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AN EXAMINATION OFDISTRIBUTIONALASSUMPTIONS

IN

LANDSAT TM IMAGERY

by

Elizabeth G. Frey

ABSTRACT

The first portion of this study checked water, vegetation, and urban class features

ofLANDSAT TM data for univariate normality using Pearson's system of frequency

curves. Results indicated that of the 144 image bands tested 135 were determined to be

normal in distribution. The second part of the study developed an image generator that uses

the mean, covariancematrix and intraband correlation ofLANDSAT TM images to create

synthetic class scenes. Imagery composed ofmultiple synthetic class scenes, which

ranged from normal to non-normal in their distributions, were classified using a maximum

likelihood classifier. No significant difference in classification accuracy was found

between the normally distributed data and the non-normal image data.
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1.0 INTRODUCTION

The advent of satellite imagery can be likened to opening the floodgates of the

Grand CouleeDam. Out spilled an unprecedented amount of data in to a community little

prepared to handle it. Faced with analyzing massive quantities of data, the remote sensing

community quickly adapted preexisting statistical algorithms tomake the process more

efficient.

One of the first statistical processes adopted by the field of remote sensing was

discriminant analysis, otherwise know as classification theory. A classification algorithm

assigns data from an unknown population to one of several known alternative populations

based on themeasurements from the unknown data1. This quantitative decision-making

procedure is well suited to today's image data when performed by a computer. The output

of this process is a thematic map in which every pixel from the input image is classified

into several themes or classes2. Thematic maps have proven to be useful to agriculture,

urban and military planners.

Present day classification maps are often derived from multispectral data. While

multivariate data analysis increases the power of a classifier, it also make the process more

complex. In order to simplify the process among parametric classifiers, the remote sensing

community has adopted the assumption that image data is generally normally distributed3.

While there has been extensive research in the field of remote sensing regarding

classification accuracy, no study has been conducted to validate the assumption regarding

normality.

The intent of this study is to check for univariate normality and to determine how a

parametric classifier performs on multivariate non-normal image data. This first objective

is achieved by testing real image data for univariate normality via the first fourmoments of

the class distribution. The second objective is accomplished by creating a series of

multivariate non-normal synthetic images and classifying them using a parametric classifier



(maximum likelihood classifier). This study involves the theoretical development
of the

synthetic image generator and implementation. The goal of this work is to characterize the

univariate distribution of real LANDSAT TM data, as well as establish the robustness of a

parametric classifier.

1.1 Historical Background

The roots of discriminant analysis can be traced back to the fifth century BC when

the historian Thucydides noted that the Athenians used averages andmodal values to

estimate their risk before entering warfare. These early scholars noticed that certain events

usually had the same results. Aristotle summarized this by noting that "some things always

come to pass in the same way", which foreshadows today's modern probability language4.

Howevermodern discriminant analysis didn't begin until the first part of this

century. Early work involved establishing a parameter to measure the divergence between

different distributions. These first attempts at distinguishing between different populations

took the general form of:

^^ (1-D

Karl Pearson was one of the first mathematicians to incorporate this formula into his work.

In 1921 he proposed a measurement he termed the "coefficient of radical likeness
(CRL)"

which he expressed as:

nin2 cy v VC"1

n! + n2

(X1-X2)'S-(X1-X2) (1.2)

In the above formula, X, represents a sample mean vector from population i = 1,2, ni the

sample size, and
S"1

the pooled sample covariance. His work caught the attention of others



in the field of discriminant analysis including Mahalanobis who in 1927 presented a very

similar formula:

D^CX-X^'S-1^-^) (1.3)

which uses the sample squared distance (D^) between two populations to separate different

populations5.

At about the same timeMahalanobis was derivingD^, Fisher suggested a univariate

approach tomultivariate discriminant analysis. He proposed creating an optimum linear

combination (later called a "linear discriminant function") of a distribution's components

which maximized the squared distance between the means. This resulted in a univariate

representation of amultivariate population where the univariate means are separated as

much as possible relative to the populations variance6. This expression is expressed as

follows:

y0
= (X-X2)'S-1X0 (1.4)

All of these works attempted to separate different populations based on the means

and the spread of the distributions. These are the same principles which govern today's

modern classification algorithms as will be demonstrated in Section 1.3.



1.2 Characterizing Remotely Sensed Data

Early multivariate discriminant analysis was used primarily in the field of

anthropology and geology7. The success of this research can be attributed to the fact that

the populations under study were well defined and separable from one another. The same

attributes are desirable in remotely sensed imagery where multispectral signatures of

specific ground cover classes cluster together to form distinct patterns. Showengerdt

(1983) explains that the observed patterns are caused by the spectral properties of different

surfacematerials. These spectral signatures are best characterized not as a single curve but

as a family of curves whose shapes map out a spectral envelope that corresponds to a

specific ground-cover class (Figure 1). The variability of these spectral signatures within

the envelope can be caused by number of natural factors. Among the most prominent are

atmospheric scattering, texture of land surfaces, sun and view angles8.

8
e
CQ

c
c_i

Wavelength pm

Figure 1 Statistical variation of reflectance for vegetation.



However, distinctive spectral shapes of ground features do not ensure an accurate

classification. Consider Figures 2.0 and 2.1. Figure 2.0 displays three class features that

could be separated (i.e. classified) successfully using a simple thresholding technique.

This classification methodwould not work as well with Figure 2.1 since the soil and

vegetation classes overlap. In cases where sample populations overlap a more

sophisticated and accurate classification algorithm is required. Several multivariate

techniques qualify for these cases and will be discussed in the next section.
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1.3 Current Remote Sensing Classification Algorithms

There are essentially two categories of classification algorithms: supervised and

unsupervised classification. The first requires the user to select a representative sample of

each feature of interest ( e.g. vegetation, water, soil) and determine its spectral signature.

Image pixels most resembling a feature in vector space are assigned to that class according

to some decision rule. The second procedure uses no training data, but rather relies on a

computer algorithm to determine naturally occurring clusters of feature vectors. This is

called unsupervised training, where the computer picks the number and type of class

signatures from parameters selected by the operator. The decision ofwhich training

procedure to use depends on the types of features under consideration, and the desired

degree of accuracy9.

1.3.1 Supervised Multivariate Classification

Once the type of classification method has been selected, one of two decision

making algorithms can be selected. These are parametric and nonparametric computer

algorithms. A parametric classifier assumes a particular statistical distribution, usually a

normal distribution, while a nonparametric algorithm makes no such presupposition. An

example of the later is the minimum distance to the mean classifier. Pixels are compared to

the mean vectors in feature space, and assigned to the class with the shortest Euclidean

distance. While theminimum distance to themean classifier uses less machine time it does

not behave well when the natural variability of spectral signatures cause features to overlap

one another. This phenomenon is illustrated in Figures 3.0 and 3. 1. In Figure 3.0 the

shortest Euclidean distance is between the candidate pixel andM2, resulting in the pixel

being classified to class 2. However if the candidate pixel actually belonged to a class with

a large variance (Figure 3.1), a classification error would occur because the minimum

distance to the mean classifier does account for variability in the image data.
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Figures 3.0 and 3.1 Minimum distance to the mean classifier

The variability of the sample distribution is taken into account by another classifier;

the parallelepiped classifier. This algorithm determines the range of each class, which in

the two dimensional example shown in Figure 4, is represented by a rectangle surrounding

the data. Unknown pixels are classified according to what boundary the samples fall

within. This classifier is as fast as the minimum distance to the mean classifier, but has the

same difficulty classifying overlapping spectral signatures. In addition this classifier does

not handle highly correlated data well. In Figure 4 class 4 depicts a ground feature sample

from two highly correlated bands. The resulting ellipsoidal shape of the correlated data

forces the range of the parallelepiped boundaries to increase thereby overestimating the size

of the classification region. This increases the possibility of amisclassification error by

claiming pixels that belong to another classes. While this classifier can be modified to

improve its accuracy with correlated data10, it still can notmatch the accuracy of the

parametric classifiers.
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Parametric classifiers are widely used in the remote sensing community, the most

common being the maximum likelihood classifier. This algorithm is considered to be more

accurate since it's decision making process is based on the probability of a pixel belonging

to a particular class. Simply put, each pixel of an image is treated like a column vector of

brightness values. If the spectral classes of interestwithin an image can be represented by

cor r
= i,...M (1.5)

where M represents the number of classes, then the classification of vector x using a

parametric model becomes strictly a matter of comparing conditional probabilities of theM

classes. Each conditional probability p(corlx),r = 1,...M gives the likelihood that vector x

belongs to a particular class. The multivariate probability distributions can be established

from the land cover training data. Final vector assignment goes to the class with the largest

conditional probability (1.6).
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x0)r ifp(corlx))p( coslx) for all r * s (1.6)

The above formula (1.6) can bemodified to include apriori probabilities i.e. the

probability p(C0r) that a spectral class C0r occurs in an image. This Bayesian approach can

be written as follows:

p(corlx) = p(x|cor)p(cor)/p(x) (1.7)

In equation (1.7) the probability p(x) is the probability of finding a pixel from any class at

the location x. The probabilities p(corlx) are called theposteriori probabilities because

they are the probabilities of x belonging to a class cor after a decision has been made.

Since p(x) is a common factor in (1.7) it can be removed and the above expression

rewritten as

xeo_rifp(x|cor)p(cor)>p(x|cos)p(cos)forall r*s

(Lo)

The decision rule in (1.8) is more acceptable since the conditional probabilities can

be obtained from the training data and the classification analyst can approximate the apriori

values(p(cor)) from the image. Note: a priori values are often assumed to be equal.

Formathematical convenience, gs(x) can be written as

gs(x)
= ln{p(xlcos)p(cos)}

= ln{p(xlo)s)} + ln{p(cos)}
(1.9)

and the decision rule rewritten as:

x e cor if gr(x) > gs(x) for all r * s (1.10)



In this form, the formula (1.10) becomes the decision rule (or discriminant

function) for a univariate model. Sincemost classification processes use multivariate data

that is assumed to be normally distributed, the formula for a multivariate conditional

probability can be written for N spectral bands as:

p(xlcor) =
1

n rexp

(27t)2IZI2

(p'-M%H*-v,i

(LU)

where p and Zr are the mean vector and covariance matrix for a given class. The premise

that the training data originates from a normal population is the subject of this thesis. Both

the assumption of normality expressed in (1.11) and the robustness of its descriminant

function (1.13) were tested during the course of this study.

The discriminant function gr(x) shown in (1.10) can be written as:

gr(x) = lnp(o)r) - |lnllrl -(.x-\it)tI.-1(x-\LT) (1.13)

If no a priori probabilities are available, then this formula reduces to

gt(x)
=
-lnlZrl-^(x-pr),2:;1(x-pr) (1.14)

This final formula (1.14) was the one used for the image classification portion of

this thesis. It presupposes a normal distribution and treats all apriori probabilities as

being equal11.

10



1.3.2 Unsupervised Multivariate Classification

In the previous classification examples, the selection of class features is required

prior to image classification. The opposite is true in unsupervised classification, where

classes are chosen after the classification process according to the natural grouping or

"clustering"

of the sample vectors in sample space12. Each cluster represents a probability

distribution for one class that is spectrally separable from other features. Determining the

relationship between the clusters in vector space and the actual image data is the

responsibility of the analyst.

There are many clustering algorithms and all share the characteristic ofminimizing

the distances between the points within a cluster, and maximizing the spacing between

clusters. One widely used clustering algorithm is
"sum-of-the-square-error"

criterion.

This is defined by the expression:

SSE =
^llx-plll2

(1.15)
i-1 xsc,

where pi represent the mean vector of a cluster andQ denotes the set of data point

belonging to the cluster (Note II x -

pi II represents the minimum Euclidean distance

between x and pi). This algorithm works by continually changing the mean of the clusters

and determining Euclidean distance between the points and the means. Once a minimum

Euclidean distance is reached the process is halted since the vectors are as
"tight"

as

possible and therefore the most
separable13- Figure 5 a-c demonstrates this iterative

process of determining the minimum distance between the sample point and the mean.

1 1
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2.0 IMAGE SELECTION

2.1 Multispectral LANDSAT Thematic Mapper Images

This study's analysis of univariate normality was conducted on real LANDSAT TM

images. Each image contains seven bands covering visible through reflected infrared

radiation with one additional band sensitive to the thermal infrared portion of the spectrum.

The specific spectral bands of this TM imagery are shown in Table 2. 1 and were taken

from Freden and Gordon (1983).

This thesis did not use the thermal infrared portion of the spectrum (band 6)

because the spatial resolution of this band differs from the other six and it is not typically

correlatedwith the other LANDSAT bands. All the TM imagery used here was corrected at

the ground processing facility for the following conditions (Table 2.2) according to Freden

and Gordon (1983)14.

BANDS RANGE(pm)

1 0.45-0.52

2 0.52-0.60

3 0.63-0.69

4 0.76-0.90

5 1.55-1.75

6 10.4-12.5

7 2.08-2.35

Table 2. 1 Thematic Mapper sensor bands

13



Radiometric Error Correction 1 quantum level over full range

Geometric Error Correction 0.5 sensor pixels

Temporal Registration Error 0.3 sensor pixels

Table 2.2 Residual Error after LANDSAT Parameter Correction

2.2 Subscene Locations

Eight subscene images were selected for this study. Each image measures 512 x

512 pixels and contained urban, vegetation and water features. They were purposely

selected from different locations within North America to provide statistical diversity

among the class samples. The pertinent image data is summarized in Table 2.3.

CITY DATE

IMAGE

SIZE TAPE ID

PIXEL

COORDINATES*

San Francisco CA August 12, 1983 512x512 1409 1900, 1200

Charleston SC November 9, 1982 512x512 2583 3700, 4150

Washington DC November 2, 1982 512x512 1916 2500, 2775

BaltimoreMD November 2, 1982 512x512 1916 3500, 1000

Toronto Canada Mav 24, 1985 512x512 NA NA

Buffalo NY June 22, 1984 512x512 NA 900, 2750

Rochester NY September 13, 1982 512x512 NA 2390, 2727

Hartford CT NA 512x512 NA NA

* Row and column of the upper left corner of the 512 x 512 pixel subscene

Table 2.3 LANDSAT TM Scene Location Data

14



3.0 UNIVARIATE DATA ANALYSIS

3.1 Pearson's Systems of Frequency Curves

This study's check for normality ofLANDSAT images began with a selection of

water, urban and vegetation samples from each of the eight test images described in Section

2.0. Each sample was checked for univariate normality using Karl Pearson's System of

Frequency Curves. This system is described byW. P. Elderton in his book Systems of

Frequency Curves (1969,. Pearson, he states, developed a method of determining what

distribution a sample was selected from based on the first fourmoments of the sample.

His theory began with the simple differential equation shown in (3.1).

ldys -(x + a)
(31)

ydx
CQ+CT+C2

Pearson reasoned that the constants co, ci, C2 could be viewed as parameters that controlled

the shape of a distribution or family of distributions. Since the moments of amathematical

function define the shape of the curve, Pearson solved the above differential in terms of the

first fourmoments. This was accomplished by first expressing the moments as ^ and (32

(3.2) and then relating them to the constants co, ci, C2 by the expressions seen in (3.3).

fr=^ P2=^f (3-2)
H-2 r-2

where p2, p3, p
= the second, third and fourth moments respectively

0

2(5(3,-6^-9)

15



JE<k?La (3.3)1

2(P2-6fr-9)

2(32
- 3 - 6

2(5(3,-6^-9)

c2=_._L'

..
-o

In his work, Pearson defined seven main
"types"

of distributions, each ofwhich

encompasses a family of distributions. A list of these types are shown in Table 3.1. Six

ofPearson's types represent known sampling distributions (Table 3.1). Because the

collection ofPearson's
"types"

originate from the same differential equation, the different

solutions are continuous across the boundaries of the types. The lack of discrete

boundaries is apparent in the fa , (32 field as shown in Figure 6. Pearson, in an effort to

simplify distributional assignments, collapsed the fa , p2 field into a one dimensional k

space using the formula seen in (3.4)15. k values were used in this study to determined the

normality of LANDSAT TM samples are reported in Section 6.1.

k =
P^ + 3)

(3.4)
4(2p2-3p1-6)(4p2-3p1)

16



Type Description of Sampling Distribution Equation

Typel the distribution of two independent % variables c(i +

ai a2

for -

ai < x < a2

Type 2 the distribution of the correlation between two

independent normally distributed populations

x2

c(l-V"

zr

for -

a < x < a

Type 3
2

% distribution
mx

ce
a
a +

a

for -

a < x < oo

Type 4 represents no known sampling distribution
x2

-btan_1(-)

c(l + 2L)-me
az

for - oo < x < oo

Type 5 y distribution

X

-am

c(l + ex+a

a

for -

a < x < oo

Type 6 distribution of the variance ratio i.e. F distribution c(l + )_qi(l + )_q2

al a2

for -

aj
< x < oo

Type 7 distribution of the student ratio i.e. t distribution

x2

c(l +
^__)-m

a2

for - oo < x < oo

Table 3.1 Pearson's seven
"types"

of distributions where:

c= a constant to make the area under the curve equal to one

m, a, q
= constants

17



02 X_= X distribution, where k represents the

degrees of freedom

= normal distribution

= uniform distribution

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Pi

Figure 6 Pearson's P; , P2 field
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Pearson's System ofFrequency Curves can be used to check for normality

or to determine the distribution of the data under analysis. For example, consider Table

3.2 which lists the number of unexpired insurance policies against the frequency of policy

holders:

Unexpired Policies in Terms

ofYears

Frequency ofPolicy

Holders

0-4 11

5-9 116

10-14 274

15-19 451

20-24 432

25-29 267

30-34 116

35-39 16

Table 3.2 Distributional Data for a Normal Population

From the data listed in Table 3.2 the first fourmoments can be calculated The results for

P! through p4 are listed below along with fa, P2, and k:

^
= 19.99 p2= 1.829 p3

= 0.12 p4
= 8.52

P, = 0.002 p2 = 2.54 k = -0.007

19



Reviewing Pearson's distributions, k values with an absolute value less than or equal to

0.92 are considered to have originated from a normal distribution. Since k is close to zero,

the sample represented in Table 3.2 most likely came from population with a normal

distribution. Using Pearson's System ofFrequency Curves it is possible to check a

sample population for normality before analyzing the data. Consider Table 3.3, which lists

eight age groups of policy holders and their frequencies.

Age ofPolicy Holders Frequency ofPolicy

Holders

0-10 1

10-20 50

20-30 168

30-40 100

40-50 36

50-60 10

60-70 2

70-80 0.5

Table 3.3 DistributionalData for a Non-normal Population

p,=0.40 p2=0.92 p3 =0.89 p4=4.08

p! =0.99 P2 = 4.73 k=1.89

The statistics of this distribution indicates that this data sample has been extracted

from a non-normal population.. In fact, the parent population was probably a "type
VI"

distribution which resembles a F distribution. Analysts using this datamay want to review

pending statistical analysis for assumption
of normality (e.g. a test of hypothesis using a z

table).
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The k values were determined for the LANDSAT images listed in Table 2. 1.

Three classes were examined for normality : water, urban, and vegetation. The results of

analysis are listed in Section 5.1.

4.0 MULTIVARIATE SCENE GENERATION

4.1 Overview of Synthetic Image Generator

The robustness of the maximum likelihood classifier was examined by classifying a

series ofmultivariate synthetic images, which ranged from normal to non-normal in their

distribution. Every multivariate synthetic image contained three different classes, each of

which was generated from the covariance matrix (Z) and intraband correlation (p) of real

LANDSAT TM class data.. For example, a class scene representing water in a multivariate

synthetic image would have been generated using the !> and p obtained from a water

sample of a LANDSAT TM image.

The generation of the synthetic class scenes began with the creation of amatrix

which represented the spectral, and to some degree spatial relationship that each pixel

vector had to one another for a given block of LANDSAT TM image data16 . This study

modeled a 5 pixel x 5 pixel x 6 band portion ofLANDSAT TM image data as illustrated in

Figure 7a (Note: each pixel in Figure 7a and 7b represents a six band column vector).

Figure 7b presents a high level look of how the matrix, which will be referred to as the

synthetic image matrix, presented the spectral and spatial relationship of the 25 pixels in

Figure 7a. Every two way pixel vector combination ofFigure 7a is statisticallymodeled as

a function of 2. and p (Figure 7b). Elements on the diagonal represent a pixel's spectral

and intraband correlation to itself. Since the intraband correlation of a pixel vector to itself

is one, the diagonal elements of the synthetic imagematrix were represented only by the
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covariance matrix. Elements off the diagonal were modified by Pjto reflect the intraband

correlation between two specific pixel. Pixels with the same intraband correlation were

arranged in a diagonal format paralleling the main diagonal elements (Figure 7b). For

simplicity, the interband correlation values of the synthetic image data was assumed to be

the same the intraband correlation values.

The synthetic imagematrix used in this study measured 150 x 150. A more detailed

representation of it can be seen in Figure 8. A further description of the how the intraband

correlation coefficients and covariancematrix were determined for he synthetic image

matrix will be shown in the next section.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

5x5 portion of

LANDSATTM pixel

data to bemodeled
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High level representation of

the synthetic imagematrix

= H-Zp! ? = Zp,

Figure 7 High level view of synthetic image generator

Note: each pixel represents a six band column vector
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4.2 Determining Intraband Correlation

Synthetic image generation began by determining the intraband correlation (p) of

the three LANDSAT TM scenes selected to be statistically reproduced for this study. The

values for p were determined in the following manner.

First, an unsupervised classification was conducted on all imagery that contained

scenes of interest. All unsupervised classifications were performed using ERDAS

software. The classifications maps generated during this process were used as image

masks to isolate the features of interest within a LANDSAT TM image on a band by band

basis. The correlation algorithm developed for this study searched for continuous strings

of class data that measured 50 pixels or longer. After locating strings of appropriate

length, pixels contained in the string were grouped the into pixel pairs as shown in Figure

9.

P:

'50-

-Pl

Pixel

1

1
Pixel

2

Pixel

3

PuTST

50

Figure 9 Pixel pairs for determining intraband correlation

The delta spacing for the intraband correlation pixel pairs ranged from 0 (pi) to 49 (p50)-

Intraband correlation was established for both the column and row directions as can be

seen in Appendix A of this document.

The formula used to obtain intraband correlation is show in (4.1)17. Here X and Y

make up one of the pixel pairs whose
correlation is being determined. For example, if the

intraband correlation for p2 was being calculated (Figure 9), for a given band, pixel pairs
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with a delta separation of 1 would be collected from the class of interest. The X variable

would represent pixel 1 and the Y variable would represent pixel 3.

(x_-XXy_-Y)

P*y
=

i=l

I 2
I^-X)2 I(yi-Y)2

.1=1 .i=i

(4.1)

Once the intraband correlation values had been determined as a function of class

feature and spacing between pixel pairs, the p values were used to modify the coefficients

of the covariance matrix to represent the spatial information in the synthetic scene. Pixel

pairs with an integer distance value between the pair (e.g. p2 in Figure 9) simply used the

intraband correlation generated by the formula in (4.1). Pixel pairs whose distance was

represented by a real value (Figure 10) used an interpolation process to determine the

intraband correlation of the pair.

distance between points (1,2) and (4, 5)
> 4

7

\1 r

^
}' p
/

M*

*
S*

i.2
\j(l-5)2+(2-4)2

=4.2

intraband correlation for this

pair will be between p4 and P5

Figure 10 Pixel pairs used to determine intraband correlation

4.3 Sample Covariance

The sample covariance describes the how different bands vary with each other in

relation to the means of their respective bands. This is expressedmathematically as:
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(Qi-xQ)(Ri-xi)
Covqr = Z <4'2>

where Q and R are image data values from two different bands, x represents the mean of

the respective bands and k indicates the number of pixels in a band18.

Covariance coefficients used in this study were obtained with ERDAS software.

They can be found in Appendix B along with the class means.

4.4 Description of Multivariate Synthetic Image Generator

The theory behind this study's image generating algorithm is derived by T.W.

Anderson in his book An Introduction toMultivariate Statistical Analysis (1958).

Anderson describes a method that can be used to create a new multivariate normal

population of a particular mean and spread, from anothermultivariate normal population

which possesses a different mean and spread19. A univariate example of this theory is

described below. If z represents a standardized normal variable

z-n(0,l) (4.3)

a new population can be created from z by adjusting the mean and spread of the z

x = p + cz. (4.4)

The resulting in a new population, x, can be expressed as follows:

x = n(p,o2). (4.5)

The spread of the x population data is created bymultiplying the z values from a

normal population by the square root of the desired variance (
o2

) i.e. the standard

deviation (a). A similar theory could be applied to a multivariate model. If Z represents

a vector of length k comprised of standardized normal variates
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Z =

n(0,I) (4.6)

then the multivariate expression of (4.4) could be expressed as

X = p + PZ. (4.7)

This new population composed of X variables could be expressed as

X =

n(p,Z) (4.8)

where: p= a vector of length k

P= a k x k matrix.

Z = the covariance matrix

The value of P, capable of satisfying the expression in (4.7), can be derived by

decomposing 5. . is a positive definite matrix with eigenvalues XvX2,X3...Xk and

corresponding column eigenvectors Bj ,B2 , B3 . . . Bk each of length k. For the

decomposition of , the eigenvalues will be represented as a k x k matrix (X ), with

eigenvalues along the diagonal and offdiagonal elements equaling zero. Eigenvectors will

also be treated as a k x k matrix ( B) of the eigenvectors presented as column elements.

The decomposition of 2 begins with a well known property of eigenvectors (4.9):

B'IB = X. (4.9)

Since the eigenvectors selected for this research were of unit length
BB'

= l.the left side of

expression (4.9) may be multiplied by B and the right may bemultiplied by B'. After this

process the expression (4.9) becomes:
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BB'ZBB'
=
BXB'

(4.10)

which can be rewritten as

= B\B'. (4.11)

X. can be decomposed further into
X'X'

, where
X*

is a k x kmatrix with -JX^ along the

diagonal and zeros off the diagonal. By substituting
X*X*

for X expression (4.11)

becomes

Z =
BVrB'

(4.12)

If P = B/V*, then the expression (4.12) can be rewritten as

2 = PP'. (4.13)

Having determined the value of P for expression (4.7), the population generated

from (4.7) can be described as follows:

X = n(p,PP'). (4.14)

An overview of how the value P fits into the synthetic image generator can be seen in

Figure 11.
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D^ Jjl

LANDSAT TM

Image, Bands 1- 5, 7

Transpose P and multiply

by a 150 x 1 array of

pseudo-random normally
'

distributed numbers (Z)

P*Z
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w

"a"

3

Pixel( Z , p )
1 2 3 4 5

Determine the

Eigenvector of Z

P

Create 150 x 150 synthetic image matrix using Z

and p. This array statistically describes a 5 pixels

x 5 pixels x 6 bands portion of a LANDSAT scene.

Add mean

P'Z+u

fW
Assign 5 pixels x 5 pixels

blocks of synthetic image

data to appropriate bands.

Repeat process until desired

image size is achieved.

Figure 1 1 Overview of synthetic image generator.

4.5 Description of the Imagery Created by the Synthetic

Image Generator

Synthetic image generation began by creating 256 pixel x 256 pixel blocks of class

samples (e.g. water, vegetation, urban) as described in Section 4.4. After the class

samples were produced, they were placed next to other synthetic class samples to form

rough examples ofLANDSAT TM imagery. In total, four different sets of image data

were created to test the robustness of the maximum likelihood classifier, each containing

three different class samples. Bands 5, 3 and 2 of these synthetic LANDSAT TM images

are shown in Plates 1 through 19. The first set of images ( Plates 1 through 4), spectrally

represent urban, vegetation and water classes. Plate 1 in the series depicts a normally

distributed image, with the progression towards non-normality shown in Plates 2 through

4. The description for how non-normality was induced is seen in Section 4.6.
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The second set of images represent three different classes ofwater. These class

features have similarmeans, but different covariances. They are shown in Plates 5 through

8, andmimic the same progression towards non-normality that the first image set followed.

The third image set, shown in Plates 9 through 15, contains a series of hybrid test

samples created using the means of three water classes and the covariances of three

vegetation scenes. These samples also range from normal to non-normal distributions.

The final set of synthetic images created for this study is shown in Plates 16

through 19 contain three types of vegetation: deciduous trees, grass and agriculture. All of

the covariance matrices and class means were selected from the same LANDSAT image.

The images generated followed the same range normal to non-normal as mentioned above.

4.6 Inducing Non-normality in Synthetic Images

Non-normality was induced in images for this study by corrupting a specific

percentage ofpixels from the normally distributed image. The pixels were selected at

random, and were corrupted by adding 2, 3 or 5 standard deviations to the gray level

values of 20%, 40%, or 60 % of the pixel data. The matrix in Tables 4. 1 , 4.2 and 4.3

shows the specific parameters used per image set: Figure 12 illustrates how the

distributions of the synthetic sample changed as non-normality was induced.

2 Standard Deviations

3 standard Deviations

5 StandardDeviations

20% of Image Data 40% of Image Data 60% of ImageData

X

X

X

Table 4.1 Non-normal Samples Generated for Set One
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2 Standard Deviations

3 standard Deviations

5 Standard Deviations

20% of Image Data 40% of Image Data 60% of Image Data

X

X

X

Table 4.2 Non-normal Samples Generated for Set Two

2 Standard Deviations

3 standard Deviations

5 Standard Deviations

20% of Image Data 40% of Image Data 60% of ImageData

X X X

X X X

Table 4.3 Non-normal Samples Generated for Set Three

2 StandardDeviations

3 standard Deviations

5 Standard Deviations

20% of Image Data 40% of Image Data 60% of Image Data

X

X

X

Table 4.4 Non-normal Samples Generated for Set Four

Normal

Distribution

Normal

Distribution

with 2SD added to

20% of the image data

Normal

Distribution

with 3SD added to

40% of the image data

Normal

Distribution

with 5SD added to

60% of the image data

Figure 12 Distributions of non-normal data
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IMAGE PLATES
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Image Set 1

Synthetic image generated with all three classes normally distributed

Top left patch represents urban

Top right patch represents vegetation

Bottom middle patch represents water

PLATE 1



Image Set 1

Synthetic image generated with 20% of the image data corrupted by 2 standard deviations

Top left patch represents urban

Top right patch represents vegetation
Bottom middle patch represents water

PLATE 2



Image Set 1

Synthetic image generated with 607. of the image data corrupted by 3 standard deviations

Top left patch represents urban

Top right patch represents vegetation

Bottom middle patch represents water

PLATE 3



Image Set 1

Synthetic image generated with 607 of the image data corrupted by 5 standard deviations

Top left patch represents urban

Top right patch represents vegetation

Bottom middle patch represents water

PLATE 4



Image Set 2

Synthetic image generated with all three classes normally distributed

Top left patch represents water sample from Charleston NC

Top right patch represents water sample from Hartford CT

Bottom middle patch represents water sample from Washington DC

PLATE 5



Image Set 2

Synthetic image generated with 207 of the image data corrupted by 2 standard deviations

Top left patch represents water sample from Charleston NC

Top right patch represents water sample from Hartford CT

Bottom middle patch represents water sample from Washington DC

PLATE 6



Image Set 2

Synthetic image generated with 609. of the image data corrupted by 3 standard deviations

Top left patch represents water sample from Charleston NC

Top right patch represents water sample from Hartford CT

Bottom middle patch represents water sample fromWashington DC

PLATE 7



Image Set 2

Synthetic image generated with 607 of the image data corrupted by 5 standard deviations

Top left patch represents water sample from Charleston NC

Top right patch represents water sample from Hartford CT

Bottom middle patch represents water sample fromWashington DC

PLATE 8



Image Set 3

Synthetic image generated with all three classes normally distributed

Imagery was created using a p water
+128 digital counts, and a I vegetatl0n. The following

lists the source of the pwater and Zvegetation:

Top left patch p water
and Ivegetation extracted from Baltimore MD

Top right patch p _.ater
and I

vegetation
extracted from San Francisco CA

Bottom middle patch p waIer
and I

vegetatl0n
extracted from Washington DC

PLATE 9



Image Set 3

Synthetic image generated with 207 of the image data corrupted by 2 standard deviations

Imagery was created using a p water
+128 digital counts, and a I vegeIation. The following

lists the source of the pwater and Ivegetatl0n:

Top left patch p water
and E

veeeiation
extracted from Baltimore MD

Top right patch p water
and vegetation extracted from San Francisco CA

Bottom middle patch pwaIer and I vegetatl0n
extracted from Washington DC

PLATE 10



Image Set 3

Synthetic image generated with 407 of the image data corrupted by 2 standard deviations

Imagery was created using a p water
+128 digital counts, and a I vegetation. The following

lists the source of the p water
and I vegetation:

Top left patch p water
and Xveeetation extracted from Baltimore MD

Top right patch p _.ater
and I

vegetation
extracted from San Francisco CA

Bottom middle patch pwater and I vegetatl0n
extracted from Washington DC

PLATE 11



Image Set 3

Synthetic image generated with 607 of the image data corrupted by 2 standard deviations

Imagery was created using a p water
+128 digital counts, and a I vegetatit...The following

lists the source of the pwater and X vegetation:

Top left patch p water
and Ivegetation extracted from Baltimore MD

Top right patch p water
and I

vegetation
extracted from San Francisco CA

Bottom middle patch pwaIer and I vegetation
extracted from Washington DC

PLATE 12



Image Set 3

Synthetic image generated with 207 of the image data corrupted by 3 standard deviations

Imagery was created using a p vvater
+128 digital counts, and a I vegetation.The following

lists the source of the p water
and I vegetatl0n:

Top left patch pwater and Ive.etation extracted from Baltimore MD

Top right patch p waIer
and Z

vegetation
extracted from San Francisco CA

Bottom middle patch p water
and I

vegetatl0n
extracted from Washington DC

PLATE 13



Image Set 3

Synthetic image generated with 407 of the image data corrupted by 3 standard deviations

Imagery was created using a p water
+128 digital counts, and a I veeetation.The following

lists the source of the pwater and I vegetatl0n:

Top left patch p waIer
and I

veL,etation
extracted from Baltimore MD

Top right patch p water
and I

vegetation
extracted from San Francisco CA

Bottom middle patch pwater and I vegetatl0n
extracted from Washington DC

PLATE 14



Image Set 3

Synthetic image generated with 607: of the image data corrupted by 3 standard deviations

Imagery was created using a p water
+128 digital counts, and a I vegetatl0n. The following

lists the source of the pwater and I vegetaIion:

Top left patch pwater and vegetation
extracted from Baltimore MD

Top right patch p water
and I

vegetatl0n
extracted from San Francisco CA

Bottom middle patch p water
and I

vegetat!0n
extracted from Washington DC

PLATE 15



Image Set 4

Synthetic image generated with all three classes normally distributed

Three classes of vegetation, all selected from the same Rochester LANDSAT TM image

Top left patch p and I obtained from grass area of Rochester image

Top right patch p and I obtained from deciduous trees of Rochester image

Bottom middle patch p and I obtained from agricultural area of Rochester image

PLATE 16



Image Set 4

Synthetic image generated with 207 of the image data corrupted by 2 standard deviations

Three classes of vegetation, all selected from the same Rochester LANDSAT TM image

Top left patch p and Z obtained from grass area of Rochester image

Top right patch p and Z obtained from deciduous trees of Rochester image

Bottom middle patch p and Z obtained from agricultural area of Rochester image

PLATE 17



Image Set 4

Synthetic image generated with 407 of the image data corrupted by 3 standard deviations

Three classes of vegetation, all selected from the same Rochester LANDSAT TM image

Top left patch p and Z obtained from grass area of Rochester image

Top right patch p and Z obtained from deciduous trees of Rochester image

Bottom middle patch p and Z obtained from agricultural area of Rochester image

PLATE 18



Image Set 4

Synthetic image generated with 607 of the image data corrupted by 5 standard deviations

Three classes of vegetation, all selected from the same Rochester LANDSAT TM image

Top left patch p and Z obtained from grass area of Rochester image

Top right patch p and Z obtained from deciduous trees of Rochester image

Bottom middle patch p and Z obtained from agricultural area of Rochester image

PLATE 19



5.0 ANALYSIS OF SYNTHETIC IMAGERY

5.1 Overview of Classification Procedures

Once this study's image sets had been create, they underwent classification using

ERDAS software. This process began by selecting training samples using a polygon

algorithm (DIGSCRN) to select portions of feature data. Since each image only had three

class samples, the same set of polygons were used from image to image to ensure the

sample size remained the same. After sample selection, the probability functions of each

class were determined (SIGEXT) and stored to a file for reference during image

classification.

5.2 Determining Classification Accuracy

To determine the classification accuracy of each image, the image areas sampled by

the training set polygons were classified to determine the percentage ofpixels classified

correctly within this region (CMATRIX). The results of these classifications were listed in

a contingency matrix and are included in this document in Appendix C.

5.3 Determining Signature Divergence

Class signatures generated from the synthetic ground features were examined to see

how separable or diverse they were in vector space. This was accomplished by computing

the Jeffries-Matusita Distance (JM). First a is determined

1
a =

^(u,-Uj)lv
'

2

J/ (H,-U,)+2ln

and then substitutes into the following formula:

(I. +V2.I

(#J*H),
(5.1)

JM^2(l-ea) (5.2)

where:
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i and j represent the two class signatures being compared,

Ii is the covariance matrix of signature i,

Pi is the mean of signature i,

IZil is the determinant ofZj

The values for JM have a lower and upper bound of 0 - 1414. A value of zero indicates

that the class signatures are inseparable. The upper bound value indicates the signatures

are totally separable. The results for the class signatures generated for this study can be

found in Section 6.320.

5.4 Determining Significant Changes in Classification Accuracy

This study examined the classification results for statistical difference using an r x c

table and a
%2

test for equality. These tests were designed to test formultiple equalities

among the classification results listed inAppendix C. The r x c table used in this test had

the following form:

Class 1 Class 2 Class 3

Pixels correctly classified

Pixels incorrectly classified

Table 5.1 rxc Table

After the above table was filled, the expected frequencies, erc, were computed for

each row and column as follows:

_

(total for row r) (total for column c)
eK~

(total for table)

Using the expected frequencies the following test for hypothesis was tested:
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H0 = all classification accuracies are equal

H; = all classification accuracies are not equal

A
x2

test was used to test the statistic.
%2

was computed as follows:

x>

_!<______)_

i=l j=l erc

where: 0^= the observed frequency in the respective row and column

Results of the
%2

test were compared to a
%2

(1-oc) statistics table with

(rows-l)(columns-l) degrees of freedom. If the
x2

value exceeded the table statistic, the

null hypothesis was rejected at a (1-cc) level of confidence21.

6.0 RESULTS AND DISCUSSIONS

6.1 Results of Univariate Analysis of LANDSAT TM Images

The results checking for univariate normality were obtained using Pearson's

System ofFrequency Curves as described in Section 3.1. According to the Elderton's

interpretation of this system, an absolute K value of 0.92 or less indicates the sample

originated from a normal distribution. Tables 6.1 through 6.3 demonstrate that of the 144

image bands tested using Pearson's System ofFrequency Curves, nine were determined to

be non-normal. The histograms of these samples were plotted and examined to see how

they compared to the other distributions tested. Plots showed that these samples possessed

amuch more narrow digital count range than the other class samples. Digital counts within

these short ranges peaked quickly resulting in an increase to the fourth moment. It was

concluded that the non-normality of these image bands were mostly a function of the length

of the dynamic range.
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Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Charleston NC 9.013E-02 1.723 0.448 9.147E-03 -5.394E-04 -1.500E-02

San Francisco CA -1.511E-03 -3.399E-03 -1.242E-03 -3.300E-03 -2.774E-04 -8.724E-04

Toronto Canada
-2.925E-03 -8.835E-04 2.344E-02 -5.166E-05 -2.054E-05 6.456E-05

Buffalo NY -6.289E-04 3.894E-03 -7.896E-04 -1.524E-04 -2.281E-06 -7.511E-03

Rochester NY 2.549E-03 1.567E-03 4.492E-04 -1.627E-03 -8.314E-04 -1.632E-03

Hartford CT -5.276E-03 -6.123E-02 0.411 -7.171E-04 -2.705E-04 -1.180E-02

Washington DC -3.355E-03 -3.369E-03 -1.090E-02 -6.398E-04
-6.339E-04-

-1.366E-03

Baltimore MD -2.585E-03 -1.001E-02 -3.531E-03 3.825E-08 3.644E-05 -1.320E-03

Table 6.1 k Values for Vegetation

Results ofUnivariate Check for Normality

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Charleston NC -4.773E-04 -1.959E-03 -1.853E-03 -2.902E-03 -4.749E-04 -6.031E-04

San Francisco CA -3.743E-04 -8.330E-04 -2.846E-04 -9.754E-04 1.006E-03 -6.868E-04

Toronto Canada -3.976E-05 -5.228E-05 -8.974E-06 -9.115E-06 -2.874E-05 -4.012E-05

Buffalo NY -5.877E-05 -1.711E-04 8.444E-05 -4.707E-05 -2.350E-05 -1.135E-04

Rochester NY -9.876E-04 -2.791E-03 -1.258E-03 -9.084E-04 -1.147E-04 -3.280E-04

Hartford CT -3.200E-04 -7.151E-04 -6.620E-04 -6.401E-05 -6.323E-05 -4.099E-04

Washington DC -6.375E-04 -1.757E-03 -9.686E-04 -1.036E-03 -4.221E-04 -1.214E-03

Baltimore MD -3.735E-03 -1.652E-03 -8.236E-04 -6.648E-04 -2.756E-04 -4.372E-04

Table 6.2 k Values for Urban

Results ofUnivariate Check for Normality
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Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Charleston NC
-2.243E-03 0.500 -4.703E-03 1.085 0.511 0.299

San Francisco CA -1.120E-02 -7.370E-02 -7.584E-03 -0.520 1.285 -2.770E-03

Toronto Canada
-8.785E-06 -7.828E-03 -1.749E-02 4.176E-03 -4.827 4.893E-03

Buffalo NY 7.361E-03 2.929E-02 -1.716E-02 -9.058E-03 -6.148E-03 -4.945E-02

Rochester NY 1.290E-02 1.867E-04 -5.642E-05 -7.854E-04 -8.233E-04 -5.321E-03

Hartford CT 2.54E-04 6.433E-06 3.834E-04 -2.273E-03 -5.108E-03 -7.738

Washington DC -3.994E-04 -4.863E-04 -6.264E-03 6.079 0.227 -3.494

Baltimore MD -4.338E-03 -0.996 0.937 0.627 0.502 0.243

Table 6.3 kValues forWater

Results ofUnivariate Check for Normality

6.2 Results of Synthetic Image Classification with the

Maximum Likelihood Classifier

The classification accuracy results of the first set of images (Plates 1 to 4)

demonstrated that the classifier was able to distinguish easily between the urban, vegetation

and water classes. Four different images ranging from normal to non-normal distribution

were tested for classification accuracy using themaximum likelihood classifier. The

percentage of pixels classified correctly is shown in Figure 13 and were obtained from the

contingency matrixes listed inAppendix C.
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Figure 13 Classification results for image set one. Image contained urban, vegetation and

water features.

The classification accuracy results for image set two (Plates 5-8) were only slightly

worse then those seen in image set one as shown in Figure 14. The imagery used in this

set represent three classes ofwater which possessed the same range of normal to
non-

normal distributions seen in set one.

60 ..

40 --

20 --

0

N

1

2SD20% 3SD40% 5SD60%

Water 1 Water 2

?

Water 3

Figure 14 Classification results for image set two. Image contained three different water

samples.

Image set three (Plates 8-15) demonstrated the greatest loss to classification

accuracy. These results are shown in Figure 15 This image set consisted of watermeans,

but used a vegetation covariance matrix.
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N 2SD20% 2SD40% 2SD60% 3SD20% 3SD40% 3SD60%

Figure 15 Classification results for image set three. Image contained three hybrid sample

consisting of water p and vegetation Z

Set four (plates 16-19) demonstrated some loss in classification accuracy. This

image set consisted of three classes ofvegetation ( deciduous trees, grass, agriculture)

taken from the same LANDSAT scene. The classification results of this image set are

illustrated in Figure 16.

100 Cj.

60 --

40 -

20 --

0

Norm

+

2SD20%

Decid

+

3SD40%

Grass

H

5SD60%

Agri

Figure 16 Classification results for image set four. Image contained three vegetation

scenes, p and Z were selected from the same LANDSAT image

All of the classification results shown above were tested for statistical difference

using a r x c table and a
%2

test for equality. The results of these tests showed that, with
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the exception of image set one, all of the other image sets had classification accuracies

statistically different from one another.

6.3 Conclusions and Discussion of Study Results

The intent of the study was to check for normality of LANDSAT TM bands and to

challenge the robustness of a parametric classifier. The first objective was accomplished

by using Pearson's System ofFrequency Curves to check for normality. Of the 144 image

bands tested, nine were proven to be non-normal. This indicates that for common classes

such as water, vegetation, and urban it is likely that most LANDSAT class bands are

normally distributed.

The second objective of the study was accomplished by using a parametric classifier

(maximum likelihood classifier) to classify image data from both normal and non-normal

distributions. The classification accuracy results (section 6.2) indicate that the maximum

likelihood classifier worked equally well on normally and non-normally distributed data.

Classification accuracy results were higher overall for class samples with significantly

different means and little distributional overlap (image sets one and two) and lower for

class samples with similarmeans and large amounts of distributional overlap (image sets

three and four). This is logical since the more separate class populations are in vector

space, the less likely misclassification of image pixels will occur. The fact that the

classifier experienced no additional confusion assigning pixels to non-normal populations

is further confirmed by examining the measure of divergence values (Jeffries-Matusita

Distance (JM)) shown in Figure 17.
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Figure 17 Measure ofDivergence Values

Based on these results it would appear that the decision making property of the maximum

likelihood classifier depends more on the mass of the population and not on the shape of it.

To better understand this concept, consider the normal and non-normal populations

depicted in Figure 18a and 18b. As the cumulative histograms of each population pair

illustrates (Figures 18b and 18d), the probability of a candidate pixel to belong to a either

class is not affected by the shape of the class populations, but instead is driven by where

the bulk of the distribution lies in spectral space. Since the type of non-normality depicted

in Figure 16 is the same non-normality induced in the imagery generated for this text, it is

likely that the effect seen in Figure 18 accounts for the robustness of the maximum

likelihood classifier performance seen in this study.
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Figure 18 Comparison normal and non-normal cumulative histograms

While themaximum likelihood classifier may be robust enough to handle the type of
non-

normality used in this study, it may be greater challenged by other types of non-normally

distributed data, for example a trimodal distribution of the population where the risk is

greater for classification error. In this case, the shape of the trimodal distribution combined

with its relation to other distributions in vector space could affect classification accuracies.

The primary weakness of this study was that only one type of non-normally distributed

datawas generated for this text. To completely determine the extent of a parametric

classifier's abilities, other types of non-normal image data should be generated and

classified. While some may consider this an academic point, the increased addition of

texture data to multivariate image classification may require a better understanding ofwhat

classification robustness means. Texture data, which is derived from spectral imagery, can

exhibit distributions very different from those commonly associated with LANDSAT data.

Additionally, the current trend towards commercially available imagery with higher

resolution may significantly affect class
distributions22. Since these pixel footprints will

average smaller portions of the earth's surface, the current assumptions of normality
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associated with averaging process of the detector may be false. Further distributional

research using higher resolution imagery should be conducted to see if any impact on

classification accuracy is apparent.

7.0 Recommendations for Future Work

The first part of this study examined the assumptions that LANDSAT TM image

data are normally distributed. While this was found to be true in the image examples

examined for this study, it should be noted that all of the samples tested came from

temperate climates. Additional imagery containing desert, marshlands, and snow scenes,

water depths and urban areas as well as texture data derived from these classes should be

examined.

The results of the second portion of the study indicated that non-normal

distributions did not adversely impact image classification. However this study examined

only one form of non-normality. Other types of non-normal distributions, especially those

formed by texture data derived image scenes and imaging systems with better ground

resolution would be helpful in fully understanding distributional effects on parametric

classifiers.

43



REFERENCES

1 T. Cacoullos ed., Discriminant Analysis and Application. Academic Press, New York and

London, 1973, p. xiv.

2 R.A. Showengerdt, Techniques for Image Processing and Classification in Remote
Sensing. Academic Press Inc., New York, 1983, pp. 13-16.

3 R.L. Kettig, DA. Landgrebe, Classification ofMultispectral Image Data by Extraction
and Classification ofHomogeneous Objects", IEEE Transactions on Geoscience
Electronics, GE-14, 1, pp. 19-26.

4 Refence 1, p v

5 S. Das Gupta, "Theories and Methods in Classification: A Review", pp. 77-96 in

Discriminant Analysis andApplications, T. Cacoullos ed., Academic Press, New York and

London, 1973.

6 R.A. Johnson, and D.W. Wichern, AppliedMultivariate Statistical Analysis. Prentice-

Hall, Englewood Cliffs, NJ, 1982, pp. 470 - 478.

7 Reference l,p xv

8 Reference 2, p 136

9 T.M. Lillesand and R.W. Kiefer, Remote Sensing and Image Interpretation, JohnWiley
& Sons, Inc., New York, 1979 p 445.

10 Reference 9, pp. 464-465.

1 1 C. Salvaggio, J.R. Schott, Automated Pseudovariant Feature Normalization and Land

Cover Classification. RIT/DIRS Report 87/88-63-123, 1987, pp. 21 24.

12 Reference 2, pp. 145-147

13 p.H. Swain, and S.M. Davis, eds.., Remote Sensing: The Quantitative Approach.

McGraw-Hill. New York. 1978, pp. 178 - 184.

I4 Reference 3, p 120

15 W.P. Elderton and N.L. Johnson, System of Frequency Curves. Cambridge University
Press, 1969, pp. 35 - 46.

16 Personal conversation with SterlingMason

17 1. Miller, J.E. Freund, Probability and Statistics for Engineers, Prentice-Hall, Inc.,

1985, p 324.

44



18 ERDAS Field Guide, Second Edition, Version 7.5, July 1991, p 256.

19T.W. Anderson, An Introduction toMultivariate Statistics, JohnWiley & Sons, Inc.,

1958, pp. 24-27.

20 Reference 18, pp. 129-130

21 Reference 17, pp. 162-163

22 J.R. Asker, "Pressure Builds to Free Satellite Imaging Sales", Aviation Week & Space

Technology. November 15, 1993, pp. 26-27.

45



APPENDIX B

Class means and covariance matrixes used in the generation of Set 1 synthetic LANDSAT

TM images

URBAN COVARIANCE MATRIX

Bandl Band 2 Band 3 Band 4 Band 5 Band 7

Bandl 191.00 108.35 133.19 104.20 145.22 89.66

Band 2 108.35 333.55 328.63 340.30 301.06 339.30

Band 3 133.19 328.63 336.50 342.08 316.76 336.60

Band 4 104.20 340.30 342.08 377.33 340.08 357.67

Band 5 145.22 301.06 316.76 340.08 369.08 334.53

Band 7 89.66 339.30 336.60 357.67 334.53 371.40

BandMeans 118.77 66.04 71.76 64.33 82.23 61.97

VEGETATION COVARIANCE MATRIX

Bandl Band 2 Band 3 Band 4 Band 5 Band 7

Bandl 33.31 0.78 4.38 -16.64 3.04 5.24

Band 2 0.78 3.95 5.36 -1.41 6.30 5.19

Band 3 4.38 5.36 11.98 -17.33 9.86 11.05

Band 4 -16.64 -1.41 -17.33 113.58 13.74 -14.76

Band 5 3.04 6.30 9.86 13.74 48.35 19.79

Band 7 5.24 5.19 11.05 -14.76 19.79 37.13

BandMeans 64.62 28.01 27.61 58.52 63.43 24.05

Bl



APPENDIX B

WATER COVARIANCEMATRIX

Bandl Band 2 Band 3 Band 4 Band 5 Band 7

Bandl 137.65 83.55 78.69 56.53 51.17 25.06

Band 2 83.55 64.04 61.05 47.86 45.11 30.34

Band 3 78.69 61.05 61.21 50.09 47.73 32.56

Band 4 56.53 47.86 50.09 46.05 44.15 31.75

Band 5 51.17 45.11 47.73 44.15 48.32 32.01

Band 7 25.06 30.34 32.56 31.75 32.01 27.55

BandMeans 102.56 40.43 29.76 19.08 13.14 9.59

Class means and covariance matrixes used in the generation of Set 2 synthetic LANDSAT

TM images

WATER 1 COVARIANCE MATRIX

Bandl Band 2 Band 3 Band 4 Band 5 Band 7

Bandl 2.86 0.60 0.38 0.26 -0.04 -0.01

Band 2 0.60 0.77 0.49 0.13 -0.003 0.02

Band 3 0.38 0.49 31.88 0.43 0.18 0.46

Band 4 0.26 0.13 0.43 0.62 0.13 0.06

Band 5 -0.04 -0.003 0.18 0.13 0.74 0.05

Band 7 -0.01 0.02 0.04 0.06 0.05 1.35

BandMeans 60.67 22.79 18.29 9.18 5.32 2.67
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APPENDIX B

WATER 2 COVARIANCEMATRIX

Bandl Band 2 Band 3 Band 4 Band 5 Band 7

Bandl 4.96 3.25 3.88 3.65 2.43 2.28

Band 2 3.25 4.27 4.60 5.08 3.50 2.94

Band 3 3.88 4.60 6.12 5.56 3.67 3.13

Band 4 3.65 5.08 5.56 43.49 28.72 9.46

Band 5 2.43 3.50 3.67 28.72 22.85 8.02

Band 7 2.28 2.94 3.13 9.46 8.02 5.32

BandMeans 56.26 20.30 15.81 10.87 7.10 4.01

WATER 3 COVARIANCE MATRIX

Bandl Band 2 Band 3 Band 4 Band 5 Band 7

Bandl 2.64 0.68 0.82 0.30 0.23 0.18

Band 2 0.68 1.06 0.74 0.18 0.85 0.04

Band 3 0.82 0.74 1.29 0.26 0.19 0.11

Band 4 0.30 0.18 0.26 1.42 1.08 0.49

Band 5 0.23 0.08 0.19 1.08 2.61 0.87

Band 7 0.18 0.04 0.11 0.49 0.87 1.55

BandMeans 60.51 23.40 19.70 10.85 6.52 3.54
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Class means and covariance matrixes used in the generation of Set 3 synthetic LANDSAT

TM images

HYBRID 1 COVARIANCEMATRIX

Bandl Band 2 Band 3 Band 4 Band 5 Band 7

Bandl 33.31 0.78 4.38 -16.64 3.04 5.24

Band 2 0.78 3.95 5.36 -1.41 6.30 5.19

Band 3 4.38 5.36 11.98 -17.33 9.86 11.05

Band 4 -16.64 -1.41 -17.33 113.58 13.74 -14.76

Band 5 3.04 6.30 9.86 13.74 48.35 19.79

Band 7 5.24 5.19 11.05 -14.76 19.79 37.13

landMeans 190.3 148.78 145.65 138.64 134.48 131.63

HYBRID 2 COVARIANCEMATRIX

Bandl Band 2 Band 3 Band 4 Band 5 Band 7

Bandl 45.05 26.53 47.11 -10.05 76.32 51.18

Band 2 26.53 19.37 32.13 0.31 57.90 35.77

Band 3 47.11 32.13 61.49 -4.88 112.37 68.46

Band 4 -10.05 0.31 -4.88 95.26 27.21 -2.82

Band 5 76.32 57.90 112.37 27.21 269.07 142.78

Band 7 51.13 35.77 68.46 -2.82 142.78 86.00

BandMeans 230.24 166 160.11 141.17 135.41 132.42
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HYBRID 3 COVARIANCEMATRIX

Bandl Band 2 Band 3 Band 4 Band 5 Band 7

Bandl 5.68 2.03 3.80 -3.69 5.74 4.55

Band 2 2.03 1.72 2.13 0.43 4.43 2.64

Band 3 3.80 2.13 5.64 -8.75 6.87 5.89

Band 4 -3.69 0.43 -8.75 88.83 24.05 -4.40

Band 5 5.74 4.43 6.87 24.05 50.98 19.33

Band 7 4.55 2.64 5.89 -4.40 19.33 12.79

BandMeans 188.51 151.4 147.7 138.85 134.52 131.54

Class means and covariance matrixes used in the generation of Set 4 synthetic LANDSAT

TM images

DECIDUOUS TREES COVARIANCE MATRIX

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Bandl 9.15 6.07 7.34 -4.39 12.07 6.70

Band 2 6.07 7.76 6.84 6.64 15.12 6.08

Band 3 7.34 6.84 8.28 -2.79 13.79 6.89

Band 4 -4.39 6.64 -2.79 133.53 31.89 -1.29

Band 5 12.07 15.12 13.79 31.89 56.23 18.52

Band 7 6.70 6.08 6.89 -1.29 18.52 10.31

BandMeans 83.28 36.07 27.63 132.77 82.88 23.90
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GRASS COVARIANCE MATRIX

Bandl Band 2 Band 3 Band 4 Band 5 Band 7

Bandl 1.88 0.89 0.85 1.86 0.89 1.20

Band 2 0.89 1.83 1.08 3.01 2.44 1.51

Band 3 0.85 1.08 1.27 2.29 0.01 0.95

Band 4 1.86 3.01 2.29 16.88 4.72 1.99

Band 5 0.89 2.44 -0.01 4.72 25.90 5.77

Band 7 1.20 1.51 0.95 1.99 5.77 4.06

BandMeans 88.65 40.29 31.94 159.41 118.29 36.59

AGRICULTURE COVARIANCE MATRIX

Bandl Band 2 Band 3 Band 4 Band 5 Band 7

Bandl 3.23 1.59 1.55 4.92 5.60 2.39

Band 2 1.59 2.16 1.61 5.76 5.78 2.16

Band 3 1.55 1.61 2.14 2.85 5.43 2.17

Band 4 4.92 5.76 2.85 131.32 24.43 6.05

Band 5 5.60 5.78 5.43 24.43 29.58 10.17

Band 7 2.39 2.16 2.17 6.05 10.17 5.16

BandMeans 86.43 37.85 30.27 143.58 85.35 25.77
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APPENDIX C

Contingency Matrixes

Classification Accuracy of Set 1 Normally Distributed Image

URBAN VEG WATER

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

URBAN 61478 100% 142 0.2% 247 0.4%

VEG 0 0.0% 59656 99.8% 52 0.1%

WATER 0 0.0% 0 0.0% 64678 99.5%

URBAN

VEG

WATER

Classification Accuracy of Set 1, 20% of the Image Data Corrupted by 2 SD

URBAN VEG WATER

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

60802 98.9% 2 0.0% 45 0.7%

123 0.2% 59798 100% 2 0.0%

553 0.9% 0 0.0% 64030 99.2%

URBAN

VEG

WATER

Classification Accuracy of Set 1, 40% of the Image Data Corrupted by 3 SD

URBAN VEG WATER

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

59880 97.4% 0 0.0% 130 0.2%

307 0.5% 59738 99.9% 130 0.2%

1291 2.1% 60 0.1% 64717 99.7%
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Classification Accuracy of Set 1, 60% of the ImageData Corrupted by 5SD

URBAN VEG WATER

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

URBAN 59327 96.5% 0 0.0% 260 0.4%

VEG 307 0.5% 59798 100% 585 0.9%

WATER 1844 3.0% 0 0.0% 64132 98.7%

WATER 1

WATER 2

WATER 3

Classification Accuracy of Set 2 Normally Distributed Image

WATER 1 WATER 2 WATER 3

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

56314 91.6% 478 0.8% 3509 5.4%

369 0.6% 57347 95.9% 780 1.2%

4795 7.8% 1973 3.3% 60688 93.4%

WATER 1

WATER 2

WATER 3

Classification Accuracy of Set 2, 20% of the Image Data Corrupted by 2 SD

WATER 1 WATER 2 WATER 3

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

56806 92.4% 4126 6.9% 910 1.4%

4611 7.5% 52861 88.4% 1105 1.7%

61 0.1% 2811 4.7% 62962 96.9%
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WATER 1

WATER 2

WATER 3

Classification Accuracy of Set 2, 40% of the Image Data Corrupted by 3 SD

WATER 1 WATER 2 WATER 3

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

58773 95.6% 5920 9.9% 390 0.6%

2705 4.4% 51366 85.9% 845 1.3%

0 0.0% 2512 4.2% 63742 98.1%

WATER 1

WATER 2

WATER 3

Classification Accuracy of Set 2, 60% of the Image Data Corrupted by 5SD

WATER 1 WATER 2 WATER 3

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

58097 94.5% 4126 6.9% 2 0.0%

3381 5.5% 53400 89.3% 1494 2.3%

0 0.0% 2272 3.8% 64481 97.7%

HYBRID 1

HYBRID 2

HYBRID 3

Cl

HYB

assification Accuracy of Set '.

RID1 HYB

. Normally Dist

RID 2

ributed Image

HYBRID 3

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

48814 79.4% 4784 8.0% 1624 2.5%

6701 10.9% 52203 87.3% 910 1.4%

5963 9.7% 2811 4.7% 62443 96.1%
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HYBRID 1

HYBRID 2

HYBRID 3

Classification Accuracy of Set 3, 20% of the Image Data Corrupted by 2 SD

HYBRID 1 HYBRID 2 HYBRID 3

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

44511 72.3% 9807 16.4% 5588 8.6%

5717 9.3% 45686 76.4% 910 1.4%

11250 18.3% 4305 7.2% 58479 89.9%

HYBRID 1

HYBRID 2

HYBRID 3

Classificati

HYB

on Accuracy of Set 3, 40% o

RID1 HYB

f the Image Dal

RID 2

ta Corrupted by 2 SD

HYBRID 3

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

44326 72.1% 5501 9.2% 4159 6.4%

7131 11.6% 45985 77.0% 3444 5.3%

10021 16.3% 8312 13.9% 57374 88.3%

HYBRID 1

HYBRID 2

HYBRID 3

Classificati

HYB

on Accuracy of Set 3, 60% o

RID1 HYB

f the Image Data Corrupted

RID 2 HYB

.y2SD

RID 3

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

44264 72.0% 7834 13.1% 5653 8.7%

4242 6.9% 50230 84.1% 455 0.7%

12972 21.1% 1734 2.9% 58870 90.6%
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HYBRID 1

HYBRID 2

HYBRID 3

Classification Accuracy of Set 3, 20% of the ImageData Corrupted by 3 SD

HYBRID 1 HYBRID 2 HYBRID 3

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

28833 50.0% 8491 14.2% 13905 21.4%

3996 6.5% 46344 77.5% 520 0.8%

28649 46.6% 4963 8.3% 50552 77.8%

HYBRID 1

HYBRID 2

HYBRID 3

Classification Accuracy of Set 3, 40% of the Image Data Corrupted by 3 SD

HYBRID 1 HYBRID 2 HYBRID 3

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

48322 78.6% 4126 6.9% 4873 7.5%

2582 4.2% 44416 91.1% 195 0.3%

10574 17.2% 1256 2.1% 59909 92.2%

Classification Accuracy of Set 3, 60% of the Image Data Corrupted by 3 SD

HYBRID 1 HYBRID 2 HYBRID 3

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

HYBRID 1 46477 75.6% 4724 7.9% 5068 7.8%

HYBRID 2 2644 4.3% 53579 89.5% 260 0.4%

HYBRID 3 12357 20.1% 1495 2.5% 59649 91.8%
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DECIDUOUS

GRASS

AGRICULTURE

Classification Accuracy of Set 4 Normally Distributed Image

DECIDUOUS GRASS AGRICULTURE

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

53916 87.7% 0.0 0.0% 6692 10.3%

0.0 0.0% 59738 100% 0.0 0.0%

7562 12.3% 0.0 0.0% 58284 89.7%

Classification Accuracy of Set 4, 20% of the ImageData Corrupted by 2SD

DECIDUOUS GRASS AGRICULTURE

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

DECIDUOUS 48506 78.9% 0.0 0.0% 9032 13.9%

GRASS 122 0.2% 59678 99.9% 195 0.3%

AGRICULTURE 12849 20.9% 60 0.1% 55750 85.8%

Classification Accuracy of Set 4, 40% of the Image Data Corrupted by 3 SD

DECIDUOUS GRASS AGRICULTURE

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

DECIDUOUS 50473 82.1% 0.0 0.0% 7147 11.0%

GRASS 369 0.6% 59439 99.5% 780 1.2%

AGRICULTURE 10636 17.3% 299 0.5% 57050 87.8%
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Classification Accuracy of Set 4, 60% of the Image Data Corrupted by 5SD

DECIDUOUS

GRASS

AGRICULTURE

DECIDUOUS GRASS AGRIC1ULTURE

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

Number of

Pixels

Classification

Accuracy

48445 78.8% 0.0 0.0% 6563 10.1%

2336 3.8% 57587 96.4% 4548 7.0%

10697 17.4% 2151 3.6% 53866 82.9%
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APPENDIX D

This appendix contains the computer code used to create and analyze the data used in this

study. The first program listed in this appendix (crick) was used to determine the intraband

correlation of the LANDSAT TM classes studied in this thesis Amore complete description of

how intraband correlation was determined can be found in section 4.2 of this text

Crick requires a class map and a single band of LANDSAT data as input The program calls

several programs from the DIRS image processing library, and one subroutine

(Test_for_Significance) written for this study. The following lists the DIRS image processing

library call programs:

Ipx_SetPicsOps

Ipx_SetPicsDimens

IpLOpenfile

Ipi_DiskPic

IpLgetPicData

The code for the subroutine, Test_for_Significance, is presented after the crick program. This

subroutine was used to determine if the correlation values generated in crick were significantly

different from one another.

DI



APPENDIX D

'Crick

THIS PROGRAM PAIRS DIGITAL COUNTS OF DIFFERENT DELTA SPACINGS

IN A SINGLE BAND AND DETERMINES THEIR R (CORRELATION) VALUE.

IMPLICIT NONE

CHARACTER*80 BAND1, CLASSIFIF.D_IMAGE, FILENAME, FILENAME1 ,
FILENAME3

CHARACTER* 1 TAB

INTEGER*. I,N,K,L, TOTAL_COUNT, GRAND_TOTAL_COUNT

INTEGER*2 PIXEL (512 ), COUNTER, INDEX, START_INDEX, END_INDEx

INTEGER*. NUMBER_OF_PAIRS, TOTAL_NUMBER_OF_PAIRS_PER_DELTA

INTEGER*2 DERIVATIVE_ARRAY (512 ) , START_ARRAY_INPUT, STRING_LENGTH, LENGTH

INTEGER*2 XY_ARRAY ( 0 : 1, 0 : 2000000) ,
PAIRS (50) ,

DELTA (50)

INTEGER*2 DC1 ,
DC2 , DC3, DC. , CLASS, Del , M, J

INTEGER SEED (100)

INTEGER*. Row, Col, Bandmask

INTEGER*. PicOps, IpiBlk_M, FilePt rl , Fileptr2, Fileptr3, FilePtr.

INTEGER*. X_Dim, Y_Dim

REAL*8 SXY,XSUMSQ, YSUMSQ, YSUM, XSUM, XY, y_bar ,
x_bar , top

REAL*8 FILE XSQ, XSQ, YSQ, x_bottom, y_bo_tom, x_bot tom_sqr ,
y_bot tom_sqr

REAL*8 SXX,SYY

REAL*8 R(50),denom

REAL*4 MEAN

DATA X_Dim / 512/

DATA Y_Dim /512/

Include
' Ipi__IpiLib

'

TAB = CHAR (9)

Bandmask = 1
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INPUT FILENAMES AND CLASSIFIED IMAGE CLASS VALUES

CALL Ipx_SetPicOps ( PicOps )

CALL Ipx_SetPicDimens ( PicOps, X_dim, Y dim)

TYPE *. 'WHAT IS THE NAME OF THE FIRST
BAND?'

Accept 11, bandl

11 format (a80)

CALL Ipi_Openfile ( IpiBi:<_M, bandl )

CALL Ipi_DiskPic ( IpiBlk_M, filePtrl, PicOps )

TYPE *, 'WHAT IS THE NAME OF THE CLASSIFIED
IMAGE?'

Accept 11, CLASSIFIED IMAGE

CALL Ipi_Openfile ( IpiBlk_M, classif ied_image)

CALL Ipi_DiskPic ( IpiBlk_M, filePtr3, PicOps )

TYPE *, 'WHAT IS THE DIGITAL COUNT YOU ARE LOOKING
FOR?'

READ(*. *) CLASS

TYPE *. 'WHAT IS THE NAME OF THE FILE THAT HOLDS THE R
VALUES?'

Accept ('(A80)'), FILENAME1

TYPE *, 'WHAT IS THE CLASS
MEAN?'

READ(*.*) MEAN

TYPE *, 'WHAT IS THE FILENAME THAT HOLDS THE TEST_FOR_SIGN . VALUES?

Accept ('(A80)'), FILENAME3

YSUM = 0.0

XSUM = 0.0

number_of_pairs
= C

start_array_input
= 0

top
= 0.0

x_bar =0.0

y_bar 0.0

x_bottom = 0.0

x_bottom_sqr
= 0.C

y_bottom =0.0

y bottom_sqr = 0.0

START INDEX =0
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DO LOOP TO CHANGE DELTA VALUES

DO L = 1,50

DEL = L

TYPE*. 'DELTA EQUALS', DEL

DO LOOP TO OBTAIN DC COUNT PAIRS, DELTA PIXELS APART

DO J = 0,511,5

Do I = 0, 511

Call Ipi_getPicDa_a (%val (f ilePtr3) , PicOps, Bandmask, DC3,

i, j )

PIXEL(I) = DC3

END DO

DO I = 0,511

DERIVATIVE_ARRAY(I) (PIXEL ( I ) **2) ( PIXEL ( 1 + 1
)* *2 )

END DO

start_index
- 0

end_index 0

DO I = 0,511

IF (DERIVATIVE_ARRAY(I) .NE. 0)THEN

END_INDEX = I

LENGTH = END_INDEX START_INDEX

DO K START INDEX, (END__INDEX)

IF ((LENGTH .GT. DEL). AND.

(PIXEL(K+DEL) .EQ. CLASS) .AND.

(PIXEL(K) .EQ. CLASS)) THEN

STRING LENGTH = END_INDEX
- START_INDEX

CALL Ipi_getPicData (%val ( f ileptrl) , picOps, Bandmask, DC1,

K, j)

CALL Ipi_getPicData (%val ( f ileptrl) , picOps, Bandmask, DC2,

K + del, j)
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COUNTER = END_INDEX START_INDEX

NUMBER_OF_PAIRS NUMBER_OF_PAIRS + 1

xy_array (0, START_ARRAY_INPUT) = del

xy_array (1 , START_ARRAY_INPUT) = dc2

START_ARRAY_INPUT = START_ARRAY_INPUT+1

ENDIF

END DO

START_INDEX = END_INDEX +1

ENDIF

END DO

END DO

TOTAL_NUMBER_OF_PAIRS_PER_DELTA = TOTAL_NUMBER_OF_PAIRS

+ NUMBER_OF_PAIRS

R CORRELATION VALUE DETERMINED

DO 1= 1, TOTAL_NUMBER_OF_PAIRS_PER_DELTA

XSUM = XSUM + float (XY_ARRAY(0, I) )

YSUM = YSUM + float (XY_ARRAY (1,1) )

end do

x_bar xsum/total_number_of_pairs_per_delta

y bar - ysum/total_number_of_pairs_per_delta

Do I = 1, Total_number_o__pairs_per_delta

top
=

top + ( (f loat (xy_array (0, I) )
-

x_bar)
*

(float (xy_array (1, I) )
-

y_bar) )

x_bottom x_bottom + (( float (xy_array (0, i) )
-

x_bar)**2)

y bottom = y_bottom
+ (( float (xy_array ( 1, i) )

-

y_bar) **2)

End do

x bottom_sqr = x_bottom**0 .5
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y_bottom_sqr =
y_bottom**0 . 0

denom =
x_bottom_sqr

*

y_bottom sqr

if (denom .eq. 0.0) then

R(L) 0.0

else

R(Li top/denom

endif

PAIRS (1) =

total_number_of_pairs per delta

DELTA (L) = DEL

T0TAL_NUMBER_OF_PAIRS_PER_DELTA = 0

start

NUM3ER_OF_PAIRS = 0

GRAND_TOTAL_COUNT 0.0

YSUM =0.0

XSUM 0.0

to? 0.0

x_bar = 0.C

y_bar = 0.C

x_bottom 0.0

x_bottom_sqr = 0.0

y_bottom = 0.0

y_bottom_sqr = 0.0

END DO

OPEN (1, FILE=FILENAME1, STATUS=
' NEW'

)

DO 1=1, 50

WRITE (1, 10) DELTA (I) ,TAB,R(I)

10 FORMAT (IX, I ., A1,F8.5)

WRITEU,*) R(I) ,PAIRS(I)

END DO

CLOSE (1)

CALL TEST FOR SIGNIFICANCE (PAIRS, R, MEAN, DELTA, FILENAME3)
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SUBROUTINE TEST_FOR_SIGNIFICANCE (PAIRS, R, MEAN, DELTA, FILENAME3)

IMPLICIT NONE

CHAPACTER*80 FILENAME3

CHARACTERS TAB

REAL*8 R(50) , Z (50) , MEAN

INTEGER*2 PAIRS ( 50) , DELTA ( 50)

INTEGER*2 N, I

REAL CAP_Z

TAB = CHAR (9)

DO I = 1, 50

TYPE ', 'R(I)
'

, R(I)

CAP_Z = (1.0/2.0)
*

(DLOG( (1.0 +RU) ) / (l.O-R(I) ) ) )

TYPE *,
' I'

, I

TYPE ",
'CAPZ'

,CA?_Z

z(i)
= ((pairs(i) 3)**0.5)

*
cap_z

TYPE *, 'Z(I)
'

, Z(I)

END DO

OPEN (3,
FILE=FILENAME3,STATUS='NEW'

)

DO I 1,50

WRITE (3,10) I,TAB,Z(I)

10 FORMATUX, 14, A1.F8.5)

END DO

END
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This computer code (Beta) was created to check the normality of individual LANDSAT TM

class bands as described in section 3.1. Beta accepts single LANDSAT bands, and uses

the following call programs from the DIRS image processing library,

Ipx_SetPicsOps

Ipx_SetPicsDimens

IpLOpenfile

Ipi_Dis__Pic

Ipi_getPicData

and one programwas called from IMSL:

UVSTA
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*BETA

IMPLICIT NONE

CHARACTER*80 BAND1, CLASSMASK, FILENME

INTEGER*4 I, J, K, IDO, NROW, NVAR, LDX, IWT, IFRQ, MOPT, IPRINT, NRMISS, LDSTAT

PARAMETER (NVAR = 1, LDSTAT = 15)

REAL XI (2 6214 4, 1) , CONPRM, CONPRV, STAT (LDSTAT, NVAR) , SD, FOURTH, THIRD

REAL SECOND, KAPPA, TOP, BOTTOM

REAL BETA1, BETA2 , SD3,SD4

INTEGER*4 X_DIM, Y_DIM

DATA X_DIM /512/

DATA Y_DIM /512/

INTEGER*2 DC1, DC3, FILE1 (262144,1)

INTEGER*4 Row, Col, Bandmask

INTEGER*4 PicOps, IpiBlk_M, FilePtrl, fileptr3

Include
'Ipi_IpiLib'

Bandmask = 1

CALL Ipx_SetPicOps ( PicOps )

CALL Ipx_SetPicDimens ( PicOps, X_dim, Y_dim)

WRITE(6, *)

TYPE *. 'WHAT IS THE NAME OF THE LANDSAT
BAND?'

Accept 11, bandl

11 format (a80)

CALL Ipi_Openfile ( IpiBlk_M, bandl )

CALL Ipi_DiskPic ( IpiBlk_M, filePtrl, PicOps )

WRITE(6, *)

TYPE *, 'WHAT IS THE NAME OF THE CLASS
MASK?'

Accept 11, CLASSMASK

CALL Ipi_Openfile ( IpiBlkM, classmask )

CALL Ipi_DiskPic ( IpiBlk_M, filePtr3, PicOps )

CONPRM =95.0

CONPRV =95.0

LDX = 262144

IDO = 0

IWT 0

IFRQ = 0

MOPT = 1

IPRINT = 2

Do I = 0, 511

Do J = 0, 511

Call Ipi_getPicData (%val ( f ilePtr3) , PicOps, Bandmask, DC3,
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i. J )

If ( DC3 .eq. 127) Then

Call Ipi_getPicData ( %val ( filePtrl) , PicOps, Bandmask, DC1,

i. J )

K = K+l

XI (K, 1) = DC1

END IF

End Do

End do

NROW = K

WRITE (6,*)

CALL UVSTA ( IDO, NROW, NVAR, XI , LDX, IFRQ, IWT, MOPT, CONPRM, CONPRV, IPRINT,

STAT, LDSTAT, NRMISS)

sd = stat (3, 1)

third =

stat(4,l)

fourth = stat (5, 1)

second = stat (2,1)

BETA] = THIRD**2/ (SECOND**3 . 0)

BETA2 = FOURTH/ (SECOND**2 .0)

TOP = (BETA1*
( (BETA2 +3) **2) )

BOTTOM =
(4*

( (2*BETA2) -(3*BETA1) -6)
*

( (4*BETA2) -(3*BETA1) ) )

KAPPA=TOP/BOTTOM

WRITE(6, *)

TYPE *. 'WHAT IS THE NAME OF THE BETA
FILE?'

READ (5,
'

(a)
' (FILENME

OPEN (UNIT=1,FILE = FILENME,
ACCESS= '

APPEND ',
STATUS= '

OLD
'

)

WRITE (1, *) BETA1,BETA2

WRITE(6, *)

write(6,*)'betal', betal

write (6, *) 'beta2
'
,beta2

WRITE ( 6, *) 'KAPPA =', KAPPA

WRITE(6, *)

CLOSE (1)

End
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The main program and corresponding subroutines were used to create the synthetic

LANDSAT imagery for this study. Themain program requires the multivariatemean and

covariancematrix of the class feature being generated as inputs. The following table listed

the names of programs and function.

Program name Function

Main_program Main program of synthetic image generator

Create_mega_array subroutine that creates the 150 x 150

matrix which statistically describes a 5

pixel x 5 pixel x 6 band block of image

data

Test_punt this subroutine inputs the 150 x 150 matrix

and outputs a 256 x 256 block synthetic

image data (one band)

Create_corrected_eigenvectors 1 a subroutine that scales the eigenvectors

derived from the 150 x 150 matrix by the

eigenvalues

make_bands_punt a subroutine used to place the 256 x 256

blocks of synthetic image data into an

ERDAS acceptable format

Image_into_bands a subroutine which places all 6 synthetic

image into onemultivariate image file

Corrupt_normal_data the subroutine used to create the
non-

normal image data tested in this study
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Main_program

INTEGER NOUT

REAL A(6,6), B(6,l), STACKED_ARRAY (1 : 5 , 1 : 30, 1 : 30) , D ( 6) , E ( 9) ,

CORR(6,6), AA(6,6), V ( 6, 6) ,
W ( 6, 6) , C(6), PRINCE(6,6),

CHAR(6,6), HART(6,6), BALT(6,6), WASH(6,6), vsf(6,6),
vwash ( 6, 6)

REAL C1,C2,C3,C4,C5,C6,MEGA_ARRAY(150, 150)

EXTERNAL EPISF, EVCSF, UMACH, WRRRN, TRNRR, MRRRR

COV MATRIX OF URBAN SF-

DATA A/191.0, 10E

328.63,

316.76,

145.22,

.35, 133.19, 104.20, 145.22, 89.66, 108.35, 333.55,

340.30, 301.06, 339.30, 133.19, 328.63, 336.50, 342.08,

336.60, 104.20, 340.30, 342.08, 377.33,

301.06, 316.76, 340.08, 369.08, 334.53,

340.08, 357.67,

89.66, 339.30,

336.60, 357.67, 334.53, 371.40/

CLASS MEANS

'urban DATA C/118.0, 66.0, 71.0, 64.0, 82.0, 61.0/

CORRELATION COEF

'urban DATA D/0.861, 0.683, 0.562, 0.481, 0.419, 0.376/

CREATE THE 150 X 150
"MEGA_ARRAY"

TO GENERATE THE CLASS

CALL CREATE_MEGA_ARRAY (STACKED_ARRAY, A, D,MEGA_ARRAY)

CALL test_punt (MEGA_ARRAY,C)

END
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SUBROUTINE CREATE_MEGA_ARR. ,Y (STACKED_ARRAY, COV_ARRAY, RO_ARRAY, MEGA_ARR

AY)

IMPLICIT NONE

CHARACTER* 80 FILENAME1, FILENAME2 , FILENAME3 ,
FILENAME4

, FILENAME5

INTEGER K,M, L, J, I , X, COUNT, COUNTER, BLOCK_NUMBER, INDEX, ROW, COLUMN

INTEGER BEGINNING_COLUMN, BEGINNING_ROW

REAL STACKED_ARRAY (1:5, 1:30, 1:30), COV_ARRAY ( 6, 6) ,
ROE_ARRAY ( 6) , ROEX

REAL MEGA ARRAY (150,150)

X

DO K = 1,5

COUNT = 0

DO M = 1,5

DO L = 1,6

COUNTER - 0

COUNT = COUNT +1

DO J = 1,5

ELSE

DO I 1,6

COUNTER = COUNTER + 1

IF ((X.EQ.K) .AND. (J.EQ.M)) THEN

STACKED_ARRAY(K, COUNT, COUNTER)
=

COV ARRAY (L, I)

CALL ROE(X,K,M, J, L, I , ROEX, ROE_ARRAY)

STACKED_ARRAY(K, COUNT, COUNTER)
=

ROEX * COV_ARRAY(L, I)

ENDIF

END DO

END DO

END DO

END DO

COUNT = 0

COUNTER 0

END DO
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DO J = 1,5

DO I = 1,5

TYPE*,
'

WHAT IS THE BLOCK
NUMBER?'

READ(*,*) BLOCK_NUMBER

BEGINNING_ROW = 0 + COUNT

BEGINNING_COLUMN = 0 + COUNTER

DO K = 1,30

COUNT = COUNT + 1

DO L = 1,30

COUNTER COUNTER + 1

MEGA_ARRAY (COUNT, COUNTER) = STACKED_ARRAY

(BLOCK_NUMBER,K,L)

END DO

COUNTER = BEGINNING_COLUMN

END DO

COUNTER = BEGINNING_COLUMN + 30

COUNT = BEGINNING_ROW

END DO

COUNTER = 0

COUNT = BEGINNING_ROW + 30

END DO

END
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SUBROUTINE test_punt (MEGA_ARRAY, MEAN)

IMPLICIT NONE

CHARACTER *80 file

INTEGER I, J,L,M, NRM, NCM, NRC, NCC, NCO, NRS, NCS, NRN, NCN, COUNTER,

COUNT, TALLY, NRPIX, NCPIX, start_row, start_column, point , INDEX,

PLACE, PZ

PARAMETER (NRM =

150, NCM = 150, NRC = 6, NCC = 6, NCO = 1, NRS = 120,
NCS = 120, NRN = 30, NCN = 30, NRPIX = 256, NCPIX 256)

REAL BAND1 (NRPIX, NCPIX), BAND2 (NRPIX, NCPIX), BAND3 (NRPIX, NCPIX),
BAND4 (NRPIX, NCPIX), BAND5 (NRPIX, NCPIX), BAND7 (NRPIX, NCPIX)

REAL ARRAYS USED IN SYNTHETIC IMAGE CALCULATIONS

REAL MEGA_ARRAY(NRM,NCM) , RANDOM_ONE (NRM, NCO) , MEAN (NRC, NCO) ,

EIGENVECTOR (NRM, NCM) , EIGENVALUE (NRM, NCO) ,

EIGENVECTOR_CORRECTED(NRM,NCM) ,

TRANS_EIGENVECTOR_CORRECTED (NRM, NCM) , PZ_ONE (NRM, NCO) ,

CORRECTED_PZ ONE (NRM, NCO)

PART ONE

THIS SECTION WILL PRODUCE XI = P'Z + MEAN.

THIS (150X1) ARRAY WILL BE LABELED
"CORRECTED_PZ_ONE"

IN THIS PROGRAM 6

WILL PRODUCE A SERIES OF 5 PIXEL X 5 PIXELS X 6 BANDS BLOCKS OF

IMAGE DATA

BEGIN BY CREATING EIGENVECTORS, EIGENVALUES. P = (150,150) MATRIX OF

EIGENVECTORS

CALL EVCSF (NRM,mega_array , NRM, eigenvalue, eigenvector, NRM)

CHANGE EIGENVECTOR TO UNIT LENGTH

NOTE: EIGENVECTOR_CORRECTED WILL BE TRANSPOSED IN SUBROUTINE CREATE_CORRECTED_
EIGENVECTOR

CALL CREATE_CORRECTED_EIGENVECTORSl (eigenvalue, eigenvector ,

eigenvector_corrected)
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GET (150,1) MATRIX OF PSEUDO NORMALLY DISTRIBUTED NUMBERS

Start_row = 1

Start_column = 1

Do L = 1,51

Do M = 1,51

CALL RNNOR(NPM, random_one)

CREATE P'Z

CALL MRRRR(NRM, NCM, eigenvector_corrected, NRM, NRM, NCO, random_one,

NRM, NRM, NCO, pz_one, NRM)

ADD MEAN TO P'Z TO CREATE XI

point = 1

COUNTER= 0

DO INDEX 1,25

DO J = 1,6

COUNTER = COUNTER + 1

corrected_pz_one (COUNTER, NCO)
= mean (J, NCO) + pz_one (COUNTER, NCO)

END DO

point point + 1

END DO
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FINALLY, STORE THE FIRST 5X5 PIXELS INTO THEIR INDIVIDUAL BANDS

COUNTER = 0

DO I =

start_row, start_row + 4

DO J =
start_column, start_column + 4

COUNTER COUNTER 1- 1

BAND1(I,J) = corrected_pz_one (COUNTER, NCO)

counter = counter +1

BAND2(I,J) = corrected_pz_one (Counter, NCO)

counter = counter + 1

BAND3 ( I , J) corrected_pz_one (COUNTER, NCO)

counter = counter + 1

BAND4(I,J) = corrected_pz_one (COUNTER, NCO)

counter = counter + 1

BAND5(I,J) = corrected_pz_one (COUNTER, NCO)

counter = counter + 1

BAND7(I,J) = corrected_pz_one (COUNTER, NCO)

END DO

END DO

start_column
= start_column + 5

End do

start_row = start_row + 5

start_column
= 1

End do

CALL make_bands_punt (BAND1, BAND2, BAND3, BAND4 , BAND5, BAND7, mean)

type*, 'THE END! ! !
'

END
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SUBROUTINE CREATE_CORRECTED_EIGENVECTORSl (EVAL, EVEC, EVEC_CORRECTED)

IMPLICIT NONE

INTEGER I, J, COUNTER

REAL EVAL(150) , EVEC ( 150, 150) , EVEC_CORRECTED (150, 150)

REAL CONSTANT (150) , TEE ( 150, 150) , TRANS_EVEC ( 150, 150 )

OBTAIN THE TRANSPOSE OF THE ARRAY 'EVEC AND PRINT TO SCREEN

CALL TRNRRU50, 150, EVEC, 150, 150, 150, TRANS_EVEC, 150)

MULTIPLY THE EVEC (THE TRANSPOSE OF EVEC) BY EVEC, AND PRINT TO SCREEN

CALL MRRRRI150, 150, TRANS_EVEC, 150, 150, 150, EVEC, 150, 150, 150, TEE, 150)

DO I 1,150

DO J = 1, 150

IF (I.EQ.J ) THEN

CONSTANT (I) = (EVAL (I) /TEE (I, J) ) **0.5

END IF

END DO

END DO

DO I = 1, 150

DO J = 1,150

EVEC_CORRECTED(J, I)
= EVEC ( J, I ) *CONSTANT (I )

END DO

END DO

END
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SUBROUTINE MAKE_BANDS_PUNT ( INPUTJDNE, INPUT_TWO,'INPUT_THREE, INPUT_FOUR,

INPUT_FIVE, INPUT_SEVEN,mean)

INTEGER I, J, NOUT,K,NOBS, IOPT,NBAR, ISP

REAL INPUT_ONE(256, 256) ,
INPUT_TWO (256, 256) , INPUTJTHREE (256, 256) ,

INPUT_FOUR(25 6, 256) , INPUT_FIVE (25 6, 256) ,
INPUT_SEVEN (256, 256) ,

MOPT, STAT (15, 25 6) , STATS_ARRAY ( 65025 , 1) , RANDOMJTEST ( 65025, 1 ) ,

mean (6,1)

INTEGER*2 BAND_ONE (512, 512 ) , BAND_TWO (512 , 512) , BAND_THREE (512 , 512 ) ,

BAND_FOUR(512,512) , BAND_FIVE (512, 512) , BAND_SEVEN ( 512 , 512) ,

NRMISS

INTEGER*2 INPUT_BAND_ONE (256, 256) ,
INPUT_BAND_TWO (256, 256) ,

INPUT_BAND_THREE (256, 256) ,
INPUT_BAND_FOUR (256, 256) ,

INPUT BAND FIVE(256, 256) , INPUT BAND SEVEN (256, 256)

THIS SECTION PLACES NORMAL IMAGE DATA INTO A FILE FORMAT THAT

CAN BE RECEIVED BY ERDAS . THIS SECTION IS COMMENTED OUT IF IMAGE

DATA IS INTENDED TO BE CORRUPTED

DO I = 1, 255

DO J = 1, 255

IF (INPUT_ONE(I, J) .LT. 0.0) THEN

INPUT_ONE(I, J) 0.0

ELSE IF (INPUT_ONE(I, J) .GT. 255.0) THEN

INPUT_ONE(I, J)
= 255.0

END IF

END DO

END DO

DO I = 1, 255

DO J = 1, 255

IF (INPUT_TWO(I, J) .LT. 0.0) THEN

INPUT_TWO(I, J) =0.0

ELSE IF <INPUT_TWO(I, J) .GT. 255.0) THEN

INPUT_TWO(I, J)
= 255.0

END IF

END DO

END DO
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DO I 1, 255

DO J = 1, 255

IF (INPUT_THREE(I, J) . LT . 0.0) THEN

INPUTJTHREEU, J) =0.0

ELSE IF ( INPUTJTHREEU, J) -GT. 255.0) THEN

INPUT_THREE(I, J) = 255.0

END IF

END DO

END DO

DO I = 1, 255

DO J = 1, 255

IF (INPUT_FOUR(I, J) .LT. 0.0) THEN

INPUT_FOUR(I, J) = 0.0

ELSE IF (INPUT_FOUR(I, J) .GT. 255.0) THEN

INPUT_FOUR(I, J) = 255.0

END IF

END DO

END DO

DO I = 1, 255

DO J = 1, 255

IF (INPUT_FIVE(I, J) .LT. 0.0) THEN

INPUT_FIVE(I, J) = 0.0

ELSE IF (INPUT_FIVE(I, J) . GT . 255.0) THEN

INPUT_FIVE (I, J) = 255.0

END IF

END DO

END DO
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DO I = 1, 255

DO J = 1, 255

IF (INPUT_SEVEN(I, J) . LT . 0.0) THEN

INPUT_SEVEN(I, J) =0.0

ELSE IF (INPUT_SEVEN(I, J) . GT . 255.0) THEN

INPUT_SEVEN(I, J) = 255.0

END IF

END DO

END DO

CALL IMAGE_into_bands (INPUTJDNE, INPUT_TWO, INPUT_THREE,

INPUT_FOUR, INPUT FIVE, INPUT SEVEN)

CALL CORRUPT_NORMAL_DATA(INPUT_ONE,INPUT_TWO, INPUTJTHREE, INPUT_FOUR,

INPUT FIVE, INPUT SEVEN, mean)
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SUBROUTINE CORRUPTJJORMALJ5ATA (INPUTJ.NE, INPUTJTWO, INPUTJTHREE, INPUT_FOUR,

INPUT_FIVE, INPUT_SEVEN, mean)

EXTERNAL RNUNF, rnun

INTEGER I, J, corrupt_numberl, corrupt_number2 , corrupt_number3,

corrupt_number4 , corrupt_number5, corrupt_number7, pixel_counter

REAL INPUTJ_NE(256,256) , INPUT_TWO (256, 256) ,
INPUTJTHREE (256, 256) ,

INPUT_FOUR (256, 256) , INPUT_FIVE (256, 256) ,
INPUT_SEVEN (256, 256) ,

MOPT, STAT (15,256) , STATS_ARRAY ( 65025, 1) ,
RANDOMJTEST ( 65025, 1) ,

mean (6,1)

REAL corrupt_totall, corrupt_total2, corruptJ;otal3, corrupt_total4 ,

corruptJ;otal5, corruptJ;otal7 , mean_shiftl, mean_shift2,

mean_shift3, mean_shift4, mean_shift5, mean_shift7

REAL BAND1_C0RRUPT (256, 256) ,
BAND2J.ORRUPT (256, 256) ,

3AND3JTORRUPT (256, 256) , BAND4_CORRUPT (256, 256) ,

3AND5JTORRUPT (256, 256) ,
BAND7_CORRUPT (256, 256)

REAL PIXEL_SHIFT1, PIXEL_SHIFT2 , PIXEL_SHIFT3, PIXEL_SHIFT4, PIXEL_SHIFT5 ,

PIXEL SHIFT7, R(l, 1) ,C

2SD vsf

PIXEL_SHIFT1 = 13. 42

PIXEL_SHIFT2 = 8.80

PIXEL_SHIFT3 = 15..68

PIXEL_SHIFT4 = 19.,52

PIXEL_SHIFT5 = 32..80

PIXEL_SHIFT7 24..36

3SD vsf

PIXEL_SHIFT1 = 20 .13

PIXEL_SHIFT2 = 13..2

PIXEL_SHIFT3 = 23 .52

PIXEL_SHIFT4 = 29 .28

PIXEL SHIFT5 = 49 .2

PIXEL SHIFT7 = 36 .54
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CORRUPT BAND ONE

PIXEL_COUNTER = 0

CORRUPTJTOTAL1 = 0

DO I = 1,255

DO J = 1,255

CALL RNUN (1,R)

IF (R(l,l) .LE. 0.2) THEN

BANDl_CORRUPT(I, J)
= INPUTJ.NE ( I , J) + PIXEL_SHIFT1

ELSE

BAND1_C0RRUPT(I, J) = INPUT_ONE ( I , J)

END IF

IF (BAND1_C0RRUPT(I, J) . LT . 0.0) THEN

BAND1_C0RRUPT (I, J) =0.0

ELSE IF (BAND1_C0RRUPT(I, J) . GT . 255.0) THEN

BAND1_C0RRUPT(I, J) 255.0

END IF

END DO

END DO

DO I = 1, 255

DO J = 1, 255

CORRUPTJTOTAL1 = CORRUPTJTOTAL1 + BAND1 J.ORRUPT ( I , J)

PIXEL_COUNTER = PIXELJTOUNTER + 1

END DO

END DO

MEAN_SHIFT1 = (CORRUPT_TOTALl/PIXEL_COUNTER)
- MEAN (1,1)

DO I = 1, 255

DO J = 1, 255

BAND1_C0RRUPT(I, J)
= BAND1_C0RRUPT ( I , J)

- MEAN_SHIFT1

END DO
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END DO

type*,
'

type* Corrupted Band One Completed

type*,
' '

CORRUPT BAND TWO

PIXEL_COUNTER = 0

CORRUPTJTOTAL2 = 0

DO I 1,255

DO J = 1,255

CALL RNUN (1, R)

IF (R(l,l) .LE. 0.2) THEN

BAND2_CORRUPT(I, J)
= INPUTJTWO ( I , J) + PIXEL_SHIFT2

ELSE

BAND2_CORRUPT(I, J)
= INPUTJTWO ( I, J)

END IF

IF (BAND2_CORRUPT(I, J) . LT . 0.0) THEN

BAND2_CORRUPT(I, J)
= 0.0

ELSE IF (BAND2_CORRUPT(I, J) .GT. 255.0) THEN

BAND2_CORRUPT(I, J)
= 255.0

END IF

END DO

END DO

DO I = 1, 255

DO J = 1, 255

CORRUPTJTOTAL2 = CORRUPTJTOTAL2 + BAND2J.ORRUPT ( I, J)

PIXEL_COUNTER = PIXEL_COUNTER + 1

END DO

END DO

MEAN_SHIFT2 = (CORRUPTJTOTAL2 /PIXEL_COUNTER) -MEAN(2,1)
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DO I = 1, 255

DO J = 1, 255

BAND2_CORRUPT(I, J) = BAND2_CORRUPT ( I , J) MEANJSHIFT2

END DO

END DO

type * .

' '

type*, 'Corrupted Band Two Completed
'

type*,
' '

CORRUPT BAND THREE

PIXEL_COUNTER = 0

CORRUPTJTOTAL3 = 0

DO I = 1,255

DO J = 1,255

CALL RNUN (1,R)

IF (R(l,l) .LE. 0.2) THEN

BAND3_CORRUPT(I, J)
= INPUTJTHREE ( I , J) + PIXEL_SHIFT3

ELSE

BAND3_CORRUPT (I, J) INPUTJTHREE (I , J)

END IF

IF (BAND3_CORRUPT(I, J) . LT . 0.0) THEN

BAND3_CORRUPT(I, J) =0.0

ELSE IF (BAND3_CORRUPT(I, J) .GT. 255.0) THEN

BAND3_CORRUPT(I, J)
= 255.0

END IF

END DO

END DO

DO I = 1, 255

DO J = 1, 255

CORRUPTJTOTAL3
= CGRRUPTJTOTAL3 + BAND3JCORRUPT ( I , J)

PIXEL COUNTER = PIXEL_COUNTER + 1
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END DO

END DO

MEANJ3HIFT3 -

(CCRRUPT_TOTAL3/PIXEL_COUNTER) MEAN (3,1)

DO I = 1, 255

DO J = 1, 255

BAND3_CORRUPT(I, J) BAND3J.ORRUPT ( I , J) MEAN_SHIFT3

END DO

END DO

type*,
' '

type*, 'Corrupted Band Three Completed
'

type*
,

' '

CORRUPT BAND FOUR

PIXEL_COUNTER = 0

CORRUPTJTOTAL4 = 0

DO I = 1,255

DO J = 1,255

CALL RNUN (1,R)

IF (R(l,l) -LE. 0.2) THEN

BAND4_CORRUPT(I, J)
= INPUT_FOUR ( I , J) + PIXEL_SHIFT4

ELSE

BAND4_CORRUPT(I, J)
= INPUT_FOUR ( I, J)

END IF

IF (BAND4_CORRUPT(I, J) . LT . 0.0) THEN

BAND4_CORRUPT(I, J) =0.0

ELSE IF (BAND4_CORRUPT(I, J) .GT. 255.0) THEN

BAND4_CORRUPT(I, J)
= 255.0

END IF

END DO

END DO

DO I = 1- 255
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DO J = 1, 255

CORRUPTJTOTAL4 = CORRUPTJIOTAL4 + BAND4_CORRUPT ( I, J)

PIXEL_COUNTER = PIXEL_COUNTER + 1

END DO

END DO

MEAN_SHIFT4 = (CORRUPTJIOTAL4 /PIXEL_COUNTER) MEAN (4,1)

DO I = 1, 255

DO J = 1, 255

BAND4_CORRUPT(I, J) = BAND4 JTORRUPT ( I , J) MEAN_SHIFT4

END DO

END DO

type*,
'

type*, 'Corrupted Band Four Completed '

type*,
' '

CORRUPT BAND FIVE

PIXEL_COUNTER = 0

CORRUPT_TOTAL5 = 0

DO I = 1,255

DO J = 1,255

CALL RNUN (1, R)

IF (R(l,l) .LE. 0.2) THEN

BAND5_CORRUPT(I, J)
= INPUT_FIVE ( I , J) + PIXEL_SHIFT5

ELSE

BAND5_CORRUPT(I, J)
= INPUT_FIVE ( I, J)

END IF

IF (BAND5_CORRUPT(I, J) . LT . 0.0) THEN

BAND5_CORRUPT(I, J) =0.0

ELSE IF (BAND5_CORRUPT(I, J) . GT . 255.0) THEN

BAND5 CORRUPT(I,J)
= 255.0

D27



APPENDIX D

END IF

END DO

END DO

DO I = 1, 255

DO J = 1, 255

CORRUPTJTOTAL5 - CORRUPTJTOTAL5 + BANDSJCORRUPT ( I, J)

PIXEL_COUNTER = PIXEL_COUNTER + 1

END DO

END DO

MEAN_SHIFT5 =

(CORRUPTJTOTAL5/PIXELJCOUNTER) MEAN (5,1)

DO I = 1, 255

DO J = 1, 255

BAND5JCORRUPT(I, J) = BAND5JTORRUPT ( I , J) MEAN_SHIFT5

END DO

END DO

type*,
' '

type*, 'Corrupted Band Five Completed
'

type*,
'

CORRUPT BAND SEVEN

PIXEL_COUNTER = 0

CORRUPTJTOTAL7 = 0

DO I = 1,255

DO J 1,255

CALL RNUN (1, R)

IF (R(l,l) .LE. 0.2) THEN

BAND7 JCORRUPT (I, J) = INPUT_SEVEN ( I , J) + PIXEL_SHIFT7

ELSE

BAND7_CORRUPT(I, J) = INPUTJ3EVEN ( I, J)

END IF

IF (BAND7 CORRUPT(I,J) . LT . 0.0) THEN
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BAND7_C0RRUPT(I, J) =0.0

ELSE IF (BAND7_CORRUPT(I, J) . GT . 255.0) THEN

BAND7 JCORRUPT (I, J) = 255.0

END IF

END DO

END DO

DO I = 1, 255

DO J 1, 255

CORRUPTJTOTAL7 = CORRUPT_TOTAL7 + BAND7 JTORRUPT ( I , J)

PIXEL_COUNTER = PIXEL_COUNTER + 1

END DO

END DO

MEANJ3HIFT7 = (CORRUPTJTOTAL7/PIXELJCOUNTER) MEAN (6,1)

DO I = 1, 255

DO J = 1, 255

BAND7_CORRUPT(I, J)
= BAND7_CORRUPT ( I , J)

- MEANJSHIFT7

END DO

END DO

type*,
' '

type*, 'Corrupted Band Seven Completed
'

type*,
' '

CALL IMAGE_into_bands (bandl_corrupt, band2_corrupt, band3_corrupt,

band4_corrupt, band5_corrupt, band7_corrupt )

END

D29



APPENDIX D

SUBROUTINE image_into_bands ( INPUTJDNE, INPUTJTWO, INPUTJTHREE, INPUT_FOUR,

INPUT_FIVE, INPUTJSEVEN)

INTEGER I, J

REAL INPUT_ONE(256,256) , INPUTJTWO (256, 25 6) , INPUTJTHREE (25 6, 256) ,

INPUT_FOUR(256,256) , INPUTJFIVE (256, 25 6) , INPUTJSEVEN (256, 256) ,

MOPT, STATUS, 256) , STATS_ARRAY ( 65025, 1) , RANDOMJTEST ( 65025, 1)

REAL BAND_ONEJCLIPPED(256,256) , BAND_two_CLIPPED (256, 256) ,

BAND_three_CLIPPED (256, 256) , BAND_four_CLIPPED (256, 256) ,

BAND_f ive_CLIPPED (256, 256) , BAND_sever._CLIPPED (256, 256)

Integer*2 BANDJONE (256, 256) , BANDJTWO (256, 256) , BANDJTHREE (256, 256) ,

BAND_FOUR(256,256) , BAND_FIVE (256, 256) ,
BANDJ3EVEN (256, 256) ,

NRMISS

CREATE BAND ONE

DO I = 1,256

DO J = 1,256

if (input_one (i, j) .It. 0.0) then

band_one_clipped (i, j) = 0.0

else

band_one_clipped (i, j) = input_one (i, j)

END IF

end do

end do

DO I = 1,255

DO J = 1,255

BAND ONE (I, J)
= NINT(band_ONE_clipped(I, J) )

END DO

END DO

CALL IMAGE__OUT(BAND_ONE,256)

TYPE*, 'BAND ONE
COMPLETED'

TYPE*,
'
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CREATE BAND TWO

DO I = 1,256

DO J = 1,256

if (input_two(i, j) .It. 0.0) then

band_two_clipped (i, j) = 0.0

else

band two clipped (i, j) = input_two (i, j)

END IF

end do

end do

DO I = 1,255

DO J 1,255

BAND_two(I, J)
= NINT(band_two_clipped(I, J) )

END DO

END DO

CALL IMAGEJ_UT(BAND_TWO,256)

TYPE*,'BAND two
COMPLETED'

TYPE*,
'

CREATE BAND THREE

DO I = 1,256

DO J = 1,256

if (input_three(i, j) -It. 0.0) then
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band_three_clipped(i, j) = o.o

else

band_three_ clipped (i, j) = input_three (i. j)

END IF

end do

end do

DO I = 1,255

DO J 1,255

BAND_three(I, J) = NINT (band_three_clipped ( I , J) )

END DO

END DO

CALL IMAGE OUT (BAND THREE, 256)

TYPE*. 'BAND THREE COMPLETED'

TYPE*,
'

CREATE BAND FOUR

DO I = 1,256

DO J 1,256

if (input_four (i, j) .It. 0.0) then

band_four_clipped (i, j) = 0.0

else

band_four_clipped (i, j) = input_four (i, j)

END IF

end do

end do
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DC I = 1,255

DO J = 1,255

BAND_four (I, J) = NINT (band_four_clipped ( I, J) )

END DO

END DO

CALL IMAGE_OUT(BAND_FOUR, 256)

TYPE*. 'BAND FOUR
COMPLETED'

TYPE*,
'

CREATE BAND FIVE

DO I = 1,256

DO J = 1,25.

if (input_five (i, j) .It. 0.0) then

band_f ive_clipped (i, j) 0.0

else

band_f ive_clipped (i, j) = input_f ive (i, j)

END IF

end do

end do

DO I 1,255

DO J = 1,255

BAND five(I,J) = NINT (band_five_clipped (I, J) )

END DO

END DO

CALL IMAGE_OUT(BAND_FIVE, 256)

TYPE*, 'BAND FIVE
COMPLETED'

TYPE*,
'
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CREATE BAND SEVEN

DO I = 1,256

DO J = 1,256

if (input_seven (i, j) .It. 0.0) then

band_seven_clipped ( i, j) = 0.0

else

band seven_clipped ( i, j) input_seven ( i , j)

END IF

end do

end do

DO I = 1,255

DO J = 1,255

BAND seven(I.J) NINT (band_seven_clipped ( I, J) )

END DO

END DO

CALL IMAGE_OUT(BAND_SEVEN,256)

TYPE*, 'BAND SEVEN
COMPLETED'

TYPE*.
'

END
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