
Tracking of Various Targets in the Infrared and Issues Encountered

by

Kyle T. Ausfeld

B.S. University of Rochester, 2010

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science

in the Chester F. Carlson Center for Imaging Science

College of Science

Rochester Institute of Technology

August 20, 2012

Signature of the Author

Accepted by
Dr. John Kerekes, M.S. Degree Program Date

CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

M.S. DEGREE THESIS

The M.S. Degree Thesis of Kyle T. Ausfeld
has been examined and approved by the
thesis committee as satisfactory for the

thesis required for the
M.S. degree in Imaging Science

Dr. Zoran Ninkov, Thesis Advisor

Dr. Carl Salvaggio

Dr. J. Daniel Newman

Date

2

Tracking of Various Targets in the Infrared and Issues Encountered

by

Kyle T. Ausfeld

Submitted to the
Chester F. Carlson Center for Imaging Science

in partial fulfillment of the requirements
for the Master of Science Degree

at the Rochester Institute of Technology

Abstract

Computer aided object tracking is a subject of increasing interest. The applications
for these tracking algorithms are widespread; from homeland security and surveillance
to the study of animal behavior. In past years, the visible part of the electromagnetic
spectrum has been the dominant regime in which algorithms have been developed. This
is in part due to a greater amount of available data while many of these algorithms were
being developed. Algorithms such as the Mean Shift algorithm have become a standard in
which other tracking algorithms are tested against. However, infrared video data presents
some challenges that are not as pronounced or existent in visible video data. Many infrared
detectors are much more easily saturated than visible detectors, which can cause a loss
of both spatial and temporal information about an object of interest. Although there
are extra challenges associated with infrared data, the advantages make the development
of tracking algorithms for the infrared an important task. Persistence surveillance of
targets of interest may be performed with the use of one infrared imaging system due to
day and night imaging capabilities. This work demonstrates the utility of a polynomial
fitting adaptive Kaman filter with the measurement made by the Mean Shift algorithm
for tracking non-linear object motion in the infrared. Additionally, the Pearson product-
moment correlation coefficient is shown to be superior to the Bhattacharyya correlation
coefficient when working with low spatial resolution and noisy images.

3

Acknowledgements

I would like to thank the New York State Foundation for Science, Technology, and
Innovation (NYSTAR) through the Center for Emerging and Innovative Sciences (CEIS),
ITT Exelis Geospatial Systems and NASA (grant NAS5-2105) for supporting this work.
Extra thanks goes out to Zoran Ninkov, Dan Newman, Carl Salvaggio, Paul Lee, David
Rhodes, Judy Pipher, Kenny Fourspring, and Ross Robinson for thoughtful discussions,
direction giving, and help during data collects, as well as help with some post-processing
of the data.

4

I would like to dedicate this work to my family for helping and supporting me though
school, as well as to my girlfriend, for her encouragement and patience.

5

Contents

Appendices 7

1 Introduction 10

1.1 Object Tracking . 10
1.1.1 Target Representation Approach . 11
1.1.2 Filtering and Statistics Approach . 11

1.2 The Infrared and Object Tracking . 11

2 Algorithms 19

2.1 Brief Introduction to Object Detection . 19
2.1.1 Frame Differencing . 19

2.2 Mean Shift . 21
2.3 Kalman Filters and Variants . 24

2.3.1 Kalman Filter . 25
2.3.2 Adaptive Kalman Filter . 26

2.4 Correlation Coefficients . 27
2.4.1 Bhattacharyya Correlation Coefficient 28
2.4.2 Pearson Product-Moment Correlation Coefficient 29

2.5 Polynomial Object Path Tracking . 29

3 Results 34

3.1 Correlation Coefficient Comparison . 34
3.2 Algorithm Testing . 36

3.2.1 RIT Parking Lot Data . 36
3.2.2 ESL Rochester International Air Show 37
3.2.3 WAPS . 40
3.2.4 Synthetic . 45
3.2.5 Bird Tracking . 48

6

CONTENTS 7

4 Conclusions and Future Work 56

4.1 Conclusions . 56
4.2 Future Work . 57

A Figures for Section 2.1 60

B MATLAB Implementation of Algorithms 70

B.1 Mean Shift . 71
B.1.1 Distance Kernel . 71
B.1.2 Histogram Kernel Selection . 71
B.1.3 Iterative Step . 72

B.2 Kalman Filters . 74
B.2.1 Kalman Filter Prediction Step . 74
B.2.2 Adaptive Kalman Filter Prediction Step 75
B.2.3 Kalman Filter Comparison Step . 76
B.2.4 Adaptive Kalman Filter Comparison Step 76

B.3 Polynomial Fitting Adaptive Kalman Filter 76
B.3.1 Polynomial Fit . 76
B.3.2 Calculate Distance Along Curve . 77

B.4 NITF Image Extraction . 78
B.4.1 NITF Extraction to AVI Video . 78
B.4.2 NITF to Registration to Video . 79

B.5 FFT Image Registration . 81

C Tracking Algorithm Testing Platform 85

C.1 Tracking Algorithm Metrics . 85
C.2 Testing Platform GUI Layout Possibilities 86
C.3 Python Code . 86

C.3.1 Configuration File . 88
C.3.2 Python Read in Configuration File 90

List of Figures

1.1 Infrared images of BMP2 . 14
1.2 Infrared sequence of Extra 300S saturating 14
1.3 Visible image of a Extra 300S . 15
1.4 Blue Angels saturating . 16

2.1 MX2 aerobatic with a readout pattern . 28
2.2 Polynomial projected position versus linear prediction 31

3.1 Close up of MX2 with noise . 35
3.2 MX2 correlation without Gaussian blur . 36
3.3 MX2 correlation with Gaussian blur . 37
3.4 Visible image of RIT parking lot scene . 38
3.5 Infrared image of RIT parking lot scene . 39
3.6 Infrared person tracking . 39
3.7 Loss of target due to distraction . 40
3.8 Mean Shift probability map with distraction 41
3.9 Visible image of MX2 aerobatic airplane . 42
3.10 Infrared image of MX2 aerobatic airplane scene 42
3.11 Infrared tracking of MX2 . 43
3.12 PPMCC correlations during MX2 tracking 43
3.13 Failed infrared tracking of MX2 . 44
3.14 FFT registration and MS tracking on WAPS data 45
3.15 WAPS infrared image and region of interest 46
3.16 MS vehicle tracking on WAPS data . 49
3.17 Simulated image at 3.7 µm . 50
3.18 Simulated image at 9.0 µm . 51
3.19 Simulated scene object tracking at 9.0 µm, track 1 52
3.20 Simulated scene object tracking at 9.0 µm, track 2 53
3.21 Sample bird tracking results . 54

8

LIST OF FIGURES 9

A.1 Original Sensiac image in the infrared . 61
A.2 Single frame difference ouput . 62
A.3 Frame double difference output . 63
A.4 Noisy infrared data of parking lot . 64
A.5 Mode frame difference on noisy infrared data 65
A.6 Median frame difference on noisy infrared data 66
A.7 Mean frame difference on noisy infrared data 67
A.8 Single frame difference on noisy infrared data 68
A.9 Double differenced frame on noisy infrared data 69

C.1 Sample GUI layout for algorithm testing platform (1) 86
C.2 Sample GUI layout for algorithm testing platform (2) 87

Chapter 1

Introduction

The tracking of moving objects within their field of view is something that humans and
animals have naturally done in order to survive. It allows us to locate food and detect
danger. In recent times, the development of technology have allowed us to automate these
processes, allowing a more hands-off approach to detecting objects of interest or danger.
Imaging systems have become increasingly more advanced, allowing better spatial, tem-
poral, and spectral resolution. Similarly, computer hardware and software have advanced
to the point where we are able to make use of them to detect and track objects for us
in increasingly less time. This chapter is broken up into a background on general object
tracking (Section 1.1) and an introduction as to why the infrared spectral region is useful
for object tracking (Section 1.2).

1.1 Object Tracking

The most general tracking objective is to specify the location of an object of interest. In
general, object tracking refers to the use of an image sequence to detect and follow where
an object moves within a scene. Further analysis of this information gives insight into how
the object is moving and can be used for anomaly detection [1], gait detection [2], animal
behavior [3], traffic flow [4], or the detection of movements within a restricted area. The
ability to detect and quantify these changes without human input is the desired outcome,
saving both time and resources.

There are a number of different approaches to the development of tracking algorithms.
A thorough discussion of the categorization of tracking objects may be found in [5]. Two
major approaches to the development of tracking algorithms are discussed below; those
that focus on target representation (Section 1.1.1) and those that use filtering and statistics
for tracking (Section 1.1.2).

10

CHAPTER 1. INTRODUCTION 11

1.1.1 Target Representation Approach

Algorithms that fall under the representation category create a map containing information
on where the object is. The way the object may be represented varies greatly, from a
probability map based on distance and “color” information (Mean Shift algorithm), to
edge representation tracking [5]. The Mean Shift algorithm will be discussed in greater
detail in Section 2.2.

Edge representation tracking is performed using an edge detection algorithm (e.g.,
Sobel or Canny), followed by the selection of a shape of interest. Using the edge infor-
mation, the next frame to be used simply applies a search algorithm for an object who’s
edges have the best correlation with the model from the first frame. There are drawbacks
to this technique. Some applications have objects that do not have “hard” enough edges
to be detected accurately, while other applications may have too many edges to make this
an efficient method.

A simple representation that may be used in infrared applications is a simple “hot
spot” tracking algorithm. This type of representation only works when the object of
interest is imaged in the thermal infrared, and is significantly hotter than its surroundings.
The object appears to be a group of bright pixels, and is represented by these bright
pixels. Tracking is performed by detecting this bright set of pixels in subsequent frames.
Although this is a crude method, it can be performed quickly and accurately if a scenario
is sufficiently simple.

1.1.2 Filtering and Statistics Approach

Representing objects with filters and statistics has been implemented in various fields,
from tracking to mean estimation of noisy data and noise identification [6, 7]. These types
of algorithms use a recursive filter to predict motion of a particle (statistically, e.g., a
Kalman filter, discussed in more detail in Section 2.3) or use a filter associate various data
points with an object, giving a way to search for the object.

The data association method works by forming a statistical model of an object in the
initiating frame. The following frames associate the new data with the model created
either in the initiating frame, or the last frame in which the model was updated. If only a
single object is of interest, a measurement is made to find the data defined by the model in
the new frame. When multiple objects are of interest, a simple approach looks at previous
locations to perform a nearest neighbor search [5]. More robust approaches exists, but
discussion of such methods will be deferred to [5].

1.2 The Infrared and Object Tracking

The infrared part of the electromagnetic spectrum (0.74µm to 300µm) is rapidly gaining
interest for object tracking due to the increase in availability at decreasing costs. There

CHAPTER 1. INTRODUCTION 12

have been many developments in both the format and size of infrared detector arrays,
providing higher spatial resolution. Using a new part of the spectrum allows tracking
algorithms to work with information not available in the visible part of the spectrum (380
nm to 740 nm).

Infrared detectors are able to perform surveillance around-the-clock. This is due to the
self-emission of objects in the infrared as described by black body radiation (mid-wave to
long-wave infrared), or the reflection of light at non-visible wavelengths (near-infrared to
mid-wave infrared). The emissivity of an object describes how close to a black body the
object radiates at. Therefore, objects of similar temperatures with different emissivities or
vice-versa become clear to differentiate. This is especially useful for detecting and track-
ing camouflaged objects. In the visible part of the spectrum, the camouflage makes an
object of interest blend into the background. In the infrared, the warmth of the disguised
object or the change in emissivity from object to background would give a different signa-
ture, making the task of object detection and object tracking possible. Another situation
could be that of two “identical” objects undergoing an occlusion during tracking. After
the objects of interest appear from behind the occluding object, the distinction of these
“identical” objects in the visible spectrum can be rather difficult. However, if one object
was warmer than the other (due to running longer or sat in the sun while the other was
in shade), these objects would appear different both before and after the occlusion when
viewed at in the infrared. This extra information obtained in the infrared allow tracking
algorithms to succeed where they would otherwise struggle.

There are some disadvantages to using only the infrared part of the spectrum for object
tracking. Most infrared detector arrays are only capable of collecting spatial data in only
one spectral band. On the contrary, many detectors in the visible part of the spectrum
are able to collect spectral data as well as spatial data via color filter arrays. Multi-band
infrared detector arrays have been built and are in use[8], however, there is a lack of
sufficient data available to the public to develop tracking algorithms. Another solution
is the use of both a multi-band visible camera system combined with an infrared camera
system, giving even more data and flexibility [9].

Another difficulty with viewing objects in the infrared is due to the strong dependence
between orientation and appearance. Part of this dependence comes from object profile
change with orientation angle, however this effects both the visible and the infrared parts
of the spectrum. In the visible spectrum, the color of an object is being detected. The
color of objects (such as cars or airplanes) tend to be uniform, so only the object silhouette
changes with view angle, but the color component stays the same. In the emissive part
of the infrared (mid-wave to long-wave), the light that is being detected can be viewed as
an object’s temperature. Along with the silhouette changes with view angle, an objects
temperature is also likely change due to engine heating or some other heat source. This
is shown in figure 1.1. This set of images from the Sensiac ATR Algorithm Development
Image Database of a BMP2 armored personnel carrier in the mid-wave infrared at night

CHAPTER 1. INTRODUCTION 13

[10]. This figure demonstrates how heat from an engine’s exhaust may become clear in the
infrared from one view angle, but undetectable from another. Also note that the object
profile from both view angles is very similar.

Additionally, changes in view angle in the infrared can reveal “hot spots” such as the
one shown in Figure 1.1. These spots are from a rapid increase in photon flux, which can
be caused by a heat source (mid-wave to long-wave infrared) or by a solar glint (near to
mid-wave infrared). These rapid increases in photon flux can cause detectors to saturate
if high enough. Due to “bleeding” in detectors when they saturate, information about
the saturating object is washed out and can even effect near-by objects. An example of
the saturation due to solar glint is shown in Figure 1.2, taken in the mid-wave infrared
(visible image shown in Figure 1.3). This shows a 300S aerobatic airplane at the 2011 ESL
Rochester International Air Show perform an aerobatic roll while diving. The change in
orientation of the wing causes a glint to be directed at the detector, causing a saturation.
The only information obtainable during a saturation is the general position of the object,
but even that can be difficult to determine with a more severe saturation.

An example of infrared detector saturation due to engine heat is shown in Figure
1.4, showing the US Navy Aerobatic Team’s Blue Angels during the 2011 ESL Rochester
International Air Show. The image demonstrates a saturation due to engine exhaust as
the Blue Angels perform an aerobatic stunt. The other jets to the bottom right show
how large a saturation can become, and how close objects can blend together during a
saturation. Some detectors exhibit an effect during saturation which appears as a “ghost”
near the saturating object. This shows up in Figure 1.4 surrounding the saturating Blue
Angel. Both Figure 1.2 and 1.4 were taken with a nitrogen cooled Kodak KIR-310 PtSi
640x480 pixel array with a germanium lens. The focal length is 200 mm with f/2, and
a 3.2-4.1 µm filter. The data was collected from the Rochester Institute of Technology
campus, about 4 km from the Rochester International Airport (where the air show is held)
at a frame rate of 24 frames per second.

There are difficulties with developing object tracking algorithms in the infrared part
of the spectrum. However, the advantages infrared data provides over data collected in
the visible spectrum makes the development of infrared tracking algorithms an important
task. Most current infrared tracking algorithms work by taking algorithms developed for
use in the visible spectrum, and modify them to work in the infrared. This is generally
very easy to do; usually just a matter of using a greyscale color system instead of RGB or
HSV. This is the approach used in this work, and the algorithms used with be discussed in
Chapter 2. After the algorithms are introduced and discussed, some applications of both
tracking and infrared tracking are introduced and shown in Chapter ??. The last chapter
(3) will discuss the results of the newly implemented algorithm (introduced in Section 2.5)
along with results and implications from the discussion on correlation coefficient selection
(Section 2.4).

CHAPTER 1. INTRODUCTION 14

Figure 1.1: A set of infrared images of a BMP2 armored personnel carrier at night. Note
the clearly visible hot spot, due to engine heat, only visible on one side of the vehicle.

Figure 1.2: Extra 300S aerobatic airplane at the 2011 ESL Rochester International Air
Show, shown in the infrared. From left to right, frame numbers 35, 45, and 55, with a
frame rate of 24 frames per second. Note the large change in object appearance in under
one second, including a saturation due to glint from the airplane wing under a slight roll
manoeuver.

CHAPTER 1. INTRODUCTION 15

Figure 1.3: Extra 300S aerobatic airplane flown at the 2011 ESL Rochester International
Air Show, shown in the visible. Taken from the ESL Rochester International Air Show
website[11].

CHAPTER 1. INTRODUCTION 16

Figure 1.4: Infrared sequence of the US Navy Aerobatic Team’s Blue Angels during the
2011 ESL Rochester International Air Show. Note how many pixels a saturating jet takes
up compared to the other jets. Also note the “ghosting” caused by the detector array
during saturation.

Bibliography

[1] Fan Jiang; Ying Wu; Katsaggelos, A.K.; “Detecting contextual anomalies of crowd
motion in surveillance video,” 16th IEEE International conference on Image Process-
ing (ICIP), pp.1117-1120, 7-10 Nov. 2009.

[2] Lee, L.; Grimson, W.E.L.; “Gait analysis for recognition and classification,” Pro-
ceedings of the Fifth IEEE International Conference on Automatic Face and Gesture
Recognition, pp.148-155, 20-21 May 2002.

[3] Suryan, R. M. and Harvey, J. T. (1998); “Tracking harbor seals (phoca vitulina
richardsi) to determine dive behavior, foraging activity, and haul-out site use.”Marine
Mammal Science, 14: 361372. doi: 10.1111/j.1748-7692.1998.tb00728.x.

[4] Young-Kee Jung; Yo-Sung Ho; “Traffic parameter extraction using video-based vehi-
cle tracking,” 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Trans-
portation Systems, Proceedings, vol., no., pp.764-769, 1999.

[5] Yilmaz, A., Javed, O., and Shah, M.; “Object tracking: A survey.” ACM Com-
put. Surv. 38, 4, Article 13 (Dec. 2006), 45 pages. DOI = 10.1145/1177352.1177355
http://doi.acm.org/10.1145/1177352.1177355.

[6] Welch, Greg; Bishop, Gary; “An Introduction to the Kalman Filter,” University of
North Carolina at Chapel Hill, pp. 1-16, 2006.

[7] Oussalah, M.; De Schutter, J., “Adaptive Kalman Filter for Noise Identification,”
Proceedings of the International Conference on Noise and Vibration Engineering, pp.
1225-1232, 2000.

[8] Parish, G.; Musca, C.A.; Siliquini, J.F.; Antoszewki, J.; Dell, J.M.; Nener, B.D.;
Faraone, L.; Gouws, G.J.; “A monolithic dual-band HgCdTe infrared detector struc-
ture,” Electron Device Letters, IEEE , Vol. 18, no. 7, pp. 352-354, Jul 1997.

[9] Goubet, Emmanuel; Katz, Joseph; Porikli, Fatih, “Pedestrian Tracking Using Ther-
mal Infrared Imaging,” Infrared Technology and Applications XXXII, pp. 62062C-1-
12, 2006.

17

BIBLIOGRAPHY 18

[10] ATR Algorithm Development Image Database, Military Sensing Information Analysis
Center, 25 July 2008.

[11] http://www.rochesterairshow.com/performers.php, 25 Jan. 2012.

Chapter 2

Algorithms

This chapter will discuss the idea behind some algorithms used in tracking, as well as how
they are implemented. Before object tracking may commence, an object must first be
detected. There are many object detection algorithms, some very simple, other complex.
Section 2.1 will introduce just a couple simple methods. The tracking in the remainder of
this work will start with a manual detection in order to test just the tracking algorithms
themselves. The tracking algorithms used include the Mean Shift algorithm (MS, Section
2.2) and Kalman filters (KF, Section 2.3). Another important consideration when using
tracking algorithms is how the correlation coefficient choice can effect algorithm perfor-
mance (Section 2.4). The proposed method is a combination of a KF with a polynomial
position fitting (PFAKF), discussed in Section 2.5.

2.1 Brief Introduction to Object Detection

Object detection is in itself a subject of study. There are many different algorithms to
perform this task, running the gamut from Bayesian network detectors [1], to learning
algorithms using single or multiple classes [2, 3]. For this work, a quick introduction into
a couple simple methods will be sufficient. The methods discussed below will all work on
data with a constant background (e.g., video overlooking a parking lot) and with moving
targets (e.g., cars moving around said parking lot) to varying degree; based on image
quality. All detection figures will be differed to Appendix A.

2.1.1 Frame Differencing

Frame differencing is the most basic way to detect a moving object in a stationary scene.
Early uses of frame differencing were in the 1970’s with the advent of television [4, 5].
There are a few ways in which frame differencing can be used, but all methods employ the
subtraction of one frame from another.

19

CHAPTER 2. ALGORITHMS 20

Single Frame Difference

The standard implementation is just a single frame difference and is very quick to imple-
ment. The image remaining generally consists of “blobs” representing an object moving
through the scene. Mathematically, it is defined as

Di = Fi − Fi−1, (2.1)

where D is the differenced image, F is the set of raw frames, and i, i − 1 represent the
current frame and the previous frame, respectively. This can also be implemented using a
known background image with no objects in it to subtract off the background. The only
difference would be to substitute Fi−1 → B in equation (2.1) where B is the background
image.

One of the biggest difficulties with this method arises when working with noisy images,
or if the background is not completely stable. This occurs when there is lots of foliage in
the scene and the wind is substantial. An example of single frame differencing is shown in
Figure A.2. The image was taken in the infrared and is taken from the Sensiac database
[6]. It is relatively noise free, but notice how the entire image is speckled with noise,
potentially causing confusion.

Double Difference

A more robust technique of frame differencing is called the double difference, and first
appeared in 2000, by Collins et al. [7]. The idea behind this technique is to limit the
effects of noise on frame differencing. The technique involves two steps, the first of which
is creating a pair of differenced frames,

Di = Fi − Fi−1 andDi−1 = Fi−1 − Fi−2. (2.2)

The next step is a comparison step, pixel-by-pixel, with a threshold in order mitigate
effects of noise in the image sequence. This looks like

DD(m,n) =

�
1 if Di(m,n) & Di−1(m,n) > Threshold
0 else

.

DD is then a binary image of moving objects. The threshold is chosen such that the noise
in the image sequence is attenuated. This passes only the moving objects, making target
detection more robust.

An example of the improvement provided by the double difference can be seen in Figure
A.3. This is the same sequence used above in Figure A.2. Notice how the noise in the
sky that could be confused as an object has been dramatically reduced, leaving just the
object itself.

CHAPTER 2. ALGORITHMS 21

Statistical Difference

The previous methods may be sufficient for high quality data with a good signal-to-noise
ratio, they fail drastically when noisy data is presented. Another frame difference method
is to use a statistical quantity to subtract off the current frame. This technique can prove
to be more robust on a wider range of image quality, but with a loss of computational
speed. To properly build up a good set of data in which to calculate statistics requires a
decent number of frames to initiate the detection. This is not an issue if using video with
close to 30 frames per second if there are minutes of this data to analyze. If this is not
the case, other methods would be preferable.

The statistical difference frames are all created in the same way, but can use different
statistical properties to calculate them. The statistics are calculated at each pixel in the
previous N frames at each pixel. This frame is then subtracted from the current frame,
similar to equation (2.1). In very noisy data, a standard approach is to use the median
value at each pixel. However, using the mode of the pixels has also proven to be useful for
detection. Figure A.5 shows the mode difference image of Figure A.4. For comparison,
Figure A.6 shows the median difference image, while Figure A.7 shows the mean. Notice
how the mean is the worse of the statistical difference methods,, but still could be used.
However, it does seem to show “trails” of where the moving objects were, giving potential
false positives.

For comparison to the earlier techniques, Figures A.8 and A.9 show the single frame
difference and double difference methods on the same image. Note that significantly more
noise gets through, making the differenced images completely useless for object detection.
The large amount of noise in this data is likely due to the imager not being cooled. This
data was taken using a microbolometer, at about 10 µm from the roof of RIT overlooking
a parking lot. The “1” at the bottom of Figure A.4 is a watermark that could not be
removed from the camera, and is the filter number currently being used.

2.2 Mean Shift

The Mean Shift algorithm (MS) was first used as a gradient decent technique used in
pattern recognition [8]. It was more recently used for feature space image segmentation
[9], followed by object tracking [10]. It is also known as kernel based object tracking, due
to the use of two kernels that are applied to the target before the centroiding part of the
algorithm.

This algorithm is generally used in tracking on visible data, and can be implemented
on either color or monochromatic image sequences. Although this algorithm only works
using a single “color” band, color images are generally converted to HVS (hue, value,
saturation) space, then the analysis is performed on the hue component, although this is
not necessary. Due to this structure, it is very simple to implement on infrared data, using

CHAPTER 2. ALGORITHMS 22

the intensity as one would with monochromatic images. However, there are some minor
differences one should be aware of before simply applying this algorithm to any image
sequence.

When using the infrared, some difficulties arise in the fact that the target and back-
ground are not always so distinct. This can occur if taking video in the thermal infrared
on a hot day of vehicles. By contrast similar video taken during the winter months would
prove simple to track on, as the targets are very distinct. This difficulty arises because
MS can be distracted by near-by objects of similar appearance to the object of interest.
Although the kernel based on the “color” of an object can limit this, as well as the distance
kernel, some data is simply more difficult for MS to track.

The algorithm can be viewed as a procedure performed at every frame, and calculates
the center of an object. The object the centroid is performed on is not just a sub-image
containing the object of interest, but a probability density function of that object. Here
is the general form of the algorithm, performed at each frame.

1. Given an initial (or previous) location and object size, create sub-image containing
the original object’s location, larger than the object’s size.

2. Create a kernel based on object size to weight the center pixels more heavily.

3. Create a kernel based on the pixel intensity range for the object in question.

4. Apply both kernels to the sub-image, creating a probability density function of the
likelihood a pixel belongs to the object of interest.

5. Sum all pixels or perform a moment calculation on the distribution, finding the
center location.

6. Repeat this, using the location found last until convergence is met, or a maximum
iteration count is exceeded.

MS uses the initiated sub-image and location to create a target model which is then used
to extract the pixel intensity range during step 3. This target model is denoted by q,
while the target candidate is denoted p. For more details on how I implemented the MS
in MATLAB, see Appendix B.1.

The kernel used for spatial “windowing” will be denoted kd while the kernel for pixel
intensity will be denoted kh. To calculate kd, we must first choose a kernel function which
we shall use to weight the distance from the center of the sub-image. The kernel must
be an isotropic, convex, and monotonically decreasing function [10]. This makes sure the
likelihood of belonging to the object of interest is forced to the center of the sub-image.
There are two commonly used functions, the Epanechnikov and Gaussian kernel profiles.
This work makes use of the Epanechnikov for reasons explained further down, and is

CHAPTER 2. ALGORITHMS 23

recommended for use. For this work, the spatial kernel is defined as:

kd(i, j) =
2

π

1−

�
(i− icenter)

2 + (j − jcenter)
2

d2

 . (2.3)

i and j represent the pixel locations within the sub-image, and icenter and jcenter define
the center of this window. d is an adjustable parameter used to adjust the speed in which
the kernel drops off, and depends on target size.

The calculation of kh may be performed in a couple different ways, depending on
application. If the object of interest is pretty uniform in intensity, then the kernel may
use a simple triangle function centered at the mean intensity of the object.

kh(u) = 1−
�u− upeak�

| h | (2.4)

This is was the equation used for this work, with h representing the number of histogram
bins on either side of the central bin, upeak. Outside of this region, kh is defined to be zero.
The central peak may be chosen either by hand, or may be selected by a set procedure.
Selection by hand may be more reliable if the histogram is not easily segmented into
target and background, making a simple selection procedure inaccurate. This is discussed
in further detail in Appendix B.1.2.

The after the two kernels are calculated, we are ready to calculated both p and q. q is
calculated using the model, which is the first frame of tracking, I1. It may be calculated
only once, as it should not change frame-to-frame∗. This gives:

q(i, j) =
m bins�

u

I1(i, j, u
�) · kd(i, j) · kh(u) · δ

�
u, u

��
. (2.5)

u
� represents the bin that pixel (i, j) belongs to, and δ (u, u�) is the Kronecker delta func-

tion, defined as

δ
�
u, u

�� =
�
1 iff u = u

�

0 iff u �= u
� . (2.6)

The calculation of p is similar to that of q, with the change of I1 → In, where n is the
current frame number.

p(i, j) =
m bins�

u

In(i, j, u
�) · kd(i, j) · kh(u) · δ

�
u, u

�� (2.7)

∗
As a word of warning, if the object of interest starts to move off the side of the frame, the size of

p may become smaller than q. In this case, tracking would either be over for the object, or q could be

recalculated with a size equal to p, allowing for a couple extra frames of tracking.

CHAPTER 2. ALGORITHMS 24

The Epanechnikov profile is advantageous when calculating the new center location,

lr =
Σi,ji · p · (−k

�
d)

Σi,jp ·
�
−k

�
d

� , (2.8)

where k�d is the derivative of the kernel kd. There would also be a similar function, namely
lc, which would be the new column location, while lr is the new row location. Also note
that if kd has a Epanechnikov profile, its derivative is simply a constant, and may be
ignored. Note this is the same as taking a weighted average, which means the new center
location can simply be calculated via moments. Ignoring k

�
d, we can calculate the moment

as
m00 =

�

i,j

p(i, j), m10 =
�

i,j

i · p(i, j), m01 =
�

i,j

j · p(i, j). (2.9)

Here, m00 is effectively the “area” of p, while m10 and m01 are the first order moments.
This leads us, when using an Epanechnikov kernel, to the relation

lr =
m10

m00
and lc =

m01

m00
. (2.10)

The use of higher order moments may be used to get orientation information, including a
rotation. This allows for an adaptive MS algorithm to be developed that can adapt the
window size to the object on the fly, namely the CAMSHIFT algorithm. Discussion of
this algorithm is deferred to Bradski 1998 [11].

This is essentially the whole MS algorithm. The calculation (or recalculation) of p
and q is repeated at each newly found central location, (lr, lc), until the central location
changes less than a certain preset amount; generally 1 or

√
2. This distance is calculated

by finding the Euclidean distance between the newest location and the last known, via:

d =
�
(lr(new)− lr(last))2 + (lc(new)− lc(last))2. (2.11)

This kind of iteration is perfect for using a while loop, which will be shown in Appendix
B.1.3. Applications of this algorithm will be given in Section 3.

2.3 Kalman Filters and Variants

There are various Kalman filters (KF), each with a slightly different implementation,
however, the basic frame of the KF is roughly the same. The power of the KF is from how
it can be recursively calculated, making it both efficient and powerful [12]. The general
scheme is:

1. Initialize the filter by giving it a starting state and process/state covariance estima-
tion.

CHAPTER 2. ALGORITHMS 25

2. Step state forward a time step using the state model, and update the process error
estimation.

3. Make a measurement of the state.

4. Calculate the Kalman factor, based on the predicted state, measured state, process
error estimation, and the measurement covariance.

5. Update the process error estimation.

6. Repeat steps 2-5 as long as desired.

KFs were originally introduced by Kalman in 1960 to solve the problem of predicting
random signals [13]. They are able to smooth noisy signals, and are used in signal detec-
tion. More recently, adaptive Kalman filters (AKF) have been used for noise identification,
or in conjunction with GPS (Global Positioning Systems) for vehicle navigation [14, 15].
There are many variations of KFs, such as the extended Kalman filter (EKF, uses a non-
linear state prediction model), unscented Kalman filter (UKF, which is a modification of
the EKF for highly non-linear models), and adaptive Kalman filter (AKF). This work only
focuses on the standard Kalman filter (Section 2.3.1), as well as the adaptive Kalman filter
(Section 2.3.2). The notation will be built up for the standard KF, then the AKF will be
built on top of this.

2.3.1 Kalman Filter

All KFs can be expressed in terms of a prediction step and a measurement step. The
prediction step requires a model, and is denoted A. A simple, physics based model is

A =

1 �t 0.5 (�t) 2

0 1 �t

0 0 1

 . (2.12)

This will simply transform a state matrix, X, forward using the standard kinematic me-
chanics equations. We then add random Gaussian noise to this (ν, µ), with a mean of zero,
to give us a predicted state,

X̂n = AXn−1 + ν (n− 1) . (2.13)

Before the measurement step may be performed, we have to update the process (predic-
tion/state) error estimation. This is performed by the process covariance, Q, and the state
model:

P̂n = APn−1A
T +Q. (2.14)

Now the measurement must be performed. For this work, the state, X, is a three-
vector, with components of position, velocity and acceleration. For ease, two KFs are

CHAPTER 2. ALGORITHMS 26

applied, one in the row direction, one in the column direction. The measurement consists
of the objects location using the MS algorithm, while the velocity and acceleration are
calculated using the last N positions. The measurement, zn is then used to calculate the
new stateXn, after the Kalman factor is calculated. The starting point of the measurement
using MS is generally the last known location. However, when using MS in conjunction
with a KF, the MS starts its measurement at the state estimated position, X̂n(1) from
equation (2.13).

The Kalman factor (also known as the Kalman gain) is used as a weighting scalar∗ to
tell whether the measurement or prediction should be trusted. It is denoted Kn and can
be calculated by

Kn =
P̂nH

T

HP̂nH
T +R

. (2.15)

H is a factor used to extract only the desired information (e.g., the position), and is
H

T = [1, 0, 0] . R is the measurement covariance, and is a scalar for this work†.
The actual state the KF determines the system to be in is calculated by

Xn = X̂n +Kn

�
zn −HX̂n

�
, (2.16)

with estimated error of
Pn = (I −KnH) P̂n. (2.17)

The values for Xn → Xn−1 in equation (2.13), and similarly for equation (2.14) on the
next frame. Sample MATLAB code can be found in Appendix B.2.

2.3.2 Adaptive Kalman Filter

The standard KF requires that the noise covariance for both the measurement and the
system be constant, however, this is generally not the case. The adaptive Kalman filter
(AKF) adjusts these parameters, allowing for more accurate predictions and a better
estimation of the Kalman factor. The form of the AKF used for this work follows the form
used by Li et al. [16].

This technique requires a history of the strength of the measurement step in order to
calculate the new covariance matrices. The actual strength of the measurement is discussed
in detail in Section 2.4. For now, we will just denote this measurement as ρ. There is

∗
The Kalman factor can be a vector, but for our purposes, it represents a scalar.

†
Note that for this work, Q is not a scalar while R is. This is because the estimated process state

has three dimensions (position, velocity, acceleration), while the measurement only has one (position). To

foreshadow the next section, note that Q and R do not have a subscript n. This is to emphasize that once

initialized, their values remain constant. This is where the adaptive Kalman filter comes in, by adapting
them at each step.

CHAPTER 2. ALGORITHMS 27

also an associated threshold, Tρ, above which will be deemed a reliable measurement. To
calculate the noise covariance for the system, Q, we first calculate factors of σQ.

σQ =

�
ρ ρ ≥ Tρ

0 Otherwise
. (2.18)

From a the known past values of ρ, we can calculate the full σQ with

σQ(n− 1)2 = (1− λ)σQ(n− 1)2 + λσQ(n− 2)2. (2.19)

Q(n− 1) =

σQ(n− 1)2 0 0

0 0.5σQ(n− 1)2 0
0 0 0.2σQ(n− 1)2

 (2.20)

Note that Q is calculated before the measurement step of the current frame, n. The factor
λ is called a forgetting factor, and is defined as 0 ≤ λ ≤ 1. Its purpose is to tell how
quickly the AKF “forgets” the strength of previous measurements.

Similarly, we must also calculate the updated measurement covariance, R = σR(n)2.
σR can be calculated with

σR =

�
1− ρ ρ ≥ Tρ

C Otherwise
, (2.21)

where C is a large constant. The point of this constant will be clear in a moment.

σR(n)
2 = (1− λ)σR(n)

2 + λσR(n− 1)2 (2.22)

To end the discussion on the AKF, it is instructive to note how these factors of Q
and R effect the location output of the filter. This can be done by looking at equations
(2.14) and (2.15-2.16). For equation (2.14), if the measurements are poor, Q approaches
zero, and the process estimated error is not adjusted, which adjusts the Kalman factor.
If the current measurement is poor, R becomes large, making the Kalman factor small,
approaching zero. This is where the constant, C, is important. The higher C is, the
weaker the Kalman factor’s effect on the new position is (equation (2.16)). Basically, the
measurement of the correlation between the measurement and the target model decides
whether or not the measurement step is trusted or not. Therefore, having an accurate
way of measuring correlation is critical to the accuracy of this AKF.

2.4 Correlation Coefficients

As stated above, the choice of correlation coefficient is very important to the accuracy
of a KF. Essentially, this coefficient is flicking a switch to turn off the measurement step
temporarily. If this is performed too late, the actual object motion can be contaminated

CHAPTER 2. ALGORITHMS 28

Figure 2.1: This is an infrared image of an MX2 aerobatic airplane. It has fixed striations
due to the readout card, making the airplane appear to have more structure than actually
visible.

with noise, causing inaccurate location/state predictions. This section will discuss which
correlation coefficient to choose under which circumstances. Two popular metrics are
discussed, the Bhattacharyya coefficient (Section 2.4.1) and the Pearson product-moment
coefficient (Section 2.4.2).

2.4.1 Bhattacharyya Correlation Coefficient

The Bhattacharyya Correlation Coefficient (BC) is commonly used in conjunction with the
MS algorithm [10, 16]. It calculates the similarity of two different probability distributions.
The BC is commonly used because it has properties similar to a divergence metric [17].
This means the correlation makes use of changes within the distributions of interest. It is
calculated by

ρBC =
�

i,j

√
pi,jqi,j . (2.23)

However, the use of a divergence measure for distribution correlation isn’t always best.
An example is the false structure or noise due to readout pattern or fixed pattern noise.
This is not uncommon in infrared images, and an example is shown in Figure 2.1, as well
as in Figures 1.2 and 1.4. These striations are clearly a fixed pattern noise, and have
no physical meaning. However, a divergence like measure would treat these as definite
structure. This can cause a false correlation measurement, either higher or lower than
the actual correlation. As stated above, an accurate measurement is what allows a KF to
work properly.

CHAPTER 2. ALGORITHMS 29

2.4.2 Pearson Product-Moment Correlation Coefficient

The Pearson product-moment correlation coefficient (PPMCC) is another method for cal-
culating the correlation between two distributions. Unlike BC, PPMCC is a linear correla-
tion, and only looks at the overall distribution, not the internal structure. It is calculated
using

ρPPMCC =

�
i,j (pi,j − p̄) (qi,j − q̄)

��
i,j (pi,j − p̄)

�2 ��
i,j (qi,j − q̄)

�2 . (2.24)

This type of metric, although more “primitive” than the BC should still be used in
certain situations. Situations where the imagery is of low resolution, or if there is any
fixed pattern noise that may give a false reading of correlation. A comparison of these two
different metrics for different resolution imagery is shown in Chapter 3.

2.5 Polynomial Object Path Tracking

This proposed method combines the utility of MS with the prediction ability of the AKF,
plus the addition of a polynomial fit (PFAKF, briefly outlined in [18]). This polynomial
fit will allow the normal combination of AKF and MS to predict object motion that is
non-linear. Since the AKF’s linear state model seems to be robust, the use of a non-linear
state model will still not predict non-linear motion. The idea behind this algorithm is to
take the AKF as it is, but modify the path it predicts the object to be traveling along.
This is done with the use of a polynomial fit to the history of known locations. The
procedure can be viewed as this:

1. Initiate AKF as described in Section 2.3.2.

2. Calculated the distance between the last known location and linear prediction.

3. Calculate polynomial equation that has a least squares fit to a number of last known
locations.

4. Find the point along the polynomial curve that is the same distance from the starting
point. This makes sure the object still moves the same amount, however, it will be
moving along the curved path.

5. Continue the AKF/MS as discussed above.

The actual method used for finding the polynomial fit is up to the user, any least squares
method should work the same. This work used the built-in MATLAB “fit.m” function
(sample code can be found in Appendix B.3).

CHAPTER 2. ALGORITHMS 30

If we choose to look at a second degree polynomial fit (quadratic), then the equation
we are trying to solve for is of the form

yr = p1x
2
c + p2xc + p3. (2.25)

To calculate the distance along this curve, simply integrate along the arc length

darc =

� X̂n

Xn−1

�
1 +

�
dyr

dxc

�2
�1/2

dxc. (2.26)

X̂n is found by increasing it by a given amount until darc � �Xn−1−X̂n�. In other words,
until the linear projected distance is roughly equal to the length of the arc along our fit
function. This new column predicted position can then be plugged into equation (2.25)
to find the new row predicted position. This step allows the filter to still calculate the
proper position, velocity, and acceleration, while following a non-linear path, as desired.

There are a couple of potential issues with using a procedure such as this one, most of
which stems from the drastic change in appearance of objects in the infrared (discussed
further in Section 1.2). For objects that go untracked for longer and longer periods of
time, the odds of the orientation and appearance changes increases. This change in ap-
pearance can cause a drop in the correlation between the model and candidate. Due to
the importance of the correlation coefficient in the KF process, this could force the filter
to fail, even though the prediction actually found the object of interest again. The ob-
ject’s change in appearance could be due to orientation change (profile versus head-on) or
intensity changes∗.

Examples of the difficulties will be shown in Section 3.2. One way to deal with this
issue is to have a “timer” that keeps track of how long the measurement step has been
below the threshold level. After a predetermined amount of time, drop the threshold by
60% to see if the object may be acquired. Although this method still has some difficulties
with tracking, it is still more likely to find an object by using the polynomial fit, making
the PFAKF more robust than the AKF on its own.

∗
Much of the data we collected using a Kodak KIR-310 PtSi with a 3.2-4.1 µm filter. This is between

the reflective and emissive part of the infrared, so specular reflections as well as emitted radiation can

cause large changes in intensity based on orientation.

CHAPTER 2. ALGORITHMS 31

Figure 2.2: The is figure shows how the projected positions differ for an arbitrary function.
The two curves were given the same data points (black “+”). The blue line represents a
linear fit of the points, including the KF projection (blue “+”). The red curve represents
the polynomial fit to just the known data. The polynomial projected point (red “+”) was
found by integrating along the curve until the distance between the last known position
to the KF project point was the same as the last known point and a point on the curve.

Bibliography

[1] Sheikh, Y.; Shah, M.;, “Bayesian modeling of dynamic scenes for object detection,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.27, no.11,
pp.1778-1792, Nov. 2005, doi: 10.1109/TPAMI.2005.213.

[2] Moghaddam, B.; Pentland, A.;, “Probabilistic visual learning for object detection,”
Computer Vision, 1995. Proceedings., Fifth International Conference on, pp.786-793,
20-23 Jun 1995, doi: 10.1109/ICCV.1995.466858.

[3] Torralba, A.; Murphy, K.P.; Freeman, W.T.;, “Sharing Visual Features for Multiclass
and Multiview Object Detection,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol.29, no.5, pp.854-869, May 2007, doi: 10.1109/TPAMI.2007.1055.

[4] Connor, D.; Limb, J.;, “Properties of Frame-Difference Signals Generated by Moving
Images,” Communications, IEEE Transactions on, vol.22, no.10, pp. 1564- 1575, Oct
1974, doi: 10.1109/TCOM.1974.1092083.

[5] Jain, Ramesh; Nagel, H.-H.;, “On the Analysis of Accumulative Difference Pictures
from Image Sequences of Real World Scenes,” Pattern Analysis and Machine In-
telligence, IEEE Transactions on, vol.PAMI-1, no.2, pp.206-214, April 1979, doi:
10.1109/TPAMI.1979.4766907.

[6] ATR Algorithm Development Image Database, Military Sensing Information Analysis
Center, 25 July 2008.

[7] Collins, Robert; Lipton, Alan; Kanade, Takeo; et al.;, “A System for Video Surveil-
lance and Monitoring,” Tech. report CMU-RI-TR-00-12, Robotics Institute, Carnegie
Mellon University, May, 2000.

[8] Fukunaga, K.; Hostetler, L.;, “The estimation of the gradient of a density function,
with applications in pattern recognition,” Information Theory, IEEE Transactions
on, vol.21, no.1, pp. 32- 40, Jan 1975, doi: 10.1109/TIT.1975.1055330.

32

BIBLIOGRAPHY 33

[9] Comaniciu, Dorin; Meer, Peter;, “Mean Shift: A Robust Approach Toward Feature
Space Analysis,” IEEE Transactions on Pattern Analysis and Machine Learning, Vol.
24, Issue 5. pp. 603-619, 2002.

[10] Comaniciu, Dorin; Ramesh, Visvanathan; Meer, Peter;, “Kernel-Based Object Track-
ing,” IEEE Transactions on Pattern Analysis and Machine Learning, Vol. 25, Issue
5, pp. 564-577, 2003.

[11] Bradski, Gary R., “Computer Vision Face Tracking For Use in a Perceptual User
Interface,” Intel Technology Journal, Q2, pp. 1-15, 1998.

[12] Welch, Greg; Bishop, Gary; “An Introduction to the Kalman Filter,” University of
North Carolina at Chapel Hill, pp. 1-16, 2006.

[13] Kalman, R. E.; “A New Approach to Linear Filtering and Prediction Problems,”
Transaction of the ASMEJournal of Basic Engineering, pp. 35-45, March, 1960.

[14] Oussalah, M.; De Schutter, J., “Adaptive Kalman Filter for Noise Identification,”
Proceedings of the International Conference on Noise and Vibration Engineering, pp.
1225-1232, 2000.

[15] Hu, Congwei; Chen, Wu; Chen, Yongqi Chen; Liu, Dajie;, “Adaptive Kalman Filter-
ing for Vehicle Navigation,” Journal of Global Positioning Systems, Vol. 2, No. 1, pp.
42-47, 2003.

[16] Li, Xiaohe; Zhang, Taiyi; Shen, Xiaodong; Sun, Jiancheng, “Object tracking using
an adaptive Kalman filter combined with mean shift,” Optical Engineering Letters,
Vol. 49, Issue 2, pp. 020503-1-3, 2010.

[17] T. Kailath;, “The Divergence and Bhattacharyya Distance Measures in Signal Selec-
tion, IEEE Trans. Comm. Technology, Vol. 15, pp. 52-60, 1967.

[18] Kyle Ausfeld, Zoran Ninkov, Paul P. K. Lee, J. Daniel Newman and Gregory Gosian,
“Polynomial fitting adaptive Kalman filter tracking and choice of correlation coeffi-
cient”, Proc. SPIE 8395, 83950R (2012).

Chapter 3

Results

This chapter contains the application of these algorithms to various situations, showing
both the strengths and weaknesses of the algorithms presented in Section 2. The first
discussion that must be dealt with is that of correlation coefficient and which one should
be used when.

3.1 Correlation Coefficient Comparison

The correlation coefficients introduced in Section 2.4 both have attributes that make them
strong metrics for comparison under different circumstances. A test was performed to look
at the shape of a couple different objects and how their correlation coefficient changes as
the object is shifted off from center. The ideal function is close to a delta, as it would give
a very sharp location for when they are aligned.

The first test was performed using an image of the MX2 aerobatic airplane taken during
the 2011 ESL Rochester International Air Show [1] (camera information found in Section
1.2). The image was then blurred using a Gaussian with varying standard deviations
(σ = 1 − 5). This would simulate the difference between the an object with very clear
edges and structure (in this case, false structure) versus a lower resolution, more blurry
image. The original image is shown in Figure 3.1(a) while a blurred version is shown in
Figure 3.1(b) (with sigma = 5).

The correlation coefficients were calculated using equations (2.23) and (2.24). At
each different blur level, the correlations were calculated by offsetting the image from it’s
original location by up to 5 pixels in each direction, creating a map of correlation versus
offset. This gives an idea of how well an object can be distinguished from itself when offset
by varying amounts. The ideal metric would produce something close to a Gaussian with
a single clear peak of one, and would rapidly drop to zero once the object is shifted well
outside the object’s central region.

The MX2 was chosen because it demonstrates how BC may appear to be a better

34

CHAPTER 3. RESULTS 35

(a) (b)

Figure 3.1: (a) MX2 aerobatic airplane during the ESL Rochester International Air Show
in 2011. Note striation pattern due to the way the camera reads data off the array. (b)
Same image as in (a), however, a Gaussian blur was performed with σ = 5 to eliminate
the fixed pattern noise present. Note: contrast enhanced for clarity, further calculations
performed on original image.

metric because of the localized peaks. However, the data has a fixed pattern noise, due to
how the image was read off the detector. This pattern is exploited by BC’s divergence-like
properties, even though this extra “information” is in fact noise. Figures 3.2 and 3.3 show
the correlation comparison of BC versus PPMCC for the blurred image. In Figure 3.2,
it is important to note that it appears to have very distinct peaks, each separated by an
area of zero correlation. This is due to the divergence characteristics of this method of
correlation, giving rise to a measurement based on structure of the object in question.
However, also note the fixed pattern noise mentioned above and how this structure is not
real structure intrinsic to the airplane, but noise from the camera used on for the data
collect. The PPMCC has similar results, however the peaks are connected by areas that
do not drop to zero, making this correlation map or space more easily searched to find the
absolute maximum. This is because it ignored the fine object structure which throws the
BC off, making PPMCC better for use on noisy data.

Figure 3.3 shows the correlation comparison on the blurred image. This image repre-
sents a low resolution image, showing that with low noise and low structure, the PPMCC
is still a better metric. This is because BC has very little divergence information to work
with, so it results in a large area for a peak, while not dropping down to zero well outside
the region of interest. PPMCC is able to drop closer to zero on the edge while hav-
ing a much smaller, more defined peak. In short, PPMCC is a strong metric to use for
correlation when working with either noisy data or low resolution data where either false
structure or little structure is present. These situations are not uncommon when working

CHAPTER 3. RESULTS 36

Figure 3.2: Correlation comparison on the MX2 aerobatic airplane shown in Figure 3.1(a).
Note the well defined peaks for the BC, while PPMCC has defined peaks but are more
spread out. The peaks here may seem as though it corresponds to a stronger metric, but
recall these patterns are noise and do not represent real-world information.

with infrared data, due to the expense and availability of high quality instruments, as well
as the noise due to dark current if a system is not cooled.

3.2 Algorithm Testing

This section will show the strengths and weaknesses of the three tracking algorithms
discussed in Chapter 2. In lieu of breaking this section up by algorithm, it is easier to
discuss algorithm results based on each data set tested on.

3.2.1 RIT Parking Lot Data

The first data set testing was performed on was taken overlooking parking lots F and J from
the roof of the Chester F. Carlson Center for Imaging Science building. The camera used
was an EzTherm microbolometer[2] with a ∼ 10µm filter. The data collect was performed
on 8 October 2010 at around 14:00. Visible data was also collected for demonstrative
purposes but was not used for tracking. A visible image of the scene can be seen in Figure
3.4, while the infrared is shown in Figure 3.5. A person will be tracked because a person
happens to be about the same size as many vehicles are during persistence surveillance
situations.

Figure 3.6 shows a small area of the scene shown in Figure 3.5. The leftmost image
shows that the MS algorithm has already lost the person, due to an occlusion by a passing
van. However, because the AKF and PFAKF were able to identify the van as an occlusion

CHAPTER 3. RESULTS 37

Figure 3.3: Correlation comparison on the MX2 aerobatic airplane shown in Figure 3.1(b).
The BC has a very large area of high correlation and does not drop off to zero as quickly
as would be desirable. However, PPMCC has a much more narrow peak and drops off
more quickly, giving a more accurate representation of actual correlation. This demon-
strates that with very low detailed objects (such as common in low resolution imagery)
the PPMCC should be used as a correlation coefficient.

via a drop in correlation between the target candidate and the target model. This allowed
these predictive algorithms to compensate by predicting the person’s path until the van
has passed, reacquiring the person and continues to track.

Although the predictive algorithms were able to continue tracking the person after the
van occluded, another problem arises. The problem is shown in Figure 3.7. This figure
shows that both algorithms loose the person in the end, due to the near-by passing of a
person on a bicycle with similar intensity. The fact that the person and the biker are of
similar appearance causes the MS algorithm, used for the measurement, to falsely move
the measured center away from the person (shown in Figure 3.8(a)-3.8(c)). This false
motion tripped up both the AKF and PFAKF in different ways, both loosing the person
in the end. This shows one limitation in the use of the MS algorithm as a measurement
algorithm.

3.2.2 ESL Rochester International Air Show

The next data set these algorithms were tested on was collected from the roof of the
Chester F. Carlson Center for Imaging Science building again. This time the camera was
the Kodak KIR-310 PtSi 640x480 pixel array with a germanium lens with focal length of
200 mm and an f/2. The filter was 3.2−4.1µm and was collected at 24 frames per second.
The targets were various airplanes flying in the ESL Rochester International Air Show in

CHAPTER 3. RESULTS 38

Figure 3.4: Visible image overlooking RIT parking lots F and J. Note: vertical lines
represent the field of view for the infrared imagery, shown in Figure 3.5.

2011[1]. The distance from RIT to the Rochester International Airport is roughly 4 km.
The aircraft focused on was an MX2 aerobatic airplane performing various dives beneath
the tree-line, reappearing a short time later (visible image shown in Figure 3.9, the full
field shown in Figure 3.10).

There were two sequences chosen to demonstrate the strengths and weaknesses associ-
ated with the PFAKF. The first sequence is shown in Figure 3.11, and shows that it is able
to acquire the target after the occlusion, while neither the MS or AKF algorithms were
able to. The MS algorithm just finds an area in the trees and stays there, while the AKF
predicts a linear path, eventually moving the track right off the screen. The PFAKF is
able to predict a polynomial due to the last minute pulling up just before dropping below
the trees, allowing a path to be predicted. After the MX2 appears from behind the trees,
the PFAKF is able to give the MS algorithm a close enough prediction to find the target
again, and tracks as usual.

As noted in Section 2.5, the threshold for correlation had to be dropped after 50
frames (∼ 2 seconds) in order for the Kalman filter to trust the measurement again. This
is because of the change in orientation, as well as in shape. Figure 3.12 shows a plot of
the PPMCC correlation during all three tracking algorithm runs. Note how there is a
rise in correlation which drops again before rising and staying risen. This is because the

CHAPTER 3. RESULTS 39

Figure 3.5: Infrared image overlooking RIT parking lots F and J. Note the #1 seen in the
bottom of the image is a watermark of what filter the camera was using. A black box was
put over this watermark during tracking to avoid confusion.

Figure 3.6: Section of scene from Figure 3.5. The person being tracked gets occluded by
a vehicle. Three tracking algorithms were used, however only the AKF and PFAKF were
able to continue tracking after the occlusion. Note that all three algorithms were tracking
the person using the measurement prior to the shown frames.

CHAPTER 3. RESULTS 40

Figure 3.7: This sequence is a continuation from the tracking sequence shown in Figure 3.6.
Note that when the biker passes by the person walking, both algorithms are “deflected,”
albeit in different ways. This is due to the measurement step, MS, causing false motion
by picking up the biker and person, instead of just the person. This is shown in Figure
3.2.1.

measurement wants to say the tower is the same as the plane, which is ignored because
the correlation threshold has not dropped yet. Also note the line corresponding to the
AKF stops short because the prediction runs off of the screen.

Figure 3.13 shows a difficulty in tracking in the infrared under these conditions. The
sequence is from a similar run as Figure 3.11, except the airplane’s appearance is dras-
tically different after the occlusion. This is because after diving, the airplane flies away
from the camera, changing both the shape of the object as well as the amount of signature
received from the airplane. Recall that this camera has a filter passband of 3.2 − 4.1µm,
making it within the crossover region between emissive and reflective dominated regions.
This means the airplane signature was likely dominated by glint during the initial dive and
while climbing the signature was no longer from glint, making it very faint. So although
the PFAKF made a close approximation as to where the airplane would end up, the mea-
surement was never strong enough to start tracking again. This demonstrates a weakness
with using the MS algorithm as a measurement step, meaning another measurement may
provide more robust tracking with the AKF and the PFAKF. A further discussion of this
will be undertaken in Chapter 4.

3.2.3 WAPS

The Wide Area Persistence Surveillance (WAPS) sensor also provided a potential dataset
to test algorithms on, testing more realistic data. The sensor is ITT Exelis Geospatial
Systems’ and was flown on 13 August 2010 around 09:00 EST at 2 Hz and centered around
4µm. The data came in the NITF standard, with the images embedded as JPEG2000.
This data presented a few challenges, from extracting the images to lace together as a
video for the tracking algorithm to the alignment of the frames.

Extracting the image from the NITF format could have be performed manually using
a program such as ITT Exelis VIS’ ENVI. However, due to the number of images, it was
more advantageous to create a MATLAB script that was able to open and extract the
images. From the extracted images, it is simple to put them into a video file, and the AVI

CHAPTER 3. RESULTS 41

(a) (b) (c)

Figure 3.8: (a) This is the first MS iteration when the biker is nearby. Note how you
can already see the probability is no longer going to be centered on the person. (b) Same
image as in (a) except, as predicted, the center of the target is shifted to a location between
the person and biker on the second MS iteration. (c) The third MS iteration shows the
drastic change in measurement, which causes a false motion to be detected. From this,
the Kalman filters predict false motion, causing a loss in target.

video format was chosen. The code is given in Appendix B.4.
The next step would be to register the images so accurate tracking could be performed.

At first, the data from the header was used to distort the corner points to register the
images but that data was only accurate to ∼100 m. Although there is IMU and bore
angle data available, the registration of images using this technique was more involved
than necessary for this work. Instead, an FFT-based registration technique was chosen.

FFT-Based Image Registration

This technique takes advantages of some properties of Fourier transforms, such as con-
volution in space is simply multiplication in frequency space. Complete details are left
to a reference [3]. Essentially, we want to create an edge image, identifying roads, and
perform registration on these roads. This is very similar to performing a match filter, by
convolving with a replica of what is trying to be “matched”. The edge image is used for
registration because roads should be the easiest thing to align and are simple to find with
an edge detector. The edge detector used was the Sobel edge detection filter, although
the Canny works as well.

To start, a zero-padded image is created with the first frame centered. This allows
room for the second image to shift to where it needs to go, which shouldn’t be centered
for a moving platform. The analysis will be first performed on the second frame, then
third and so on. I will define fi as the current frame, and fi−1 as the previous frame we

CHAPTER 3. RESULTS 42

Figure 3.9: Visible image of the MX2 aerobatic airplane from the ESL Rochester Interna-
tional Air Show website [1].

Figure 3.10: Infrared image of MX2 aerobatic airplane from the ESL Rochester Interna-
tional Air Show as seen from RIT.

CHAPTER 3. RESULTS 43

Figure 3.11: Infrared image sequence of the MX2 with all three tracking algorithms over-
laid.

Figure 3.12: PPMCC correlations from the tracking results shown in Figure 3.11. Note
the rapid drop in correlation as the plane passes below the tree-line, and an increase when
it reappears, however at a lower value. Also note that the AKF with MS line stops short,
due to the prediction being outside of the image window.

CHAPTER 3. RESULTS 44

Figure 3.13: Infrared image sequence of the MX2 with all three tracking algorithms over-
laid.

are registering to. To perform the match filter and to create a map of “correlations,” we
want the normalized convolution of fi and fi−1. Note that Fi = F{fi} will denote the
Fourier transform of f .

Rmap =
F

∗
i Fi−1

�F ∗
i Fi−1�

, (3.1)

where ∗ is the complex conjugate. The maximum point in this map of “correlations”
gives the amount of displacement the current image needs to be shifted to be registered
to the previous. Registration may also take scale and rotations into account [3], however,
translational registration was deemed sufficient for this work. There are a couple of other
tricky steps that are left to Appendix B.5 to explain, and mostly deal with indexing and
keeping track of shifts from frame to frame.

After the registration was complete, object tracking can be performed. To test and see
if tracking was even possible (as well as testing how well the registration was performed),
a stationary, clearly distinct object was chosen from the scene and tracked using the MS
algorithm. The object chosen was a light post overlooking a soccer field, and two frames
are shown in Figure 3.14(a)-3.14(b). This demonstrates that objects in this dataset that
are distinct from the background are able to be tracked using the simple translational
registration.

Next step was to see if tracking could be performed on a vehicle. The MS algorithm
was again chosen, because the variation in the accuracy of the registration would cause
a KF to incorrectly estimate the position. Figure 3.15 shows the full frame from the
sequence along with the region of interest for the following figure. The tracking is shown
on two frames in Figures 3.16(a) and 3.16(b).

The MS algorithm was able to converge on the vehicle on the second frame (Figure
3.16(a)) but lost it by the next frame (Figure 3.16(b)). This is due to the similarity of
the target vehicle and the background. The images were collected during the morning,
so the road has not had much time to heat up. This makes the vehicles and the road
very similar, but the problem has more to do with the signal from the side of the road.
The intensity range for the vehicle is 5863-5983, while just off to the side of the road has
intensity range 5815-5954. The amount of overlap easily confuses the MS algorithm which

CHAPTER 3. RESULTS 45

object is the target and which is just background. The spatial kernel for the MS algorithm
could be adjusted to be smaller, in an attempt to eliminate the side of the road confusing
the algorithm. However, the distance between the vehicle and road-side is only a couple
of pixels at the most. This means MS would not be able to find the target either, because
it would have moved outside of the MS search window due to the low frame rate.

(a) (b)

Figure 3.14: This data is courtesy of ITT Exelis Geospatial Systems and is from the Wide
Area Persistence Surveillance (WAPS) centered at 4 µm. The yellow box is the MS target
tracking result. (a) An early frame in the sequence with the MS algorithm set to track a
distinct target to see if translational registration is sufficient. The object is a light post
over the Sahlen’s Stadium in Rochester New York. (b) A later frame to show the light
post is still being tracked, as well as to demonstrate how well the registration does for not
taking scale and rotations into account. this works so well because the frame rate is high
enough that rotational changes from frame to frame are sufficiently small enough.

3.2.4 Synthetic

To avoid the difficulties involved with the collection of data, radiometrically accurate syn-
thetic data would be generated for the testing of tracking algorithms. The generation of
this data was performed with many software packages, but DIRSIG (Digital Imaging and
Remote Sensing Image Generation model)[4] is the main component. It contains built in
3D map of a suburban neighborhood near Rochester NY, called Megascene 1. It contains
buildings, roads, trees and other materials found in the area. This allows DIRSIG and

CHAPTER 3. RESULTS 46

Figure 3.15: This data is courtesy of ITT Exelis Geospatial Systems and is from the Wide
Area Persistence Surveillance (WAPS) centered at 4 µm. The yellow box indicates a region
of interest shown in Figure 3.16(a)-3.16(b) where vehicle tracking is attempted.

CHAPTER 3. RESULTS 47

other software packages to perform radiometrically accurate ray tracing, simulating real
data collections. The vehicles are modeled separately in ThermoAnalytics MuSES (Multi-
Service Electro-optic Signature)[5], and moved around within the scene using SUMO (Sim-
ulation of Urban Mobility)[6]. The method for creation of these simulated images will not
be covered in this work. Instead, more information on the modeling of these scenes in the
infrared will be deferred to Rhodes et al. 2010[7] and 2012[8].

The relevant frames for this work are from a simulated run in the Rochester area,
taken mid August during the afternoon. The vehicle model used is that of a Toyota
Tundra pickup. There were two bands simulated, one centered at 3.7 µm (Figure 3.17)
and the other at 9 µm (Figure 3.18). The 3.7 µm wavelength was chosen because the
WAPS imager (Section 3.2.3) is centered at 4 µm and the Kodak KIR-310 imager (Section
3.2.2) is centered at 3.7 µm. The 3.7 µm images represent the mid-wavelength infrared
while the 9.0 µm images represent the long-wavelength infrared.

Tracking was only performed on the long-wavelength image sequences, shown in Figures
3.19 and 3.20. Figure 3.19 shows the results of a short straight-line path tracking with a
tree occluding the vehicles momentarily. The MS algorithm does as expected, and looses
the vehicle while passing under an overhanging tree. The AKF is expected to have good
tracking results, however, it also looses the vehicle. The vehicle being tracked is lost
because it slows down after passing under the tree, something an AKF cannot predict.
The vehicles in the scene are not set to move at constant speeds in order to make the
model more realistic, as well as to confuse tracking algorithms. The changes in speed
are random and therefore unpredictable. The PFAKF was able to deal with the vehicle
slowing down under the tree, however, this is alarming. This may be due to the way
the distance in which the prediction is to predict is done in an iterative way. The error
associated with calling the distance calculated correct will be an undershoot of the actual
distance. This is not a big deal with large objects in small scenes, but does show up in
large scenes with small targets. This could be corrected by using tighter tolerances within
the iterative process.

Figure 3.20 shows a larger scene with a longer occlusion time. Once again, the vehicles
in the scene change speed, both speeding up and slowing down. The MS algorithm again
looses the target early on, yet the AKF and PFAKF are able to keep it through the first
occluding tree. However, the PFAKF looses the target when it speeds up. A short time
later, it momentarily mistakes another vehicle as the one it is after, causing confusion and
forces the prediction to have no change, loosing it again. The AKF doesn’t do much better.
Although it is able to make it through the first two occluding trees, the vehicle speeds up,
causing the AKF to lose it during the last tree. The linear prediction continues to track
nothing, until a vehicle comes up from behind and is mistaken as the vehicle of interest.
This demonstrates a limitation when modeling all vehicles to be identical. This makes
tracking an object more difficult by making the target of interest indistinguishable from
other targets. However, this dataset does show utility in displaying a tracking algorithm’s

CHAPTER 3. RESULTS 48

strengths and weaknesses.

3.2.5 Bird Tracking

The main focus of this work is mostly on vehicle and people, making it very military/security
focused. However, there are other applications of tracking algorithms that can be of in-
terest. The migration of caribou in Alaska could be recorded and then tracked to study
their migration habits to see if a pipeline would disrupt their movements. Or animals in
a large group could be recorded to allow scientists to study animal group behavior.

This presents a challenge for tracking algorithms. Many animals have three degrees of
freedom, while the camera recording the behavior will only be a two dimensional projection
of this. Although multiple cameras could used to create a stereo videographic dataset,
however this is very complicated[9, 10].

To demonstrate the utility of object tracking on animals, a sample snippet of a flock of
birds taking off was taken. The video was registered (via the method discussed in Section
3.2.3) so tracking could be performed, then inverted to make the image appear as though
it was taken in the infrared. The AKF with MS algorithm is shown here to show the
difficulties with these scenarios.

Figures 3.21(a)-3.21(c) show three frames from a single bird being tracked in a flock.
Expected results should be pretty poor due to lots of confusion within the scene. All birds
appear to be identical, and occlude each other, and have an extra dimension of freedom
that is lost in the projection onto the camera. However, the tracking is not bad for a
while, until a confusion turns the KF on, causing the algorithm to fail. The MS alone
does not do any better, and simply jumps from bird to bird, not being able to distinguish
them (not shown).

CHAPTER 3. RESULTS 49

(a)

(b)

Figure 3.16: This data is courtesy of ITT Exelis Geospatial Systems and is from the Wide
Area Persistence Surveillance (WAPS) centered at 4 µm. The yellow box is the MS target
tracking result, and the area shown is the same area as shown by the yellow box in Figure
3.15. (a) The second frame from a 4 frame sequence, showing that MS was able to get
from the initial location in the first frame and find the vehicle in the next frame. (b)
Although MS was able to track the vehicle for one frame, the following frame looses the
vehicle and converges to a spot on the side of the road. This is due to the similarity of
the background and the target object, making distinction between them difficult.

CHAPTER 3. RESULTS 50

Figure 3.17: 3.7 µm simulated image using DIRSIG. Simulation time set for late summer
in the afternoon, causing the roofs of the buildings to be hot. Image courtesy of David
Rhodes.

CHAPTER 3. RESULTS 51

Figure 3.18: 9.0 µm simulated image using DIRSIG. Simulation time set for late summer
in the afternoon, causing the roofs of the buildings to be hot. Image courtesy of David
Rhodes.

CHAPTER 3. RESULTS 52

Figure 3.19: This is a synthetic scene generated by DIRSIG at 9.0 µm. The three tracking
algorithms were tested on this data set, with unsurprising results. The MS algorithm loses
the object when passing under the tree, while the AKF and PFAKF are able to continue
searching for the object. However, since the object slows down after passing under the
tree, predicting the location is made very difficult. Therefore the AKF is not able to
continue tracking the object, while the PFAKF does slow down to reconvene with the
target. The PFAKF is able to slow down due to the iterative approach used to calculate
the projecting distance. This is discussed further in the text.

CHAPTER 3. RESULTS 53

Figure 3.20: This is a synthetic scene generated by DIRSIG at 9.0 µm, with the three
tracking algorithms results overlaid. Again, the MS algorithm loses the object upon oc-
clusion, while the PFAKF and AKF continue with prediction. However, the PFAKF has
problems when the object speeds up under the occluding tree, causing it to pick up the
next vehicle due to identical vehicles in the scene. The short window in which the PFAKF
is able to converge on the target confuses it into believing the target has stopped. The
AKF keeps moving until the target speeds up again, in which it loses it. However, it does
pick up the next vehicle and continues to track it until the sequence ends.

CHAPTER 3. RESULTS 54

(a) (b) (c)

Figure 3.21: This image sequence was made by recording birds taking off, registering the
images, then performing an AKF with MS tracking. Due to errors in registration and
similarity of targets with lots of confusion and occlusions, expected results are poor. Red
indicates the object is being tracked using the MS measurement, while the yellow box
indicates the AKF predicted is being trusted. (a) Near the beginning, this bird does not
get occluded, and allows tracking to be performed very simplify. (b) Note how as the bird
being tracked gets further along, other birds start to get closer. What cannot be seen
in these couple frames is that this is a different bird than the original one. (c) Another
bird crossed paths with the previously tracked bird, causing the correlation to drop. This
triggered the KF, causing the prediction to run away, loosing track of any bird.

Bibliography

[1] http://www.rochesterairshow.com/performers.php, 25 Jan. 2012.

[2] http://www.thermal-cameras.com/th-portable.htmlez885, 3 Apr. 2012.

[3] Reddy, B.S.; Chatterji, B.N.; “An FFT-based technique for translation, rotation, and
scale-invariant image registration,” Image Processing, IEEE Transactions on, vol.5,
no.8, pp.1266-1271, Aug 1996.

[4] http://dirsig.org/, 29 May 2012.

[5] http://www.thermoanalytics.com/products/muses/index.html, 29 May 2012.

[6] http://sumo.sourceforge.net/, 29 May 2012.

[7] David B. Rhodes, Zoran Ninkov, Judith L. Pipher, Craig W. McMurtry, J. Daniel
Newman, Paul P. K. Lee, Gregory J. Gosian and Michael D. Presnar, ”Synthetic
scene building for testing thermal signature tracking algorithms”, Proc. SPIE 7813,
781309 (2010).

[8] David B. Rhodes, Zoran Ninkov, J. Daniel Newman, Paul P. K. Lee and Gregory J.
Gosian, ”Development of radiometrically accurate synthetic thermal infrared video
for tracking algorithm evaluation”, Proc. SPIE 8403, 840306 (2012).

[9] Viscido, Steven V. et al., “Individual behavior and emergent properties of fish schools:
a comparison of observation and theory,” Marine Ecology Progress Series, Vol 273,
10.3354/meps273239, pp. 239-249, 2004.

[10] Ballerini, Michele; Cabibbo, Nicola; Candelier, Raphael; Cavagna, Andrea; Cis-
bani, Evaristo; Giardina, Irene; Orlandi, Alberto; Parisi, Giorgio; Procac-
cini, Andrea; Viale, Massimiliano; Zdravkovic, Vladimir;, “Empirical investiga-
tion of starling flocks: a benchmark study in collective animal behaviour”, Ani-
mal Behaviour, Volume 76, Issue 1, July 2008, Pages 201-215, ISSN 0003-3472,
10.1016/j.anbehav.2008.02.004.

55

Chapter 4

Conclusions and Future Work

4.1 Conclusions

Target tracking of objects in the infrared presents various challenges. Occlusions, non-
predictable motion, appearance changes, and crowded fields are just a few of these chal-
lenges encountered during this work. The mean shift algorithm has been shown to provide
robust tracking in simple infrared scenarios. However, situations where occlusions do not
occur are quite rare, especially in the field of persistence surveillance. Other difficulties
for mean shift include that of nearby target confusion, drastic changes in appearance,
and rapid object motion. To overcome these shortcoming, an adaptive Kalman filter was
added as an object prediction filter. This would allow the mean shift algorithm to begin its
search at where the object was predicted to be. If the correlation between the mean shift
stopping point and the model varied too greatly, the prediction would be trusted. This
combined tracking algorithm is able to deal with linear motion occlusions. This algorithm
is better at dealing with rapid object motion and occlusions, but still has difficulty with
nonlinear motion.

Non-linear motion is very common in some scenarios, such as cars driving along a road
or airplane motion. The object tracking algorithm presented was improved by incorpo-
rating a polynomial fit to the framework of the adaptive Kalman filter and mean shift
tracker. This algorithm allows the Kalman filter to predict motion and the mean shift
algorithm to converge on the object of interest. However, the predicted path is comprised
of a polynomial fit to the past known locations, along with a distance along this curve the
object should have gone.

The presented algorithm is more robust than the mean shift algorithm alone or the
adaptive Kalman filter with mean shift algorithm, but still has difficulties. A Kalman filter
assumes Gaussian noise, which may be a reasonable assumption, it is not always correct.
Additionally, it makes use of a linear prediction state model, which may work well for
“normal” object motion, but sudden motion cannot be predicted for. Although other

56

CHAPTER 4. CONCLUSIONS AND FUTURE WORK 57

algorithms that perform predictions exist without these assumptions, the Kalman filter is
still a useful tool. It can converge on an object quickly, allowing for motion prediction not
able to be performed as quickly with other algorithms.

Although this approach is an improvement upon the adaptive Kalman filter and mean
shift tracking algorithms, there is still room for improvement for this tracking algorithm.
A more robust measurement algorithm to replace the mean shift algorithm would help to
eliminate many of the difficulties the current implementation has due to poor measure-
ments (e.g. confusion with nearby objects, difficulties converging with object of interest
after appearance change). An example algorithm is any of the contour evolution/matching
algorithms discussed in Yilmaz et al. 2006[1]. These solutions do have there own set of
difficulties, but could produce more robust tracking results. Another prediction method
could also be incorporated and used if the polynomial fitting adaptive Kalman filter and
mean shift do not converge to the object of interest. An area search algorithm such as one
based on the FFT based registration algorithm to find the best match would be a novel
method∗. A particle filter is another algorithm used commonly in tracking that makes a
location estimation based on weights of particles[1]. The particles are spread out around
an area and the weighting can be viewed as a fitness function. This allows non-Kalman
filter predicted motion to be found, potentially eliminating another difficulty with object
tracking.

4.2 Future Work

To properly test and compare these and other tracking algorithms, a tracking algorithm
test platform with tracking metrics must be developed. This will allow the rapid testing
and quantification of tracking performance on various scenarios, eventually building up a
database of algorithms and effective settings/results. From this, the development of new
algorithms or choosing the correct algorithm for a purpose will be made easier. The general
layout of this platform has been started with coding done in Python[3]. Python was chosen
because it is open source, cross-platform, and does not require compiling. Additionally,
it is capable of running C/C++ code (and various others) in the background, making it
able to test a wide variety of tracking algorithms written in various languages.

The plan is to start out with a simple command line interface, using a configuration
file to load a tracking algorithm, video scenario, and choose the various inputs necessary
to initiate the tracking algorithm. The output could be a list of locations saved in a text
file, or a video with the information overlaid for visualization purposes. Another useful
output would be that of a metric so a quantitative comparison of algorithms could be
performed. For this, the known object locations would be loaded to compare the tracking

∗
However, it would have to be fully extended to deal with the scale/rotational changes in the object

of interest. This is already done[2], however, it has not been used for object tracking to the author’s

knowledge.

CHAPTER 4. CONCLUSIONS AND FUTURE WORK 58

results to, using a couple of metrics presented by Presnar 2010[4]. The track purity is a
measure of how “pure” the tracking results are. This is done by comparing the measured
location of the object with the known location. This is able to score how well the objects
are being tracked, with a 1 being perfect, and a 0 being not at all. The track completeness
is a measure of how many objects were tracked compared to how many should have been
tracked. This measure is used to make sure only objects of interest are tracked, and that
no objects go untracked. Similarly to the track purity, a score of 1 is a perfect score, while
0 means no objects that should have been tracked were tracked. In addition to these types
of inputs and outputs, a graphical user interface (GUI) would eventually be desired. A
sample GUI layout and initial platform code can be found in Appendix C.

Bibliography

[1] Yilmaz, Alper; Javed, Omar; Shah, Mubarak; “Object Tracking: A Survey,” ACM
Computing Surveys, vol.38, no.4, pp.32-36, Dec 2006.

[2] Reddy, B.S.; Chatterji, B.N.; “An FFT-based technique for translation, rotation, and
scale-invariant image registration,” Image Processing, IEEE Transactions on, vol.5,
no.8, pp.1266-1271, Aug 1996.

[3] http://www.python.org/.

[4] Mike Presnar, “Modeling and simulation of adaptive multimodal optical sensors for
target tracking in the visible to near infrared”, Rochester Institute of Technology,
PhD in Imaging Science, (2010), https://ritdml.rit.edu/handle/1850/12779.

59

Appendix A

Figures for Section 2.1

The figures in this appendix go along with the discussion about target detection techniques
in Section 2.1. Figure A.1 is the original image that the single frame difference and double
frame differencing are then applied to, shown in Figures A.2 and A.3.

Figure A.2 shows how the regular frame difference technique causes noise to show
through. From Figure A.1, the image appears to be noise free, and of reasonably high
quality. The fact that this clear image shows difficulties that show the necessity of a more
robust technique for target detection.

Figure A.3 shows drastic improvement over the regular frame differencing, by removing
all noise via the threshold step. Another point to notice is the only part of the object
visible are the edges. This is because the object is not moving fast enough for the whole
object to pass through without being thresholded down to zero.

The next set of images is also on the discussion of target detection, however, they
focus on the statistical differencing method. Figure A.4 is the original image, taken in the
infrared using a microbolometer. The image was generated using filter number 1, seen in
Figure A.4 as a watermark, and was taken overlooking an RIT parking lot. This data had
a lot of noise, most likely due to not being a cooled infrared detector.

Of the statistical methods, mode (Figure A.5) and median (Figure A.6) work by far the
best on this noisy data. It is able to subtract off the background along with the noise most
reliably, leaving distinct clumps where the moving objects lie. Using the mean (Figure
A.7) results in an image that leaves some false objects, likely to be trails of the moving
objects.

60

APPENDIX A. FIGURES FOR SECTION 2.1 61

Figure A.1: Sensiac image that the single frame difference and the double difference tech-
niques are applied to. Note the lack of visible noise and the relatively constant grey-level
along each section of the vehicle.

APPENDIX A. FIGURES FOR SECTION 2.1 62

Figure A.2: Sensiac image after application of a single frame difference. Note the noise
appearing though the differencing, giving potential difficulties with target detection.

APPENDIX A. FIGURES FOR SECTION 2.1 63

Figure A.3: Sensiac image after application of the double differencing technique. Notice
how the noise seen in Figure A.2 is completely eliminated, showing just the outside edge
of the vehicle.

APPENDIX A. FIGURES FOR SECTION 2.1 64

Figure A.4: Noisy infrared image taken with a microbolometer. “1” in the image represents
a watermark labeling which filter was being used. The only moving targets are the people,
two to the left and one to the right.

APPENDIX A. FIGURES FOR SECTION 2.1 65

Figure A.5: Image from Figure A.4 with a statistical mode difference method of target
detection. Note how noise still gets though, but the people in the frame are still very
distinct. 100 frames where used to calculated the mode.

APPENDIX A. FIGURES FOR SECTION 2.1 66

Figure A.6: Image from Figure A.4 with a statistical median difference method of target
detection. Note how noise still gets though, but the people in the frame are still very
distinct. 100 frames where used to calculate the median. This technique has an output
very similar to using the mode for this data, so the more computationally efficient method
would be preferable.

APPENDIX A. FIGURES FOR SECTION 2.1 67

Figure A.7: Image from Figure A.4 with a statistical mean difference method of target
detection. This method does not work well, letting more noise through than either the
median or mode did, as well as highlighting a tree, which could be confused for a fourth
person. 100 frames where used to calculate the mean.

APPENDIX A. FIGURES FOR SECTION 2.1 68

Figure A.8: Image from Figure A.4 with a single frame difference method of target de-
tection. Notice how much noise gets though, completely loosing any information on the
people’s locations. This technique is unusable in data with anything with a fair amount
of noise.

APPENDIX A. FIGURES FOR SECTION 2.1 69

Figure A.9: Image from Figure A.4 with a double difference method of target detection.
Much like the single frame difference in Figure A.8, this technique eliminates all trace of
the people’s locations, as well as letting noise through. Although there is less noise than
the single frame difference, this technique is still unusable for noisy data.

Appendix B

MATLAB Implementation of
Algorithms

This appendix contains a few lines of code that was used throughout this work. The
point is to get the idea of how the algorithms were coded, and not to be pieced together
blindly for use. Before any of these are initiated, a video file must be read into a readable
format. The following is a sample of importing an infrared AVI video into a data array in
MATLAB.

% Import Video File:

vid=VideoReader(’IR_10_08_2010_1.avi’); %sample video

% Convert to Data Array:

frames=vid.NumberOfFrames; % Number of frames in video

vidsize=[vid.Height,vid.Width]; % Obtains the size of each frame

imdata=zeros(vidsize(1),vidsize(2),frames); % Creates an array the proper

%size to store images in

for m=[1:1:frames] % Changes each frame into an image, then stores

temp1=read(vid,m); % Turns frame into image

temp1=temp1(:,:,1); % Grabs only one of the RGB ’columns’ only needed

%for greyscale non indexed video

imdata(:,:,m)=temp1; % Puts the frames into the data array

end

high=max(max(max(imdata))); % Finds the maximum value

data=imdata/high; % Normalizes the data, so it is accurate

clear imdata

clear vid

70

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 71

B.1 Mean Shift

B.1.1 Distance Kernel

The creation of the distance kernel is straight forward, and can easily be modified to have
any isotropic, monotonically decreasing, and convex kernel profile. For this, d = 0.075,
but I have found it ranges from about 0.007 to around 0.09.

for i=1:1:size(oldtemp,2)%run over columns

for j=1:1:size(oldtemp,1)%run over rows

k_d(j,i)=(2/pi)*(1-sqrt(((x(i)-xc(count-1))^2+...

(y(j)-yc(count-1))^2)/d^2);

if k_d(j,i)<0

k_d(j,i)=0; %if the kernel goes negative, make zero

end

bq(j,i)=find(imhist(oldtemp(j,i))==1);

end

end

x runs over the columns, while y runs over the rows, and (xc, yc) gives the respective
centers. The count we will see is used to keep track of how many times the MS iterative
steps have been run, and rebuilds the kernel about the last center location found.

B.1.2 Histogram Kernel Selection

The creation of the intensity histogram kernel (kh), as mentioned in Section 2.2, can be
done in a few different ways. By manually selecting upeak, accurate tracking can be per-
formed very simply and accurately (assuming proper selection of h as well). However, if
looking at infrared data, where the target is much brighter (or darker) than the back-
ground, the histogram will tend to appear bimodal. The secondary peak may be found,
giving and automated way to find upeak. Choosing a proper h still needs to be considered
or automatically chosen. I did not automatically find h, but it wouldn’t be too hard to
find a way to do so if the histogram appears bimodal. The following is sample code for
the automatic selection of upeak

% Finds peaks near the higher bins of the model (oldtemp)

% Then finds the regional maxima near the end of the histogram

% Note xq is the bin number, yq is the bin value

% Takes the first of these peaks, we do not want the first because

% it could just be noise or the border of the image if white.

oldtemphist=imhist(oldtemp); %makes histogram of target model

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 72

[xq,yq]=find(imregionalmax(oldtemphist)==1,5,’last’); %finds last 5 maxima

upeak=xq(find(max(oldtemphist(xq))==oldtemphist(xq),1,’first’));

%calls the first peak the histogram bin we want to center around

From this, we can simply calculated the histogram kernel, using h = 10 with the
following.

q=zeros(size(k_d)); %make sure q is the same size as the distance kernel

for u=1:1:length(imhist(oldtemp)) %run though all histogram bins

k_h(u)=(1-sqrt((u-upeak)^2/(10)^2));

if k_h(u)<0

k_h(u)=0; %makes sure it is either positive or zero

end

q=q+(k_d(:,:).*eq(b_q(:,:),u))*k_h(u); %calculation of q

end

q=q/max(max(q)); %want our probability normalized to [0,1]

The calculation of q is easy to perform within this same for loop, as shown. Note when
calculating q, kd is the distance kernel, and bq is a helper function. It is simply the sub-
image that contains the histogram bin number for each pixel. This allows the calculation
of q to be made without use of for loops over each pixel. The MATLAB function “eq.m”
is just a Kronecker delta, as defined in equation (2.6). What this is doing is summing up
the probability each pixel belongs to the object of interest, and is weighted by w(i, j, u) =
kd(i, j) · kh(u).

B.1.3 Iterative Step

To actually implement the MS algorithm, we just need to put the pieces together above
together in a while loop.

%set starting threshold, and set current value higher than it

dchange=5;

count=0;

dthresh=1;

countmax=15; %generally between 15-20

while (dchange>dthresh)&&(countmax>count)

count=count+1

if count==1 %or if q needs to be recalculated

%CALCULATE k_d for q

%FIND upeak

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 73

%CALCULATE k_h for q, then calculate q

end

%CALCULATE k_d for p

%CALCULATE p, using k_h from above

%CALCULATE CENTER LOCATIONS

m00=[]; m01=[] m10=[];

m00=sum(sum(p));

m10=sum(sum(p*x.’)); %x is a vector of pixel column values

m01=sum(sum(y*p)); %y is similar to x but rows

%CALCULATE NEW CENTERS

xc(count)=m10/m00+xc(count-1); %creates the new center location

yc(count)=m01/m00+yc(count-1);

%note xc(count)=l_c and yc(count)=l_r

%CALCULATE DISTANCE CHANGE

dchage=sqrt((xc(count)-xc(count-1))^2+(yc(count)-yc(count-1))^2);

end

Although using moments is the easiest way to calculate the central locations, the other
way is shown in case it is desired below.

for i=1:1:size(p,2)

for j=1:1:size(p,1)

%With Kernel and Meanshift Vector

for u=1:1:256

if p(j,i)==0

%avoids divide by zero issues

p(j,i)=0.001;

flagp=1;

elseif q(j,i)==0

q(j,i)=0.001;

flagq=1;

end

% if this is going to be used, can condense by

% calculating w ahead

deltx=deltx+(x(i)*k_h(u)*sqrt(q(j,i)/p(j,i))*eq(bp(j,i),u));

delty=delty+(y(j)*k_h(u)*sqrt(q(j,i)/p(j,i))*eq(bp(j,i),u));

deltund=deltund+(k_h(u)*sqrt(q(j,i)/p(j,i))*eq(bp(j,i),u));

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 74

if flagp==1

p(j,i)=0;

flagp=0;

elseif flagq==1;

q(j,i)=0;

flagq=0;

end

end

end

end

xc(count)=deltx/deltund+xc(count-1);

yc(count)=delty/deltund+yc(count-1);

Just don’t forget when using this method that the various temporary values must be reset
to zero after each iteration. Also note that these snippits of code will not run accurately,
as they were slightly modified/incomplete for the sake of clarity.

B.2 Kalman Filters

B.2.1 Kalman Filter Prediction Step

The first step in the KF is to calculate A, the state matrix. Recall that lc is the stored
column locations, while lr is the stored row locations. Xx,o is calculated the current
position, velocity, and acceleration for the column locations. Xx,n is the new projected
column location, velocity, and acceleration.

averageover=5; %number of used locations to calculate X

% this implies you need at least 2*averageover+1 known locations

% to run this filter. Usually you just use the measurement until

% enough locations are measured, then you initiate this.

Xxo=[lc(size(lc,2)),(lc(size(lc,2))-...

lc(size(lc,2)-averageover))/(averageover),...

(((lc(size(lc,2))-lc(size(lc,2)-averageover))...

/(averageover))-((lc(size(Multc,2)-averageover)-lc(size(lc,2)...

-2*averageover))/(averageover)))/(2*averageover+1)];

Xyo=[lr(size(lr,2)),(lr(size(lr,2))-lr(size(lr,2)-...

averageover))/(averageover),(((lr(size(lr,2))-lr(size(lr,2)-...

averageover))/(averageover))-((lr(size(lr,2)-averageover)-...

lr(size(lr,2)-2*averageover))/(averageover)))/(2*averageover+1)];

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 75

%Pmeas is the measurement error (estimation)

%Q is the state covariance

% and both must be chosen for a system/measurement technique

A=[1,1,0.5*1^2;0,1,1;0,0,1]; % State transition matrix

% NOTE: dt=1 frame for this work

% A=[1,dt,0.5*dt^2;0,1,dt;0,0,1]; % State transition matrix

H=[1,0,0]; % Measurment matrix

Xxn=A*Xxo.’; % New state vector (predict)

Xyn=A*Xyo.’; % New state vector (predict)

Pest=A*Pmeas*A’+Q; % Estimated error

B.2.2 Adaptive Kalman Filter Prediction Step

The only difference between the two is the calculation of the state covariance matrix must
now be performed instead of just assuming it hasn’t changed. This is done with the factors
of σ and λ from Section 2.3.2. Note that CC below is the stored correlation coefficients,
and n is within a for loop running through each frame, with n being the current one.

Pmeas=0.05; % starting measurement error

if CC(n-1)>=CCThreshold

sig1(n-1)=CC(n-1);

elseif CC(n-1)<CCThreshold

sig1(n-1)=0;

end

if CC(n-2)>=CCThreshold

sig1(n-2)=CC(n-2);

elseif CC(n-2)<CCThreshold

sig1(n-2)=0;

end

sig1(n-1)=(1-lambda)*sig1(n-1)+lambda*sig1(n-2);

% Temporal filtering for sigma

Q=diag([sig1(n-1),0.5*sig1(n-1),0.2*sig1(n-1)]);

% State noise

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 76

B.2.3 Kalman Filter Comparison Step

The calculation of the Kalman factor (or gain) is fairly straightforward. The factor R

must be estimated prior to calculation and is the measurement covariance.

Zx=lc(n); % New measurment vector (actually scalar)

Zy=lr(n); % New measurment vector

Kgain=(Pest*H’)’/(H*Pest*H’+R); % Kalman Gain

Pmeas=(diag([1,1,1])-Kgain*H’)*Pest; % Measurement error

lc(n)=(Xxn+Kgain*(Zx-H*Xxn’))*H; % locations according to the KF

lc(n)=(Xyn+Kgain*(Zy-H*Xyn’))*H;

B.2.4 Adaptive Kalman Filter Comparison Step

The only addition here is the measurement covariance, R, is calculated at each frame,
similar to Q above. This can be done as shown here.

if CC(n)>=CCThreshold

sig2(n)=1-CC(n);

elseif CC(n)<CCThreshold

sig2(n)=1000;

end

if CC(n-1)>=CCThreshold

sig2(n-1)=1-BC(n-1);

elseif CC(n-1)<CCThreshold

sig2(n-1)=1000;

end

sig2(n)=(1-lambda)*sig2(n)+lambda*sig2(n-1);

R=sig2(n)^2; % Measurment noise

B.3 Polynomial Fitting Adaptive Kalman Filter

B.3.1 Polynomial Fit

The following is the implementation of the MATLAB “fit.m” function used in this work.
The polynomial selected is of order two (quadratic). One thing that must be noted before
implementing this is that if the object motion is generally top to bottom, the polynomial
fit should use (x = columns, y = rows) to avoid an invalid fit (object would appear to not

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 77

be a function). However, if the motion is left to right, the order should be reversed (e.g.,
(x = rows, y = columns)).

% locmin is the number of positions used to calculate the parabola

xtemp=lc(n-lockmin+1:n-1); %looks at last lockmin-1 known locations

ytemp=lr(n-lockmin+1:n-1);

historyfit=fit(xtemp’,ytemp’,’poly2’);%fits the history of locations

p=coeffvalues(historyfit);%a vector of polynomial coefficients

B.3.2 Calculate Distance Along Curve

To calculate the distance along the curve, we have to integrate the derivative of the fit
function. Here, the position along the curve is increased by 0.1 pixels in the column
direction. The numerical integration is then calculated and a distance is compared. As
soon as the while loop is exited, we know how many steps it took to project the same
distance (within a threshold, set here to be just under half a pixel). The new predicted
column position is then updated, followed by a calculation using the fit curve to find the
proper row predicted location.

%function needed to find arc length

lengthfun = @(x) sqrt(1+(2*(p(1))*x+p(2)).^2);

%change with transition step

distfit=sqrt((Xxo(1)-Xxn(1))^2+(Xyo(1)-Xyn(1))^2);

distactual=0;

stepcount=0;

while abs(distfit(m)-distactual(m))>0.45%this is a "threshold" of accuracy

stepcount=stepcount+1;

%increase range until arc length is same as linear length

%calculate distance using a numerical integration

distactual=quad(lengthfun,xtemp(length(xtemp)),...

xtemp(length(xtemp))+stepcount*0.1);

end

%how far in column direction does the prediction require

Xxn(1)=xtemp(length(xtemp))+stepcount*0.1;

%evaluate the function to find the row position at above column

Xyn(1)=feval(historyfit,Xxn(1));

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 78

B.4 NITF Image Extraction

The code in this section will be for use with the built-in MATLAB functions for working
with NITF formatted images. The title and such are pulled for the header and writes a new
image wit the same title, but it is in the JPEG2000 format (shown in B.4.1). Additionally,
the code for registering (B.4.2) will be provided. If a video is already created and you
wish to perform the registration, see Appendix B.5.

B.4.1 NITF Extraction to AVI Video

clear all, close all, clc

%Kyle Ausfeld - 12 December 2011

%Opens NITF files as long as they only have one image

% and are greyscale(?) and have a name longer than 3 characters

%This will open all the files in the directory

names_files=dir;

%creates video

vidObj = VideoWriter(’test.avi’);

vidObj.FrameRate=2;

open(vidObj);

%This will run through them and save them as jp2 with the same file name

for i=1:size(names_files,1)%ignores last file, should be this one

names=names_files(i).name;

if (length(names)>3)&&min(names(length(names)-3:length(names))==’.ntf’)

im_info=nitfinfo(names);

fids=fopen(names);

ftemp1=fread(fids);

names(length(names)-3:length(names))=[];%removes .ntf

names=[names,’.jp2’];%appens with .jp2 instead

ftemp2=fopen(names,’w’);

fwrite(ftemp2,ftemp1(im_info.NITFFileHeaderLength+...

im_info.ImageAndImageSubheaderLengths...

.Image001ImageAndSubheaderLengths.LengthOfNthImageSubheader...

+1:length(ftemp1)));

fclose(ftemp2);

im_temp=imread(names);

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 79

figure, imshow(im_temp,[])

currFrame = getframe;

writeVideo(vidObj,currFrame);

close figure 1;

end

end

close(vidObj);

B.4.2 NITF to Registration to Video

clear all, close all, clc

%Kyle Ausfeld - 12 December 2011

%Opens NITF files as long as they only have one image, are square,

% and are greyscale(?) with image registration.

%This will open all the files in the directory

names_files=dir;

ftemp1=[]; ftemp2=[];

size_change=2;

%creates video

vidObj = VideoWriter(’test_fft.avi’);

vidObj.FrameRate=2;

open(vidObj);

hold_names=[];

hold_loc=[];

hold_change=[];

% This will run through them and save them as jp2 with the same file name

for i=1:size(names_files,1)%ignores last file, should be this one

names=names_files(i).name;

if (length(names)>3)&&min(names(length(names)-3:length(names))==’.ntf’)

im_info=nitfinfo(names);

% Pull out information for registrations

locations_raw=im_info.ImageSubheaderMetadata.ImageSubheader001...

.ImageGeographicLocation;

locations=[];

counto=0; counte=0;

for j=1:8

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 80

if rem(j,2)==1 %odd

counto=counto+1;

locations(counto,1)=str2num(locations_raw(((counto-1)*7+...

(counte)*8+1):((counto)*7+(counte)*8)));

else %even

counte=counte+1;

locations(counto,2)=str2num(locations_raw(((counto)*7+...

(counte-1)*8+1):((counto)*7+(counte)*8)));

end

end

hold_loc(:,:,i)=locations;

%create image

fids=fopen(names);

shift_trigger=isempty(ftemp1);

ftemp1=fread(fids);

names(length(names)-3:length(names))=[];%removes .ntf

names=[names,’.jp2’];%appens with .jp2 instead

hold_names=[hold_names;names];

ftemp2=fopen(names,’w’);

fwrite(ftemp2,ftemp1(im_info.NITFFileHeaderLength+im_info...

.ImageAndImageSubheaderLengths.Image001ImageAndSubheaderLengths...

.LengthOfNthImageSubheader+1:length(ftemp1)));

fclose(ftemp2);

if shift_trigger==1

im_temp=imread(names);

im_temp2=zeros(size(im_temp)*size_change);

im_temp2(floor(size(im_temp,1)*((size_change-1)/2))+1:...

floor(size(im_temp2,1)-size(im_temp,1)*((size_change-1)/2))...

,floor(size(im_temp,2)*((size_change-1)/2))+1:floor(size(...

im_temp2,2)-size(im_temp,2)*((size_change-1)/2)))=im_temp;

figure, imshow(im_temp2,[min(min(im_temp)) max(max(im_temp))])

else

im_old=double(imread(hold_names(size(hold_names,1)-1,:)));

im_old=edge(im_old/max(max(im_old)),’canny’);

im_temp=double(imread(names));

im_temp=im_temp/max(max(im_temp));

f2=edge(im_temp,’canny’);

F1=fft2(im_old);

F2=fft2(f2);

RF=(F1.*conj(F2))./(abs(F1).*abs(F2));

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 81

displacement=abs(ifft2(RF));

[v,x]=max(max(displacement’));

[v,y]=max(max(displacement));

if x>size(f2,2)/2

x=x-1-size(f2,1);

else

x=x-1;

end

if y>size(f2,2)/2

y=y-1-size(f2,2);

else

y=y-1;

end

hold_change(i,1)=x;

hold_change(i,2)=y;

im_temp2=zeros(size(im_temp)*size_change);

im_temp2((floor(size(im_temp,1)*((size_change-1)/2))+1:...

floor(size(im_temp2,1)-size(im_temp,1)*((size_change-1)/2)))+...

sum(hold_change(:,1)),(floor(size(im_temp,2)*...

((size_change-1)/2))+1:floor(size(im_temp2,2)-...

size(im_temp,2)*((size_change-1)/2)))+sum(hold_change(:,2)))...

=im_temp;

figure, imshow(im_temp2,[min(min(im_temp)) max(max(im_temp))])

end

currFrame = getframe;

writeVideo(vidObj,currFrame);

close figure 1;

end

end

close(vidObj);

B.5 FFT Image Registration

The following code simply creates a zero-padded image and centers the first frame. From
there, the following images are then registered to the previous frame, creating a simulated
registration that only accounts for translational changes.

close all, clear all, clc;

%Takes video sequence, and turns into a new video that is

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 82

% registered using an fft technique

% Kyle Ausfeld

%% Import Video File:

vid=VideoReader(’IMG_0087_1.mov’);

%% Convert to Data Array:

frames=vid.NumberOfFrames; % Number of frames in video

vidsize=[vid.Height,vid.Width]; % Obtains the size of each frame

imdata=zeros(vidsize(1),vidsize(2),frames); % Creates an array

the proper size to store images in

for m=[1:1:frames] % Changes each frame into an image, then stores

temp1=read(vid,m); % Turns frame into image

temp1=temp1(:,:,1); % Grabs only one of the RGB ’columns’ only

needed for greyscale non indexed video

imdata(:,:,m)=temp1; % Puts the frames into the data array

end

high=max(max(max(imdata))); % Finds the maximum value

data=imdata/high; % Normalizes the data, so it is accurate

clear imdata

%% Register

vidObj = VideoWriter(’video_registered.avi’);%,’Uncompressed AVI’);

vidObj.FrameRate=vid.FrameRate;

vidobj.Quality=100;

clear vid

open(vidObj);

size_change=[1.5,2];

for n=1:size(data,3)

if n==1

temp1=zeros(size(data,1)*size_change(1),size(data,2)*size_change(2));

temp1(floor(size(data(:,:,n),1)*((size_change(1)-1)/2))+1:...

floor(size(temp1,1)-size(data(:,:,n),1)*((size_change(1)-1)/2))...

,floor(size(data(:,:,n),2)*((size_change(2)-1)/2))+1:floor(size(...

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 83

temp1,2)-size(data(:,:,n),2)*((size_change(2)-1)/2)))...

=data(:,:,n);

figure, imshow(temp1,[])

currFrame = temp1;

writeVideo(vidObj,currFrame);

close figure 1;

else

temp2=zeros(size(data,1)*size_change(1),size(data,2)*size_change(2));

temp2(floor(size(data(:,:,n),1)*((size_change(1)-1)/2))+1:...

floor(size(temp1,1)-size(data(:,:,n),1)*((size_change(1)-1)/2))...

,floor(size(data(:,:,n),2)*((size_change(2)-1)/2))+1:...

floor(size(temp1,2)-size(data(:,:,n),2)*((size_change(2)-1)/2)))...

=data(:,:,n);

% FFT Register

f1=edge(temp1,’canny’);

f2=edge(temp2,’canny’);

F1=fft2(f1);

F2=fft2(f2);

RF=(F1.*conj(F2))./(abs(F1).*abs(F2));

displacement=abs(ifft2(RF));

[v,x]=max(max(displacement’));

[v,y]=max(max(displacement));

if x>size(f2,1)/2

x=x-1-size(f2,1);

else

x=x-1;

end

if y>size(f2,2)/2

y=y-1-size(f2,2);

else

y=y-1;

end

hold_change(n,1)=x;

hold_change(n,2)=y;

temp3=zeros(size(data,1)*size_change(1),size(data,2)*size_change(2));

temp3((floor(size(data,1)*((size_change(1)-1)/2))+1:...

floor(size(temp2,1)-size(data,1)*((size_change(1)-1)/2)))+...

sum(hold_change(:,1)),floor(size(data,2)*((size_change(2)-1)/2))+...

1:floor(size(temp2,2)-size(data,2)*((size_change(2)-1)/2)))+...

APPENDIX B. MATLAB IMPLEMENTATION OF ALGORITHMS 84

sum(hold_change(:,2)))=data(:,:,n);

temp1=temp2;

figure, imshow(temp3,[])

currFrame = temp3;%getframe;

writeVideo(vidObj,currFrame);

close figure 1;

end

end

close(vidObj);

Appendix C

Tracking Algorithm Testing
Platform

put two figures in here along with metrics and code.

C.1 Tracking Algorithm Metrics

As mentioned in Chapter 4, the metrics proposed for future work will be the ones used by
Mike Presnar. A description of them are given here, along with an equation for each.

(C.1)

The track purity is a measure of how “pure” the tracking results are. This is done by
comparing the measured location of the object with the known location. This is able to
score how well the objects are being tracked, with a 1 being perfect, and a 0 being not at
all.

(C.2)

The track completeness is a measure of how many objects were tracked compared to how
many should have been tracked. This measure is used to make sure only objects of interest
are tracked, and that no objects go untracked. Similarly to the track purity, a score of 1
is a perfect score, while 0 means no objects that should have been tracked were tracked.

85

APPENDIX C. TRACKING ALGORITHM TESTING PLATFORM 86

Figure C.1: This could be the layout if the user wanted to compare two different tracking
algorithms on the same data set. This would be useful if the user was interested in one
type of scene and wanted to choose the most robust algorithm for that scenario.

C.2 Testing Platform GUI Layout Possibilities

Two different sample layouts were made, leaving possibilities for use of other metrics/different
shown outputs of interest. These were not coded up, but were made for a pictorial rep-
resentation of potential layouts. The first layout (Figure C.1) shows a scenario where a
comparative analysis of two algorithms on the same data set were of interest. The second
layout (Figure C.2) shows a scenario where the same algorithm is tested on two different
scenarios to test which scene the algorithm performs more robustly on.

C.3 Python Code

This section will be broken up into the different parts of the current code that has been
written. Comments will be added where deemed necessary.

APPENDIX C. TRACKING ALGORITHM TESTING PLATFORM 87

Figure C.2: This could be the layout if the user wanted to compare the tracking robustness
of a tracking algorithm on two different data sets. This would be of interest to users who
have to have robust tracking in a variety of scenarios, making the testing on various
scenarios beneficial.

APPENDIX C. TRACKING ALGORITHM TESTING PLATFORM 88

C.3.1 Configuration File

The following is the proposed configuration layout, to be added onto as necessary. These
are not complete, but a work in progress.

CONFIGURATION FILE OPTIONS:

TRACK TYPE:

SINGLE VIDEO-single movie track

MULTIBAND VIDEO-comparison between videos, say one vis one ir

MULTIPLE VIDEO-track multiple videos independently

BAND TYPE:

INFRARED

VISIBLE

2 COLOR INFRARED

POLARIZED

DETECTION ALGORITHM:

GIVEN INFORMATION

MODE DIFFERENCING

TRACKING ALGORITHM:

MEAN SHIFT

MEAN SHIFT AKF

OBJECT SIZE:

(ROWS,COLUMNS)

? ([ROWS,COLUMNS],[ROWS,COLUMNS],)-for multiple objects

NONE-in the case of using an actual detection algorithm

OBJECT LOCATION:

(ROWS,COLUMNS)

NONE-in the case of using an actual detection algorithm

DETECTION INFORMATION:

For GIVEN INFORMATION: ()-isn’t read and will be ignored, best left blank

For MODE DIFFERENCING: (time,other stuff not yet defined)

TRACKING INFORMATION:

For MEAN SHIFT: (h,max_iterate,enlargewindow,dchangethresh)

APPENDIX C. TRACKING ALGORITHM TESTING PLATFORM 89

h=0.075-Mean Shift bandwidth

max_iterate=20-Maximum number of Mean Shift iterations per object

per frame

enlargewindow=0-How much the tracking window is expanded by, use

for fast moving objects

dchangethresh=1-How far the centerpoint can change by in Mean Shift

For MEAN SHIFT AKF: (h,lockmin,max_iterate,enlargewindow,dchangethresh,

lambda,BCThresh,Tkf,Pmeasure)

h=0.075-Mean Shift bandwidth

lockmin=10-Delay to start AKF, use just MS until locked

max_iterate=20-Maximum number of Mean Shift iterations per object

per frame

enlargewind=0-How much the tracking window is expanded by, use for

fast moving objects

dchangethresh=1-How far the centerpoint can change by in Mean Shift

lambda=0.9-Kalman Filter forgetting factor (lower forgets faster)

BCThresh=0.5-Threshold for the Bhattacharyya coefficient used during

the AKF/CAMSHIFT

Tkf=1000-Large value for use during Kalman Filter

Pmeasure=0.05-Starting measurement error

An eventual goal would be a program to produce these configuration files for certain
standard tests so they would not have to be written by hand for every algorithm. A sample
configuration file could look like the following.

OBJECT TRACKING CONFIGURATION FILE

TRACK TYPE: SINGLE VIDEO

BAND TYPE: INFRARED

DETECTION ALGORITHM: GIVEN INFORMATION

TRACKING ALGORITHM: MEAN SHIFT

OBJECT SIZE: (20,10)

OBJECT LOCATION: (283,505)

DETECTION INFORMATION: ()

TRACKING INFORMATION: (0.075,20,0,1)

APPENDIX C. TRACKING ALGORITHM TESTING PLATFORM 90

C.3.2 Python Read in Configuration File

The Python code currently has two important parts, the main file and the configuration
read in file. Both will have to be expanded with more algorithms and options. The main
python file is currently the following:

#! usr/bin/python 2.7

"""

main.py

This is the main script used to run all the modules needed to

run the Tracking Algorithm Testing Environment.

The following scripts are necessary:

- readconfig.py: reads the configuration file to load all

the necessary inputs.

- sys: used for stopping at errors

- numpy: used for array manipulation and representation

Kyle Ausfeld - 7/5/11 - Rochester Institute of Technology

"""

#STARTUP

print __doc__

raw_input(’Please press [enter] or [return] to continue: ’)

print " "

#IMPORT LIBRARIES

import sys

import numpy as np

import readconfig

#GET CONFIGURATION FILE INFORMATION

trackinginputs=readconfig.getinputs()

print " "

APPENDIX C. TRACKING ALGORITHM TESTING PLATFORM 91

#ALLOWED VALUES FOR CONFIGURATION INPUTS

config0=["SINGLE VIDEO", "MULTIBAND VIDEO", "MULTIPLE VIDEO"]

config1=["INFRARED","VISIBLE","2 COLOR INFRARED","POLARIZED"]

config2=["GIVEN INFORMATION","MODE DIFFERENCING"]

config3=["MEAN SHIFT","MEAN SHIFT AKF"]

config=[config0,config1,config2,config3]

objectsizelocation=4

objectlocationinfo=5

detectioninfoloc=6

trackerinfoloc=7

#CHECK INPUT VALUES AND RETURN ERRORS

readconfig.checkconfigin(config, trackinginputs)

trackinginputs,objectsize,objectloc,detectioninfo,trackerinfo=readconfig.

getnumericalinfo(config, trackinginputs, objectsizelocation,

objectlocationinfo, detectioninfoloc, trackerinfoloc)

#GET VIDEO

#FIRST TIME BELOW IS CORRECT, WORK INTO FRAME-BY-FRAME WORKINGS

DETECTION ALGORITHM

#if (trackinginputs[2]==config[2][0]) or (detectioninfo==[]):

#If no detection information exists, use given information

#Make into an array of objects and locations in one array,

#object_track[{object#}][{frame#}][0=>row,1=>column]

#elif (trackinginputs[2]==config[2][1]):

#Makes information from detectioninfo usable and runs

#desired algorithm.

APPENDIX C. TRACKING ALGORITHM TESTING PLATFORM 92

#print ’Not yet configured, Check back at a later date.’

#sys.exit("Change DETECTION ALGORITHM in configuration file.")

TRACKING ALGORITHM

#END

The readconfig.py is shown below.

#! usr/bin/python 2.7

"""

readconfig.py

Reads in a configuration file to start running a tracking script.

The various functions listed below are used to do different

parts of the task. For individual function help, please read

below.

Kyle Ausfeld - 7/13/11 - Rochester Institute of Technology

"""

def getinputs():

"""This function imports the configuration file and

reads it out into an array.

NO INPUTS

Outputs are:

trackinginput - Takes configuration file information

and creates a readable list for later use.

"""

#IMPORT LIBRARIES

import numpy as np

APPENDIX C. TRACKING ALGORITHM TESTING PLATFORM 93

#LOAD FILE

configlocation=raw_input(’Type the location for the configuration file: ’)

configfile=open(configlocation.strip())

##configuration=open(’/Users/kyleausfeld/Desktop/configlayout.txt’)

#SORT OUT INPUT VALUES INTO NEW ARRAY

configure=np.array(configfile.readlines())

configure=configure[np.arange(0,len(configure),2)]

trackinginput=[]

for n in range(1,len(configure)):

for m in range(0,len(configure[n])):

if str(configure[n])[m]==":":

mm=m+1,

break

trackinginput.append(configure[n][mm[0]:].strip())

#print mm, trackinginput

return trackinginput

#END getinputs()

def checkconfigin(config, trackinginputs):

"""Check input values and return errors.

Inputs are:

config - The configuration layout array (should be defined in main.py).

trackinginputs - Array from the function getinputs().

NO OUTPUTS.

"""

#IMPORT LIBRARIES

import sys

APPENDIX C. TRACKING ALGORITHM TESTING PLATFORM 94

#CHECK CONFIGURATION FOR ERRORS

for n in range(0,len(config)):

if (trackinginputs[n] not in config[n]):

print "Error in configuration line: ", (2*n+3)

print "Allowed inputs are as follows: "

print " ", config[n]

sys.exit("Check configuration file.")

#END checkconfigin()

def getnumericalinfo(config, trackinginputs, objectsizelocation,

objectlocationinfo,detectioninfoloc,trackerinfoloc):

"""Checks for errors in needed numerical information,

then returns arrays with the proper information.

Inputs are:

config - The configuration layout array (should be defined in main.py).

trackinginputs - Array from the function getinputs().

objectsizelocation - Gives location (within config) of object size,

current default is 4.

objectlocationinfo - Gives location (within config) of object initial

location, current default is 5.

detectioninfoloc - Gives location (within config) of detection algorithm

inputs, current default is 6.

trackerinfoloc - Gives location (within config) of tracking algorithm

inputs, current default is 7.

Outputs are:

trackinginputs - Array from the function getinputs(), but updated.

objectsize - Array of objects and their sizes. Each row is a new

object, 0th column is # of rows spanned by object, 1st column

is # of columns spanned by object.

objectloc - Array of objects and their initial location. Each row

APPENDIX C. TRACKING ALGORITHM TESTING PLATFORM 95

is a new object, 0th column is initial row position, 1st column

is initial column position of object.

detectioninfo - Array (vector) of information necessary to perform

detection of objects of interest as defined in the configuration

layout file.

trackerinfo - Array (vector) of information necessary to perform the

tracking of objects as defined in the configuration layout file.

NOTE: This function will need to be updated with

time. If a new vector of information is needed,

such as if a new tracking algorithm is added,

and needs a set of default inputs, this must

be expanded.

"""

#IMPORT LIBRARIES

import sys

import numpy as np

#SECTIONED OUT BELOW:

for n in range(len(config),len(trackinginputs)):

if trackinginputs[2]==config[2][0]:

#GET INFORMATION FOR GIVEN BEGINING LOCATION

if n==objectsizelocation:

#GET OBJECT SIZE

if trackinginputs[n]=="NONE":

print "Error in configuration line: ", (2*n+3)

print "Object size information needed."

sys.exit("Check configuration file.")

elif trackinginputs[n].count(’,’) %2==0:

print "Error in configuration line: ", (2*n+3)

print "Missing/excess object size information given."

sys.exit("Check configuration file.")

elif trackinginputs[n].count(’,’) %2==1:

trackinginputs[n]=trackinginputs[n][1:len(trackinginputs[n])-1]

objnum=(trackinginputs[n].count(’,’)+1)/2

APPENDIX C. TRACKING ALGORITHM TESTING PLATFORM 96

comloc=[-1]

temp1=0

while temp1 < len(trackinginputs[n]):

temp1=trackinginputs[n].find(’,’,temp1)

if temp1==-1:

comloc.extend([len(trackinginputs[n])])

break

comloc.extend([temp1])

temp1=temp1+1

objectsize=np.zeros([objnum,2])

for m in range(0,2*objnum):

if m %2==0:

#ROW SIZE

objectsize[m/2][0]=trackinginputs[n][comloc[m]

+1:comloc[m+1]]

elif m %2==1:

#COLUMN SIZE

objectsize[m/2][1]=trackinginputs[n][comloc[m]

+1:comloc[m+1]]

elif n==objectlocationinfo:

#GET OBJECT LOCATION

if trackinginputs[n]=="NONE":

print "Error in configuration line: ", (2*n+3)

print "Object location information needed."

sys.exit("Check configuration file.")

elif trackinginputs[n].count(’,’) %2==0:

print "Error in configuration line: ", (2*n+3)

print "Missing/excess object location information given."

sys.exit("Check configuration file.")

elif trackinginputs[n].count(’,’) %2==1:

trackinginputs[n]=trackinginputs[n][1:

len(trackinginputs[n])-1]

objnum=(trackinginputs[n].count(’,’)+1)/2

comloc=[-1]

temp1=0

while temp1 < len(trackinginputs[n]):

temp1=trackinginputs[n].find(’,’,temp1)

if temp1==-1:

comloc.extend([len(trackinginputs[n])])

break

APPENDIX C. TRACKING ALGORITHM TESTING PLATFORM 97

comloc.extend([temp1])

temp1=temp1+1

objectloc=np.zeros([objnum,2])

for m in range(0,2*objnum):

if m %2==0:

#ROW SIZE

objectloc[m/2][0]=trackinginputs[n][comloc[m]

+1:comloc[m+1]]

elif m %2==1:

#COLUMN SIZE

objectloc[m/2][1]=trackinginputs[n][comloc[m]

+1:comloc[m+1]]

elif n==detectioninfoloc:

#GET DETECTION INFO

#not used if no detection algorithm is chosen

detectioninfo=[]

elif n==trackerinfoloc:

#GET TRACKER INFO

if trackinginputs[n].count(’,’)!=3:

print "Error in configuration line: ", (2*n+3)

print "Missing/excess commas, possible sytax error."

sys.exit("Check configuration file.")

elif trackinginputs[n].count(’,’)==3:

trackinginputs[n]=trackinginputs[n][1:

len(trackinginputs[n])-1]

objnum=4

comloc=[-1]

temp1=0

while temp1 < len(trackinginputs[n]):

temp1=trackinginputs[n].find(’,’,temp1)

if temp1==-1:

comloc.extend([len(trackinginputs[n])])

break

comloc.extend([temp1])

temp1=temp1+1

trackerinfo=np.zeros([objnum])

for m in range(0,objnum):

trackerinfo[m]=trackinginputs[n][comloc[m]

+1:comloc[m+1]]

else:

APPENDIX C. TRACKING ALGORITHM TESTING PLATFORM 98

#Will hold other types of numerical information

necessary not from given information

print "Not yet configured."

sys.exit("Check for ability in next release")

return trackinginputs,objectsize,objectloc,detectioninfo,trackerinfo

#END getnumericalinfo()

#END readconfig.py

