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A Non-Probabilistic, Compact Compression Algorithm Suitable for Deep Space Solar
System Mission Image Transmission.

Abstract

Image acquisition on space missions is a memory intensive activity, due to high-
resolution focal planes and hyperspectral data collection. Data compression is required to
accommodate on-board data storage and data transmission rate limitations due to distance from
Earth. Current algorithms employed on spacecraft are probabilistic and require the processing of
entire images to achieve high compression ratios, either in frequency or wavelet domains.

Twenty-five test images from prior space missions were subjected to a newly developed
compact, non-memory intensive, non- probabilistic, lossy compression algorithm, and achieved
PSNR' s of approximately 30 dB. On pixel gray-level step-discontinuities, the algorithm achieved
tracking of the original signal within 2 digital counts for all discontinuities from 0 to 255 digital
counts, after only 6 pixels. The algorithm (written in IDL) requires less than 1 kilobyte of memory,
including workspace for computation. It can function as a stand-alone compressor and achieves
approximately a 2.7: 1 compression ratio for 8 bit images, and 5.3: 1 for 16 bit images. It can
function as a pre-processor when paired with a lossless encoder (e.g., Huffman, Arithmetic) for
further compression.
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Introduction

Interplanetary space probes have been launched to all points in the solar system since
late 1959 when the Union of Soviet Socialist Republic’s Luna 3 took the first photo of the far side
of the moon. Though doing so in the proximity of their targets, these probes still are essentially
remote sensing missions. As such, transmission of imagery back to Earth is one of the primary
means of relaying data to the Mission Science Teams. But data transmission over such long
distances remains problematic. Greater distance from the Earth demands slower bit rates in
transmission to minimize errors. Any way to simplify or shorten the data stream enhances the
probe’s performance, and allows broader mission objectives to be achieved over the lifetime of
the spacecraft. Image compression is one such method to shorten the bit stream.

Since the advent of digital image acquisition, compression algorithms such as Huffman
encoders, Integer Cosine Transforms (a variant of JPEG compression), Integer Wavelet
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Transforms (a variant of JPEG 2000 compression), Arithmetic Encoders, or combinations thereof,
have been employed.

A family of newly developed lossy compression algorithms is presented that will prove
useful in speeding initial image transmission, to facilitate selection of images and places of
interest to be further examined with higher resolution and alternative longer data stream/lossless
compression algorithms. These compression algorithms also have the advantage of being non-
probabilistic, non-computational and non-memory intensive.

Background and Motivation

Image compression doesn’t just enable faster image downloads to Earth, in one instance
it was called upon to save an entire mission: NASA’s Galileo Project. Galileo was designed to
place an orbiter around Jupiter to study the planet, and predominantly its four major moons, Io,
Calisto, Gamymede and Europa. The spacecraft as launched was conceived of in the late 1970’s,
and built with early 1980’s technology. It was originally scheduled to be launched with a cryogenic
high-energy Shuttle Centaur upper-stage, from the Space Shuttle cargo bay. The launch failure of
the Shuttle Challenger and the subsequent grounding of the entire Space Shuttle fleet delayed
Galileo’s launch an additional three years. It’s a very time consuming, money consuming problem
to unpack a payload that’s been configured for launch, so Galileo sat in storage with its main
antenna folded away for that entire wait period on the ground. When finally launched from Shuttle
Atlantis’s cargo bay, and after well on its way to Jupiter, the high-gain antenna was commanded
to deploy but did not do so properly, and as such was useless. The high gain antenna was to
have supported data transmission speeds of up to 134 kilobits/second. This would have allowed
an 800 x 800 pixel, 8 bits/pixel image to transmit to earth in just under one minute [1].

The only alternative was to utilize the low gain antenna, which had originally been
designed to send back numerical data on spacecraft subsystems. The low-gain antenna had an
original data rate of 16 bits/second. For an 800 x 800 pixel, 8 bits/pixel image, the required data
stream was 5120000 bits and at 16 bits/second, a single image would require 89 hours to
transmit.

The first subsequent fix was to send up new software that enabled the data stream rate
of the low-gain antenna to be increased to 160 bits/second, but this still required 9 hours per
image. Next, Galileo’s ICT image compressor (which allowed compression rates of up to 50:1 for
images that could withstand such high compression rates) was utilized to bring that number down
further to about 10 minutes of transmission time for each image. In actual practice, most images
were compressed such that it took one to two hours to transmit. The mission proceeded with
images acquired being stored using the on-board magnetic tape system. Magnetic tape offered
superior performance with respect to the density of bits per unit pound/per unit volume, as well as
better protection against radiation induced data loss, than did the solid state memory systems of
the day. These stored images were then transmitted during the cruise phases as Galileo transited
between the target moons.

Over time, the magnetic tape system’s performance degraded, as mechanical systems
are prone to do. Even though subsequent missions are utilizing solid state memory systems with
no moving parts, the potential for loss of a memory storage unit or of computational ability
remains a real possibility. Weight considerations imply that no space probe can carry sufficient
redundancy to compensate for all major malfunctions.

It is precisely this example that prompted the investigation into a non-probabilistic
compression algorithm that would be robust, maintain high peak signal to noise ratio (PSNR), and
would minimize on-board storage needs, data stream and transmission time.
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Algorithm Description

This compression algorithm is designed to reduce the transmission of an m-bit word to
describe digital counts for a panchromatic image, to a fixed n-bit code word. For an m of 8, and
an n of 3, a reduction of 62.5% of the data would be achieved, yet it is required that a peak-
signal-to-noise-ratio (PSNR) of at least approximately 30 decibels (dB) be maintained.

Any algorithm created could be a lossy type, as long as it reproduced image features that
would remain recognizable by an astronomer, without creating artifacts that would detract from
the true scientific information content.

The algorithm chosen is a differencing schema – information will be transmitted to
additively modify the preceding pixel’s digital count, to arrive at the current pixel’s digital count in
the decompression of the image.

The transmitted information is series of n-bit words. One bit determines the sign: 0
indicates a minus, 1 indicates a plus. The remaining bits describe the scalar values of the
difference. As such, here are the details for the 8-bit to 3-bit algorithm:

• A scalar difference DC of 1 is dismissed as not required, since adjacent constant value
pixels can be “dithered” up by a DC of 2, and down by a DC of 2 and the human visual
system (HVS) will smooth out the contrast over this short spatial distance. For a constant
value DC, the algorithm oscillates in a very narrow digital count range around any
particular DC value.

• A scalar difference DC of 256 is dismissed. An image of the white limb of a planet against
a black background is typically the only locus in an image requiring so great a step. For
all practical purposes, this can be accomplished (as well as for any such higher
difference between adjacent pixels) with one step of 128, followed by whatever
successive value is required and available in the codebook.

• Selected are 128 at one end of the scale for difference, and 2 at the other. This
consumes one bit with two states (0 or 1):

• Another bit of the 3-bit code word is assigned to the values of 32 and 8 – so as to equally
space out the assignment of bit states. The values selected are as such:

o Binary:
 128 – 10000000
   32 – 00100000
     8 – 00001000
     2 – 00000010

o These four values are encoded among 2 bits.
• As this is a differencing algorithm, and it will add or subtract, a third bit is required to carry

sign. One state to represent a “+”, the other state to represent a “-.”

The 3-bits are encoded into words according to the codebook in Table 1.

Value (Delta) -2 -8 -32 -128 +2 +8 +32 +128
Encoded Decimal 0 1 2 3 4 5 6 7
Encoded Binary 000 001 010 011 100 101 110 111

Table 1 – 3-bit encoding codebook

The binary representation of a 256 gray-level image can be represented by an 8-bit word.
The values of the differences between adjacent pixels ranges from 0 to 255, also represented by
an 8-bit word. Consider the 8-bit word to be a bank of 8 “switches.” This algorithm will only allow
one of those 8 bits to be “switched” at a time, and will allow only every other switch as a selection.
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Algorithm Methodology

This compression algorithm for 8-bit to 3-bit encoding utilizes the following steps:

1. The first pixel in the row is assigned an encoded DC value of 127 (regardless of what the
actual value is), for the encoding and decoding stages. The value is irrelevant as long as the
transmitter and receiver agree on the starting value.

2. For the next and each successive pixel in the sampled image, the residual difference
between the original image’s n+1th pixel’s DC value and the encoded image’s nth pixel’s DC
value is calculated, according to the following formula:

3. A determination is made as to which of the code book values available is closest to the
residual difference, and can be added to the nth encoded image pixel’s DC to bring it as close
as possible to the original image’s n+1th pixel’s DC value:

4. The encoded word representing the added value is transmitted in binary according to Table 1
to the receiver.

5. Steps 2 through 4 are repeated for each pixel across every pixel row of the image.
6. Steps 1 through 5 are repeated for all rows of the image

Here is an example for one particular row in an image:

ENCODING and TRANSMITTING

Encoded Image DC 127 159 191 189 187 189 157 29 21 19 17 19
Subtract Encoded Image
DC from Original Image
DC

53 21 -1 0 2 -1 3 -2 0 -1 1 0

Closest code book value +32 +32 -2 -2 +2 -32 -128 -8 -2 -2 +2 -2

Encoded image DC plus
code book value
(becomes n+1th Encoded
Image DC)

159 191 189 187 189 157 29 21 19 17 19 17

Transmitted word (coded
codebook value)

110 110 000 000 100 010 011 001 000 000 100 100

Difference (between
Encoded Image DC and
Original Image DC)

21 1 0 2 1 3 7 0 1 1 0 2

Table 2 – Encoding scheme

KEY - Move sum of Decompressed Image DC and closest Codebook
value up to this cell.

Pixel 0 1 2 3 4 5 6 7 8 9 10 11
Original Image DC 180 180 190 189 189 188 160 22 21 18 18 19

nn encodedDCoriginalDCdifferenceResidual )()( 1 −= +

nnn valuecodebookencodedDCencodedDC +=+ )()( 1
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DECODING and DECOMPRESSION
The DECOMPRESSION algorithm is applied as follows for the first pixel row:

1. The receiver sets the first pixel (in each row) DC count in the row to be decoded to 127.
2. The receiver adds the value of the decoded binary word to this first pixel’s DC value, and

makes this the next pixel’s DC value.

3. The receiver continues to add the value determined by each successively received encoded
binary word received to the nth pixel DC in his image, to reconstruct the n+1th pixel DC.

4. Steps 1 through 3 are repeated for the remaining pixels in the row.
5. Steps 1 through 4 are repeated for all rows.

Received word 110 110 000 000 100 010 011 001 000 000 100
Decoded value +32 +32 -2 -2 +2 -32 -128 -8 -2 -2 +2
Decompressed Image
DC

127 159 191 189 187 189 157 29 21 19 17 19

Original Image DC 180 180 190 189 189 188 160 22 21 18 18 19

Difference between
Original Image DC and
Decompressed Image
DC

53 21 1 0 2 1 3 7 0 1 1 0

Table 3 – Decoding scheme

KEY - Add two values (at head and tail).

          Put sum of nth pixel DC and n+1th pixel decoded value here.

The actual DC level, and the encoded tracking DC levels for this example are shown in Figure 1:

Pixel 0 1 2 3 4 5 6 7 8 9 10 11

nnn valuecodebookdecodedDCdecodedDC +=+ )()( 1
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Figure 1 – Digital Count tracking
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Analysis

PEAK SIGNAL to NOISE RATIO (PSNR)

In order to evaluate this algorithm, 25 gray scale images (available in Appendix) of
selected NASA space missions (Galileo, Shoemaker-NEAR, Voyager, Mars Reconnaissance
Orbiter, Mars Exploration Rovers A and B) were subjected to the described compression
algorithm. An IDL implementation is available in the Appendix at the end of this document.

This code was modified for 4 bit compression using the codebook described in Table 4,
and also applied to the 25 images, to see if any significant improvement in the algorithm’s
performance was gained as measured by the Peak Signal to Noise Ratio (PSNR) values.

Value -2 -4 -8 -16 -32 -64 -128 -235 2 4 8 16 32 64 128 235

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Table 4 – 4-bit encoding codebook

The PSNR values of the encoded images were computed using the original bitmap
images as the reference, and were calculated (Equations 1 and 2). They are presented in Table
5. The same data is presented graphically in Figure 2:

Equation 1
MSE

dBPSNR
n 2)12(log10)( −

⋅=

Equation 2
CR

N
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R C

ff ijij∑∑ −
= == 1 1
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)ˆ(

For this particular set of images, where m=8 and n=3, a 62.5% reduction in information
content yields an average PSNR of 31.79dB [25.30dB, 39.02]. Where m=8 and n=4, utilizing the
additional bit in the codebook achieves a 50% reduction in information content, and yields an
average PSNR of 33.58dB [ 25.69, 39.66].

The 4-bit compression performs an average of 5.8% better in terms of PSNR over the 3-
bit compression. However, both algorithms yield PSNRs in excess of 30dB for nearly all images.
The plot in Figure 2 shows that the PSNR values for both algorithms track each other well, with
little difference in visual performance for any particular image. In no case does the 3-bit algorithm
perform better than the 4-bit version.
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Table 5 – 3-bit and 4-bit encoded PSNRs

Sample in
presentation

3 bit
PSNR 
(dB)

4 bit
PSNR 
(dB) % difference

1 30.614 33.019 7.856
2 35.843 37.825 5.531
3 25.296 29.689 17.364
4 31.214 32.894 5.383
5 33.396 34.072 2.025
6 30.123 31.703 5.245
7 31.018 33.532 8.107
8 29.702 31.351 5.553
9 32.601 34.018 4.346
10 39.016 39.655 1.636
11 31.867 33.645 5.579
12 29.931 30.276 1.153
13 32.558 34.070 4.642
14 34.687 36.596 5.502
15 27.704 31.185 12.565
16 31.546 32.180 2.009
17 32.465 33.687 3.763
18 30.213 31.669 4.818
19 30.188 33.388 10.599
20 33.903 34.955 3.104
21 27.660 28.660 3.616
22 31.275 33.262 6.353
23 34.627 36.817 6.325
24 33.775 36.000 6.586
25 33.448 35.359 5.715

Average PSNR 31.787 33.580
5.815Average % difference
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Figure 2 – PSNRs of images utilizing 3-bit and 4-bit version of compression algorithm
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SIDE LOBE to PEAK RATIO

One of the qualitative checks created during the development of the algorithm was the
creation of a difference image between the original image and decompressed encoded image. It
was created by taking the decompressed image and subtracting the original image from it, on a
pixel Dc by pixel DC basis. Figure 3 illustrates several histogram exemplars for these difference
images:

Figure 3 – Histograms of the differences of Original and Encoded Images. L-R, top to bottom:
Image 1, Image 10, Image 12, Image 16
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Of interest is what the distribution of the ratio side lobe to peak ratios for all difference
image histograms, and the rate at which this ratio falls to zero. Ideally, each pixel should
numerically match between images. So the peak of the histogram curves should be at 0. One
could ask how much that ratio drops if 1 digital count to either side of 0; 2 digital counts on either
side of 0, or 3, etc., can be determined.

Of the 25 images, the plots of the ratios are shown in Figure 4.

Figure 4 – Individual Side lobe to Peak ratios

Several features are noteworthy. First is the expected peak at a digital count of 0. This
represents the pixels where DC values matched up and a difference of zero was obtained.

A strong peak at +2 was also observed. For images with a lot of black content (not at all
unexpected), a DC value of 0, 1 or 2 would be expected for the black. The encoding would have
tried to match the 0, 1, or 2 as closely as possible with a DC level of 1. Since the starting pixel DC
in any row is 127, and all codewords are even numbered, then the lowest DC for any encoded
image that could be achieved would be 1. In order to represent extended pixel runs of 0, 1 or 2,
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the encoding would have added DC values of 2, and subsequently subtracted DC values of 2. So
in order represent black scene content, the encoded image values would have values oscillating
between 1 and 3. This leads to the strong peaks at 0 and +2.

Similarly for saturated bright areas, no value above 255 would have been encoded, so a
peak at DC values of 255 could be achieved. The algorithm would create runs of encoded DC
values oscillating between 253 and 255. The fact is that for any particular DC value in the original
image that is constant over a long run of pixels, the algorithm has to accommodate the constant
DC value by adding and subtracting encoded DC values of 2. This accounts for the strong peaks
at plus and minus 2.

If the curves in Figure 4 were averaged, we would obtain curve shown in Figure 5 :

Figure 5 – Average Side lobe to Peak ratio

The item of note in this plot is that at plus or minus 5 digital counts, the value of the ratio
drops to less than .032. It would appear that most of the pixels cluster within plus or minus 5
digital counts of where they should be valued. Even so, most lie within 3 digital counts of their
true value.
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PSNR and IMAGE ORIENTATION
The algorithm as written into code relies on scanning an image, row by row, from left to

right. As such, it would appear intuitive that the code favors images that have horizontally
continuous structure.

To investigate whether this is true, two images were fabricated. Each 512 x 512 pixel
image was composed of alternating black (digital count=0) and white (digital count=255) lines, 4
pixels wide. One image had the stripes oriented vertically, one horizontally, and each was
subjected to the algorithm. The images, their PSNRs after encoding, and the histograms of the
difference of the encoded and original images are shown in Figures 6a and 6b. The PSNRs seem
to acknowledge that the algorithm favors images with horizontal structure

Figure 6a Horizontal Strip Images Figure 6b– Vertical Strip Image
PSNR = 27.628 PSNR = 10.718
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The histograms for the difference image created in Figure 5A is easily considered. In any
row of pixels, the stripe’s encoded values are quickly stabilized at or around the target DC values
of either 0 or 255. The white stripe is encoded with DC values of 255 and 253, hence the
difference values at 0 and 2 (in this case, +2). The black stripes are encoded as 1 and 3, hence
the difference values of 1 and 3 (in this case, -1 and –3).

The histogram for the vertical stripes image case is more interesting. The image was
created with a bright white stripe first (digital count value 255). So encoded, the decoded
reassembled image starts with a default first pixel-in-any-row value of 127. The encoder adds a
+128 code word and arrives at +255. The algorithm then dithers a few times between 253 and
255. The algorithm and resultant data for the histogram takes the form shown in Table 6. The
same values, spaced at integral values of 32, appear almost uniformly (with the exception of the
start and end pixels. The encoding for any row of pixels follows the pattern shown in Table 6.

Table 6 – Vertical Stripe Image Histogram Pattern Data

Pixel

Original
Image

DC count

Encoded
Image

DC count Difference
0 255 127 -128
1 255 255 0
2 255 253 -2
3 255 255 0
4 0 127 127
5 0 95 95
6 0 63 63
7 0 31 31
8 255 159 -96
9 255 191 -64
10 255 223 -32
11 255 255 0
12 0 127 127
13 0 95 95
14 0 63 63
15 0 31 31
16 255 159 -96
17 255 191 -64
18 255 223 -32
19 255 255 0
20 0 127 127
21 0 95 95
22 0 63 63
23 0 31 31
24 255 159 -96
25 255 191 -64
26 255 223 -32
27 255 255 0
28 0 127 127
29 0 95 95
30 0 63 63
31 0 31 31
32 255 159 -96
33 255 191 -64
34 255 223 -32
35 255 255 0
… … … …
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Further confirmation was obtained with a real image as shown in Figure 7.

Figure 7 – PSNRs = 33.400(L)  and   28.495(R)

The PSNR for the image of Saturn on the left was higher than the one for the image on
the right; 33.400 versus 28.495, confirming that images with horizontal structure fare somewhat
better than images with vertical structure. This suggests that flight code, if being used as a pre-
processor, might have an element incorporated that determine the best orientation prior to
compression. Of course, such a pre-processing element would need to be performed
probabilistically, and would require computation and memory, which defeats the non-probabilistic
nature of this algorithm. Either the image will have to be compressed without regard to the
orientation of the majority of horizontal structure, or in the event of memory or computation failure
the pre-processor would have to be removed from the image chain.
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STEP DISCONTINUITY

Another aspect of performance that warrants investigation is the ability of the algorithm to
track a discontinuity in DC value in one row of pixels. In this case, the interest is in parameterizing
the algorithm’s ability to replicate the discontinuity that occurs when one DC value that has been
maintained for a consecutive number of pixels, is changed to another DC value over a one pixel
increment, to a new value that will be maintained for another number of consecutive pixels. The
determination to be made is how many successive applications of the algorithm are required for
the encoded DC values to be within 2 digital counts of the desired value.

For example, suppose in one row of pixels the DC value of 1 has been maintained for a
long run of pixels. Then a jump to a DC value of 190 occurs (which, similarly, will be maintained
for a number of successive pixels). This might represent the value of the black background of
space, encountering the bright limb of a planet, in one row of pixels of an image. The difference
between the two values is a DC of 189. Can the question of how many successive pixel
encodings are required, to bring the encoded DC value to within 2 digital counts of 190, be
calculated?

Step Discontinuity   -   Encoded Digital Count Value-Following
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Figure 8 illustrates this example, with the actual discontinuity encountered in the original
image and how the algorithm would track the DC value of 0 in the original image, and how it
would “home in” on the new DC value of 190:

• In an 8-bit, 256 gray-level image, the actual DC values go from 0 to 190.
o The encoded DC value oscillates between 1 and 3 (the only allowed values close

to zero since the encoding in any row starts with a value of 127, and all
codewords are even numbered).

• From a value of 3, the codeword for +128 is added to get 131.
• From 131, the codeword for +32 is added to get 163.
• From 163, the codeword for +32 is added to get 195.
• From 195, the codeword for -2 is added to get 193.
• From 193, the codeword for -2 is added to get 191.
• From 191, the codeword for -2 is added to get 189.
• From 189, the codeword for +2 is added to get 191.
• From here on, the value of 2 is either subtracted or added so as to oscillate around the

desired value of 190 (this is a close as we can achieve).

This particular example took 5 applications of the algorithm to arrive at a value that was
steady state, within 2 digital counts of our target of 190. The question that remains is, for any
arbitrary step discontinuity from 1 to 255, how many pixels would the algorithm require after the
step, to arrive at the target DC value, within the tolerance band of 2 digital counts?

Numerical analysis has determined that for our 8-bit image set of cases, out of the 255
possible step values, 20 cases, 7.81%, are within our tolerance of 2 digital counts after
application of the algorithms on the first pixel after the digital count discontinuity. Using the
residual differences from the first application, that number jumps to 73, or 28.51% after the
second pixel, and so on, as shown in Table 7 and Figure 9.

Table 7 – Summary of how many steps are within +/- 2 digital counts of target after k application
of the compression algorithm

The plots shown in Figure 8 have the step size measured in digital counts represented by
the abscissa, and the remaining difference in digital counts between the step discontinuity and
the accommodation made after the kth pixel of the algorithm represented by the ordinate. For
example, there are 0 remaining digital counts of difference for steps of sizes of 2, 8, 32, and 128,
since step discontinuities of those values can be accommodated exactly by the algorithm. There
is a remaining difference of 127 for a step size of 255 digital counts, since the maximum step that
can be made is 128 digital counts. Successive applications of the algorithm on subsequent pixels
work to make the remaining differences get smaller and smaller.   

Number
of

pixels

Number of steps
with residual DC
counts within 2

% of steps 
whose residual DC

count is within 2
1 20 7.81
2 73 28.51
3 161 62.89
4 231 90.23
5 254 99.22
6 256 100
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Figure 9 – Plots of residuals after k applications of the compression algorithm to various step discontinuities ranging from 1 to 255 digital counts
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STANDARD BENCHMARK IMAGES:

This paper would not be complete without subjecting the Image Science benchmark
images of The Baboon and Lena, and determining the PSNRs of them:

FIGURE 10 – Baboon (left – original     right – compression encoded)
PSNR = 27.078 3 bit compression
PSNR = 30.715 4 bit compression

FIGURE 11 – Lena (left – original     right – compression encoded)

PSNR = 29.773 3 bit compression
PSNR = 31.170    4 bit compression
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QUALITATIVE EVALUATION

The 25 astronomical images compressed with this algorithm were judged qualitatively
with respect to the original bitmaps. JPEG and JPEG2000 compressed versions, compressed to
approximately the same size as the encoded images, were presented randomly as well, to act as
controls. Six Image Scientists, whose work involves remote sensing and Earth observation, were
the evaluators. They were asked to judge the compressed images with respect to information
content utilizing the following instructions:

The results were sorted grouping the all of the JPEG images together, all of the
JPEG2000 images together, and all of the 3-bit compressed images together. The thought was
that though the scales may be different between observers, but perhaps we would see the same
relative scalings for a particular image. In other words, perhaps each observer would score the
same image either lower on his or her respective scale (or higher), and a trend could be
observed. The results are in the following graphs:

Instructions for astronomical image analysis:

1. 75 set of images will be presented. Each set consists of an
original bitmap image (either on the left or above), and the same
image compressed with some particular algorithm.

2. Assume you are judging the compressed image’s information
content with respect to the reference image, from the point of
view of an astronomical image analyst.

3. Assign each compressed image a score of 0 (unusable) to 100
(good) based on your perception of how much useful qualitative
information content, true to the original, that you note. Use the
associated score sheet to write down the compressed image’s
score.

Artifacts may detract from a high score if they impact information
content, but remember to judge primarily on useful information to be able
to be derived, not on image recreation perfection.
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With respect to JPEG compression, it would appear that agreement was among nearly all
observers with respect to images 5, 7, 9, and 25. Most ranked these JPEG compressed images
to be not as good as the original images when making the comparisons (see Figure 12).

Figure 12 – JPEG Image Evaluations
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With respect to JPEG 2000 compression, the same images as with the JPEG compression, 5, 7,
9, and 25, ranked lower in information content when compared to the original images (see Figure
13). Additionally, four found image 1 to be lower in information content with JPEG 2000.

Figure 13 – JPEG 2000 Image Evaluations
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And finally, the results of the compact 3-bit compressor would seem to indicate images 1,
5, 7, 12, 21, and 25 we less favorably received when compared to the original images (see Figure
14). These are images with regions of very high contrast, high frequency content. In other words,
these images contained regions where large step discontinuities between adjacent pixels existed,
and that is where the algorithm was expected to have some difficulties. But there is no correlation
between these particular images and their PSNRs; they came in neither lower or higher than
average. There is, however, a fair amount of decorrelated rankings among the rest of the images.

Figure 14 – 3-bit encoded Image Evaluations
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FUTURE WORK – THE EXPANDED SERIES FOR ANY m-bit IMAGE

This algorithm can be expanded to work with any number of bits per pixel image. The following table shows the bits assignments for such
pixel configurations, as well as compression ratios. Across the bottom of Table 8, the compression ratios of utilizing n-bit codewords for an m-bit
image is listed, as well as the compression ratios of utilizing 3-bit codewords for a m-bit image. Utilizing 3-bit codewords is the equivalent of
keeping only the 8 most significant bits in an m-bit image, and encoding it as described in the 8-bit examples discussed thus far.

8 bit pixels 9 bit pixels 10 bit pixels 11 bit pixels 12 bit pixels 13 bit pixels 14 bit pixels 15 bit pixels 16 bit pixels
Bit Value
0 1 bit 1 -  zero bit 1 -  zero bit 1 -  zero bit 1 -  zero
1 2 bit 1 -  zero bit 1 -  zero bit 1 -  zero bit 1 -  zero bit 1 -  zero
2 4 bit 1 -  one bit 1 -  one bit 1 -  one bit 1 -  one
3 8 bit 1 -  one bit 1 -  one bit 1 -  one bit 1 -  one bit 1 -  one
4 16 bit 2 -  zero bit 2 -  zero bit 2 -  zero bit 2 -  zero
5 32 bit 2 -  zero bit 2 -  zero bit 2 -  zero bit 2 -  zero bit 2 -  zero
6 64 bit 2 -  one bit 2 -  one bit 2 -  one bit 2 -  one
7 128 bit 2 -  one bit 2 -  one bit 2 -  one bit 2 -  one bit 2 -  one
8 256 bit 3 -  zero bit 3 -  zero bit 3 -  zero bit 3 -  zero
9 512 bit 3 -  zero bit 3 -  zero bit 3 -  zero bit 3 -  zero
10 1024 bit 3 -  one bit 3 -  one bit 3 -  one
11 2048 bit 3 -  one bit 3 -  one bit 3 -  one
12 4096 bit 4 -  zero bit 4 -  zero
13 8192 bit 4 -  zero bit 4 -  zero
14 16384 bit 4 -  one
15 32768 bit 4 -  one

bit 3 bit 4 bit 4 bit 4 bit 4 bit 5 bit 6 bit 7 bit 8
none bit 3 - one bit 3 - one none none bit 4 - one bit 4 - one none none

3 4 4 4 4 5 5 5 5
2 1 2 1 2 1 2 1 2

8:3 9:4 10:4 11:4 12:4 13:5 14:5 15:5 16:5
2.67 2.25 2.50 2.75 3.00 2.60 2.80 3.00 3.20
8:3 9:3 10:3 11:3 12:3 13:3 14:3 15:3 16:3
2.67 3.00 3.33 3.67 4.00 4.33 4.67 5.00 5.33

Bit assignment

# bits/code word

Compression ratio

sign bit

Pixel Bits

unassigned 1/2 bits

resolution (bits)

Compression ratio
if only 3 bits used

Table 8 – Extrapolated table of codebook values for images of various bits gray-level



25 of 33

Additionally, the encoded values (powers of 2) in Table 8 are based on utilizing the
individual bits of an m-bit image. There is no reason that these are the best values to encode. A
survey of the histograms of past images acquired might suggest that there are other value that
would be better suited to encode. For the 8-bit to 3-bit example, we have chosen 128, 32, 8, and
2 to encode as the values for differences. A survey of image histograms might indicate that the
differences of 245, 74, 25, and 2 are the most likely to occur in most space-acquired images, and
therefore these might be better DC deltas to encode.

UNIQUENESS:

The codebook and the encoded/decoded values, or deltas, are what makes this
compression algorithm unique and inventive.

For the 3-bit compression, if the n-2th and n-1th have a DC value of X, and the n and n+1th

have a value of Y (that is, 2 distinct DC values over at least 2 bits each), then this algorithm
covers at least 75% of the difference over two iterative applications iterations (two pixels).

For the 4-bit compression, if the n-2th and n-1th have a DC value of X, and the n and n+1th

have a value of Y (that is, 2 distinct DC values over at least 2 bits each), then this algorithm
covers at least 92% of the difference over two iterative applications iterations (two pixels).

Since most images exhibit a great deal of interpixel redundancy, this accounts for even
the 3-bit algorithm’s ability to achieve PSNRs of approximately 30 (the figure generally accepted
as a minimum value required to have one image indistinguishable from another).

CONCLUSION:

This algorithm can be utilized as an on-the-fly, non-probabilistic stand-alone
compression, or as a probabilistic compression pre-processor.  If used as the latter, a Huffman,
Shannon-Fano or Arithmetic code could be applied to further reduce the bitstream.

Either way, this algorithm maintains PSNRs for most images at approximately 30dB for
all cases. Its strength is in its simplicity, being non-computational and non-memory intensive, and
its compactness.
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[1] Wong, Al. Galileo Frequently Asked Questions. 31 Dec. 1997. NASA/JPL.
8 Feb. 2008. <http://www2.jpl.nasa.gov/galileo/faqimage.html>.
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APPENDIX

IMAGES and IDL CODE
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Image 1 Image 2 Image 3

Image 4 Image 5

Image 6 Image 7
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Image 8

Image 12

Image 10

Image 9

Image 13

Image 11
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Image 14 Image 15

Image 16 Image 17

Image 18 Image 19
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Image 20 Image 21

Image 22 Image 23

Image 24
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Image 25
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IDL code for 3-bit compression
Invented and written by Gregory Gosian, April 2007

Pro FLIGHT
A=INTARR(8)
D=INTARR(8)
E=INTARR(8)
A=[-2,-8,-32,-128,2,8,32,128]
FOR Y=0,1027 DO BEGIN

P=127
FOR X=1,1027 DO BEGIN

FOR I=0,7 DO BEGIN
D(I)=P+A(I)
READ M
E(I)=ABS(M-D(I))
G=MIN(E, H)

ENDFOR
F=P+A(H)
IF (F GT 255) OR (F LT 0) THEN BEGIN

H=H-1
IF H EQ 3 THEN H=0
IF H EQ -1 THEN H=4

ENDIF
TRANSMIT H
P=P+A(H)

ENDFOR
ENDFOR

END

VARIABLE LIST
A =8 element integer array (code book values)
D =8 element integer array (sums of code values and compressed image previous pixel)
E =8 element integer array (differences between D and real image current pixel)
F =integer variable (P+A(H), DC of compressed image current pixel)
G =integer variable (dummy)
H =integer variable (index of minimum value of E)
I  =integer variable (code book index)
M =integer variable (real image current pixel)
P =integer variable (compressed image previous pixel)
X =integer variable (X position index )
Y =integer variable (Y position index)

READ M and TRANSMIT H statements are not IDL code – they represent where the actual image
pixel DC value (M) is read into the code, and where the code word H is transmitted to the
receiver.

MEMORY REQUIREMENTS:
Each integer variable is 16 bits (8 variables – total of 128 bits 8     16 bit words)
Each 8 element array is 128 bits (3 variables – total of 384 bits 24   16 bit words)
Code takes 2488 bits (311 8 bit words)

Total= 3000 bits
Entire compression takes <1 kilobyte (equivalent of 375 bytes {375 8-bit words})


