is given by

Pnk,i(m) = STFTk,i(tn> w)STFTk,l(tny (1)), (4‘)

where STFT, /(¢,, w) is the complex conjugate of
STFT, ;(¢,, w). The conventional centroid technique
estimates the centroid of a local Doppler spectrum by

L3

0P, (w)dw
Byl == )
f P, (o)dw

Because the noise power in the STFTs of segmented
A lines is always positive and the centroid calculation
integrates over signals as well as noise, the centroids
of the STFTs always underestimate the true Doppler
shifts.> In Ref. 5, it has been demonstrated that
stochastic modifications of the Doppler spectrum by
fluctuating scatterer distributions in the flow field
give rise to unavoidable velocity-estimation inaccu-
racies.

2. Adaptive Centroid Technique

An adaptive centroid technique is introduced in Ref.
5, and it locates the Doppler spectral peak and cal-
culates the centroid of the power only at frequencies
distributed symmetrically around the peak within
the Doppler bandwidth. The algorithm is given by

wpt+Ae/2
f oP", (w)dw

wp—Bw/2

p(n) = Tars , (6)
f TP (0)do

wp—Aw/2

where o, is the frequency corresponding to the max-
imum power in the spectrum, and Aw is the Doppler
bandwidth by the moving scatterer. This algorithm
has shown significant improvement in the flow
velocity-estimation accuracy over the centroid tech-
nique.

In this adaptive centroid algorithm, two parame-
ters need to be carefully chosen. The first parame-
ter is Aw, or the Doppler bandwidth caused by the
moving scatterer in Equation (6). The full width at
half-maximum (FWHM) of the Doppler spectrum is
given as®

Af=2(V,— V)Av/c (7

where Av is the FWHM of the source power spectrum,
Vy is the equivalent reference mirror scanning speed,
and V, is the moving scatterer speed. Because the
fundamental modulation frequency f, = 2v,Vy/e,
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where v, is the source center frequency, the ratio of
Af/f, can be approximated by Av/v, as long as V, is

not too large compared with V,. For STFT, each
processing segment has typically 32 data points;4
therefore, for typical light sources used in ODT with
Av/vy = 5%, the integration of Eq. (6) is restricted to
1 or 2 points in the neighborhood of the power spec-
trum peak. We have chosen a total of 3 points in the
neighborhood of the power spectrum peak among the
32 interpolated spectrum points when we implement
the adaptive centroid calculation.

The second parameter that affects the outcome of
this adaptive centroid algorithm is the noise-
recognition level. In Ref. 5, the signal was consid-
ered noisy if the ratio of the average spectral density
of the complete STFT over the spectral density within
a bandwidth Af around the peak was greater than a
certain threshold 7, in which case the traditional
centroid algorithm was used for velocity estimation.
Based on our study, we choose the optimum noise-
recognition level as 0.6, which is very close to the
value of 0.67 used in Ref. 5.

3. Weighted Centroid Algorithm

n this paper, we introduce a weighted centroid algo-
-ithm, which is an extension of the conventional cen-
roid method. The algorithm is given by

=3

o[P" (w)*de
Briln) == : ®)
f [Pnk,i(w)]gdm

—o0

vhere a positive integer & is introduced as the weight
if the spectra to emphasize the frequency component
orresponding to the peak power in the spectra. If¢
3 too small, this algorithm will underestimate the
Joppler shifts as the conventional centroid technique
loes. However, if £ is too big, the weighted spectra
7ill be narrowed toward locations in which spectra
each local maximum values. In this case the
reighted centroid algorithm is similar to the algo-
ithm that finds peaks of spectra and is known as
eing sensitive to noise. To obtain the optimum
alue of &, we studied the estimation accuracies of
ifferent ¢ values using simulated data at various
NRs. The optimum value of £ is found to be 6. It
3 shown in this paper that the newly introduced
reighted centroid technique performs slightly better
aan the adaptive centroid technique in terms of
elocity-estimation accuracy and robustness to noise.

Sliding-Window Filtering Technique

1 this paper, we introduce what is to our knowledge
new filtering method by directly mapping the fre-
uency shift at each pixel by using digital bandpass
ltering. We assume that the local power spectrum
"3.i(0) of the detected signal Z,,(¢,) has a peak at
» = W T 0. IfZ, (¢,) is digitally bandpass filtered
ith a sliding filter window (w;, wy), the filtered
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2,(t,) will have a maximum power when the co
tion w; < ©, < w, is satisfied or, in other W()rds]
spectrum distributed around the peak fallg in
filtering window. The relative position of the slic
filter window to the fundamental frequency (ﬁf
wy)/2 — wy, represents the frequency shift of ti,e 1
scatterers.

The filtering window (w;, ©,) determines the Ve
ity resolution of this algorithm, and a better reg
tion requires a narrower filtering wind
However, a robust estimate of the velocity requir
broader filtering window. A compromise bety
velocity resolution and robustness to noise has}h
achieved by using a second-order Chebyshev filt
the first kind, which has a bandwidth of 7/32 anq
be slid from 0 to 7 in 32 steps. The velocity reg
tion achieved is at the same order as that of
centroid techniques. It is demonstrated in this
per that using this filter window, the newly in:
duced sliding-window filtering technique is supe,
to the centroid techniques in terms of accuracy
velocity estimation and robustness to noise.

C. Correlation Techniques

1. Autocorrelation Technique

The complex autocorrelation function R, ()
2, ;(¢,) is represented as

tn
R™, (1) = f 2t + 1) X 2, (t)dt,

tn—Nts

where Nt, is the time duration of integration.

cause the autocorrelation function can be represen
by

Rnk,i(T) = IRnk,i(T)lexp[jd)k,in('r)], (

the mean frequency ® can be approximated as'!

@y(n) = $7,,(0)
- ¢ (AT)
AT

_ 1 [Im[RY(AT))
AT " | Re[R",(AT)]”

where AT denotes the temporal lag, and ¢ ;(0)is!
derivative of ¢, ; at AT = 0.

2. Cross-correlation Technique

In the cross-correlation technique, the phase chal
of the cross-correlation function of sequential A-5¢
lines are used to estimate the mean frequency-
cross correlation of lag 1 is given by

tn - B
C"(T) = f Zyy(t + T) X Zj,q,(1)dE, {

t,~NT
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Fig.1. Laminar flow signal simulation.
velocity profile pattern of the simulated flow signal, (d) 2-D velocity
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where T is the time interval between sequential A
scans. Because the cross-correlation function can be
epresented as

Ci(1) = |C™ (D) lexplid "i(7)], (13)
the mean angular frequency & is given by®
- b (T) 1 -1 Im[an,i(T)]
Wy (n) m~ e 22 ety (14
pln) = == = ptan {Re[cnk,i(fr)] (14)

8 Laminar Flow Simulation Model

E\? Quantitatively assess the velocity-estimation ac-
n'tiacy of the above-mentioned estimation algo-
djﬁfms’ we have simulated blood-flow signals with
erent SNRs. In the simulation, we chose lami-
2 flow as a typical blood-flow profile and represent
& velocity distribution V(r) in a cylindrical conduit

radial position r as!
d*A 2
G

16pnAL

2r

d (15)

V(r) =

White noise
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(a) Schematic of the simulation model, (b) amplitude image of simulated 2-D flow signal, (¢} 1-D

image of the simulated flow signal.

where d is the internal diameter of the conduit, Ap is
the pressure difference along a length AL of the con-
duit, and p is the viscosity of the flowing fluid.
Based on this parabolic velocity flow profile, we sim-
ulated 2-D laminar flow signals. The simulation
model is illustrated in Fig. 1(a) and represented by

Z, () =8, t) ® F! © 7O O O
k,z(tn) k( n» t) ® tnk( Aw ’ Aw

+ Nk(tn) ti)) (16)
where ¢, = nt; as previous defined, and t; = if,.

First, we generate a 2-D Gaussian random signal
S,(t,, t,), which has a uniform spectrum. Second, a
2-D rectangular window function IL[(e0 — w,)/Aw,
(w ~— o,)/Aw] is generated to simulate the desired
spectrum with ®, and Aw representing the center
frequency and spectrum bandwidth of the Doppler
shift, respectively. Third, S,(,, ¢;) is convolved with
the inverse Fourier transform of I,[(w — ©,)/Aw,
(0w — ,)/Aw] to produce a signal with the desired
spectrum. Finally, an additive 2-D white noise
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Fig. 2. (a) Schematic of the ODT system: O1, microscope objective lens; 02, GRIN lens; G, galvanometer; L, achromatic le
Itustration of scanning optical delay line by Littrow-mounting of diffraction grating: f, focal length; v, the total rotation angl
mirror; &, the divergence angle of the reflected light from the lens axis; 7, the displacement of light from the lens axis at the surfac

lens; 6;, Littrow angle; Al, the resulting optical delay.

N(¢t,, ¢,) is introduced to the generated signal to ac-
count for the noise environment in the actual flow
measurement. The SNR is controlled to facilitate
the evaluation of the performance of different algo-
rithms. We further segment the generated data of
dimension 2048 X 512 to 2048 X 8 X 64, which cor-
responds to 2048 points in one A line (depth direc-
tion), 8 sequential A lines for averaging at one lateral
step, and 64 lateral steps. These data dimensions of
max(n) = 2048, max(i) = 8, and max(k) = 64 are the
same as that obtained experimentally, which will be
reported in the following section. For each A-line
signal, 16 data points correspond to one image pixel,
which results in an image dimension of 128 (axial) X
64 (lateral). In the actual algorithm processing, a
typical 50% overlapping is implemented, so for each
pixel, 32 data points are actually processed. Figure
1(b) shows an amplitude image of simulated 2-D sig-
nals. The signal represents a laminar flow in a cy-
lindrical conduit. Because SNRs of with/without
flow regions are set to be equal, the structural cross-
sectional image of flowing medium is hardly visible.
Figure 1(d) is the corresponding 2-D laminar flow
image generated with the model, and Fig. 1(c) repre-
sents a one-dimensional laminar pattern in any di-
rection of the flow image in Fig. 1(d).

4. Optical Doppler Tomography Experimental System

The schematic of our ODT system is shown in Fig.
2(a). This ODT system is a typical balanced setup
configured with one 1 X 2 and one 2 X 2 fiber cou-
plers. A superluminescent diode with an emitting
wavelength centered at 1300 nm and a spectral width
of 40 nm is used as the low coherence source. The 3
dB coherence length is calculated and measured to be
18.6 pm and 19.0 pm respectively, and the output
power is 2.2 mW at an injection current of 195 mA.
We employed a new scanning optical-delay line based
on a Littrow mounting of the diffraction grating at

6122
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the reference arm. The principle of this Lif
mounting scanning optical-delay line is illustra
Fig. 2(b). The reference light is incident at t]
tation axis of a scanning mirror G (driven by
nometer), and the rotation axis is aligned to be :
focal point of an achromatic lens L. With the
the sector scanning by the dithering mirror is {
lated to a spatially parallel scanning upon a p
reflection grating. The grating is mounted i
trow angle, in which the light incident on the gr
will be reflected back exactly along the incident
path, and the optical path difference between
cent beams turns out to be the optical delay.
total scan range Al is given by

Al = 2f tan(6,)tan(y),

where fis the focal length of the lens, 0 ; is the Lif
angle of grating for the desired wavelength, v i
total rotation range of the mirror. At a small
of mirror rotation, y(t) = I't, where I is the mi
scanning coefficient1 the total scan range Al ce
simplified as

Al = 2fy tan(8;) = 2fT tan(6,)¢.

The time derivative of the optical delay, d,(Al) =
tan 6;, demonstrates the linearity of scanning

constant I'.  When the light is incident at the &
the mirror rotation, the scanning optical delay ¢z
achieved without phase modulation. When the
ror rotation axis is shifted a distance of §, the P
modulation introduced can be approximated by,
8nf,d sin(y)/No, where f, is the galvanometer ¢
ning frequency, \, is the center wavelength of
source. In our ODT system, this Littrow-moul
scanning delay line is adjusted to obtain a depth:
range of a maximum 3.25 mm and a phase moc
tion frequency of 52.6 KHz for in vivo blood-flov¥
aging when the mirror is driven under 64 Hz.
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¥ sampling frequency is 262 KHz, gnd the bandwidth of
§ receiving electronics can be varied from 10 KHz to
§ 1024 KHz.

1 Inthe sample arm, the light is focused with a gra-
§ dient index lens of 0.3 numerical aperture. The lat-
§ eral scanning is performed by use of a linear
1 translation stage with a speed of 100 pm/s and sub-
§ micron position accuracy. In one A line, there are
2048 data points, and a total of 512 sequential A lines
| are taken in 8 s. In the axial direction, 16 data
points are averaged for one pixel; in the lateral direc-
tion, 8 sequential A lines are averaged for each lat-
eral step. The lateral scanning range is 0.8 mm and
the depth scanning range is 2.5 mm, resulting in an
image resolution of 19.5 wm (axial) by 12.5 pm (lat-
eral) for in vivo ODT.

% Simulation and Experimental Results

A Simulations

All algorithms are tested from experimental data
' When no flow is present and they can accurately re-
trieve the modulation frequency. The accuracy of
€ach algorithm is evaluated with the correlation co-
fficient between the estimated velocity profile and
the actua] profile that is available in simulation
Study. Figure 3 shows the estimation accuracy of
&ch algorithm on simulated data as a function of
R from 1 dB to 20 dB. The result for each algo-
Nthm at each SNR is an average of 5 data sets cal-
Clateq independently by use of different additive
tenoises. At a higher SNR, e.g., greater than 15

> all algorithms provide a stable estimate of the
Llocity profiles with an estimation error of 2%, 3%,
ceo’ 7%, 7% for sliding-window filtering, weighted
Cr;ltmld, adaptive centroid, autocorl'"elation and
) SS-correlation techniques, respectively. At a
_ger SNR, e.g., less than 6 dB, there is significant
Therence in the performance of each algorithm.
R Shding-window filtering technique and centroid
ang n,queS are superior to the correlation techniques,
the filtering technique is the best. It is clear

that over the entire SNR range that we have inves-
tigated, the sliding-window filtering is superior to
other algorithms.

To visualize the performance of these algorithms
and their robustness to noise, we present typical one-
dimensional plots of the estimation results for each
algorithm at SNR = 20 dB (Fig. 4) and SNR = 6 dB
(Fig. 5). By comparing (a), (b) and (c) of Figs. 4 and
5, one can see that the estimation accuracies of the
weighted centroid technique and the adaptive cen-
troid technique are very similar but the weighted
centroid is slightly more robust to noise. Itis clearly
shown that the sliding-window filtering technique
outperforms the other techniques in terms of accu-
racy and the robustness to noise. By comparing (d)
and (e) of Figs. 4 and 5, one can see that the correla-
tion techniques provide a reasonably accurate esti-
mate at high SNR and higher-velocity regions and a
poor estimate at low SNR and/or low flow regions.
The reason is that correlation techniques are more
sensitive to local decorrelation of the flow field result-
ing from a low SNR or a high velocity gradient that is
present at the low flow velocity region.16

B. In Vivo Blood-Flow Data

In vivo cross-sectional B-scan and blood-velocity im-
ages were obtained from a female volunteer who has
a subepidermal area on her hand with aggregated
small blood vessels (Fig. 6). Figure 6(a) is the
B-scan image and Fig. 6(b) to 6(e) are the blood flow
images estimated by using the adaptive centroid, the
weighted centroid, the sliding-window filtering, and
the autocorrelation technique, respectively. The
fundamental modulation frequency is 52.6 KHz, and
the ODT images are displayed in the range of 18 KHz
to 82 KHz [see the color scales on the right-hand side
of Fig. 6(b)-6(e)], which corresponds to a negative
34.6 KHz to a positive 29.4 KHz frequency shift.
There are two regions with opposite colors, indicating
the existence of two clusters of small blood vessels
with opposite blood-flow directions. The four algo-
rithms detect blood-flow signals of approximately
similar volume and at approximately the same loca-
tion. The sliding-window filtering algorithm is less
noisy than the other algorithms. It is also shown
that the autocorrelation method detects a larger vol-
ume, represented by the less sparse blood-flow area.
This observation is supported by the simulations that
have shown that correlation techniques tend to over-
estimate velocity at the low flow area when the SNR
is low and, therefore, flatten out the difference be-
tween high- and low-velocity areas [see Fig. 5(d) and
5(e)]. Owing to a hardware limitation, we could not
implement the cross-correlation method to our exper-
imental data. The details are given in the next sec-
tion. The SNR at the flow region is calculated to be
approximately 10 dB. The performance of these 4
algorithms is consistent with that expected from Fig.
3 when the SNR is close to 10 dB.

10 October 2002 / Vol. 41, No. 29 / APPLIED OPTICS 6123



0.6 . i -
=+++ Actual value
05 — Adaptive centroid ]
|
0.4 s
. !\d I H
= TR L ST
So03 [ ﬁ,f“? rﬁ,‘-"» .
g N W
il o)
0.2 ‘ﬂ ! L
B ,v]: ; II‘,
) ‘!‘ f' I 7\‘[}
0.1 A 1A
LA "!}"*s.«
obetdd | A"
20 40 60 80 100 120
Axial dimension
Adaptive centroid algorithm
(@)
0.6 . . ,
++=« Actual value
—— Sliding-window filtering
0.5 :
0.4
2 AT Y|
S03 ',m‘}f' SRR
o of "l
> My ¥l
0.2 K =
0.1} ‘E‘."J i N h
ey L
b T v
20 40 60 80 100 120
Axial dimension
Sliding-window filtering algorithm
(c)
0.6 . .
*v++ Actual value
05 — Cross-correlation
0.4 |
1A
Z I R H"rf’\j‘ n
803 el ;;‘,w’!,l*-ﬁ@% ,
g (\/(:WL iy ¥ \,“:‘ !l
A i
0.2 e
| v:'»hh‘y ‘w‘fv‘l N
oallh A LT
) lj\/}/ ! CR
olezsee LR 4

20 40 60 80 100 120
Axial dimension

Cross-correlation algorithm

(e)

6. Discussion

In the autocorrelation technique, the mean frequency
is estimated by the change in phase shift Ap = wAT =
2nfAT within a certain time delay A7. Therefore,
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Fig. 4. Comparison of simulated flow profile with
the actual flow profile at a SNR = 20 dB. In each
figure (a) adaptive centroid algorithm, (b) weighted
centroid algorithm, (c) sliding-window filtering algo-
rithm, (d) autocorrelation algorithm, (e) cross-
correlation algorithm, the solid curve corresponds to
the estimated velocity profile at £ = 13 [k is the
lateral dimension at Fig. 1(d)], and the dotted curve is
the actual profile. The centroid techniques (a) and
(b) provide accurate estimates, while they are sensi-
tive to noise. The filtering technique (c) is more ac-
curate and robust to noise. The correlation
techniques (d) and (e) provide reasonably accurate
velocity estimates at a high-velocity region but over-
estimate at low-flow velocity regions.

the 27 phase ambiguity poses a tradeoff betweer
velocity sensitivity and the maximum detectabl
locity. The maximum detectable velocity is the!
termined by o, = 2w/AT F o, depending o
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Fig. 5. Comparison of the simulated flow profile
with the actual flow profile at a SNR = 6 dB. In
each figure (a) adaptive centroid algorithm, (b)
weighted centroid algorithm, (¢) sliding-window fil-
tering algorithm, (d) autocorrelation algorithm, (e)
cross-correlation algorithm, the solid curve corre-
sponds to the estimated velocity profile at & = 13 [&
is the lateral dimension at Fig. 1(d)], and the dotted
curve is the actual profile. Again, the weighed cen-
troid algorithm is slightly less noisy than the adap-
tive centroid one while they have similar accuracy.
The correlation techniques (d) and (e) show less ac-
curate estimates in both high and low flow regions at
this low SNR, but the techniques are free of noise
spikes compared with the results of centroid tech-
niques (a) and (b). Apparently, the filtering tech-
nique (c) has the best estimation at this low SNR in
terms of accuracy and robustness to noise.

velocity is as important as the velocity sensitivity.
In the autocorrelation technique, AT is the sample
interval in the axial direction and is small in general.
Therefore a reasonably higher velocity can be de-
tected even without demodulation. However, the
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cross-correlation technique, although demonstrating
higher velocity sensitivity, poses a more strict re-
quirement on the demodulation because the maxi-
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R S el

Fig. 6. Comparison of flow ve-
locity estimation algorithms
based on in vivo blood flow.
The same noise-threshold and
color-threshold levels are ap-
plied in each image to highlight
the flow region. The black bar
under each image represents a
scale of 250 pum. (a) Struc-
tural image, (b) blood-flow im-
age by the adaptive centroid
estimation, (¢) blood-flow im-
age by the weighted centroid
estimation, (d) blood-flow im-
age by the sliding-window fil-
tering estimation, (e) blood-
flow image by autocorrelation.

mum frequency shift is limited to o, = 27/T ;‘
where T is the interval between sequential A S¢
T is much longer than (in general >100) the tm¢



4 in the autocorrelation technique. Thus the
_correlation technique requires demodulation
C.fossvoiding 2w phase ambiguity, and achieves the
O.rf: velocity sensitivity at the expense of the much
maximum detectable velocity. In our ODT
we used AT = 1/262144 ~ 2.81 ps as the unit
in autocorrelation estimation. Consequently,
- without demodulation, the maximum detectable
evelilency can be as high as 200 KHz, if not limited by
?hiq Nyquist rate, for positive flow. However, be-
use the time interval between sequential A scans of
cir system is T = 1/64 ~ 15.6 ms, the cross-
‘ gorrelation technique is gnable to accurate}y detect
fhe two flow regions without demodulation. Be-
cause our current OCT system does not have hard-
qare demodulation capability, we have used software
jemodulation to implement the cross correlation.
However, owing to the large T of our data-acquisition
wstem, the 2w phase ambiguity still causes data
yrapping in the velocity estimate. _Therefore we
pave eliminated the comparison with the cross-
wrrelation technique.

In this study, the dimension of the raw data corre-
-~ sponding to one cross-sectional image is 2048 X 512,
and we used 8 sequential A lines for averaging at one
lateral step, resulting in a final data dimension of
9048 X 8 X 64. More averaging on sequential A
lines certainly could give higher accuracy, however,
this results in a longer data-acquisition time and con-
sequently a larger computation load if lateral resolu-
tion is to be maintained. We have investigated the
optimal averaging number using experimental data
acquired from flow samples consisting of 0.25% in-
tralipid solution. Using the correlation coefficient
between the estimated flow profiles obtained with
two consecutive average numbers, we found that the
estimation accuracy increases from 0.93 to 0.98 as the
averaging number increases from 2 to 8. Beyond 8,
%1}:5 increment in estimation accuracy is very small.

erefore, we have used 8 sequential A lines for the
lateral averaging in processing simulation and exper-
mental low data.

The computation times for these 3 categories of
algorithms we studied, namely the centroid tech-
Niques, the sliding-window filtering technique, and
the correlation techniques, are 15 s, 60 s, and 106 s,
~ Mspectively, for a data set of 2048 X 8 X 64 using a
Pentium T1T 800 MHz-based PC. We are currently
mplementing a digital signal processing based ODT
System for real-time processing of ODT signals and
the results will be reported in a future paper.

yT use

Jower
] Systemy

g Summary

We Presented a quantitative comparison among five
OW-velocity algorithms, including three currently
Used methods in ODT and two newly implemented
dacthmques. With simulations and in v?vq blood-ﬁow
ﬁlta we have demonstrated that the sliding-window
Dr‘erlng technique gives a consistently favorab@e per-
CenTaI}Ce over the adaptive centroid, the weighted
; est“mld,’ and the correlation techniques in terms of
- Mation gecuracy and robustness to noise. The

centroid techniques are less robust to noise compared
with the sliding-window filtering technique but are
more accurate than the correlation techniques. The
correlation techniques overestimate the velocity pro-
file when the SNR is low and/or flow velocity is slow,
but are free of spike noises.

This work is supported by the National Institutes
of Health (NIH 1R01 DE11154-03).
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