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Abstract

The development of small unmanned aircraft systems (sUAS) has led to a plethora of

industry applications. One such application for a sUAS is detecting subterranean methane

leakage. The rapid detection of methane will streamline work in industries such as con-

struction and utilities. However, prior to flying a sUAS, the optimal way to detect methane

must be determined so that unknown levels of subterranean methane leakage can be de-

tected accurately and efficiently. In this thesis, two methods were used in conjunction

to optimize a sUAS method for methane detection. The primary objective was to use

hyperspectral data to locate the optimal wavelengths for methane detection for use on a

sUAS. This was accomplished in two parts. The first part of the study was a simulated

pipeline experiment where a copper pipe and mass flow controller were used to mimic

a natural pipeline leak close to the surface. The methane-stressed and healthy vegeta-

tion were measured daily using a handheld spectrometer alongside two other forms of

stressed vegetation. The analysis of the data showed potentially important variation at a

two band combination of wavelengths. The second part of the study used the measured

hyperspectral data as targets for a combination of atmospheric models developed using

iii
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the MODerate resolution atmospheric TRANsmission (MODTRAN) algorithm at a vari-

ety of currently valid sUAS altitudes of operation. This study evaluated whether altitude

will affect the ability to detect methane, along with determining which wavelength com-

bination is best for use on a sUAS. The final assessment of an optimal application was

made in regards to accuracy of methane detection within the MODTRAN data, as well as

the cost analysis for industries who want to implement sUAS methane detection.
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Chapter 1

Introduction and Motivation

1.1 Context

Methane is the most abundant trace gas in the atmosphere and is one of the most abun-

dant greenhouse gases in the lower level of the earth’s atmosphere, the troposphere [2].

There has been an increase in global abundance of atmospheric methane by a factor of

2.5 since 1750 [3]. Methane is known to come from two sources, biogenic and anthro-

pogenic, with biogenic sources being wetlands, termites, and hydrates. The exact amount

from each system that affects atmospheric methane levels is unknown, but in the United

States it has been estimated that the largest sources come from natural gas and petroleum

systems, livestock, landfills, coal mining, and manure management [4, 5]. It is important

to determine the amount of methane released into the atmosphere for the study of earth

and climate systems, and for the wellbeing of nearby people. Methane is a dangerous

chemical substance that is used in a variety of industries, sometimes close to residential

and urban areas. The ability to detect and monitor methane leaks currently is a large

1



CHAPTER 1. INTRODUCTION AND MOTIVATION 2

area of research. This research is being pursued in a variety of ways using both manned

and unmanned airborne imagery. An up-and-coming area of research is using small un-

manned aircraft systems (sUAS) to detect levels of methane leakage. There are many

industrial sources of methane and even with premier gas monitoring systems controlling

fugitive natural gas emissions are difficult, as an example, in 2009 the Los Angeles Basin

had a production leak rate of 17% [6, 7]. There are still areas of improvement and indus-

tries who are in need of an effective system for methane detection, as the U.S. Pipeline

and Hazardous Safety Administration reported that failures at natural gas pipelines cause

more than 17 fatalities, 68 injuries, $133 million in property damages and a total of $3

billion collateral damages annually [6, 8]. This thesis determines an optical imaging sys-

tem for detecting vegetative artifacts resulting from subterranean methane leakage with

an eye towards future use on sUAS platforms.

1.1.1 Hyperspectral detection of methane stressed vegetation

The context for this part of the study is developing an experiment to detect methane leak-

age from subterranean pipelines by observing surface vegetation. The effects of methane

stress should be seen by studying differences in affected compared to healthy vegeta-

tion reflectance spectra. There have been studies into the hyperspectral features for both

healthy and unhealthy vegetation. A well-known feature indicative of healthy vegeta-

tion occurs in the ‘red-edge’ region of the spectra. In the red region there is absorption,

because chlorophyll absorbs red light, seen in the hyperspectral data as low reflectance

factors. The near infrared (NIR) is where the radiation of leaf mesophyll, a tissue involved

in photosynthesis, causes high multiple scattering [9]. The ‘red-edge’ is the point of max-

imum slope in the vegetation reflectance spectra between the red and NIR regions, in
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the wavelength range of 680-750 nm [10]. This is in comparison to senesced vegetation,

which is vegetation affected by natural age-related deterioration, where chlorophyll ab-

sorption declines, causing the slope in the ‘red-edge’ region to also decline. The senesced

vegetation does have an increased reflectance in the short wave infrared (SWIR) that is not

seen in healthy vegetation, because the plant absorbs less water when vegetation senesces,

resulting in organic information (such as the protein of the plant) no longer being hidden

by water in the spectrum [11]. These known differences between the spectra of healthy

and unhealthy vegetation provide a context for further analyzing differences to locate

precise features that show the resulting spectral artifacts of methane leakage.

This concept is applied to new classes of affected vegetation for this work. If a sensor

is designed to detect only general signs of stress in vegetation, then there will be many

areas detected that are false alarms. This would require employees to continue to spend

prolonged periods of time locating potential leaks. If there were known methane-specific

characteristics, then the number of falsely detected areas would be reduced and quick

remediation protocols could be implemented. While it is beneficial that falsely detected

areas are reduced there also should not be any false negatives, areas with methane leaks

that are detected as not methane. The methane specific features can be found by not just

comparing spectra to those of healthy vegetation, but also to those resulting from natural

causes of vegetation stress. It is hypothesized in this work that spectral features that

differentiate the presence of methane would be highly correlated to subterranean methane

leaks. In order to study these features, an experimental plan was established. The location

of subterranean leaks are not always known, so this section of the study implemented a

physical simulation of a subterranean leak. This allowed for minimization of external

factors and a focused assessment of the spectral data. Chapter 3 of the thesis describes
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this study in detail and the initial work carried out in determining vegetative spectral

features correlated to methane leakage.

1.1.2 Specification of an Optimal Imaging Sensor to Detect Subter-

ranean Methane Leakage

The context for this section of the thesis is the determination of features correlated to

methane leakage occurring beneath surface vegetation. The objective is to determine an

optimal passive imaging sensor for use on a sUAS, with the intent of reducing the re-

liance on human observers to spot methane leakage over vast, mostly overgrown areas.

The benefits of using a sUAS is that it can travel over rough, perhaps inaccessible, ter-

rain quickly while imaging the entire area [6]. The captured data can be used to detect

locations of potential methane release. However, working with a sUAS involves taking

into account the solar light reaching the sensor at altitude. The sensor is then affected by

multiple components, the atmosphere itself, the target being acquired, and the adjacent

reflectance from the surrounding background. The components can be seen in equation

(1.1), where r is the surface reflectance, τ is the transmittance of the atmosphere from

surface to sensor, θ is the solar zenith angle, ravgback is the average reflectance of the sur-

rounding background, and L and E are radiance and irradiance, respectively [12]. These

were variables not necessarily taken into account in the study described in Chapter 3.

Lsensor =
1

π
Esolar cos θrτ +

1

π
Ediffuserτ + Lbackgroundravgbackground + Latmsophericpath

(1.1)

Chapter 4 focuses on validating whether features correlated to subterranean methane
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leakage would continue to detect methane signatures from typical sUAS altitudes. In or-

der to implement this section of the study, the MODerate resolution atmospheric TRANs-

mission (MODTRAN) model was used [13]. This simulated capability allowed targets

of different classes of vegetation, taken from the known spectral signatures of methane

stressed vegetation and other stressors from Chapter 3, to be simulated as though viewed

by a sensor at various altitudes. The results achieved from these simulations were used

to locate the appropriate altitude and combination of features for accurate detection of

methane-stressed (and other stressed) vegetation against a healthy grass background. The

recommended passive imaging sensor, discussed in Chapter 4, can be used according to

the needs of the industry. There are options that focus more on accuracy, as well as options

that are more cost effective.

This field is brimming with studies and business opportunities into methane detec-

tion. The majority of industries currently use hand-held ground sensors. There have been

studies into methane detection using satellite and manned aircrafts, such as airplanes and

helicopters. The introduction of the sUAS has led to a variety of methane detection prod-

ucts on the market. These detectors have been built to view methane effluents released into

the air, like those from a refuse landfill. The work presented here aims to provide more

flexibility for detecting subterranean leakage, perhaps at lower release rates. This pro-

posed sensor is recommended based on modeled at-altitude spectral signatures of methane

stressed vegetation spectra. Chapter 4 recommends specific band passes as an option for

an easy to use, optimal passive sensor for subterranean methane leakage.
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1.2 Objectives

This thesis will discuss the two objectives that were steps towards the primary goal of

determining the optimal passive imaging sensor for detecting methane artifacts within

vegetation from a sUAS. The main objectives are:

1. Determine features that can detect the presence of methane stress in vegetation via

analysis of ground based hyperspectral data.

(a) A timeline of how methane affects vegetation compared to natural stressors

can be developed based on a consistent methane flow emanating from a sub-

surface leak, in this case at 1 scfh. This can provide information to determine

how long a leak might have been occurring once the signatures have been

detected. (Chapter 3 and Appendix B)

(b) The detection of signatures correlated to methane stress in the presence of

both healthy vegetation, as well as other naturally induced vegetation stresses.

These differences can be determined by first derivative analysis, logistic re-

gression, and Jeffries-Matusita (JM) distance. (Chapters 3 and 4)

(c) The determination of signatures correlated to methane stress, in combinations

of two, three, and five bands, for accurate detection of methane stress in veg-

etation spectra. (Chapters 3 and 4)

(d) The chosen optimal features will be assessed for classification accuracy, but

also in terms of cost-effectiveness for industry use. (Chapter 4)

2. Determine the viability of an optimal passive imaging sensor through a simulated

sUAS study.
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(a) The in-situ simulated pipeline spectral data are used as the target observable

for the sUAS study. The targets are the four classes measured; methane stress,

root rot stress, water deprivation, and a healthy control. (Chapters 3 and 4)

(b) The altitude of the sUAS carrying the prescribed sensor introduces variation

of radiance reaching the sensor. These altitude-reliant conditions are simu-

lated using MODTRAN for a combination of different prevailing atmospheric

types. (Chapter 4)

(c) The output of the MODTRAN data is analyzed, per altitude, to determine

both optimal altitude for flight, as well as the accuracy of classification at

each altitude. The features with the highest accuracy will be recommended

for sensor implementation. (Chapter 4)

1.3 Thesis Layout

This thesis consists of four chapters. Chapter 1 provides the introduction to the problem

and the objectives of this study. Chapter 2 describes the background into previous remote

sensing techniques used for methane detection, and Chapter 5 provides the conclusion

and recommendations. Chapters 3 and 4 are described below.

1.3.1 Chapter 3: Hyperspectral detection of methane stressed vege-

tation

This chapter describes a study examining the hyperspectral reflectance characteristics of

vegetation stressed by the influence of low-level, sub-terrainean methane leakage from
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buried pipelines. The purpose is to ascertain whether high-spatial resolution spectra can

be used to locate small methane leaks in imagery collected from small unmanned aircraft

systems (sUAS). This could lead to rapid detection of methane leaks by finding spectrally

unique regions of stressed vegetation which might benefit a variety of industries, includ-

ing utility inspectors, grounds maintenance crews, and construction personnel. This doc-

ument describes an experiment to manually stress vegetation by introducing methane, at a

low flow rate, beneath a layer of turf, allowing it to percolate to the surface and affect the

vitality of the overlying vegetation. For comparison, a turf plot was stressed by root rot

caused by over-watering, as well as a sample of turf used as a control area (healthy grass).

The three areas of vegetation were observed daily over the course of a one-month period

with a ground spectrometer to determine the onset and time line of damage to the veg-

etation. High-spatial resolution spectral imagery was also collected each day to observe

wavelength dependent characteristics of the damage. First derivative analysis was used

alongside physiology-based indices and logistic regression to detect differences between

healthy and stressed vegetation spectra. The spectral data showed that as vegetation is

stressed, the red-edge slope decreases along with values through the near infrared (NIR),

while the short wave infrared (SWIR) reflectance increases. The normalized difference

index (NDI) calculation of stressed vegetation in relation to healthy vegetation is maxi-

mized using a ratio of reflectance values at 750 and 1910 nm. Conclusions will be pre-

sented as to whether sUAS may be used to determine if vegetation stressed by methane

can be easily detected and which spectral bands are most effective for identifying this

particular stressor.
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1.3.2 Chapter 4: Specification of an Optimal Imaging Sensor to De-

tect Subterranean Methane Leakage

The objective addressed in this chapter is to determine the optimal passive imaging sensor

configuration for detection of subterranean methane leakage for use on a small unmanned

aircraft system (sUAS). In order to accomplish this task, in-situ spectral data were col-

lected of turfgrass exposed to three stressors, as well as a control. The spectral signa-

tures found experimentally were then used in conjunction with the MODerate resolution

atmospheric TRANsmission (MODTRAN) model [13] to produce at-sensor spectral radi-

ance that would be used to locate combinations of spectral features that can differentiate

methane stressed vegetation from the other types of healthy and stressed vegetation at

common sUAS flight altitudes. The optimal sensor must be proven to work in a variety

of conditions, so the spectral radiance modeling simulated multiple atmospheric condi-

tions at varying times of day and year. The resulting modeled at-sensor radiance data

were analyzed, at different altitudes, using three common classifiers (logistic regression,

linear support vector machine, and linear discriminant analysis) using three different data

normalization approaches. The determination of optimal wavelengths involved classi-

fying the data with different groups of feature wavelengths; two three, and five bands

combinations selected from the passive reflective region of the spectrum (350-2500 nm).

These band combinations were determined by the work in Chapter 3, logistic regression

functions, and the Jeffries-Matusita (JM) distance to maximize class separability. In all

cases, the standard deviation of the spectral radiance was too large to allow for success-

ful classification to occur. The spectral radiance was converted to reflectance, using the

empirical line method (ELM), and provided higher accuracy in the two bands, and per-
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fect modeled accuracy was obtained with three or more bands. The accuracy achieved

held constant for all modeled scenarios where the altitude was below 1000 ft, which is

beneficial because sUAS fly at a maximum 400 ft. To incorporate sensor cost into the

study, the same analysis was conducted by only considering wavelengths that could be

detected with common silicon arrays. The results of the silicon-based detector analysis

showed the highest accuracy achieved with any band combination is around 60%. Those

hoping to use a system for this purpose can determine whether that accuracy will allow

them to achieve their goals. If not, it has been shown that using just three bands from

the full passive reflective region (350-2500 nm) results in perfect modeled accuracy. This

study is an initial step in determination of subterranean methane leakage and the positive

results lay the groundwork for future analysis. Based on desired cost and accuracy there

are combinations of spectral features that can detect changes in turfgrass reflectance that

is indicative of subterranean methane leakage from sUAS platforms.

1.4 Contributions

1.4.1 Hyperspectral detection of methane stressed vegetation

1. Collection of data for analysis into how methane affects vegetation compared not

just to healthy vegetation, but also compared to natural stress.

(a) The data give insight into the time line of methane stress affecting vegetation,

compared to natural stress;

(b) The implementation of a simulated pipeline leak minimizes external effects

on the spectral measurements; and
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(c) The mass flow controller is able to maintain a consistent flow of methane at 1

scfh, which is important information for sensor comparison.

1.4.2 Specification of an Optimal Imaging Sensor to Detect Subter-

ranean Methane Leakage

1. The accuracy of optimal combinations of spectral signatures correlated to methane

stress in vegetation spectra was calculated for sUAS use.

(a) Features were determined from the spectra of the simulated pipeline study

by determining the JM distance over two wavelength ranges, while care was

taken to avoid known water absorption bands seen at higher altitudes;

(b) Features were used in a simulated sUAS study to determine classification ac-

curacy at various altitudes, as well as a variety of atmospheric conditions; and

(c) Two combinations of recommended features can be used, depending on cost or

accuracy. The sensor would be detecting the response of turfgrass to methane

stress, unlike other sensors on the market.

1.5 Related Publications

Chapters 3 and 4 of this thesis were published in the following locations.

• Margot Accettura, Tim Bauch, Nina Raqueño, Joe Mallia, Carl Salvaggio, “Hyper-

spectral detection of methane stressed vegetation,” Proc. SPIE 10664, Autonomous

Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping

III, 106640I (21 May 2018); doi: 10.1117/12.2304045
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• Margot Accettura, Carl Salvaggio, “Specification of an Optimal Imaging Sensor to

Detect Subterranean Methane Leakage” In review at Remote Sensing of Environ-

ment



Chapter 2

Background

This thesis introduces a new sensor for detection of subterranean methane leaks. There

has been research ongoing in the field of methane detection for years, because of the

effect of methane on the earth’s system, as well as the number of industries that use and

release methane. The field of methane detection includes work measuring the amount of

atmospheric methane using satellites, although this is not used primarily for determination

of surface leaks. There are a variety of detection techniques for methane leakage on

industrial sites such as landfills. These handheld, manned, and unmanned techniques

each have used sensors available on the market but the levels of methane they can detect

vary and many detect methane in the air, not artifacts within vegetation spectra. This

chapter discusses the current state of sensors available for methane detection to provide a

context for the work presented in this thesis.

13
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2.1 Satellite

The effect of methane on Earth’s atmosphere is a broad area of study. The presence and

amount of methane can be studied using trace gas detection, as it is the most abundant

trace gas in the atmosphere. An example of satellite remote sensing is NASA’s EOS/Aqua

polar orbit satellite, which has a 2378 channel nadir cross-track scanning infrared spec-

trometer, the Atmospheric Infrared Sounder (AIRS), that can view a number of trace gas

species, including methane [14]. In one study on methane depletion the sensor was used

to view methane in the mid-to-upper troposphere. The determination of channels to use

for methane detection affects the sensitivity of the measurements, with peak channels hav-

ing a higher sensitivity at higher altitudes. The results of this experiment were in terms of

the ratio of methane in order to view depletion. There is no mention of this sensor being

used to view small levels of methane on the surface of the earth, as it was designed to

view atmospheric methane and leaks of 1 scfh would be a too low level.

There is a high uncertainty in the relative sources of methane contributing to increas-

ing levels of methane in the atmosphere. In 2011, a study was conducted to use satellite

measurements for local-scale detection of methane plumes. The Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS) was used to study the Coal Oil Point (COP) seep field

off the coast of Santa Barbara, CA. AVIRIS measures radiance from 400 - 2500 nm at a

nominal 10 nm resolution. This study used a band ratio approach because it had to take

into account the glint from the water. The plume origins determined by AVIRIS closely

matched data collected from surface and sonar measurements [15]. Although, AVIRIS

was accurate in the context of imaging large releases of methane in a marine environment

so it could be difficult to use AVIRIS to determine a subterranean leak of just 1 scfh.
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2.2 Ground

There are common non-technical ways of detecting leaks that still occur today, such as

just smelling methane [6]. This is why industries place odorant into methane so that

people can smell methane and alert the appropriate authorities in urban environments.

There needs to be a more technical system that will detect methane before it is already

permeating the air. There are some current implementations of ground detection that

occur on industrial sites, an example being some landfills that measure surface emissions

of methane using closed chambers on the grounds. These cannot cover the entire area

so they might give skewed results and differences in each chamber’s design and varied

post-processing of data gives an inaccurate count across landfills [16].

Traditionally, employees are sent biannually with handheld methane detection devices

to areas where methane is in use to look for signs of leakage. These handheld devices do

not detect gas until there is 1-5 ppm in a region, ppm cannot be compared to scfh without

information on environmental factors, and the handheld sensors would not be able to

differentiate between other nearby sources of methane. The sensitivity is high, but with

advancements in sensor sensitivity there needs to be improvement to routine methane

assessments [17]. Methane is explosive between the lower explosive limit of 5% of a

volume and the upper explosive limit of 15% of a volume [18]. The concentrations inside

of industrial areas, such as landfills and natural gas pipelines, are too large to be explosive

but in the case of a leak the amount can diffuse enough to be within the explosive limit

[19]. The location of many pipelines are close to habited areas so it is important to have a

sensor device that can give accurate and sensitive values.

An ongoing research area for methane detection uses thermal imagery. The Hyper-
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Cam Methane thermal hyperspectral camera, developed by Telops, is a high performance

methane detector, in the spectral range of 7400-8300 nm. This sensor lets you acquire

data concentrations at a lower limit of 1 ppm and a lower flow rate of 4.236 scfh. While

the resolution of this camera is high, this camera is non-portable and not suited for sUAS

operations (weighing 68 lbs) [20]. This limits the ease with which the Hyper-Cam can be

used for industrial and monitoring purposes.

2.3 Piloted Aircraft

Remote sensing techniques using piloted aircrafts have also been used for methane de-

tection even though it is more costly than handheld and sUAS devices. This is because

unmanned aircrafts have only recently become more cost effective and easily available

for purchase.

There has been work using a manned aircraft to monitor landfills, including two stud-

ies both onboard a DHC-6 Twin Otter aircraft. The first had onboard a Methane Airborne

MAP-per (MAMAP), a Picarro CRDS greenhouse gas in situ analyzer, and the Center

for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) aircraft standard re-

search instrumentation suite, including different positioning and attitude, meteorological,

aerosol, cloud, and precipitation sensors. The MAMAP measures reflected and scattered

solar radiation from the surface in the spectral region between 1590 and 1690 nm at

medium spectral resolution of 0.9 nm. The precision of the retrieved MAMAP columns

compared to the in-situ data has been estimated to be better than 0.4% over land surfaces.

The data were used in combination with knowledge of the wind fields for the calculation

of emission rates, the true flow rate of the external pump being 0.35 scfh [21]. There was



CHAPTER 2. BACKGROUND 17

agreement between the MAMAP data and the in-situ measurements, but having an en-

tire suite of in-situ measurement tools requires a lot of space and processing power. The

second study onboard a DHC-6 Twin Otter flew with a Hyperspectral Thermal Emission

Spectrometer (HyTES) to view a variety of sites in the Los Angeles area. One flight at

1,600 ft had controlled releases of 1000, 500, and 250 scfh. The flights were used to cre-

ate an algorithm to quantify emissions accurately [22]. An additional component of these

studies with controlled landfill methane releases is that the methane is leaking directly

into the air and is subject to the wind in the vicinity, so wind field monitoring or modeling

would need to occur. However, this is not an issue for methane that is affecting the root

structure of vegetation.

Helicopters have also been used because, like a sUAS, there is a lot more flexibility

compared to traditional fixed wing aircraft, however, there is a considerable cost for op-

eration of these vehicles. In one study, a helicopter was flown at seven different oil and

gas well pads across the United States at an altitude of 50 m. This study used the FLIR

GasFindIR infrared sensor, an InSb 320x240 detector with a special filter between 3000-

4000 nm in order to view methane. This study was able to view flow rates as low as 0.38

scfh, but the resulting images were faint [23]. The primary downside of this study is the

need to utilize a manned helicopter for sensor transport, and the industrial location again

does not easily correspond to vegetative effects of subterranean leakage.
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2.4 sUAS

2.4.1 Sensors

The field is expanding so rapidly that many commercial interests are beginning to offer

sensors for methane detection. Table 2.1 shows just a few sensors available for use in

sUAS methane detection, two thermal, one infrared, and two laser detectors, that have

been used in methane detection studies. The detectors in Table 2.1 are difficult to com-

pare as each has different capabilities and shortcomings, an example being the thermoIM-

AGER TIM 450, a thermal imager that is affected by temperature of the scene, as well as

the size of the area being imaged. The detectable flow rate in the table below is from an

area of more than 1 m2, but assumptions have been made about the area size to compare

flow rates. There have been other studies involving thermal sensors that have varying

findings based on external temperature [24], as seen by the FLIR T460 cameras mini-

mum flow detection. The flow rate of these sensors compared to the simulated pipeline

experiment is difficult to compare, one sensor only had minimum detection information

available in ppm, which has no easy way to compare to scfh without knowledge of the

environment size and air flow in and out of the space. The reason these sensors would

not be recommended for the work pursued by this thesis is that these all detect methane

plumes directly released into the air and not the affect of methane on vegetation. The

simulated pipeline experiment described in Chapter 3 had a consistent methane flow of 1

scfh, but the flow that percolates up the surface might be lower. It is unknown what flow

rate arrives at the surface of the turfgrass and whether the type of soil affects those levels,

but the variation in the turfgrass spectra correlated to methane stress is what is detected.

This dispersion adds to the difficulty of direct comparison amongst sensors, but should
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make our sensor comparable to those in Table 2.1.

Table 2.1: List of methane detectors

Detector Company Minimum Detectable Flow (scfh)

thermoIMAGER TIM 450 Micro-Epsilon 0.0003 [24]

GasFindIR FLIR 0.38 [23]

T460 FLIR 0.88 [24]

Open Path Laser Spectrometer SeekOps 0.1 [25]

Laser Methane mini-G Pergam 1 ppm [6]

2.4.2 Differential Absorption Lidar

Differential Absorption Lidar (DIAL) sensors are also being developed for use in methane

detection. This is a laser system, which unlike other commercially available sensors, has

two lasers. One of the lasers is at the absorption line for the gas, 1645 nm, and the

other just removed of that wavelength. The density of the gas can be determined by the

difference between the two laser responses. DIAL sensors can take both vertical and

horizontal measurements and create a 3D analysis of the emission. However, to fully

visualize the plume it will have to incorporate the wind field into the algorithm. There

have been studies that show in an open area a DIAL sensor was able to 3D map a plume

emitting at 1.875 scfh and in a closed area, at 0.33 scfh [26]. Although, research studies

involving DIAL sensors have primarily taken place at landfills with controlled releases.
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The lasers should be able to pick up concentrations of methane which have percolated

up to the surface, although depending on the flow levels and wind conditions this might

be difficult for a DIAL detector. As well, the narrow-band pulsed sources used in many

DIAL sensors requires intensive management during operation which would affect the

feasibility for industrial use [27].



Chapter 3

Hyperspectral detection of methane

stressed vegetation

The hyperspectral signature of the interaction between methane and vegetation is an im-

portant measure for various industries. The reason for vegetation health deterioration

from methane is because methane interacts with and stresses the roots of the vegetation.

This stress is believed to be caused by a few indirect reactions with the soil. The most ac-

cepted reasoning is the amount of methane in the soil displaces soil-oxygen and deprives

the roots of necessary oxygen. Another potential cause of stress is the methane interacting

with bacteria and other natural processes in the soil, thus leading to stress from variations

in the natural soil environment. A final explanation is that the dryness of the methane

leads to less moisture content in the soil[28, 29]. A lack of oxygen, being the probable

primary cause of methane stress, leads to less energy for root growth, making it harder for

roots to extract necessary water and nutrients from the soil.

The presence of methane is an external stressor on the overlaying turf. In order to

21
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differentiate between external stress and stress caused by natural processes, one of the

study areas of turf was subjected to root rot. There are two potential sources for root

rot. The first, carried out during this experiment, is severe over-watering and insufficient

drainage that leaves the root system drowned and lacking oxygen. The second cause of

root rot is wet conditions in the vegetation that cause different forms of fungus to flourish

and rot the root system. Once root rot is prevalent in vegetation it spreads outward and

affects even healthy root systems. The wet conditions and stress of the vegetation then

can become prime areas for various fungi and insect breeds [30].

Although there is still discussion about the reasons why methane causes vegetation

stress, it is well-known that the reflectance spectra will be affected. There have been

studies showing how the “red-edge” region is highly affected. The “red-edge” is the

region between red and near infrared (NIR) reflectance, which in healthy vegetation has a

sharp slope upward compared to a shallow slope as vegetation senesces. This is because

in the red reflectance region chlorophyll in the plant absorbs red light, while in the NIR

region there is high multiple scattering of radiation because of mesophyll, a leaf cell

involved in photosynthesis [9]. The “red-edge” is located within the wavelength range

of 680-750 nm [10]. An example of healthy and stressed hyperspectral signatures can be

seen in Figure 3.1, where the control vegetation has a steep slope, while the two forms

of stressed vegetation have shallower slopes. This noticeable stress characteristic has led

to previous success in research analyzing the derivative of hyperspectral data to view the

peak in the “red-edge” and interpret how methane stress affects the region [9].

The majority of previous studies into methane stressed vegetation have used large

flow rates. These large scale leaks show extreme oxygen deprivation, but in cases of

a pipeline leak underground, it is unknown how large a leak is or even that a leak is
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present until stress is seen on the surface. In order to have an adequate quantity of data

to interpret a timeline of leakage, and to determine the reaction vegetation has within that

time frame, and account for safety in an indoor location, this experiment utilized a lower

flow rate. Instead of an experiment looking at flow rates of approximately 3.5 scfh, [29]

this experiment is focused on flow rates of 1 scfh. This flow rate will provide information

on the duration a leak might have been occurring underground before being visible at the

surface.
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Figure 3.1: Plot of the mean spectra on the final day of measurements for the three ex-

perimental areas. The plot of methane stress shows the mean for each of the six locations

taken across the length of the inserted methane pipeline. Along the length of the pipeline

away from the length the vegetation becomes less stressed.
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3.1 Background

3.1.1 Hyperspectral Derivative Analysis

Hyperspectral analysis in previous work has focused on the derivative of the data [9]. In

this experiment the first derivative was implemented by dividing the difference between

spectral measurements at each consecutive wavelength by the wavelength sampling in-

terval, in this case the derivative was calculated with a sampling interval of 1 nm. An

example of the first derivative of the hyperspectral data for this work is seen in Figure 3.2.

The derivative can be used to more clearly detect spectral signatures than using the hyper-

spectral radiance or reflectance data. In previous work observing plant stress responses

to natural gas, differences between healthy and stressed vegetation have been observed

in peaks within the red-edge region along with the derivative ratio between 725 and 702

nm [9]. The wavelengths for the derivative ratio from this previous work was calculated

based on a closer look at the red-edge peak, where smaller peak regions were noticeable.

A closer look at the red-edge peak for this experiment, as shown in Figure 3.7a, shows

a smooth peak so a derivative ratio would not add any information to the analysis of this

experiment.

3.1.2 Physiology-Based Indices

Chlorophyll Variation

The chlorophyll content of vegetation is one of the most important parameters for studying

vegetation health. In numerous previous studies the normalized difference vegetation

index (NDVI) has been used as an analysis of chlorophyll. The NDVI function is stable,



CHAPTER 3. DETECTION OF METHANE STRESSED VEGETATION 26

500 1000 1500 2000 2500
Wavelength (nm)

−0.004

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

0.004

Ch
an

ge
 in

 R
ef
le
ct
an

ce
 F
ac
to
r

Control
Root Rot
Methane

Figure 3.2: Plot of the first derivative of the mean for the control vegetation, root rot

stressed vegetation, and methane stressed vegetation taken on the last day of the collect.

which allows for comparison over time and, along with the fact that its implementation

uses ratios and thus reduces noise. Although there are drawbacks to using NDVI because

it is influenced by a variety of factors so in order to not make assumptions it should not

be the only technique used for analysis [31, 32]. NDVI looks at the difference between

visible (VIS) and NIR bands. The chosen bands are flexible, so a NDI can be run for a

variety of VIS and NIR band combinations [33]. The output of NDVI ranges between -1

and 1, with positive values being healthy vegetation and negative values being stressed

vegetation, where ρ is reflectance.

NDV I =
ρNIR − ρV IS
ρNIR + ρV IS

(3.1)
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Other band specific chlorophyll methodologies can be implemented. These other cal-

culations are used to minimize background effects, like the reflectance of the soil. One

collection of indices is the Chlorophyll Absorption Ratio Index (CARI). The Modified

Chlorophyll Absorption Ratio Index, Transformed Chlorophyll Absorption Ratio Index,

and Triangular Chlorophyll Index (MCARI, TCARI, and TCI, respectively) are all per-

formed as various forms of the CARI calculation. All three of these indices are focused

on the visible and red-edge areas of the hyperspectral data. The Soil-Adjusted Vegetation

Index (SAVI) was also analyzed along with its variations, the Modified Soil-Adjusted

Vegetation Index (MSAVI) and the Optimized Soil-Adjusted Vegetation Index (OSAVI).

Table 3.1: This table shows the equations for the various chlorophyll physiological in-

dices. ρ is the reflectance at a specific wavelength (nm).

Acronym Equation

MCARI [(ρ700 − ρ670)− 0.2(ρ700 − ρ550)] ∗ (ρ700/ρ670)

TCARI 3[(ρ700 − ρ670)− 0.2(ρ700 − ρ550)(ρ700/ρ670)]

TCI 1.2(ρ700 − ρ550)− 1.5(ρ670 − ρ550)
√
ρ700 − ρ670

SAVI (1+0.5)(ρ800−ρ670)
(ρ800+ρ670+0.5)

MSAVI 0.5[2 ∗ ρ800 + 1−
√

(2 ∗ ρ800 + 1)2 − 8(ρ800 − ρ670)]

OSAVI (1+0.16)(ρ800−ρ670)
(ρ800+ρ670+0.16)

Water Variation

As oxygen deprivation affects the roots, vegetation is not as effective at retrieving nutri-

ents from water. Previous work has looked at the reflectance of vegetation in terms of
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water content [34]. In Clevers et al.,[35] they aimed to estimate the canopy water content,

which is the result of the leaf equivalent water thickness and the leaf area index. There

are also physiological indices that can be calculated to look at differences in water con-

tent from hyperspectral data. The Normalized Difference Water Index (NDWI) is a ratio

similar to NDVI, but focused on looking at SWIR bands at 860 and 1240 nm.

NDWI =
ρ860 − ρ1240
ρ860 + ρ1240

(3.2)

Fluorescence Variation

In previous work [36, 37] the Physiological Reflectance Index (PRI) was used to analyze

reflectance of hyperspectral data. The PRI was first presented by Gamon et al. [38] and

it is related to the xanthophyll cycle. PRI looks at the reflectance changes near the green

part of the spectrum which are related to the xanthophyll cycle, a system connected to

the process of photosynthesis. The analysis of the xanthophyll present in the vegetation

shows the dynamic changes due to chlorophyll fluorescence. This fluorescence change

can lead to early detection of vegetation disturbance.[39] The PRI looks at the relative

change betweens bands 531 and 570 nm.

PRI =
ρ531 − ρ570
ρ531 + ρ570

(3.3)

3.1.3 Logistic Regression

Logistic regression is a supervised classification technique for analyzing the difference be-

tween binary variables. In the analysis of stressed vegetation the binary variables would

be unstressed and stressed (0 and 1, respectively). Previous work has used logistic regres-

sion to select the optimal bands in the hyperspectral data for locating stressors [40]. In
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order to determine the optimal bands for differentiation, logistic regression is performed

on a per-wavelength basis for all combinations of the hyperspectral wavelengths with a

sampling interval of 10 nm. The sampling interval was chosen for ease of calculation and

so as not to have a sampling interval smaller than the resolution of the instrumentation.

The following equation is used for the logistic regression model, where σij is the expected

value of the function at wavelengths i and j, β0ij and β1ij are regression coefficients for

each combination of wavelengths i and j, Xij are the spectral values at both wavelengths

i and j, and εij is a random error term [40].

σij =
exp(β0ij + β1ijXij)

1 + exp(β0ij + β1ijXij)
+ εij (3.4)

In order to determine how well each combination of wavelengths determines stress,

an “area under the curve” analysis is implemented. This is the area under the Receiver-

Operator Characteristic (ROC) curve. A ROC curve is created by plotting the true-positive

fraction (e.g., stressed vegetation identified as stressed) of the logistic regression model by

the false-positive fraction of the model (e.g., unstressed vegetation identified as stressed).

The area under the ROC curve is a metric that can be used to locate the combination of

wavelengths with strong sensitivity for locating vegetation stress. A value of the area

under the curve larger than 0.8 shows significant sensitivity [40].

3.2 METHODS

This experiment occurred in the winter season, therefore, for optimal growth of the turf

we implemented the experiment inside the greenhouse at the Rochester Institute of Tech-

nology.
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3.2.1 Experimental Set-Up

Three large mixing tubs (24 x 36 x 8 inches) were used as the turf locations for the three

experimental variables, namely methane stress, root rot stress, and control. Four 1/2”

holes were placed on the sides of each tub for drainage. A 1/2” diameter copper pipe was

placed 4” up the height of the methane tub. Five 1/2” diameter holes were drilled into the

copper pipe and were placed facing downwards, aiming towards the bottom of the tub.

The copper pipe was surrounded on all sides by pea pebbles. The pebbles were placed

around the pipe so the methane would release through the stones and percolate up towards

the surface. In order to remain consistent throughout the tubs, a layer of pea pebbles was

added 4” up the height of the other two tubs. The methane was leaked using a mass flow

controller to keep the leak at a consistent speed of 1 scfh. Turfbuilder soil was placed

above and below the layer of pea pebbles. The sod, a form of Kentucky Bluegrass, was

placed on top of the layer of soil.

In order for the sod to root into the soil it had to be kept at optimal conditions for

root growth, so the soil temperature, moisture, and pH was monitored daily. The root

growth of Kentucky Bluegrass peaks at 60◦F. In order to maintain optimal lighting two

fluorescent Sylvania T12 grow lamps (Model #046135246715) were placed above the sod.

Grow lamps are designed to stimulate plant growth and the ones used in this experiment

had a color temperature of 3400 K. To help soil warmth, Vivosun heating mats (Amazon

Standard Identification #B00Y27FJ1C) were placed beneath each tub to provide external

heating. They maintained a steady temperature, and heat was distributed evenly across

the bottom of the tub. Both the heating mats and glow lamps were placed on a timer to be

running from 7 AM to 7 PM local time (Eastern Standard Time). This was to simulate the

amount of light present in the summer months. This provided the vegetation with enough
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Figure 3.3: This is an image of the experimental set-up in the greenhouse at RIT after

two weeks of growing. From left, the tubs are the methane stressed, root rot stressed,

and control. This was prior to the release of the methane when the overlaying turf was

allowed to stabilize and root.

heat during daylight hours so that the soil never fell below 60◦F.

3.2.2 Collection Set-Up

The interior layout of the greenhouse required preparation for data collection, because

the greenhouse has multiple walls and a roof constructed of glass. This would lead to

sunlight streaming in, which, depending on time of day and weather conditions (e.g. snow

accumulation on the roof), would affect the illumination on the scene.

In order to mitigate the issues from stray light, a curtain of black felt was used to

isolate the vegetation for image and spectra data collection. The black felt curtain was
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moved on a string above the scene to cover all sides of the tubs at the beginning of daily

data collection. The black felt helped mitigate issues of external lighting, so controlled

light sources could be used to create a consistent illumination field on the vegetation. The

light sources used were two Sunnex HF Series halogen lamps (Model HF2010). They are

movable light sources that could be adjusted to raise the lights and aim them precisely on

the scene.

A collection rig was created to keep collection consistent throughout the duration

of the experiment. The device was made using various pieces of 80/20, an aluminum

building system. It was measured to fit precisely over the tubs with small wheels placed

on the bottom so it could be pushed from one tub to another throughout the experiment.

The aluminum surface was painted flat black so the interaction of the light shining on the

aluminum would not add stray light into the field of view. The Sunnex light sources were

attached to the legs so they always moved together from one tub to another. A crossbar

spanned the width above the tub and had locations for the two instruments used during

this experiment, a point spectrometer and multispectral imager. This allowed the two

devices to take measurements at a consistent location for the duration of the experiment.

3.2.3 Instruments

ASD Spectrometer

The hyperspectral measurements were taken daily using a FieldSpec Hi-Res Spectrora-

diometer from ASD, Inc. [41] at a height of 1 ft above the turfgrass. The spectrometer

collects measurements ranging from 350-2500 nm, with a spectral resolution of 3 nm in

the visible and NIR and 8 nm in the SWIR, resolution bandwidths which were interpo-
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Figure 3.4: This is an image of the two Sunnex light sources in use on the collection reg.

The lights are attached to the base of the rig and positioned near the top of the rig. The

lights are aimed downwards directly towards the area of measurement.

lated to different sampling intervals for analysis. Over the course of the experiment the

spectrometer data were collected using a 3◦IFOV foreoptic. The data were collected at

the center line of each tub and was rolled along the length of each tub to collect in six

separate positions, each separated by 2 inches.
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MicaSense RedEdge

The multispectral measurements were collected using a MicaSense RedEdge camera. The

RedEdge camera was placed in the center of the tub for collection. The RedEdge camera

has a 47.2◦FOV and a resolution of 1280x960. The camera captures images at the five

wavelengths shown in Table 3.2.

Table 3.2: This table shows the wavelengths captured by the MicaSense RedEdge camera

and the bandwidth at the full width half max for each band.

Band Center Wavelength (nm) Bandwidth FWHM (nm)

Blue 475 20

Green 560 20

Red 668 10

Red Edge 717 10

Near IR 840 40

3.3 RESULTS

For the analysis hyperspectrometer data were smoothed to reduce noise using a Savitzky-

Golay filter. This filter involves doing a local polynomial regression to calculate the

smoothed value at the center of the filter window. This filter is able to smooth and differ-

entiate absorption spectra simultaneously [42]. This filter is able to handle the amount of

information present in hyperspectral imagery.
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Figure 3.5: Original plot of the mean spectra (left) next to the smoothed spectra (right) of

the last day’s data. Smoothing is most clearly seen in wavelengths less than 500 nm and

greater than 2000 nm, where the illumination of the halogen lamps are lesser.

3.3.1 Time Series

Initially the vegetation spectra are all similar, with steep red-edge slopes and similar spec-

tral shapes. As the vegetation becomes stressed, differences begin to become apparent.

Over the course of the experiment, change in the spectra of the classes of stressed vegeta-

tion shows areas on which to focus when detecting methane stressed vegetation.

Figure 3.6 shows spectra on a weekly basis over the duration of the experiment. The
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root rot stressed vegetation begins to die before the methane stressed vegetation. The

slope in the red-edge region is the first visible change. The slope begins to become shal-

lower as the reflectance values begin to decrease. This occurs in the methane stressed

vegetation about two weeks after it is initially seen in the root rot stress. After the red-

edge slope has begun to decline, there is a change in the reflectance values in the SWIR

region of the data. By the end of the month-long experiment, SWIR reflectance values for

both the root rot stressed vegetation and the methane stressed vegetation are higher than

the healthy vegetation. In healthy vegetation the SWIR range has strong water absorption

features, but when vegetation is stressed, water absorption no longer conceal absorption

features from organic bonds in the vegetation. These absorption features are related to a

combination of the protein, lignin, and cellulose of the plant [11]. This is an important

take away from the timeline analysis of the experiment. This shows that along with the

values of the red-edge decreasing, there is also an apparent increase in the values of the

SWIR region of the data.

3.3.2 Derivative

The first derivative of the data clearly shows the red edge peak in the data, as seen in

Figure 3.2. As this area is a well known indicator of vegetation stress, it is highlighted in

Figure 3.7a. This plot is of the data from the final day of the experiment. It can be seen

that the unstressed vegetation has a much higher peak than the two stressed locations.

Between the two forms of stressed vegetation it can be seen that the methane stress still

has a higher peak than the root rot stress. This can be explained by the speed with which

the natural death occurred compared to the methane death. This timeline difference is

shown in Figure 3.7b. This is a plot of each classes red-edge slope value over the course
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of the experiment. The control experiment initially declines, then regains health on day

17 of the experiment. This is because part of the control turfgrass began to show signs

of over-watering, caused by insufficient drainage issues, so the data capture had to react

to this event by readjusting to a healthy area. While all three experimental turfgrass plots

begin with similar reflectance values, the presence of root rot and methane stress reduce

the reflectance at similar rates. The presence of root rot begins to stress the turfgrass

within the first week of the study, while the initial decline in methane stress does not

occur until approximately two weeks into the experiment.

The full hyperspectral first derivative plot, in Figure 3.2, also shows a distinct differ-

ence in peaks found in the red-edge region and other features in the data. There are two

large dips in the SWIR region, one at 1400 nm and the largest being around 1900 nm.

The difference in change in reflectance between the red-edge peak and the SWIR feature

is observable. This is an important addition to calculating the first derivative because of

its ability to detect wavelengths that might be harder to visualize with the hyperspectral

timeline data. The output of this first derivative plot lead to analysis in further sections.

3.3.3 Physiology Indices

The physiological calculations of the hyperspectral data show a strong difference between

stressed and unstressed vegetation, along with slighter differences shown between the root

rot and methane stressed vegetation. The NDVI function calculated the ratio between

bands at 680 and 800 nm. In Figure 3.8a, each area of turf begins with similar NDVI

values, but the stressed regions begin to deteriorate at different time frames. The root

rot NDVI value drops in an almost immediate linear fashion, while the methane stress

NDVI value begins a decline after approximately two weeks. The initial differences seen
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in Figure 3.8 are caused by the health of the turgrass. The methane stressed turfgrass was

rooted slightly after the other two experimental plots. This did not appear to affect the

experiment beyond the slight initial difference.

Analysis was also performed to determine the wavelengths for maximum difference in

NDI. The NDI ratio was performed for all combinations of wavelengths and the difference

between control, root rot, and methane stressed vegetation was analyzed to find the bands

which showed the maximum difference. At the end of the experiment, when stress was

visible from both root rot and methane, the two wavelengths with the largest difference

in normalized difference values were similar for the two different forms of stress. The

calculated wavelengths were 750 and 1910 nm. These wavelengths values correspond to

the large peak and large dip in the first derivative plot, as seen in Figure 3.2. The NDI

calculation was then performed for those two calculated wavelengths, as seen in Figure

3.8b. These wavelengths lead to a slightly different interpretation than the NDVI function.

In the case of NDI, as vegetation becomes more stressed the two wavelengths have a

higher ratio. A similar timeline is seen with the methane stressed location increasing in

NDI after two weeks and the root rot ratio increasing immediately. The shape of the NDI

values over the span of the collect are similar to the shape of NDVI values at 680 and 800

nm, but the NDI values show a clearer difference in the amount of time methane took to

affect the turfgrass, with the slope beginning to rise over two weeks into the experiment.

In Table 3.3 the values of the physiological algorithms are shown for each experi-

mental region on the final day of experimentation. For both NDVI and NDWI the values

range from -1 to 1 and the healthy control vegetation is the highest value of the three,

which is to be expected for non-stressed regions. There is a larger difference between

stressed and non-stressed NDVI values than between those variables for NDWI, meaning



CHAPTER 3. DETECTION OF METHANE STRESSED VEGETATION 39

that the wavelengths for NDVI assessment capture more of a difference than the wave-

lengths used for NDWI assessment. MCARI, TCARI, SAVI, MSAVI, and OSAVI show

the same results as NDVI and NDWI. The control region has the highest value, followed

by the methane, and then the natural stress. The results of these functions show similar

results to the NDVI function. This implies that studying chlorophyll is most effective for

studying vegetation stress, although that is a broad assumption to make when dealing with

complicated plant physiology. The chlorophyll of the plant is a starting point into further

analysis of the relationship between methane and vegetation. The only difference is in

the TCI function, whose value range is opposite, with natural stress having the highest

value. The PRI equation shows similar results to NDWI, where the differences are small

between the control, natural, and methane regions. This shows that the xanthyll differ-

ence between the three areas is small and that the fluorescence is not greatly affected by

methane stress.

3.3.4 Logistic Regression

The logistic regression was calculated for two binary scenarios on the final day’s data,

control vs root root stress and control vs the methane stress, to find the coefficients of the

model. The function was run looking at two band combinations, where the only features

used for the model were the two chosen wavelengths. The area under the ROC curve was

calculated to determine how sensitive those two bands are, because the more sensitive

band combinations would be important for use in previous analysis to determine stress in

vegetation.

In Figure 3.9, the combinations of wavelength are plotted against each other, with

wavelengths on both axis. This means that the images below are symmetric across the
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Table 3.3: This table shows the physiological calculations for the final day of data for the

three experimental regions of analysis. The values in bold are the lowest values for each

analysis, indicating most stressed.

Equation Control Root Rot Methane

NDVI 0.590 0.227 0.347

NDWI -0.055 -0.144 -0.160

MCARI 0.069 0.008 0.022

TCARI 0.109 0.015 0.042

TCI 0.057 0.073 0.064

SAVI 0.408 0.152 0.221

MSAVI 0.391 0.132 0.195

OSAVI 0.505 0.195 0.289

PRI -0.071 -0.104 -0.097

diagonal of the image. The sensitivity of the wavelength combination is shown in the

colors on the image. The two band combination that provided the maximum NDI value

was plotted as two red circles on the images. As can be seen, the combination of 750 and

1910 nm is in the highest sensitivity ranges on both the root rot and methane compari-

son images. The control and root rot comparison have various saturated areas of perfect

determination. The control and methane stress comparison reach sensitivity close to 0.9

for many two band combinations, but there are almost no two band combinations with

perfect determination. This can be because of the difference in timing of the root rot and

methane stress. In all analysis the root rot caused higher levels of vegetation stress, when

compared to the methane stress.
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Figure 3.6: These plots are a time series of the hyperspectral data over the course of the

experiment. The initial plots show steep red-edge curves for all three classes. The root

rot stress begins affected the red-edge within the first two weeks, while methane stress

begins taking affect within the last two weeks. The increase in the SWIR region is clearly

visible in the final days data.
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(a) Plot of the first derivative of the

mean spectra from 600 to 800 nm on

the last day of the experiment. This

shows the smoothness and the location

difference in the red-edge peaks, with

the control red-edge being at a further

wavelength than the other two classes.
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(b) Plot of red-edge peaks, the maxi-

mum slope value, over the course of

the experiment. Root rot and methane

peaks decrease over the course of the

experiment, drastically and at a slower

pace, respectively.

Figure 3.7: These plots focus on the peak of the red-edge region found in looking at the

first derivative of the hyperspectral data.
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(a) A plot of NDVI values for each day

of collect taken at wavelengths of 680

and 800 nm.
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(b) A plot of NDI values for each day

of collect taken at wavelengths of 750

and 1910 nm.

Figure 3.8: The NDVI and NDI plots over the course of the collect
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Figure 3.9: Plots of the area under the curve from a logistic regression of two-band com-

binations of wavelengths.
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3.4 CONCLUSION

The current analysis has shown the success in using close range spectrometer data to de-

termine the presence of stress in uniform turfgrass. Methane stress takes longer to be seen

compared to natural stress. Natural stress from root rot appears in the hyperspectral data

within days, while the methane stress appears after approximately two weeks. This is

an important result for understanding the timeline of methane leakage in many utilities.

The presence of stress is also most visible in the red-edge region of the data, which is a

primary feature of healthy vegetation. The most important result from this work is the

increase in reflectance seen in the SWIR region over time and the location of optimal

bands for NDI calculation to be 750 and 1900 nm. The optimal bands were further stud-

ied using logistic regression and were found to be highly sensitive. In future analysis of

wavelength combination optimization, the wavelengths available in MicaSense RedEdge

data can be analyzed to determine this most affective detection along with the accuracy

difference between hyperspectral and multispectral data for vegetation stress determina-

tion. This knowledge of optimal band combinations can lead to further exploration of

optimal sensors to place onto sUAS systems.
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Chapter 4

Specification of an Optimal Imaging

Sensor to Detect Subterranean Methane

Leakage

The process of detecting a signature of methane stress in spectral measurements of vege-

tation is beneficial for a variety of industries which require quick and accurate detection

of unknown levels of subterranean leakage. The use of a small unmanned aircraft system

(sUAS) would help to quickly cover large regions and keep employees away from po-

tential dangerous situations, but in order to accurately locate methane signatures, specific

sensors must be placed on the sUAS. The sensor must determine what type of stress has

caused specific changes in vegetation reflectance, whether it be the presence of methane

or other vegetative maladies. This area of study has already produced the concept of using

a Differential Absorption LiDAR (DIAL) in order to detect gases from altitude. This sys-

tem uses one laser at the absorption line for a gas, 1.645 µm for methane, and one at an

46
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off-line wavelength of that gas. The difference between the two responses is proportional

to the density of the gas [26, 43, 44]. Although the DIAL system can detect specific areas

and levels of methane, the LiDAR is a sophisticated system that involves intensive mainte-

nance before and during any airborne flights [27]. This proposed system will not have that

significant cost and will require little preparation before flight. Furthermore, this system

does not detect methane itself, rather it detects artifacts within vegetation reflectance that

are strongly correlated with methane leakage, here the vegetation studied being methane

stressed turfgrass. Two components for determining whether the system will be effective

before use are the maximum altitude where methane presence can be detected, so that it is

known whether using a sUAS system is viable, and the optimal spectral imaging system

to place on the sUAS for maximum classification accuracy.

Both components of this project can be analyzed using the MODerate resolution at-

mospheric TRANsmission (MODTRAN) algorithm [13]. MODTRAN simulations can

be modeled based on a wide variety of standard atmospheres (mid-latitude summer and

winter, tropical summer and winter, and the 1976 US Standard atmosphere), visibilities (5,

10, and 23 km), days of the year, and times of day. This project was focused on a known

pipeline location in the Rochester, NY, USA, but this same MODTRAN analysis can be

run at any location globally. The variations run in this study were grouped according to

altitude, simulating the altitude of the sensor on a sUAS. The per-altitude classification

of the data can lead to insights as to the optimal altitude to fly and the accuracy of the

combinations of wavelengths for detection at those altitudes. The sensor must be able to

detect methane stress as compared to other vegetation conditions, so simulations were run

representing methane, root rot, and water stress along with control vegetation as targets.

An assumption made is that, in use, any areas in which methane stress exists will be sur-
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rounded by healthy vegetation, so the spectral measurements of control vegetation were

always used as the background for any simulated scenario. The four target classes were

run with identical MODTRAN input parameters so multinomial classification algorithms

could be run to determine optimal detection wavelengths.

4.1 Background

4.1.1 Hyperspectral Analysis

In-situ measurements were conducted in a previous study into hyperspectral methane

detection [1]. In this work a simulated pipeline experiment was conducted by leaking

methane underneath rooted sod from a 1/2” diameter copper pipe with five 1/4” diameter

holes. The methane would stress the vegetation by percolating up through the soil, de-

priving the root system of oxygen [28, 29]. A mass flow controller was used to keep the

methane flow consistent at 1 scfh. Sod was rooted in two other experimental plots, one

representing healthy vegetation and the other affected by root rot, severe over-watering

of the plants which drowns the root system [28, 29]. The initial set up of the three tubs

before implementing the experiment can be seen in Figure 4.1.

After completion of the experiment by Accettura et al. [1] described above, a sec-

ond series of in-situ measurements were performed with three more plots of sod; methane

stressed, control, and instead of root rot stress, water stressed (deprivation). Each plot was

kept at identical growth conditions to the previous study. The two experiments occurred

at the Rochester Institute of Technology greenhouse where the outer wall was constructed

primarily of glass, seen in the background of Figure 4.1. The impact of variable outside

lighting had to be minimized during spectral measurements by placing a cloth of black
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Figure 4.1: Depiction of the simulated pipeline experiment performed in previous work.

The tubs are affected by methane, root rot, and one is control (left to right). [1]

felt around the experimental area along with movable halogen lamps aimed directly on

the plots for consistent illumination, seen in Figure 3.4. The hyperspectral measurements

were collected daily using an ASD FieldSpec Pro that acquires measurements in the range

from 350 to 2400 nm and, as seen in Table 4.1, with 150 measurements taken for each

experimental plot. The final day’s measurements for both experiments were averaged to-

gether to be used as the four target spectra for the MODTRAN simulations. In Figure 4.2,
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the average of each class can be seen surrounded by a one standard deviation envelope.

Spectra were smoothed by a Savitzky-Golay filter to reduce noise. This performs a local

polynomial regression in order to calculate the smoothed value at the center of a chosen

filter window [42].

Table 4.1: The daily measurements of the two experiments

Experiment Plot Spectra per day Spectra/Locations

Methane 150 25/6

Experiment 1 Root rot 150 25/6

Control 150 25/6

Methane 150 25/6

Experiment 2 Water deprivation 150 25/6

Control 150 25/6

First derivative hyperspectral analysis was implemented in Accettura et al. [1] and

the results applied in this study. The derivatives of the spectra were calculated in order

to view the peaks in the ‘red-edge’ region, the region between the red and near infrared

(NIR) sections of the spectrum. The peak is caused by chlorophyll absorption in the red

region, which has low reflectance factors, and multiple scattering in the NIR with high

reflectance factors [9]. The first derivatives of the measurements were taken by dividing

the difference at consecutive wavelengths by a bandwidth of 1 nm. The first derivative will

then clearly show the maximum slope value that occurs at the ‘red-edge’ of the spectra.
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Figure 4.2: Spectral reflectance data of the four classes observed during the simulated

pipeline experiments.

The two wavelengths with the largest difference between control and methane re-

flectance in the first derivative were calculated [1]. These two wavelengths are 750 and

1910 nm, as can be seen in Figure 4.3; these wavelengths are located at the ‘red-edge’

peak and in the largest water absorption band. The methane and control spectra were also

used to compute the area under the Receiver Operator Curve (ROC), the plot of false pos-

itive rate by true positive rate, resulting from a binary logistic regression function. The

result was used as validation of the 750 and 1910 nm bands in differentiating methane

from control vegetation, because the area under the ROC curve was over 80%. Methane
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and control were the only spectra run through the binomial logistic regression function,

while this study is concerned with multinomial classification so methane stress can be

detected against other stressors.
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Figure 4.3: First derivative plot for the three classes grown at that time, control, methane,

and root rot stress [1].
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4.1.2 MODTRAN Analysis

MODTRAN (v.4.3R1) is a publicly available code developed by a collaboration of the

United States Air Force Research Laboratory and Spectral Sciences, Inc. This section will

discuss studies which have used MODTRAN as a way to simulate real world conditions

for verification. MODTRAN is an effective tool because it is a physics based simulation

algorithm that uses radiative transfer techniques to create an atmospheric model. The

atmospheric model is created by taking into account spherical geometry, solar source

functions, scattering, and known gas profiles of the atmosphere. The final output of the

MODTRAN algorithm is the atmospheric transmission and radiance at a resolution of

2cm−1 [45]. The radiance output is a combination of radiance scattered by the atmosphere

into the sensor, radiance reflected by the target and transmitted directly to the sensor,

and radiance reflected by the background and diffused into the sensor [46]. A simple

representation of the components of radiance reaching the sensor can be seen in Figure

4.4. This project only focuses on total radiance, because the sUAS will be flown quickly

in a wide variety of real world applications with all components affecting the sensor.

Figure 4.4: Simple figure showing the components of radiance that reach the sensor.
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Other previous work has looked at validating MODTRAN. In work by Vogelbacher

et al. [47], MODTRAN was run to correspond with in-situ measurements and the ac-

tual and simulated transmissions were compared to evaluate the model effectiveness. It

was found that the MODTRAN and the actual transmission lined up well, except for at

around 950 nm, which they hypothesized was potentially because of water transmission.

This shows that MODTRAN is an effective technique when incorporating in-situ mea-

surements and shows the importance of determining areas which affect transmission. The

accuracy of MODTRAN has led to studies using simulations to study natural systems,

like forest canopies and drought measurements [48, 49], to analyze the effectiveness of

sensor systems [50], and to develop entirely new models [51].

MODTRAN has also been utilized to determine the presence and effect of water and

methane absorption throughout the hyperspectral range of 350 - 2500 nm. In work by

Pandya et al. [52], MODTRAN is run in the NIR range because of its importance when

looking at vegetation and to make sure that small bands of atmospheric water vapor will

not affect NIR measurements. The results of this study showed that the presence of wa-

ter vapor brought the transmission down from 1 to 0.91 at the wavelength of 810 nm.

This study ran MODTRAN with varying levels of atmospheric water vapor compared to

no water vapor, although it only ran these variations with a precise atmospheric model

occurring at a tropical atmosphere. In this study the transmission curves will have to be

analyzed to determine water absorption wavelengths to avoid. Another study using MOD-

TRAN to focus on methane is presented by Hu et al. [53]. This study used MODTRAN to

simulate a variety of gases present in the atmosphere. The methane absorption bands they

detected in the atmosphere occur at 2300 nm. This is at the far edge of the hyperspectral

range measured in this study and as this project wants to locate methane on the ground, it
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is important to know that there is no atmospheric methane in the region studied.
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Figure 4.5: Total radiance data of the MODTRAN results at 5000 ft for methane and

control classes. This altitude is an altitude commonly flown by manned aircraft but the

data clearly shows the overlap of the data classes standard deviations.

4.1.3 Normalization

This study involved running combinations of atmospheric conditions in MODTRAN at

a variety of altitudes achievable via sUAS platforms. The output of total radiance from

all MODTRAN runs led to a large standard deviation amongst the spectra, as seen in

Figure 4.5. The large standard deviations can be be minimized using normalization tech-

niques. Some of the most commonly used forms of normalization in the machine learning

community are known under the collective title of “feature scaling”, which is used to re-

duce the impact of features that might have a particularly large range of values so that
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all features will contribute proportionately to the final calculations [54]. The two forms

of feature scaling used in this project were rescaling the data to fall between 0 and 1 and

scaling the feature vector to be unit length. Along with those two schemes, the data were

converted to reflectance by using the empirical line method (ELM), a common calibration

technique used by the aerial remote sensing community [12].

Rescaling

Rescaling data to fall in the range between minimum values of 0 and maximum values of

1 is a common form of feature scaling and is used often as a preprocessing step before

preforming machine learning algorithms. This is accomplished using equation 1, where

x is the total radiance data and x′ is the normalized data, and the results can be seen in

Figure 4.6.

x′ =
x−min(x)

max(x)−min(x)
(4.1)

Unit Length

The normalization of the data to be unit length means treating the data as a vector. All

components of the data vector will be scaled to have a vector length of one, a unit vector.

This involves dividing the vector by its euclidean length, as seen in equation 2, where xn

are the elements of the total radiance data and x′ is the normalized data, and the results

can be seen in Figure 4.7.

x′ =
x√

x21 + x22 + ...+ x2n
(4.2)
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Figure 4.6: Radiance data of the MODTRAN results at 5000 ft for methane and control

classes, rescaled to between 0 and 1. This altitude is an altitude commonly flown by

manned aircraft but the data clearly shows the relationship between the two classes.

Reflectance

The conversion from radiance to reflectance will minimize the wide variabilities in the

classes. This is because radiance is affected by all illumination components within the

scene, so the variation of the total radiance is influenced by the variety of illumination

conditions within the MODTRAN simulations (time of day, day of year, atmospheric

scattering). Reflectance is not affected by any of those factors, because reflectance is an

invariant component of the target material. One method for conversion from radiance to

reflectance is the empirical line method (ELM). ELM can be used when there are targets

available in the scene, one light and one dark, with known reflectance measurements

[55]. This was accomplished by using MODTRAN to run all of the same atmosphere
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Figure 4.7: Radiance data of the MODTRAN results at 5000 ft for methane and control

classes, rescaled to be unit length. This altitude is an altitude commonly flown by manned

aircraft but the data clearly shows the relationship between the two classes.

combinations, but with simulated calibration targets of known reflectances of 60% and

2%, for the light and dark reference targets in the scene, respectively. The slope of the

relationship between the radiance and reflectance of the known targets can then be used

to transform the total radiance, x, of the data to reflectance, x′, and the results can be seen

in Figure 4.8. In equation 3, ρ is the known reflectance of the light and dark targets, and

L is the MODTRAN total radiance output from those light and dark targets.

x′ =
ρ60% − ρ2%
L60% − L2%

x+
ρ60% − ρ2%

L2%ρ60% − L60%ρ2%
(4.3)
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Figure 4.8: Radiance data of the MODTRAN results at 5000 ft for methane and control

classes converted to reflectance. This altitude is an altitude commonly flown by manned

aircraft but the data clearly shows the relationship between the two classes. The gaps

seen in this plot are because of the zero values within the water absorption bands of the

MODTRAN radiance.

4.1.4 Classification

This study intends to provide optimal features for use on a passive imaging sensor based

on how well they are able to classify the four studied vegetation types. There are clas-

sifiers available to determine both linear and nonlinear separability. The spectra visually

appears to be separable, therefore only linear classifiers were used. The three algorithms

chosen for this work were logistic regression, linear support vector machines (SVM), and

linear discriminant analysis (LDA). Each of these classifiers are used as multinomial clas-

sifiers to identify the four given classes and all data were run with a sampling interval of
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10 nm in order to not overwhelm the memory during computations.

Logistic Regression

Logistic regression is a discriminative training model which uses probability distribution

to predict classes based on given features. There has been previous work into using lo-

gistic regression to determine optimal bands for detecting stressors [40]. This algorithm

will be used on both the in-situ spectral signatures for detecting optimal bands, mentioned

in Section IIA., as well as determining accuracy after MODTRAN simulations. The lo-

gistic regression model is shown below, where σij is the expected value of the function

at wavelengths i and j, β0ij and β1ij are regression coefficients for each combination of

wavelengths i and j, Xij are the spectral values at both wavelengths i and j, and εij is a

random error term. This logistic function is used to determine a probability distribution

for each class.

σij =
exp(β0ij + β1ijxij)

1 + exp(β0ij + β1ijxij)
+ εij (4.4)

Linear Support Vector Machine

Support Vector Machines (SVM) are another type of discriminative training model. They

are effective with high dimensional data, like hyperspectral data [56]. The task of a SVM

is to determine a hyperplane that can separate classes of data. The samples at the margins

of the hyperplane are called the support vectors [57,58]. The support vector machine can

use different types of kernels to determine the hyperplane. The kernel function used for

this study is a linear kernel, where < x, x′ >. In order to compute the support vector

machine, the following equation must be minimized, where n is the number of elements
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in the data, w is the normal vector to the hyperplane, y is the classification target, and λ

is a term for the tradeoff between increasing margin size and making sure that the total

radiance data, x, is on the right side of the margin:

[
1

n
Σn
i=1max(0, 1− yi(w ∗ xi − b))] + λ||w||2 (4.5)

Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a form of generative training where it first learns

a model of the probability and then uses Bayes’ rule to make predictions. It is a sim-

ple and efficient algorithm, because it is a linear combination of all variables. There are

assumptions underlying the Bayes’ method, that the features are conditionally indepen-

dent, which can be unrealistic and fail to produce a good probability estimate [59]. It has

the possibility of overfitting in this project because it performs best when the number of

classes studied is very large. The Bayes’ rule classifier is that an unclassified data point,

in order to be classified, will be placed in the class with the highest posterior probability,

which in its simplest form is the equation below, where p is probability:

pk(x) = P (y = k|x) (4.6)

The above probability is a simplified case, but the actual equation for LDA is below,

where πk is the prior probability that a randomly selected observation is a part of a specific

class, k:

pk(x) =
fk(x)πk

ΣK
i=1fk(i)πi

(4.7)

where fk(x) is the conditional multivariate probability density for the class, k:
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fk(x) =
1

(2π)d/2|Σ|1/2
exp(−1

2
(x− µk)′Σ−1(x− µk)) (4.8)

4.2 Method

4.2.1 MODTRAN

The effectiveness of a sUAS system, designed for detection of methane artifacts within

vegetation spectra, will depend on whether altitude would affect the ability to detect dif-

ferences in in-situ measurements. The analysis of the altitude’s effect on a sensor involved

running MODTRAN for multiple combinations of variables at ten chosen sensor altitudes.

These simulations were all run for a known area in Rochester, NY, USA although the pro-

cess can easily be manipulated to focus on other locations. The MODTRAN output was

chosen to range between 350 and 2400 nm with a bandwidth of 10 nm in order to have

a larger bandwidth than the 8 nm spectral resolution of the in-situ spectral reflectance

measurements. The target and background spectra utilized by MODTRAN were manu-

ally entered into a given file that is home to various target reflectances already available

in MODTRAN. The spectra were the averages of the four class spectra taken on the final

days of the experimental studies. The other variables were chosen from known MOD-

TRAN values, as shown in Table 4.2 below.

4.2.2 Water Absorption Features

The previous work into looking at the effect of atmospheric water on MODTRAN trans-

mission shows it is important to be aware of water absorption [52]. As shown in Figure
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Table 4.2: The chosen variables for MODTRAN simulations of a variety of altitudes

Variable Name Values

Target Methane, Root rot, Dry, Control

Background Control

Atmosphere Mid-Latitude Summer and Winter and 1976 US Standard

Visibility 5, 10, and 23 km

Ground Altitude 0.169 km

Day April, May, June, July, August, and September 15

Time 11 AM, 12 PM, 1 PM, 2 PM, 3 PM

Latitude/Longitude 43.086/77.706

Sensor Altitude 5000, 1000, 500, 300, 150, 100, 50, 25, 10, 5 ft
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(a)

(b)

Figure 4.9: These plots are of the transmission output of the MODTRAN data for the

methane and control classes; (a) at an altitude of 5000 ft. and (b) at an altitude of 5 ft.

As can be seen, the water bands centered at 1350 and 1900 nm are more pronounced at

higher altitudes although at lower altitudes the transmission is large in those bands but

with noise.

4.9a, at higher altitudes water bands are present that might affect the transmission in those

wavelengths, especially centered around 1350 and 1850 nm, where there is no transmis-

sion. However, as seen in Figure 4.9b, at an altitude right above the surface, there is less

transmission loss, with nothing falling below 0.75. Even with those higher transmissions,

at any altitude it is still best to determine known water absorption bands and select sen-

sor wavelengths outside of those regions. The plot of the transmission at 5000 ft, Figure

4.9a, was used to locate water bands, with the full-width-half-maximum of each being
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marked on Figures 4.9a - 4.9b. The full-width-half-maximum lines were chosen because

the transmission does increase sharply once out of the water absorption bands, so there is

still potential to receive information from those features.

4.2.3 Methane Artifacts

The next step taken was to determine features that are best used for classifying the MOD-

TRAN output of the four classes. These classifications will occur per-altitude with 270

total radiance spectra per class, with the number of combinations of the MODTRAN con-

ditions shown in Table 4.2.

First, various techniques were used to establish potential features from the in-situ

simulated leak experiment data; the first derivative, a logistic regression function, and the

Jeffries-Matusita distance. After classifying the MODTRAN total radiance output with

the feature combinations derived from the three techniques, the technique that gives the

best results, the Jeffries-Matusita distance, was chosen for the final analysis. The final

analysis involved one of each combination of two, three, and five bands and the entire

range of wavelengths, determined from the entire spectral range, as well as only the range

of a common silicon array. The three techniques are described below.

First derivative

The first two band combination was chosen from work in the study by Accettura et al.

[1]. The first derivative of the final day’s spectra showed that the two band combination

with the largest difference between methane and control data was between 750 and 1910

nm. The issue with this two band combination is that the 1910 nm wavelength is located

in the largest water band, as seen in Figure 4.9a. This combination was still used as a
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potential feature combination so it can be proved whether or not the loss of transmission

in the water bands will strongly affect classification using data collected at typical, and

United States FAA-limited, sUAS altitudes. The common sUAS flight is performed at a

maximum of 400 ft.

Logistic Regression

The logistic regression function was also used to determine potential band combinations.

The method was to execute a multinomial logistic regression for every two and three band

combination and calculate the classification accuracy. The resulting two dimensional plot

for the two band combinations is shown in Figure 4.10.

The two band combinations plot was analyzed to identify the areas of highest accu-

racy. The best choice was the one area with the highest accuracy, above 80%, that was not

within a water band. The two band combination chosen from within that area for further

analysis was 640 and 1010 nm.

The three band combinations were placed in order of highest accuracy. However, there

was only variation amongst two of the bands and the highest accuracy for the combina-

tions only reached 74.5%. The best wavelength combinations also do not appear optimal,

because one band falls within one of the smaller water bands and the second band is cho-

sen from within the first few wavelengths (e.g., 350 nm, 360 nm), where a lot of error

occurs because the classes are so close, or the last few wavelengths (e.g., 2480 nm, 2490

nm), where there is noise from the halogen lamps. In this case the three band combination

of 350, 740, and 1140 nm was chosen, despite those issues.
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Figure 4.10: The accuracy of all the two band combinations of the logistic regression.

The large water bands are shown in solid lines, while the lesser water bands are shown in

dashed lines. The two bands chosen from the first derivative are shown in red and black,

i.e., the two bands within the area of highest accuracy.

Jefferies-Matusita (JM) Distance

The standard deviations of the four spectral classes of the in-situ data are shown in Figure

4.2. As can be seen, there areas with a lot of overlap between spectra due to the spectral
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standard deviation of the classes. The distribution of the data needs to be taken into

account. Jeffries-Matusita (JM) distance is a vector-based algorithm that quantifies the

separation between classes based on degree of overlap, a combination of the mean of the

data and the covariance of the data [60]. The JM distance between spectral classes, which

for the following equation is the case for two classes and assumes that the classes are

normally distributed, is:

Jij = 2(1− e−B) (4.9)

where the Bhattacharyya distance (B), with x and y being the two classes’ spectral

signatures and Σx and Σy the covariance matrices of the two spectra, is:

B =
1

8
(x− y)t(

Σx + Σy

2
)−1(x− y) +

1

2
ln(
|(Σx + Σy)/2|
|Σx|1/2|Σy|1/2

) (4.10)

JM distance shows complete separability when approaching 2.0. The JM distance

function was also run for two and three band combinations. The top two band combi-

nation, with a JM distance of 1.804, was located at 1420 and 1580 nm, with both bands

surrounding one of the water bands. The top three band combination, with a JM distance

of 1.964, was at 760, 1650, and 1790 nm.

The JM distance was chosen to be the most effective tool for analyzing the wavelength

combinations. The JM distance was then run for the optimal two, three, and five bands

from both the entire wavelength range and also by looking at just the range of a common

silicon array (400-1000 nm). These were the final plots used for analysis and recommen-

dation of an appropriate sUAS sensor. The wavelength combinations determined by JM

distance from both ranges are seen in Figure 4.11a-4.11b.
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4.2.4 Normalization and Classification

The spectra of the MODTRAN output were normalized in the three ways discussed in

section IIC; scaling the data between 0 and 1, scaling to unit length, and converting to

a reflectance measurement. The four groupings of the MODTRAN spectra can then be

individually run through the classifiers discussed in section IID.

The spectra at each altitude must be placed into training and testing data sets for

classification. The data are randomized so training and testing selection does not lead to

a classifier only training on one class. A random selection was made of 80% of the data

for training and 20% of the data for testing. The randomization of picking training and

testing data might affect the outcome, therefore all classifiers were run for 1000 iterations

500 1000 1500 2000 2500
Wavelength (nm)

0.0

0.1

0.2

0.3

0.4

Re
fle

ct
an

ce
 F

ac
to

r

+control+
+methane+
+insects+
+h2o+
2 band combo
3 band combo
5 band combo

(a)

400 500 600 700 800 900 1000
Wavelength (nm)

0.0

0.1

0.2

0.3

0.4

Re
fle

ct
an

ce
 F

ac
to

r

+control+
+methane+
+insects+
+h2o+
2 band combo
3 band combo
5 band combo

(b)

Figure 4.11: The locations of the wavelength combinations with the largest JM distance

(a) The two (solid lines), three (dashed lines), and five (dotted lines) band combinations

looking at the entire wavelength range. (b) The two (solid lines), three (dashed lines), and

five (dotted lines) band combinations looking at the silicon wavelength range. Note that

there is a lot of overlap of wavelengths for these combinations.
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and averaged.

The accuracy for each of these classifiers was determined by using the confusion ma-

trix. The confusion matrix is a way to visualize whether the predicted class corresponds

to the actual class of the data. A classifier with 100% accuracy would have a completely

diagonal confusion matrix, because the predicted class would always be the actual class.

The accuracy is calculated to be the accuracy of the confusion matrix, which is the com-

bination of the true positive and the true negative, i.e., the correct results, over the total

amount of data [61].

4.3 Results

The results from the first step of the analysis are shown in Figures 4.12a-4.12c and 4.13a-

4.13b. These are plots of the accuracy of the four types of normalization approaches by a

factor of altitude. They are taken from the wavelengths determined by the three techniques

discussed in section IIIC.

All final analyses were classified using the logistic regression function. Logistic re-

gression was chosen as the best classifier for determining the optimal features. The logis-

tic regression and linear SVM are both similar in their analysis as they are both discrim-

inative training forms and were chosen to be linear, because of the separability between

classes shown in the in-situ plots. LDA makes assumptions that the features are condi-

tionally independent, which appeared to cause overfitting in the results. LDA is best with

a large amount of data and classes, more than just the four classes within this data. Lo-

gistic regression has regularization to avoid overfitting and it is a well-behaved algorithm

so was chosen above the other two.
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As can be seen in Figures 4.12a-4.12c and 4.13a-4.13b, there is variety in which nor-

malization tool is the most accurate. All but one plot shows that the ELM reflectance

conversion is the most accurate, but when looking at the two band combination from a

logistic regression, feature scaling is the most accurate. The variance in feature scaling

to between 0 and 1 is the least when looking at the JM distance bands. This can be ex-

plained based on the logistic regression function not accurately dealing with the overlap

between classes. The bands chosen are then in areas of the data that are heavily affected

by feature scaling normalization schemes, thus resulting in varying accuracy. The two

and three band combinations from the JM distance show improvement when more bands

are added. This is why more analysis was required using the JM distance. It is shown to

be accurate when taking the overlap of the four classes into account. It is important to

use a form of determination that is not subject to variation, so it is known that the chosen

bands are accurate for methane detection.

The JM distance optimal wavelengths were run for the entire range, as well as for the

silicon range. The four normalization schemes and their analysis are shown in the plots

in Figure 4.14a - 4.14h and used for further analysis.

4.3.1 Normalization

In all cases, using the total radiance leads to the lowest accuracy, at close to 25% which

with four classes means using total radiance is equivalent to chance outcomes. This is

because the total radiance has such a large variance in data so the distribution of those

points leads to confusion and low accuracy. On the other hand, in all cases converting

to reflectance using ELM leads to the highest accuracies. The entire wavelength JM dis-

tances have an accuracy of 80%, while three bands and higher result in a perfect modeled
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Figure 4.12: These plots are of the three two band combinations of wavelengths used to

classify the MODTRAN data. Titles are of the chosen feature combinations in nm. (a)

The two band combination chosen by the first derivative analysis at 750 and 1910 nm. (b)

The two band combination chosen by the logistic regression at 640 and 1010 nm. (c) The

two band combination chosen by the JM distance at 1420 and 1580 nm.

accuracy with reflectance. The silicon range combinations have a lower accuracy at 60%

after reflectance conversion. The entire silicon array range must be looked at to gain a

perfect accuracy. The success of the conversion to reflectance shows that it is important

to remove factors such as changes in illumination and the path of light reaching a surface

and just focus on the material itself.

The feature scaling techniques have lower accuracies than the reflectance conversion

data. However, in almost all cases rescaling the data to be between 0 and 1 does give

the higher accuracy of the two. This could be because the distribution of standard devia-

tions when rescaling to between 0 and 1 is less than being scaled to unit length, because

rescaling to unit length does not have a defined limit for the data. It could also be because

classifiers are normally used on data that have been preprocessed to be in the range of

0 to 1. The accuracy reaches 60% with all combinations for the entire range, but barely
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Figure 4.13: These plots are of the two three band combinations of wavelengths used to

classify the MODTRAN data. Titles are of the chosen feature combinations in nm. (a)

The three band combination determined by the logistic regression. The bands are 350,

740, and 1140 nm. (b) The three band combination determined by the JM distance. The

bands are 760, 1650, and 1790 nm.

reaches 50% with all combinations for the silicon range. The main difference amongst the

combinations is the three band combination from the silicon range. This has the lowest

accuracies and the unit norm feature scaling is more accurate than scaling between 0 and

1. This could be because the wavelengths with the highest JM distance were too close

together.

4.3.2 Altitude

The accuracies, irrespective of normalization or band combination are slightly affected

by the altitude of the sensor. In the majority of cases, primarily with the feature scaled

MODTRAN data, the accuracy increases once the MODTRAN runs are simulated to be
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below 1000 ft. Once the altitude falls to 1000 ft, the accuracy remains the same for the

rest of the range of altitude. This is good, because sUAS flights will not occur any higher

than 400 ft per FAA regulation. This shows that the flight does not need to be at one

specific altitude. The total radiance and reflectance conversion both remain consistent

over all wavelengths. This makes sense, because total radiance accuracies are equivalent

to guessing and converting to reflectance should get rid of the added issues of illumination

changes when at altitudes. It would then be recommended to remain at a consistent drone

altitude and fly at an altitude which can view the entire required area.

4.3.3 Optimal Wavelengths

The primary question of how many and which wavelengths to use on an optimal sensor

can be answered by the JM distance calculations. There will also be decisions available

for those in industry who would want to implement the system. The most relevant nor-

malization scheme to view is the reflectance measurement. The sensor must be able to be

converted to reflectance for methane detection.

There can be accommodations made to take into account the cost benefit of each of

these wavelength combinations. Flying an entire hyperspectral camera on a sUAS would

not be cost effective, as well as being difficult to mount on a drone, cool, and fly. The

sensors on the market that have filters in the SWIR range and beyond can cost tens of

thousands of dollars, as seen in Table 4.3. There is also perfect modeled accuracy when

looking at all the wavelengths in the range found in common silicon arrays, which would

lessen the cost, because as seen in Table 4.3 a sensor with adjustable filters is in the range

of a few thousand dollars. If the most important component is having perfect accuracy,

then there needs to be at least three wavelengths placed on the sensor, but at least two
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of those wavelengths will be past the silicon range. There is also the possibility of cost

being more important than having perfect accuracy, in which case choosing sensors in

the silicon array range would be reasonable. The accuracy is lower than using the entire

hyperspectral range, which is to be expected, but normalizing does improve that accuracy.

The bands with the largest JM distance are found to be in locations of the spectra

that make sense with known qualities of vegetation spectra. The two ranges both include

combinations with wavelengths in the ‘red-edge’ region. This is a well-known area for

detecting vegetation stress, so sensors involving that band region are more common. The

entire hyperspectral range JM distance also includes wavelengths in the short wave in-

frared region. In the SWIR, the reflectance increases because of the detection of spectral

components of vegetation, like proteins. This is because the SWIR is heavily impacted by

moisture content, which decreases in stressed vegetation. The JM distance calculations

prove that those ranges of the spectra are important when focusing on detecting vegetation

stress.
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Figure 4.14: These plots are of the JM combinations taken from the entire wavelength

range and the silicon range respectively. Titles are of the chosen feature combinations in

nm. (a)-(b) Two band combinations (c)-(d) Three band combinations. (e)-(f) Five band

combinations. (g)-(h) Wavelength ranges.
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Table 4.3: The cost of three available commercial sensors

Sensor Wavelength Range Cost

Headwall Micro-Hyperspec NIR (900-1700 nm) $45,000

SWIR (900-2500 nm)

Tetracam MCA 4, 6, or 12 variable multi-spectral channels $6,500

(450-1000 nm)

MicaSense RedEdge 480, 560, 670, 720, and 840 nm $4,900
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4.4 Conclusion

The purpose of this study was to determine the optimal sensor for detecting spectral as-

pects correlated with methane leakage in vegetation for future use on a sUAS. The use of

MODTRAN showed there should be no problem with lack of transmission loss caused by

water bands or low accuracy, as long as the sUAS flies below 1000 ft. The normalization

of the data showed that reflectance data have the highest accuracies, so a sensor should ei-

ther collect reflectance data or the user should ensure that light and dark targets are present

in the scene for conversion from radiance to reflectance using ELM. While it would be

beneficial to have at least three feature detectors on the sUAS, the potential combinations

would affect the price point and make it difficult for industries to use the system. A variety

of wavelengths were chosen, and depending on use and cost, any combination determined

by the Jeffries-Matusita distance would provide accurate measurements. If cost is not an

issue, then using the three band combination of 760, 1650, and 1790 nm is shown to give

perfect accuracy of classification. However, if cost is prohibitive and if a silicon-based

detector array is available then there is a choice, but the recommended features are at 760,

790, 820, 880, and 930 nm. Those implementing this detector would have to be aware

that the accuracy will be at least 60%, otherwise there might be a larger number of false

positives. These are the recommendations presented from this work, but can be varied

based on desired implementation and cost.
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Chapter 5

Confusion Matrix Analysis

Chapter 4 concluded with a recommendation of two feature combinations for future appli-

cation on a sUAS. The feature combinations were determined using the Jeffries-Matusita

(JM) distance on the greenhouse in-situ data discussed in Chapters 3 and 4 within the

ranges of 350 - 1000 nm and 350 - 2500 nm. The accuracies were then determined by

performing a logistic regression of the MODTRAN data discussed in Chapter 4 and cal-

culating the overall accuracy using the resulting confusion matrix. The result showed

promising modeled results but prior to development of a sensor, a more in depth analysis

into the accuracy and the feature combinations need to be discussed.

5.1 Error of Commission and Omission

The confusion matrix outputs the result of the classification based on class. An example

can be seen in Figure 5.1. The rows show the class the test data is truthfully classified as,

while the columns show the predicted class of the test data from the logistic regression.

80
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An example being, Figure 5.1 shows that when control data is predicted to be control it is

placed in the first matrix location, while if control data is predicted to be water deprived it

is placed in the control class row but under the inaccurate predicted label column. In this

case 100% accuracy would be a confusion matrix with only values on the diagonal.

Figure 5.1: An example confusion matrix taken from an arbitrarily chosen reflectance

normalization. The rows are the actual class of the data and the columns are the predicted

class of the data after the logistic regression.

In chapter 4, the confusion matrix accuracy assessment was conducted by adding all of

the true values, the correct classifications on the diagonal (true positive and true negative),

and dividing by all of the classifications.

Accuracy =
TP + TN

total
(5.1)
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The total accuracy is a simplified estimate that ignores the random probability of cor-

rect classification and does not provide information that can be beneficial for this work

[62]. The purpose of this work is to accurately detect methane leaks. In the context of

future industrial uses of the system, industries would like to not have any missed methane

leak. If natural stress is inaccurately classified as methane stress that is not as dangerous

as methane stress being inaccurately classified as natural stress. The misses compared

to the false classification of methane can be determined by looking at the rates of omis-

sion and commission. Errors of commission are the false-alarms, the predicted class not

being the actual class (e.g., natural stress being classified as methane stress), which can

be calculated using the columns of the confusion matrix [12]. This calculation takes the

values in the column that are not accurately classified and divides by the total values in

that column. The error of commission of the methane class for the confusion matrix in

Figure 5.1 is below. The errors of omission, true class values being placed in incorrect

predicted classes (e.g., methane stress being falsely classified as natural stress or control),

are more dangerous in this context. Industries in need of detecting subterranean methane

leaks would rather have to check more false-alarms than completely miss a leak. The

errors of omission are calculated by looking at the rows of the confusion matrix, similarly

to calculating the error of commission, and can be seen below for the methane class of the

confusion matrix in Figure 5.1.

Error of Commission =
(23 + 1 + 0)

49 + 23 + 1 + 0
= 32.88% (5.2)

Error of Omission =
0 + 0 + 0

49 + 0 + 0 + 0
= 0% (5.3)

The error of omission of the methane class would be another indication of the accuracy
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of the JM distance bands. The errors of commission are shown in Figure 5.6 and the errors

of omission are shown in Figure 5.3. These plots show that converting to reflectance

using the empirical line method (ELM) always gives the lowest errors of commission and

omission. The JM bands chosen from the spectral range of 350-2500 nm always have no

errors of omission when converted to reflectance. This shows that the JM distance chooses

good features from the full hyperspectral range. There are errors of commission and slight

errors of omission encountered when looking at the JM features chosen from the spectral

range of 350-1000 nm. The two band combination has the highest errors when using the

reflectance, approximately 50% error of commission and 0.05% error of omission. This is

a high error of commission, meaning that when the sensor locates a potential leak it will

only be an actual methane leak half of the time. However, those false-alarms do not miss

any leaks, like what would happen with the 0.05% error of omission. The recommended

JM distance selected band combination in the silicon range does have the lowest error of

commission, closer to 40%, and is the only chosen silicon range band combination that

has zero modeled error of omission. These higher commission rates show the JM band

features in the range of 350-1000 nm often inaccurately predict classes to be methane

stressed. This could be inefficient but is not as dangerous as falsely classifying an actual

methane leak. These misses do occur in the two and three band combination in the silicon

range. These higher errors show that the JM band features in the range of 350-1000 nm

might not be as well suited for methane detection.
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Figure 5.2: Errors of commission from the JM combinations taken the entire wavelength

range and the silicon range, respectively. (a)-(b) Two band combinations (c)-(d) Three

band combinations. (e)-(f) Five band combinations. (g)-(h) Wavelength ranges. Errors of

commission are false-alarms, less dangerous when detecting methane leakage
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Figure 5.3: Errors of omission from the JM combinations from the entire wavelength

range and the silicon range, respectively. (a)-(b) Two band combinations (c)-(d) Three

band combinations. (e)-(f) Five band combinations. (g)-(h) Wavelength ranges. Errors of

omission are misses, far more dangerous when attempting to detect methane leakage
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5.2 MicaSense RedEdge Features

The discussion of data collection in Chapter 3 included a description of the MicaSense

RedEdge multi-spectral camera. The MicaSense RedEdge collects images at red, blue,

green, red-edge, and near infrared wavelengths (480, 560, 670, 720, and 840 nm). The

analysis in Chapter 4 depended on the JM distance to calculate features capable of clas-

sifying methane stress within turfgrass. The MicaSense RedEdge features were not one

of the optimal chosen JM distance five band combinations so analysis continued without

the MicaSense data. The high commission and slight omission errors of the JM band fea-

tures chosen from the 350-1000 nm range introduce the possibility that in the wavelength

range of a common silicon-based array there is not enough separability between the four

experimental classes.

The overall accuracy was determined using the MicaSense RedEdge features to run a

logistic regression function on the simulated MODTRAN data. The overall accuracy for

the four normalization techniques is seen in Figure 5.4. The simulated data converted to

reflectance using ELM reached an accuracy of 80% while normalization to 0 and 1 led to

perfect modeled accuracy. The result of using these features gives a higher accuracy than

any of the band combinations chosen by the JM distance within the range of 350-1000

nm, whose accuracies only reached approximately 60%. With this result, the MicaSense

RedEdge bands output, when converted to reflectance, is as accurate as the two band JM

distance calculated over the range of 350-2500 nm. The next step is to closer analyze

the MicaSense feature’s confusion matrix to understand this disconnect regarding the JM

distance.

The errors of commission and omission from the MicaSense RedEdge for detection
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Figure 5.4: The overall accuracy of the four normalization techniques of the MODTRAN

data. The features chosen for the logistic regression are the center wavelengths of the

MicaSense RedEdge camera.

of methane are shown in Figure 5.5. The conversion to reflectance with these features has

similar errors of commission to the JM chosen bands from the 350-1000 nm range, errors

seen using the MicaSense five band combination being between 40-50%. The errors of

omission are perfect modeled zero errors, which is similar to the perfect modeled zero

errors seen from the five band JM selection from the range of 350-1000 nm. Although,

the recommendation from Chapter 4 to use the five band silicon-range combination would

remain, as those errors of commission are the lowest of the silicon-range features. This
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Figure 5.5: (a) Errors of commission and (b) errors of omission from a logistic regression

model of the MODTRAN data using the MicaSense RedEdge features.

difference would not strongly affect the quality of the sensor but, as either way the model

does not miss any methane leaks, having less false-alarms is also beneficial. The results

here show that the MicaSense RedEdge has similar accuracy, commission, and omission

as band combinations chosen by the JM distance. This might be more verification that in

the range of 350-1000 nm the four experimental classes are not as separable so the JM

distance did not provide the only relevant band combinations. The results show that the

MicaSense should not be counted out as a tool for collecting methane stressed vegetation

imagery.

5.3 Linear Discriminant Analysis

Chapter 4 discusses three classifiers for use in the simulated MODTRAN study. The

choice was made to pursue the logistic regression classifier. The linear discriminant anal-
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ysis (LDA) was not used for the final analysis because it appeared to cause overfitting.

The perfect modeled accuracy of the previously shown might have been because LDA is

a variance based classifier. This classifier might be the most accurate for use with the JM

distance chosen bands as compared to the logistic regression.

The LDA classifier more accurately classifies the simulated MODTRAN data. The

errors of commission and omission of the modeled methane class data when converted

to reflectance are zero for every JM distance band combination. The other normalization

techniques also have improvement when classified using LDA, radiance even has combi-

nations showing zero modeled errors of omission. The strong results from the modeled

data after being classified by LDA show that the previously chosen logistic regression

classifier was not the best choice for this modeled data. The LDA results show that the

JM distance does accurately choose wavelength combinations, even in the silicon-based

array range, 350-1000 nm.
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Figure 5.6: Errors of commission from the JM combinations taken the entire wavelength

range and the silicon range, respectively, calculated using linear discriminate analysis.

(a)-(b) Two band combinations (c)-(d) Three band combinations. (e)-(f) Five band com-

binations. (g)-(h) Wavelength ranges. Errors of commission are false-alarms, less dan-

gerous when detecting methane leakage
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Figure 5.7: Errors of omission from the JM combinations from the entire wavelength

range and the silicon range, respectively, calculated using linear discriminate analysis.

(a)-(b) Two band combinations (c)-(d) Three band combinations. (e)-(f) Five band com-

binations. (g)-(h) Wavelength ranges. Errors of omission are misses, far more dangerous

when attempting to detect methane leakage
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Conclusions

The objective of this research was the determination of an optimal sensor system for the

detection of subterranean methane leaks. This involved analyzing the spectral signatures

of vegetation affected by three forms of stress, namely methane stress and two natural

stressors. Initial exploration involved creating an experimental set up that would allow for

the measurement of the effects of a simulated leak on surface vegetation. The simulated

leak environment was set up to minimize external factors and provide clear, accurate

measurements of the progress of methane-induced stress on turfgrass. The methane stress

was compared to stress introduced by natural root rot and water deprivation, as well as a

healthy control. The daily experimental data collected showed a difference amongst those

four classes. The initial experimental analysis developed a timeline of methane stress.

This showed when it was possible to view methane stress from a small leak of 1 scfh. The

results of this analysis showed that the effect of natural stress on turfgrass is spectrally

visible at least a week before methane stress. In order to classify optimal signatures of

methane stress, spectra completely affected by methane were needed, so the final day of
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measurements was used for further spectral timeline analysis.

The next step of the analysis led to the determination of which features can differenti-

ate methane stress from other stressors. Artifacts in the spectra correlated specifically to

methane stress could, in the future, lead to development of a sensor for accurate detection.

The data were collected from the indoor simulated pipeline leak and lacked sUAS flight

data, as it was the winter season in Rochester, NY. MODTRAN simulations of sUAS

flight scenarios were used to study the effect of altitude on subterranean methane leak

classification. MODTRAN simulated hundreds of atmospheric combinations of the four

targets, using those combinations to calculate the accuracies of a multinomial logistic

regression classification per altitude. Two, three, and five band combinations were pro-

posed for wavelength ranges of the complete hyperspectral range (350-2500 nm), as well

as the range of common silicon-based arrays (350-1000 nm). The feature combinations

from the entire range have higher accuracy, while feature combinations taken from the

range of a common silicon-based array have an accuracy lower, approximately 60%, but

are more cost effective. The final recommendations of this work are that, if cost is not

an issue, using the three band combination of 760, 1650, and 1790 nm is shown to give

perfect modeled accuracy of classification, but if cost is prohibitive, the recommended

features are at 760, 790, 820, 880, and 930 nm. Those implementing the second system

would have to be aware that the overall accuracy will be at 60%. Also, both of these

recommendations have zero modeled errors of omission. This means the band combina-

tions used to classify the simulated data never missed a methane leak (methane data was

never classified as another class). These results show there is potential for a simple sensor

system placed on a sUAS to report subterranean methane leaks. This problem involved

looking not for methane itself, but for a signature that is found in vegetation spectra when
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methane is present. The solution to this problem gave positive results, but there is more

to the study of subterranean methane leakage than this study fully addressed.

Prior to development of a subterranean methane leak sensor there are other variables

to take into account, because the work of this thesis has not exhaustively proven this is

the optimal way to detect subterranean methane leakage. The experimental study focused

on turfgrass, but the types of vegetation growing on a right of way above a pipeline will

be different. There will be various species, many of which might be weeds, that react

differently to their environments. This is because the growth and health of vegetation is

complex. The soil provides nutrients to vegetation but different species flourish in dif-

ferent environments. A change in nutrients in the soil or the ability of a plant to hold

moisture can strongly affect health. However, the known presence of a pipeline under-

neath vegetation will increase the probability of stress being from a methane leak. This

prior probability should be incorporated to the analysis methodology. There are pipelines

spanning the globe through a variety of soil types. An experiment to look at the effects

of soil type on methane percolation has not been pursued, along with an experiment ex-

amining the effects of methane flow rates. The complex biological system of vegetation

was simplified for the purposes of the implemented simulated pipeline experiment. This

should be taken into account, and this thesis should not be considered in isolation as the

only form of subterranean methane stress detection, but it should provide the onus for

future work in the subject.
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6.1 Future Work

There is more that can be accomplished in continuance of this work. One next step would

be to implement this sensor on a sUAS. If cost is not an issue, then the two recommended

sensors can be implemented and tested. This would involve locating an existing sub-

terranean methane leak or creating another simulated leak. If another simulated leak

is developed, the methane leak can be imaged at various times, before complete stress

caused by the methane and after the root system has been gravely affected, as well as

with various vegetation types and flow rates. A complete cost analysis can be conducted

and a procedure developed for implementation on sUAS platforms. A positive result in

the real world implementation can lead to using the detector in combination with a GPS

monitor that can mark each site showing potential induced methane stress locations. This

would be beneficial for developing a sensor which can be used by industries for ongoing

subterranean methane leak detection.

There is also work to be done expanding upon the experiments performed in this

thesis, the simulated pipeline experiment and the MODTRAN simulation study. The

simulated pipeline leak experiment performed a study with only one type of vegetation

and did not take into account the complexity and variations that exist within even a single

species of vegetation. Further experimentation on vegetation known to grow on pipelines

around the world can provide proof that methane affects the root system of all plants

similarly, by depriving the roots of oxygen. The increase in data of simulated pipeline leak

measurements may provide spatial data that will help determine how methane percolates

up through soil. This may vary based on soil type, which could be another study using

a variety of simulated soil environments. The field of determining how methane moves
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through different types of soil and how different flow rates affect vegetation does not

appear to be fully understood. There has been a study into how methane leaks through soil

in four different directions at various flow rates. The soil was sieved to provide uniformity

as the methane was released in four directions from a buried pipeline. The purpose of the

study was to determine methane concentration in the soil. The study did show that larger

flow rates reached saturation faster and had higher methane concentrations at the end of

the release period [63]. It is important to have a baseline knowledge of the flow rates

found underground that utility industries can use to make decisions on severity of leaks.

As well the constant introduction of commercial devices for methane detection requires

a consistent way of measuring sensor capability which would benefit industry and future

research. This consistency is important for moving away from reliance on non-technical

methane detection and creating a safer, more efficient detection system.

The simulated MODTRAN study was also simplified for the purposes of this experi-

ment. Chapter 5 discusses the errors of omission for methane classification in the results

of the feature selection. The features of the MicaSense RedEdge camera were shown

to provide similar errors of omission to other chosen bands in the 350-1000 nm range.

The results of the omission study show that the MicaSense camera may be used in some

capacity in future studies and sUAS sensor systems. The imagery was converted into re-

flectance using ELM so is already prepared for further analysis now that the features have

potentially proven effective. The MODTRAN study was also run in a simplified mod-

eled atmosphere. There was no noise added to the simulated so all modeled accuracies

were calculated from a simplified modeled universe. An analysis of the signal-to-noise

ratio, SNR, should be performed. As well, the longer wavelengths within MODTRAN

have a different sensitivity so typical sensor relative spectral response functions for de-
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tector materials should be incorporated. The analysis of features chosen using the sim-

ulated pipeline data did not determine spectrally if those features might correspond to

atmospheric features, such as water bands, thus affecting the accuracy of those bands for

methane detection. Although some transmission occurs within the water bands at lower

altitudes, that does not mean that information is getting to the sensor. The downwelling

solar and scattered radiance within the atmospheric water bands was still zero. The MOD-

TRAN analysis, by focusing on the chosen JM distance features, did not further delve into

the atmospheric factors of the spectra. Another topic for further study is in calibration.

The recommended conversion to reflectance adds the need to calibrate any sensor flown

on a sUAS. The placement of calibration panels out in the field might add extra time

the industries in need of this sensor will find difficult. A study of calibration techniques

to facilitate a subterranean methane leak sensor would help industries determine what

they would need for proper implementation. Each of the studies mentioned in this sec-

tion would be beneficial to create a clearer picture of the complex problem. This thesis

provides a simplified first step into the field of subterranean methane leakage.
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Appendix A

Simulated Pipeline Experiment

The initial experiment under this research implemented an outdoor simulated pipeline

leak located within a fenced enclosure at the Rochester Institute of Technology Observa-

tory. There were several issues with the experiment that helped lead to the design for a

more controlled indoor experiment which has been described in Chapter 3.

A boring tool was used to core a 1” diameter hole into the ground into which was

placed plastic tubing to transport gas approximately 1.5’ beneath the surface at a 45◦angle.

A knife was used to stab two holes at the end of the tubing to release the methane. A mass

flow controller was set at a release rate of 0.5 scfh and run 24 hours a day over the time

period from September 20 to November 1, 2017. Point spectral and multispectral image

data were collected daily. The point spectral data was collected using a SVC HR-1024i.

The multispectral image data was collected using a MicaSense RedEdge camera. The

hyperspectral data was collected along the length of the tubing, from the insertion site

out two feet, as well as at an area away from the tubing location as the control healthy

vegetation.
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(a) (b)

Figure A.1: These images show the area of the simulated pipeline. On the left, (a), is the

first day of the experiment with the pipeline seen in the right side of the image. The grass

here appears healthy. On the right, (b), is the last day of the experiment. The grass at

this point is less healthy but not in any particular location on the pipeline. The yellowed

grass is natural and was seen in areas outside of the pipeline as well. In (a) on the right

by the fence there are six yellow pencils in the ground. Measurements were taken at the

five locations in between those pencils.

The primary mistake made during this experiment was with the placement of the tub-

ing into the ground. The hole made for the tubing had a larger diameter than the tubing

itself. The insertion site was initially briefly “stepped on” in order to close up the hole

but the soil was dry and did not compact enough to seal the hole to prevent escape of

the gas. This allowed the methane to follow the easiest path and flow right back out the

insertion site. This was discovered about two weeks into the experiment when a methane

detector was utilized at the site and there were large concentrations of methane found at
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the insertion site, but very little flowing up through the soil as was desired.

The experiment was heavily impacted by this issue, but there were also other consid-

erations that resulted in the experiment’s failure. The site was not set up until the end of

the growing season for Rochester, NY, USA for vegetation, so natural conditions might

have affected the vegetation’s senescence more than the methane release. There was a

heat wave early in the experiment which affected the vegetation via water stress. Along

with the methane continuing up the length of the tubing the flow rate was kept low in

order to be within safe limits. After considering the lack of measured stress and the issue

with the flow path it was decided the flow rate was too low to see methane percolation at

the surface. There was no previous understanding as to the optimal flow rate for methane

leakage so this was important knowledge for future experiments where the flow rate was

raised to 1 scfh.



Appendix B

Further Greenhouse Analysis

Two simulated pipeline experiments were performed indoors at the RIT greenhouse. The

first experimental setup was described in Chapter 3 and the second variation was described

in Chapter 4. The first experiment measured three experimental plots of methane stressed

turfgrass, root rot stressed turfgrass, and a healthy control. The second experiment mea-

sured three new experimental plots one methane stressed turfgrass, water deprived tur-

fgrass, and a healthy control. The first experiment was used for analysis discussed in

Chapter 3 while both experiments were used for a simulated study discussed in Chapter

4. The measured data was also used for analysis that was not directly related to the studies

discussed in Chapters 3 and 4.

B.0.1 Spatial Analysis

The analysis discussed in Chapter 3 involved detecting spectral differences between methane

stressed turfgrass and natural stress along with healthy turfgrass. A timeline of the stress

110



APPENDIX B. FURTHER GREENHOUSE ANALYSIS 111

differences was seen, with methane stress taking longer to appear spectrally. Although a

timeline was analyzed, there was no space for discussion of the spatial component of the

way methane stress affects the turfgrass in the study from Chapter 3. The copper pipeline

placed underneath the turfgrass plots had five 1/4” diameter holes placed along the length

of the pipe. The steady flow of 1 scfh runs through that pipeline. It was hypothesized that

the majority of the methane flows out of the first hole and along the pipeline less methane

flows through the holes and percolates upwards. The two experiment’s plots in Figure

B.1 show the spectra at the six measurement locations along the length of the pipeline.

The locations go from ‘Point 1’ as the closest and ‘Point 6’ as the furthest measurement

in relation to the first drilled hole. As can be seen with both experiments, the methane

affects the turfgrass closest to the first hole drilled into the pipeline and moving further

along the pipeline the turfgrass remains healthier.

B.0.2 Logistic Regressions

The experiment described in Chapter 3 was interested in determining a two band com-

bination that correlated separated turf affected by methane stress compared to the other

stressors and the healthy vegetation. One way this was accomplished was via a binary

logistic regression. The area under the ROC curve was determined and plotted for each

combination of two bands, and the final plot of the binary control and methane logistic

regression was shown in Chapter 3. After the completion of the second experiment, a

variety of logistic regression plots were analyzed and shown in Figures B.2-B.4, the lines

depicted on these plots denote the largest water band and the two band combination de-

termined from first derivative analysis discussed in Chapter 3. These logistic regression

plots were created in order to implement the experimental data described in Chapter 3 for
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(a)

(b)

Figure B.1: These plots are the final days data of each experiment taken at six locations

along the pipelines. Both show that at point 1, closest to the mass flow controller releas-

ing methane the turfgrass is unhealthiest. As the locations move along the pipeline the

turfgrass is healthier with less methane percolating up to the surface. (a) experiment one

(b), experiment two.

determination of an optimal sensor design described in Chapter 4. The optimal sensor

design required a combination of features and logistic regression was one determining

factor. Figure B.2 shows three binomial 2D band combination plots of each class combi-

nation from the first experiment while Figure B.3 shows the same depiction for the second

experiment. Figure B.4 uses the first experiment classes (methane stress, root rot stress,

and a control), as training data and the second experiment classes (methane stress, wa-

ter deprivation, and a control) as testing data. This involves using a multinomial logistic
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regression, where the root rot stress and water deprivation are labeled as a natural death

class. As can be seen in Figures B.2-B.4, the logistic regression binary combinations do

not have a common shape, with some binary groupings having perfect accuracy for large

regions but others not proving as effective. In order to reduce this seemingly random be-

havior, a multinomial logistic regression was chosen for the feature detection discussed

in Chapter 4.
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Figure B.2: These plots are of the area under the ROC curve for the binary logistic re-

gressions run for the first experiment. (a) control and methane data, (b) control and root

rot data, (c) root rot and methane data.
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Figure B.3: These plots are of the area under the ROC curve for the binary logistic re-

gressions run for the first experiment. (a) control and methane data, (b) control and water

deprivation data, (c) water deprivation and methane data.



APPENDIX B. FURTHER GREENHOUSE ANALYSIS 116

350 760 1170 1570 1980 2390
Wavelength (nm)

350

760

1170

1570

1980

2390

W
av

el
en

gt
h 
(n
m
)

Control vs. Methane

0.5

0.6

0.7

0.8

0.9

1.0

Accuracy

(a)

350 760 1170 1570 1980 2390
Wavelength (nm)

350

760

1170

1570

1980

2390

W
av

el
en

gt
h 
(n
m
)

Control vs. Natural Deaths

0.5

0.6

0.7

0.8

0.9

1.0

Accuracy

(b)

350 760 1170 1570 1980 2390
Wavelength (nm)

350

760

1170

1570

1980

2390

W
av

el
en

gt
h 
(n
m
)

Methane vs. Natural Deaths

0.5

0.6

0.7

0.8

0.9

1.0

Accuracy

(c)

Figure B.4: These plots are of the area under the ROC curve for the binary logistic regres-

sions run when the regression is trained on the first experiments three class and tested on

the three classes from the second experiment. (a) control and methane data, (b) control

and the two natural stresses, (c) two natural stresses and methane data.
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Micasense Imagery

The indoor simulated pipeline experiment collected data daily, not just point spectral data

from the ASD FieldSpec Hi-Res Spectroradiometer, but also imagery from a MicaSense

RedEdge camera. The MicaSense data was converted to reflectance but not used for the

subsequent analysis in this thesis. As a future project, this imagery may be used for

time series, as well as spatial, analysis of methane’s affect on vegetation. The MicaSense

RedEdge has a FOV of 47.2◦, so it could see a majority of the experimental plot. The

daily images captured of each tub were taken nadir looking at the center of the plot,

approximately four images were taken daily, along with images of a SpectralonTM panel

and the dark stand used to hold the SpectralonTM panel. A SpectralonTM panel is made

of a material that has almost perfectly diffuse unit reflectance. The SpectralonTM and the

dark background images were collected so that the raw DC imagery could be converted

to reflectance using the empirical line method (ELM).

As can be seen in Figures C.1 and C.2 the Sunnex HF Series halogen lamps (Model

HF2010) used in this experiment do not provide a spatially consistent illumination field
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Figure C.1: Image of the red band of the methane stressed turfgrass.

over the FOV of the MicaSense camera. This spatial inconsistency is also partly caused

by vignetting, the reduction of image brightness towards the edges, from the MicaSense

RedEdge camera itself. The first step in preparing the MicaSense imagery was to account

for the illumination falloff seen on the edges of the image. Prior to conversion, every

image, of the SpectralonTM and of the turfgrass, was divided by the exposure and the ISO

of the image as those values were autochosen by the MicaSense RedEdge camera. The

exposure and ISO are both values found within the image’s metadata.
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Figure C.2: Image of the red band of the spectralon panel.

The turfgrass images were cropped to only view the area of the SpectralonTM panel

so that background values of the SpectralonTM image did not skew the results. The

SpectralonTM area was then blurred using a Gaussian blur in order to account for any

potential noise from the camera. The maximum value of the array was determined and

the rest of the array was normalized to that brightest value. This output a ratio value

for each pixel on the cropped image which was repeated for all five band images of the

SpectralonTM .
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The five bands of the MicaSense RedEdge camera were spatially registered to each

other and merged into an array based on an algorithm, developed by Dr. Carl Salvaggio

and Dr. Ronald Kemker, that finds mutual features in each image and places those features

on top of one another. The grouped image was cropped to represent the same spatial

extent as the SpectralonTM panel and the image array was multiplied by the previously

determined ratio values in order to account for camera falloff.

The final step was to perform a DC to reflectance conversion using the empirical line

method (ELM). This method is described in Chapter 4 and the equation shown again here.

x′ =
ρlight − ρdark
Llight − Ldark

x+
ρlight − ρdark

Ldarkρlight − Llightρdark
(C.1)

The ASD spectrometer was used to take a reflectance measurement of the SpectralonTM

panel. The ELM method for the first experiment was calculated as a one point ELM,

without a dark component (ρdark and Ldark = 0), as the images of the dark stand for the

SpectralonTM only began to be taken part way through the experiment. The implementa-

tion of a dark component in the ELM measurement can be added to the conversion in the

future. In Figure C.3 the reflectance data is shown after the conversion from DC values

shown in Figure C.1. This image was taken on the final day of the collect, showing areas

of low reflectance in areas affected by methane stress. The algorithm for this conversion,

the camera falloff function and ELM, were generalized to be applied to all MicaSense

data. The function was used for the greenhouse experiments but the MicaSense RedEdge

data has not been used for further analysis in this thesis.
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Figure C.3: Image of the reflectance of the methane experimental plot.
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