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An evaluation of the silicon spectral range for 

determination of nutrient content of grape vines 

Abstract 

The grape industry relies on in situ crop assessment to aid in the day-to-day and seasonal 

management of their crop. In the case of soil-plant chemistry interactions, there are six key 

nutrients of interest to viticulturists in the growing of wine grapes: nitrogen, potassium, 

phosphorous, magnesium, zinc, and boron. Traditional methods of determining the levels of these 

nutrients are through collection and chemical analysis of petiole samples from the grape vines 

themselves. In this study, however, we collected ground-level observations of the spectra of the 

grape vines using a hyperspectral spectroradiometer (0.4-2.5µm range; 1nm resampled spectral 

interval) at the same time that petioles samples were harvested. The data were collected for two 

different grape cultivars, both during bloom and veraison phenological stages to provide analytical 

variability, while also considering the impact of temporal/seasonal change. The data were 

interpolated to 1nm bandwidths, yielding a consistent 1nm spectral resolution before comparing it 

to the nutrient data collected. Spectral reflectance also was resampled to match the 10nm bands 

used by the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS); this was done to assess 

the efficacy of nutrient modeling using a more standard, airborne system’s spectral resolution. Our 

analysis was limited to the silicon photodiode range to increase the utility of the approach for 

wavelength-specific cameras (via spectral filters) in a low cost unmanned aerial vehicle (UAV) 

platform. Five different approaches were tested to fit the data to the nutrient data. These were: a 

narrow-band Normalized Difference Index (NDI) approach using a standard linear fit, step-wise 

linear regression (SLR) using the silicon range of wavelengths, SLR using the NDI that correlated 

highly with the nutrient data, SLR using the 1st derivative of the reflectance spectra, and SLR using 

continuum-removed spectra, applied over the red trough (560-750nm) spectral region. For 1nm 

reflectance data, these methods generated models for  nutrient modeling using between 2-10 

wavelengths, and associated coefficients of determination values ranging between R2 = 0.74-0.86 

across the six nutrients. In the case of the 10nm resampled spectral data, model fits ranged between 

R2 = 0.61-0.93 across the six nutrients, using 2-18 unique wavelength bands. These results bode 

well for eventual non-destructive, accurate and precise assessment of vineyard nutrient status 

through the use of UAVs. 
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the leaf view angle  

Table 93: Peak R2 values for 10nm Riesling nutrient models from the veraison phenological stage at 
the canopy nadir view angle 

Table 94: Peak R2 values for 10nm Riesling nutrient models from the veraison phenological stage at 
the canopy 15o off-nadir view angle 
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1.0 Introduction 

In 2016, according to businesswire.com, the global wine market is forecast to have a value of $303.6 

billion. This is a vast and lucrative business, in which any advances that reduce the cost of 

operations or improve the quality or volume of the grape-based products would be beneficial. A 

typical grower needs to monitor the nutrient content of the grape vines in order to maximize yield 

and to ensure that the grapes are producing the correct fruit flavors. As described by Klein et al. 

(2000), the nutritional content of vineyards is determined through two different methods, either 

through soil analysis or plant tissue analysis. The industry standard in New York is plant tissues 

analysis, specifically petiole nutrient analysis. For a petiole nutrient analysis, a number of grape 

leaves are removed from the various grape vines in a panel (i.e., a post-to-post section containing 

typically 3-5 vines). The leaf portion is then removed from the petiole (shown below in Figure 1) 

and discarded, while the petiole is retained for analysis. The petioles for each panel are then dried, 

ground up, and combined before analysis, which produces an average nutrient value for that panel. 

 

Figure 1: Description of the leaf versus petiole structures  
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This approach is not only time-consuming, but also costly: The Cornell Nutrient Analysis 

Laboratory (CNAL) charges $23/sample to conduct a routine total elemental nutrient analysis; total 

carbon and nitrogen analysis costs another $7/sample, resulting in a total cost of $30/sample. In 

this study we focused on relatively small grape blocks with 24 plant-level samples in one and 31 in 

the other, which yielded a total cost of $1650 for a complete nutrient analysis over the two small 

blocks. It is obvious that, for a commercial vineyard, the number of samples, and by extension the 

cost of the nutrient analyses, would be increased by at least an order of magnitude. This is 

exacerbated by the time required to collect the samples, prepare collected samples, and perform 

the laboratory analysis. For our two blocks it took an individual a full day to collect the petiole 

samples for a single block, followed by sample preparation and transport to the lab. Finally, CNAL 

documentation states that a typical suite of chemical analysis takes approximately 2-3 weeks before 

results can be expected. 

For these reasons we were interested in finding a way to make the process of assessing the grape 

vine nutrient content more rapidly and more cost effective. Viticulture experts from Cornell 

University recommended that we focus not on all 14 elements that a routine elemental nutrient 

analysis and total carbon and nitrogen analysis would yield, but rather constrain our analysis to six 

key macronutrients and micronutrients. These were: boron (B), magnesium (Mg), nitrogen (N), 

phosphorus (P), potassium (K), and zinc (Zn). 

Wolf (2008) provides a description of the importance of several of the macronutrients and 

micronutrients found in grape vines. Boron, though critical, is only required in very small amounts 

as a micronutrient. It is important for the normal growth and development of the plant and 

deficiencies can reduce the pollen fertility of the plant, subsequently reducing the yield of the vines. 

Magnesium is a critical component of plant chlorophyll - low levels of Mg thus can hamper the 

production of chlorophyll.  Nitrogen, on the other hand, is critical for building many of the 

compounds that are essential for the growth and development of the vines; these include both 

amino and nucleic acids, as well as proteins and pigments, such as the green chlorophyll of the 

leaves. Phosphorus is aids in plant metabolism and reproduction, as well as being a fundamental 

element in a plant’s internal energy transport. If the P level falls below the required amount, it can 

severely impact plant health. Potassium plays a number of regulatory roles in the plant, e.g., 

carbohydrate production, protein synthesis, and maintenance of water status.  Though not 

explained in the book, from discussion with Dr. Justine Vanden Heuvel (Cornell University, pers. 
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comm.; 2016) it was explained that Zn is involved in fruit set (flowers becoming berries), as well as 

shoot elongation and pollen development. 

We therefore we able to constrain our overarching study goal with our search limited to these six 

specific nutrients and with the aim of streamlining the nutrient analysis process using remote 

sensing: To identify the silicon-range wavelengths (spectral bands) that are ideally suited to 

modeling (assessing) the nutrient content of grape vines. We argued that, in future implementation, 

a number of cameras could be set to these wavelengths/spectral bands by means of spectral filters. 

These cameras would in turn be mounted on small-unmanned aerial vehicles (UAVs) that could be 

flown along the rows of grapes to map their nutrient content. In an effort minimize the cost of such 

a remote sensing approach; the use of silicon photodiode cameras would be preferred. This would 

limit the spectral range to between 400-1000nm. The quantum efficiency curve for a silicon 

photodiode is seen in Figure 2 (from Hamamatsu.com) below and demonstrates why the spectral 

range is limited. 
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Figure 2: The quantum efficiency (QE) curve for a silicon photodiode 

Finally, based on the needs of the industry, the six nutrients of interest, and the limitations of UAV-

based assessment for sampling various grape cultivars, we formed our hypotheses and associated 

objectives. 

1.1 Hypotheses and Objectives of Work 

In accordance with good scientific practice, both a null- and alternate hypothesis were formed for 

the study. 

Hypothesis: Wavelengths in the silicon range can be identified to model each of the six different 

nutrients of interest at an acceptable level of accuracy; this acceptable level was defined as an R2 ≥ 

0.70. 

Alternate-hypothesis: The silicon range is not conducive to accurate modeling of the six selected 

nutrients. 

Objective: Assess the efficacy of a linear modeling approach, based on fewer than 15 independent 

variables, to model grape vine nutrients at an R2 ≥ 0.70. 

A discussion of past efforts in the domain of nutrient modeling in grape vines follows next. We 

focused on imaging spectroscopy (hyperspectral) approaches, ideally in the silicon range, and for 

the six nutrients of interest. 
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2.0 Background and Theory 

The use of remote sensing to determine the attributes of an object is not a new concept: Remote 

sensing has been used to visually identify objects and track them; it can determine the reflectance 

of an object or see how much heat it radiates; it can be used to determine the make-up of an object 

or scene, i.e., assess if objects are stone, or metal, live vegetation or dead. Such approaches have 

evolved to include not only object identification, but also object properties. Thenkabail et al. (1999) 

used wavelengths in the VNIR region of the electromagnetic spectrum (350-1050nm) to assess 

features like the leaf area index, height, yield, and wet biomass of crops such as cotton, potato, 

soybeans, corn, and sunflowers. Claudio et al. (2006) showed that by using a water absorption band 

found at 970nm, one could form an index, and between that water band index and the normalized 

difference vegetation index (NDVI), one could determine the water content of chaparral, a shrub-

like plant group. Using wavelengths between 1100-2500nm in the shortwave-infrared (SWIR) 

spectrum, Ciavarella et al. (1998) found correlations between particular wavelengths and the K 

content of various vegetative samples such rice shoots, orange leaves, and the leaves and petiole 

from grape vines. 

Ciavarella et al. (1998) were not the only group interested in using remote sensing to determine the 

concentration of components in grapes. Serrano (2010) discussed the use of the water index on 

vineyards to determine the water level of the plants and see its effects on the growth of the vines. 

Larrain et al. (2008) looked at the ripeness of grapes using NIR spectroscopy. Other researchers 

even imaged the grape berries themselves, e.g., Herrera et al. (2003) used two sets of wavelengths, 

between 650-1100nm and between 750-1100nm, to determine the weight percentage of soluble 

sugar in a solution, i.e., the Brix value of the grapes. 

We were not concerned with these other features, but only with the nutrient concentrations found 

within the grape vines. There exists a limited body of work focused on remote sensing-based 

nutrient assessment in vineyards. Shao and He (2010) did examine the concentrations of N, P, and 

K, three of the nutrients we are interested in. Their work focused on using the SWIR and midwave-

infrared (MWIR) parts of the electromagnetic spectrum to determine the nutrient concentrations in 

soil. Herrmann (2010) used a selection of indices, formed using the SWIR range, in order to 

estimate N concentrations in potatoes. The most promising study was from Ciavarella et al. (1998), 

who used SWIR data to assess K concentrations in grape leaves and petioles. However, we needed 

to constrain our review to studies on the selected nutrients and crop type, while also focusing on 
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the correct part of the EM spectra, i.e., the visible-near-infrared (VNIR) range. If we could find work 

on the nutrients on interest in the VNIR spectrum, we could evaluate their results against our data. 

Some of the most promising work found in the VNIR range in our area of interest was that of Hunt 

et al. (2013), who worked on N assessment in maize. They created the triangle greenness index 

(TGI) using three wavelengths in the green, blue and red regions. From this they discovered that 

chlorophyll, which has a strong green response, had a close relationship to the N content of the 

plant. Da Silva et al. (2006) found similar results by using an index from Gitelson et al. (1997). They 

determined that the best results for N was found using the green normalized difference index and 

that using a green band in place of a red band, was more effective in discriminating the N content of 

the plant. 

Our original plan was to test existing indices for grapes that work well for our six nutrients of 

interest. However, we were forced to create our own indices from our data, given the lack of past 

results for grape vines and our constrained wavelength range. Some of the existing “non-grape” 

indices were included as a comparison against those we created, while other forms of the spectral 

data manipulation were considered, beyond simple indices.  

Adams et al. (1999) used three indices between 400-1100nm, the NDVI, the vegetation index (a 

ratio of IR and red bands) and their yellowness index to determine the stress levels on the plants 

(chlorophyll content of soybeans). Cho and Skidmore (2006) used the red edge position to estimate 

the foliar chlorophyll or N content of their crop. Beyond just using indices, they also took the 1st and 

2nd derivatives of the reflectance spectra and found good results using these methods. These 

authors were not the first to consider using the derivative of the reflectance spectrum. Horler et al. 

(1983) proposed the use of the derivative of the spectra, as this could be useful in removing sources 

of (magnitude) variability in the data. Demetriades-Shah et al. (1990) went a step further: They 

used the 1st derivative, as it reduced the variability in the data, but they also suggested the use of 

the 2nd derivative. From their research they found that for canopy measurements the 2nd derivative 

eliminated the effects from the soil background. Grossman et al. (1996) proposed the use of step-

wise linear regression, in conjunction with the 1st and 2nd derivatives of the spectra, to determine 

the N content of their vegetation targets. We therefore decided to attempt using the derivatives of 

our reflectance spectrum in order to reduce some of the variability in the data and obtain a better 

fit for our models beyond that generated by one of the indices we used. A somewhat novel 

analytical tool, namely continuum removal, augmented this approach.  
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Continuum removal was proposed by Kokaly and Clark (1999); this method involves finding the 

absorption bands for the nutrient of interest and calculating the depths of this absorption region 

relative to a linear fit regression, and evaluating how this enhanced absorption trough’s features 

vary between samples. This approach works best on data in the SWIR region, as that is the region in 

which the majority of the absorption features for the nutrients in question reside. As we are 

focusing solely on the VNIR, we were required to find a different feature of the reflectance spectra 

to employ the continuum removal technique on; more details will be discussed in the Methods 

section. Finally, we had to identify a robust modeling approach.  

In the last decade, a number of researchers have moved from using from using univariate methods 

to multivariate methods. As Cozzolino et al. (2009) describe in their work, a multivariate method 

addresses the system as a whole, i.e., instead of considering each variable individually, you consider 

the system via a more holistic method realizing that each variable acts upon the other variables - in 

order to model any of the variables in the most exact manner you need to model the whole. 

Typically this will be done in conjunction with a univariate method and the results compared. 

Fernandex-Novales et al. (2008) used both multiple linear step-wise regression (MLS) and partial 

least squares regression (PLS) on wavelengths between 800-1050nm to develop predictive models 

for sugar content found in grapes, must, and wine. From their work they found four wavelengths in 

the 900nm range that modeled the reducing sugar content the best. Li et al. (2014), on the other 

hand, discussed their results in using a combination of spectral indices and PLS to determine the N 

content in winter wheat, while Sauvage et al. (2002) used PLS and MLS in the VNIR-SWIR range to 

determine the metal content for K and Mg in white wine. 

While there is solid evidence regarding the use of multivariate methods to model the nutrients in 

wine grapes, it was felt that a bottom-up approach would be the best start. To that end we started 

by generating indices for the silicon range and related those to the six nutrients in question. After 

that we evaluated the use of the 1st derivative and continuum removal methods and how these 

could further improve the nutrient models. Multivariate methods will not be addressed in this 

work, but will be left for a follow-on study, as was decided for analysis using the 2nd derivative. The 

ultimate goal is to enable a UAV camera system to collect the reflectance spectra in the more cost-

effective silicon range wavelengths. It is worth noting that by using the 1st derivative method, the 

number of required wavelengths that would need to be collected is doubled. E.g., if the ideal model 

fit was created from three derivative bands, this would require collecting the spectral data for six 
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separate wavelengths. Thus using the 2nd derivative method would further double the number of 

wavelengths required and make it unfeasible to collect easily in the manner we are considering. 

In a previous study (Anderson et al., 2016) we examined three separate indices related to the 

nutrients we were interested in to assess correlations. The first that was examined was the Gitelson 

and Merzlyak (GM) index, from Gitelson and Merzlyak (1997). This index is created from a ratio 

between a red wavelength and a green wavelength, as in the equation below.  

𝐺𝑀 =  
𝜆750

𝜆550
     (1) 

 

The results from the GM index are seen below in Table 1. In short, the highest correlation value 

achieved for our data was 0.54. This was from the Riesling grape cultivar for Zn data, collected at 

the leaf level. 

Table 1: Correlation coefficient results from the GM index: (a) from bloom, (b) from veraison

 

The next index that we attempted was the Vogelmann Index, proposed in Vogelmann et al. (1993). 

This index focuses on the red edge, as seen in equation 2 below, in an attempt to capture the 

variability in red edge position in the spectral data: 

VOG =  
λ740

λ720
     (2) 

Table 2 below shows the results from using the VOG index; in this case the values were slightly 

superior to those found using the GM index, with a maximum correlation value of 0.57 from the 

veraison phonological stage for the Riesling cultivar’s Zn data, viewed at the leaf level. 

Gitelson and Merzlyak Correlation Nutrient Gitelson and Merzlyak Correlation Nutrient

Cabernet Franc - Leaf 0.22 Zinc Cabernet Franc - Leaf 0.41 Boron

Cabernet Franc - Nadir 0.17 Nitrogen Cabernet Franc - Nadir 0.44 Zinc

Cabernet Franc - 15 Deg 0.15 Zinc Cabernet Franc - 15 Deg 0.20 Magnesium

Riesling- Leaf 0.39 Nitrogen Riesling- Leaf 0.54 Zinc

Riesling - Nadir 0.34 Potassium Riesling - Nadir 0.31 Nitrogen

Riesling - 15 Deg 0.33 Nitrogen Riesling - 15 Deg 0.12 Nitrogen
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Table 2: Correlation coefficient results from the VOG index: (a) from bloom, (b) from veraison

 

The third index that we compared our data against was the Green Leaf Index, from Louhaichi et al. 

(2001). The specific wavelengths used were selected from the eligible ranges, with the blue 

wavelength being chosen from the middle of that range, the green wavelength selected as the peak 

green, and the red wavelength being selected as the approximate wavelength corresponding to the 

bottom of the spectral dip in the red region:  

GLI =  
(2∗G−B−R)

(2∗G+B+R)
    (3) 

     where B = 450nm, G = 555nm, and R = 684nm. 

Table 3 shows the results for the GLI index. It achieved the highest correlation value of the three 

indices, with a value of 0.64 for the Riesling cultivar (P) data, viewed at nadir.  

Table 3: Correlation coefficient results from the GLI index: (a) from bloom, (b) from veraison

 

In conclusion, we found that the highest correlation value achieved was 0.64, with the others 

combinations producing correlation values as low at 0.01. These results will be compared against 

the indices generated later in this study to see which is more effective for our data set. 

  

Vogelmann Index Correlation Nutrient Vogelmann Index Correlation Nutrient

Cabernet Franc - Leaf 0.22 Zinc Cabernet Franc - Leaf 0.44 Boron

Cabernet Franc - Nadir 0.01 Nitrogen Cabernet Franc - Nadir 0.44 Zinc

Cabernet Franc - 15 Deg 0.17 Zinc Cabernet Franc - 15 Deg 0.19 Magnesium

Riesling- Leaf 0.43 Nitrogen Riesling- Leaf 0.57 Zinc

Riesling - Nadir 0.36 Potassium Riesling - Nadir 0.31 Nitrogen

Riesling - 15 Deg 0.38 Nitrogen Riesling - 15 Deg 0.13 Potassium

Green Leaf Index Correlation Nutrient Green Leaf Index Correlation Nutrient

Cabernet Franc - Leaf 0.34 Phorphosus Cabernet Franc - Leaf 0.20 Magnesium

Cabernet Franc - Nadir 0.51 Boron Cabernet Franc - Nadir 0.31 Magnesium

Cabernet Franc - 15 Deg 0.38 Phorphosus Cabernet Franc - 15 Deg 0.22 Phosphorus

Riesling- Leaf 0.08 Zinc Riesling- Leaf 0.50 Phosphorus

Riesling - Nadir 0.21 Zinc Riesling - Nadir 0.64 Phosphorus

Riesling - 15 Deg 0.09 Zinc Riesling - 15 Deg 0.56 Magnesium
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3.0 Data Collection 

3.1 Location 

We had access to an experimental farm located in Lansing, NY (42o34’22.1” N, 76o35’47.9” W) by 

partnering with Cornell University. This farm had two different grape cultivars, which we were 

given permission to sample: a block of Riesling (shown in blue in Figure 3 below), and a block of 

Cabernet Franc (shown in red in Figure 3 below). These blocks were selected for analysis as they 

had varying soil management treatments applied to them throughout the last several years, which 

theoretically should have resulted in a wide range of nutrient concentrations in the leaves. This in 

turn should add variability to the spectral data, which translates to a range of values across the 

collected spectral and nutrient data. 

Figure 3: Study area - grape blocks in Lansing, NY 

The spectral data were collected over a period of five days in June 2015 (17, 19, 20, 22, and 24 June) 

during the bloom phenological stage (referred to as “bloom” from now on) and again during a four-

day period in August 2015 (13, 17, 19, and 22 August) during the phenological stage of veraison 

(referred to as “veraison” from now on). Note: Bloom is the period in which the buds on the grape 

vines start to open and veraison is the onset of ripening of the grapes.  



 28 

3.2 Grape blocks 

The data were collected in two separate grape blocks, with differing numbers of rows and panels in 

each. The Riesling block consisted of 14 rows, with 10 panels in each row. Rows 1 and 14 were 

barrier rows and so were not sampled, leaving 12 rows. The outer two panels (1 and 10) and inner 

two panels (5 and 6) of each row were barrier panels, leaving six viable panels in each row. This is 

depicted in Figure 4 below, with the barrier rows and panels shown in grey and the sampled panels 

numbered in white. For the nutrient analysis, two sets of three panels in each row were grouped 

together in a single data point, resulting in a total of 24 unique samples. The spectral data 

(described below) were generated by averaging the six readings (two from each panel) collected in 

each sample.  

 
Figure 4: The Riesling cultivar sampling block layout; the rows and panels in each row are shown 

The Cabernet Franc block consisted of 17 rows with six panels in each row. The odd numbered 

rows were used as barrier rows and so were not sampled. Of the six panels, the outer panels were 

barrier panels, leaving four viable panels each, shown in Figure 5 below. Again, the barrier 

rows/panels are shown in grey and the sampled panels numbered in white. For Cabernet Franc, 

each sampled panel was considered a data point, resulting in a total of 32 unique nutrient samples. 

During the collection process it was found that panel 5 from row 2 was dead, reducing the total 

Row

1

2 2 3 4 7 8 9

3 2 3 4 7 8 9

4 2 3 4 7 8 9

5 2 3 4 7 8 9

6 2 3 4 7 8 9

7 2 3 4 7 8 9

8 2 3 4 7 8 9

9 2 3 4 7 8 9

10 2 3 4 7 8 9

11 2 3 4 7 8 9

12 2 3 4 7 8 9

13 2 3 4 7 8 9

14

Panels

                      Riesling
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number of samples for this grape cultivar to 31. For each panel, the spectral data were generated by 

averaging the two readings taken in that panel. 

 

Figure 5: The Cabernet Franc cultivar sampling block layout; the rows and panels in 

each row are shown 

3.2.1 Ground Treatments 

Different ground treatments and irrigation were used on each of the blocks. A ground treatment 

relates to how the ground (growth medium) surrounding the grape vines is prepared and tended to 

throughout the growing seasons. This can vary from growing other vegetation under the vines, to 

the application of fertilizer, to tilling or other methods of turning the soil to deal with weeds. The 

reason for using ground treatments is that, depending on the treatment selected, the nutrient 

concentrations of the soil are affected differently. As this was an experimental farm, a number of 

Row

1

2 2 3 4 5

3

4 2 3 4 5

5

6 2 3 4 5

7

8 2 3 4 5

9

10 2 3 4 5

11

12 2 3 4 5

13

14 2 3 4 5

15

16 2 3 4 5

17

             Cabernet Franc

Panels
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different ground treatments were used for a single cultivar to test treatment effects on the quality 

of the grapes produced.   

In the Riesling block there were three different ground treatments used under the grape vines. 

These were included i) growing buckwheat, ii) growing chicory, and iii) the application of 

glyphosate (a pesticide used to kill the undergrowth). They were used in half rows, and were 

distributed over the block with each treatment being used for four rows total. Also in the Riesling 

field, half of each row was irrigated, while the other half was not. The fact that a half of each row 

was set up with a different irrigation and ground treatment plan, corroborates our approach to 

using the center two panels as barrier panels. 

In the Cabernet Franc block four different ground treatments were used: i) cultivated (the earth 

was tilled periodically), ii) white clover, iii) glyphosate, and iv) native (left untouched). In each row, 

these four ground treatments were used for a different panel. Unlike the Riesling block, no 

irrigation was used on the Cabernet Franc vines.  

We decided for our analysis that all panels would be treated the same, regardless of the ground 

treatment or irrigation treatment; this decision was mainly based on the limited number of data 

points for each of the blocks. Further analysis could be conducted in follow-on projects to assess the 

impact of the various ground treatments and to further refine the nutrient prediction models. We 

opted to focus on a broadly applicable nutrient modeling approach, i.e., an approach that would be 

viable across treatments. 

3.3 Weather 

The ideal conditions for a remote sensing collect are during mid-day on a sunny, cloud-free day. 

This ensures that the sun angle does not induce too many bi-directional distribution function 

(BRDF) artifacts, while limiting the absorption of the atmosphere and scatter from clouds on target 

as discussed by Schott (2007). While ideal, this is fairly impractical for time-constrained collects 

(matching the growing season of the vines) in upper New York State. Also, the final goal of this 

project is to mount a camera on a UAV to be flown over fields for private growers and ideal weather 

conditions cannot be guaranteed. We therefore attempted to collect data during ideal conditions, 

although other conditions also were accepted. The collection of the reflectance samples typically 

took place between 10h00-15h00 (EST), but in some cases, in order to avoid inclement weather, the 

collects started as early as 09h00 hours and ended as late as 16h00. The weather conditions for the 

collect varied from 100% sunny and cloudless, through cirrus clouds, partly cloudy, broken clouds, 
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fully cloudy, to overcast. The overcast conditions were avoided as much as possible, but due to the 

rapidly changing weather forecasts and the requirement to complete specific rows as the nutrient 

samples had been collected, this was sometimes unavoidable. Spectral data, however, always were 

calibrated to reflectance using a white reference panel, as described below. 

Similar to the ground treatments, all spectral samples, regardless of the weather conditions, were 

treated the same. By collecting a reference sample immediately prior to collecting a target sample, 

any changes in atmospheric conditions can be removed (limited) and all data samples should be 

equivalent as far as illumination conditions are concerned. 

3.4 Nutrient analysis 

Members of the Cornell University viticulture program were on hand during collection days to 

collect samples for the nutrient analysis. The collection of samples from the grape vines were timed 

such that they were collected, at a maximum, within hours of the spectral samples being collected 

from the vines, and typically within minutes of the spectra being collected. The petioles from the 

vines in each panel were collected and prepared using the standard method mentioned in Wolf 

(2008). Along with the standard petiole nutrient analysis, a second analysis on the leaf blades was 

conducted in order to evaluate whether there was a significant difference in the results between the 

two collections methods, i.e., petioles vs. leaves. This is especially important in order to link the 

remote sensing at the leaf and canopy levels to the analysis performed more typically at the petiole 

level. To this end, instead of discarding the leaves once they have been removed from the petiole, 

the leaves were retained and prepared in the same way as the petioles, ands subjected to the same 

nutrient analysis.  

3.5 Spectral data collection 

The reflectance spectra of the grape vines were collected for a variety of view angles. This required 

the use of various field equipment to ensure that the samples were collected in as uniform a fashion 

as possible. 

3.5.1 Spectroradiometer: 

The reflectance spectra of the grapes were collected using a Spectra Vista Corporation (SVC) 

spectroradiometer, SVC HR-768i. This is a hand-held device with a hyperspectral sensor that ranges 

from 350-2500nm using three separate detector arrays that are joined at 1000nm and 1890nm 

(spectravista.com, 2016). The device also allows the collection of a reference sample prior to a 

target sample to ensure that each target sample is correctly calibrated. It also has the ability to 
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collect photographs of the area surrounding and inclusive of the target area and a selection of 

replaceable fore-optics to adjust the field of view (FOV) of the device. 

3.5.1.1 Fore-optics 

The SVC spectroradiometer comes with a number of fore-optics that can be attached to the device. 

These include, but are not limited to, a fiber optic cable with a 10o FOV, a standard 4o FOV fore-

optic, and a standard 14o FOV fore-optic. During the bloom collect for Riesling we started by using 

the 4o FOV fore-optic for the leaf view and the 14o FOV fore-optic for the canopy view. Following 

data review, we found that using the 4o FOV fore-optic was unnecessary and the 14o FOV fore-optic 

would be sufficient for both the leaf and canopy views. Therefore for the bloom Cabernet Franc 

collect, as well as for both cultivars during the veraison, the 14o FOV fore-optic was used for all view 

angles. 

3.5.2 Reference panels 

During the bloom data collection, a Spectralon panel was used as the reference panel. This is the 

standard reference panel used for remote sensing as it has a near 100% reflectance across the 350-

2500nm range, resulting in an accurate representation of the prevailing radiance conditions. 

However, the Spectralon panel was not available during the veraison data collection. A section of 

Tyvek therefore was used as the reference material in place of the traditional Spectralon approach. 

Janecek (2012) mentions that the spectrum for Tyvek in the silicon range, while not as strong a 

reflector as Spectralon (reflectance coefficient = 0.993), is still a strong reflector (reflectance 

coefficient = 0.97), and more importantly, is relatively flat throughout the silicon photodiode range. 

As we were concerned more with the relative reflectance of the grape leaves and not the absolute 

reflectance, the fact that Tyvek is less reflective was not an issue and did not have to be corrected 

for.  

3.5.3 Miscellaneous equipment 

3.5.3.1 Ladder 

A ladder was required in order to be sufficiently high enough above the canopy to properly collect 

the canopy view angle samples. A standard aluminum field ladder was used for this purpose, i.e., to 

collect the nadir view samples. From analysis of the images collected by the SVC device during 

collection, we were successful in ensuring that the ladder did not fall inside the FOV of the SVC 

device during the sampling process. It is possible that a small amount of illumination was reflected 

from the ladder and onto the grape leaves, while the samples were being collected. This would be 
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less of a concern during the periods in which the sun was obscured by cloud. While the additional 

background illumination would be in the scene, due to the view angles and the surface of the 

ladders, the contribution is likely to be very small. This could not be calculated or removed and 

therefore was considered a part of the scene. 

3.5.3.2 Inclinometer 

An inclinometer was required in order to measure the off-nadir collection angle for the canopy. It 

was attached to the top of the SVC unit with Velcro. Magnets would have been preferable, but were 

not used for fear of damaging the SVC device. The accuracy to which the off-nadir degree was 

measured fell within ±5°. 

3.6 Spectral data collection - view angles 

The reflectance spectra were collected using the SVC spectroradiometer. Data from three different 

observation angles were collected in order to evaluate the differences between responses, 

depending on the scene content and view angle (sun and bi-directional reflectance distribution 

function (BRDF) impacts).  

The first view angle was at nadir for the individual grape leaves and was collected by holding the 

SVC approximately 0.30m (+0.03m/-0.10m) from each leaf. From that distance the FOV of the 

sensor ≤ 0.075m in diameter, thereby ensuring that the complete FOV was filled by the leaf. The 

second view angle was collected for the vine canopy at nadir using a ladder beside the row of grape 

vines and holding the sensor approximately 1m (+0.3m/-0.3m) above the bulk of the canopy. This 

view angle has an FOV = 0.246m and included not only the grape leaves, but also some of the 

background, such as stems, ground, and ground cover surrounding the row. This view is more 

representative of pixel-level data collected by an airborne sensor. The third and final view angle 

was a collect of the canopy at 15° off-nadir, parallel to the side of the row. Like the nadir view angle, 

this was again collected using a ladder, with the sensor held approximately 1m (+0.3m/-0.3m) 

above the bulk of the canopy. Similar to the nadir view angle, this would include some of the ground 

cover surrounding the row of vines, but to a lesser extent, since more of the FOV would be filled by 

the side mass of the vine canopy. Table 4 below shows the FOV sizes, including the error based off 

the distances. 
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Table 4: Field of view for the 4o and 14o SVC fore-optics, including error range

 

3.6.1 Sample averaging 

Two samples were collected per panel for each view angle. This allowed for averaging of the data to 

reduce spurious results. The samples were collected by first taking a white reference sample using 

either Spectralon (during bloom) or Tyvek (during veraison), immediately followed by taking a 

target sample. This approach accounts for changes in illumination levels (normalization or 

conversion from radiance to reflectance) and continuously updates the system’s gain settings, 

thereby avoiding signal saturation. 

3.6.2 Collection path 

The order that the panels were sampled was different for each of the data collections, bloom and 

veraison. This change in pattern was due to optimizing sampling efficiency during site visits, when 

the batteries for the SVC needed to be replaced, or breaks in the sampling routine due to personnel 

requirements or weather. 

Figures 6 and 7 below denote the order in which the panel groups were sampled for the Riesling 

cultivar. The field team travelled either left to right or right to left through each of the panels, 

depending on the direction of ascension of the numbers. In the case of the leaf view, a sample was 

collected, after which we moved further down the panel, collected another sample, and then moved 

to the next panel. The samples were spread out between the four vines in the panel, with no vine 

having both samples collected from that single vine. For the canopy view angles, a sample was 

collected for one of the canopy views, followed by collection of a sample for the other canopy view 

angle in the same location, before we moved down the panel to the next sampling location. Again, 

no vine was sampled twice for the same view angle in a panel. 
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Figure 6: Riesling cultivar - bloom collection order: (a) leaf view, (b) canopy views 

Figure 7: Riesling cultivar - veraison collection order: (a) leaf view, (b) canopy views 

Figures 8 and 9 below show the order in which the Cabernet Franc was sampled; the same 

sampling principles, described above for the Riesling cultivar, were used for the Cabernet Franc 

panels. The panel marked in red was dead and thus was unusable for analysis, as described above. 
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Figure 8: Cabernet Franc cultivar - bloom collection order: (a) leaf view, (b) canopy views 

Figure 9: Cabernet Franc cultivar - veraison collection order: (a) leaf view, (b) canopy views 
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It was critical to document the order in which the spectral samples were collected, since nutrient 

samples were labeled in a different order by the Cornell University field team. The nutrient samples 

were collected in ascending order, from left to right down each row, starting at the top of the block 

and working down to the bottom. Therefore, in order to match the spectral and nutrient analysis 

data, we had to rearrange the spectral data to match the order in which the nutrient data were 

collected. 
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4.0 Data Analysis Methods 

The spectral data were analyzed against the nutrient data at two different spectral resolutions. The 

first was at a consistent 1nm resolution, i.e., the native, resampled resolution from the SVC 

spectroradiometer, while the second was at a nominal 10nm resolution, thereby matching a more 

typical airborne imaging spectrometer (AVIRIS, in this case).   

4.1 1 Data analysis methods – 1nm data 

4.1.1 Data Preparation – 1nm data 

Spectral data were read into MATLAB using the FSF post-processing toolbox. The 

spectroradiometer did not have regularly spaced sampling intervals, so the data were interpolated 

to consistent 1nm spacing across the full range of the SVC unit. The data were then averaged to 

match that of the cultivar nutrient sampling approach. For Cabernet Franc that consisted of 

averaging the two samples taken for each view angle in each panel, while for the Riesling, that 

involved averaging the six samples taken between the three panels that were lumped together in 

the nutrient sampling. Next we limited the data to our range of interest, in this case from 400-

1000nm. Figures 10-13 below show the interpolated and limited reflectance spectra collected for 

each of the blocks, during both bloom and veraison.  

The plot of the reflectance data, seen in Figure 10(c), collected at 15° off-nadir in the Cabernet 

Franc block during bloom, shows an anomalous spectral sample when compared to the other 

samples. Although no logical cause could be identified for this anomaly, it was removed during data 

analysis, leaving 30 samples for that view angle. Riesling data (seen in Figure 11), also collected 

during bloom, did not exhibit any outlier spectral samples. 

 
Figure 10: Reflectance for the Cabernet Franc grape cultivar for the different view angles during 
bloom (a) leaf view, (b) canopy nadir view, and (c) canopy 15° off-nadir view 
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Figure 11: Reflectance for the Riesling grape cultivar for the different view angles during bloom (a) 
leaf view, (b) canopy nadir view, and (c) canopy 15° off-nadir view 

We speculate that this anomaly in the Cabernet Franc data was caused by either atmospheric 

changes between white reference and sample collection, or by an off-target pointing instrument, 

thus resulting in spurious data. As the combined data were not downloaded and reviewed in the 

field, the anomalous band was not found until later and so it was impossible to repeat the sample 

collection. The spectra were typically checked during the initial data collection, in order to ensure 

that the spectra was not saturated and that they were as expected for typical, healthy vegetation. 

Although several errors were identified and corrected during the field campaign, some errors (see 

Figure 10(c)) may have been missed during data collection.  

Figures 12 and 13 below show the reflectance spectra for the Cabernet Franc and Riesling blocks, 

respectively, collected during the veraison growth period. Again, it was observed that for the 

Cabernet Franc block in both the leaf view and canopy nadir view, we have an outlier spectral 

sample. There once again was no specific reason why this specific sample would be different; the 

erroneous sample was removed from the data analysis, resulting in only 30 spectral samples for 

each of these two view angles. 

 
Figure 12: Reflectance for the Cabernet Franc grape cultivar for the different view angles during 
veraison (a) leaf view, (b) canopy nadir view, and (c) canopy 15° off-nadir view 

From the collected Riesling spectrum, we can see in Figure 13(b) that a single sample spectrum had 

unexpectedly high values in the 400-700nm range; this spectrum was removed for the data 

analysis, leaving 23 samples for this view angle. These data omissions are mentioned for the sake of 
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completeness. Field-based data collection does not always go according to plan, with extraneous 

influences (atmosphere, pointing accuracy, etc.) that can impact spectral data. We contend that 

these omissions have limited impact on the results, given the small number that were omitted, 

relative to the larger overall sample size.  

 
Figure 13: Reflectance for the Riesling grape cultivar for the different view angles during veraison 
(a) leaf view, (b) canopy nadir view, and (c) canopy 15° off-nadir view 

The next step involved generation of normalized indices, based on the now consistent and error-

free spectral data. 

4.1.2 Index creation – 1nm data 

Two different index types were created for evaluation against nutrient data. The first type of index 

was a normalized difference index (NDI), of the same form as the standard NDVI index found in 

Eismann (2012), which is commonly used for vegetation analysis in remote sensing studies 

(Equation 4): 

      𝑁𝐷𝐼 =  
(𝜆1−𝜆2)

(𝜆1+𝜆2)
      (4) 

     where 𝜆1 and 𝜆2 are reflectance values at different 1 nm wavelengths. 

The second index utilized a simple ratio between two different wavelengths (RI), as seen in 

Equation 5: 

                   𝑅𝐼 =  
𝜆1

𝜆2
       (5) 

     where 𝜆1 and 𝜆2 are reflectance values at different 1 nm wavelengths. 

For both the NDI and RI approaches, the wavelengths were iterated over the complete silicon 

photodiode spectral range in order to generate all possible combinations. 
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4.1.3 Calculation of the 1 nm Wavelength Correlation Coefficients 

After permuting and reshaping the data into a usable form, each of these generated index types was 

then evaluated in terms of their correlation with the respective nutrients. This was achieved using 

the MATLAB command ‘corrcoef’, which calculates the correlation coefficient (CC or “correlation” 

from here onwards) between the two data sets. The formula, as explained in the MATLAB 

documentation (2016), is seen below in Equation 6: 

      𝑅(𝑖, 𝑗) =  
𝐶(𝑖𝑗)

√𝐶(𝑖𝑖)∗𝐶(𝑗𝑗)
        (6) 

     where C is the covariance matrix of the indices, for wavelengths i and j. 

The α-level for the correlation coefficient calculation was left at the default level of 0.05, resulting in 

a 95% confidence level. The highest correlation values were recorded for each of the view angle-

nutrient combinations.  

We next attempted to calculate the linear fit for all the above nutrient-view angle combinations. 

This involved 321,601 variables, which MATLAB could not resolve. We decided to limit the scope, 

since this method didn’t give us a functional result. We started by focusing only on the nutrient-

view angle combinations that had a CC ≥ 0.70, followed by limiting the wavelengths to only those of 

the 601 that yielded these high CC values. Finally, we calculated the linear fit for the combinations 

of interest using this reduced list. As there was a number of nutrient-view angle combinations that 

were not tested, i.e., the CC values was lower than the 0.7 cutoff value, we decided, in the interest of 

being thorough, to use the bands that achieved the highest CC value at a p < 0.05 level. This was 

done to ensure that i) all nutrients, phenological stages, and view angles yielded models and ii) that 

the selected bands were in fact  correlated to a specific nutrient, hence the p < 0.05 selection 

criterion.  For the two cultivars, sampled at each of the three view angles, the number of bands that 

were selected for the analysis at the p < 0.05 level matched the number of actual data samples for 

that view-angle. For the Riesling cultivar this was typically 24 bands, except when an erroneous 

band was removed. For Cabernet Franc the top 31 bands were used in general, reduced to 30 bands 

when an erroneous band had to be removed from the spectral data set. Using these bands, the 

linear fit was calculated and included in the tables for comparison against the linear fit method 

only; note – these bands were not included in the final summary results. 
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4.1.4 Wavelength and NDI Step-wise Linear Regression – 1nm data 

We used the list of wavelengths that were highly correlated with the nutrient data to run a stepwise 

linear regression on the spectral data to improve our model fit with the nutrients. Three different 

model criteria were used to evaluate model terms: upper-linear-AIC, upper-linear-BIC, and upper-

linear-R2. In all three models the ‘upper linear’ model was used with the criterion for the addition or 

removal of terms. The model specification of ‘upper’ describes the largest set of terms that can be 

used in the model fit. The model type to be used further refines this model specification - we used 

the ‘linear’ model type. This implies that the model will contain only a constant and linear terms for 

each predictor. Three model fit criteria were used to assess the predictive wavelength-nutrient 

relationships, namely AIC, BIC and R2. AIC refers to a change in the value related to the Akaike 

information criterion; BIC refers to a change in the value related to the Bayesian information 

criterion; and finally R2 refers to an increase in the value of R2 (coefficient of determination). In 

each case, if a predictor value causes an increase in the criterion, then that variable is added to the 

model. The step-wise linear regression was run in both a forward and backwards mode, implying 

that predictors (independent variables) were added in an iterative, forward method, but the model 

also assesses previous entries and removes those that does not cause a decrease in the criterion 

value. These models were run for each of the three view angles, for both cultivars, and for both 

growing seasons. In a brute-force approach, the complete spectrum of 601 values were used for the 

list of input variables in the SLR, if it was found that a given cultivar in a particular growing season 

had no indices that were correlated to nutrient values at or above the cut-off level. 

After the highly correlated wavelengths were run through SLR, the indices that were highly 

correlated also were then run through SLR; the same model criteria used for the wavelengths were 

used for the indices.  As done for the linear fit, the top correlated bands at p < 0.05 were also used in 

the SLR to evaluate how they performed against the reduced data set.  

The next steps involved a look at more complicated forms of the data, following the wavelength and 

index modeling approaches. The first additional analysis was performed using the derivative 

(slope) of the reflectance spectra.  

4.1.5 Derivative Analysis – 1nm data 

The prepared data were used for the derivative analysis, as per the process outlined below. First, 

the 1nm spectral data were smoothed to limit the sensitivity of derivative analysis to erratic values 

(Horler et al. 1983); smoothing was applied to the spectra using the ‘smooth’ function in MATLAB. 

The ‘moving’ command was applied to ensure that the smoothing window “slide” along spectra, 
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incorporating new values for the smoothing operation at each new wavelength. The settings were 

left at the default value of five wavelengths for calculation of the smoothing effect. The next steps 

involved calculation of the actual 1st derivative. 

It is possible to approximate a partial derivative of a vector in MATLAB through of use of the ‘diff’ 

function. The first step is to select the step spacing that would be used in calculating the derivative. 

Our data were at consistent 1nm spacing, so that is the spacing that was selected. Division of the 

‘diff’ function by the spacing results in the derivative of the vector (Equation 7): 

     𝑌 =
𝑑𝑖𝑓𝑓(𝑥)

ℎ
         (7)

 where Y is the derivative, x is the data vector, and h is the step spacing of the derivative.  

Figures 14-17 show the 1st derivative of the spectra for both cultivars in both growing seasons. 

  
Figure 14: The 1st derivative of the reflectance for the Cabernet Franc grape cultivar for the 
different view angles during bloom (a) leaf view, (b) canopy nadir view, and (c) canopy 15° off-
nadir view 

  
Figure 15: The 1st derivative of the reflectance for the Riesling grape cultivar for the different view 
angles during bloom (a) leaf view, (b) canopy nadir view, and (c) canopy 15° off-nadir view 
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Figure 16: The 1st derivative of the reflectance for the Cabernet Franc grape cultivar for the 
different view angles during veraison (a) leaf view, (b) canopy nadir view, and (c) canopy 15° off-
nadir view 

   
Figure 17: The 1st derivative of the reflectance for the Riesling grape cultivar for the different view 
angles during veraison (a) leaf view, (b) canopy nadir view, and (c) canopy 15° off-nadir view 

The 601 unique wavelengths produced 600 derivative values. Correlation coefficients were then 

calculated for these derivatives against the nutrients in each cultivar-growing season combination. 

This was done in order to identify a reduced set of derivatives that was highly correlated against a 

particular nutrient, giving six unique nutrients. The cut-off value used to decide if the derivative 

value was highly correlated, was the same that as used before for the indices, i.e., a value of CC ≥ 

0.70. This reduced set of wavelength derivatives was then run through SLR to find the best model 

fit for that nutrient. A second SLR was run using the complete set of 600 derivative values as the 

input variables, if it was found that the spectrum from a nutrient-growing season combination did 

not produce any derivatives that correlated highly with the nutrient data. Having examined the 

effectiveness of using the spectrum derivative for determination of nutrient content, we next 

evaluated absorption features of the spectrum directly through the process of continuum removal. 

4.1.6 Continuum Removal – 1nm data 

We used the technique of continuum removal in order to evaluate nutrient model fits, based on 

specific absorption features. Proposed by Kokaly and Clark (1999), we followed the same 

continuum removal techniques, but used different spectral regions. The steps laid out in their paper 

are to i) select the feature you wish to use and establish a continuum line spanning that feature; ii) 
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calculate the continuum-removed spectra by dividing the original reflectance values for each point 

in the feature by the corresponding continuum line values; followed by iii) calculating the band 

depth (D) at all the points along the feature by subtracting the continuum-removed spectra values 

from 1. This band depth can then be used in a step-wise linear regression to fit the nutrient data. 

The authors suggest a normalization of the band depth (calculate Dn) by dividing the band depth by 

the depth at the band center (Dc) of the feature. The band center in this case is not the physical 

center, but is instead defined as the deepest band in the feature. This gives the following equations, 

for continuum-removed reflectance (R’) 

                                                                                𝑅′ =  
𝑅

𝐶𝐿
              (8) 

where R is the reflectance data and CL is the values of the continuum line. 

for the band depth (D) 

         𝐷 = 1 − 𝑅′            (9) 

and for the normalized band depth (Dn) 

                            𝐷𝑛 =  
𝐷

𝐷𝑐
             (10) 

where Dc is the band center. 

Two different techniques were used to select the regions on which continuum removal would be 

applied. The first approach was to select a common area present in all cultivar-growing season 

combinations, the red trough. The majority of absorption features attempted by Kokaly and Clark 

(1999) and the typical regions in which continuum removal is applied, all fall outside the silicon 

range that we have limited ourselves to. Therefore we selected the red trough that is pronounced in 

all spectra for live vegetation (Eismann 2012). We needed to select an area that worked for the 

complete set of spectra, before analyzing the spectra for all four cultivar-growing season 

combinations and across all three view-angles.  We enhanced red through absorption by using a 

linear fit line, where the two end points spanned the majority of the red trough, without cresting 

either end. Therefore, a point just to the right of the green peak was selected for the first point of 

the continuum removal line, at 560nm, while the second end point was selected just to the left of 

the NIR peak, at 750nm. This line was then used in the procedure explained above. An example is 

shown in Figure 18 below. 
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Figure 18: An example of the continuum line removal approach 

The second technique that was applied was to select a spectral range specific to each of the 

nutrients, based on wavelengths that exhibited high correlations for that nutrient. This implied that 

the wavelengths with high correlation would be plotted for the spectra, followed by an examination 

to see if there are any dips or features in those wavelength regions that could be exploited for the 

continuum removal procedure outlined above. If no wavelengths came back with a high level of 

correlation, or no usable features were found in the location of the highly correlated wavelengths, 

then this second technique was not used. 

4.2 1 Analysis methods – 10nm data 

The next phase of the analysis involved the use of data at a 10nm spectral resolution, in order to 

evaluate how the lack of fine, 1nm spectral features in the spectral data influence the results, 

towards implementation in more common, coarser spectral resolution airborne imaging 

spectrometers.  

4.2.1 Data Preparation – 10nm data 

The data preparation for the 10nm spectral bands used the same procedures as those used for the 

1nm bands, e.g., the data were read into MATLAB using the FSF post processing toolbox. The 

uneven spectral sampling from the SVC spectrometer was not an issue for the 10nm spectral bands, 
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since we needed to modify the data interpolation in either case. It was decided that, in order to 

make the data more relevant to the remote sensing community, instead of using arbitrary 10nm 

bands, we would calibrate our bands to match that of a commonly used remote sensing platform. 

Several options were available to use for calibration: GOES, Landsat, and IKONOS, among others. 

However, we decided to use AVIRIS as our calibration target. Although this platform is unlikely to 

be used for agricultural purposes, it was selected because it is a well-known and long running 

system. Table 5 shows the calibration data from the AVIRIS website; the data for the years 2012 

and 2013 were available, and 2013 was selected for use. The table also shows the difference 

between the calculated wavelengths. It is evident that the AVIRIS sensor does not have a consistent 

10nm bandwidth, but in fact varies between 9.15nm and 11.93nm. Therefore, we used a nominal 

10nm bandwidth, resulting in 64 unique 10nm bands to use in our analysis. 

Table 5: Calibration data for the 10nm AVIRIS bands

 

The newly generated 10nm AVIRIS-like data subsequently were averaged in a similar fashion to 

that of the 1nm data, in order to match the number of sample obtained from the nutrient sampling. 

The spectra from each of the view-angles for both cultivars in both growing seasons were again 

examined, and the erroneous samples were removed as before. It should be noted that, in the 

AVIRIS calibration data there exist bands (rounding to the nearest integer value) at 658nm, 668nm, 

655nm, and 665 nm. This duplication of bands was only found while generating the plots related to 

wavelengths to be used for nutrient modeling; the duplication of wavelengths did not negatively 

Wavelength Difference Wavelength Difference Wavelength Difference Wavelength Difference

404.61 9.65 560.05 9.18 693.99 9.73 849.94 10.57

414.29 9.60 569.80 9.17 703.78 9.71 859.65 10.70

423.98 9.56 579.56 9.16 713.56 9.70 869.34 10.85

433.67 9.51 589.32 9.16 723.33 9.70 879.04 11.00

443.37 9.47 599.08 9.15 733.10 9.70 888.72 11.17

453.07 9.44 608.85 9.15 742.87 9.72 898.41 11.34

462.77 9.40 618.63 9.15 752.63 9.75 908.08 11.53

472.48 9.37 628.40 9.16 762.38 9.79 917.76 11.72

482.19 9.34 638.19 9.16 772.13 9.84 927.42 11.93

491.91 9.31 647.97 9.17 781.88 9.89 937.08 10.78

501.63 9.29 657.77 9.18 791.62 9.96 946.74 9.76

511.35 9.26 667.56 9.19 801.35 10.04 956.39 9.76

521.08 9.24 654.79 9.91 811.08 10.12 966.04 9.76

530.82 9.22 664.60 9.85 820.80 10.22 975.68 9.76

540.56 9.21 674.40 9.80 830.52 10.33 985.31 9.76

550.30 9.19 684.20 9.76 840.24 10.44 994.94 9.76

AVIRIS Calibration Data 2013
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impact the analysis in any way and from the peak values we can see that only one of the duplicate 

bands was used in a single instance. 

4.2.2 Index Creation – 10nm data 

Only the normalized difference index type was created for the 10nm data (Equation 4); NDIs were 

created by iterating across all combinations of the 64 bands. The ratio index was not created for the 

10nm spectral data, because it was found from the results of the 1nm that the two indices 

performed the same to two decimal places, thus rendering additional analysis redundant. 

4.2.3 Calculation of the 10nm Wavelength Correlation Coefficients 

Correlation coefficients were calculated as per the procedure established for the 1nm data over the 

full range for the 10nm spectral data. 

4.2.4 Wavelength and NDI Step-wise Linear Regression – 10nm data 

The same process listed for 1nm data, as far as the examination of the highly correlated 

wavelengths and indices by way of SLR, was applied to the 10nm spectral data. No modifications to 

the process were required to account for the change in spectral resolution. 

4.2.6 Derivative Analysis – 10 nm data 

The steps used for the 1nm data to calculate the derivative and then use the results as variables for 

SLR to determine the best model fit to the nutrient data, also were applied to the 10nm data, with 

the exception of smoothing. We deemed the smoothing step as unnecessary, given that the 10nm 

already had been smoothed by way of resampling to 10nm spectral bandwidths. The derivative 

analysis resulted in 63 variables, which were then tested for correlation to the nutrient data in 

order to identify a highly correlated data set. As this resulted in no selected variables, the complete 

set of 63 variables were used in the SLR.  

4.2.7 Continuum Removal Analysis – 10nm data 

The same continuum removal process used for 1nm data, also was applied to the resampled 10nm 

spectral reflectance, i.e., only the red trough region was used (continuum line between from 560-

752nm. These were the points that most closely matched those used for the 1nm resolution data 

(560nm and 750nm). Besides this change, the continuum removal process was the same as for the 

1nm data.  
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5.0 Results and discussion 

The first thing we will discuss is the results from the two nutrient analyses that were conducted, the 

leaf nutrient analysis and the petiole nutrient analysis. From there the results for each of the 5 

methods will be discussed for the 1nm data and then the 10nm data. 

5.1 Nutrient Analysis Results 

The soil in which the grape vines grow, the cells and leaves of the vines, and the grapes that grow 

on the vines all contain varying amounts of nutrients. Pohl (2007) discusses how these nutrients 

change as the vines go from bloom, to veraison, then are harvested and fermented, and finally 

bottled into a finished product. For our discussion, we are only interested in the first two steps, 

bloom and veraison. Other authors, such as Christensen (1984), have examined the behavior of 

nutrients found in wine grapes across various cultivars and how they change over time. Romero et 

al. (2010; 2012) have examined the difference between nutrient analyses conducted at the leaf and 

the petiole levels between the two growing seasons, similar to our approach. They found that the 

leaves and petioles gave different results for the concentration of nutrients depending on which 

was examined and that one was more appropriate then another depending on the nutrient of 

interest. Tables 6-13 below provide a summary of the results from the two nutrient analyses that 

we conducted on the Cabernet Franc and Riesling cultivars, during both bloom and veraison. 

As previously discussed, the Cabernet Franc cultivar had 31 unique samples. Comparing the bloom 

results between the leaf nutrient analysis and the petiole nutrient analysis we found that except for 

K, the results from the petiole analysis had a lower mean value then the leaf results. Wolf (2008) 

provides detail regarding the sufficiency ranges for the nutrient concentrations. When one 

compares the nutrient values from the two analyses against the values from Wolf (2008), it is 

evident that for B and Mg, the petiole analysis exhibited mean values that fell within the ideal 

concentration range for those nutrients, while the leaf analysis resulted in values higher than ideal. 

For K, both analyses had mean values that fell within the range, with leaf being towards the bottom 

and petiole being towards the top of the range. Both Zn and P had mean values above the ideal 

range, but the values from the petiole analysis were lower and therefore closer to what is aimed for. 

The mean N concentration for the leaf analysis was higher than the ideal range, while the values 

from the petiole analysis fell below the ideal range. The differences from the expected 

concentrations can be explained by the varied ground treatments and starting nutrient 

concentrations in the soil of the experimental plots. 
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Table 6: Nutrient concentrations for Cabernet Franc from the bloom phenological stage: leaf 
nutrient analysis

 

Table 7: Nutrient concentrations for Cabernet Franc from the bloom phenological stage: petiole 
nutrient analysis

 

Table 8 and 9 below show the results from veraison. It is evident that the petiole nutrient analysis 

had higher mean values then the leaf analysis in five of the six nutrients, with N being the exception. 

For both analyses the mean B values were within expected concentrations. For the petiole analysis, 

Zn was also within the expected range, while both Mg and N fell below the ideal range and P and K 

were above it. From the leaf analysis, besides B, both P and K were within the ideal range. Zn and 

Mg were below and N was higher than the ranges reported in Wolf (2008).  

According to Wolf (2008) there should be a decrease in the concentration of N, P, and K as the 

growing season progresses, whereas there should be an increase in the concentrations of Mg, while 

B and Zn should remain roughly the same. The behavior of the nutrients from the petiole nutrient 

analyses between the two growing seasons was mostly as expected. B decreased slightly, but stayed 

within range. N decreased as expected, as did P. Zn decreased, but this brought the initial higher 

levels it into the expected range. The two main deviations were in Mg and K: Mg saw a decrease 

when an increase was expected as the season progressed, while K did the opposite and increased 

when there should have been a decrease. From the leaf nutrient analysis there was a large decrease 

in B, when it should have remained fairly steady; however, this did bring B-values down into the 

Nutrient Mean Std Dev Max Min n

Boron (mg/kg) 106.37 17.43 153.21 80.74 31

Magnesium (mg/kg) 5563.42 606.06 7028.93 4524.20 31

Nitrogen (%) 2.64 0.27 3.24 2.23 31

Phosphorus (mg/kg) 5550.27 450.21 6542.34 4609.07 31

Potassium (mg/kg) 18362.38 2751.24 24125.40 14258.40 31

Zinc (mg/kg) 174.76 21.13 225.74 146.00 31

Cabernet Franc - Bloom (Leaf Analysis)

Nutrient Mean Std Dev Max Min n

Boron (mg/kg) 45.88 4.12 54.67 35.00 31

Magnesium (mg/kg) 4446.27 786.60 7087.08 2987.22 31

Nitrogen (%) 0.74 0.13 1.00 0.56 31

Phosphorus (mg/kg) 4541.08 1887.27 8236.95 1739.16 31

Potassium (mg/kg) 22813.35 7523.44 37957.50 9010.12 31

Zinc (mg/kg) 84.64 9.60 117.99 66.09 31

Cabernet Franc - Bloom (Petiole Analysis)
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expected range. Magnesium, similar to the petiole analysis, increased, contrary to expectations. The 

mean N values also increased when they should have decreased. P decreased as expected, but there 

should have been an increase in K, while a decrease was seen. Finally, Zn had a very large decrease 

when it should have remained roughly the same. Overall that implies that four of the six nutrients 

from the petiole analysis performed roughly as expected, while only two of the nutrients in the leaf 

analyses did so. 

Table 8: Nutrient concentrations for Cabernet Franc from the veraison phenological stage: leaf 
nutrient analysis

 

Table 9: Nutrient concentrations for Cabernet Franc from the veraison phenological stage: petiole 
nutrient analysis

 

The nutrient concentrations from the Riesling cultivar during the bloom collect are shown in Tables 

10 and 11 below. As discussed previously, the sampling for the Riesling cultivar only produced 24 

independent data points. From the leaf nutrient analysis of the Riesling cultivar, we see that similar 

to the Cabernet Franc, four of the six nutrients were higher than the ideal values, with Mg and K 

being in the correct range of concentrations. For the petiole analysis, five of the nutrients were 

found to be above the ideal concentration values and the sixth, N, was well below it. 

 

Nutrient Mean Std Dev Max Min n

Boron (mg/kg) 33.66 6.98 47.94 21.93 31

Magnesium (mg/kg) 2432.13 314.78 3306.43 1971.64 31

Nitrogen (%) 2.74 0.24 3.22 2.14 31

Phosphorus (mg/kg) 2408.34 289.03 2945.70 2048.47 31

Potassium (mg/kg) 13782.91 1812.31 17724.40 10713.10 31

Zinc (mg/kg) 20.13 2.17 24.52 17.14 31

Cabernet Franc - Veraison (Leaf Analysis)

Nutrient Mean Std Dev Max Min n

Boron (mg/kg) 34.52 5.36 46.34 26.79 31

Magnesium (mg/kg) 2746.96 390.00 3697.15 2011.91 31

Nitrogen (%) 0.68 0.09 0.96 0.54 31

Phosphorus (mg/kg) 3459.48 722.20 5461.30 2457.46 31

Potassium (mg/kg) 30602.70 2325.26 37137.30 26473.90 31

Zinc (mg/kg) 47.60 4.98 63.13 41.19 31

Cabernet Franc - Veraison (Petiole Analysis)
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Table 10: Nutrient concentrations for Riesling from the bloom phenological stage: leaf nutrient 
analysis 

 

Table 11: Nutrient concentrations for Riesling from the bloom phenological stage: petiole nutrient 
analysis 

 

During veraison, in Tables 12 and 13 below, the leaf analysis saw B, P, and K exhibit mean values in 

the expected range. Magnesium went from the ideal range during bloom, to below the ideal range 

during veraison, and Zn fell from well above to just below the ideal concentration range as the 

season progressed. The N value saw an increase between bloom and veraison, remaining above the 

expected values. From the petiole analysis during veraison we again had three nutrients in the ideal 

concentration range: B, as in the leaf analysis, N, and Zn. The Mg concentration came in below the 

ideal range, while both P and K were above the expected values.  

We found, for the leaf nutrient analysis that two of the six nutrients behaved as expected when 

comparing the behavior of the nutrient concentration from a single analysis between growing 

seasons. From the other four nutrients we saw: Mg decreased when it should have increased, N and 

K increased when they should have decreased, and Zn greatly decreased when it should have 

remained roughly the same. Between the two petiole nutrient analyses, in contrast, three of the six 

nutrients behaved as expected. Both B and Zn saw large decreases when they should have remained 

the same. And N increased when it should have decreased, though this brought it into the expected 

Nutrient Mean Std Dev Max Min n

Boron (mg/kg) 63.68 7.16 80.77 54.75 24

Magnesium (mg/kg) 4662.68 533.51 5701.06 3846.40 24

Nitrogen (%) 2.30 0.25 2.64 1.78 24

Phosphorus (mg/kg) 5835.30 943.54 7649.08 4444.96 24

Potassium (mg/kg) 15920.38 2537.62 21366.60 12452.20 24

Zinc (mg/kg) 138.99 19.63 177.99 105.95 24

Riesling - Bloom (Leaf Analysis)

Nutrient Mean Std Dev Max Min n

Boron (mg/kg) 101.09 6.10 110.63 86.95 24

Magnesium (mg/kg) 10772.76 1120.73 12856.50 8667.49 24

Nitrogen (%) 0.68 0.10 0.87 0.54 24

Phosphorus (mg/kg) 14479.66 3514.37 20027.20 7968.83 24

Potassium (mg/kg) 37485.65 3478.64 46176.85 30585.40 24

Zinc (mg/kg) 149.43 14.61 180.72 119.56 24

Riesling - Bloom (Petiole Analysis)
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range of values. This means that looking at both cultivars, the petiole nutrient analysis performed 

slightly better than the leaf nutrient analysis between the two growing seasons in terms of 

consistency with expected nutrient levels (Wolf, 2008).  

Table 12: Nutrient concentrations for Riesling from the veraison phenological stage: leaf nutrient 
analysis 

 

Table 13: Nutrient concentrations for Riesling from the veraison phenological stage: petiole 
nutrient analysis 

 

Romero et al. (2010) compared the nutrient analyses of the leaves and the petioles of vines and 

found that the petioles had higher concentrations of K, Mg and Zn than those for the leaves. For N 

and P, they found that the leaf level analysis resulted in higher values when compared to petiole 

level results. We found that K behaved as Romero et al. (2010) predicted, while for Cabernet Franc 

during veraison and for Riesling the results for Mg and Zn also lined up. Nitrogen also behaved as 

seen by Romero et al. (2010), but P did not. These differences are likely due to the fact that different 

cultivars were sampled in our study when compared to the Romero et al. (2010) effort. The 

different cultivars could require and have different nutrient concentrations. Romero et al. (2012), in 

a follow-up paper, also determined that leaf blades could be more appropriate for the analysis of N 

and K, while petiole analysis is more appropriate for B. For P and Mg, either approach worked for 

Nutrient Mean Std Dev Max Min n

Boron (mg/kg) 45.38 6.09 59.19 2225.78 24

Magnesium (mg/kg) 3134.99 989.08 6887.98 21.70 24

Nitrogen (%) 2.39 0.20 2.82 2.00 24

Phosphorus (mg/kg) 2971.96 1021.01 7506.33 2.08 24

Potassium (mg/kg) 18803.83 14366.88 83568.40 2349.46 24

Zinc (mg/kg) 28.59 9.53 69.86 2.00 24

Riesling - Veraison (Leaf Analysis)

Nutrient Mean Std Dev Max Min n

Boron (mg/kg) 38.53 2.33 43.82 33.95 24

Magnesium (mg/kg) 2768.35 416.68 3836.82 2018.82 24

Nitrogen (%) 0.84 0.10 1.03 0.68 24

Phosphorus (mg/kg) 4054.78 438.78 5086.15 3338.10 24

Potassium (mg/kg) 34011.35 2550.47 41000.85 28354.80 24

Zinc (mg/kg) 46.59 3.70 54.66 41.23 24

Riesling - Veraison (Petiole Analysis)
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collection of samples during bloom, but at veraison, a leaf nutrient analysis worked better. In 

examining our results, we found that they agreed with Romero et al. (2012) as far as K and P are 

concerned. Our results also agreed for B for the samples from Cabernet Franc, but were 

inconsistent for those collected from Riesling.  Finally, comparing our data trends to those found by 

Christensen (1984), we find that our N values between the cultivars behaved as seen by that author, 

in being fairly consistent across cultivars. The other nutrients that we examined differed from 

Christensen (1984) findings. There are two primary reasons why our data may not match the 

results derived from these previous studies: The first is that though both papers examined a 

multitude of cultivars, none of them were either Riesling or Cabernet Franc; the other reason is that 

we took samples from an experimental farm; a variety of ground treatments had been applied to 

the different cultivars, meaning that the nutrient concentrations do not conform exactly to the 

expected starting values either in the papers or the wine grape production guide by Wolfe (2008). 

However, this induced variability arguably could contribute to more robust modeling across a 

range of nutrient levels. 

We proceeded to further compare the nutrient analyses, since an examination of the mean values 

for the nutrient concentrations were complete. To this end we plotted the leaf vs. petiole analyses 

against each other to evaluate potential differences. If both analyses exhibited similar results or 

trends for each nutrient, we should see a linear relationship on the plot. In Figures 19-22 below are 

the results of the leaf vs. petiole nutrient data, plotted against each other, as well as a linear fit being 

based on the ‘fitlm’ command in MATLAB. Figures 19 and 20 are the results from the Cabernet 

Franc cultivar during bloom and veraison, respectively. In linear fit plots shown below the 95% 

confidence bounds are shown by the dotted line. 
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Figure 19: Plot of Cabernet Franc leaf nutrient analysis versus the petiole nutrient analysis (bloom 
phenological stage) 
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Figure 20: Plot of Cabernet Franc leaf nutrient analysis versus the petiole nutrient analysis 
(veraison phenological stage) 

The R2 and adjusted- R2 values, as well as the root mean squared error (RMSE) of the calculations 

from the linear fits are provided in Table 14 below. We found that for N, P and K the two nutrient 

analyses during bloom agree with each other, at a 66% explained-variability level. Zinc and N were 

slightly lower, but B presented a concern: Only 8% of the variability between the leaf and petiole 

analyses was explained by the fitted linear relationship, which was a value considerably lower than 

expected.  
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Table 14: R2 results from the linear fit comparison between the leaf and petiole nutrient analysis for 
Cabernet Franc during bloom and veraison 

 Cabernet Franc - Bloom Cabernet Franc - Veraison 

R2 R2 Adjusted RMSE R2 R2 Adjusted RMSE 

Boron 0.08 0.04 17.05 

(mg/kg) 

0.31 0.28 5.91 

(mg/kg) 

Magnesium 0.39 0.37 479.51 

(mg/kg) 

0.01 0.12 295.09 

(mg/kg) 

Nitrogen 0.66 0.65 0.16 

(%) 

0.15 0.14 0.22   

(%) 

Phosphorus 0.67 0.66 262.11 

(mg/kg) 

0.17 0.05 282.06 

(mg/kg) 

Potassium 0.66 0.65 1630.42 

(mg/kg) 

0.08 -0.03 1836.39 

(mg/kg) 

Zinc 0.43 0.41 16.27 

(mg/kg) 

0.07 0.04 2.13 

(mg/kg) 

 

When examining the results of the linear fit between the two nutrient analyses from the veraison 

growing season, we found an increase in the agreement regarding the nutrient concentration of B 

between the two analyses (from 8 % up to 31%), while all other nutrients decreased dramatically. 

There appears to be no linear relationship between the two levels of nutrient analyses for Cabernet 

Franc during veraison. Figures 21 and 22 show the plotted linear fit between the leaf and petiole 

nutrient analyses obtained for the Riesling cultivar during bloom and veraison. 
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Figure 21: Plot of Riesling leaf nutrient analysis versus the petiole nutrient analysis (bloom 
phenological stage) 
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Figure 22: Plot of Riesling leaf nutrient analysis versus the petiole nutrient analysis (veraison 
phenological stage) 

Based on the bloom results in Table 15 below, it was found that little linearity between the two 

nutrient analyses exist, with the peak value being only 22% (for Zn). During veraison, N achieved a 

linear fit that explains 60% of the data variability, but all other fits are significantly lower, at less 

than 10%. 
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Table 15: R2 results from the linear fit comparison between the leaf and petiole nutrient analysis for 
Riesling during bloom and veraison 

  Riesling - Bloom Riesling - Veraison 

R2 R2 Adjusted RMSE R2 R2 Adjusted RMSE 

Boron 0.15 0.11 6.74 

(mg/kg) 

0.01 -0.04 6.19 

(mg/kg) 

Magnesium 0.12 0.08 512.46 

(mg/kg) 

0.19 0.15 909.65 

(mg/kg) 

Nitrogen 0.06 0.02 0.24 

(%) 

0.60 0.58 0.13   

(%) 

Phosphorus 0.21 0.18 855.10 

(mg/kg) 

0.01 -0.03 1037.31 

(mg/kg) 

Potassium 0.19 0.15 2338.52 

(mg/kg) 

0.00 -0.04 1465.69 

(mg/kg) 

Zinc 0.22 0.18 17.76 

(mg/kg) 

0.09 0.05 9.30 

(mg/kg) 

 

There therefore seems to be little in the way of agreement between the two nutrient analyses over 

the two cultivars and growing seasons. Owing to this fact, the reflectance data analysis will proceed 

using only one of the nutrient analyses. The petiole analysis had better performance between the 

growing seasons as far as matching the expected behavior of the nutrient concentrations is 

concerned. It is also the industry standard, which would allow easier comparison of our data to 

other studies’ results. The petiole nutrient analysis therefore was selected to constitute the nutrient 

data, which we next will attempt to model using the reflectance spectra collected. The obvious 

drawback to our approach is that our spectral measurements were collected at the leaf-, or 

upscaled leaf, i.e., canopy levels. One could thus argue that a reflectance-to-nutrient comparison at 

the leaf level should constitute a better match. However, with this caveat in mind, we still deemed it 

more appropriate to relate our remote sensing samples to petiole analyses, based on the reasons 

provided earlier. 

5.2 Modeling results - 1nm data 

The first set of reflectance data analyzed had a spectral resolution of 1nm. For both the 1nm data 

analysis and the 10nm data analysis, a threshold for the correlation coefficient needed to be 
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established in order to limit the number of variables. This cut-off level, as stated earlier, was set at 

CC ≥ 0.70. This implies that only if a correlation coefficient produced a value of 0.70 or higher, was 

it considered highly correlated. Taylor (1990) stated in their paper discussing the interpretation of 

the correlation coefficient that a strong or high correlation is an R2 value between 0.68 and 1.0, with 

those over 0.90 implying high correlations. Calkins (2005) argued that an R value between 0.70-

0.90 could be deemed highly correlated. We set our threshold level at R ≥ 0.70, i.e., indicating a high 

level of correlation, based on these studies. 

5.2.1 Index results 

Using the threshold described above, the correlation coefficient results that were achieved using 

the normalized difference index, when run against the bloom nutrient data, are shown below in 

Table 16. Gil-Perez et al. (2010) used narrow-band hyperspectral imagery to evaluate the nutrient 

content in vineyards. Similar to this study, the authors used 1nm spectral resolution data for the 

analysis. Four of the nutrients examined in their paper lined up with this investigation: N, P, K, and 

Mg. Using narrow-band indices they achieved correlation values between 0.50-0.69. Our results 

(Tables 16 and 18) therefore were comparable or better in a number of cases then the correlation 

values achieved by Gil-Perez et al (2010). 

We furthermore saw that, when examining the results from Cabernet Franc, two separate nutrient-

view angle combinations performed at or above our threshold level. These results were spread 

between both canopy view-angles, with a maximum CC value of 0.72 being achieved by both B and 

P. Examining the correlations obtained from Riesling, we see that for the petiole analysis seven 

different nutrient-view angle combinations were highly correlated. While the high correlations 

were observed across all three view-angles, concentration was in the leaf-view results. The 

correlations were spread across five of the nutrients, with two nutrients performing well in more 

than one view-angle. The highest CC achieved from Riesling data was a CC=0.82, for N. However, 

between the two cultivars there were no nutrient-view angle combinations that had a high 

correlation in both cultivars. For the one nutrient, B, that achieved a high correlation in both 

cultivars, they each had a different view-angle for which this occurred (the CC values was within 

0.01 of each other). 

 



 62 

Table 16: Correlation coefficient results for Cabernet Franc and Riesling from the bloom 
phenological stage for the normalized difference index 

 

Table 17 shows the CC results achieved using the ratio index (RI) instead of the NDI approach. We 

found that all the results were the same to two decimal places via a comparison of the two tables.  

This pattern of matching results continued for all cultivar and growing season combinations. 

Instead of showing duplicate results, the ratio index results will not be shown for the remainder of 

the 1nm index analysis. It should also be noted that none of the follow-on analyses, such as the step-

wise linear regression of the index results, was done using the ratio index. 

Table 17: Correlation coefficient results for Cabernet Franc and Riesling from the bloom 
phenological stage for the ratio index 

 

Table 18 below shows the CC results achieved from the NDI during the veraison collect; it is worth 

noting that the nutrient-view angle combinations that perform satisfactorily have shifted. In the 

case of the Cabernet Franc data, we observed that only B correlated highly, approximately at the 

threshold of CC=0.70, and only for a single view angle (leaf-view). Between the two growing 

seasons, B remained the only nutrient that had a high correlation between the spectral reflectance 

and the nutrient concentrations found in the petiole of the plant. While B remained consistent, the 

Field: Field:

View: Leaf Canopy NADIR Canopy 15 Deg View: Leaf Canopy NADIR Canopy 15 Deg

Boron 0.57 0.72 0.58 Boron 0.71 0.69 0.57

Potassium 0.58 0.55 0.61 Potassium 0.74 0.71 0.62

Magnesium 0.66 0.55 0.67 Magnesium 0.81 0.57 0.67

Nitrogen 0.64 0.61 0.50 Nitrogen 0.82 0.66 0.71

Phosphorus 0.65 0.65 0.72 Phosphorus 0.62 0.64 0.66

Zinc 0.64 0.68 0.58 Zinc 0.71 0.62 0.60
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Field: Field:

View: Leaf Canopy NADIR Canopy 15 Deg View: Leaf Canopy NADIR Canopy 15 Deg

Boron 0.57 0.72 0.58 Boron 0.71 0.69 0.57

Potassium 0.59 0.55 0.61 Potassium 0.74 0.71 0.62

Magnesium 0.66 0.55 0.67 Magnesium 0.81 0.57 0.67

Nitrogen 0.65 0.62 0.50 Nitrogen 0.82 0.66 0.71

Phosphorus 0.65 0.66 0.72 Phosphorus 0.62 0.64 0.66

Zinc 0.64 0.68 0.59 Zinc 0.71 0.62 0.61
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view-angle that achieved this high correlation shifted from the canopy, viewed at nadir during 

bloom, to the leaf level view. 

However, for the Riesling results we noted a marked increase in high correlations: Mg, N, and P had 

high correlations for all three view angles and Zn correlated highly at the leaf view-angle. The 

maximum correlation value achieved was CC=0.80. Though there is a slight decrease in maximum 

correlation from the bloom value of CC=0.82, the number of nutrient-view angle combinations that 

achieved a correlation value above the CC≥0.70 threshold increased from seven to ten. Finally, it is 

clear that for both the bloom and veraison results (Tables 16 and 18), the correlations achieved 

from our NDI method produced correlation values superior to the values produced by the GM, VOG, 

or GLI indices that we tested earlier. 

Table 18: Correlation coefficient results for Cabernet Franc and Riesling from the veraison 
phenological stage for the normalized difference index

 

When one compares the similar nutrient-view angle combinations between nutrient analyses, there 

are four in common: Mg and Zn viewed at the leaf level, as well as N compared against both the leaf 

and canopy 15o off-nadir results. Following the previous trend in the maximum correlation value, 

there was a general decrease in the correlation result for three of the four consistently high 

combinations by between 0.05-0.07. The correlation results achieved by Zn, when viewed at the 

leaf level, remained constant between the two growing seasons. 

The fact that there were combinations that performed well in both growing seasons, led us to 

believe that it could be feasible to identify wavelengths that will work for both growth seasons in 

terms of producing high correlation values. Next we further analyzed the wavelengths that 

produced the high correlation coefficients. 

Field: Field:

View: Leaf Canopy NADIR Canopy 15 Deg View: Leaf Canopy NADIR Canopy 15 Deg

Boron 0.70 0.63 0.69 Boron 0.54 0.67 0.60

Potassium 0.58 0.64 0.66 Potassium 0.50 0.59 0.52

Magnesium 0.55 0.53 0.54 Magnesium 0.75 0.73 0.71

Nitrogen 0.62 0.46 0.67 Nitrogen 0.77 0.80 0.78

Phosphorus 0.50 0.51 0.55 Phosphorus 0.70 0.78 0.76

Zinc 0.52 0.58 0.50 Zinc 0.71 0.68 0.68

Veraison Data, 1nm Bands NDI Index

Correlation Coefficient 

Veraison Data, 1nm Bands NDI Index
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5.2.2 Analysis of correlation coefficient heat maps 

We plotted “heat maps” of the correlations from the determination of the peak CCs in order to 

evaluate how well the various wavelength combinations performed. For each of the heat maps, the 

brighter the yellow, the higher the correlation coefficient produced and the darker the blue, the 

lower the corresponding correlation value. Note that only the nutrient-view angle combinations 

that produced a CC value at or above cutoff level are shown below. 

5.2.2.1 Cabernet Franc Heat Maps 

The heat map results from the Cabernet Franc cultivar during both seasons are discussed next. We 

concluded that, based on the bloom data, there were two nutrient-view angle combinations that 

produced high correlation coefficients. The heat map from B viewed at canopy nadir (Figure 23) 

shows that the peak values were generated from row 501; column 522, which corresponds to 

wavelengths 900nm and 921nm, respectively. Besides the peak values, high areas of correlation 

were produced by a combination of two NIR bands, as well as areas created by combining two 

visible wavelengths. 

  
Figure 23: The boron wavelength correlation coefficients for Cabernet Franc bloom phenological 
stage at the canopy nadir view angle: (a) 3-D view, (b) 2-D view 

Figure 24, on the other hand, shows that P exhibited a low average correlation. It has a relatively 

small peak area, formed by combining blue and green wavelengths. Peak CC values were from row 

63; column 54, or wavelengths 462nm and 453nm, respectively. 
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Figure 24: The phosphorus wavelength correlation coefficients for Cabernet Franc bloom 
phenological stage at the canopy 15o off-nadir view angle: (a) 3-D view, (b) 2-D view 

For Cabernet Franc during veraison there was only a single nutrient-view angle combination that 

produced high CCs, with B at leaf view. The heat map in Figure 25 has a small peak value made from 

a combination of blue bands (row 70; column 75), or wavelengths 469nm and 474nm. Apart from 

these wavelengths, there is another region of fairly high correlation created by combining two NIR 

bands. The wavelengths creating the peak value here differ greatly from what was found in bloom, 

which was a combination of wavelengths around 900nm - for veraison we see that the peak value 

was formed by two blue wavelengths. 

  
Figure 25: The boron wavelength correlation coefficients for Cabernet Franc veraison phenological 
stage at the leaf view angle: (a) 3-D view, (b) 2-D view 

5.2.2.1 Riesling Heat Maps 

The heat maps produced from the Riesling cultivar are displayed below. The bloom collection 

resulted in seven nutrient-view angle combinations above the threshold (CC≥0.70). These were 

spread over five of the six nutrients and all three view-angles. The heat map for the leaf-view of B 
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shows that, both the cutoff criteria was barely met and that only a very small number of 

wavelengths combined to do this. Row 523 (922nm) and column 508 (907nm) form the peak 

correlation value. 

  
Figure 26: The boron wavelength correlation coefficients for Riesling bloom phenological stage at 
the leaf view angle: (a) 3-D view, (b) 2-D view 

Magnesium viewed at leaf level had a greater number of high correlations, formed predominantly 

from visible bands. The peak was from row 243; column 295, corresponding to wavelengths 642nm 

and 694nm, respectively. 

  
Figure 27: The magnesium wavelength correlation coefficients for Riesling bloom phenological 
stage at the leaf view angle: (a) 3-D view, (b) 2-D view 

Nitrogen at the leaf level exhibited few high correlations, with the peak values from row 24; column 

20, corresponding to wavelengths 423nm and 419nm, respectively. This peak is in the same region 

as we see for N when viewed at canopy 15o off-nadir (Figure 29). In that case it was row 53; column 
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55, corresponding to wavelengths 452nm and 454nm, respectively; all of these wavelengths were 

located in the blue wavelength region. 

  
Figure 28: The nitrogen wavelength correlation coefficients for Riesling bloom phenological stage 
at the leaf view angle: (a) 3-D view, (b) 2-D view 

  
Figure 29: The nitrogen wavelength correlation coefficients for Riesling bloom phenological stage 
at the canopy 15o off-nadir view angle: (a) 3-D view, (b) 2-D view 

For K viewed at leaf level we see strong responses when two visible bands are combined and when 

two NIR bands are combined. The peak values were generated from row 579 (987nm); column 574 

(973nm). Viewed at canopy nadir, the results for K shifted from two NIR bands which interacted 

well, to a combination of NIR and visible region bands. Also the peak value shifts from being 

produced by NIR bands to being created by two blue bands: row 64 (463nm); column 65 (464nm). 
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Figure 30: The potassium wavelength correlation coefficients for Riesling bloom phenological stage 
at the leaf view angle: (a) 3-D view, (b) 2-D view 

  
Figure 31: The potassium wavelength correlation coefficients for Riesling bloom phenological stage 
at the canopy nadir view angle: (a) 3-D view, (b) 2-D view 

The final nutrient-view angle combination with high correlation for Riesling during bloom is for Zn, 

viewed at leaf level. There is one small peak in the visible-visible range, but the main area of high 

correlation, as well as the peak (row 475, column 477, corresponding to wavelengths 874 nm and 

876 nm, respectively), fall in the NIR region.  
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Figure 32: The zinc wavelength correlation coefficients for Riesling bloom phenological stage at the 
leaf view angle: (a) 3-D view, (b) 2-D view 

Based on the veraison data, there were 10 nutrient-view angle combinations that met the threshold 

criterion. The first is Mg when viewed at leaf level - the peak is formed by row 449 and column 453, 

corresponding to wavelengths 848nm and 852nm, respectively. There is a small hotspot area, 

formed by other NIR bands that were also highly correlated. 

  
Figure 33: The magnesium wavelength correlation coefficients for Riesling veraison phenological 
stage at the leaf view angle: (a) 3-D view, (b) 2-D view 

In comparison to the leaf view, the nadir-view for Mg has a peak CC value that was formed by two 

blue bands, row 76 (475nm) and column 68 (467nm). It also had larger regions of high correlation, 

formed by other visible bands and a combination of a visible and NIR band. 
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Figure 34: The magnesium wavelength correlation coefficients for Riesling veraison phenological 
stage at the canopy nadir view angle: (a) 3-D view, (b) 2-D view 

Magnesium at the canopy 15o off-nadir view-angle has an isolated peak, formed by two NIR 

wavelengths; row 429 (828nm) and column 425 (824nm).  Besides this peak, the main area of 

correlation was formed by two wavelengths, one around 600nm and the other from either the blue 

or green regions of the spectra. 

  
Figure 35: The magnesium wavelength correlation coefficients for Riesling veraison phenological 
stage at the canopy 15o off-nadir view angle: (a) 3-D view, (b) 2-D view 

When evaluating the three view-angles for N from Riesling during veraison, we observe that they all 

exhibited similar patterns. There was a high correlation area formed by two wavelengths, one 

around 600nm and the other from either the blue or green regions of the spectra, and another 

region formed by a 600nm band and a NIR band. For the leaf view, the peak correlation value was 

located at row 21 (420nm) and column 4 (403nm).  
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Figure 36: The nitrogen wavelength correlation coefficients for Riesling veraison phenological stage 
at the leaf view angle: (a) 3-D view, (b) 2-D view 

For the nadir view-angle the peak correlation was also in the blue region, at row 76 and column 68, 

corresponding to wavelengths 475nm and 467nm, respectively. Despite a similar shape as the one 

found for the nadir view-angle heat map, the peak region for the 15o off-nadir view angle was 

created by a combination of row 429 (828nm) and column 425 (824nm).  

  
Figure 37: The nitrogen wavelength correlation coefficients for Riesling veraison phenological stage 
at the canopy nadir view angle: (a) 3-D view, (b) 2-D view 
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Figure 38: The nitrogen wavelength correlation coefficients for Riesling veraison phenological stage 
at the canopy 15o off-nadir view angle: (a) 3-D view, (b) 2-D view 

The leaf-view for P during veraison exhibited a peak CC value at row 547 and column 535, 

corresponding to wavelengths 946nm and 934nm, respectively. This is an isolated peak, but there 

are other areas of high correlation that formed via a combination of bands in the 800nm range and 

again by combining a red and a green band. 

  
Figure 39: The phosphorus wavelength correlation coefficients for Riesling veraison phenological 
stage at the leaf view angle: (a) 3-D view, (b) 2-D view 

For the nadir-view the peak CC value was located at row 365 (764nm) and column 417 (816nm). 

Despite the peak being formed by two NIR bands, the largest area of high correlation was created 

through a combination of bands between the blue and green regions. 
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Figure 40: The phosphorus wavelength correlation coefficients for Riesling veraison phenological 
stage at the canopy nadir view angle: (a) 3-D view, (b) 2-D view 

Figure 41, in turn, shows that for the canopy 15o off-nadir view angle the peak value was located at 

row 429 (828nm) and column 425 (824nm). As was the case for the nadir-view, there was a region 

of high correlation through a combination of visible bands, but in this case the correlation was 

driven by two bands around 500nm, a little lower in the spectrum then for the nadir-view. Unlike 

the nadir-view, there were some additional regions in the NIR/NIR region with high correlation 

values. 

  

Figure 41: The phosphorus wavelength correlation coefficients for Riesling veraison phenological 
stage at the canopy 15o off-nadir view angle: (a) 3-D view, (b) 2-D view 

For Zn we found that the highest correlations tended to be created by a combination of two NIR 

bands (Figure 42). The peak CC value was at row 477 column 472, corresponding to wavelengths 

876nm and 871nm, respectively. There was also a heat map region of high correlation, based on 

similar bands in the red wavelengths. 
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Figure 42: The zinc wavelength correlation coefficients for Riesling veraison phenological stage at 
the leaf view angle: (a) 3-D view, (b) 2-D view 

We identified a number of evident trends based on the examination and comparison of individual 

nutrient heat maps. The peak values for B during bloom came from wavelengths in the 900nm 

range. For N, four of the five heat maps had peak values constituted by two wavelengths in the 

400nm range. And finally, for both heat maps from Zn, the peak values in each came from 

wavelengths in the mid 800nm area. However, no pattern was evident for the other three nutrients. 

5.2.3 R2 Analysis 

The number of potential independent variables was too great to get convergence in most linear 

selection routines and compute a viable solution for all cases, which resulted in an approach 

whereby the R2 values were only computed for the nutrient-view angle combinations that produced 

CC≥0.70. Even then it was necessary to limit the wavelengths, as described in the methods section. 

We calculated the coefficient of determination for each nutrient-view angle pair that produced a 

high CC, using the combined highly correlated wavelengths from their respective cultivars and 

growing seasons. The results from this are seen in tables below. The R2 values calculated using the 

top bands, i.e., those bands correlated at p < 0.05, have also been included in the tables. 

For Cabernet Franc during bloom we know that only two nutrient-view angle combinations had 

values above the CC=0.70 threshold. The number of indices that generated CC values above this 

threshold is shown in Table 19 below. 
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Table 19: Number of highly correlated indices produced using the normalized difference index for 
Cabernet Franc from the bloom phenological stage

 

In the case of B, 35 separate indices had a CC value of 0.70 or greater. These 35 indices were then 

used as the input variables for the linear fit that was run against the B nutrient data to generate the 

R2 results seen in Table 20 below.  The same goes for the two indices that correlated highly for Zn. 

Table 20: R2 results using the normalized difference index for Cabernet Franc from the bloom 
phenological stage

  

As we can see from Table 20, the highest R2 value achieved by our data from Cabernet Franc 

(bloom) was able to explain 53% of the variation in the nutrient data.  The inclusion of correlated 

bands at p < 0.05 resulted in no models being generated at any view angle. 

Moving onto Riesling, there were seven nutrient-view angle combinations reaching the CC 

threshold. The number of indices that did this for each combination varied from a single index to 

322 different indices. 
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Table 21: Number of highly correlated indices produced using the normalized difference index for 
Riesling from the bloom phenological stage

 

Again the highly correlated indices were used for a linear fit and the coefficients of determination 

are shown below. The Riesling cultivar, despite achieving higher correlation coefficients than 

Cabernet Franc, actually performed slightly worse with a maximum R2 = 0.51 being reached. 

Despite a correlation coefficient of 0.82 for N at leaf level, our method of calculating the R2 value 

using only the wavelengths that correlated highly did not work well, resulting in a R2 = 0.02. 

Table 22: R2 results using the normalized difference index for Riesling from the bloom phenological 
stage

  

We observed similar results for veraison in terms of the R2 that were calculated. For Cabernet 

Franc, none of the CC values reached the threshold level, therefore indices could be used for the 

linear fit. Of note, one combination reached CC=0.70 at only two significant digits, but fell below 

when using more than two. The data as read by MATLAB were used at more than two significant 

digits, hence the value of 0.6961 did not reach the CC threshold of 0.7 in MATLAB. 
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Table 23: Number of highly correlated indices produced using the normalized difference index for 
Cabernet Franc from the veraison phenological stage

 

We found that for the correlated bands (p < 0.05), only B resulted in a decent model fit for the 

Cabernet Franc cultivar during the veraison phenological stage.  

Despite a large number of indices that correlated highly in some of the nutrient-view angle 

combinations, the results from the Riesling cultivar during veraison, seen in Tables 24 and 25 

below, performed similar to the results from bloom, with a maximum R2 value of just over 0.50. 

Again, like bloom, some of the combinations that generated the highest CC values had the lowest R2 

values. 

Table 24: Number of highly correlated indices produced using the normalized difference index for 
Riesling from the veraison phenological stage
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Table 25: R2 results using the normalized difference index for Riesling from the veraison 
phenological stage

  

Correlation coefficients do not guarantee a good fit with the nutrient data; they just indicate the 

level to which the wavelengths are correlated. The peak CC result of 0.82 only produced a 

coefficient of determination of 0.02. This would indicate that the method we adopted for using only 

the wavelengths that were strongly correlated might not be the best method with which to fit the 

nutrient data. The usage of all correlated bands (p < 0.05) to generate a specific nutrient model did 

not generally improve the model fits, nor did this approach generate good modeling results when 

compared to those nutrient-view angle combinations which had indices that did not have CC > 0.7 

values. 

To that end, another method was employed, namely step-wise linear regression. 

5.2.4 Wavelength and NDI SLR results 

We next wanted to determine what results could be achieved using step-wise linear regression, 

following the standard linear fit attempt for the nutrients, focused on the nutrient-view angle 

combinations that correlated highly. The first objective for this was to evaluate this approach using 

the individual wavelengths and the correlated indices. 

The CC was run for all the wavelengths to find a subset that highly correlated for a given nutrient 

from each view-angle. The results came back without any individual wavelengths correlating at the 

CC≥0.70 level for both cultivars in both growing seasons. Therefore, we were unable to find a 

correlated subset. In this case, the complete set of 601 wavelengths was used as the input variables 

for running SLR on each of the nutrients. Once SLR had been run using the complete set of 

wavelengths, it was again ran using the highly correlated indices as the input variables. The results 

from these two analyses are shown below in Tables 26-49. Of note, for all the following tables, the 

criterion column refers to the criterion model specification used for the SLR that gave the highest R2 

value for that given nutrient.  
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Examining the results from Cabernet Franc first, the values achieved from the three view-angles 

during bloom are seen in Tables 26-27. We found that for the results that gave an R2 value above 

zero, five out of six of them were achieved based on the AIC criterion. Also, if the results from the 

three view angles were combined, all six nutrients had R2 values greater than zero; however, no 

more than two nutrients achieved this feat in a single view angle. This is a unique occurrence that 

was not observed in any of the other cultivar-growing season combinations. The results achieved 

varied between 0.22-0.82, depending on the nutrient for the Cabernet Franc bloom data. 

Table 26: R2 results for step-wise linear regression using all wavelengths for Cabernet Franc from 
the bloom phenological stage at the leaf view angle 

Nutrient 

SLR - All Wavelengths 

R2  R2 Adjusted Criterion RMSE 

Boron 0.00 0.00 BIC/R2 4.12 (mg/kg) 

Magnesium 0.00 0.00 AIC/BIC/ R2 786.60 (mg/kg) 

Nitrogen 0.68 0.61 AIC 0.08 (%) 

Phosphorus 0.00 0.00 BIC/ R2 1887.27 (mg/kg) 

Potassium 0.00 0.00 AIC/BIC/ R2 7523.44 (mg/kg) 

Zinc 0.58 0.51 AIC 6.71 (mg/kg) 
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Table 27: R2 results for step-wise linear regression using all wavelengths for Cabernet Franc from 
the bloom phenological stage at the canopy nadir view angle 

Nutrient 

SLR - All Wavelengths  

R2 R2 Adjusted Criterion RMSE 

Boron 0.00 0.00 BIC/ R2 4.12 (mg/kg) 

Magnesium 0.22 0.16 AIC 719.77 (mg/kg) 

Nitrogen 0.00 0.00 AIC/BIC/ R2 0.13 (%) 

Phosphorus 0.00 0.00 AIC/BIC/ R2 1887.27 (mg/kg) 

Potassium 0.48 0.42 BIC/ R2 5748.85 (mg/kg) 

Zinc 0.00 0.00 AIC/BIC/ R2 9.60 (mg/kg) 

 

Table 28: R2 results for step-wise linear regression using all wavelengths for Cabernet Franc from 
the bloom phenological stage at the canopy 15o off-nadir view angle 

Nutrient 

SLR - All Wavelengths  

R2 R2 Adjusted Criterion RMSE 

Boron 0.54 0.44 AIC 3.09 (mg/kg) 

Magnesium 0.00 0.00 AIC/BIC/ R2 798.03 (mg/kg) 

Nitrogen 0.00 0.00 AIC/BIC/ R2 0.12 (%) 

Phosphorus 0.82 0.78 AIC 898.85 (mg/kg) 

Potassium 0.00 0.00 AIC/BIC/ R2 7557.50 (mg/kg) 

Zinc 0.00 0.00 AIC/BIC/ R2 9.76 (mg/kg) 

 

The results from veraison are presented in Tables 29-31. We observed that a positive R2 value was 

generated for B from a combination of wavelengths from any of the three view angles, with those 

collected at canopy 15o off-nadir accounting for 82% of the variation in the nutrient data. Besides B, 
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only K and Zn are also represented from this data set. The AIC criterion again generated the highest 

R2 values, similar to what was seen in the bloom analysis. 

Table 29: R2 results for step-wise linear regression using all wavelengths for Cabernet Franc from 
the veraison phenological stage at the leaf view angle 

Nutrient 

SLR - All Wavelengths  

R2 R2 Adjusted Criterion RMSE 

Boron 0.31 0.26 BIC/ R2 4.52 (mg/kg) 

Magnesium 0.00 0.00 AIC/BIC/ R2 396.67 (mg/kg) 

Nitrogen 0.40 0.36 AIC/BIC/ R2 0.08 (%) 

Phosphorus 0.00 0.00 AIC/BIC/ R2 710.37 (mg/kg) 

Potassium 0.33 0.22 AIC  2008.19 (mg/kg) 

Zinc 0.57 0.48 AIC 3.65 (mg/kg) 

 

Table 30: R2 results for step-wise linear regression using all wavelengths for Cabernet Franc from 
the veraison phenological stage at the canopy nadir view angle  

Nutrient 

SLR - All Wavelengths  

R2 R2 Adjusted Criterion RMSE 

Boron 0.30 0.27 AIC/BIC/ R2 4.53 (mg/kg) 

Magnesium 0.00 0.00 AIC/BIC/ R2 387.64 (mg/kg) 

Nitrogen 0.00 0.00 AIC/BIC/ R2 0.09 (%) 

Phosphorus 0.00 0.00 AIC/BIC/ R2 733.35 (mg/kg) 

Potassium 0.00 0.00 BIC/ R2 2324.46 (mg/kg) 

Zinc 0.21 0.15 AIC  3.80 (mg/kg) 
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Table 31: R2 results for step-wise linear regression using all wavelengths for Cabernet Franc from 
the veraison phenological stage at the canopy 15o off-nadir view angle 

Nutrient 

SLR - All Wavelengths  

R2 R2 Adjusted Criterion RMSE 

Boron 0.86 0.80 AIC  2.39 (mg/kg) 

Magnesium 0.00 0.00 AIC/BIC/ R2 390.00 (mg/kg) 

Nitrogen 0.00 0.00 AIC/BIC/ R2 0.09 (%) 

Phosphorus 0.00 0.00 AIC/BIC/ R2 722.20 (mg/kg) 

Potassium 0.00 0.00 BIC/ R2 2325.26 (mg/kg) 

Zinc 0.00 0.00 AIC/BIC/ R2 4.98 (mg/kg) 

 

Staying with the Cabernet Franc cultivar, the results from the SLR run using the highly correlated 

indices from the initial analysis were generated. For the three different view angles, only the 

combinations of the view angles and the nutrients which resulted in a CC≥0.70 were tested. All 

other combinations, i.e., those that did not reach the required threshold level, were ignored as they 

did not have any highly correlated indices to use as input variables. Tables 32-34 show the results 

from bloom. 

We observed that only two of the nutrient-view angle combinations were highly correlated for 

bloom. For these two, R2 values matching those generated using the standard linear fit were found. 

This is likely due to the fact that a low number of indices for each of these models were found to be 

highly correlated. The SLR found the best result using only a single index based on the small input 

data set, which matched the results from the standard linear fit approach.  
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Table 32: R2 results for step-wise linear regression using the highly correlated normalized 
difference indices for Cabernet Franc from the bloom phenological stage at the leaf view angle  

Nutrient 

SLR - Correlated NDI 

R2 R2 Adjusted Criterion RMSE Top Bands 

Boron N/A N/A N/A N/A 0.00 

Magnesium N/A N/A N/A N/A 0.00 

Nitrogen N/A N/A N/A N/A 0.00 

Phosphorus N/A N/A N/A N/A 0.00 

Potassium N/A N/A N/A N/A 0.00 

Zinc N/A N/A N/A N/A 0.00 

 

Table 33: R2 results for step-wise linear regression using the highly correlated normalized 
difference indices for Cabernet Franc from the bloom phenological stage at the canopy nadir view 
angle 

Nutrient 

SLR - Correlated NDI 

R2 R2 Adjusted Criterion RMSE Top Bands 

Boron 0.51 0.49 AIC/BIC/ R2 2.69 (mg/kg) 0.36 

Magnesium N/A N/A N/A N/A 0.00 

Nitrogen N/A N/A N/A N/A 0.10 

Phosphorus N/A N/A N/A N/A 0.00 

Potassium N/A N/A N/A N/A 0.00 

Zinc N/A N/A N/A N/A 0.00 

 

 

 

 

 

 



 84 

Table 34: R2 results for step-wise linear regression using the highly correlated normalized 
difference indices for Cabernet Franc from the bloom phenological stage at the canopy 15o off-nadir 
view angle 

Nutrient 

SLR - Correlated NDI 

R2 R2 Adjusted Criterion RMSE Top Bands 

Boron N/A N/A N/A N/A 
0.00 

Magnesium N/A N/A N/A N/A 
0.00 

Nitrogen N/A N/A N/A N/A 
0.00 

Phosphorus 0.53 0.51 AIC/BIC/ R2 1335.53 (mg/kg) 0.00 

Potassium N/A N/A N/A N/A 
0.00 

Zinc N/A N/A N/A N/A 
0.00 

 

Recall that veraison had no highly correlated indices; hence there were no input variables to use 

with the SLR modeling approach. In the case of the Cabernet Franc cultivar, the use of step-wise 

linear regression gave us the best results when used with the full spectrum of wavelengths, rather 

than the highly correlated indices. We will examine the Riesling results next, starting with SLR 

using the full spectrum of wavelengths from 400-1000nm. 

Tables 35-37 show that of the six nutrients, only for Zn was the SLR unable to produce a non-zero 

R2 value. In other words, for the other five nutrients the R2 values varied between 0.15-0.71 and 

were spread between the three different criteria, with the R2 criterion performing the best overall. 

This is a change from the Cabernet Franc results, in which the AIC criterion worked the best. From 

the Riesling results, we found that while the highest R2 values came from the leaf-view, the largest 

number of nutrients was represented from the spectrum collected at canopy 15o off-nadir. 
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Table 35: R2 results for step-wise linear regression using all wavelengths for Riesling from the 
bloom phenological stage at the leaf view angle 

Nutrient 

SLR - All Wavelengths 

R2 R2 Adjusted Criterion RMSE 

Boron 0.00 0.00 AIC/BIC/ R2 6.10 (mg/kg) 

Magnesium 0.53 0.46 AIC  821.02 (mg/kg) 

Nitrogen 0.71 0.67  R2 0.06 (%) 

Phosphorus 0.49 0.44  R2 2624.69 (mg/kg) 

Potassium 0.00 0.00 AIC/BIC/ R2 3478.64 (mg/kg) 

Zinc 0.00 0.00 AIC/BIC/ R2 14.61 (mg/kg) 

 

Table 36: R2 results for step-wise linear regression using all wavelengths for Riesling from the 
bloom phenological stage at the canopy nadir view angle 

Nutrient 

SLR - All Wavelengths 

R2 R2 Adjusted Criterion RMSE 

Boron 0.00 0.00 AIC/BIC/ R2 6.10 (mg/kg) 

Magnesium 0.00 0.00 AIC/BIC/ R2 1120.73 (mg/kg) 

Nitrogen 0.00 0.00 BIC/ R2 0.10 (%) 

Phosphorus 0.00 0.00 AIC/BIC/ R2 3514.37 (mg/kg) 

Potassium 0.52 0.45 AIC/ R2 2589.97 (mg/kg) 

Zinc 0.00 0.00 AIC/BIC/ R2 14.61 (mg/kg) 
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Table 37: R2 results for step-wise linear regression using all wavelengths for Riesling from the 
bloom phenological stage at the canopy 15o off-nadir view angle 

Nutrient 

SLR - All Wavelengths 

R2 R2 Adjusted Criterion RMSE 

Boron 0.39 0.30  R2 5.1 (mg/kg) 

Magnesium 0.58 0.49 BIC 800.47 (mg/kg) 

Nitrogen 0.47 0.28 AIC 0.08 (%) 

Phosphorus 0.15 0.11 AIC/BIC/ R2 3316.02 (mg/kg) 

Potassium 0.53 0.43  R2 2636.00 (mg/kg) 

Zinc 0.00 0.00 AIC/BIC/ R2 14.61 (mg/kg) 

 

The R2 values for the veraison results can be seen in Tables 38-40. None of the spectra collected 

from any of the three view-angles could generate a non-zero coefficient of determination for either 

B or K. based on our modeling of the veraison nutrient data for Riesling. For the other four 

nutrients, both the leaf view and the canopy at 15o off-nadir generated R2 values for N and Zn, while 

the canopy nadir view generated R2 values for both Mg and P. The values ranged between 0.32-0.82 

and were generated predominantly with the AIC criterion. 
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Table 38: R2 results for step-wise linear regression using all wavelengths for Riesling from the 
veraison phenological stage at the leaf view angle 

Nutrient 

SLR - All Wavelengths 

R2 R2 Adjusted Criterion RMSE 

Boron 0.00 0.00 AIC/BIC/ R2 4.52 (mg/kg) 

Magnesium 0.00 0.00 AIC/BIC/ R2 396.67 (mg/kg) 

Nitrogen 0.68 0.64  R2 0.08 (%) 

Phosphorus 0.00 0.00 AIC/BIC/ R2 710.37 (mg/kg) 

Potassium 0.00 0.00 AIC/BIC/ R2 2008.19 (mg/kg) 

Zinc 0.32 0.26 AIC/BIC/ R2 3.65 (mg/kg) 

 

Table 39: R2 results for step-wise linear regression using all wavelengths for Riesling from the 
veraison phenological stage at the canopy nadir view angle 

Nutrient 

SLR - All Wavelengths 

R2 R2 Adjusted Criterion RMSE 

Boron 0.00 0.00 AIC/BIC/ R2 4.53 (mg/kg) 

Magnesium 0.64 0.56 AIC 387.64 (mg/kg) 

Nitrogen 0.00 0.00 AIC/BIC/ R2 0.09 (%) 

Phosphorus 0.60 0.56 AIC 733.35 (mg/kg) 

Potassium 0.00 0.00 AIC/BIC/ R2 2324.46 (mg/kg) 

Zinc 0.00 0.00 AIC/BIC/ R2 3.80 (mg/kg) 
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Table 40: R2 results for step-wise linear regression using all wavelengths for Riesling from the 
veraison phenological stage at the canopy 15o off-nadir view angle 

Nutrient 

SLR - All Wavelengths 

R2 R2 Adjusted Criterion RMSE 

Boron 0.00 0.00 BIC/R2 3.18 (mg/kg) 

Magnesium 0.00 0.00 AIC/BIC/ R2 390.00 (mg/kg) 

Nitrogen 0.53 0.49 AIC/ R2 0.09 (%) 

Phosphorus 0.00 0.00 AIC/BIC/ R2 722.20 (mg/kg) 

Potassium 0.00 0.00 AIC/BIC/ R2 2325.26 (mg/kg) 

Zinc 0.81 0.74 AIC  4.98 (mg/kg) 

 

The Riesling veraison nutrients that generated high values do not match any obvious pattern when 

compared against the bloom results or against those from the Cabernet Franc cultivar. As for 

Cabernet Franc, we used the indices that were highly correlated from the initial analysis as the 

input variables for nutrient-specific SLR. 

The results of the Riesling SLR using indices are seen in Tables 41-43 below. Similar to Cabernet 

Franc, a number of the high R2 values matched those generated from the standard linear fit. This 

was because the SLR only used the one index that the linear fit also found to work best. The only 

other difference that stood out was that when the R2 value was low (R2≤0.05), the SLR could not 

produce a non-zero result. This is seen in three different nutrient-view angle combinations. As 

shown in the results from veraison (Tables 44-46), we found that the SLR behaved in a similar 

fashion to bloom in the three instances when R2≤0.05. 

 

 

 

 



 89 

Table 41: R2 results for step-wise linear regression using the highly correlated normalized 
difference indices for Riesling from the bloom phenological stage at the leaf view 

Nutrient 

SLR - Correlated NDI 

R2 R2 Adjusted Criterion RMSE Top Bands 

Boron 0.50 0.48 AIC/BIC/ R2 4.41 (mg/kg) 0.00 

Magnesium 0.00 0.00 AIC/BIC/ R2 1114.12 (mg/kg) 0.20 

Nitrogen 0.00 0.00 AIC/BIC/ R2 0.10 (%) 0.00 

Phosphorus N/A N/A N/A N/A 
0.00 

Potassium 0.00 0.00 AIC/BIC/ R2 3556.54 (mg/kg) 0.00 

Zinc 0.00 0.00 AIC/BIC/ R2 14.80 (mg/kg) 0.00 

 

Table 42: R2 results for step-wise linear regression using the highly correlated normalized 
difference indices for Riesling from the bloom phenological stage at the canopy nadir view angle 

Nutrient 

SLR - Correlated NDI 

R2 R2 Adjusted Criterion RMSE Top Bands 

Boron N/A N/A N/A N/A 0.00 

Magnesium N/A N/A N/A N/A 0.24 

Nitrogen N/A N/A N/A N/A 0.00 

Phosphorus N/A N/A N/A N/A 0.00 

Potassium 0.51 0.48 AIC/BIC/ R2 2500.43 (mg/kg) 0.00 

Zinc N/A N/A N/A N/A 0.11 
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Table 43: R2 results for step-wise linear regression using the highly correlated normalized 
difference indices for Riesling from the bloom phenological stage at the canopy 15o off-nadir view 
angle 

Nutrient 

SLR - Correlated NDI 

R2 R2 Adjusted Criterion RMSE Top Bands 

Boron N/A N/A N/A N/A 0.00 

Magnesium N/A N/A N/A N/A 
0.16 

Nitrogen 0.50 0.47 AIC/BIC/ R2 0.07 (%) 0.00 

Phosphorus N/A N/A N/A N/A 
0.10 

Potassium N/A N/A N/A N/A 
0.00 

Zinc N/A N/A N/A N/A 
0.00 

 

It was found that the spectrum collected for canopy nadir could not generate non-zero R2 values for 

the three nutrients when the nutrient-view angle combinations were high, but the spectrum from 

the canopy at 15o off-nadir did produce positive results. The SLR for Mg and N produced R2 values 

slightly higher than those created from the standard linear fit approach, while for P it produced a 

distinctly lower value, which hints at the mixed results achieved by the SLR method.  

Table 44: R2 results for step-wise linear regression using the highly correlated normalized 
difference indices for Riesling from the veraison phenological stage at the leaf view 

Nutrient 

SLR - Correlated NDI 

R2 R2 Adjusted Criterion RMSE Top Bands 

Boron N/A N/A N/A N/A 0.00 

Magnesium 0.00 0.00 AIC/BIC/ R2 416.68 (mg/kg) 0.23 

Nitrogen 0.00 0.00 AIC/BIC/ R2 0.10 (%) 0.48 

Phosphorus 0.00 0.00 AIC/BIC/ R2 438.78 (mg/kg) 0.00 

Potassium N/A N/A N/A N/A 
0.15 

Zinc 0.17 0.13 AIC/BIC/ R2 3.45 (mg/kg) 
0.52 
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Table 45: R2 results for step-wise linear regression using the highly correlated normalized 
difference indices for Riesling from the veraison phenological stage at the canopy nadir view angle 

Nutrient 

SLR - Correlated NDI 

R2 R2 Adjusted Criterion RMSE Top Bands 

Boron N/A N/A N/A N/A 
0.15 

Magnesium 0.00 0.00 AIC/BIC/ R2 299.18 (mg/kg) 0.00 

Nitrogen 0.00 0.00 AIC/BIC/ R2 0.07 (%) 0.46 

Phosphorus 0.00 0.00 AIC/BIC/ R2 327.27 (mg/kg) 0.00 

Potassium N/A N/A N/A N/A 
0.00 

Zinc N/A N/A N/A N/A 0.13 

 

Table 46: R2 results for step-wise linear regression using the highly correlated normalized 
difference indices for Riesling from the veraison phenological stage at the canopy 15o off-nadir view 
angle 

Nutrient 

SLR - Correlated NDI 

R2 R2 Adjusted Criterion RMSE Top Bands 

Boron N/A N/A N/A N/A 
0.00 

Magnesium 0.51 0.49 AIC/BIC/ R2 403.16 (mg/kg) 0.28 

Nitrogen 0.51 0.49 AIC/BIC/ R2 0.07 (%) 0.18 

Phosphorus 0.17 0.14 AIC/BIC/ R2 320.16 (mg/kg) 0.00 

Potassium N/A N/A N/A N/A 0.00 

Zinc N/A N/A N/A N/A 
0.00 

 

Overall, for Cabernet Franc, the step-wise linear regression method for generating a model fit for 

the nutrient data worked well when using the wavelengths. However, this was only true if the view-

angle from which the data were collected for a given nutrient could be chosen by the user. Using the 
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correlated NDI, on the other hand, did not produce any results superior to those obtained from a 

standard linear fit approach.  

The step-wise linear regression method performed well for the Riesling cultivar when using the 

complete reflectance spectra as potential input variables, if the user could select the preferred 

view-angle. Though unlike Cabernet Franc, the canopy 15o off-nadir spectrum had superior 

performance for the greatest number of nutrients over the two growing seasons. The SLR approach 

based on correlated indices did not outperform the standard linear fit method, for a number of 

nutrient and view angle combinations. In fact, in most cases the SLR method produced results that 

were either the same or inferior to those from the standard linear fit model. The next step was to 

look at a modification of the spectral data for input to the SLR model, after using the individual 

wavelengths and the correlated indices as the input variables for the SLR. 

5.2.5 Derivative SLR results 

The first approach in the “modified input variable” section was based on the 1st derivative of the 

reflectance spectra as the input variables for SLR. The same three criteria that were used previously 

were again used for the derivative SLR method. However, it was found that the AIC and BIC criteria 

could not resolve the SLR for a reasonable number of bands. In this case, reasonable was defined as 

fewer than 24 unique bands. Only the R2 criterion was able to calculate a coefficient of 

determination that resulted in a reasonable number of bands. This band cut-off was decided on in 

order to ensure robust models and avoid overfitting, and was set at less than 24 as that is the 

minimum number of samples we had from any particular data set. 

Tables 47-49 show the results for the R2 values for Cabernet Franc during bloom. The immediate 

thing that stands out from looking at the result tables is that all nutrients for all three view angles 

had strongly positive R2 values. In other words, unlike the cases raw wavelengths or correlated 

NDIs were used, there were no zero R2 values observed.  

It seems, based on the first cultivar-growing season pairing, that using the derivative of the 

spectrum may allow a user to select which view-angle is optimal for his/her collection method and 

for the nutrients of interest. For instance, using only the two canopy view-angles we were able to 

achieved R2 values between 0.54-0.73, depending on the nutrient in question. This is a distinct 

improvement on any of the prior results. 
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Table 47: R2 results for step-wise linear regression using all 1st derivatives for Cabernet Franc from 
the bloom phenological stage at the leaf view angle  

Nutrient 

SLR - Derivative 

R2 R2 Adjusted Criterion RMSE 

Boron 0.64 0.61  R2 2.59 (mg/kg) 

Magnesium 0.65 0.59  R2 503.10 (mg/kg) 

Nitrogen 0.61 0.57  R2 0.08 (%) 

Phosphorus 0.70 0.66  R2 1107.75 (mg/kg) 

Potassium 0.58 0.53  R2 5166.26 (mg/kg) 

Zinc 0.56 0.51  R2 6.74 (mg/kg) 

 

Table 48: R2 results for step-wise linear regression using all 1st derivatives for Cabernet Franc from 
the bloom phenological stage at the canopy nadir view angle 

Nutrient 

SLR - Derivative 

R2 R2 Adjusted Criterion RMSE 

Boron 0.47 0.44  R2 3.09 (mg/kg) 

Magnesium 0.35 0.31  R2 654.10 (mg/kg) 

Nitrogen 0.58 0.53  R2 0.09 (%) 

Phosphorus 0.67 0.62  R2 1161.80 (mg/kg) 

Potassium 0.68 0.65  R2 4478.60 (mg/kg) 

Zinc 0.51 0.46  R2 7.08 (mg/kg) 
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Table 49: R2 results for step-wise linear regression using all 1st derivatives for Cabernet Franc from 
the bloom phenological stage at the canopy 15o off-nadir view angle  

Nutrient 

SLR - Derivative 

R2 R2 Adjusted Criterion RMSE 

Boron 0.54 0.49  R2 2.96 (mg/kg) 

Magnesium 0.73 0.68  R2 449.50 (mg/kg) 

Nitrogen 0.14 0.11  R2 0.12 (%) 

Phosphorus 0.59 0.56  R2 1264.46 (mg/kg) 

Potassium 0.63 0.59  R2 4846.76 (mg/kg) 

Zinc 0.56 0.51  R2 6.83 (mg/kg) 

 

Results for the veraison data are shown in Tables 50-52 below. Again, we observed good R2 values 

across the board for each of the view-angles. The acceptable value for the coefficient of 

determination is highly subjective, and is selected by the individual researcher. For this research, in 

order to ease the discussion of performance of the different methods for modeling the nutrients 

over the seasons and between cultivars, we will again select a level of 0.70. An R2≥0.70 will be 

considered to have performed well for our purposes. In general, all three view angles will be 

considered. Therefore if we achieve a R2 value of 0.10 for one view-angle, but 0.75 for another, the 

nutrient will still be considered as performing well, since a user theoretically can select the 

preferred view-angle. However, it should be noted that for many applications, an R2≥0.50 could 

even be considered adequate, since such a model theoretically explain greater than 50% of the 

variability in the dependent variable. 
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Table 50: R2 results for step-wise linear regression using all 1st derivatives for Cabernet Franc from 
the veraison phenological stage at the leaf view angle 

Nutrient 

SLR - Derivative 

R2 R2 Adjusted Criterion RMSE 

Boron 0.53 0.50  R2 3.72 (mg/kg) 

Magnesium 0.65 0.60  R2 252.23 (mg/kg) 

Nitrogen 0.67 0.64  R2 0.06 (%) 

Phosphorus 0.34 0.29  R2 600.33 (mg/kg) 

Potassium 0.45 0.38  R2 1793.91 (mg/kg) 

Zinc 0.55 0.50  R2 3.57 (mg/kg) 

 

Table 51: R2 results for step-wise linear regression using all 1st derivatives for Cabernet Franc from 
the veraison phenological stage at the canopy nadir view angle 

Nutrient 

SLR - Derivative 

R2 R2 Adjusted Criterion RMSE 

Boron 0.65 0.60  R2 3.34 (mg/kg) 

Magnesium 0.63 0.58  R2 250.39 (mg/kg) 

Nitrogen 0.63 0.58  R2 0.06 (%) 

Phosphorus 0.53 0.46  R2 539.68 (mg/kg) 

Potassium 0.74 0.68  R2 1313.87 (mg/kg) 

Zinc 0.76 0.71  R2 2.22 (mg/kg) 
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Table 52: R2 results for step-wise linear regression using all 1st derivatives for Cabernet Franc from 
the veraison phenological stage at the canopy 15o off-nadir view angle 

Nutrient 

SLR - Derivative 

R2 R2 Adjusted Criterion RMSE 

Boron 0.71 0.68  R2 3.05 (mg/kg) 

Magnesium 0.72 0.66  R2 227.30 (mg/kg) 

Nitrogen 0.66 0.61  R2 0.06 (%) 

Phosphorus 0.52 0.46  R2 529.86 (mg/kg) 

Potassium 0.58 0.55  R2 1516.19 (mg/kg) 

Zinc 0.33 0.28  R2 4.21 (mg/kg) 

 

We observed that both Mg and P performed well for the bloom phonological stage, with the lowest 

R2 values coming from B, N and Zn. However, the veraison results had a different outcome: Mg 

modeling continued to perform well, as did K, which was one of the mid-level R2 nutrients in bloom. 

Boron and Zn, on the other hand, the two nutrients with the worst model fits for bloom, were high 

performers for veraison, with Zn generating the highest R2 value at 0.76. 

The Riesling cultivar R2 results for bloom, generated for the six nutrients over the three view-

angles, are shown in Tables 53-55. The previous Cabernet Franc results showed that nutrients that 

generated high R2 values were restricted to a single view-angle. However, the Riesling results show 

that a number of the nutrients had high results in multiple view angles, thereby allowing more 

flexibility in field data collection. Furthermore, we observed that between the three view-angles for 

Riesling bloom phase, all six nutrients performed well, with the highest R2 = 0.84 coming from P. In 

addition, B, Mg and N all exhibited R2≥0.70 for at least two different view-angles. 
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Table 53: R2 results for step-wise linear regression using all 1st derivatives for Riesling from the 
bloom phenological stage at the leaf view angle 

Nutrient 

SLR - Derivative 

R2 R2 Adjusted Criterion RMSE 

Boron 0.75 0.70  R2 3.35 (mg/kg) 

Magnesium 0.78 0.74  R2 575.55 (mg/kg) 

Nitrogen 0.79 0.74  R2 0.05 (%) 

Phosphorus 0.53 0.49  R2 2514.34 (mg/kg) 

Potassium 0.71 0.68  R2 1960.71 (mg/kg) 

Zinc 0.84 0.81  R2 6.42 (mg/kg) 

 

Table 54: R2 results for step-wise linear regression using all 1st derivatives for Riesling from the 
bloom phenological stage at the canopy nadir view angle 

Nutrient 

SLR - Derivative 

R2 R2 Adjusted Criterion RMSE 

Boron 0.71 0.66  R2 3.55 (mg/kg) 

Magnesium 0.75 0.71  R2 600.78 (mg/kg) 

Nitrogen 0.66 0.58  R2 0.06 (%) 

Phosphorus 0.84 0.79  R2 1602.91 (mg/kg) 

Potassium 0.34 0.31  R2 2894.34 (mg/kg) 

Zinc 0.63 0.55  R2 9.80 (mg/kg) 
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Table 55: R2 results for step-wise linear regression using all 1st derivatives for Riesling from the 
bloom phenological stage at the canopy 15o off-nadir view angle 

Nutrient 

SLR - Derivative 

R2 R2 Adjusted Criterion RMSE 

Boron 0.46 0.41  R2 4.70 (mg/kg) 

Magnesium 0.48 0.43  R2 843.69 (mg/kg) 

Nitrogen 0.81 0.76  R2 0.05 (%) 

Phosphorus 0.68 0.62  R2 2180.53 (mg/kg) 

Potassium 0.51 0.47  R2 2543.38 (mg/kg) 

Zinc 0.62 0.54  R2 9.94 (mg/kg) 

 

Tables 56-58 show the Riesling results from veraison; we can observe that the veraison R2 results 

have decreased, when compared to those from bloom. The maximum R2 value (N) was 0.84, which 

was the same maximum value as obtained for bloom, but the other nutrient R2 values decreased. 

Five of the six nutrients performed well with R2≥0.70. Magnesium was the only nutrient not to 

achieve a R2≥0.70, topping out at 0.63. Also, there were no nutrients that had high R2 values for 

multiple view-angles - all the peak R2 values were achieved using the spectra collected at the 

canopy nadir view angle. 
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Table 56: R2 results for step-wise linear regression using all 1st derivatives for Riesling from the 
veraison phenological stage at the leaf view angle 

Nutrient 

SLR - Derivative 

R2 R2 Adjusted Criterion RMSE 

Boron 0.53 0.46 R2 3.72 (mg/kg) 

Magnesium 0.62 0.58 R2 252.23 (mg/kg) 

Nitrogen 0.67 0.62 R2 0.06 (%) 

Phosphorus 0.65 0.59 R2 600.33 (mg/kg) 

Potassium 0.57 0.49 R2 1793.91 (mg/kg) 

Zinc 0.68 0.63 R2 3.57 (mg/kg) 

 

Table 57: R2 results for step-wise linear regression using all 1st derivatives for Riesling from the 
veraison phenological stage at the canopy nadir view angle 

Nutrient 

SLR - Derivative 

R2 R2 Adjusted Criterion RMSE 

Boron 0.81 0.77 R2 3.34 (mg/kg) 

Magnesium 0.63 0.59 
R2 

250.39 (mg/kg) 

Nitrogen 0.84 0.81 R2 0.06 (%) 

Phosphorus 0.74 0.70 R2 539.68 (mg/kg) 

Potassium 0.72 0.65 R2 1313.87 (mg/kg) 

Zinc 0.70 0.67 R2 2.22 (mg/kg) 
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Table 58: R2 results for step-wise linear regression using all 1st derivatives for Riesling from the 
veraison phenological stage at the canopy 15o off-nadir view angle 

Nutrient 

SLR - Derivative 

R2 R2 Adjusted Criterion RMSE 

Boron 0.62 0.56 R2 3.05 (mg/kg) 

Magnesium 0.57 0.53 R2 227.30 (mg/kg) 

Nitrogen 0.63 0.60 R2 0.06 (%) 

Phosphorus 0.59 0.55 R2 529.86 (mg/kg) 

Potassium 0.16 0.12 R2 1561.62 (mg/kg) 

Zinc 0.59 0.55 R2 4.21 (mg/kg) 

 

The use of the 1st derivative of the reflectance spectrum as input variables to the step-wise linear 

regression improved on the R2 values that were achieved for the six nutrients using either the 

wavelengths-only or the correlated index approaches. It was possible to achieve R2≥0.51 for all six 

nutrients during both growing seasons and for both cultivars, with R2 values typically being greater 

than 0.70 for most nutrients. This is especially interesting, since results were achieved across most 

view angles, thus allowing greater flexibility during field data collection.  If a user were limited to a 

single view-angle, the selection of the view-angle could depend on the cultivar and if he/she were 

focusing on particular nutrients or the complete set. Using the canopy nadir view-angle as an 

example, the lowest R2 value between both cultivars and growing seasons was 0.35, i.e., the 

selection of optimum view-angle comes down to the R2 model level one is willing to accept. 

5.2.6 Continuum Removal SLR results 

The final data analysis approach was continuum removal (CR; Kokaly and Clark, 1999), with the 

specific spectral feature being the red trough region (approximately 600-700nm). It should be 

noted that no additional wavelength regions were highly correlated to nutrient values; therefore no 

additional spectral regions were subjected to continuum removal. Tables 59-61 show the CR results 

for Cabernet Franc collected at bloom. Of note, similar to the raw wavelength and correlated NDI, all 

three criteria produced usable results and therefore were reported. 
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We found that P nutrient levels were well modeled using the CR approach, with a R2 value ranging 

between 0.72-0.74 across the three view-angles. This was not the case for all the nutrients and 

similar to what was found when using the wavelengths and correlated NDI, not every nutrient 

generated a non-zero R2 value. Similar to the results found for P, B exhibited positive R2 values 

across all three view-angles, though at distinctly lower R2 values. Each of the other four nutrients 

had a non-zero model fit when considered between the three view-angles (R2 values ranged 

between 0.07-0.34).  

Table 59: R2 results for step-wise linear regression using continuum removal for Cabernet Franc 
from the bloom phenological stage at the leaf view angle 

Nutrient 

SLR - Continuum Removal 

R2 R2 Adjusted Criterion RMSE 

Boron 0.32 0.29 AIC/BIC/ R2 3.46 (mg/kg) 

Magnesium 0.25 0.20 AIC/ R2 703.95 (mg/kg) 

Nitrogen 0.34 0.32 AIC/BIC/ R2 0.10 (%) 

Phosphorus 0.73 0.60 AIC 1199.51 (mg/kg) 

Potassium 0.00 0.00 BIC/ R2 7523.44 (mg/kg) 

Zinc 0.20 0.18 AIC/BIC/ R2 8.71 (mg/kg) 
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Table 60: R2 results for step-wise linear regression using continuum removal for Cabernet Franc 
from the bloom phenological stage at the canopy nadir view angle 

Nutrient 

SLR - Continuum Removal 

R2 R2 Adjusted Criterion RMSE 

Boron 0.47 0.43 BIC 3.10 (mg/kg) 

Magnesium 0.07 0.04 AIC 771.17 (mg/kg) 

Nitrogen 0.00 0.00 BIC/ R2 0.13 (%) 

Phosphorus 0.72 0.66 AIC 1100.47 (mg/kg) 

Potassium 0.12 0.09 AIC/BIC/ R2 7177.91 (mg/kg) 

Zinc 0.31 0.26 AIC 8.23 (mg/kg) 

 

Table 61: R2 results for step-wise linear regression using continuum removal for Cabernet Franc 
from the bloom phenological stage at the canopy 15o off-nadir view angle 

Nutrient 

SLR - Continuum Removal 

R2 R2 Adjusted Criterion RMSE 

Boron 0.35 0.33 AIC/BIC/ R2 3.39 (mg/kg) 

Magnesium 0.00 0.00 AIC/BIC/ R2 758.03 (mg/kg) 

Nitrogen 0.07 0.03 AIC 0.12 (%) 

Phosphorus 0.74 0.60 AIC 1206.01 (mg/kg) 

Potassium 0.00 0.00 AIC/BIC/ R2 7557.50 (mg/kg) 

Zinc 0.00 0.00 BIC/ R2 9.76 (mg/kg) 

 

Tables 62-64 below show that the Cabernet Franc veraison CR results were similar to those seen 

from bloom, in that some of the nutrients resulted in models that generated R2 values of zero. 

However, the veraison phonological stage resulted in fewer of such R2=0 models. The R2 values that 

were non-zero across the three view-angles ranged between 0.11-0.85. This peak value is higher 
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than any achieved through using the derivative analysis SLR approach, although the high values 

were not as consistent. 

Table 62: R2 results for step-wise linear regression using continuum removal for Cabernet Franc 
from the veraison phenological stage at the leaf view angle 

Nutrient 

SLR - Continuum Removal 

R2 R2 Adjusted Criterion RMSE 

Boron 0.85 0.78 AIC 2.46 (mg/kg) 

Magnesium 0.00 0.00 AIC/BIC/ R2 396.67 (mg/kg) 

Nitrogen 0.13 0.10 AIC/BIC  0.09 (%) 

Phosphorus 0.09 0.05 AIC 691.39 (mg/kg) 

Potassium 0.25 0.20 AIC/BIC/ R2 2044.10 (mg/kg) 

Zinc 0.54 0.44 AIC 3.77 (mg/kg) 

 

Table 63: R2 results for step-wise linear regression using continuum removal for Cabernet Franc 
from the veraison phenological stage at the canopy nadir view angle 

Nutrient 

SLR - Continuum Removal 

R2 R2 Adjusted Criterion RMSE 

Boron 0.24 0.21 AIC/BIC/ R2 4.71 (mg/kg) 

Magnesium 0.11 0.08 AIC/BIC/ R2 371.18 (mg/kg) 

Nitrogen 0.00 0.00 AIC/BIC/ R2 0.09 (%) 

Phosphorus 0.32 0.24 AIC  640.97 (mg/kg) 

Potassium 0.29 0.27 AIC/BIC/ R2 1987.98 (mg/kg) 

Zinc 0.28 0.23 AIC/BIC/ R2 3.63 (mg/kg) 
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Table 64: R2 results for step-wise linear regression using continuum removal for Cabernet Franc 
from the veraison phenological stage at the canopy 15o off-nadir view angle 

Nutrient 

SLR - Continuum Removal 

R2 R2 Adjusted Criterion RMSE 

Boron 0.38 0.36 AIC/BIC/ R2 4.30 (mg/kg) 

Magnesium 0.19 0.13 AIC  364.28 (mg/kg) 

Nitrogen 0.15 0.12 BIC/ R2 0.09 (%) 

Phosphorus 0.56 0.49 BIC 514.66 (mg/kg) 

Potassium 0.34 0.32 AIC/BIC/ R2 1917.34 (mg/kg) 

Zinc 0.25 0.17 AIC  4.54 (mg/kg) 

 

The continuum removal approach also was applied to Riesling data (Tables 65-67), but the results 

seem to be poorer across the set of nutrients when compared to Cabernet Franc. The Riesling 

results peaked at a maximum R2= 0.60, compared to the value of R2=0.74 from Cabernet Franc at 

bloom. Again, as seen with Cabernet Franc, several of the nutrient models for particular view-angles 

had R2 values of zero. But as before, it is possible to select a nutrient model with a non-zero R2 value 

by choosing the appropriate view-angle. 
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Table 65: R2 results for step-wise linear regression using continuum removal for Riesling from the 
bloom phenological stage at the leaf view angle 

Nutrient 

SLR - Continuum Removal 

R2 R2 Adjusted Criterion RMSE 

Boron 0.09 0.05 AIC 5.95 (mg/kg) 

Magnesium 0.60 0.54 AIC 761.18 (mg/kg) 

Nitrogen 0.60 0.49 AIC 0.07 (%) 

Phosphorus 0.37 0.31 AIC/BIC 2913.18 (mg/kg) 

Potassium 0.22 0.19 AIC/BIC/ R2 3131.83 (mg/kg) 

Zinc 0.14 0.10 AIC/BIC/ R2 13.89 (mg/kg) 

 

Table 66: R2 results for step-wise linear regression using continuum removal for Riesling from the 
bloom phenological stage at the canopy nadir view angle 

Nutrient 

SLR - Continuum Removal 

R2 R2 Adjusted Criterion RMSE 

Boron 0.00 0.00 BIC/ R2 6.10 (mg/kg) 

Magnesium 0.32 0.25 AIC 970.05 (mg/kg) 

Nitrogen 0.14 0.10 BIC/ R2 0.09 (%) 

Phosphorus 0.30 0.24 AIC/ R2 3072.21 (mg/kg) 

Potassium 0.27 0.23 AIC/BIC/ R2 3045.94 (mg/kg) 

Zinc 0.33 0.27 AIC/BIC/ R2  12.50 (mg/kg) 
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Table 67: R2 results for step-wise linear regression using continuum removal for Riesling from the 
bloom phenological stage at the canopy 15o off-nadir view angle 

Nutrient 

SLR - Continuum Removal 

R2 R2 Adjusted Criterion RMSE 

Boron 0.10 0.05 AIC 5.93 (mg/kg) 

Magnesium 0.25 0.18 AIC/BIC/ R2 1016.44 (mg/kg) 

Nitrogen 0.00 0.00 AIC/BIC/ R2 0.10 (%) 

Phosphorus 0.00 0.00 AIC/BIC/ R2 3514.37 (mg/kg) 

Potassium 0.18 0.14 AIC/BIC/ R2 3225.50 (mg/kg) 

Zinc 0.23 0.19 AIC/BIC/ R2 13.15 (mg/kg) 

 

We found improved nutrient model fits for the Riesling veraison data (Tables 68-70), when 

compared to the bloom results for the same cultivar. There was a single nutrient-view angle 

combination that resulted in a zero R2 value, while the peak R2 value increased to 0.81. 

Table 68: R2 results for step-wise linear regression using continuum removal for Riesling from the 
veraison phenological stage at the leaf view angle 

Nutrient 

SLR - Continuum Removal 

R2 R2 Adjusted Criterion RMSE 

Boron 0.16 0.12 AIC/BIC/ R2 2.46 (mg/kg) 

Magnesium 0.49 0.41 AIC/BIC 396.67 (mg/kg) 

Nitrogen 0.81 0.77 BIC 0.09 (%) 

Phosphorus 0.50 0.46 AIC/BIC/ R2 691.39 (mg/kg) 

Potassium 0.11 0.07 AIC/ R2 2044.10 (mg/kg) 

Zinc 0.43 0.41 AIC/BIC/ R2 3.77 (mg/kg) 
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Table 69: R2 results for step-wise linear regression using continuum removal for Riesling from the 
veraison phenological stage at the canopy nadir view angle 

Nutrient 

SLR - Continuum Removal 

R2 R2 Adjusted Criterion RMSE 

Boron 0.10 0.05 AIC 4.74 (mg/kg) 

Magnesium 0.51 0.46 BIC/ R2 371.18 (mg/kg) 

Nitrogen 0.57 0.55 AIC/BIC/ R2 0.09 (%) 

Phosphorus 0.56 0.51 AIC/BIC  640.97 (mg/kg) 

Potassium 0.00 0.00 AIC/BIC/ R2 1987.98 (mg/kg) 

Zinc 0.40 0.34 BIC/ R2 3.63 (mg/kg) 

 

Table 70: R2 results for step-wise linear regression using continuum removal for Riesling from the 
veraison phenological stage at the canopy 15o off-nadir view angle 

Nutrient 

SLR - Continuum Removal 

R2 R2 Adjusted Criterion RMSE 

Boron 0.59 0.50 AIC 4.30 (mg/kg) 

Magnesium 0.72 0.65 AIC 364.28 (mg/kg) 

Nitrogen 0.58 0.56 AIC/BIC 0.09 (%) 

Phosphorus 0.67 0.57 BIC 514.66 (mg/kg) 

Potassium 0.10 0.05 AIC/BIC/ R2 1917.34 (mg/kg) 

Zinc 0.55 0.49 AIC/BIC/ R2 4.54 (mg/kg) 

 

A comparison of the performance of the continuum removal method vs. previously discussed 

methods showed that, while not providing the modeling performance consistency of the derivative 

method, the continuum removal method provided higher R2 values for some of the nutrients in 

specific circumstances. 
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5.2.7 An overview of the best modeling results for 1nm data 

We next attempted to provide a concise summary of the best nutrient modeling results in order to 

highlight the nutrient-specific modeling approach, results, and very importantly, the wavelengths 

that were included as independent (driver) variables. Tables 71-79 list the peak values that 

resulted from the five methods employed to generate a model to best fit the nutrient data: SLR of all 

wavelengths, SLR of the highly correlated indices, SLR of the 1st derivative of the reflectance 

spectrum, SLR using continuum removal, and NDI linear fit. The tables below list the following 

columns broken down by nutrient: the method that provided the peak R2 value, the values 

generated, which criterion was used in the SLR, and the wavelengths that were used. This latter 

aspect is critical – it is indicative of the potential band combinations that a user could employ on a 

UAV-type platform to map specific nutrients. 

Tables 71-73 show the results for Cabernet Franc during bloom, for the three view-angles; it was 

found that while the 1st derivative is the most selected method (based on performance), using the 

raw wavelengths and the continuum removal in the SLR also work in several cases. Phosphorous, 

over all three view-angles is best modeled using either the wavelength-based SLR or the continuum 

removal SLR. This is an oddity, since for every other nutrient the derivative SLR is the optimal 

method for at least two out of the three view-angles. 

Table 71: Peak R2 values for 1nm Cabernet Franc nutrient models from the bloom phenological 
stage at the leaf view angle

  

Table 72: Peak R2 values for 1nm Cabernet Franc nutrient models from the bloom phenological 
stage at the canopy nadir view angle 

 

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.64 0.61 R2 2.59 (mg/kg) 674/763/912

Magnesium SLR - Derivative 0.65 0.59 R2 503.10 (mg/kg) 884/888/940/972

Nitrogen SLR - All Wavelengths 0.68 0.61 AIC 0.08 (%) 420/426/512/657/718

Phosphorus SLR - Continuum Removal 0.73 0.60 AIC 1199.51 (mg/kg) 651/653/664/669/674/675/677/693/740/749

Potassium SLR - Derivative 0.58 0.53 R2 5166.26 (mg/kg) 769/938/972

Zinc SLR - All Wavelengths 0.58 0.51 AIC 6.71 (mg/kg) 400/405/429/730

Bloom Cabernet Franc Leaf View

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Correlated NDI 0.51 0.49 AIC/BIC/R2 2.69 (mg/kg) 702/515

Magnesium SLR - Derivative 0.35 0.31 R2 654.10 (mg/kg) 464/849

Nitrogen SLR - Derivative 0.58 0.53 R2 0.09 (%) 596/715/969

Phosphorus SLR - Continuum Removal 0.72 0.66 AIC/BIC/R2 1100.47 (mg/kg) 560/678/745/746/750

Potassium SLR - Derivative 0.68 0.65 R2 4478.60 (mg/kg) 442/625/827

Zinc SLR - Derivative 0.51 0.46 R2 7.08 (mg/kg) 839/909/966

Bloom Cabernet Franc Canopy Nadir View
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Table 73: Peak R2 values for 1nm Cabernet Franc nutrient models from the bloom phenological 
stage at the canopy 15o off-nadir view angle

  

We also evaluated the model characteristics for each best-performing model; specifically, the linear 

fit was plotted, along with its residuals (to evaluate residual behavior). To this end Figures 43-45 

show the fit and residuals for the three view-angles for Cabernet Franc during bloom. Figure 43, for 

instance, shows that the data fit is distinctly linear and there exist no systematic patterns in 

residuals behavior, which could indicate that a non-linear model fit or variable transform should 

have been used. This was augmented by an examination of the results from the canopy-nadir and 

canopy 15o off-nadir view angles, where we found that, as was the case with the leaf-view, a linear 

fit for the data was deemed appropriate. 

 

 

 

 

 

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.54 0.49 R2 2.96 (mg/kg) 839/844/869

Magnesium SLR - Derivative 0.73 0.68 R2 449.50 (mg/kg) 469/476/488/866

Nitrogen SLR - Derivative 0.14 0.11 R2 0.12 (%) 950

Phosphorus SLR - All Wavelengths 0.82 0.78 AIC 898.85 (mg/kg) 442/445/534/540/675/682

Potassium SLR - Derivative 0.63 0.59 R2 4845.76 (mg/kg) 881/882/913

Zinc SLR - Derivative 0.56 0.51 R2 6.83 (mg/kg) 407/679/980

Bloom Cabernet Franc Canopy 15 Degrees Off-Nadir View
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Figure 43: Linear modeling fit for 1nm Cabernet Franc reflectance data collected during bloom 
phenological stage at the leaf view angle: (a) boron, (b) magnesium, (c) nitrogen, (d) phosphorus, 
(e) potassium, (f) zinc 
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Figure 44: Linear modeling fit for 1nm Cabernet Franc reflectance data collected during bloom 
phenological stage at the canopy nadir view angle: (a) boron, (b) magnesium, (c) nitrogen, (d) 
phosphorus, (e) potassium, (f) zinc 



 112 

 

 

Figure 45: Linear modeling fit for 1nm Cabernet Franc reflectance data collected during bloom 
phenological stage at the canopy 15o off-nadir view angle: (a) boron, (b) magnesium, (c) nitrogen, 
(d) phosphorus, (e) potassium, (f) zinc 

The results repeat themselves in the case of the Cabernet Franc veraison data (Tables 74-76): Again 

the derivative SLR dominates as the primary method to produce the strongest model fit. During 

bloom, both P and Mg had R2≥0.70. With the veraison data, we see that Mg model performance 

remained high, but P fell out of that range. Boron, K and Zn achieved high R2 values as well. 
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Table 74: Peak R2 values for 1nm Cabernet Franc nutrient models from the veraison phenological 
stage at the leaf view angle

  

Table 75: Peak R2 values for 1nm Cabernet Franc nutrient models from the veraison phenological 
stage at the canopy nadir view angle

  

Table 76: Peak R2 values for 1nm Cabernet Franc nutrient models from the veraison phenological 
stage at the canopy 15o off-nadir view angle

   

Figures 46-48 show the model fits graphically, and we did not find any fits that give us pause 

regarding the linearity or residual behavior of the data. 

 

 

 

 

 

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Continuum Removal 0.85 0.78 AIC 2.46  (mg/kg) 560/571/674/677/684/687/693/694/750

Magnesium SLR - Derivative 0.65 0.60 R2 252.23  (mg/kg) 786/838/919/979

Nitrogen SLR - Derivative 0.67 0.64 R2 0.06 (%) 404/908/990

Phosphorus SLR - Derivative 0.34 0.29 R2 600.33  (mg/kg) 967/977

Potassium SLR - Derivative 0.45 0.38 R2
1793.91  (mg/kg) 494/627/637

Zinc SLR - All Wavelengths 0.57 0.48 AIC 3.65  (mg/kg) 425/748/758/760/1000

Veraison Cabernet Franc Leaf View

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.65 0.60 R2 3.34  (mg/kg) 910/944/959

Magnesium SLR - Derivative 0.63 0.58 R2 250.39  (mg/kg) 832/924/937

Nitrogen SLR - Derivative 0.63 0.58 R2
0.06 (%) 403/907/912/920

Phosphorus SLR - Derivative 0.53 0.46 R2 539.68  (mg/kg) 403/761/875/886

Potassium SLR - Derivative 0.74 0.68 R2 1313.90  (mg/kg) 410/944/945/953/962

Zinc SLR - Derivative 0.76 0.71 R2 2.22  (mg/kg) 402/769/885/887/947

Veraison Cabernet Franc Canopy Nadir View

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - All Wavelengths 0.86 0.80 AIC 2.39  (mg/kg) 400/406/407/409/416/423/425/426/427

Magnesium SLR - Derivative 0.72 0.66 R2 227.30  (mg/kg) 561/860/870/909/978

Nitrogen SLR - Derivative 0.66 0.61 R2 0.06 (%) 408/837/842/930

Phosphorus SLR - Continuum Removal 0.56 0.49 BIC 514.66  (mg/kg) 670/672/739/748

Potassium SLR - Derivative 0.58 0.55 R2 1516.20  (mg/kg) 783/941

Zinc SLR - Derivative 0.33 0.28 R2 4.21  (mg/kg) 402/980

Veraison Cabernet Franc Canopy 15 Degrees Off-Nadir View
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Figure 46: Linear modeling fit for 1nm Cabernet Franc reflectance data collected during veraison 
phenological stage at the leaf view angle: (a) boron, (b) magnesium, (c) nitrogen, (d) phosphorus, 
(e) potassium, (f) zinc 
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Figure 47: Linear modeling fit for 1nm Cabernet Franc reflectance data collected during veraison 
phenological stage at the canopy nadir view angle: (a) boron, (b) magnesium, (c) nitrogen, (d) 
phosphorus, (e) potassium, (f) zinc 
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Figure 48: Linear modeling fit for 1nm Cabernet Franc reflectance data collected during veraison 
phenological stage at the canopy 15o off-nadir view angle: (a) boron, (b) magnesium, (c) nitrogen, 
(d) phosphorus, (e) potassium, (f) zinc 

The next evaluation is concerned with bloom results for Riesling (Tables 77-79), where we 

observed that the SLR-based method, using 1st derivative spectral data, once again was the 

predominant method for generating the highest R2 values. It was also found that the linear fit using 

the normalized difference index performed the best for K at the canopy nadir view-angle; this was 

the only instance that the standard linear fit approach, based on normalized difference index data, 

created the best model fit for one of the nutrients. 
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Table 77: Peak R2 values for 1nm Riesling nutrient models from the bloom phenological stage at the 
leaf view angle

  

Table 78: Peak R2 values for 1nm Riesling nutrient models from the bloom phenological stage at the 
canopy nadir view angle

  

Table 79: Peak R2 values for 1nm Riesling nutrient models from the bloom phenological stage at the 
canopy 15o off-nadir view angl

e   

Regardless of the SLR method employed, the fit was based solely on how high the generated R2 

value was. This outcomes was expected, but must be confirmed to ensure that a non-linear fit 

would not have been more appropriate for a different SLR data set. 

 

 

 

 

 

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.75 0.70 R2 3.35  (mg/kg) 862/944/974/975

Magnesium SLR - Derivative 0.78 0.74 R2 575.55  (mg/kg) 405/411/859/937

Nitrogen SLR - Derivative 0.79 0.74 R2 0.05 (%) 674/762/868/938

Phosphorus SLR - Derivative 0.53 0.49 R2 2514.34  (mg/kg) 938/945

Potassium SLR - Derivative 0.71 0.68 R2
1960.71  (mg/kg) 921/975

Zinc SLR - Derivative 0.84 0.81 R2
6.42  (mg/kg) 870/951/963/976

Bloom Riesling Leaf View

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.71 0.66 R2 3.55  (mg/kg) 539/631/817

Magnesium SLR - Derivative 0.75 0.71 R2 600.78  (mg/kg) 452/904/936

Nitrogen SLR - Derivative 0.66 0.58 R2
0.06 (%) 773/878/936/971

Phosphorus SLR - Derivative 0.84 0.79 R2 1602.91  (mg/kg) 778/863/878/936/943

Potassium NDI Linear Fit 0.51 0.48 N/A 2500.43  (mg/kg) 463/464

Zinc SLR - Derivative 0.63 0.55 R2 9.80  (mg/kg) 866/870/900/963

Bloom Riesling Canopy Nadir View

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.46 0.41 R2 4.70  (mg/kg) 407/773

Magnesium SLR - All Wavelengths 0.58 0.49 BIC 800.47  (mg/kg) 405/706/834/939

Nitrogen SLR - Derivative 0.81 0.76 R2 0.05 (%) 408/479/545/941/948

Phosphorus SLR - Derivative 0.68 0.62 R2 2180.53  (mg/kg) 454/467/870/872

Potassium SLR - All Wavelengths 0.53 0.43 R2 2636.00  (mg/kg) 400/403/408/416

Zinc SLR - Derivative 0.62 0.54 R2 9.94  (mg/kg) 777/848/870/921

Bloom Riesling Canopy 15 Degrees Off-Nadir View
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Figure 49: Linear modeling fit for 1nm Riesling reflectance data collected during bloom 
phenological stage at the leaf view angle: (a) boron, (b) magnesium, (c) nitrogen, (d) phosphorus, 
(e) potassium, (f) zinc 
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Figure 50: Linear modeling fit for 1nm Riesling reflectance data collected during bloom 
phenological stage at the canopy nadir view angle: (a) boron, (b) magnesium, (c) nitrogen, (d) 
phosphorus, (e) potassium, (f) zinc 
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Figure 51: Linear modeling fit for 1nm Riesling reflectance data collected during bloom 
phenological stage at the canopy 15o off-nadir view angle: (a) boron, (b) magnesium, (c) nitrogen, 
(d) phosphorus, (e) potassium, (f) zinc 

The derivative method again tended to be used the most to generate the peak R2 values for Riesling 

during veraison (Tables 80-82). For the canopy 15o off-nadir view, we found that the highest 

occurrence of other model fit methods being used to generate solid model results - fully half of the 

nutrient models with peak model fits stemmed from either continuum removal SLR or the 

wavelength SLR. Unfortunately, there did not appear to be a pattern across the cultivars and 

growing seasons regarding which nutrients are best fit with a data manipulation method, other 

than the solid-performing 1st derivative-based models. 
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Table 80: Peak R2 values for 1nm Riesling nutrient models from the veraison phenological stage at 
the leaf view angle

  

Table 81: Peak R2 values for 1nm Riesling nutrient models from the veraison phenological stage at 
the canopy nadir view angle 

 

Table 82: Peak R2 values for 1nm Riesling nutrient models from the veraison phenological stage at 
the canopy 15o off-nadir view angle

  

We again observed no issues regarding the model fit, based on visual inspection of Figures 52-54. 

We are confident that for all data sets and associated nutrient-spectral models, the relationship was 

in fact linear and that residuals were normally distributed, without any obvious non-modeled 

trends. 

 

 

 

 

 

 

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.53 0.46 R2 3.72 (mg/kg) 424/627/777

Magnesium SLR - Derivative 0.62 0.58 R2 252.23 (mg/kg) 400/975

Nitrogen SLR - Continuum Removal 0.81 0.77 BIC 0.09 (%) 677/679/723/730

Phosphorus SLR - Derivative 0.65 0.59 R2 600.33 (mg/kg) 799/875/945

Potassium SLR - Derivative 0.57 0.49 R2 1793.91 (mg/kg) 403/411/428/940

Zinc SLR - Derivative 0.68 0.63 R2 3.57 (mg/kg) 420/465/873

Veraison Riesling Leaf View

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.81 0.77 R2 3.34 (mg/kg) 400/481/564/971

Magnesium SLR - Derivative 0.63 0.59 R2 250.39 (mg/kg) 884/921

Nitrogen SLR - Derivative 0.84 0.81 R2 0.06 (%) 420/468/758/872

Phosphorus SLR - Derivative 0.74 0.70 R2 539.68 (mg/kg) 883/946/959

Potassium SLR - Derivative 0.72 0.65 R2 1313.87 (mg/kg) 400/401/950/971

Zinc SLR - Derivative 0.70 0.67 R2 2.22 (mg/kg) 865/996

Veraison Riesling Canopy Nadir View

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.62 0.56 R2 3.05 (mg/kg) 429/448/464

Magnesium SLR - Continuum Removal 0.72 0.65 aic 364.28 (mg/kg) 560/573/667/674/698

Nitrogen SLR - Derivative 0.63 0.60 R2 0.06 (%) 826/883

Phosphorus SLR - Continuum Removal 0.67 0.57 BIC 514.66 (mg/kg) 658/659/662/679/690

Potassium SLR - Derivative 0.16 0.12 R2 1561.62 (mg/kg) 410

Zinc SLR - All Wavelengths 0.81 0.74 aic 4.98 (mg/kg) 438/443/454/474/475/706

Veraison Riesling Canopy 15 Degrees Off-Nadir View
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Figure 52: Linear modeling fit for 1nm Riesling reflectance data collected during veraison 
phenological stage at the leaf view angle: (a) Boron, (b) Magnesium, (c) Nitrogen, (d) Phosphorus, 
(e) Potassium, (f) Zinc 
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Figure 53: Linear modeling fit for 1nm Riesling reflectance data collected during veraison 
phenological stage at the canopy nadir view angle: (a) Boron, (b) Magnesium, (c) Nitrogen, (d) 
Phosphorus, (e) Potassium, (f) Zinc 
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Figure 54: Linear modeling fit for 1nm Riesling reflectance data collected during veraison 
phenological stage at the canopy 15o off-nadir view angle: (a) Boron, (b) Magnesium, (c) Nitrogen, 
(d) Phosphorus, (e) Potassium, (f) Zinc 

We concluded that of the 72 peak model results: 55 were generated by the derivative SLR, seven by 

continuum removal SLR, eights by the wavelength SLR, and one each by the correlated NDI and NDI 

linear fit approaches. The continuum removal SLR results were based on between four and ten 

wavelength bands, averaging six wavelengths/bands over the set. The wavelength SLR results were 

created using between four and nine wavelength bands, averaging five (rounded from 5.38 to 

eliminate the “partial” band). The correlated NDI SLR result and the NDI linear fit results were each 

made up of two bands. The derivative SLR results were generated from between one and five 

wavelength bands, averaging three bands (3.24 unrounded). Although the wavelength bands used 

by the derivative method were actually a combination of two separate wavelengths, i.e., the 

derivative method required between two and ten wavelengths, averaging six wavelengths in order 
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to produce a full set of peak results, it was still encouraging that a relatively limited set of bands 

could be identified for future, potentially operational nutrient modeling. While this average number 

of wavelengths tied for highest among the methods employed, the 1st derivative method also 

resulted in the highest R2 values over the full set of nutrients, and therefore should be the method 

of choice if only one method was required. 

The next analysis step involved identifying the wavelengths necessary for generating the best 

model fit for the nutrient data; specifically, we were interested in where these wavelengths were 

located, and how they vary between the nutrients, cultivars, and growing seasons. We therefore 

recorded the number of times that the wavelengths appeared in the case of the peak R2 model 

values for the six nutrients (Tables 71-82 above). These wavelengths then were grouped into 10nm 

bins for ease of viewing and plotted based on the different criteria mentioned above (cultivar, 

growing season, and nutrient). This effort resulted in plots that show which regions of the visible 

and NIR spectrum performed best for each given criteria. Note, for all the plots below, an 

approximate trend line for the grape vine reflectance spectra has been added for improved visual 

interpretation relative to the various parts of the EMR spectrum. This trend line is approximate, as 

it has been taken from a single data sample from Cabernet Franc during bloom and it therefore does 

not change with cultivar or season. 

Figure 55 shows the breakdown of important wavelengths, plotted for the combined cultivars with 

Cabernet Franc in blue and Riesling in red. We see that the majority of useful wavelengths were 

located either in the blue and (low) green regions, or in the near-infrared regions of the spectrum. 

There are a total of 255 bands shown here, with 132 coming from Cabernet Franc and 123 from 

Riesling. 
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Figure 55: Wavelengths used in linear modeling for 1nm peak results, cultivars combined 

In breaking out the results by cultivar, it can easily be seen from the side-by-side comparison that of 

the two cultivars, Riesling exhibited a higher concentration of wavelengths in the NIR range, 860-

980nm, and in the blue range. Cabernet Franc, while having a large number of wavelengths in the 

400-410nm range, similar to Riesling, was spread more evenly over the blue and the NIR, as well as 

some representation in the green spectral region. It also exhibited more wavelengths in the red and 

red edge region, when compared to results for the Riesling cultivar.  

Figure 57 shows the same list of wavelengths as seen in Figure 55, but this time the blue bands are 

those wavelengths that were used to generate the peak values from bloom, and the red from 

veraison.  The wavelengths used only for bloom are shown below in Figure 58, broken down by 

cultivar; of the 130 bands that make up Figure 57, 67 are from Cabernet Franc and 63 from Riesling 

analyses. 
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Figure 56: Wavelengths used in linear modeling for 1nm peak results by cultivar: (a) Cabernet 

Franc, (b) Riesling 

 

Figure 57: Wavelengths used in linear modeling for 1nm peak results, growing seasons combined 
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Figure 58: Wavelengths used in linear modeling for 1nm peak results, bloom combined 

Furthermore, when comparing the two cultivars during bloom (Figure 59), Cabernet Franc 

exhibited wavelengths similar to those seen for this cultivar over both growing seasons, i.e., more 

representation in the blue and NIR, but spread across the complete silicon range. Riesling on the 

other hand, was heavily weighted towards the NIR region of the silicon spectrum during bloom. 

In the case of veraison (Figure 60), the number of wavelengths in the NIR appears to be reduced, 

when compared to those observed for bloom. This was observed along with a reduction in the 

number of bands required to form the peak models, i.e., a slight reduction from 130 bands to 125 

bands.  
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Figure 59: Wavelengths used in linear modeling for 1nm peak results from bloom: (a) Cabernet 
Franc, (b) Riesling 

 

Figure 60: Wavelengths used in linear modeling for 1nm peak results, veraison combined 

The 65 wavelengths used in modeling by Cabernet Franc nutrient relationships during veraison 

were much less distributed across the complete spectrum. Instead we found that they were 

clumped in three regions: the low 400nm range in blue, across the green part of the spectrum, and 

spread across the NIR. Interestingly, none of the wavelengths were located in the red or on the red 

edge.  Riesling modeling was based on 60 bands from predominantly in the NIR and some blue 
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during bloom, to being heavily in the blue, with some wavelengths coming from the high 

800/900nm ranges during veraison.  

 

Figure 61: Wavelengths used in linear modeling for 1nm peak results from veraison: (a) Cabernet 
Franc, (b) Riesling 

Breaking down the wavelengths used by the six nutrients we have the combined result in Figure 62 

below. 

 

Figure 62: Wavelengths used in linear modeling for 1nm peak results, nutrients combined 
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In an examination of B first, we found that the 12 peak model values use 48 bands. These 

wavelengths were spread over the whole silicon spectrum, but the largest concentrations were 

located in the low blue and low green wavelength regions. Demir and Serindag (2006), based on 

their work with grapes and associated B concentrations, found that the maximum absorption for B 

in grapes was located at 412nm. Our results corroborated the findings from that study, where large 

concentrations of wavelengths being used for modeling B were located in and around this 412nm 

region.  

 

Figure 63: Wavelengths used in linear modeling for 1nm peak results, nutrients boron 

Magnesium nutrient modeling used only 42 bands and the bands were more clumped, in contrast to 

the 48 bands that B modeling required. The majority of the bands fell in the NIR above 830nm, 

while the remainder, excluding two bands in the lower NIR and red edge, were all in the green and 

blue spectral regions. These observations for Mg agreed with what was seen in the heat maps 

produced from the highly correlated indices. High correlation areas were created by a combination 

of wavelengths in the blue to green and wavelengths in the NIR, combined with blue-green, or 

between two NIR bands. 
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Figure 64: Wavelengths used in linear modeling for 1nm peak results, nutrients magnesium 

Figure 65 shows the 43 bands used for N modeling, which like B were spread across the silicon 

spectrum, while the higher concentrations occurred in the low blue and high NIR. Elvidge and Chen 

(1995) used narrow spectral bands from the reflectance spectra collected from rooted pinyon pine 

canopy and found that the most pronounced chlorophyll absorption feature was located at 674nm. 

Although this study did not focus on pinyon trees, we acknowledge that chlorophyll has a close 

relationship to N content (Hunt Jr et al., 2013). One of the wavelengths used by our methods for the 

model fit for N was indeed 674nm, agreeing with the previous research cited here. The main 

physiological reason that live vegetation has a red edge feature, is that chlorophyll causes a rise in 

the NIR part of the spectrum, along with increased NIR backscatter due to intercellular spaces in 

leaves. It stands to reason than that, since the N content is closely related to the chlorophyll content 

of a plant, a model fit for N would require a number of wavelengths from the NIR region of the 

spectrum (Eismann 2012). 
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Figure 65: Wavelengths used in linear modeling for 1nm peak results, nutrients nitrogen 

Figure 66 shows that it took 53 wavelengths/bands to generate the peak P R2 values. While a 

number of the bands were located in the NIR region, the largest group of bands was situated in the 

green region of the spectrum. The distribution of bands used for the P modeling agrees with the 

spectral regions that exhibited high correlations with the indices from the two cultivars. 

 

Figure 66: Wavelengths used in linear modeling for 1nm peak results, nutrients phosphorus 

The K results (Figure 67) were formed using the smallest number of bands, i.e., only 34. Similar to 

what we have seen before, these mostly were located in the NIR and blue regions of the spectrum. 

Smart et al. (2007) discusses the symptoms of K deficiency in their work. They found that signs of 
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this were found at 495nm and 625nm. It is worth noting that, while the majority of the samples 

were within the nutrient range or above (Wolfe, 2008), a few of the samples did have lower levels 

of K then the sufficiency range listed. This could account for the inclusion of wavelengths around 

495nm and 625nm in K-specific modeling results. 

 

Figure 67: Wavelengths used in linear modeling for 1nm peak results, nutrients potassium 

Finally, Zn used 44 bands to achieve the peak model results. These bands were concentrated across 

the NIR and blue regions of the spectrum. A couple bands were identified in the red trough or the 

start of the red edge, but none of the bands were located in red or green spectral regions.  The 

wavelength distribution furthermore agreed well with the heat maps: From the Riesling heat map 

we found a small area of high correlation formed by the combination of blue bands. Also, the peak 

correlation values were generated for the two cultivars by a pair of bands in the 870nm range, 

which corresponds to Figure 68. 
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Figure 68: Wavelengths used in linear modeling for 1nm peak results, nutrients zinc 

We concluded that, based on our examination of the distribution of the wavelengths for the 

nutrients of interest, the wavelengths used in the models to fit the nutrient data generally conform 

to the wavelengths used in the correlation heat maps. We furthermore observed that the 

wavelengths used in the nutrient models generally conformed to the wavelengths used in the 

correlation heat maps. In addition, regions of interest for particular nutrients matched with those 

from other studies conducted on the same nutrients, which provided evidence that our nutrient 

data and models were robust selections. 

5.3 Results and discussion – 10nm data 

The analysis of the 10nm proceeded in the same order as the 1nm data. A more abbreviated version 

of the 10nm data results will be presented, since the 1nm data were fully described and explained 

above in a step-by-step process, showing all the results that were achieved. A summary of the 

results will be discussed, with a focus on the level of the model fit and the differences seen between 

the 10nm and 1nm results. 

The first step was to test the correlation of the NDI indices. In the case of the Cabernet Franc 

cultivar during bloom only, B viewed at canopy-nadir surpassed the CC≥0.70 threshold. For the 

veraison data, however, it was found that none of the nutrient-view angle combinations met the 

threshold level, while for the Riesling cultivar during bloom, only one nutrient-view angle 

combination exceeded the threshold (Mg viewed at the leaf level). However, there were a 

significant number of wavelength combinations that generated a CC value that exceeded the 0.70 
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threshold for veraison. These were Mg, viewed at canopy-nadir and canopy 15o off-nadir, N at all 

three view angles, and P, viewed at canopy-nadir and canopy 15o off-nadir. For the various 

nutrient-view angles that correlated highly over the cultivars and growing seasons, the correlation 

coefficients ranged between 0.71-0.79.  

The heat maps for the high correlations were plotted in the same manner as for the 1nm data, in 

order to see which combination of wavelength bands formed the peak and highly correlated values. 

An example of the heat maps is seen in Figure 69 below, for Cabernet Franc during bloom, depicting 

the results for B when viewed at canopy-nadir. A comparison with the heat map from the 1nm data 

reveals that the shape of the correlations matches, though the peak values differ. For the 1nm data, 

the peak value was generated by two wavelengths in the mid 400nm range, while for the 10nm 

data, the peak was formed by bands at 704nm and 521nm. 

  

Figure 69: 10nm Bloom Cabernet Franc boron canopy nadir: (a) 3-D view, (b) 2-D view 

We found that, for the 10nm data collected from the Riesling cultivar during bloom, the correlation 

heat map for Mg (viewed at leaf level) matched the heat map for the 1nm data. However, unlike the 

Cabernet Franc B results, the wavelengths generating the peak value for Mg modeling matched as 

well. This was a unique result among the heat maps. In all the cases, the shape of the correlations 

matched between the 1nm and 10nm data. In all nine nutrient-view angle combinations from the 

10nm data with high correlations, this is the only one in which the peak values aligned.  

The linear fit for each of the nutrient-view angle combinations that achieved a high correlation next 

was evaluated. Unlike the 1nm data, where the input to the linear fit was restricted to the indices 

that correlated highly, for the 10nm data there were only 4,096 possible indices, so all indices were 

used in the linear fit. From these combinations, R2 values ranged between 0.50 - 0.63. We then ran a 
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step-wise linear regression using the 64 wavelength bands as input variables. The results showed R2 

values for the models ranging between 0.10-0.75. Similar to the 1nm data, only two to four 

nutrients from each view achieved non-zero results, and all of these non-zero results came from the 

use of the AIC criterion.  

Running the SLR on the correlated NDI for the 10nm data turned out to generate less effective 

models for the nutrient data than were created using the linear fit. The R2 values for the correlated 

NDI SLR ranged between 0-0.54, where the linear fit was between 0.50-0.63. 

The 1st derivatives then were used as the input variables to the SLR, which resulted in all three 

criteria producing results without using an excessive number of wavelengths, as was seen when 

using the AIC and BIC criterion for the 1nm data. The peak fits were generated from a mixture of all 

three criteria. For Cabernet Franc, the SLR produced non-zero results for all six nutrients during 

both growing seasons. The values ranged from 0.09-0.95; however, in order to generate the peak 

value of 0.95, it required 15 separate derivative values as model input. For Riesling, two cases 

resulted in zero model fits, namely Zn at canopy 15o off-nadir from bloom and B at canopy nadir 

view angle during veraison; other than these two cases, the remainder varied between 0.08-0.73.  

Finally, continuum removal in the SLR approach yielded similar results to the 1nm effort, i.e., for 

most view angles, between the two cultivars and growing seasons, a mixture of non-zero and zero 

model fits were generated. The peak model fit came from N when based on the veraison Riesling 

data (leaf-view). This combination also performed well for the 1nm data. 

A table for the peak model fit values was generated for each cultivar and growing season 

combination, as was the case for the 1nm data. A comparison between the 1nm and 10nm peak 

results in Tables 83-85 shows that, for all nutrients in the 10nm data that used a method other than 

derivative SLR to generate the peak model, the 1nm data also used a method other than the 

derivative SLR. The methods did not match in all cases, but for those nutrients it was discovered 

that at those specific view angles for Cabernet Franc during bloom, the 1st derivative approach did 

not model the nutrients the best. 
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Table 83: Peak R2 values for 10nm Cabernet Franc nutrient models from the bloom phenological 
stage at the leaf view angle

 

Table 84: Peak R2 values for 10nm Cabernet Franc nutrient models from the bloom phenological 
stage at the canopy nadir view angle

  

Table 85: Peak R2 values for 10nm Cabernet Franc nutrient models from the bloom phenological 
stage at the canopy 15o off-nadir view angle

  

It furthermore was observed that for the Cabernet Franc data from veraison, based on 10nm 

spectral bands, only B modeling at the canopy nadir view-angle used a model other than the 

derivative SLR. For the 1nm data, a larger number of nutrient-view angle combinations used a 

method other than the derivative SLR, but in a similar fashion to the 10nm data, the derivative 

method was the most common. A qualitative comparison between the two spectral resolutions 

used, showed that the 1nm data generally had better model fits; however, in the cases where the 

1nm data generated poorer model fits, the 10nm data also resulted in lower model performance. 

Table 86: Peak R2 values for 10nm Cabernet Franc nutrient models from the veraison phenological 
stage at the leaf view angle

  

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.71 0.57 AIC 2.71 (mg/kg) 424/560/674/753/811/879/898/927/937/966

Magnesium SLR - Derivative 0.49 0.41 AIC/BIC 603.96 (mg/kg) 472/840/937/976

Nitrogen SLR - Correlated Wavelengths 0.61 0.57 AIC/BIC 0.08 (%) 414/521/714

Phosphorus SLR - Derivative 0.71 0.61 AIC 1844.47 (mg/kg) 405/472/560/792/850/947/966/976

Potassium SLR - Derivative 0.67 0.58 BIC 4860.42 (mg/kg) 472/492/840/869/937/976

Zinc SLR - Derivative 0.62 0.54 AIC/BIC 6.52 (mg/kg) 792/840/879/937/947

Leaf ViewBloom Cabernet Franc   

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Correlated Wavelengths 0.62 0.54 AIC 2.79 (mg/kg) 531/541/714/937/956

Magnesium SLR - Derivative 0.26 0.21 AIC 700.96 (mg/kg) 743/850

Nitrogen SLR - Derivative 0.93 0.89 BIC 0.04 (%) 511/580/589/599/638/658/665/674/704/840/869/918

Phosphorus SLR - Derivative 0.79 0.72 BIC 990.17 (mg/kg) 414/434/609/840/927/937/956

Potassium SLR - Derivative 0.65 0.60 BIC 4775.23 (mg/kg) 589/840/937/956

Zinc SLR - Derivative 0.56 0.45 AIC 7.14 (mg/kg) 434/762/821/840/889/976

Canopy Nadir ViewBloom Cabernet Franc

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.73 0.61 AIC 2.59 (mg/kg) 472/772/821/850/908/918/927/937/956

Magnesium SLR - Derivative 0.43 0.39 BIC/R2 625.35 (mg/kg) 453/472

Nitrogen SLR - Derivative 0.32 0.21 AIC 0.11 (%) 628/889/898/956

Phosphorus SLR - Correlated Wavelengths 0.75 0.65 AIC 1126.76 (mg/kg) 404/424/434/472/531/541/684/723

Potassium SLR - Derivative 0.57 0.48 BIC 5469.40 (mg/kg) 648/668/860/869/927

Zinc SLR - Derivative 0.62 0.54 BIC 6.64 (mg/kg) 619/674/889/947/956

Canopy 15 Degrees Off-Nadir ViewBloom Cabernet Franc

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.95 0.90 AIC 1.66 (mg/kg) 414/463/541/560/658/753/762/772/792/821/898/908/918/956/966

Magnesium SLR - Derivative 0.84 0.77 BIC 188.49 (mg/kg) 531/541/811/831/860/879/889/927

Nitrogen SLR - Derivative 0.54 0.46 AIC 0.07 (%) 658/850/869/966

Phosphorus SLR - Derivative 0.34 0.30 AIC 596.24 (mg/kg) 472/956

Potassium SLR - Derivative 0.32 0.27 AIC/BIC/R2 1941.37 (mg/kg) 658/908

Zinc SLR - Derivative 0.75 0.66 AIC 2.96 (mg/kg) 414/463/472/723/733/743/753/927

Leaf ViewVeraison Cabernet Franc
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Table 87: Peak R2 values for 10nm Cabernet Franc nutrient models from the veraison phenological 
stage at the canopy nadir view angle 

 

Table 88: Peak R2 values for 10nm Cabernet Franc nutrient models from the veraison phenological 
stage at the canopy 15o off-nadir view angle

   

Tables 89-91 show results for Riesling during bloom. There was no evident pattern regarding 

which methods produced the best model fit between the 1nm and 10nm data. In terms of the peak 

R2 values achieved, the 10nm data was mostly inferior, with only one or two nutrients (and no 

consistency in which nutrients) per view-angle in the 10nm data generating a superior model fit. 

Table 89: Peak R2 values for 10nm Riesling nutrient models from the bloom phenological stage at 
the leaf view angle 

 

Table 90: Peak R2 values for 10nm Riesling nutrient models from the bloom phenological stage at 
the canopy nadir view angle 

 

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Continuum Removal 0.71 0.58 AIC 3.44 (mg/kg) 560/655/665/684/704/714/733/743/753

Magnesium SLR - Derivative 0.39 0.33 AIC/BIC/R2 318.47 (mg/kg) 414/589/956

Nitrogen SLR - Derivative 0.10 0.07 AIC/R2 0.09 (%) 831

Phosphorus SLR - Derivative 0.29 0.21 AIC 653.46 (mg/kg) 762/879/908

Potassium SLR - Derivative 0.35 0.27 R2 1984.51 (mg/kg) 414/723/850

Zinc SLR - Derivative 0.35 0.28 AIC 3.50 (mg/kg) 443/840/860

Canopy Nadir ViewVeraison Cabernet Franc

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.73 0.67 AIC 3.06 (mg/kg) 463/472/674/782/811

Magnesium SLR - Derivative 0.56 0.45 AIC 290.32 (mg/kg) 550/908/918/937/976/985

Nitrogen SLR - Derivative 0.34 0.26 AIC 0.08 (%) 550/762/956

Phosphorus SLR - Derivative 0.39 0.32 BIC/R2 595.90 (mg/kg) 658/976/985

Potassium SLR - Derivative 0.71 0.66 AIC 1360.50 (mg/kg) 405/860/879/956/976

Zinc SLR - Derivative 0.09 0.05 AIC 4.84 (mg/kg) 762

Canopy 15 Degrees Off-Nadir ViewVeraison Cabernet Franc

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.45 0.37 BIC/R2 4.85 (mg/kg) 762/927/985

Magnesium NDI Linear Fit 0.60 0.58 N/A 1110.06 (mg/kg) 638/697

Nitrogen SLR - Correlated Wavelengths 0.47 0.39 R2 0.08 (%) 414/733

Phosphorus SLR - Correlated Wavelengths 0.60 0.51 AIC 2454.66 (mg/kg) 405/918/927/947

Potassium SLR - Derivative 0.48 0.43 BIC/R2 2626.64 (mg/kg) 918/937

Zinc SLR - Derivative 0.41 0.33 AIC 12.01 (mg/kg) 850/879/947

Leaf ViewBloom Riesling

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.30 0.27 BIC/R2 5.23 (mg/kg) 762

Magnesium SLR - Continuum Removal 0.26 0.19 AIC/BIC/R2 1010.28 (mg/kg) 570/684

Nitrogen SLR - Continuum Removal 0.65 0.52 AIC 0.07 (%) 570/580/599/619/665/743

Phosphorus SLR - Derivative 0.23 0.20 BIC/R2 3144.64 (mg/kg) 772

Potassium SLR - Derivative 0.73 0.66 BIC 2038.20 (mg/kg) 531/589/638/658/956

Zinc SLR - Derivative 0.22 0.15 AIC 13.50 (mg/kg) 550/850

Canopy Nadir ViewBloom Riesling
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Table 91: Peak R2 values for 10nm Riesling nutrient models from the bloom phenological stage at 
the canopy 15o off-nadir view angle 

 

Finally, when comparing the model fits for the veraison Riesling data (Table 92-94) it was found 

that, while the 1nm data was best modeled via the derivative method, the 10nm data used a larger 

combination of methods to generate the best model fits. With the exception of Mg at canopy-nadir 

and P at canopy-nadir from the 10nm data, the 1nm data produced better model fits in all cases. 

Table 92: Peak R2 values for 10nm Riesling nutrient models from the veraison phenological stage at 
the leaf view angle 

 

Table 93: Peak R2 values for 10nm Riesling nutrient models from the veraison phenological stage at 
the canopy nadir view angle 

 

Table 94: Peak R2 values for 10nm Riesling nutrient models from the veraison phenological stage at 
the canopy 15o off-nadir view angle 

 

Figure 70 shows the linear fits for the six nutrients from Cabernet Franc during veraison. It is 

evident from the residuals that there was no systematic form or trend to the residuals, implying 

that the linear fit was appropriate. The results from the other three cultivars and growing season 

combinations yielded similar results. 

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.70 0.57 AIC 4.01 (mg/kg) 414/733/743/821/840/927/947

Magnesium SLR - Derivative 0.73 0.62 AIC 693.06 (mg/kg) 424/723/782/879/908/918/966

Nitrogen SLR - Derivative 0.33 0.27 AIC/BIC/R2 0.09 (%) 743/947

Phosphorus SLR - Derivative 0.17 0.13 BIC/R2 3278.20 (mg/kg) 443

Potassium SLR - Derivative 0.33 0.26 AIC/BIC/R2 2976.99 (mg/kg) 472/674

Zinc SLR  0.00 0.00 AIC/BIC/R2 14.61 (mg/kg) N/A

Canopy 15 Degrees Off-Nadir ViewBloom Riesling

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.43 0.30 AIC 1.94 (mg/kg) 443/628/840/966

Magnesium SLR - Derivative 0.38 0.35 BIC/R2 336.2 (mg/kg) 966

Nitrogen SLR - Continuum Removal 0.74 0.68 AIC 0.05 (%) 648/665/684/723

Phosphorus SLR - Derivative 0.51 0.44 AIC/BIC 329.19 (mg/kg) 414/792/869

Potassium SLR 0.00 0.00 AIC/BIC/R2 2250.47 (mg/kg) N/A

Zinc SLR - Continuum Removal 0.51 0.41 AIC 2.85 (mg/kg) 684/714/723/753

Leaf ViewVeraison Riesling

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR  0.00 0.00 AIC/BIC/R2 2.34 (mg/kg) N/A

Magnesium SLR - Derivative 0.73 0.63 AIC 249.59 (mg/kg) 541/743/762/956/985

Nitrogen NDI Linear Fit 0.63 0.61 N/A 0.093 (%) 684/704

Phosphorus SLR - Derivative 0.75 0.67 AIC/BIC 256.84 (mg/kg) 405/414/714/782/898

Potassium SLR - Derivative 0.11 0.07 AIC/R2  2441.46 (mg/kg) 762

Zinc SLR - Derivative 0.61 0.54 AIC/BIC/R2 2.55 (mg/kg) 821/918/976

Canopy Nadir ViewVeraison Riesling

Nutrient Method Rsquared Rsquared Adjusted Criterion RMSE Wavelengths for Peak Value

Boron SLR - Derivative 0.48 0.41 R2 1.79 (mg/kg) 424/463/589/609

Magnesium SLR - Derivative 0.72 0.64 BIC 248.41 (mg/kg) 414/560/655/743/898

Nitrogen SLR - Continuum Removal 0.61 0.57 AIC 0.06 (%) 570/580

Phosphorus NDI Linear Fit 0.54 0.52 N/A 413.11 (mg/kg) 511/463

Potassium SLR - Continuum Removal 0.09 0.05 AIC 2486.29 (mg/kg) 694

Zinc SLR - All Wavelengths 0.71 0.63 AIC 2.25 (mg/kg) 443/453/472/511/704

Canopy 15 Degrees Off-Nadir ViewVeraison Riesling
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Figure 70: Linear modeling fit for 10nm Cabernet Franc reflectance data collected during the 
veraison phonological stage at the leaf view angle: (a) Boron, (b) Magnesium, (c) Nitrogen, (d) 
Phosphorus, (e) Potassium, (f) Zinc 

In the same fashion as with the 1nm data, the wavelength bands that were used to generate the 

peak values were recorded and the distribution over the spectrum was plotted for each of the 

nutrients. Figure 71 shows the combined wavelength bands that were used in the formation of the 

peak models for the six nutrients for 10nm data. The peak modeling results for the nutrients used 

wavelength bands from across the spectrum, as was the case for the 1nm data. Each of the six 

nutrients are shown separately below in order to evaluate how they compare against the 1nm data 

in terms of wavelength selection for specific models. 
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Figure 71: Wavelengths used in linear modeling for 10nm peak results, nutrients combined 

Figure 72 shows the wavelengths used for B, which used 59 bands to form the peak models, 

compared to the 48 bands used by the 1nm data. Compared to the 1nm data, the 10nm data used 

more bands in the NIR region of the spectrum. Also, while the 1nm data contained a large number 

of bands in the low blue and low green wavelengths, the 10nm data pulled more strongly from 

across the whole green spectrum, as well as in the low blue. 

 

Figure 72: Wavelengths used in linear modeling for 10nm peak results, boron 
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The results for Mg are shown in Figure 73; Mg modeling used 50 bands, compared to the 42 bands 

used in the case of modeling based on 1nm data. The spread of the 10nm Mg bands was similar to 

that of the 1nm bands, albeit slightly shifted. Similar to the 1nm data, there was a high 

concentration of upper NIR bands, but unlike the 1nm data, we observed that more bands on the 

red edge and one in the upper blue region have shifted into the low green in the case of the 10nm 

data. 

 

Figure 73: Wavelengths used in linear modeling for 10nm peak results, magnesium 

The distribution of the bands used by the 10nm-based N modeling was similar to that from the 1nm 

data (Figure 74); bands were selected  from across the complete silicon spectrum. The 10nm data 

used fewer bands than the 1nm data (36 and 43 bands, respectively) and the reduction in bands 

came from the NIR range, a region in which the 10nm data were not as strongly represented. 
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Figure 74: Wavelengths used in linear modeling for 10nm peak results, nitrogen 

The wavelengths used to model P are in Figure 75; the 10nm data used only 30 bands for the model 

fits, compared to the 53 bands that were used for the 1nm data. From the 10nm band placement, 

we can see that it was based on more bands in the NIR range, while the 1nm data were better 

represented in the green spectral region. 

 

Figure 75: Wavelengths used in linear modeling for 10nm peak results, phosphorus 
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In the case of K, the 10nm modeling extracted 30 wavelength bands, instead of the 34 bands used to 

model the 1nm nutrients. The 10nm results show that the bands used were distributed across the 

visible spectrum, significantly more so than for the 1nm data. Both data sets used a number of 

bands in the 900nm region of the EMR spectrum. 

 

Figure 76: Wavelengths used in linear modeling for 10nm peak results, potassium 

Finally, the Z modeling results are shown in Figure 77. Both 10nm and 1nm modeling approaches 

had a similar NIR region representation. However, in the visible range, the 10nm modeling 

employed more bands in the green spectral region, while the 1nm modeling used no green bands, 

and was more concentrated in the blue EMR region.  
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Figure 77: Wavelengths used in linear modeling for 10nm peak results, zinc 
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6.0 Conclusions 

There are a number of important conclusions that can be drawn from our analysis of i) nutrient 

levels at the petiole and leaf levels, for ii) Riesling and Cabernet Franc grape cultivars, across iii) 

bloom and veraison phenological stages, with spectral data collected at iv) leaf, canopy-nadir, and 

canopy 15° off nadir view angles, for v) for the silicon range (400-1000nm). Although clear trends 

were not always obvious, it was found that: 

 Little agreement regarding the nutrient concentration of the plant existed between the leaf and 

petiole nutrient analyses; 

 The petiole nutrient analysis was in closer agreement with the expected concentration of nutrients 

for wine grapes grown in Eastern North America; 

 Both the normalized difference index (NDI) and ratio index approaches yielded similar results to two 

decimal places;  

 For both the 1nm and 10nm resampled spectral reflectance data, there was a greater correlation 

between the NDI and the nutrient content for the Riesling reflectance spectra compared to the NDI 

for Cabernet Franc reflectance spectra; 

 At both 1nm and 10nm resampled spectral resolutions there were similarities in the shape of 

nutrient-spectra correlation heat maps for a nutrient between different cultivars and growing 

season; 

 For the 1nm data, only the 1st derivative analysis method generated a model fit for each of the 

nutrients in all view-angles, while for both resolutions, it was the most common method to generate 

the peak model fits; 

 A 1nm spectral resolution resulted in better overall model performance in terms nutrient 

concentration predictive ability then the 10nm spectral resolution; and  

 The distribution of the wavelengths used in our models to fit the nutrient data concurred with 

previous research.  

 

Specifically, from the five methods that were employed as part of this research it was found that, 

while all five methods produced model fits for one or more nutrients over the span of cultivars and 

growing seasons, the three predominant methods for achieving the best model fits were i) SLR 

using the wavelengths, ii) using continuum removal, or iii) using the 1st derivative of the reflectance 

spectrum as the input/independent variables. Among these three methods, only the 1st derivative 

approach, when applied to the 1nm data, was found to produce solid model fits for all six nutrients 

for both cultivars over the span of the growing period. 
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One could argue that we would need to limit the analysis to data from the two canopy view-angles, 

given the potential extension of results to UAV-based platforms, i.e., canopy-specific imagery. In this 

context and for a 1nm spectral resolution, a comparison between the two canopy view-angles 

(nadir and 15° off-nadir; Tables 71-82) showed that: the peak R2 values ranged between 0.35-0.84 

for canopy nadir and required between two and ten wavelengths per nutrient to generate any of the 

models; For the canopy 15o off-nadir view-angle at 1nm spectral resolution, the peak R2 values 

ranged between 0.14-0.86 and again required between two and ten wavelengths to generate the 

complete set of nutrient models, similar to the results for canopy nadir viewing. A comparison of 

the average R2 values over the complete set showed that the canopy nadir view-angle exhibited an 

average R2 value of 0.66, while the canopy 15o off-nadir view-angle yielded an average R2 value of 

0.60. For the 10nm spectral resolution (Tables 83-94) we found that for the canopy-nadir view 

angle the peak R2 values ranged between 0-0.93 and employed between 2-24 wavelength bands. 

The results for the canopy 15o off-nadir view-angle at 10nm showed that peak R2 values ranged 

from 0-0.71 and used between 1-18 wavelength bands. Therefore, we determined that the canopy 

nadir view-angle is the superior view angle from which to sample the grape blocks at both spectral 

resolutions. 

However, when choosing between the two spectral resolutions we found that, although the 10nm 

resolution can result in a better model fit in one or two nutrient and view angle cases, this comes at 

the price of requiring almost double the wavelengths sampled in order to fit the model. When 

considering all six nutrients, the 1nm spectral resolution provided an overall better modeling of the 

nutrient data with fewer required bands. 

It became clear that in order to achieve optimized model fits for the nutrient data, the use of 

multiple data models is recommended. However, if only one approach is preferred, we would 

recommend the use of 1nm, 1st derivative spectral data – this data set consistently produced the 

best modeling results across the set of nutrients, for the two cultivars, and during both growing 

seasons. Finally, in examining the feasibility of sampling the data with a UAV, and depending on the 

required nutrients to be modeled, for a specific cultivar and phenological stage, it was established 

that between two and ten separate wavelengths needed to be sampled. In most cases, this will 

require multiple passes over the block for a single nutrient and while this result did not satisfy our 

quest of being able to select a set of ≤6 wavelengths for typical UAV-based cameras, this research 

demonstrated that this only a somewhat unrealistic goal.  Technology likely will advance to a level 

where UAV platforms either can accommodate several multispectral cameras, or camera 
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technology will advance to enable image collection for ≥10 bands per pass. In the meantime, a 

nutrient modeling solution that requires up to 10 wavelengths per nutrient could be accomplished 

through the use of interchangeable spectral filters and multiple passes over a field, i.e., a collection 

strategy that spans a couple of hours to a day. The data could then be output in a matter of minutes 

from the time that it is downloaded. This would yield same-day nutrient concentration assessment 

for the field, allowing prompt, pro-active crop management for improved health and yield of the 

vines. 

6.3 Next steps 

There are several different aspects of the study that further could be explored as part of future 

research. The data used in our analysis were from a single year’s field season. We therefore 

recommend that samples be obtained from the vineyard/field in subsequent years in order to 

verify and strengthen the modeling results. Other computational techniques based on multivariate 

analysis, e.g., partial least squares or principal component analysis, are suggested in order to build a 

more holistic and robust model for the various nutrients. Furthermore, the manner in which we 

analyzed the data ignored the different ground treatments, as well as weather variability during the 

collection stages. An analysis of how the different ground treatments affect the modeling could help 

to generate models that are extensible across different fields or weather conditions. Although white 

reference samples were used to minimize the effects of changing weather conditions, i.e., data were 

converted to reflectance, additional work could focus on trying to mitigate the effects of small 

illumination changes that occur in the time between when the reference sample and the target 

sample are collected – this could contribute to further mode optimization. Finally only 1nm and 

10nm wavelength bands were analyzed; we thus recommend that other spectral resolutions, such 

as 2nm or 5nm, also be tested to further evaluate the impact of spectral resolution on nutrient 

model performance. As an extension of such an analysis, one could also limit the proximity of 

selected 1nm bands to facilitate system design – this should be done prior to field-testing of any of 

the models towards developing a truly operational sensor that is designed to be sensitive to specific 

nutrient absorption features. 
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