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Abstract- Three-dimensional building models are essential for supporting a variety of applications such 
as urban planning, damage assessments, and for visualization purposes. In this paper, an automated 3D 
building extraction algorithm is evaluated using point clouds generated from airborne imagery and 
compared to algorithm-performance using lidar collected over the same area. Specifically, this algorithm 
identifies key features from rooftops, using those features to estimate building outlines. While originally 
created for use on lidar point cloud data, the algorithm was evaluated using point clouds generated from 
airborne RGB imagery. The image-derived point cloud was created using a structure from motion 
(SfM)-based software, Agisoft Photoscan, and georeferenced using co-located lidar points as ground 
truth. This point cloud data was then run through the algorithm after which, an extracted building file 
was created. This building file was compared to a building file created from lidar data over the same 
area. Preliminary results show that while many tall buildings were extracted from the imagery point 
cloud, several other buildings were missed due to horizontal normals affecting the Euclidean Clustering 
performance. By removing these horizontal normals, building extraction accuracy increased 
significantly. lidar data resulted in 100% building extraction for scenes tested. When horizontal normals 
were manually removed, imagery point clouds had almost duplicative building extraction results but 
manual error was introduced into the model affecting accuracy. For best performance, automatically 
removing horizontal normals in imagery-derived point clouds would significantly improve automated 
building extraction.  
	

1. INTRODUCTION AND BACKGROUND THEORY 
The use of 3D-derived imagery has increased significantly over the past decade. 

Though basic stereoscopic imaging has been around for over a century, more 
sophisticated models and approaches are being developed to optimize three-dimensional 
imaging. Specifically related to digital imaging, computer software engineers are 
researching the most current and effective approaches to create accurate 3D models and 
use those models to create intelligent, imagery-derived products. 

Popular in fields such as forestry and urban planning, lidar (light detection and 
ranging) sensors are gaining notoriety for their high vertical accuracy and innate 3D 
exploitability. lidar point cloud scenes offer precise 3D representation, making modeling 
scenes easier and more cost-effective than manually digitizing stereo image pairs, as 
previously done. Several commercial imagery vendors, such as Google Earth, are eager 
to implement 3D imagery into their standard workflow. While lidar is designed to 
provide 3D data to its users, its limited global collection footprint makes it difficult to use 
exclusively. However, since optical sensors are widely available at a larger scale, using 
this data to create lidar-like point clouds allows for global 3D data to be accessible.  

Currently there exist several fully-automated algorithms and software packages to 
create 3D images from a collection of 2D images. Using two or more images of an 
overlapping scene, optical imagery can geometrically be aligned to provide height 
information. While neither lidar point clouds nor image-derived point clouds are 
generally considered better than the other modeling, Leberl et al. did two tests to compare 
the two sources. Results showed that surface density is greater using image data to create 



point clouds, yet both data have comparable accuracy. The study goes on to show 
additional benefits of using imagery instead of lidar for modeling such as the ease of 
processing, the ability for error checking with redundant points, and larger area collects.  

One common method of creating point clouds from imagery is using a structure from 
motion (SfM) process. This process typically involves detecting corresponding feature 
points between two overlapping areas in a scene and estimating three-dimensional 
positions. This paper looks at an evaluation of an automated building extraction from 
point cloud data, using imagery-derived point clouds created from SfM-based software. 
Two independent point cloud scenes were created from airborne imagery and run through 
the building extraction model to determine the algorithms effectiveness on image-
derived-point clouds.  

 

2. METHODOLOGY 
 

2.1 Point Cloud Creation 
The building extraction algorithm being tested was initially created using lidar point 

cloud data as input. To replicate results using aerial imagery, a 3D point cloud was 
created. Imagery was collected by the Wildfire Airborne Sensor Program (WASP), which 
is an imaging platform designed by the Rochester Institute of Technology (RIT) Center 
for Imaging Science and operated by Kucera International Inc. This sensor consists of a 
RGB, short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared 
(LWIR) cameras in addition to a high-resolution LIDAR. Two separate scenes were 
collected by WASP and used in this study to evaluate building extraction. The first scene 
of over four hundred RGB images was collected over an area of approximately 2.8km2 in 
downtown Rochester, NY. This scene was co-collected with high-resolution lidar for 
direct comparison between the data sources. The second scene collected was 0.64km2 
over a key just south of Tampa, Florida. Only three images of this scene were collected 
and used to test success of the algorithm using minimum imagery for point cloud 
generation. All images were delivered prior to orthorectification in order for a point cloud 
to be generated.  

 

2.1.1 Photoscan 
The point cloud construction algorithm used in this study is a structure from motion 

(SfM)-based algorithm implemented by the Photoscan software package. This program 
implements several computer vision algorithms to generate an accurate and dense point 
cloud from two-dimensional imagery.  

The workflow using Photoscan is straightforward and produces high-quality point 
clouds with minimal computational effort, depending on the input. This software loads 
images as input and if any EXIF information is retained in metadata, Photoscan 
automatically aligns the images. Since all the data used was obtained prior to 
orthorectification, the data required alignment. In order to align data, Photoscan uses SfM 
algorithms to determine the relative orientation of each point in order to calculate camera 
models of the scene. Once the camera positions are calculated, multi-view stereo 
algorithms are used for a 3D meshed surface computation. Since this step is most 
computationally intensive when using several high-resolution images, the user has the 
option of choosing a lower quality model. For all scenes used in this study, the highest 
quality metrics were chosen in Photoscan, despite computation time, in order to retain 
detailed rooftop features used in building extraction. After the 3D mesh is created, the 
model can be texturized based on existing input photographs. The final 3D model can be 



saved in a variety of community-accepted point cloud formats, such as LAS, PLY, or 
ASCII text. 

At this point the 3D point cloud is expressed in a relative, local coordinate system. In 
order to establish both models into an absolute coordinate system, a minimum of three 
ground control points (GCPs) are needed for geo-referencing. These points were selected 
from ground points in the lidar model in the Rochester dataset, and from Google Earth for 
the Florida dataset. One helpful feature of Photoscan is that when a ground control point 
is entered into the software, it flags other images where that same GCP is located. These 
flagged areas can be manually edited if they are not pointing to the exact ground location 
that Photoscan approximated. It is recommended that GCPs be selected from several 
locations in the scene and that most images have a GCP associated with it for optimized 
geo-referencing. Coordinate information for these GCPs is entered in as either degrees 
minutes seconds or decimal degrees and using this information, Photoscan georeferences 
the scene to a Geodetic coordinate system, typically WGS84.  

 

2.2 Data Preparation 
 Once the point cloud was created and georectified, some additional steps were 

needed before the algorithm could be run. The first step in data preparation was 
converting the Geodetic coordinates, created upon georectification in Photoscan, into 
UTM coordinates. This step is essential since the algorithm specifically reads UTM 
coordinates, and any other conversion would result in a skewed projection and poor 
results. Secondly, it is required that the data be saved in ASCII format with columns 
saving X, Y, Z information as well as any intensity information, if it was created. Once 
the data was in this format, it could be run through the algorithm successfully. It is 
recommended to check X, Y, Z point cloud data, regardless of source, to ensure that the 
ASCII columns as well as projection information is correct before running it through the 
algorithm.  

While there are several approaches to converting point cloud models and changing 
the file type, commercial software, Quick Terrain Modeler, created by Applied Imagery 
was used. This software is commonly used as a 3D visualization program in addition to 
creating a variety of lidar-derived analytical products. However, Quick Terrain Modeler 
also has the unique features of quickly and efficiently projecting coordinate information, 
calculating point cloud statistics (such as density), as well as saving out point clouds into 
different file types.  

 

2.2.1 Code Preparation  
In order to be referenced correctly, the ASCII point cloud data generated for analysis 

needs to be placed in the correct folder structure located where the rest of the code is 
compiled. Additionally, based on compiler requirements, some of the java code needs to 
be compiled before a new user begins to run the code. This information is saved in an 
updated README text file located in the parent folder where the code is hosted 
(/cis/masters/ksg2511/sxs4643/Research).  
 

2.3 Building Extraction Algorithm 
The code being evaluated is hosted and compiled on a linux system with Matlab and 

C++ code being implemented. Upon loading, the point cloud is first passed through a 
noise filter calculated by a statistical outlier removal, followed by a calculation of point 
normals and curvatures for each remaining point. Then, the scene is classified by using a 
graph cuts optimization algorithm, which looks at the distribution of the normals 
previously calculated. To extract the base terrain from any above-ground features, a 



hierarchal Euclidean clustering approach is applied to the scene. After this step, buildings 
are isolated and classified. Since detecting and extracting complex rooftops, is a crucial 
step in building extraction, a region-ground segmentation method is applied to the 
extracted buildings to retain all unique rooftop features in modeling. Boundaries on the 
buildings are created through rectilinear fitting and building models are generated using a 
2.5 dual contouring method.  

The output of this method is four point clouds in ASCII text to represent different 
steps in the building extraction. One file represents the input scene input initially, while 
another represents the classified scene used after noise removal. The two remaining files 
generated are used in analyzing results. One file represents the terrain classification of all 
ground points in the scene. Ideally this scene will be exclusively ground points with voids 
representing buildings extracted. The last file isolates and displays building rooftops 
extracted in the code.  
 

3 RESULTS AND DISCUSSION 
3.1 Image-Derived Point Clouds 
Successful point cloud generation from optical imagery in Photoscan is a function of 

the input images, overlapping features among co-located images, and preferences 
selected by the user during each step. Ideally the user would have hundreds of images, as 
we did in the Rochester case, which results in a high-density point cloud with several 
features. However it is notable that the Florida dataset, with only three images collected 
and used, still successfully created a dense point cloud. The most noticeable difference 
between the two models, was that the Florida scene had more voids in the point cloud 
than the Rochester scene did. This is partially due to the small quantity of input images as 
well as some missing areas in the overlap. Both datasets had good data density 
considering how many images were used in their creation (Figures 1-4). Both the 
Rochester and the Florida image-derived point clouds had an overall scene density of 
approximately 6 points per meter (ppm2). This is surprisingly notable performance for the 
Florida scene where only three images were used in point cloud creation.  

 

 
Figure 1: An overview of the downtown point cloud in Rochester, NY created with Photoscan. 

 



 
Figure 2: A more detailed, perspective view of skyscrapers in downtown Rochester. Some building 
sides can be perceived in this view, illustrating the detail retained in point cloud generation. 

 

 
Figure 3: An overview of the Florida point cloud created with Photoscan. Several voids in this dataset 
occurred during point cloud processing over water points. This is mostly due to lack of overlapping 
imagery used in point cloud creation. 

 



 
Figure 4: A zoomed in perspective view of the Florida image-derived point cloud. Most of this subset 

was used as input for the building extraction algorithm. 
 
 

3.2 Building Extraction Analysis 
Each scene used in analysis was analyzed by slightly varying metrics based on the 

data available. Since the Rochester dataset had both lidar and optical imagery, point 
density was measured for both sources post-classification to directly compare specific 
building extraction with each other. After the data is run through the algorithm, several 
output files were analyzed to qualitatively gauge performance. Displaying the lidar 
terrain file with image-derived point cloud building results overlaid, illustrates how well 
the optical imagery worked compared to lidar. Ideally the ground points would have 
perfectly linear voids where buildings exist. Taking these ground points with another 
output file of building points essentially fills in the voids, recreating the original model. A 
qualitative analysis of how the Rochester data performed used the terrain file created 
from the building extraction with lidar with the RGB building model overlaid. Wherever 
the voids still existed in the lidar terrain file, the image-derived point cloud failed.  

Preliminary results from image-derived point clouds illustrated that several buildings 
were unable to be extracted in the scene. After evaluating the algorithm approach, it was 
discovered that based on the Euclidean clustering technique, sides of buildings were 
inhibiting successful building extraction. One attempt to solve this problem would be to 
remove the horizontal normals so that Euclidean clustering could isolate rooftops from 
the ground with no connecting points. Manually doing this for testing purposes provided 
promising results. (Figure 5). Automatically calculating and removing the horizontal 
normals is essential for successful building extraction using image-derived point clouds.  

 



a) lidar terrain file post-building 
extraction algorithm. Voids in 
the data represent where 
buildings were extracted out.  

 
b) Image-derived point cloud 
results displayed over the lidar 
terrain file. Voids represent 
where this dataset failed to 
remove buildings. This is due to 
sides of buildings inhibiting 
successful Euclidean Clustering 
and resulting in buildings not 
being separated from the scene.  

 
c) Image-derived point cloud 
results displayed over the lidar 
terrain file after the horizontal 
normals were removed. This 
shows improved accuracy when 
compared with the original 
image-derived point cloud in (b). 
Small voids still indicate 
buildings that the image-derived 
point cloud missed but the lidar 
point cloud extracted.   

Figure 5: A qualitative comparison on how the image-derived point cloud performed against the lidar 
point cloud for building extraction in the Rochester scene. a) shows the lidar terrain file output from the 
algorithm where b) and c) show image-derived point cloud results for the data with and without horizontal 
normals (respectively).  
 
Another evaluation technique was comparing the roof points and structures retained in 
three buildings extracted in both the lidar point cloud and the image-derived point cloud. 
(Figure 6) 
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Figure 6: An overview of the three areas in the Rochester dataset used to quantify how many points 

were retained and the quality of rooftop structures modeled. This shows how the image-derived point 
clouds are unable to retain the detailed rooftop features that the lidar data generates. While this could be 
attributed to point density, there is still much detail lost in these point clouds.  
 

While the lidar rooftop data shows significantly more voiding compared to the image-
derived point clouds, it clearly retains much more structural information that the image-
derived data fails to include. This is most obvious is the second building evaluated where 
the lidar rooftop has several unique, linear features at different heights. While the image-
derived data generally extracts the different heights from the rooftop, all the features 
included in the lidar data are lost.  

Determining quantitative metrics for success with the Florida dataset posed a 
challenging problem considering there was no co-collected lidar of the same scene. 
Qualitatively, results are consistent with the Rochester image-derived point cloud since 
sides of buildings posed the same problem. Overall, large buildings with complex 
rooftops were successfully isolated for modeling. However some buildings, at least seven 
in this subset of the scene, were either mistakenly identified as trees or the ground surface 
and not extracted. (Figure 7) 
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Figure 7: A qualitative comparison on how the Florida image-derived point cloud performed for 

building extraction. a) shows the terrain file output from the algorithm where voids should indicate all 
buildings in the scene. Though the terrain file isolates most of the buildings, there are still several that it 
considers terrain. b) shows the extracted building files displayed over the terrain file. Voids in this dataset 
show buildings or other features identified as trees. c) This image shows the extracted building file 
displayed over the terrain file. Polygons highlighted in red are buildings that were missed in extraction 
mostly due to horizontal normals.  

 
The Florida scene is unique from the Rochester scene since there are many more one-
story buildings. There is a correlation between taller buildings and improved building 
extraction since there are typically fewer consistent clustered points in taller buildings, 
thus impacting the Euclidean clustering. By removing the horizontal normals in the 
Florida scene, improved building extraction is expected.  
 

3.3 Future Work 
While this algorithm successfully extracted rough building models from 3D point 

cloud data using airborne imagery, several improvements could be looked at in additional 
studies. One improvement that could help improve building extraction is using RGB 
information retained in imagery for modified building segmentation. Furthermore, 
retaining RGB information improves visual context in the final point cloud product, 
which is typically desired by customers.  An additional study could combine image-based 
point clouds and lidar point clouds to help provide more information where voids exist, 
or improve scene point density. Another area that needs to be looked at is retaining detail 
in roof structure from image-derived point clouds. Lastly, a more sophisticated approach 



to removing horizontal normals in a point cloud scene could be developed to improve 
building extraction for dense image-based point clouds.  
 

4 CONCLUSION 
Automated extraction of three-dimensional building models can provide analysts with 

precise geometric models to be used in a variety of applications such as urban planning, 
disaster assessments, or for visualization. In this study, an algorithm used to extract 
buildings from lidar data was evaluated using image-derived point clouds. Emphasis was 
placed on creating a robust point clouds from several optical images in Agisoft Photoscan 
to be used in analysis. The results from the data initially showed that sides of buildings 
inhibit successful Euclidean clustering during building classification. By removing 
horizontal normals in the point cloud, successful building extraction could be performed 
in image-derived point clouds using the proposed algorithm. Additionally, it can be 
concluded that while the image-derived data was able to extract most buildings, unique 
rooftop details were lost. This approach, however, is sufficient if approximate building 
models are needed in an urban environment. 
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