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Texture-discimination tasks reveal a pronounced performance asymmetry depending on which texture represents
the foreground region (small area) and which represents the ground (large area). This asymmetry implies that some
global processes are involved in the segmentation process. We examined this problem within the context of the
texture-segmentation algorithm, assuming two filtering stages. The first stage uses spatial frequency and orienta-
tion-selective (Gabor) filters, whereas the second stage is formed by low-resolution edge-detection filters. The
presence and location of texture borders are indicated by significant responses in the second stage. Spurious
texture borders may occur owing to textural local variabilities (such as orientation randomization), which are

enhanced by the first stage. We suggest that these s

purious borders act as background noise and thus limit

performance in texture-discrimination tasks. The noise level depends on which texture occupies the ground in the
display. We tested this model on numerous pairs of textures and found remarkably good correlation with human
performance. A prediction of the model, namely, that discrimination asymmetry will be reduced when textural
elements have identical orientation, was tested psychophysically and confirmed.

INTRODUCTION

xture-discrimination tasks reveal a pronounced perfor-
nce asymmetry in respect to which texture represents the
eground (disparate) region and which represents the
und (large area).! In other words, two different textural
ions that can be discriminated occasionally have a unique
wacteristic that makes one texture more salient than the
er (see Fig. 1). This characteristic implies that more
n local or adjacent textural element analysis occurs in
ture-discrimination tasks.2-5 Otherwise, asymmetric
rimination would not exist. Rather, some global pro-
ses must be involved in the discrimination and segmenta-
| process.
/e propose a solution to the problem that is based on
ple statistical information that is inherent in all textural
wli. We claim that these textures can be described as
ing distinct noise characteristics that indicate how easily
texture region can be detected when embedded in anoth-
exture. Thus, if simple signal-in-noise arguments are
lied, a texture that is surrounded by a noisy background
aposed of another texture) will be harder to detect than
with a less noisy background. If, for example, a [" shape
ig. 1 has more noise characteristics than a + shape, then
would expect it to be more difficult to detect the +’s
ng the noisier [™ ’s in the background than in the reverse
This proposal would also imply that textures having
lar noise characteristics would have symmetric perfor-
ce levels. Finally, the most important claim is that
> noise characteristics are caused primarily by spatial-
bility properties of the stimulus. Hence spatial vari-
'y acts as a direct limiting factor in the discrimination
:88, or, in another words, asymmetric performance is
olled by these noise characteristics. We shall analyze
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these characteristics, but, before doing this, we review :
various different types of asymmetry so as to gain a bet
perspective of the problems of texture discrimination.
Segmentation asymmetry has been observed in ma
cases’5-8; however, only a few cases have been classif
according to stimulus characteristics. These characterist
include differences in element intensities, positional va
ability, and a special case treated by Treisman®7 that |
volves vertical and near-vertical lines. In amore fundame
tal discrimination task, two elements regardless of thi
compositional and positional characteristics can be col
pared simply by their light intensities. Elements that a
brighter will stand out much more among relatively dark
elements than in the reverse case. This difference in on¢
ability to see is called asymmetry. Weber’s law predic
asymmetry of such a discrimination task, pointing to tl
brighter elements as the more salient features. Weber’sla
states that detectability of a target will depend on the adaj
tation level produced by the stimulus (background). Whe
adark background is presented, a small intensity change W!
be easily detected, whereas a bright background will necess
tate a larger detection threshold. Hence this phenoment
may be a result of different visibilities of the two texture
Other attempts to model this phenomenon include filteri?
algorithms (difference-of-Gaussian and Gabor) that are set
sitive to contrast and hence make intensity-based discri®
nation a simple task.

Asymmetry can also be caused by elements with differen
positional characteristics (jitter). Gurnsey and Browse ¢
scribe similar elements with different jitter components anf
point to the noisier ones (more jitter) as the more Sal‘ent"
Again with filtering models, difference-of-Gaussian and G2
bor filters are sensitive to changes in the texture p,owe;
spectrum introduced by jitter, rendering discriminatio?
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ample of asymmetry. Visual examination shows [~ ’sin

1 Ex €
Fig. | d (bottom half) as more salient.

the foregroun

t,aightforward task. Our explanation is that jitter compo-
pents can be viewed as noise characteristics, such that a
gexture embedded in a noisy background (considerable jit-

_ ter) would be more difficult to detect than a background
having less spatial jitter.

Treisman and co-workers®7:%10 also speak about an asym-
metry in the case of vertical and near-vertical lines, which is

 quite different from the cases mentioned above. She claims
that near-vertical lines are more salient than vertical ones
 (with each line having the same length). Treisman’s expla-
 pation of this asymmetry is an intuitive one, based on the

notion that nonvertical lines are special features in the visual
field compared with vertical lines, which are so common in
our world that they are relatively unnoticed. Hence, be-

cause features stand out, the nonvertical line will be the

* more salient of the pair. Alternatively, we speculate that
. filters responding to tilted lines are noisier than those re-
- sponding to vertical lines. Hence tilted lines in the back-
.~ ground will generate noisier backgrounds, and, as a result,
detectability of vertical targets among tilted distractors will
_ bereduced. As will be shown below, this explanation is in
accordance with the structure of our proposed model.

Finally, the most subtle discrimination task includes ele-
ments having identical intensities and similar positional
variability (jitter). To explain this, Julesz!!1? suggests that

 elongated blobs having particular orientation, lengths,
- widths and intensities, line terminations, and crossings are
. Separate textons, which act as fundamental elements in tex-
 tural discrimination and in the segmentation process. Tex-
. ton theory states that discrimination is possible only if the
- bumber of textons is different. For example, both Hand L]

have three segments, but the former has four terminators

f tompared with two for the latter; hence discrimination is
. Possible, Further, Julesz!L12 states that the element with
- the mogt textons will be more salient (H in this case). This

theory works fairly well in modeling this phenomenon; how-
&ver, there are some inconsistencies that point to limitations
of such a model. Contrary to this structural approach, fil-
uljm_‘g algorithms have until now been unsuccessful in pre-
cting discrimination asymmetry. In the present paper,
a(;:’e‘./er., we propose another filtering model that is based on
i ::IStlcal an'd biological intuitior_l, using, special charactel:—
DECul'Of the orientation-selective linear filters to model this
1ar phenomenon. This approach, unlike that of other

W)
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odels, is capable of modeling all the above-mentioned
asymmetries, with the addition of some other examples,
shown below.

2. PROPOSED MODEL

Our model is based on one described by Fogel and Sagi'® that
can predict psychophysical performance levels for discrimi-
nation tasks involving textures. This texture-discrimina-
tion algorithm produces a set of filtered images (maps), with
each map representing the spatial distribution of image en-
ergy contained within a specific spatial frequency and orien-
tation band. Gabor filters, weighting functions that are
tuned to spatial location, orientation, and spatial frequency,
are the fundamental tools of this task and are used to dis-
criminate between foreground and background. In general,
filtered foreground and background textures produce maps
that are discriminated quite satisfactorily, in the sense that
activity differs, on average, between foreground and back-
ground whenever the textures are psychophysically dis-
criminable.13-17 However, we find that activity levels within
either foreground or background are at times not uniform
but show considerable fluctuation. In this situation, the
reliability of texture segmentation depends on the magni-
tude of the foreground-background difference of filter ener-
gies (signal) relative to the amplitude of fluctuations in the
background (noise). If filter energy fluctuation amplitudes
differ between foreground and background textures, signal-
detection theory predicts a segmentation asymmetry.

A number of factors may contribute to the spatial nonuni-
formity of a texture and the resulting activity fluctuations.
A major source of spatial nonuniformity is the randomiza-
tion of the orientation of textural elements. Random ele-
ment orientation will have the result that the orientation of
neighboring elements is more similar in some parts of the
texture than in others. Hence this orientation variability is
being transformed into spatial variability. Since different
textural elements have different orientation variability, they
must also have different spatial variability, and, because the
latter variability limits performance (by acting as back-
ground noise), asymmetry should occur. It should be point-
ed out that orientation randomization was introduced to the
discrimination task in order to permit second-order statis-
tics of foreground and background textures to be equat-
ed!®19 and thus is justified within the statistical framework
used in the earlier studies of Julesz.

Gabor filters are, by design, orientation and spatial-fre-
quency selective and spatially constrained and therefore can
be said to mimic similar characteristics of cortical simple
cells.20 This is not to say that neurons act as Gabor filters
but only that certain low-level processes in the brain are
modeled well by Gabor filters. Psychophysical studies
strongly support the existence of orientation- and spatial-
frequency-selective filters in early vision.?*-?> Furthermore,
it was shown that the visual system can detect in parallel
only the location of feature gradients (orientation changes of
adjacent texture elements as an example), whereas the iden-
tification of gradients requires serial search.*® This implies
that spurious local changes existing within the background
texture have to be considered in search and texture-segmen-
tation tasks.?®> On the neurophysiological level, cells were
found in areas V1 and V2 of the macaque monkey that
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respond best to local orientation changes and not to uniform
textures.?8 These findings imply the existence of a second
stage filtering in early vision, where the initially filtered
(Gabor or similar) image is filtered again in order to find
local energy differences.?™-30

The segmentation asymmetry predicted by the present
model is based on the variability in the response of Gabor
filters to textural elements at different orientations, thus
generating local energy differences. Certain elements, for
example, + and [, have different energy profiles when fil-
tered by Gabor filters at different orientations. This indi-
cates not only that these elements have different energy
profiles across the spatial frequency spectrum as already
suggested1331-33 but that each element has an unique vari-
ability profile across the orientation spectrum. We show
here that the variability profile of a textural element across
the orientation spectrum predicts its salience, and this cor-
relates well with the psychophysical experiments (concern-
ing asymmetry) of Gurnsey and Browse.! This result indi-
cates the importance of spatial variability in discrimination
tasks.

To justify these claims, we prepared a computer simula-
tion of the discrimination task, so as to study visually the
importance of the orientation variability and hence of the
spatial variability. Then, based on the success of these
results, we developed a mathematical model that is able to
predict human performance. This model is a refinement of
the discrimination-segmentation model proposed by Fogel
and Sagi.!? Itincorporates spatial and orientation variabili-
ty as variables in the discrimination process, using the algo-
rithm from the computer simulation as its fundamental
building blocks. Finally, to test our hypothesis directly we
performed psychophysical experiments, controlling orienta-
tion variability within textures.

3. ANALYSIS OF SPATIAL VARIABILITY

A Variability across the Orientation Spectrum

First we show some concrete correlation between variability
of the orientation profiles of elements and their relative
salience according to psychophysical results of Gurnsey and
Browse.! Using even and odd Gabor filters having fixed
orientation and spatial frequency, we computed the filtered
energy of various elements. The equations for these filters

are

— - 2 4 _ g

G (x, ¥\ 0,%,y,) = exp{ [(x—=x,) 2 (v—y) }}
20

X cosl(2n/N)[(x = x)cos 6 = (& = yJsin ), (1)

(x—x)%+ (v — yc)zl}

242

God(x1 y‘}‘: 8, x yc) = exp{—[
X sinf(2x/M)[(x — x)cos 8 — (y — v )sin 8]}, (2)

where ¢ is the Gaussian width (¢ = 8), § is the filter orienta-
tion and ) is its wavelength, and x, and y. represent the
center of the filter with x and y being the coordinates over
the filter’s domain. Let L(x, y) be the input matrix repre-
senting one element and its surrounding space (32 X 32
pixels) and Egs. (1) and (2), the Gabor operators. Then, by
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performing a simple dot product, G- L, we

produce
response values: twof

GLo(x0 YN 0) = D" Gorl, 3IN, 0,5, 3 - Lix, 5

X,y

GLog(¥er YN 6) = " Goaler, ¥IN, 0, 20, 3,) - Lz, ),

Xy

where x and y are indices over the basic matrix element
= 0-31). Finally, a simple squaring and Summing of
convolutions of Eqs. (3) and (4) gives the combined §
energy level:

E(x, v\ 0) = GL,Xx,, v\, 6) + GL (x,, y I\, o).

Since Eq. (5) produces only a locally shift-invarian
sponse, we add a spatial integration stage (over Xey ¥,
obtain a texture energy measure: {

T, ,(\6) = E(x,, I\, 0),

x,.,y,€ S(x,y) %@r

where x. and . are indices indicating the center of the {
and S{x, y) is some excitatory neighborhood correspon
to a smoothing operation. This neighborhood is define
ensure spatial invariance, and hence energy levels fror
different filters are summed, with filter centers separ
from one another equally in a 5 X 5 matrix. This energ
represents the shift-invariant response of the system.
ure 2 is a plot of energy T for two different elements, +
[T. (Each element is composed of line segments 17 pi
long.) Each graph shows energies (plotted vertically)
different orientations and filter wavelengths. Notice
for filters with large wavelengths (backs of curves) the +
little variability, while the [_ has much more. Correspc
ingly, because the I™ is noisier than the +, +’s should be
salient in the disparate region than in the reverse case,:
shown by Gurnsey and Browse.! Also note that, for she
wavelengths, there is great sensitivity to individual line
ments; but we have found that energy curves of wavelen,
larger than element size (A > 17) correlate more closely
psychophysical data. In fact, as will be shown explicit]
Section 4, nearly all pairs of elements presented by Gun
and Browse! expose asymmetries that correlate closely '
variability characteristics across the orientation spectr
Elements that were more salient psychophysically also
the most orientation variability (in the large-wavelel
window) with respect to the complement element of thef

B. Computer Simulation

Based on these preliminary studies, we created a three-
algorithm that simulates textural segmentation. Thes!
ulus consists of randomly oriented +’s and [~ ’s [Figs-

and 4(a)]. The first step of the algorithm involves filte:
the image with a Gabor filter of a specific orientation

spatial frequency (§ = 72°, A = 19 pixels, ¢ = 8 PI¥
Specifically, we chose a 32 X 32 matrix filter and appﬁed
(5) to corresponding 32 X 32 pixel patches of the stimulv
a 4-pixel sampling rate. With this small sampling
there was a significant overlap of the filtering, thus ren.lo‘
any phase properties of filter placement on the 10
[Note that each element of Figs. 3(a) and 4(a) has 2
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ELEMENT I

DEGREES

ELEMENT +

DEGREES

Fig. 2. Gabor filter texture energies, T'(A, 8), of + and {™ for differ-
ent wavelengths and orientations. Notice that, for large wave-
engths, element [~ has greater energy variability across the orien-
tation spectrum.

~ Segment size of 17, sitting within a 32 X 32 matrix of space.]
, Figures 3(b) and 4(b) represent the output of this energy
filtering, Notice the increased variability of energies of the
s relative to those of the +’s. By looking at the Gabor-
flltered images, one can see how the figure representing [~ ’s
In the foreground [Fig. 4(b)] is easier to segment.
~ The second stage of the algorithm involves filtering the
abor energy image with a two-dimensional Gaussian filter.
he technique is similar to the first stage, with a 128 X 128
- Datrix filter being applied at a 4-pixel sampling rate. Here,
- =23pixels. The application of such a large filter produces
28moothed image with little local variability of energy lev-
el?’ &xcept, of course, where large local differences exist.
nﬁ]ures 3(c) and 4(c) represent these filtered outputs. Fi-
ar Y, for the third stage, significant local intensity gradients
-ie detected from the Gaussian-filtered images, producing
eng;s. 3(d) and 4(d). This stage detects local differences in
rithrgy levels and hence is a type of edge-detection algo-
aum" Specifically, this was done by thresholding the
SS1an maps [Figs. 3(c) and 4(c)] and then running an
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edge-detection algorithm on the resultant two-value map.
Notice that in Fig. 4(d) edge detection is clear and pro-
nounced ([~ ’s in foreground). In contrast, Fig. 3(d) shows
detection of the stimulus with additional spurious edges in
the background. These spurious edges represent the energy
variability across the orientation spectrum of the [ ’s. Spe-
cifically, [ ’s with similar orientations tend to group togeth-
er because adjacent [ ’s of different orientations have large
differences in activity. Likewise, because +’s have little
variability, groups of +’s distinguishing themselves from
other +’s are rare, as can be seen in the background of Fig.
4(d). We conclude that these noise characteristics that pro-

Fig.3. Computer simulation of texture segmentation. The stimu-
lus (a) is acted on by even and odd Gabor filters having an orienta-
tion of 72° to produce an energy map (Gabor patch also shown) (b).
This image is in turn smoothed by a Gaussian filter (¢), and finally
the Gaussian image is thresholded and edge detection is performed
(d). Notice the spurious clusters caused by the [~ ’s in the back-
ground.

Fig. 4. Same as Fig. 3 except with [~ ’s in the foreground. Notice
the relatively less noisy background caused by the +’s having limit-
ed orientational variability.
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¢ element energy at a specific frequency.
Lt distributions should be considered, one for
e d and one for the background. For the sake of
Oune assume that these two distributions are nor-
; ,:;eans M; and My and ve’iriances V¢ and Vy, for
nd and background, respectlvely,. Whefe M, My, Vi
~ abe computed from the orientation distribution at
frequency- (Although the assump-tion_of normal-
of correct, it may be justified by considering a broad
averaging process that smoothes the filtered image.
assuming textures with randomly .oriented elements,
mning log-energy distributions belonging to adjacent ele-
will produce an approximately normal distribution.)
ptation variability is not the only noise source in the
;m. We haveto consider internal noise (filter response
sbility) and noise introduced by the mask used in the
Practically, the mask used limits perfor-
ce according 1o its temporal delay from the stimulus;
the temporal dimension must be considered. However,
¢ we do not consider the temporal dimension here, we
10 that all noise sources can be described by one normal
ution with a mean of M, and a variance of V. M,
ends on the mask and the filter’s spatial and temporal
erties; it is probably frequency dependent according to
different temporal properties of the different filters.%
vever, My, should not depend on the particular textures
,and since we will consider only filter response differ-
es, the mean noise level cancels out. We assume that Vi,
ch suffers from the same problems as M., is the same for
filters (of different spatial frequency and orientation)
independent of the texture elements used. Note that,
 order to account for Treisman’s result concerning vertical
arsus tilted line detection,®7 we should make V;, smaller for
ertically oriented filters. Since we do not have any
traightforward way of estimating the noise variance V,, we
it as the only free parameter for adjusting the model
erformance in relation to human performance.
‘Both the noise distribution and the orientation distribu-
on produce spatial variability. If we assume that the two
:tributions are normal, and uncorrelated, we get normal
stributions of the sums with means Mg, = M; + My and
fon = My, + M, and variances Vi, = Ve + Voand Vi = Vi +
V; for foreground and background, respectively. (M and
M, represent the mean log energies described above.)

¢ specifi

. Computing Spatial Distributions of Local Differences
Here we obtain the distributions for F-B and B-B differ-
nces from the two distributions of the texture log-energy
:’i?flues. We assume that local differences are computed as

ferences between pairs of log-energy values, T ,, separat-
;‘;by adistance larger than the size of the smoothing neigh-

thood, S(z, y). Hence the B-B difference distribution pyy
azero mean and a variance of

Vo= 2V, = 2V, + V), ©)

%] .
::IZQ Vi is the variance of local differences samples in the
i ground due to orientation randomization. The F-B
erence distribution (at the F-B border) has a mean of

be:an ~Mbn = Mf_Mb’ (10)

whi
hich reflects the difference between filter responses to the
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foreground and background elements, averaged across all
orientations. 'The variance of pg, is

Vfb = an + Vbn = Vf + Vb + ZVn. (11)

Since these two difference distributions are normal, they
contain negative difference values. Thus, when computing
percent-correct response [Eq. (6)] we have to transfer the
negative values into the positive range (see Subsection 4.A).

Finally, the F-B and B-B absolute-value distributions are

Ponl?) =—~—2———exr> -z
bb 2 Vbb 2Vbb

and

> forz=0 (12)

=l {ex _e-My)?
Pro \/27erb P 2Vfb

(—z— be)z
+ exp[— oV, ]} forz=0, (13)

where z denotes local-energy differences.

5. Integrating Information from Filters of Different
Spatial Frequencies

The log-energy spatial distributions obtained above vary
according to the filter’s spatial frequency. Thus substitut-
ing Eqs. (12) and (13) into Eq. (7) yields a correct response
value only when a specific spatial-frequency band is used.
Integrating information from different filters is a nontrivial
problem. We applied two (alternative) simple combination
rules: (1) use the filter that yields the highest percent-
correct value and ignore the others; (2) use only low-spatial-
frequency filters. Application of the second rule does not
require knowledge of the stimulus parameters. Application
of the first rule requires isolation of the relevant filter, which

may depend on the specific input.

C. Model Performance

Model performance was tested numerically. Energy values
were calculated by using Gabor filters with o = 24 pixels, an
amplitude of 1, and a A range from 8 to 64 pixels {(at steps of 4
pixels). Convolutions were computed by summing 25 dif-
ferent Gabor energies with filter centers separated from one
another by 16 pixels and positionedina 5 X5 matrix [defin-
ing the S(x, y) neighborhood in Eq. (8)]. It was assumed
that interelement structure does not play an important role
in this computation (for sparsely spaced elements); thus
convolution values were obtained for single elements. This
assumption may be justified by the result of our psychophys-
ical experiments (described in Section 5 below), with a spac-
ing-to-element size ratio of 2.5 (Gurnsey and Browse®” used
a ratio of 2.3), showing a negligible effect of interelement
gtructure. (This of course is not true for denser textures.)
Performance was examined in each case (with each element
of the pair in the foreground) across all spatial frequencies,
and the highest performance percentage was selected as the
model prediction. This maximum-over-A strategy has little
effect on the data, since in most cases the best performance
was obtained by using low-frequency filters with wave-
lengths near 1.5(0.5) times element size. Element size was
33 X 33 pixels for square-shaped elements and 25 X 49 pixels
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Fig. 5. Correlation between the psychophysical results of Gurnsey and Browse! (histogram) and the predictions of the model (circles). T
figure is presented in groups of two elements (numbered at the bottom of each pair), representing a particular stimulus. Each histogr:
rectangle represents the psychophysical performance level with the element depicted below it in the foreground and the adjacent elementint
background. Filled circles represent the prediction obtained by selecting the spatial frequency yielding the highest performance for each ps
The open circles represent predictions for Gabor filters having only larger wavelengths. Note that perfect correlation would place one class

circles on top of each histogram rectangle. (V, = 0.05.)

otherwise. Line segments were 3 pixels wide, similar to
what was used in the psychophysical experiments.?’

As was noted above, the only free parameter is the noise
variance V,; all other variables were calculated by applying
the texture elements used. The model predictions are de-
picted in Fig. 5 (V, = 0.05) along with the psychophysical
data (histogram) of Gurnsey and Browse.! The figure is
presented in groups of two elements (numbered at the bot-
tom of the figure), representing a particular stimulus. Each
histogram rectangle represents the psychophysical perfor-
mance level with the element depicted below in the fore-
ground and the adjacent element in the background. Like-
wise for the other histogram rectangle of the pair. The
circles represent the corresponding predictions of our model.
The filled circles represent the highest performance predict-
ed for one spatial frequency from a range of frequencies 4 <A
< 64. The open circles represent predictions for Gabor
filters having only larger wavelengths A > 40 pixels (1.25
times element size). Note that perfect correlation would
place one class of circles on top of each histogram rectangle.

The model was also tested with other values of ¢ (16 and
32) and produced similar results with one exception: im-
provement of performance for pairs that differ in total pixel
number (pair number 10 and 11) for o = 16. At this ¢ value
the most discriminating filters are low-pass filters and are
thus more intensity sensitive.

A visual inspection of the data shows a surprisingly good
correlation between the model performance and human per-
formance. The percent-correct values produced by the
model are close to the ones obtained in psychophysical ex-
periments, and asymmetries, whenever they are pro-
nounced, correlate remarkably well. The total correlation
value is 0.80 (r = 0.83 for the low-frequency version). It
should be noted that the psychophysical data points are
based on a limited number of trials (n = 384) distributed

across twelve observers (which are not the same for all t«
ture pairs) and across four stimulus durations; thus a perfi
correlation when only one adjustable parameter is used
not expected.

D. Model Summary

We have presented a model of human texture discriminati
that seems to account well for psychophysical results. Tt
ture differences are detected here by differential activity
orientation and spatial frequency filters. A decision rule
added in order to allow real texture borders to be separat
from spurious ones that are caused by texture spatial vé
ability and noise. This decision rule produces asymmetry
detection because of varying noise levels in the backgrou
caused by different elements.

We believe that this decision stage cannot be avoided,
thus asymmetry is expected from any model that is based
detection of local differences (without identification): '
chose a simple detection rule, detection of a global maxin'
of local differences.

This hypothesis seems to work in our case, b
complicated decision rules are possible, depending o
complexity of the available information in the Jocal-diff
ence maps. In addition, the level of familiarity of the '
servers with the textured patterns must be considered,‘f‘
the uncertainties introduced by the experimenter takenl
account. In the experiments that we modeled, the differ
texture pairs were intermixed in blocks of trials; th¥
general decision trategy had to be used. In another 5¢
experiments, Gurnsey and Browse! trained two observer
improve their performance. Within the framework 1%
duced here, this improvement can be a result of improv
decision strategy, which can be accomplished by COUSldeI_
the size of the foreground as a detection facilitator; apply
minima detection in addition to or instead of maxima 4¢

ut mo
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or looking for specific types of edge value. Fogel and
"3 overcame some of these problems by using an algo-
2> | that removed edges that enclosed small areas. The

lexity of this level is not known, and our ability to
comP ¢+ performance by using simple rules implies that the

93;16 s_-,l;tem does not use complicated ones (in the case of
Vi ined observers and stimulus uncertainty). The results
untral psychophysical experiments (described in Section 5)
fo:vlftha t asymmetry also occurs in detection tasks without
t,i(x)nulus uncertainty (but with spatial uncertainty) and
when one is using trained observers. )
We suspect that the decision strategy used will be particu-
Jarly important in discrimination' tasks of jcextures having
gimilar power spectra, such as pair 13 of Fig. 5. Although
the two elements of this pair have the same energies at all
spatial frequencies, the distribution across orientation is
different. At low spatial frequencies, one of them (arrow)
has arelatively small orientation variance, whereas the other
(triangle) has a pronounced variance, thus producing noisy
filtered maps when the figures are randomly oriented. This
 situation can be enhanced by using the classical triangle-
 arrow pair with equal sides,?® producing an even smaller
= orientation (and thus spatial) variance for the arrows. The
-~ result is a much better discrimination rate (41% for arrows
and 58% for triangles as foreground), in agreement with
psychophysical observations.’»3 Nothdurft® observed a
reduction in discrimination of these textures when spatial

. of spatial variability in this task.

. The overall discrimination performance of our model is
i determined by the noise variance (Vy), which may depend on
- internal noise and mask noise. However, in the cases exam-
~ ined here, the main limiting factor is the texture spatial
. variance. An absolute limit on model performance was ob-
- tained by testing the model with V,, = 0, resulting in some
improvement for most pairs (0 to 24%, with an average of
6.4% and a standard deviation and 6.7%). This improved
performance is equal, on the average, to human performance
obtained at long stimulus durations of 167 msec in the ex-
_ Periments reported by Gurnsey and Browse.!

Finally, asymmetry is not necessarily a result of having
- unequal background and foreground areas. We predict that
asymmetry depends on foreground positional uncertainty
(number of possible locations) and not so much on area ratio.
However, within the framework of the model, the foreground
area can be important in two ways: relative to the smooth-
Ing operator size and relative to the size of clusters formed by
%’aCkground variability. These two factors should be exam-
med more carefully, both theoretically and experimentally.

- é PSYCHOPHYSICAL STUDY OF
RIENTATION VARIABILITY

If’ofder totest directly the dependence of texture segmenta-
e‘x‘m on orientation variability, we conducted psychophysical
' Spgegments. These experiments attempt to find a corre-
o £ énce between texture-orientation variability and per-
mentance asymmetry. Itshould be 1}0ted that t}}ese experi-
cen S were not modeled by the previously described model,

Use of the different experimental paradigm used. Al-
%Ugh they too could be modeled, we found the extensive

jitter is increased, thus providing more evidence for the role -
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data provided by Gurnsey and Browse to be sufficient in
supporting our model. These experiments rather were per-
formed only to confirm the importance of orientation vari-
ability.

A. Experiment Design

The experiments were divided into three subexperiments,
each of which had different orientation requirements. The
first subexperiment employed elements that had identical
orientation (0°), the second had elements having two possi-
ble orientations (0° and 180°), and the third used randomly
oriented elements (12 orientations at 30° intervals). Figure
6 shows examples of typical stimuli. The motivation for the
design of these subexperiments was to see how asymmetry
changes from one subexperiment to another. Specifically, if
asymmetry increased with increasing element-orientation
randomization, then orientation variability components are
critical characteristics in the discrimination task. However,
we suspected that if we use energy measurements based on
Gabor-like filters, then using elements having two orienta-
tions, 180° apart, would not change the performance levels
compared with those for aligned elements. That is to say,
because [ ’s have redundant Gabor energies every 180°,
performance levels in the first subexperiment should be
identical to those in the second.

B. Methods

Five observers, two of whom were the authors, participated
in the experiments. The others were high school students
who were paid to participate and were not aware of the
purpose of the experiments. A Hewlett-Packard Model
1310B oscilloscope (P31 phosphor), driven by custom-de-
signed hardware?! allowing for real-time control of the stim-
ulus properties, was used in an isolated (dark) environment.
Screen resolution was 1024 X 1024 pixels. The experiments
and the graphic device were controlled by a Sun Model 3/160
workstation. The observer was presented a stimulus that

{a)

Fig. 6. Typical stimuli of psychophysical experiments: {a) has
elements with random orientations, (b) has aligned elements, and
(c) has elements with two orientations; (a)-(c) have dense spacing
and (d) has sparsely spaced elements of two orientations.



1640

J. Opt. Soc. Am. A/Vol. 7, No. 9/September 1990

Fig. 7. Ts}pical mask having elements comprising a +/ [~ combina-
tion shown with randomly generated orientations.

sontains a background and an intermittently shown fore-
rround region followed by a mask (see Fig. 7). Consequent-
y the observer had a simple detection task. The stimulus
vas composed of a ground, a 15 X 15 matrix of elements, and
vdisparate region, a 3 X 3 matrix randomly situated over the
rround. The foreground placement had been defined not to
werlie the center fixation point so the observer could not
imply identify the target by merely studying the center
irea. Also, the foreground did not overlie the bordering two

8

(%)

ONE ORIENTATION

DOUBLE ORIENTATION

B.S. Rubenstein and Sa

elements of the ground so as to stay within the fovea]

Each element was placed within a 64 X 64 pixe] field (1%1:
100 in sparse spacing conditions). With sparse Spacin,

ground was a 9 X 9 matrix of elements, and 4 2 X2 mg;ttj
was used for the disparate region. +’s and [’y Were ugg
with line segments of each element being 40 pixelsin Jey "
In turn, each element field was placed adjacent to anot}i;ti
the stimulus field. Also, each element was Positioned 1-3;
domly (jitter) about the center of its space, with ag many g4
pixels in any direction. This unalignment was implement,
to reduce the potential assistance of global alignment int
detection task. The observer was positioned 170 cm aws
from the screen, subtending a 20.2" arc to each eleme;
segment. The side of the ground matrix subtended an 8.
arc. During the actual experiment, the fixation mark w;
shown to center the observer’s attention followed by i}
stimulus (shown for a duration of 10 msec = 1 frame) with
without the disparate region (target). Then after an inte
stimulus interval (isi) of 5 to 160 msec, a mask composed ¢
randomly oriented elements (+/[~ combination with 12 or
entations at 30° intervals) was shown (100 msec). Not
that the mask’s matrix size was identical to that of t
stimulus, positionally aligned to overlap except for the ¢
pixel jitter. The disparate region was presented only 50%
the time, and each observer was asked to detect it by usin
the keyboard to answer yes (1) or no (0). Experiments wer
conducted in blocks of 50 trials, with each block havin
exactly the same conditions (i.e., isi and elements remaine

RANDOM ORIENTATION
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ig. 8. Psychophysical results of three observers, AP, YG, and BR, for densely spaced stimuli having one orientation, two orientation$
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. Fig.9. Psychophysical results of three observers, SE, BR, and DS, for sparsely spaced stimuli having one orientation, two orientations, and
random orientations. Notice that there exists great asymmetry for random orientation; however, there is little increase in asymmetry from one
to two orientations.

in their respective background-foreground regions, but the
- foreground was in different positions). Subjects were tested
- withboth +’s and " ’s in the disparate region. Before each

experiment, observers were allowed to see the stimulus in
-~ order to understand the task and were aware of the isi.
Detection rates were calculated as the average of the perfor-
~ mances to detect both conditions (with or without target) so
asto eliminate any subjective preference to one of the condi-
tions. Each observer was limited to 1 h of experimentation
tooffset the effects of fatigue. Also, observers were allowed
 topractice for extended periods (up to weeks) so as to accli-
- mate themselves to the task at hand and, more importantly,
 learn the task to the point that they can reproduce similar

However, in studying the stimulus, we decided that per- o
haps there were some additional energy variabilities caused
by the dense spacing of elements that was affecting the
detection process. Specifically, for the two-orientation sub-
experiment, line segments of adjacent M ’s tended to lie
closer to one another at times in comparison with the first
subexperiment (one alignment) [see Figs. 6(b) and 6(c)].
This would cause greater variability in energies, leading to
greater asymmetry than that of aligned " ’s. In order to
remove this unwanted feature and to isolate orientation
variables, we increased the spacing between the elements,
placing the elements in a larger 100 X 100 pixel space [see
Fig. 6(d)]. This would remove much of the accidental merg-

Tesults, ing of elements and reduce undesired variability. Hence we
conducted an experiment identical to the one mentioned
C. Results above with the exception of larger spacing, defining a 9 X 9

The psychophysical data clearly show that, as the elements
ave more variability in orientation, asymmetry increases.
F‘g‘_“'e 8 shows the data with asymmetry marked as the
forizontal spaces between the curves. Inthe first subexper-
Iment (one orientation), discrimination for both elements in
*he foreground produces similar performance levels, show-
Ingthat the task is symmetric. Inthesecond and third parts
ouble and random orientation), asymmetry becomes
gre‘}ter and greater, indicating the importance of orientation
Z::l‘fbﬂity Also, note that, contrary to our prediction con-
& Ning the second subexperiment of two orientations,
Ymmetry does increase.

matrix of elements for the ground and a 2 X 2 matrix target.
Figure 6(d) is one example of such a stimulus.

The results are similar to the previous experiments with
the exception that, as expected, asymmetry does not in-
crease measurably from the first subexperiment to the sec-
ond (see Fig. 9). This supports the idea that orientation
cells detect little additional variability, causing performance
levels to remain the same. The small increase in asymmetry
can be accounted for by the effects of positional variability
mentioned in Section 1, but they are shown here to be negli-
gible (in the case of large spacing) compared with the effects
of orientation variability. Also, note that one observer ex-
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libited asymmetry for the first subexperiment (one orienta-
*tion) of sparse spacing (see results for observer BR in Fig. 9).
However, this does not affect the validity of the conclusions.

6. CONCLUSION

In conclusion, we have shown experimentally and theoreti-
cally that orientation variability can account for perfor-
mance asymmetries in texture-discrimination tasks. Our
experiments show conclusively that, for textures having ran-
domly oriented elements, those elements with relatively
greater orientation variability are more distracting in the
background, resulting in decreased discrimination. Hence
asymmetry is the result of background-foreground elements
with different variability profiles. Furthermore, it should
be noted that the essence of this model is not to emphasize
the importance of variability across the orientation spec-
trum but rather to show how noise characteristics of a stimu-
lus are the critical contributors in testing whether discrimi-
nation is possible and to what degree. Orientation variabili-
ty is hence merely one kind of noise, and, although it has
been found to be important in the examples mentioned
above, other noise characteristics such as interelement char-
acteristics and those concerning the vertical and tilted lines
described by Treisman®7 can also be important noise charac-
teristics of a stimulus and therefore must be considered.

In spite of the different noise characteristics, we found
that orientation variability is a major determinant of dis-
rimination performance. In fact, using a model based on
yrientation variability, we found a remarkable correlation
vith the psychophysical data of Gurnsey and Browse.! The
nodel’s success shows that sensory processing underlying
;exture discrimination can be understood strictly in terms of
ocal computations, that is, no global calculations need be
nvoked. Previously models found local computations to be
nsufficient and therefore included global calculations, thus
naking the problem more complex and difficult.® In our
nodel, an inevitable global component enters only at the
lecision-making stage, i.e., when a global maximum of local
lifferences must be found. This stage should be task de-
rendent, since the decision rule that we used for the spatial
our-alternative forced-choice task is not applicable in de-
ection tasks. Detection experiments (Section 5) contain
«o-target trials that-produce global maxima in the same way
s target trials. The solution suggested by standard detec-
ion theories® is to use a threshold in order to separate true
1axima from false ones. The success of this thresholding
peration in distinguishing between trials with and without
sreground depends on the magnitude of the F-B difference
ignal relative to the background noise level.

On a biological level, the implications of such a model are
wreefold. First, because of the highly satisfactory perfor-
iance of a model based on orientation filters and local
ymputations (resembling orientation-selective cells in the
isual cortex), texture segmentation would seem to be pro-
sssed at a low level in the visual system. Second, this low-
vel processing implicates preattentive vision, a stage that
sals with all parts of the visual field in parallel. Third,
scause we find orientation variability to be important in
xture discrimination, both theoretically and psychophysi-
dly, perhaps there exists a cortical stage of processing that

B.S. Rubenstein and D, S&gi

connects nearby orientation cells and conse

. quent} ;
tect local activity differences. Y can dg.

ACKNOWLEDGMENTS

We thank Jochen Braun for his comments, Anne Reich
her general assistance, and Yehuda Barbut for figure —
ration. This study was supported by the Basic Reseaffz
Foundation administered by the Israel Academy of Sciencc

and Humanities. &8

All correspondence should be addressed to Doy Sagi.

REFERENCES

1. R. Gur‘nsey and R B‘rowse, “Micropattern properties and pre-
sentation conditions influencing visual texture discriminatjon »
Percept. Psychophys. 41, 239-252 (1987). ’

2. J. Beck, “Textural segmentation,” in Organization and
Representation in Perception, J. Beck, ed. (Erlbaum, Hillsdale,
N.J.,-1982).

3. H. C. Nothdurft, “Sensitivity for structure gradient in texture
discrimination task,” Vision Res. 25, 19571968 (1985).

4. D. Sagi and B. Julesz, “ ‘Where’ and ‘what’ in vision,” Science
228, 1217-1219 (1985).

5. D. Sagi and B. Julesz, “Short-range limitation on detection of
feature differences,” Spatial Vision 2, 39-49 (1987).

6. A. Treisman, “Preattentive processing in vision,” Comput. Vi
sion Graphics Image Process. 31, 156-177 (1985).

7. A. Treisman, “Features and objects in visual processing,” Sci.
Am. 255, 106-125 (1988).

8. R. Gurnsey and R. Browse, “Aspects of visual texture discrimi-
nation,” in Computational Processes in Human Vision: An
Interdisciplinary Perspective, Z. Pylyshyn, ed. (Ablex, Nor-
wood, N.dJ., 1988). '

9. A. Treisman and S. Gormican, “Feature analysis in early vision:
evidence from search asymmetries,” Psychol. Rev. 95, 15-48
(1988).

10. A. Treisman and J. Souther, “Search asymmetry: a diagnostic
for preattentive processing of separable features,” J. Exp. Psy-
chol. 114, 285310 (1985).

11. B.Julesz, “A brief outline of the texton theory of human vision,”
Trends Neurosci. 7, 41-45 (1984).

12. B. Julesz, “Texton gradients: the texton theory revisited,”
Biol. Cybern. 54, 245-251 (1986). ”

13. I Fogel and D. Sagi, “Gabor filters as texture discriminator,
Biol. Cybern. 61, 103-113 (1989).

14. J. Beck, A. Sutter, and R. Ivry, “Spatial frequency channelg @d
perceptual grouping in texture segregation,” Comput. Vision
Graphics Image Process. 37, 299-325 (1987).

15. T. M. Caelli, “Three processing characteristics of visual texture
segmentation,” Spatial Vision 1, 19-30 (1985). L

16. J. D. Daugman and D. M. Kammen, “Pure orientation filtering:
a scale-invariant image-processing tool for perception researc
and data compression,” Behav. Res. Meth. Instrum. Comput.
18, 559-564 (1986). .

17. M. R. Turner, “Texture discrimination by Gabor functions,
Biol. Cybern. 55, 7182 (1986).

18. B.Julesz, “Visual pattern discrimination,” IRE Trans. Inf. The-
ory 8, 84-92 (1962). it

19. B.Julesz, H. L. Frisch, E. N. Gilbert, and L. A. Shepp, “Inabilty
of humans to discriminate between visual textures that agre¢ it
second-order statistics,” Biol. Cybern. 31, 137-140 (1973)

20. D. A. Pollen and S. F. Ronner, “Visual cortical neuronsc g
localized spatial frequency filters,” IEEE Trans. Syst. Man &Y
bern. SMC-13, 907-916 (1983). fer

21. F. W. Campbell and J. G. Robson, “Application of F ou11797
analysis to the visibility of gratings,” J. Physiol. (London) 1%
551-566 (1968). . tical

22. J. Daugman, “Two dimensional spectral analysis of cOT
receptive field profiles,” Vision Res. 25, 671-684 (1980)-



