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ABSTRACT 
 

This work is an extension of the invariant algorithm for detection and identification of gaseous plumes 

proposed by O’Donnell et al.
16,18

 and explores the use of a subspace clustering technique to improve 

the detection of gaseous effluents.  The hyperspectral pixels containing plume contributions should 

cluster near their representative background constituents due to the optically thin nature of gaseous 

plumes.  Using this proposition we can improve the generation of the target basis vectors and 

automatically determine areas free of plume that can be used in the endmember characterization of the 

background. 

 

1 INTRODUCTION 
 

 

Detection and identification of gaseous effluent plumes and chemical agents are critical concerns in 

environmental monitoring and national security.  The detection of fugitive gas and chemical agent 

spectra poses a challenge to the remote sensing community due to effects of the intervening 

atmosphere, the unknown spectral characteristics of the background, variations in gas plume 

temperatures and concentrations culminate into an unknown radiance contrast between the background 

and the plume.   The gas spectral signature will manifest differently with variations in temperature, 

concentration, and backgrounds.  The problem of detection and identification can be simplified 

somewhat by utilizing the long wave infrared portion (LWIR) of the electromagnetic spectrum where 

the target gases exhibit unique absorption features within this spectral range.  In addition, the LWIR 

spectral region enables simplification of the governing equation by ignoring reflectance and scattering 

effects with the radiometric models. 

 

Target detection in hyperspectral imagery typically utilizes a matched filter formulation where target 

spectral signatures are matched to an atmospheric corrected image yielding surface leaving spectral 

signatures. Alternate approaches use physics based modeling to propagate the target’s ground leaving 

radiance through a similar atmosphere to the sensor.  These algorithms forwardly predict the target 

spectral signatures to the sensor reaching radiance space by varying parameters in the physical model 

in order to model the expected target variability in the hyperspectral input.  The spectral variability in 

the target and background spectra can be modeled using structured models where the data can be 

represented by linear combinations of endmembers or basis vectors. 

 

In regards to gas effluent detection the target signature subspace is created using the absorption 

spectrum and by varying the gas concentration path length and the temperature contrast with the 

background surface material.  The gas absorption spectrum is measured via laboratory means and 

through appropriate physical modeling the gas plumes at sensor radiance can be predicted using an 

atmospheric propagation model like MODTRAN. 

 

 GOVERNING EQUATION FOR THERMAL INFRARED 
 

 

The radiometric model
15

 for the effective thermal radiance reaching the sensor in the LWIR region can 

be expressed as: 

 

 



 

where Lsurface is the radiance headed towards the sensor attenuated by the atmospheric transmission (τa) 

along the target-sensor path and Luε is the upwelling thermal emission from the sky.  The thermal self-

emission from the target is given by Planck’s blackbody radiance equation: 

 

 

   

   

   
 

where the surface target thermal emission is given by: 

 

 . 

 

The surface leaving radiance is the aggregation of the surface target thermal emission (LT) and the 

reflected downwelling thermal emission from the sky (Ldε) and background (Lbε).  For approximately 

horizontal surfaces the shape factor (F) is 1 and the background emission term can be eliminated 

yielding the following equation: 
 

 
 

and for opaque target surfaces the diffuse reflectivity is given by: 
 

. 
 

For a surface target with high emissivity approaching 0.99 the reflected downwelling radiance can be 

ignored, therefore the surface leaving radiance can be approximated solely by the surface target 

thermal emission (LT) given above. 
 

 GOVERNING EQUATION FOR GASEOUS PLUMES 
 

The radiometric model
9,17,18

 for the effective thermal radiance reaching the sensor in the LWIR region 

containing a single intervening plume layer close to the surface of the Earth that can be modeled as: 

 

 
   

where the surface target thermal emission has been attenuated by the plume’s transmission (τplume) and 

augmented by the thermal emission of the plume.  The thermal emission of the plume can be 

approximated as: 

 

 
 

where B(λ,Tplume) is the blackbody radiance of the plume at temperature Tplume.  The transmission of the 

plume is given by Beer’s law: 

 

 
 

where c is the gas concentration path length [in ppm-m] and k(λ,Tplume) is the laboratory measured 

absorption spectrum [in 1/(ppm-m)] at temperature Tplume.  If the plume is optically thin, the 

transmission can be approximated by: 

 

 
 

Using Kirchoff’s law and the law of conservation of energy the transmission and emissivity are related 

for a plume in thermodynamic equilibrium according to: 



 

 
 

where rplume is the reflectance of the plume.  Since the gas particles are small compared to the 

wavelengths of interest (LWIR) the scattering caused by the plume can be ignored (rplume = 0).  

Therefore the emissivity of the plume can be determined from the transmission by: 

 

 
 

where substituting for the transmission yields the emissivity of an optically thin plume containing a 

single gas constituent: 

 

 
 

Combining the results yields the governing equation for the at-sensor radiance containing a single layer 

of gas: 

 
 

 
 

 
 

The gas will absorb a portion of the surface target thermal emission as governed by its absorption 

spectrum and concentration path length and also contribute a self-emission term to the radiance as seen 

by the sensor.  The gas spectral signature required for detection is a function of these two terms and the 

temperature contrast with the surface.  If the temperature of the gas is higher than the surface 

temperature the gas will be seen in emission; if the temperature of the gas is lower than the surface 

temperature the gas will be seen in absorption. 

 

 
Figure 1. A depiction of the self-emission photon paths for the governing equation of gaseous plumes: Lsurface is the surface 

self-emission due to surface temperature attenuated by the transmission of the plume and atmosphere.  Also included in the 

sensor reaching radiance is the self-emission of the gas plume (Lplume) and atmosphere (Luε). 

 

 

2 BACKGROUND 
 

The spectrum of an individual pixel tends to be a mixture of materials due to the projected size of the 

pixel onto the ground and the spatial variability of the scene content.  The sensor integrates the 

radiance which is the superposition of a number of background materials and the atmosphere that 

separates the target from the sensor.  Variations in the material surface, atmospheric conditions, sensor 

noise, and background interference cause an inherent spectral variability – the variability in the data 

can be model mathematically using linear mixing models
12-14

.  In linear mixture models the spectral 

variability is confined to a convex hull where the observed spectrum can be represented by a linear 

combination of pure spectral endmembers:  



 

 
 

where the vectors sk are assumed to be linearly independent and form the basis vectors that span the 

spectral variability of the hyperspectral dataset.  The linear mixture model can be derived by placing 

constraints on ak  - these constraints restrict the observed spectral signatures to reside within a convex 

hull of unique deterministic spectral endmembers.  The linear mixing model is given by: 
 

 

 
 

where ak can now be interpreted as abundances of the k
th

 endmember.  The observed spectrum (x) that 

consists of a linear mixture of background and target endmembers is given by
12,13

: 
 

 
 

where the p target endmembers (tk) are stored in the columns of matrix T, the n background 

endmembers (bk) are stored in the columns of matrix B, the vectors τ and β are the target and 

background abundances, and w is the residual error vectors.   

 

2.1 SUBPIXEL TARGET DETECTION FORMULATION 
 

Target detection algorithms
12,13

 are formulated in statistical binary hypothesis testing where the two 

competing hypotheses are target absent and target present.  It is ultimately a classification problem for 

very low probability of occurrence signatures where the decision is made regarding the observed 

spectrum (x) – the two competing hypotheses are: 
 

 

  

If the conditional probabilities of the spectrum under the two hypotheses are known, the detection can 

be made using the likelihood ratio test.  Detectors formulated using the likelihood ratio offer several 

key advantages: the detectors tend to minimize the risk associated with incorrect decisions and lead to 

constant false alarm rate detectors.  If ƒ(x | H0) and ƒ(x | H1) are the conditional probability distribution 

functions of the spectrum x under the two hypotheses, the likelihood ratio test is given by: 
 

 
 

where the declaration of target present (rejection of the null hypothesis) can be made when the 

likelihood ratio exceeds the threshold η.  The threshold determines the performance of the detector 

where the errors (misses and false alarms) should remain low and the correct decisions (hits and 

rejections) high.  It is the compromise between two competing criteria – a low threshold to keep the 

probability of detection high and a high threshold to keep the probability of false alarms low.  Due to 

the low abundance of targets – the detectors are geared to maximize only the probability of detection 

while keeping the false alarm rate under a predefined system tolerance.  Autonomous detectors must 

determine the threshold automatically under noise and background variations and keep the false alarm 

rate constant as the conditions change.  These detectors have desirable properties and are deemed 

CFAR detectors – CFAR detectors require modeling the detection statistic in the absence of targets in 

order to maximum the probability of detection of the system to a given false alarm rate. The threshold 

η is determined from the conditional probability of the detection statistics given the null hypothesis - 

where the right-tailed conditional probability is at the desired false alarm rate.  The threshold η is given 

by: 



 

 
 

Since the parameters of the conditional probabilities of the spectrum under the two hypotheses are not 

known and must be estimated from the data using their maximum likelihood estimates, the detection 

test is formulated using the generalized likelihood ratio. 

 

2.2 CFAR ADAPTIVE DETECTORS IN STRUCTURED BACKGROUNDS 
 

The competing hypotheses
12,13

 for structured background adaptive subpixel detectors are: 

 

 
  

where the matrix TB is the concatenation of the target and background endmembers.  The detection is 

equivalent to choosing between the fits of two models: the linear mixture model using background 

endmembers only or the linear mixture model using the target and background endmembers.  The 

generalized likelihood ratio test (GLRT) of the observed spectrum x is the ratio of the goodness of fit 

between the reduced model and full model and is given by: 
 

 
 

where  is the orthogonal projection onto the column space of the matrix A given by: 
 

. 

 

The orthogonal projection operator returns the residual vector between the original and column space 

projected vector.  The magnitude of the residual vector is the sum of the squared errors between the 

original and projected vector.  The numerator of the GLRT detector nulls/suppresses the background in 

the observed spectrum by projecting onto a subspace orthogonal to the background hyperplane; where 

the resulting residual vector can be conceived as potential target-like contribution.  The denominator of 

the GLRT detector nulls/suppresses the target and background in the observed spectrum; the residual 

vector is the error term (w).    If the observed spectrum is background only the detector statistic will 

yield a value near 1.0, if the observed spectrum contains a mixture of target and background the 

detector statistic will yield a value greater than 1.0. 
 

2.3 INVARIANT TARGET DETECTION 
 

The Healey-Invariant algorithm
15

 was originally developed for the detection of a target spectrum under 

any illumination or atmospheric conditions.  After using a physics-based radiative propagation model 

to predict the sensor reaching radiance of the target under a variety of conditions one can create a 

target subspace that spans this variability.  The detector employing the invariant target subspace 

becomes increasingly more robust during detection since it has accounted for the expected in-scene 

variability of the targets.   

 

O’Donnell et al.
16,18

 extend the invariant algorithm to the problem of gas detection since the spectral 

signatures of gases vary with concentration, temperature, mixture ratios, and backgrounds.  They use 

the forward model to predict the sensor reaching radiance of gases in both absorption and emission 

over a specified set of gas concentrations and gas/surface temperature differences.  The radiometry 

model of a gas and surface radiance mixture is inherently nonlinear but can be expressed in linear form 

using an estimate of the background.   In their approach the physics model used to generate the gas 

target radiance manifestation as seen by the sensor is: 

 

 
 



 
 

where the surface is modeled as a blackbody with the mean of the maximum spectral brightness 

temperature of a region of pixels assumed free of the target gas.  They employ the GLRT for each 

candidate gas species by modeling and characterizing the background using basis vectors generated 

from a target-free region representative of the background constituents.  

 

2.4 TARGET AND BACKGROUND CHARACTERIZATION 
 

Adaptive subpixel detectors
5,15

 utilized in this study employ subspaces to characterize the invariant 

target and background spaces.  The goal is to calculate a small set of basis vectors that span the 

variability in the physical model of the target spectra and the set of background (target-free) spectra 

selected from the input hyperspectral scene.  Singular value decomposition (SVD) provides a 

factorization of the hyperspectral data arranged as columns of the matrix Y: 

 

 
 

   
 

 
 

where the matrix U contains the left singular vectors that span the range [column space] of the 

hyperspectral data in Y.  The column space of a matrix gives the set of all possible linear combinations 

of its column vectors; in terms of the hyperspectral data matrix the column space represents all 

possible mixtures of the spectra.  SVD returns a set of orthonormal basis vectors that span the convex 

hull of background or target spectra; the left singular vectors in U for either the target or background 

space should be selected to explain a high percentage of the overall variability. 

 

3 APPROACH 

 

3.1 SUBSPACE CLUSTERING 
 

The goal behind subspace clustering
21

 is to find several lower dimensional subspaces where each 

subspace represents a subset of the points in the n-dimensional space.   The points will tend to cluster 

along several lower dimensional subspaces where fewer basis vectors can be used to span the points; as 

opposed to using a single set of basis vectors that span all of the points in a subspace of higher 

dimensionality.  Subspace clustering should offer several advantages in hyperspectral target detection.  

It provides access to discovering the endmembers of the real-world/in-scene linear spectral mixtures 

within the hyperspectral dataset rather than permitting all possible combinations of a single set of 

endmembers that may or may not be applicable across the entire hyperspectral scene.  Also, lower 

dimensional subspaces tend to limit the risk of target leakage into the background subspace – 

employing higher dimensional subspaces [than necessary] tend to increase the risk of the background 

and target spaces overlapping.  In this research, subspace clustering is utilized to improve the 

generation of the target manifestations and background characterization.  The hyperspectral pixels 

containing plume contributions should cluster near their representative background constituents due to 

the optically thin nature of gaseous plumes.  The background subspace for each cluster partition is 

generated from an autonomously selected set of target-free spectra; in addition the mean value of the 

target-free spectra set is used as the surface self-emission in the gas target manifestation.  It is believed 

that the customized target and background subspaces generated for each cluster partition should 

provide a more sensitive detection. 

 

3.2  K-MEANS PROJECTIVE CLUSTERING 
 



Points are assigned to the subspace Si where the distance between the observation x and its closest 

point   in the available set of subspaces .  The distance between the observation x 

and the subspace Si is given by: 

 

 
 

where  is the projection onto the subspace given by: 

 

. 

 

The observation x is assigned to the subspace yielding the minimal distance; note the distance can also 

be determined from the orthogonal projection operator given by: 

 

. 

 

Following the assignment of the points to their closest subspaces resulting in a partition of the data into 

clusters, the individual basis vectors that span the points in the cluster (Pi) is given by the singular 

value decomposition of the points in the cluster: 

 

 
 

where the first qi left singular vectors of U are chosen as the basis vectors for the cluster. 

 

Algorithm: K-Means Projective Clustering (fixed dimensional subspaces) 

 

 Input: : set of  n points in d-space. 

  : set of dimensions for each of the k cluster partitions 

 

Output:  where  : points are partitioned into k clusters 

 

: randomly assign input points to one of the k cluster partitions  

 

While ( convergence condition not satisfied ) do 

 Compute the optimal subspace for each cluster partition 

 For i = 1 to k do 

   : compute the SVD of the points in the cluster 

   : select the first qi singular vectors of U to span cluster 

 End 

  : form the set of subspaces that span the k clusters 

 Assign the points to the nearest subspace 

 For i = 1 to n do  

   
     : assign point to the j

th
 cluster partition 

  End 

End 

Return  

  

3.3 AUTONOMOUS IDENTIFICATION OF BACKGROUND SPECTRA 
 

In order to prevent target leakage into the background subspace, target pixels should be removed from 

the set of spectra used to characterize the variability of the background.  Since the first step in target 

detection involves a step to suppress the background any inclusion of target spectra will inhibit the 

detection.  Often an area containing a representative set of the material constituents presumed free of 

targets is selected to characterize the background.  During this research an algorithm to autonomously 



identify the likely background spectra in each cluster partition was developed and used.  The intent of 

the algorithm is not to identify all target-free locations with the input scene but to identify the 

representative set of background constituents. 

 

Algorithm: Background Likely Ratio Test (BLRT) 

 

 Input:  and target gas specimen 

 Output:  : set of background likely locations 

 

 : threshold gas specimen emissivity to identify spectral location free 

from dominant gas absorption or emission effects.  

 

For each  do                   ; loop over each partition 

 For each  do     ; for each spectra assigned to the partition 

 : Invert Planck’s equation to calculate 

maximum spectral brightness temperature in  

   End 

    
 : compute histogram of the temperatures of the 

pixels assigned to the current cluster 

 : get the bins that occupied in the histogram 

Foreach j in (idx)) do 

 

 ; Compute representative background spectra compute either blackbody 

; using surface temperature estimate or mean spectra of the locations 

 ; previously marked background 

 

 : find the spectra assigned to this temperature 

bin that have been previous marked as background 

If   then 

 : compute blackbody using temperature of 

histogram bin j 

 Else 

 : compute mean spectra of the location 

in the current partition 

 End 

 

 : create target gas radiance using surface 

estimate 

 

 : compute basis for target subspace 

 : merge surface vector and target subspace 

 

; compute the background likelihood ratio test for each pixel assigned  

; to the partition 

For each  do     

  
    End 

 

 : identify locations as background likely if under 

threshold 

End 

 



Repeat/Refine with second pass and merge results 

  End 

 

The output of the BLRT statistic for the DIRSIG model scene containing a strong release of Freon gas 

is shown in Figure 3.3.1. 

 

   
 

Figure 3.3.1. Plot of the BLRT statistics for DIRSIG modeled scene that includes a plume of Freon-114 gas released at 50 
g/s.  The BLRT statistics for plume locations are highlighted in yellow for the first and second pass of the background 

identification algorithm.  The second pass of the algorithm boosts the background statistic and should increase the 

separability of strong target contributions and backgrounds. 

 

4 RESULTS AND ANALYSIS 

 

The performance of the algorithms employed in this project was tested against DIRSIG scenes having 

the same background scene elements but different gas target configurations.  The input scenes were 

atmospherically corrected in a previous step; it should be noted that this can hinder the detection since 

the targets are optically thin – atmospheric correction could alter the target spectral signature and 

would diminish the likelihood of detecting atmospheric gases with the scene (e.g. ammonia). 

   

Each DIRSIG scene was run through the subspace clustering step using a fixed dimensional subspace 

of three where the maximum number of partitions to return was set to twenty.  The target detection 

utilized a reduced set of target (10) and background (minimum 10 and maximum 15) basis vectors.  

The target gas concentrations ranged from 0.1 [ppm m] to 3000 [ppm m] and temperature difference 

with the surface up to ± 30 [K].  The subspace partition’s background likely locations were identified 

using the two pass BLRT algorithm with ψ = 0.01, κ = 1.5 [Kelvin] and φgas = 1.7/1.9.  For each gas 

specimen in the candidate gas library, customized target and background subspaces were built for each 

partition in the input scene prior to the detection algorithm.  The resulting GLRT detection cube was 

normalized using: 
 

 
 

 
 

Table 4.1: DIRSIG scene gas configurations 

Scene Number of Plumes Gas Species Release Rate 

Case 2 2 NH3 – Ammonia, F114 – Freon 114 50 [g/s] 

Case 3 1 F114 – Freon, TCE1122 - Tetrachloroethane 50 [g/s] 

Case 4 2 NH3 – Ammonia, F114 – Freon 114 0.25 [g/s] 

 



 

Table 4.2: Enumeration of the gas species in GLRT detection cube 

GLRT Index Gas Name GLRT Index Gas Name 

0 Fluorobenzene (C6H5F) 4 Ammonia (NH3) 

1 1,2-Dichloropropane (DCLP12) 5 Phosgene (PHG) 

2 Freon-114 (F114) 6 Sulfur hexafluoride (SF6) 

3 Freon-125 (F114) 7 Tetrachloroethane (TCE1122) 

 

4.1 CASE 2 ANALYSIS 

Case 2 is a DIRSIG simulation of a SEBASS hyperspectral collection of a scene containing two 

separate plumes containing strong gas releases of Freon and ammonia – the input dataset contained 

128 bands in the LWIR spectral range: 7.518 µm – 13.605 µm. 

 

  
Figure 4.1.1. A band at 10.73 µm from the test scene that has been atmospherically corrected (left).  The subspace cluster 
map depicts the partitions after 5 iterations [note the two plume structures].  The algorithm returned 5 partitions for the 

input hyperspectral scene (right).  

 

  
Figure 4.1.2. The normalized averaged GLRT statistic for a small area near the release point of the two plumes – the 

normalized GLRT statistic [plotted on the left] depicts Freon-114 as the most likely gas which corresponds to the truth 
data.     The normalized GLRT statistic [plotted on the right] depicts Ammonia as the most likely gas which corresponds to 

the truth data. 

 

  



Figure 4.1.3. The normalized GLRT statistic for a successful Freon-114 detection is displayed on the left – the binary map 

used to identify spectra locations used in the characterization of the variability in the background is shown on the right. 

 

  
Figure 4.1.4. The normalized GLRT statistic for a successful Ammonia detection is displayed on the left – the binary map 

used to identify spectra locations used in the characterization of the variability in the background is shown on the right. 

 

4.2 CASE 3 ANALYSIS 

Case 3 is a DIRSIG simulation of a SEBASS hyperspectral collection of a scene containing a single 

plume containing a mixture of Freon and tetrachloroethane in a strong gas release configuration – the 

input dataset contained 80 bands in the LWIR spectral range: 7.98 µm – 12.004 µm.  It is expected that 

the detection of tetrachloroethane should be impaired since several significant gas features outside the 

12.004 µm spectral range have been excluded in the dataset. 

 

 

  
Figure 4.2.1. A band at 11.04 µm from the test scene that has been atmospherically corrected (left).  The subspace cluster 

map depicts the partitions after 5 iterations [note the single plume structure].  The algorithm returned 6 partitions for the 

input hyperspectral scene (right).  
 

 
Figure 4.2.2. The average normalized GLRT statistic for a small area near the release point of the single two gas 

constituent plumes – the normalized GLRT statistic depicts Freon-114 as the most likely gas which corresponds to the truth 
data.     However the second gas in the plume, tetrachloroethane was not sufficiently identified since the spectral bands 

excluded several significant gas features outside 12.004 µm. 

 



  
Figure 4.2.3. The normalized GLRT statistic for a successful Freon-114 detection is displayed on the left – the binary map 

used to identify spectra locations used in the characterization of the variability in the background is shown on the right. 

 

  
Figure 4.2.4. The normalized GLRT statistic for the detection of tetrachloroethane is displayed on the left – the binary map 

used to identify spectra locations used in the characterization of the variability in the background is shown on the right.  

The GLRT detection shows the expected minimal response in the locations of the plume. 

 

4.3 CASE 4 ANALYSIS 

Case 4 is a DIRSIG simulation of a SEBASS hyperspectral collection of a scene containing two 

separate plumes containing weak releases of Freon and ammonia – the input dataset contained 128 

bands in the LWIR spectral range: 7.518 µm – 13.605 µm are included in the dataset.  It is expected 

that the detection of ammonia should be impaired since the dataset has been atmospherically corrected 

prior to detection.  Since ammonia is an atmospheric gas, atmospheric correction may alter the spectral 

signatures of the locations containing ammonia contributions. 

 

   
Figure 4.3.1. A band at 10.73 µm from the test scene that has been atmospherically corrected (left).  The subspace cluster 

map depicts the partitions after 5 iterations [note no plume structures].  The algorithm returned 8 partitions for the input 
hyperspectral scene (right).  

 



  
Figure 4.3.2. The average normalized GLRT statistic for a small area near the release point of the two plumes – the 

normalized GLRT statistic [plotted on the left] depicts Freon-114 as the most likely gas which corresponds to the truth 

data.     The normalized GLRT statistic [plotted on the right] depicts Ammonia as the most likely gas which corresponds to 
the truth data. 

 

   
Figure 4.3.3. The normalized GLRT statistic for a successful Freon-114 detection is displayed on the left – the binary map 
used to identify spectra locations used in the characterization of the variability in the background is shown on the right. 

 

   
Figure 4.3.4. The normalized GLRT statistic for a successful Ammonia detection is displayed on the left – the binary map 

used to identify spectra locations used in the characterization of the variability in the background is shown on the right. 

 

 

5 CONCLUSIONS 

 

The detection and constituent analysis of gaseous plumes are important concerns in environmental 

monitoring and national security and poses a unique challenge to the airborne remote sensing 

community.  This study investigated the use of subspace clustering and its application/extension to the 

gas detection algorithm proposed by O’Donnell.  It has been demonstrated that subspace clustering can 

improve the detection of gas effluents since it provides a tool to solve two closely related problems 

inherent to the invariant method.  Subspace clustering allowed the development of an algorithm to 

autonomously identify background pixels in each subspace partition – then use the subsequent set of 

locations to improve the estimate of the surface self-emission.  It has been verified experimentally that 

using the mean value of the background likely spectra can improve the detection and has been 

demonstrated by the boost in the detection statistic in the second pass of the background identification 

algorithm.  The algorithms developed in this study were shown to be effective in detecting the target 

gases in each DIRSIG scene. 



APPENDIX A: GAS DETECTION RESULTS - UNNORMALIZED GLRT STATISTIC 

 

 

 
Figure A1. Fluorobenzene detection map for 

DIRSIG Case 2. Max value = 2.35 

 

 
Figure A2. 1,2-Dichloropropane detection map 

for DIRSIG Case 2. Max value = 2.36 

 

 
Figure A3. Freon-114 detection map for DIRSIG 

Case 2. Max value = 71.8 

 

 
Figure A4. Freon-125 detection map for DIRSIG 

Case 2. Max value = 4.26 

 

 
Figure A5. Ammonia detection map for DIRSIG 

Case 2. Max value = 3.52 

 

 
Figure A6. Phosgene detection map for DIRSIG 

Case 2. Max value = 3.01 

 

 
Figure A7. Sulfur hexafluoride detection map for 

DIRSIG Case 2. Max value = 2.09 

 

 
Figure A8. Tetrachloroethane detection map for 

DIRSIG Case 2. Max value = 2.14 

 



 
Figure A9. Fluorobenzene detection map for 

DIRSIG Case 3.  Max value = 4.33 

 

 
Figure A10. 1,2-Dichloropropane detection map 

for DIRSIG Case 3. Max value = 2.34 

 

 
Figure A11. Freon-114 detection map for 

DIRSIG Case 3. Max value = 50.6 

 

 
Figure A12. Freon-125 detection map for 

DIRSIG Case 3. Max value = 4.20 

 

 

 

 

 
Figure A13. Ammonia detection map for DIRSIG 

Case 3. Max value = 1.98 

 

 
Figure A14. Phosgene detection map for DIRSIG 

Case 3. Max value = 2.19 

 

 
Figure A15. Sulfur hexafluoride detection map 

for DIRSIG Case 3. Max value = 2.43 

 

 
Figure A16. Tetrachloroethane detection map for 

DIRSIG Case 3. Max value = 2.78 

 



 
Figure A17. Fluorobenzene detection map for 

DIRSIG Case 4. Max value = 2.30 

 

 
Figure A18. 1,2-Dichloropropane detection map 

for DIRSIG Case 4. Max value = 2.66 

 

 
Figure A19. Freon-114 detection map for 

DIRSIG Case 4. Max value = 73.3 

 

 
Figure A20. Freon-125 detection map for 

DIRSIG Case 4. Max value = 3.56 

 

 
Figure A21. Ammonia detection map for DIRSIG 

Case 4. Max value = 3.40 

 

 
Figure A22. Phosgene detection map for DIRSIG 

Case 4. Max value = 3.67 

 

 
Figure A23. Sulfur hexafluoride detection map 

for DIRSIG Case 4. Max value = 2.19 

 

 
Figure A24. Tetrachloroethane detection map for 

DIRSIG Case 4. Max value = 2.14 
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