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ABSTRACT

Statistical moment invariants were used to generate a feature space for
classifying images of text characters. The feature vector of a given letter is
invariant to changes in scale, position, rotation, and contrast in the image.
Test character images were generated by simulated optical blurring. Images
were classified by calculating the distance between the feature vector of a
given test character and that of each reference character. The test character
was identified as the reference character for which the distance between
feature vectors is a minimum. Significantly blurred characters were classified

correctly using this method.
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1.0 - INTRODUCTION & SUMMARY

Computer classification of complex images has become more
feasible in recent years due to improvements in computational
hardware. Factors such as decreased computation time and the
ability to handle large data arrays have contributed to the wider use
of computer classification algorithms to classify images for such
applications as land use mapping and for recognition of complex
shapes. The purpose of this project is to create and test a classifier
for recognition of text characters that have been degraded by optical
defocus. ,

The motivation for this project stems from previous research
conducted in enhancing degraded images of ancient, textual material
as shown in figures 1a and 1b. If a classifier could be developed that
could identify degraded text in these images, the analysis of an
image would be easier and faster than the lengthy enhancement
procedure. This thesis classifies a series of eight English alphabet
characters that have undergone simulated optical blurring. The
letters are the upper-case 'A', 'E', 'H', 'L', 'M', 'N', 'T", and 'V'. Each
character was blurred with an allpass quadratic phase filter. This
type of phase filter is often called a chirp filter because the real and
imaginary parts of the phase are chirp functions, i.e. a sinusoid
whose rate of oscillation increases linearly with the spatial

coordinate. By adjusting the rate of change of frequency, the
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"quantity" of blur could be varied. After blurring by a specific
amount, a letter is classified against the ensemble of characters to
determine which reference character most closely matched the
blurred test character. Successful classification would occur if the
computer chose the unblurred test character from the reference set
as the closest match. The amount of blur applied to each character
would be increased until the classification was incorrect.

The classifier is based on the set of invariant image moments
derived by Hu (1969). This set of moments was modified to create a
six-dimensional feature vector that is invariant to scale, translation,
rotation, and contrast (Maitra, 1979). Thus, each reference character
and test image was converted into a six-element vector. A
minimum-distance algorithm was used to calculate the Euclidean
distance between the test character and each of the reference
characters. The test character would be identified as the reference
character whose vector most closely matched the vector of the test
character.

The results from the classifications demonstrated that
characters could be properly identified when subjected to large
amounts of blur. The amount of blur after which a given letter was
improperly classified was different for each character, but the
overall results clearly demonstrate that the moment invariants

provide a robust algorithm that can be used to classify degraded

objects.



2.0 - BACKGROUND

A moment of an image is the sum of its gray values weighted
by some power of the coordinate position of each gray value.
Invariant moments of an image are a set of numbers that do not
change as certain parameters of the image are altered, e.g. the
position, size, and orientation. Some combinations of the moments
can be used to construct a vector for the image which is invariant to
changes in scale, translation, and rotation. Thus any differences
between vectors of two images (e.g. a reference character image and
a degraded test image) should depend only on shape, not orientation
or location. An image of an alphanumeric character should yield the
same vector regardless of the size or location of the character in the
image.

When studying degraded images, the noise in the image may
render the actual character unrecognizable. Therefore, the identity,
proper orientation and size of the character may be unknown.
However, when using moment invariants to classify the character,
knowledge of the orientation and size is not necessary. Thus
character recognition by moment invariants has an advantage over
other forms of pattern recognition, such as matched filtering.

Image pattern recognition by moment invariants has been
applied to several problems. The pioneering work was done by

Ming-Kuei Hu (1962), who demonstrated that a set of moments can



be derived that are invariant to changes in position, scale, and
rotation. Hu defined the two-dimensional moments of the (p+q)th
order of a density distribution f(x,y) where x and y are spatial

coordinates of the distribution. These noncentral moments are:

®© o

m,, = ffx"y"f(x,y)dxdy p,q=0,1,2... (1)

— 00— 00

f(x,y) is assumed to be a piecewise continuous function and therefore
is bounded. It is also assumed that p(x,y) has finite support, (i.e.
p(x,y) = O for Ixl > xmax and lyl > ymax). The central moments are

defined from the noncentral moments as

® oo

pg = [ [(X-RF(y - 7P(x,y)dxdy pa=012.. (2)

— 00 —00

where the values X = mjg/mgg and ¥ = mp1/moo define the position
of the centroid of the distribution p(x,y). The central moments are
invariant under translation; i.e. if p(x,y) is transferred to a new set
of coordinates:

X' = X+a

y' =y+B
where o and p are constants, the central moments in the new

coordinate system will not change.



Hu proved that a specific set of moments are invariant under
changes in scale and coordinate rotation. These invariant properties
stem from what Hu calls the Fundamental Theorem of Moment
Invariants. This theorem states that if the algebraic form of order p

has an algebraic invariant,

I@)o,...,a5,) = A°I(@,0,- .-, ),

then the moments of order p have the same invariant but with the
additional factor |J|,

I(M;,O,...,M(’)p) = |J|AWI(A“pOa"'a ‘u'Op)

where []| is the absolute value of the Jacobian of the transform and A
is the determinant of the transform. However, Hu states that under
some linear transformations, A may not be limited to the

determinant of the transformation.

A scale change is described by a transformation of coordinates,

where a is a constant. This scale transformation assumes that the
change in x and y are equal. Each coefficient of any algebraic form is
an invariant,

v p+q
a,, - a"a, (3)



wherea is not the determinant in this case. For moment invariants,

Mqu - ap+q+2“ pa (4)

and the remaining moments, the following absolute moment

invariants result;:

2 pa Bpa___.pniq=23.. (5)

|)1+(p+q)/2 = (M)1+(p+q)/2 ’

(u

where n'19 = n'o1 = 0.
Hu also derived the conditions for invariance under rotation.

Given a rotation by 6 about the origin, the output coordinates X', y'

are defined by

[x" [cos® sinéd][x]

ly'| "|-sine cose]|y] (6)

The Jacobian of the transformation is unity and therefore no scale

change occurs under the rotation transformation.



CosH siné6
-sin 8 cosé

J=

By treating the moments as coefficients of an algebraic form
(Upo, -+ Mop U, V)P (7)

under the following transformation,

[u] [cosé -sin6][u']
[v] " |sin 6 cosé ||v']

then the moment invariants can be derived by the following
algebraic method. It should be noted that the location of the
negative sign in the transform matrix depends on whether a forward
or inverse coordinate transform is being calculated.

[u'] (coso sine)(u):[u] (cose —sine)(u')

[v'] "\-sin6 coso/\v “\sing cose J\v'

vl

Both u,v and u',v' may be further transformed to obtain [U,V], and

[U'V']



where i=+v-1. The orthogonal transformation is converted into the

two relations between complex quantities
U'=Ue™ V'= Ve (9)
By substituting (8) and (9) into (7), the following identities result:

(Ipov"’IOp)(U’v)p = (.u'pO""’ Au’Op )(u’V)P
(IPO’"HIOP)(U)V)p = (N'powﬂuu'()p )(u')v')p
(IpO?"" Iop )(U, V)p = (I'pO""7I'Op )(Ue—ie’veie)p

where Iy,...,Jop and I'pp,...,Jop are the corresponding coefficients after
the substitutions into the above equations. From the identity in U
and V, the coefficients of the various monomials U””V" must be

identical. Therefore,

' ip6 . v i (p-2)8 .
I',- e I,0; r,,, - e | (R

=P I'y, = eI,

I'l,p—l - l,p—l;
These are (p+1) linearly independent moment invariants under

proper orthogonal transformations.

Finally, by combining the orthogonal invariants with the scale

invariants of central moments, Hu states that pattern recognition can



be achieved independent of position, size, and orientation. He

derives six second- and third-order absolute moment invariants:

9(1) = Uz + Uo2 (10)
¢(2)=(M20—H02)2 +4Mf1 (11)
9 (3) =(M3o—3.u12)2+(3!‘21—!403)2 (12)
¢(4)=(H30+P‘12)2 +(M21+H03)2 (13)
9(O) = (.”30 - 3.‘412)(1«‘30 + .“12)[(#30 + ‘“12)2 - 3(uy, + M03)2]+ (14)

(3.“21 - “03)(“21 + %3)[3(M30 + H’12)2 - (uy, + Hos)z]

9(6)=(uyo - Hoz)[(.“w +H12)2 - (uy, + Hos)z] +

(15)
4y (30 + 11211 + 1o;3)

and one skew-orthogonal invariant useful in distinguishing mirror

images:

¢(7) = Gua— po)po + pa)[ (o + pa)’ - 3(pa + pa)’] (16)
~(uo-3pe)pa +po)[ 3o + pe) - (a +po)’]

This set of seven moment invariants provides a seven-dimensional
feature vector that can be employed for character recognition.

Research resulting from this work is summarized below.

2.1 Optical Implementation of Moment Invariants

10



The work presented by Casasent and Psaltis (1979)
demonstrates the usefulness of moment invariants in pattern
recognition by providing an example of the invariant nature of the
moment equations and a method for calculating the moment
invariants optically. The seven absolute moment invariants are
derived in a similar manner to Hu's method. Experiments were
performed to demonstrate the validity of the invariance to
translation, scale, and rotation. The normalized moment invariants
were calculated from a two-dimensional rectangle function, and for
translated, rotated, and scaled versions. The results were unchanged
by the variation. See appendix A for the results presented in the
article as well as diagrams of the various input functions used.

Casasent and Psaltis also demonstrated a method for calculating

moment invariants optically. Their system is shown below:

LASER L DIG
LIGHT POST [———> ¢

/ PROC n

PD

N IMAGING INTEG.
SYSTEM ° LENS

Figure 2. Optical system to compute normal
moments. (Casasent, Psaltis, 1979)
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The input function f(x,y) is placed at P1, and is imaged onto a mask
g(x,y) at P2. Therefore the light leaving P is feg. The third lens
forms the Fourier transform of the product feg at P3. By changing
the mask at P2 different noncentral moments (mpq) can be computed.
For g(x,y) = 1, the output was mqo; for g(x,y) = x or g(x,y) =y, the
output at P3 was mjo or mo; respectively. Thus Casasent and Psaltis
demonstrated that all of the ordinary moments of a two-dimensional
function could be generated with the proper mask g(x,y). A digital
postprocessor was used to calculate the absolute normalized moment
invariants from the ordinary moments. The results of this optical
implementation of moment invariants proved very successful. The
masks created on film were not perfect transmitters or absorbers,
thus the mgo''/mpq" notation represents the approximation to the
actual theoretical moments calculated. As seen in the table in
appendix A, the theoretical and experimental results are very close.
This experiment clearly demonstrated that an object could be
represented by a vector set of moment invariant equations

independent of its size, location in the image, or angle.

2.2 A comparison of classifiers for character recognition
using moment generated features

Cash and Hatamian (1987) demonstrated the use of moments

as a feature vector in a classification process. Cash and Hatamian

used a set of central moments to classify six different font styles of

12



the English alphabet. Three different classifiers were compared to
determine which had the best performance with the least
computation.

The feature vector used for classification was developed from
Hu's original derivation. This vector had ten components, consisting
of eight central moments and the two noncentral moments, mgp; and
mjg. The central moments were used without normalization because
they demonstrated similar recognition ability with less computation
time. The two noncentral moments were added to the feature vector
since they contain height and width information about the character,
which may be useful for classification.

Three classifiers were used to measure the similarity between
a reference library feature and an input feature: Euclidean distance,
cross correlation, and Mahalanobis distance. Euclidean distance
simply measures the vector distance between two points in the N-

dimensional space:

Dr = ‘/i(Fu _ Fu)? (17)

where Fjj is the ith library feature and Fjj is the ith input feature.
The library feature vector producing the smallest Euclidean distance
when compared with the input feature (i.e. the least amount of error)

is assigned to the input character. The cross-correlation classifier

13



takes a very different approach to classifying from the Euclidean
model. The class of the library feature producing the largest output
when correlated with the input feature vector is assigned to that
input character. The normalized cross correlation between two

vectors is calculated from:

R- —£ (18)

The Mahalanobis distance is a weighted distance measure between
the input feature vector and the mean of the library feature vectors
for a particular class. The weight used is the reciprocal of the class

feature variance. This distance is calculated from:
N . _ \2
o= {5
1= oL (19)

The results of the different classifiers indicated that the cross-
correlation measure yielded the best results, but at the greatest cost
of computation time. It was shown that the ability to correctly
classify a feature increased with the number of reference library
features used to compare to the input. If twenty library sets were
used, each classifier could correcty identify features over 95% of the
time. Thus, this research has shown the ability for moment

invariants to be used in character recognition.

14



2.3 Use of moment invariants to recognize Arabic text

The research presented by El-Dabi et al. (1989) demonstrates
how moment invariants can be implemented for character
recognition of a complex language such as Arabic. The objective was
to create a recognition system that would classify cursive
typewritten text. The recognition system calculates moment
invariants for each character and uses those moments as a feature
for classification. The difficulty with this particular language is that
many of the characters are connected or overlap when written, thus
it is difficult to recognize individual characters. To solve this
problem, characters were separated after classification. On each line
of text, portions of words were grouped into columns, and each
column was treated as a separate character even though a column
may consist of more than one character. The width of each column
was as long as a word portion until gaps on both sides of the word

portion occurred as in the figure below.

15
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Figure 3. Method of word segmentation.
(El-Dabi, Ramsis, Kamel, 1989)

The feature space for a given column was calculated and compared to
the reference feature space. If a classification could not be made, the
next column is added to the previous one and reclassified. This
process would be repeated until the end of the word portion was
reached. Once a classification was successful, the characters could be
separated and identified.

The entire character recognition process consisted of four
stages: input, segmentation, recognition, and character separation.
The input to this system consisted of a scanned typewritten
document stored as an image file. In the segmentation stage, the
lines of text were truncated into separate columns of word portions
as described above. The moment invariants used to generate the
feature space in the character recognition system are based on Hu's
fundamental results. To determine the optimal number of moment
invariants, multiple classifications were conducted with feature
spaces of different sizes. The first classification was run with only

two normalized invariant equations as the feature space. The

16



resulting recognition rate was very poor, as might be expected due to
the small number of features. As the dimensionality of the feature
space increased, the recognition rates improved. This shows that
each added feature more uniquely defines a given character. Thus, a
larger feature space increases the ability to separate and identify
characters, but it requires more computation time than a smaller one.

The final feature space used for this application consisted of
eleven moments, four of these were skew moments to recognize the
orientation of the characters. A recognition rate of 94% could be
attained. The use of moment invariants provided a solution to the
problem of classifying connected characters while providing the

flexibility needed to build the optimal feature space.

24 An application of moment invariants to
neurocomputing for pattern recognition

The experiment described by Li, (1991) combines moment
invariant signal processing and neurocomputing to create a pattern
recognition system that does not require the extensive training
necessary for most neural networks, and is less sensitive to noise
than many pattern recognition systems. The 6-D feature vector
described by Hu is implemented as the input to a Hopfield neural

network. Once each feature space is calculated for a character image,

17



it is converted to a binary signal and applied to the network. Thus,
each character will have a unique binary encoded signal.

A Hopfield network consists of a series of nodes with each
receiving a binary digit (1 or 0) as input. The nodes are
interconnected by a series of positive or negative weights (biases),
and thus the output from a given node will be a function of its own
input plus the inputs of neighboring nodes and connecting weights.
If a series of iterations need be calculated, the output from one series
(or layer) of nodes acts as the input to another layer where the
calculations are repeated with the revised input. Once a network is
trained to recognize a given character, it can be used to test binary
signals corrupted by noise. This experiment was described in the
article by using an image of the letter 'T'. The binary signal of the
letter was used to train the network; the same signal altered by
noise was then applied to the network. After performing several
iterations on the input signal, the binary output from the 64-node
network exactly matched the uncorrupted binary code for the letter
'T'. Thus it was demonstrated that moment invariants can be
implemented as the input to a neural network that successfully

recognizes characters corrupted by noise.

18



2.5 Expansion of moment invariants to include contrast
invariance

Other invariants besides geometrical moment invariants can be
implemented in image processing. The remainder of the review
summarizes research that focuses on different types of moments
used in image analysis. The work conducted by S. Maitra expanded
Hu's derivation to create a new set of moments that was invariant to
contrast and illumination as well as to shift, scale, and rotation
(Maitra, 1979). Maitra confirms the invariance of Hu's moments to
shift and rotation, and demonstrates that moments are invariant to

scale with the following normalization:

_‘qu

Y
Moo

"pq

where y = (p+q)/2 + 1 and u,, is the (p+q)™h order central moment.

However, the moments are not invariant to contrast changes. Maitra
considers two images fi(x,y) and f7(x')y') with varying contrast.
Under the previously developed invariants, the two images should

remain unchanged under the following transformation:

fi(x,y)=Kkf2(x", y") (20)
[x'] [cos® sind][x] [a]
|y'] =C[—sin0 cosBj[yJ+[bJ (21)
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where 6 is an arbitrary rotation, (a,b) the translation, k the change in
contrast, and ¢ an arbitrary scale change. Without normalization of
Hu's seven equations (denoted here as ¢(1)-¢(7)), Maitra states that
under the above transformation, ¢;(1)-¢;(7) computed on fi(x,y) and

$2(1)-$2(7) computed on fz(x',y') are related as:

$1(1) = 55 9a(1) (22)
$2)- 592 (23)
$16) - 5 209) (24)
$14) - 25 924) (25)
$15) - 5 9205) (26)
$16)- 2 42(6) (27)
$:(7) = 5 42(7) (28)

Maitra notes that normalization of ¢(1)-¢(7) removes the variability
due to scale changes, but does not account for the variability of the
contrast k. Thus Maitra provides (without mathematical derivation)

the following set of six moments that are invariant under the general
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transforms described above, and are also invariant under changes in

contrast (i.e. variability due to k is removed):

pQ) = % (29)
B(2)- % (30)
B(3) - j((—;‘)) (31)
p) - % (32)
BEO) = ¢(+-6¢)>(1') (33)
pe)- 22 (34)

An original digitized image and a transformed copy of the same
image was used for experimental testing. The transforms performed
on the copy include changes in scale, shift, rotation, and contrast.

The results demonstrated invariance to all transformations.
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2.6 An example of calculating a moment invariant feature
vector

Consider a binary image consisting of a pair of delta functions
located about the center of a 64 x 64 image and separated by one
pixel. The pixels corresponding to the delta functions are the only
two pixels that have a non-zero value (digital count value = 255) and
are located at x, y coordinates (30, 31) and (32, 31). The first step in
calculating the invariant feature vector consists of using equation (1)
to find the mean of x and y where y = 31, andy = m,,/ m,,. For this
example, X = 31. These mean values are used in calculating the
central moment invariants according to equation (2). Substituting
the mean values, the central moments are: u,,=510 and u,,=510,
the rest of the central moments are zero. The central moments are

normalized by equation (5) which can be written as:

_ Hpg

npq - y
Moo

where y = 1+(p+q)/2. Each value of u in equations 10-16 is
normalized according to the above equation. The values resulting
from equations 10-16, denoted as ¢(1)-¢(7), result in

¢(1) = 0.001961 and ¢(2)= 3.84-10°. All remaining components in
the feature vector are zero. Finally, the feature vector ¢(1) - ¢(7) is

transformed according to equations (29)-(34) to create a vector that
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is invariant to all transformations: shift, scale, rotation, and contrast.
The final vector has components of g(1)=1 and all remaining

components are zero.

If invariance exists, a different image of two delta functions
will produce the same feature vector. The same calculations were
performed on a second image of two delta functions having a value
of 1, located at (2,0) and (2,4). This is a scaled, translated, and
rotated version of the previous image, it also has a different
brightness (contrast). In this case, p,,=2 and all remaining central
moments are zero. Before the final transformation, ¢(1) =2 and
¢(2)= 4, all remaining components are zero. After the final
transformation, (1) =1, and the other vector components are zero.
Having obtained the same result as the previous case, the invariance

properties of the feature vector are demonstrated.
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3.0 - APPROACH

The biggest task involved with the experimental portion of this
projéct consisted of writing the necessary computer code to generate
the results. Two separate programs were written, one that created
the blurred test images, and one that classified the test images. All
code was written in C language using a UNIX workstation. The
images were downloaded to a Macintosh and displayed using Adobe
Photoshop software. Numerical distances between feature vectors
were also sent to a Macintosh from the UNIX workstation and
tabulated in Microsoft Excel™. The reference images were generated
in Adobe Photoshop™ as were images used to test the invariance
properties of the feature vector.

The first program computed several functions that allowed an
input image (1 byte per pixel) to be digitally filtered and written out
in double precision floating point format (8 bytes per pixel). This
filtered image would then be classified. Roundoff error of the digital
data became a serious problem. To preserve as much precision as
possible, the filtered images were saved in double precision format
instead of byte format. By preserving full floating point information,
computation error due to roundoff from decimal to integer notation

was minimized. The following flow chart shows the steps to create

the output test image.
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read input
image

Y

tranform input
to freq. domain

multiply input
and filter in
freq. domain

create filter
in feq. domain

back trans to
gpace domain

Y

write ouput
blurred image

Figure 4. Flow chart for program
to create blurred test image.

Each step in the flow chart represents a separate routine that was
called by the main program. The quadratic-phase filter is
implemented in the frequency domain, thus the Fourier-spectrum of
the input image must be computed. The output spectrum is
computed by multiplying the input image spectrum with the
frequency-domain representation of blur function. The inverse
Fourier transform of this output spectrum generates the optically

blurred image which is stored using double precision.
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3.1 Description of the quadratic-phase filter and
frequency-domain filtering

Optical defocus in a coherent imaging system may be modeled
as a convolution of the object with a filter which has quadratic-phase
impulse response. The frequency-domain representation of the filter
is easy to generate, therefore it does not have to be transformed
before being applied to the input image. The filter has constant
magnitude and quadratic phase. The general form for the

frequency-domain two dimensional quadratic phase filter is:
H[e,n] = = ¢ (35)

where ¢ and 7 are frequency coordinates corresponding to spatial
coordinates x and y respectively, anda is the rate-of-change of
phase, also called the chirp rate. If « is increased, the space-domain
representation becomes wider and the frequency-domain filter
becomes narrower (figure 14). The corresponding impulse response

in the space domain has the form:

1 wZ -
h[x,y]-7e ‘e =
el
The space-domain representation of the transfer function (i.e. the
point-spread function) is also a constant-magnitude quadratic-phase

filter. However, the scaling theorem demonstrates that the point-
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spread function is expanded for large «, and contracted for small «;
this is opposite of the frequency-domain case. The units of « are
length; in an optical system, the units are usually expressed in

millimeters or microns, in the digital system, « is expressed in pixels.

X
F 1
C
-
R
Fa / B
Z1 /
il P
Z2
- -

Figure 5. Diagram depicting the quadratic-phase
of a coherent optical system.

A spherical wavefront traveling from point A to an image plane
along B-C will be in phase at A. The wavefront expands as it travels,
causing a phase change since all points on the wavefront are no
longer in the same plane. The phase difference between the
wavefront traveling along Z and the wavefront traveling along R is
approximately a quadratic functon of X due to the spherical nature
of the wavefront. At a distance Z1, the wavefront is out of phase and

will have a certain phase rate, a]1. At a distance Z2, the wavefront
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will have less phase difference as a function of X, thus a2 < a1. If
the quadratic phase of the wavefront was examined as real and
imaginary parts, the rate-of-change of the chirp function would be
evident. The following chirp functions are examples of the space-

domain and corresponding frequency-domain for the wavefront at
a]l and a?.

Space-domain chirp function, near

amplitude
o

spatial coordinate

Figure 6a. Space-domain chirp function for a1 .,

28



Space-domain chirp function, far

amplitude

spatial coordinate

Figure 6b. Space-domain chirp function for a2,

Frequency-domain chirp function, near

1.00E+00
% 5.00E-01
= 0.00E+00
[

E .5.00E-01
-1.00E+00

frequency

Figure 7a. Frequency-domain chirp function for a1,
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Frequency-domain chirp function, far

amplitude

frequency

Figure 7b. Frequency-domain chirp function for a2 .

These curves illustrate the scaling theorem already discussed. If a
is large, the frequency-domain representation is narrow, as its width
is proportional to 1/« 1. The amount of defocus is determined by «,
and worsens as o is increased. Thus, the amount of defocus
observed at Z? is greater than at 71,

The Fourier transform of the input character and the phase
filter are both complex functions, and the filtered spectrum is the
complex product. The complex exponential filter equation can easily
be rewritten as real and imaginary parts by recalling that
€® - cos(9) + isin(p), where i=+-1. The real and imaginary parts of

the frequency-domain representation phase filter have the form:

H.,le,n]= cos(wra’(e? +n°)) (36)
Hple,nl= sin(ra’(e? + n°)) (37)
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The oscillation of the chirp increases quadratically with ¢ and 5.
The rate at which the oscillation increases is determined by the chirp

rate a. The equation for the filtering in the frequency domain has

the form:
(Frml [8’ T’] +‘iFimag [8’ n])(Hrmj [87 Tl] +1Himag [8’ '7]) (38)

where F_,[e,n] and F,,.[e,n] represent the real and imaginary

ag
parts of the Fourier transform of the input image, respectively. This
multiplication is performed for each frequency coordinate ¢ and 7.
In an optical system the filtered image is the squared
magnitude, Ig(x,y)I2. This function was calculated by inverse-
transforming the result from (38), then squaring the magnitude. The
amount of blur applied to a character was increased by incrementing
a in units of pixels from a = 0 to a maximum of « = 9. A series of
test images for each character was generated in this manner to be
tested by the classifier. Test images with increasing amounts of blur
were created until the classifier failed to properly classify an image
with a certain phase rate. This method of testing allowed a cutoff
phase rate to be established; the cutoff phase rate corresponded to
the amount of blur applied to a given test image that caused

incorrect classification.
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3.2 Description of the classifier

The classification process consisted of a comparison of a test
character with the set of eight reference characters. The algorithm
classified the test character as the most similar reference character.
"Most similar" is defined as the closest pair in the 6-dimensional
feature space. The reference and test images had to be converted to
a representation that the computer could easily manipulate in
statistical calculations. Equations 10-16 developed by Hu are a set of
moment invariants that describe a seven-dimensional feature space.
This feature space was initially implemented in this project to
generate the feature vectors. However, this set of moments does not
take into account variations in contrast. In other words, if a test
character has different gray levels after blurring than the
corresponding reference character, the classifier may improperly
identify the test character based on the difference in gray level.
Since it was desirable to have this variation in contrast removed,
equations 29-34 developed by Maitra were used in place of Hu's
equations. These equations describe a six-dimensional feature space
that is invariant to changes in scale, translation, rotation, and
contrast. It should be noted that since the computer is calculating a
digital approximation of the continuous moments, there is some

minor variability in the invariant moments. This variability is

generally small enough to be negligible.
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The following diagram shows how the classifier works once the

test images are generated.

input entire
ref. image zet

Y

calc. moments
for each ref.
image

calc. distance

between teat
and each ref.
image

input decimal calc. moments
teat image ! for test image

find test/ref.
pair with min.
diztance

Y

clazzity test
ag ref. with
min. dist,

Figure 8. Flow chart showing
classification process.
The six-dimensional feature vector is first calculated for each
reference image. The feature space for the test image is then
calculated. The results from these calculations consist of eight 6-D
vectors, that are classified.
The classifier uses a simple Euclidean distance measure to

determine the distance between the test character and reference
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character. The calculation for squared distance, D, has the following

form:
D- El(ﬁ(j)rest —ﬁ(j)ref)z

where (i), is the ith component of the test vector and g(i),, is the
ith component of the reference vector. The absolute distance is found
by calculating the square root of D; however, the smallest distance
would remain smallest whether it was squared or absolute. Thus, for
this experiment, the squared distance measure was used instead of
the absolute distance. The main advantage of this procedure was
increased computation speed.

Once the squared distances have been calculated, the program
classifies the test character as the reference character that
corresponds to the shortest distance. The distance measure can be
thought of as a measure of similarity between two character images.
From the above distance equation, one can see that if two characters
were identical, they would have the same feature vectors and the
distance between them would be zero. As two characters become
less similar, the feature vectors would change, and the distance
between them increases. Thus, a smaller distance between two
feature vectors indicates greater similarity between the two

corresponding images. The reference character that is most similar
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to the test character will have the smallest distance measure, and is
therefore selected as the classification for that test character.

This experiment originally proposed to test the classifier using
a reference set of four characters: capital 'A', 'E', 'H', and 'V".
However, a larger set was used in the actual experiment including
upper-case letters: 'A", 'E', 'H', 'L', 'M', 'N', 'T", and 'V'. This set of eight
character set provided a larger data set that helped demonstrate the
behavior of the classifier. Each character was independently tested
against the entire reference set with increased blur in the test
character for each classification. Classifications for a given character
were recorded until the first failure occurred, at which point
classification for that character ceased. To tabulate the data, the
program saved files containing distance information for a given test
character with a given blur factor. This data was then analyzed and
compiled in a graphical format. The following section describes the

results from this experiment.
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4.0 - RESULTS

It has been claimed throughout this report that the moments
used to generate the feature vectors of the images are invariant
under a series of transformations. The importance of this invariance
property is derived from the desire that the classifier only use the
shape of a character in the decision-making process. Ideally, the
letter 'A' would be recognized as the letter 'A' regardless of its
location, orientation, size, or gray value in the image. To validate this
claim, a series of tests were run on the image of a character to
determine if the moment-generating function was in fact invariant to
scale, translation, rotation, and contrast transformations. Four test
images of the capital letter 'A' were generated using Adobe
Photoshop™, each with different parameter changes. The translation
test image was shifted by 10 pixels, the rotated image was rotated
by 15 degrees, the scaled image was changed from 36 to 24 point.
Each test image was then classified against all eight reference
characters. The following pages contain the graphs of the invariance

tests. The data for these graphs is tabulated in appendix B.
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translated rotated scaled contrast
Figure 9. Test images for invariance validation.
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To make the graphs more visually intuitive, the inverse of the
distance to each reference character was plotted. Thus, when
interpreting the graphs, large bars indicate high similarity between
test and reference characters. If the moments were truly invariant,
then the feature vectors of each test character and the reference
letter 'A' would be the same, the distance between them would be
zero and the inverse of the distance would be infinite. This is
observed for the translation and contrast transformation tests. The
calculated distance between the test letter 'A' and reference 'A' is
zero for both cases.

Though the tests for scale and rotation invariance may appear
less convincing, there are two important facts to be noted. First, the
calculation of the moments is a discrete approximation of the
continuous moments, thus some error occurs due to the digital
approximation. Secondly, the images have relatively low spatial
resolution (64 X 64 pixels). The scaled or rotated character does not
keep the exact same shape as the original due to resampling artifacts
such as staircasing (figure 9) that occurs during the transformation;
this also causes error to occur in calculation of the feature vector of
the test image. This problem does not occur in the translation and
contrast transformations since the pixels that form the character
itself are not altered. Despite this error, the test character for the

rotated and scaled cases is still easily matched to the correct

reference character.
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After having demonstrated invariance under the stated
transformations, it is safe to conclude that each feature vector is a
function of the character shape only (to within the digital resolution).
The distance calculated between a test character and a given
reference character depends on the similarity between the two
characters. If a test character has been subjected to little
degradation by the phase filter, the distance to the matching
reference character will be small. As the test character is subjected
to more blurring, its shape becomes more distorted and the distance
to its corresponding reference character increases. At some point,
when the test character is distorted enough, it will have a shorter
distance measure to some other reference character than to the
correct reference, and an incorrect classification results.

Figure 14 is an image sheet of the character images used in this
experiment. The phase filters and degraded test characters are
shown with the original images, the first test image below the line in
each column corresponds to the cuttoff phase rate where the
classifier failed for that character. All characters above the line were
correctly identified. Figures 15-22 are and the graphical
representations of the distance classification data. To plot the data
in a visually intuitive manner, the distance data was transformed to
the log of the inverse distance with an added bias, and plotted as
"relative classification weights". The distance data was transformed

in three steps: (1) the inverse of the distance data was found, (2) the
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base 10 logarithm of the inverse data was calculated, and (3) a
constant bias was added to the log data to make all data points
positive. As before, large magnitudes of the relative classification
weights indicate high similarity and small distance between test and
reference characters. Smaller bars indicate low similarity, and a
larger distance between test and reference characters. The data for

the graphs can be found in appendix B.
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Figure 17. Classification
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Figure 19. Classification
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Figure 20. Classification
graph for the letter 'N'.
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Figure 22. Classification
graph for the letter 'V'.
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By plotting the classification weights versus the phase rate, one
can observe how the classifier behaves as the amount of blur is
increased. The general performance of the classifier for all
characters declines steadily as the blur is increased, and usually
misclassifies when the phase rate of the quadratic filter reaches a
value of six to eight units. A question to be answered is whether
there is a functional relationship between the phase rate and
distance. Before addressing this problem, an explanation for the
results of each test character is provided in the following paragraphs.

The letter 'A' is one of the best behaved characters of the
entire set; the performance of the classifier for this character is quite
intuitive. The classifier has no difficulty recognizing the test
character as the letter 'A' through several levels of degradation, and
eventually mis-classifies as the letter 'V' when the phase rate
reaches 7 pixels. One might expect a blurred letter 'A' to be
mistaken for the letter 'V' since the two shapes are very similar.
From figure 14, one can see that a phase rate of 7 pixels degrades the
test character almost beyond visual recognition. This example
clearly demonstrates the ability of the classifier to recognize
degraded text.

The letter 'E' behaves similarly to the letter 'A'. However, one
can see that this letter is correcty classified for more severe blurring
than for the previous letter, and that the rise in relative weight

values from blur level 7 to 8 seems to indicate an improved
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recognition ability. This jump in weight value does not actually
indicate an increase similarity between that test character and the
reference character for that level of blur. Clearly, the test character
with phase rate of eight pixels is less recognizable (i.e. is blurred to a
greater extent) than the same character with a phase rate of 7 pixels.
A valid question is why there appears to be improved performance
when in fact the distance between test and reference characters
should be increasing. This is an effect of the blurring of the phase
filter. One can see from figure 14 that phase rates of 7, 8 and 9
pixels blur the character almost beyond visual recognition; the noise
is dominant component of the image rather than the character. The
effect of this much blur causes the feature vector of the test
character to shift so that it is numerically closer to the feature vector
of the reference character, resulting in an apparent improvement in
recognizability of the test character. It would be incorrect to
conclude that the performance of the classifier actually improved
between the test character blurred with a filter having a phase rate
of 7 pixels and that of 8 pixels.

One can also observe that the test character does not
misclassify at the highest level of degradation. This test image is
comprised completely of noise, yet is still closer to the correct
reference character than to any other reference character. Thus, the
letter 'E' was never incorrectly identified. Further levels of

degradation were not continued since a phase rate of 9 pixels
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represents a cutoff point where minimal useful information
remained in the test image and it is not the objective here to
determine the performance of the classifier in pure noise. It should
be noted that the classifier's ability to recognize the letter 'E' under
greater degradation than the letter 'A' does not necessarily indicate
that the letter 'E' is more easily identified. The chirp rate at which a
character is misclassified may differ if a larger reference set is used.
For example, if the letter 'F' was added to the reference set, the letter
'E' may be misclassified with only a small amount of blur applied to
it. Since the letter 'E' has unique shape characteristics, its feature
vector remains significantly different than the rest of the character
set.

The letter 'H' has the most peculiar behavior. Itis misclassified
after blurring with a filter having a chirp rate of 3 pixels. The
explanation for this result is based on the shape of the letter; 'H' is
the only character that is symmetric both horizontally and vertically.
Because of this symmetry, the higher-order moments are
approximately zero, and components of the feature vector calculated
from these moments also nearly vanish. Therefore, the character is
mostly described by the first- and second-order moments, and the
feature vector is effectively reduced from a six-dimensional space to
a two-dimensional space consisting of the mean and variance of the
gray levels in the image. Itis easy to see from figure 8 that a small

amount of blur applied to the test image causes a large change in the
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mean and variance. As these features change, the statistical distance
between the test and reference characters quickly increases,
resulting in the rapid misclassification of this letter.

The example of the letter 'H' illustrates a possible weakness in
the classifier when attempting to recognize characters having
horizontal and vertical symmetry. To compensate for this problem,
the feature vector must include elements that check for circular
symmetry, and create part of the feature space based on that
property of the character. Though perhaps obvious, it should be
noted that the shape of a given character depends on the font used,
and the classifier will perform differently for different font types.
Helvetica font was used in this experiment; this is a very simple font
with equal-width lines and no serifs. However, other fonts may not
have constant line width. In this case, symmetry properties may not
be as significant due to the different line widths in the character.

The classifier demonstrates robust behavior when classifying
the letter 'L'; this letter is easily recognized through several levels of
degradation and is eventually incorrectly classified as the letter 'M'".
Having been misclassified under the fifth level of degradation (filter
with a phase rate of 5 pixels) suggests that perhaps this character is
not as easily classified as some of the other letters. However, this
letter has no distinguishing shape characteristics (lines coming to a
point, cross-bars, etc.) found in other reference characters and the

components of this letter are found in many other characters. One
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can think of this letter as having a rather "generic" feature vector.
Observing figure 18, one can see that when blurred in large amounts,
the feature vector of the 'L' is very similar to all reference vectors,
except the letter 'H' for reasons described earlier. The lack of
distinguishing characteristics pertaining to this letter explain the
mediocre performance of this letter.

Letters 'M' and 'N' both present few problems for the classifier.
The letter 'M' is recognized two levels beyond the letter 'N', but this
is understandable since the letter 'M' is a more complex shape than
'N' and therefore will tend to retain its uniqueness longer. The letter
'M' is misclassified as the letter 'N' at eight levels of degradation, thus
one might expect the letter 'N' to be misclassified as the letter 'M'.
However, one can observe from the graph that the letter 'N' is
actually misclassified as the letter 'E'. Although this is perhaps not
the intuitive prediction one would make, the misclassification is a
result of the blur applied to the character. Though the filtering
function is the same for all characters, the effect of the defocus blur
will vary between each character. Thus it is not trivial to predict
how a given letter will be misclassified; as stated earlier,
misclassification of a letter also depends on the size of the reference
letter set. However, it is useful to know how a given letter was
misclassified. If a character was incorrectly identified as the letter

'F' for example, one might be able to use that information to logically
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deduce what the correct identification was instead of guessing with
no prior information.

Letters 'T" and 'V' are also both easily handled by the classifier
in the presence of high levels of defocus blur. The letter 'T'
misclassifies as the letter 'E' at level 7 and the 'V' is not misclassified
after level 9. The performance of the letter 'V' is similar to the letter
'E' in that neither of these characters are incorrectly identified.
Observing figure 22, at a = 8 the distances between the test 'V' and
reference characters is very small due to the high level of blur in the
test character. Thus level 8 represents the cutoff phase rate for the
letter 'V'; classification of levels higher than that would have little
meaning since the test image would contain minimal character
information. The following chart summarizes the classification

performance of the eight characters.

reference degradation level misclassified
character (phase rate) as

A 7 \

E 9 N/A

H 3 N

L 5 M

M 8 N

N 6 E

T 7 E

\ 8 N/A

Figure 23. Chart of classification summary.
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As stated at the beginning of this section, it is desirable to
determine if there is a functional relationship between the phase
rate of the quadratic phase filter and the statistical distance between
test and reference characters for a particular letter resulting from
that phase rate. If this relationship can be established, then it might
be possible to predict classification performance as a function of «.
To investigate this question, the data was tested to find a power-law
relationship between phase rate and distance. In other words, the
variables would be functionally related as follows:

y=(ma+b)H (39)

1

y" =(ma +b) (39a)
where y is the distance between a given test character and its
matching reference character, n is some exponential power that
satisfies the equation, m is the slope of the linear relationship, «a is
the phase rate, and b is the intercept of the line with the y-axis. If n
can be found that satisfies equation 39 to some statistical criterion,
then the relationship between distance and phase rate is known.

Several values of n were tested in equation 39, these consisted
of 2, 4,5, 6,7, and 8. The following graphs show the best linear fit
that could be established between the two parameters. Since o is

linear, the regression curves were plotted using equation 39a.
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distance “ (1/7)

1.2

Regression plot for character A

1.0

0.8

0.6

0.4

0.2 1

00 %

y=-19391e-2+0.19028x R*2=0.998

8 distance * (1/7)

Figure 24.

4

phase rate

Regression curve for letter A.
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distance “ (1/7)

1.0

Regression plot for character E

0.8 +

0.6 4

0.4 1

0.2 1

y= -1.0060e-2+0.15112x R"2=0.999

8 distance “ (1/7)

Figure 25.

4 6

phase rate

-
-

Regression curve for letter E.
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distance “ (1/7)

Regression plot for character H

y =0.18963 + 2.6441x R*2=0.989

g distance * (1/7)

1 2

phase rate

-

Figure 26. Regression curve for letter H.
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distance “ (1/7)

Regression plot for character L

y = -8.9508e-3 + 0.39461x R"2=0.998

B distance " (1/7)

U“Jw T T . T T T
0 1 2 3

phase rate

-

Figure 27. Regression curve for letter L.
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distance = (177)

1.2

Regression plot for character M

1.0 1

0.8 1

0.6 -

0.4

y = -1.338%-2+0.15966x R*2=0.999

o distance " (1/7)

4

phase rate

Figure 28. Regression curve for letter M.
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distance “ (1/77)

1.2

Regression plot for character N

1.0 1

0.8

0.6 1

0.4

0.2

0.0 9

y = 6.4066e-2 + 0.18735x R"2=0.932

@ distance * (1/7)

o

-

v T T
2 4 6

phase rate

Figure 29. Regression curve for letter N.
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distance “ (1/7)

1.5

Regression plot for character T

1.0 1

0.5 1

= -1.1032e-2+0.18171x R"2=0.997

a distance " (1/7)

phase rate

Figure 30. Regression curve for letter T.
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Regression plot for character ¥

= -9.0493¢-2 + 0.25139x R"2=0.979

distance * (1/7)

8 distance * (1 /7)

o
o

phase rate

Figure 31. Regression curve for letter V.

These regression curves demonstrate a very high correlation

between the phase rate of the blur filter and the 1/7 power of the
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distance. Thus, a good experimental value for n in equation 39 is 7,

and distance as a function of phase rate would be written as:

y - (ma+b) (40)

The distance between reference character a test character blurred
with a filter having a phase rate of a = O is zero, thus the regression
line for every character should go through zero. However, the
regression lines do not go through zero since all the data for a given
characer does not fall on a straight line. If the regression lines were
forced through zero, the line equations would be slightly different, a
different value for n may also be observed.

The regression curve does not fit as well for letter 'H' because
of the small data set. The regression curve for the letter 'N' is also
not very convincing, due to the influence of defocus blur from the
quadratic phase filter in the classification. Because of the apparent
jump in classification performance from level 4 to level 5, the
regression curve does not fit the data as well as most of the other
characters. All other data sets have a very convincing correlation
between the phase rate and distance according to equation 40. When
n = 6 or 8, a high correlation was also present in the data, however n
= 7 provided the best overall correlation between the two variables.
Having experimentally determined this relationship, it is more
difficult to determine why this particular relationship exists between

the phase rate of the quadratic filter and the distance between a test
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character and its matching reference. This question has been left as

further research to be conducted.

4.1 Optical validation of digital simulation of blurred
characters

To validate a digital-filtering approximation of defocusing in a
coherent optical system, a transparency of the uppercase 'A' was
tested in an optical system consisting of a collimated laser source.
The object was "projected" onto the film plane of a 35mm camera
and photographed at several distances from the object to observe
increasing defocus in the image. A translation of the image plane
with respect to the object in the optical system was equivalent to
changing the phase rate a of the filter in the digital case. The

recorded images are shown in figure 32 A-D.
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C D

Figures 32 A-D. Photographs captured in the
image plane of the defocusing optical system.
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These images should be compared to the test images generated by
digital filtering (figure 14). Note the similarities of the blurred
images. This confirms that the digital quadratic phase filter
accurately models defocus blur in an imaging system.

As a final step in the validation experiment, the value for «
was experimentally calculated for the letters in figure 32 C and D.
Figure 32 C closely resembles the image in figure 14 that was
blurred with a filter having a phase rate o« = 4. Thus the
experimental value for o should be close to 4 pixels, which
corresponds to a distance measure of 1.53mm. The distance was
measured from the object to image plane, Z = 3.6m. Point A
represents the location where there has been a phase shift of =

radians in the light reaching the image plane.

A

: m J
/

Figure 33. Diagram for experimental calculation of «.

7 B

Thus there is a phase difference of # radians between light reaching
point B and light reaching point A (see figure 4). A phase shift of =
radians is created by delaying a sinusoid by one-half wavelength.

Thus, light reaching point A had to travel one half wavelength longer
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than light reaching point B, indicating that R=Z7Z + A /2. The answer
for a is determined simply from the Pythagorean theorem. The
calculated for o' = 1.51mm was o = 1.53mm. For figure 32-D, the
theoretical value for o' = 1.92mm compared to an experimental
value of a =1.81mm. Thus experimental values for a determined

from the optical system coincide with values used for digital filtering.
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5.0 - CONCLUSION

It was desirable to create a classifier that would classify a
letter based solely on its shape. Each character was transformed into
a six-dimensional feature vector calculated from a set of moment
invariants. The vectors are invariant to translation, rotation, scaling,
and contrast changes of the character. The results of this project
demonstrate that the classifier can correctly identify most characters
in the presence of high levels of defocus blur. The only character
with a problem was the letter 'H'. Due to the symmetry of this
character, the feature vector was almost completely described by the
first two dimensions of the vector; these two dimensions are
functions of the mean and variance of the image respectively. Since
these two variables change rapidly with increased blur, the character
was misclassified sooner than the others. Future research conducted
will need to alter the feature space in order to account for the
symmetry of some characters. Having tested the classifier with a
pilot set of characters, future work needs to examine the
performance when using the entire alphabet.

A functional relationship was formed that relates the phase
rate of a filter and the distance measure between a test character
and its matching reference character. It was discovered that
distance between the vectors of the original and blurred character

varies on the seventh power of the phase rate. Future research
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should investigate this result and determine the reason for this
relationship. A final area of further research will be to implement
other language bases into the classifier. The elementary letters of
any language could be used the same way the characters chosen for
this project. Each image would consist of one character, the reference
set would consist of individual images of all the letters of that
particular alphabet. The eventual objective is to use the classifier to
analyze images containing severely degraded text. As an example,
these images may contain fragments of ancient scroll text which
translators need to identify. Instead of attempting to enhance the
image to make the text more readable, the classifier may predict the
text correctly. A combination of these two procedures may also
prove useful in the analysis of such images. Although this is a long-
term objective, the results from this thesis indicate that such an

objective could be achieved.
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APPENDIX A

The following results are taken from Casasent, Psaltis (1979)
demonstrating the invariant properties of moments. The first table
shows the compiled theoretical results of moments for the two-
dimensional figure and its variations. The second figure and table
shows the experimental results obtained from the optical generation

of the moments.
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[
y
3F
2L
18 S
EZZ .
1 2 3 4 S -
Fig.l. Original Input
4}
3L
L }..._,
.
]
' I L.
-1 0 1 2 3 4
Fig.3. Rotated Input

Fig.2. Translated Input

Fig.4.

NUMERICAL CASE STUDY EXAMPLE

Table 1

THEORETICAL CASE STUDY (SQUARE INPUT)

Scaled Input

(p,q ORIGINAL TRANSLATED ROTATED SCALED
mpq upq ) (¢n) (¢n) (¢n)

00 1 1 0.166 0.166 0.166 0.166

10 1.5 10 0 0 0 0

01 0.5 |0 0 0 0 0

20 0.33]0.083 | 0 0 0 0

02 0.3310.083 | O 0 0 0

30 3.751 0 0 0 0 0

03 0.25] 0 0 0 0 0

11 0.75| 0 mpq = ordinary moments

21 1.6610 upq = central moments

12 0.5 Y ¢n = invariant moments
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y(cm) y(cm)
0.3
0.2 0.2
N
1 1 I} ' 1 .y i 1 ' I 1 'l '
J.1 0.2 0.3 x distance (cm) 0.1 0.20.3 0.4 0.5 x distance (cm)
Fig.6. Input Fig.7. Translated input
y(ca)
A
031 y(cm)
-4 0.4
0.3
0.3
0.2 0.2
0.1}
0.1
1 1 2 1 I 5 1 1 1 1 1 1 I >
¢.1 0.2 0.3 0.6 x dietance (cm) 0.1 0.2 0.3 0.4 x distance (cm)
Fig.8. Scaled input Fig.9. Rotated input
Table 2. Comparison of theoretical and experimental m _ moment computations.
P
NORMALIZED ORTGINAL TRANSLATED SCALED ROTATED
MOMENT THEORY EXPERIM THEORY EXPERIM THEORY EXPERIM THEORY EXPERIM
" [
‘“oo/“‘lo 2.28 2.27 2.0 1.65 2.16 1.82 2.37 1.71
" e . . 6-6 . . .
mOO/mZO 5.03 SN2, 4.32 4 4.4 5.16 5.62 5
' /m! ! : . 4.87 5.8 4.7 5.3 5.4 6
mOO/rn11 514215 6.7
'm!! 5 . 8.9 9.5 9.8 12.8 11.8 11.8
moo/m30 11.16 11.7
g o/m51 11.62 12.3 9.7 10.4 10.2 11.8 11.25 12.1

(Results from Casasent
and Psaltis, 1979)
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APPENDIX B

The following pages contain data tables for the classification
distance graphs, invariance demonstration graphs, and the regression
graphs. For the classification distance tables (tables 5-12), there are
three sections, showing the data as it was converted from distance
values to the relative classification values used in the graphs. Each
section of data has a label heading, demonstrating how that section
was calculated. Tables are listed in the appendix in order that they

appear in the thesis.
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reference character 1/distance reference character 1/distance
A 100 A 100
E 0.00865138 E 0.00865138
H 3.09E-07 H 3.09E-07
L 0.00409296 L 0.00409296
M 0.0134013 M 0.0134013
N 0.00887351 N 0.00887351
T 0.0155473 T 0.0155473
V 0.0796327 Vv 0.0796327
Table 1. Data for translation Table 2. Data for contrast

invariance graph.

invariance graph.

reference character

1/distance

3.39492

0.0082063

3.09E-07

0.00435787

0.0128603

0.00848253

0.0143271

< —HZIrTTm>»

0.0610407

Table 3. Data for rotation
invariance graph.

reference character | 1/distance
A 0.38439
E 0.0119313
H 3.09E-07
L 0.00408157
M 0.0201603
N 0.0122413
T 0.0239943
V 0.0860049
Table 4. Data for scale
invariance graph.
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phase rate 1/Distance

A E H L M N T ¥
1 442323 0.00865355: 3.09E-07 :0.00409322: 0.0134059 : 0.0088758 : 0.0155522 0.079632
2 1736.95 0.00868609: 3.09E-07 :0.00409702: 0.0134745 :0.00891015: 0.0156266 : 0.0796184
3 69.3306 0.00882734: 3.09E-07 :0.00411295: 0.0137737 i0.00905931: 0.0159505 0.079508
4 7.37272 0.00920977: 3.09E-07 :0.00415152: 0.014596 :0.00946336: 0.0168366 : 0.0788466
5 1.39962 0.0100265 3.09E-07 :0.00421286: 0.0164075 : 0.0103268 : 0.0187744 : 0.0762887
6 0.485206 0.0110783 3.09E-07 0.0043245 0.01904 0.0114635 : 0.0212475 : 0.0670945
7 0.0362197 | 0.0129558 3.09E-07 :0.00243497: 0.0147146 : 0.0119806 : 0.0275486 0.205435

Log{ 1/Distance)

A E H L M N T ¥
1 5.64573952: -2.0628057; -6.5094418: -2.3879349: -1.872704: -2.0517925: -1.8082082: -1.0989124
2 3.23978732: -2.0611757: -6.5094418: -2.3875319: -1.8704873: -2050115: -1.8061355: -1.0989866
3 1.84092496: -2.0541701: -6.5094418: -2 .3858466: -1.8609494: -2.0429049: -1.7972257: -1.0995892
4 0.86762774: -2.0357512: -6.5094404: -2.3817929: -1.8357661: -2.0239546: -1.,7737456! -1.103217
5 0.14601014: -1.9988506: -6.509439: -2375423: -1.7849576: -1.9860342: -1.7264339: -1.1175398
6 -0.3140738: -1.9555269! -6.5094376: -2.3640641: -1.7203331: -1.9406828! -1.6726922: -1.1733131
7 -1.4410552: -1.8875358; -6.5094376: -2.6135064; -1.8322515: -1,9215214: -1.5599005: -0.6873256

Log{ 1/Distance) + Bias, bias = 8

A E H L M N T ¥
1 13.6457395: 593719431: 1.49055821: 5.61206509; 6.12729598: 5.94820751: 6.19179183 6.90108762
7 11.2397873: 5.93882432: 1.49055821: 5.61246808: 6.12951266: 5.94988502: 6.1938645: 6.90101345
3 9.84092496: 594582985 1.49055821: 5.61415343: 6.13905062: 5.95709512: 6.2027743! 6,.90041083
4 8.86762774: 596424878 1.49055961: 5.61820713: 6.16423385: 597604536 6.22625439: 6.89678297
5 8.14601014: 6.00114936! 1.49056101: 5.62457703: 6.21504241: 6.01396577: 6.27356607: 6.88246021
6 7.68592616: 6.04447312: 1.49056242: 5.6359359: 6.27966694: 6.05931724: 6.32730784: 6.82668692
7 6.55894485: 6.11246424; 1.49056242: 5.38649361: 6.16774846: 6.07847857 6.44009953: 7.31267444

Classification distance data for the letter A.

Table 5.
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phase rate 1/Distance
A E H L M N T Y
1 0.0086517 1.68E+06 310E-07 :0.00260006: 0.0946821 0.364632 0.116274 0.0104029
2 0.00865647 6674.71 3.10E-07 :0.00260035: 0.0949182 0.360998 0.116611 0.0104083
3 0.00867667 280.485 3.10E-07 :0.00260154: 0.0958976 0.34637 0.11802 0.0104313
4 0.00872794 33.7635 3.10E-07 :0.00260431: 00982274 : 0.314315 0.12146 0.0104894
5 0.00881883 7.82775 3.10E-07 :0.00260644: 0.101638 0.267867 0.127393 0.0105959
6 0.00870094 2.21292 3.10E-07 (0.00253408: 0.0895048 0.192446 0.12651 0.0105866
7 0.00931434 1.44584 3.09E-07 :0.00265971: 0.123959 0.204743 0.150921 0.0110784
8 0.0086836 7.16381 3.10E-07 :0.00256914: 0.0937454 | 0.255428 0.1223 0.010504
9 0.00858791 3.33806 310E-07 :0.00253219: 0.087721 0.214763 0.119821 0.0104451
Log( 1/Distance)
A E H L M N T ¥
1 -2.0628985: 6.22503776: -6.5091065! -2.5850166: -1.0237321: -0.4381452: -0.9345174: -1.9828456
2 -2.0626592! 3.8244324! -6,5091121: -2.5849682: -1.0226505: -0.4424952: -0.9332605: -1.9826202
3 -2.0616469: 2.44790964: -6.5091331: -2.5847695: -1.0181923: -0.4604597: -0.9280444: -1.9816616
4 -2.0590882i 1.52844746: -6.5091808: -2.5843073: -1.0077674: -0.5026349: -0.9155667: -1.9792494
S -2.054589: 0.89363695: -6.5092552: -2.5839523: -0.9929439: -0.5720808; -0.8948544: -1.9748621
6 -2.0604338: 0.34496571: -6.5093323: -25961797: -1.0481537: -0.7156911: -0.8978751: -1.9752435
7 -2.0308479: 0.16012024 -6.5093758: -2.5751657: -0.9067219: -0.6887909: -0.8212503: -1.955523
8 -2.0613002: 0.85514406: -6.5092467: -2.5902122 -1.02805: -0.5927315: -0.9125735: -1.9786453
9 -2.0661125: 0.52349414i -6.5092916: -2.5965037: -1.0568964: -0.6680405: -0.9214671: -1.9810874
Log( 1/Distance) + Bias, bias = 8
A E H L M N T ¥
1 5.93710145: 142250378 1.49089352: 5.41498337: 6.97626788: 7.56185478: 7.06548261: 6.01715442
2 5.93734083: 11.8244324: 1.49088791: 5.41503181: 6.97734949: 75575048: 7.06673952: 6.0173798
3 5.93835308: 10.4479096: 1.49086688: 541523051 6.98180774! 7.53954027: 7.07195561! 6.01833844
4 5.94091175; 9.52844746: 1.49081919; 541569268 6.99223265; 7.49736511: 7.08443328: 6.02075065
5 5.94541097;: 8.89363695: 1.49074484: 541604773 7.00705611: 7.42791921: 7.10514557; 6.02513785
6 5.93956617; 8.34496571: 1.49066767: 540382032 6.95184633: 7.28430889: 7.10212486; 6.0247565
7 5.96915209: 8.16012024: 1.49062417: 5.42483429: 7.09327806: 7.31120906: 7.17874967: 6.04447704
8 5.93869981: 8.85514406: 1.49075326: 540978777 6.97194997: 74072685 7.08742646: 6.02135471
9 593358748 8.52349414: 1.49070836i 5.40349629: 6.94310357: 7.33195946; 7.07853294! 6.0189126

Classification distance data for the letter E.

Table 6.
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phase rate 1/Distance
. E H L M N T ¥
1 3.24E-07 3.24E-07 :0.00060844: 3.24E-07 3.24E-07 3.25E-07 3.24E-07 3.24E-07
2 6.08E-07 6.08E-07 3.77E-06 6.08E-07 6.08E-07 6.09E-07 6.08E-07 6.08E-07
3 4.35E-06 4.37E-06 5.75E-07 4.35E-06 4.36E-06 4.39E-06 4.36E-06 4 35E-06
Log{ 1/Dsitance
A E H L M N T Y
1 -6.4896306: -6.4892861 | -3.2157815: -6.4895971 | -6.4895837: -6.488717 | -6.4895529: -6 4895864
2 -6.2163508:-6.2158715:-54234122:-6.2163222 : -6.2162793: -6.2150911 i -6.2162364: -6 2162893
3 -5.3613021 :-5.3598834:-6.2401313:-53615217:-53609869:-5.3577908:-5 3608723 :-53611176
Log( 1/Distance) + Bias, bias =
A E H L M N T ¥
1 1.51036938: 1.51071387: 4.78421847: 1.5104029: 1.51041631: 1.51128295: 1.51044715; 1.51041363
2 1.78364921: 1.78412853: 25765878 1.7836778: 1.78372068 1.78490886: 1.78376355! 1.78371068
3 2.63869787: 2.64011656: 1.75986871: 2.63847827: 2.63901309: 2.64220921: 263912775 2.63888244

Classification distance data for the letter H.
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phase rate 1/Distance

A E H L M N T ¥
1 0.00410452 : 0.00260694: 3 09E-07 1483.41 0.00362717:0.00285131:0.00284935: 0.00284285
2 0.00428011:0.00271189: 3.09E-07 5.97552 0.0038 0.00297103:0.00296853 : 0.00294778
3 0.0050863 : 0.00320241 3.09E-07 0.265008 0.0046316 :0.00353411 :0.00352839:0.00342345
4 0.00752974:0.00485125: 3.09E-07 : 0.0361383 : 0.00770687 : 0.00546446 : 0.00543714: 0.00484289
5 0012263 : 0.0104767 : 3.09E-07 : 0.0102962 : 0.0213922 : 0.0123653 : 0.012094 :0.00798934

Log{ 1 /Distance

A E H L M N T ¥
1 -2.3867376: -2.583869: -6.5094081: 31712612 -2.4404321: -2 5449556 -2 5452542 -2 5462461
2 -2.3685451: -2.5667279i -6.5094067: 0.7763757: -2.4202164! -2527093: -2.5274586! -2 5305049
3 -2.293598; -2.4945231: -6.5093983! -0.576741: -2334269! -2.4517199: -2 4524234; -2.465536
4 -2.12322: -2.3141463: -6.5093828! -1.4420323: -2 113122; -2.2624527: -2.2646295; -2 3148654
5 -1.9114033: -1.9797755: -6 5093632: -1987323: -1.6697445i -1.9077953 -1.91743: -2.0974891

Log( 1/Distance) + Bias, bias = 8

A E H L M N T ¥
1 5.61326238: 5.41613104: 1.49059189: 11.1712612: 555956791 5.45504444; 54547458 5. 45375395
2 9.63145493; 5.43327207: 1.49059329! 8.7763757: 55797836 547290704 5.47254144 5 46949507
3 5.70640197: 5.50547693: 1.49060171: 7 42325898 5.66573105: 554828006 5.54757658! 553446399
4 9.87677998: 5.68585366: 1.49061715 6.55796772: 5.88687803: 5.73754725: 573537052 5.6851046
5 6.08859673;: 6.02022451: 1.4906368; 6.01267697: 6.33025545; 6.09220466: 6.08256996; 59025100

Classification distance data for the letter L.
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phase rate

1/Distance

A E H L M N T ¥
1 0.0133988 { 0.0946761 3.09E-07 :0.00361589: 1.24E+06 0.101889 0.112635 0.0131742
2 0.0133609 : 0.0948219 3.09E-07 :0.00361582 494414 0.102092 0.111954 0.0131341
3 0.0132056 : 0.0954139 3.09E-07 :0.00361536 208.385 0.102914 0.109201 0.0129703
4 0.0128465 i 0.0968877 3.09E-07 :0.00361213 25.4189 0.104886 0.103215 0.0125988
5 0.0122249 0.103763 3.09E-07 :0.00357514 5.85546 0.112228 0.0973167 0.012045
6 0.0112434 : 0.139539 3.09E-07 :0.00343947 1.33137 0.155953 0.0982922 0.011427
7 0.0106432 0.163996 3.10E-07 :0.00337319 0.52181 0.217715 0.092604 0.0110769
8 0.00853432: 0.0444666 3.11E-07 0.0031999 0.042277 0.0969703 0.030889 :0.00888023
Log{ 1 /Distance)
A E H L M N T Y
1 -1.8729341: -1.0237596; -6.5093969: -2 4417848! 6.09447812: -0.9918727 -0.9483266: -1.8802757
2 -1.8741643: -1.0230913: -6.5093969: -2 4417932 3 69409076 -0.9910083; -0.9509604: -1 8815997
3 -1.8792419: -1.0203884: -6.5093969: -2.4418485: 2.31886645: -0.9875255 -0.9617734 -1.88705
4 -1.8912152: -1.0137314: -6.5093969: -2.4422366! 1.40515675: -0.9792825: -0.9862572: -1.8996708
5 -1.9127547: -0.9839575; -6.5093941: -2 4467069 0.76756102: -0.9498988: -1.0118126: -1.9191932
6 -1.9491023: -0.8553044: -6.5093478: -2 4635085: 0.12429877: -0.8070063: -1.0074809: -1.9420678
7 -1.9729278: -0.7851667;: -6.5092818: -2.4719592: -0.2824876! -0.6621116i -1.0333703; -1.9555818
8 -2.0688311: -1.3519661: -6.5071977: -2.4948636: -1.3738958! -1.0133613: -1.5101962: -2.0515758
Log ( 1/Distance) + Bias, bias = 8
A E H L M N T ¥
1 6.1270659: 6.97624036: 1.49060312;: 5.55821521: 14.0944781: 7.0081273: 7.05167336: 6.11972425
2 6.12583571: 6.97690865: 1.49060312: 5.5582068: 11.6940908: 7.00899171: 7.04903962: 6.11840032
3 6.12075814: 6.97961165: 1.49060312: 5.55815155: 10.3188665: 7.01247446 7.03822662: 6.11295002
4 6.10878482: 6.98626865: 1.49060312: 555776337: 9.40515675: 7.02071752: 7.01374282: 6.10032918
5 6.08724532; 7.01604252: 1.49060592; 5.55329305: 8.76756102: 7.05010122: 6.98818737: 6.0808068
6 6.05089766: 7.14469561: 1.49065223: 5.53649153: 8.12429877: 7.19299373: 6.99251906: 6.05793223
7 6.02707222: 7.21483326: 1.49071818: 5.5280408: 7.7175124: 7.33788835! 6.96662975: 6.04441824
8 5.93116892: 6.64803392; 1.49280228: 550513641 6.62610416: 6.98663874; 6.48980385: 5.94842421

Classification distance data for the letter M.

Table 9.
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phase rate 1 /Distance

A E H L M N T Y
1 0.00887322: 0.363559 3.10E-07 :0.00284366: 0.101785 774945 0.0801648 : 0.0101704
2 0.00886934: 0.344182 3.10E-07 :0.00284688: 0.100434 296.694 0.0789872 : 0.0101564
3 0.00886233: 0.270011 3.10E-07 :0.00286669: 0.094913 10.731 0.0737455 { 0.0100949
4 0.00894162: 0.148595 3. 10E-07 0.0029712 ¢ 0.0839635 0.995178 0.0605991 :0.00994482
5 0.00900543: 0.155365 3.10E-07 :0.00297961: 0.0880148 1.08094 0.0623955 :0.00999803
6 0.00817272 0.94098 3.10E-07 :0.00255613: 0.073433 0.775369 0.0830417 i 0.0098286

Log{ 1/Distance)

A E H L M N T Y
1 -2.0519188:-0.4394251 i -6.5085487: -2.5461223{-0.9923162 : 488927088 | - 1.0960163 -1.992662
2 -2.0521087:-0.4632118:-6.5085234: -2.5456308:-0.9981192 | 2.47230876 : - 1.1024433 119932602
3 -2.0524521 : -0.5686185:-6.5084114: -2 5426193 :-1.0226743 | 1.03064019i-1.1322645: -1 005898
4 -2.0485838: -0.8279958 : -6.5081343: -2 5270681 : -1.0759095: -0.0020992 i - 1.21 75338 - 20024031
5 =2.0454955 : -0.8086468: -6.5081636 : -2 5258406 : -1.0554443 : 0.03380159 : - 1 2048467 : - 2.0000856
6 -2.0876334:-0.0264196: -6.5086691 : -2.5924171:-1.1341087:-0.1104016 ; - 1.0807038: -2 0075083

Log{ 1/Distance) + Bias, bias = 8§

A E H L M N T ¥
1 5.94808125: 7.5605749 :1.49145135:5.45387767: 7.00768378: 12.8892709 ; 6.90398371 : 600733803
2 9.9478913 :7.53678815:1.49147656:5.45436916: 7.00188076 : 10.4723088; 6.89755672 6.0067398
3 5.94754792 :7.43138146 : 1.49158859 :5.45738073: 6.9773257 {1 9.03064019 : 6.86773552 : 6 00410202
4 5.95141621: 7.1720042 :1.49186574:5.47293189:6.92409053 ; 7.99790077:6.78246617:5.69750693
S 2.95450445 : 7.19135319:1.49183636:5.47415942 : 6.94455571 : 8.03380159: 6.79515327 : 5.99991 444
6 591236662 : 7.97358039: 1.49133087 i 5.40758294: 6.86589127 | 7.88950843: 691929653 i 5 00745166

Classification distance data for the Letter N.

Table 10.
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phase rate 1/Distance

A E H L M N T ¥
1 0.0155431 0.116353 3.09E-07 :0.00284154: 0.112747 0.0802938 535366 0.0206525
2 0.0154811 0.117892 3.09E-07 :0.00284167: 0.113745 0.0810651 2101.89 0.0205357
3 0.0152189 0.124819 3.09E-07 :0.00284213: 0.118074 0.0844706 83.8281 0.0200466
4 0.0145624 0.14572 3.09E-07 :0.00284232: 0.129655 0.0941466 8.89827 0.0188576
5 0.0133814 0.203071 3.09E-07 :0.00283821 0.151999 0.116826 1.68609 0.0168391
6 0.0117415 0.383134 3.09E-07 :0.00280136: 0.165796 0.162825 0.502987 0.0143716
7 0.0101518 1.03152 3.10E-07 :0.00262789¢ 0D.106712 0.220626 0.250935 0.0127316

Log{ 1 /Distance)

A E H L M N T Y
1 -1.8084624;: -0.9342224: -6.509366 -25464462: -0.947895! -1.095318: 5.72865079: -1.6850274
2 -1.8101982: -0.9285157: -6.509366; -2.5464264: -0.9440677: -1.0011661: 3. 32260998 -1 6874905
3 -1.8176167: -0.9037193: -6.509366: -2.5463561; -0.9278457: -1.0732944; 192338962 -1 6979593
4 -1.836767: -0.8364808; -6.5093646: -2546327: -0.8872107: -1.0261954; 0.94930558; -1.7245136
5 -1.8734984: -0.6923521: -6.5093604: -2.5469555: -0.8181593: -0.9324605; 0.22688075: -1 7736811
6 -1.9302764! -0.4166493 -6.5093478: -2.552631 1 -0.780426: -0.7882789: -0.2984432: -1.8424949
7 -1.9934569: 0.01347765: -6.5092159! -25803928: -0.9717867: -0.6563433: -0.6004388 -1.895117

Log{ 1/Distance) + Bias, bias = 8

A E H L M N T ¥
1 6.19153764: 7.06577759: 1.49063399: 5 45355377 7.05210499: 690468201 13.7286508 6. 31407263
2 6.18980182: 7.07148434! 1.49063399: 5.45357364: 7.05593232: 6.90883392 11.32261: 6.31250951
3 6.18238326: 7.0962807: 1.49063399: 5.45364394: 7.07215428: 6.92670558: 9.92338962: 6.30204072
4 6.16323296: 7.16351916: 1.49063539! 5.45367297: 7.11278927: 6.97380464; 8.949305558! 6 27548642
5 6.12650155: 7.30764791 1.4906396: 5.45304453: 7.18184073: 7.06753951: 8.22688075! 6.22631888
6 6.06972358; 7.58335069: 1.49065223! 5.44736892: 7.21957405: 7.21172109: 7.70155676: 6.15750512
7 6.00654305: 8.01347765: 1.49078412; 5.41960718: 7.02821326; 7.34365669: 7.39956124 610488299

Classification distance data for the letter T.

Table 11.
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phase rate 1 /Distance

A E H L M N T ¥
1 0.0796099 : 0.0103988 3.09E-07 :0.00283564: 0.0131712 { 0.0101676 : 0.0206498 278144
2 0.0792627 : 0.0103425 3.09E-07 :0.00283132: 0.0130854 : 0.0101129 : 0.0204905 1072.71
3 0.0776332 : 0.0100951 3.09E-07 :0.00281204: 0.0127107 :0.00987235: 0.0197973 39.5911
4 0.0722052 :0.00940398: 3.09E-07 :0.00275513: 0011683 :0.00920018: 0.0179163 3.40634
5 0.0562948 :0.00786131 3.09E-07 :0.00260727:0.00948442 :0.00769943: 0.0140084 041117
6 0.0244364 : 0.0049593 3.09E-07 i0.00220235:0.00567014:0.00487341:0.00769689: 0.0478512
T 0.00171384:0.00093083: 3.09E-07 :0.00079002:0.00097891:0.00092406:0.00110884:0.00184869
8 4.87E-08 4.85E-08 4.19E-08 4.85E-08 4 85E-08 4. 85E-08 4.86E-08 4.87E-08
9 0.0300279 : 0.0115858 3.10E-07 :0.00754456: 0.0242525 : 0.0134524 : 0.0168609 : 0.0157206

Log( 1/Distance)

A E H L M N T ¥
1 -1.0990329: -1.9830168: -6.5093997: -2.5473489: -1.8803747: -1.9927815: -1.6850842: 5.4442697
2 -1.1009311: -1.9853745: -6.5093997: -2548011: -1.883213: -1.9951243: -1.6884474: 303048233
3 -1.1099525! -1.9958894: -6.5093997: -2.5509785: -1.8958305; -2.0055795: -1.703394: 1.59759757
4 -1.1414315: -2.0266883 -6.5093997: -2.5598579: -1.9324456: -2.0362037: -1.7467517: 0.53228799
5 -1.2495317{ -2.1045051: -6.5093997: -2583814: -2.0229892: -2.1135386: -1.8536115: -0.3859786
6 -1.6119628! -2.3045796: -6.5094053: -2.6571137: -2.2464062;: -2.312167: -2.1136847: -1.3201072
7 -2.7660297: -3.0311292; -6.5095246: -3.1023597: -3.009259: -3.0342998: -2 9551311: -2 7331359
8 -7.3124924; -7.3141463: -7.3774099; -7.3139647: -7.3140246;: -7.3141759: -7 3136355; -7.3123569
) -1.522475: -1.936074: -6.5092944: -2.1223661: -1.6152435: -1.8712002: -1.7731192: -1.8035309

Log( 1/Distance) + Bias, bias = 8

A E H L M N T ¥
1 6.90096708: 6.01698323: 1.49060031; 5.45265109: 6.11962534: 6.00721845: 6.31491585: 13.4442697
2 6.89906886: 6.01462553: 1.49060031: 5.45198896 6.116787: 6.00487571:! 6.31155256: 11.0304823
3 6.89004749: 6.00411063: 1.49060031: 5.44902149: 6.10416947: 599442054 6.29660596: 9.59759757
4 6.85856848: 59733117 1.49060031; 5.4401421: 6.06755438i 5.96379632! 6.25324833: 8.53226799
5 6.75046828: 5.89549492: 1 49060031: 5.41618601: 597701078; 5.8864614: 6.14638853: 7.61402142
6 6.38803723{ 5.69542038: 1.4905947: 5.34288634: 5.75359378: 568783295 5.88631528: 6.67989283
7 523397027 496887084 1.49047539: 4.89764028: 4.99074099: 496570017 5.04486888: 5.26686409
8 0.68750756: 0.68585366: 0.62259011: 0.68603535; 0.68597539! 0.68582411: 0.68636453: 0.68764309

Classification distance data for the letter V.

Table 12.
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phase rate | distanceA(1/7)
0.00000 0.00000
1.00000 0.15612
2.00000 0.34449
3.00000 0.54577
4.00000 0.75172
5.00000 0.95311
6.00000 1.10884

Table 13. Data for A
regression graph.

phase rate | distance/A(1/7)
0.00000 0.00000
1.00000 2.88003
2.00000 5.95398
3.00000 7.78888

Table 15. Data for H

regression graph.

phase rate | distanceA(1/7)
0.00000 0.00000
1.00000 0.12902
2.00000 0.28422
3.00000 0.44699
4.00000 0.60485
5.00000 0.74531
6.00000 0.89273

Table 14. Data for E
regression graph.

phase rate | distance/A(1/7)
0.00000 0.00000
1.00000 0.35234
2.00000 0.77462
3.00000 1.20890
4.00000 1.60696
5.00000 1.92266
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Table 16. Data for L
regression graph




phase rate | distanceA(1/7)
0.00000 0.00000 phase rate | distanceA(1/7)
1.00000 0.13474 0.00000 0.00000
2.00000 0.29667 1.00000 0.20023
3.00000 0.46637 2.00000 0.44342
4.00000 0.62989 3.00000 0.71247
5.00000 0.77687 4.00000 1.00069
6.00000 0.95994 5.00000 0.98894
7.00000 1.09738 6.00000 1.03701
Table 17. Data for M Table 18. Data for N
regression graph. regression graph.

phase rate distance/A(1/7)
0.00000 0.00000 phase rate | distanceA(1/7)
1.00000 0.15192 0.00000 0.00000
2.00000 0.33523 1.00000 0.16682
3.00000 0.53117 2.00000 0.36904
4.00000 0.73179 3.00000 0.59125
5.00000 0.92809 4.00000 0.83938
6.00000 1.10315 5.00000 1.13538
7.00000 1.21836 6.00000 1.54378
Table 19. Data for T Table 20. Data for V
regression graph. regression graph.
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APPENDIX C

The following pages contain the computer programs created for
this experiment. The first few pages contain code for the image
header file and routines that read and write image files. The
remaining code is divided into two sections; functions belonging to
the program moment_main, and functions belonging to the program
classifier. The moment_main program allowed the user to generate
the character test images with a specific amount of degradation
applied to it. The program classifier was then implemented to
classify the test characters. Each main program is listed, followed by
its supporting functions. The last few pages contain the makefiles for
the two main programs. These files are written to compile a main

program with its supporting functions in the UNIX environment.
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/* IMAGE.h header file */

#ifndef _ IMAGE LOADED
#define _ IMAGE LOADED 1

/* IMAGE - V1.0 - Prototypes for image processing functions */

#include <stdio.h>
#include <math.h>

#define MX BANDS 256

#define TRUE 1
#define FALSE 0

#define _abs( x ) (x> 0) 2 (x) : (-x)
#define min( a, b ) (a <=b) ? (a) : (b)
#define max( a, b ) (a >=b) ? (a) : (b)

struct PICTURE OPTIONS {

FILE *file pointer;
short element _size;
short number of bands;
long number of columns;
long number of rows;
long header length;

}i
int getpixel( struct PICTURE_OPTIONS picops, long row, long col,

unsigned char band mask[], long number of elements,
unsigned char *data location );

int putpixel( struct PICTURE OPTIONS picops, long row, long col,
unsigned char band mask[], long number of elements,
unsigned char *data location );
int open raw file( long number of rows, long number of columns,
long number of bands, long element_size,
const char *filename, const char *mode, long create value,
struct PICTURE_OPTIONS *picops );
void switch_ longword( );

void switch word( );

#endif /* __ IMAGE LOADED */
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#include "image.h"

/**********************************************************************

function:

description:

variables:

return value:

author:
date:
modifications:

open_raw file

this routine will open a raw image file with user

specifieddimensions for read or write mode. the read mode implies that
the file already exists and the picture options data structure is to be
filled. the write mode implies that the file is to be created. the
write mode will create a file of the size specified in the user supplied
data when this routine is called and fill it with the specified
initialization value.

number of rows (longword, value)

indicates the number of rows in the raw image data
number of columns (longword, value)

indicates the number of columns in the raw image data

number of bands (longword, value)
indicates the number of bands in the raw image data
and assumes the bands are interleaved by line

element_size (longword, value)
indicate the number of byte per pixel (valid values are eitherl or 2)

filename (array of char, address)
the address of the character string in the calling program
where the name of the file to be opened is specified

mode (char, address)

the open mode of the file, can be "w" (119) for a write or
can be "r" (114) for a read (a value of 114 is assumed

if no value or an erroneous value is past)

create value (longword, value)

the create value specifies the value which should
initialize a file when it is created in the "w" mode, a -1
will cause no initialization to occur and a 0 is the default

picops (struct PICTURE_OPTIONS, address)

the picture options structure which will be filled with image specific
information such as number of bands, number of rows and columns, element
size, header length, and the file pointer

1 if success, NULL if not

carl salvaggio
12/18/91

**********************************************************************/

int open raw file( long number of_rows, long number_ of columns,

long number of bands, long element size,
const char *filename, const char *mode, long
create value, struct PICTURE_OPTIONS *picops )
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FILE *fp;

int status;

int rows;

int element;

int elements per row;
unsigned char *buffer;

/**********************************************************************
open a new file if mode is "w" (119) and initialize as specified
**********************************************************************/

if ( *mode == 119 ) {
fp = fopen( filename, "wb" );
if ( fp == NULL ) {
return( 0 );
picops->file pointer = fp;

if ( create value >= 0 ) {
if ( element_size == 2 ) {
elements per row = number of columms *
number of bands *
element size;

}
else {
elements per row = number of columms *
number of bands;
}

buffer = (unsigned char *) calloc( (size t) elements per row,
(size_t) sizeof( unsigned char ) );

if ( create value != 0 )
for ( element=0; element<elements per row; element++ ) {
* (buffer+element) = create value;
}
}

for ( rows=1; rows<=number of rows; rows++ ) {
status = fwrite( buffer,
(size t) 1,
(size_t) elements per row,
(picops->file pointer) );
if ( status == 0 ) {
return( 0 );

}

}

/**********************************************************************
open an existing file if mode is "r" (114) and fill the picture options
**********************************************************************/
else {
fp = fopen( filename, "rb" );
if ( fp == NULL ) {
return( 0 );

}
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picops->file pointer = fp

}

’

/**********************************************************************

transfer the relevant header data to the picops structure
**********************************************************************/

(picops->number of bands)
(picops->number of colummns)
(picops->number of rows)
(picops->element_size)
(picops->header length)

return( 1 );

number_ of bands;
number of_ columns;
number of rows;
element size;

0;
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#include "image.h"
/**********************************************************************
function: getpixel

description: this routine will return a stream of data from an n-band image of
arbitrary size. the starting point of the stream is denoted by the row
and col number. the convention for this indexing scheme is that the
upper left hand corner of the image has coordinate (0,0) and the
row corresponds to the y-axis of the cartesian coordinate
system while the col refers to the x-axis.

variables: picops (struct PICTURE OPTIONS, value)
the picture options structure which contains image
specific information such as number of bands, number
of columns, element size, header length, and the file pointer

row (longword, value)

the y-axis coordinate of the starting point for the
data stream that is to be returned to the calling
routine (starts at 0)

col (longword, value)

the x-axis coordinate of the starting point for the
data stream that is to be returned to the calling
routine (starts at 0)

band mask[] (array of unsigned char, address)

an array of flags (1 is on, 0 is off) indicating which
bands are to be grabbed from the open file, array
element 0 corresponds to band 1, element 1 to band 2,
and so on to element (MX BANDS-1) to band MX BANDS

number of_ elements (longword, value )

the number of data elements to be grabbed across the row
starting at the element specified by row and col

data location (address of data structure in calling
routIne) the address of the memory location to place the
returned data stream at

return value: number of bytes grabbed if success, NULL if read is past end-of-file

author: carl salvaggio
date: 1/28/91
modifications: 1/29/91 - to work with picture options structure

3/14/91 - to correct single band grab bug

**********************************************************************/

int getpixel( struct PICTURE_OPTIONS picops, long row, long col,
unsigned char band mask[], long number of elements,
unsigned char *data_location )

{
int status;
long offset;
int number of_bytes;
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int band, number of bands on;
long element;
unsigned char *data location ptr;

data_location ptr = data_ location;
number of bytes = number of elements * (picops.element size);

#ifndef VMS
number of bands on = 0;
for ( band=1; band<=(picops.number of bands); band++ ) {
if ( band_mask[band-1] != 0 ) {
number of bands on++;

}
}
#endif

for ( band=1; band<=(picops.number of bands); band++ ) {
if ( band mask[band-1] != 0 ) {
offset = ( row * (picops.number of columms) * (picops.number of bands) +
(picops.number of columns) * (band-1) + col ) *
(picops.element size) + (picops.header length);
status = fseek( (picops.file pointer), offset, 0 );
if ( status !=0 ) {
return( 0 );
}
status = fread( data_location, (size t) 1, (size t)
number of bytes, (picops.file_pointer) );
if ( status != number of bytes ) {
return( 0 );

}
data_location = data location + number_ of_ bytes;
}
}
#ifndef VMS
if ( picops.element_size = 2 ) {
data_location = data_location_ptr;
for ( element=0;
element<(number of elements*number of bands on); element++ ) {
switch word( data_ location );
data location = data_location + 2;
}
}
#endif

return( status );
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#include "image.h"
/**********************************************************************
function: putpixel

description: this routine will place a stream of data to an n-band image of arbitrary
size. the starting point of the stream is denoted by the row and col
number. the convention for this indexing scheme is that the upper left
hand corner of the image has coordinate (0,0) and the row

corresponds to the y-axis of the cartesian coordinate system while the
col refers to the x-axis.

variables: picops (struct PICTURE_OPTIONS, value)
the picture options structure which contains image
specific information such as number of bands, number
of colums, element size, header length, and the file pointer

row (longword, value)

the y-axis coordinate of the starting point for the
data stream that is to be placed fram the calling
routine (starts at 0)

col (longword, value)

the x-axis coordinate of the starting point for the
data stream that is to be placed fram the calling
routine (starts at 0)

band mask[] (array of unsigned char, address)

an array of flags (1 is on, 0 is off) indicating which
bands are to be placed to the open file, array
element 0 corresponds to band 1, element 1 to band 2,
and so on to element (MX BANDS-1) to band MX BANDS

number of elements (longword, value )
the number of data elements to be placed across the row
starting at the element specified by row and col

data_location (address of data structure in calling
routine) the address of the memory location to grab the data stream from

in the calling routine

return value: number of bytes written if success, NULL if the write encounters a

problem
author: carl salvaggio
date: 1/28/91
modifications: 1/29/91 - to work with picture options structure

**********************************************************************/

int putpixel( struct PICTURE_OPTIONS picops, long row, long col,
unsigned char band mask[], long number of elements,
unsigned char *data_ location )

int status;
long offset;
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int number of bytes;

int band, number of bands on;

long element;

unsigned char *data_location ptr;
#ifndef VMs

number of bands on = 0;
for ( band=1; band<=(picops.number of bands); band++ ) {
if ( band mask[band-1] != 0 ) {
number of bands on++;
}
}
#endif
#ifndef VMS
if ( picops.element_size = 2 ) {
data_location ptr = data location;
for ( element=0;
element<(number of elements*number of bands on); element++ ) {
switch word( data location );
data location = data_location + 2;
}

data location = data_location ptr;

}
#endif

number of bytes = number of elements * (picops.element size);

for ( band=1; band<=(picops.number of bands); band++ ) {
if ( band mask[band-1] != 0 ) {
offset = ( row * (picops.number of columms) * (picops.number of bands) +
(picops.number of columns) * (band-1) + col ) *
(picops.element size) + (picops.header length);
status = fseek( (picops.file pointer), offset, 0 );
if ( status == EOF ) {
return( 0 );
itatus = fwrite( data location, 1, number of bytes, (picops.file pointer) );
if ( status == 0 ) {
return( 0 );

data location = data location + number of bytes;

}
}

return( status );
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/**********************************************************************

routine: switch_ longword

description: this routine will perform a byte reversal on a longword to allow input
data on a PC and most UNIX systems to be interpreted properly (byte
reversal occurs as ABCD --> DCBA

variables: longword (address of a longword)
the address of the longword which is to undergo byte
reversal

return value: none

author: michael heath
date: 1/28/91

**********************************************************************/

void switch longword( char *longword )

{
char temp;
temp = *(longword+3);
*(longword+3) = *longword;
*longword = temp;
temp = *(longword+2);
*(longword+2) = *(longword+l);
*(longword+l) = temp;

}
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/**********************************************************************
routine: switch_word
description: this routine will perform a byte reversal on a word

to allow input data on a PC and most UNIX systems to be
interpreted properly (byte reversal occurs as AB --> BA

variables: word (address of a word)
the address of the word which is to undergo byte
reversal

return value: none

author: michael heath
date: 1/28/91

**********************************************************************/

void switch word( char *word )

{
char temp;
temp = *(word + 1);
*(word + 1) = *word;
*word = temp;

}
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/***********************************************************************
main program: moment main.c

description: This program acts as the controller for all functions
that it calls. User interface is achieved through a
main menu environment where the user can select the
desired task to be performed. BAny selection from the
main menu results in a function call that will
perform the desired task, once that task has been
completed, the user is returned to the main menu to
select another option. All data arrays are passed
between functions through this main program.

return value: none

author: Adam Hanson
Center for Imaging Science, RIT

date: 8/19/92

***********************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define SIZE 64

void load image(double temp re[SIZE][SIZE], double temp_im[SIZE][SIZE]);
void save parts(int int re[SIZE][SIZE], int int im[SIZE][SIZE]);
void save mag(int int mag[SIZE][SIZE]);
void scale parts(double mult re[SIZE][SIZE], double mult im[SIZE][SIZE],
int int_re[SIZE][SIZE], int int im[SIZE][SIZE]);
void scale mag(double mult_re[SIZE][SIZE], double mult_im[SIZE][SIZE],
int int mag[SIZE][SIZE]);
void transform(double temp re[SIZE][SIZE], double temp im[SIZE][SIZE],
long sign, long size);
void filter(double obj_re[SIZE][SIZE], double obj_im[SIZE][SIZE],
double ftr re[SIZE][SIZE], double ftr im[SIZE][SIZE],
double mult_re[SIZE][SIZE], double mult im[SIZE][SIZE]);
void phase maker(double ftr re[SIZE][SIZE], double ftr im[SIZE][SIZE]);

main ()
{
double obj_re[SIZE][SIZE], obj im[SIZE][SIZE];
double ftr re[SIZE][SIZE], ftr im[SIZE][SIZE];
double mult_re[SIZE][SIZE], mult_im[SIZE][SIZE];
int int re[SIZE][SIZE], int_im[SIZE][SIZE], int mag[SIZE][SIZE];
int option, choice, ans, flag, size, sign;

/*** prampt user for desired operation from main menu ***/

size = SIZE;

flag = 1;

while (flag == 1){
printf("\n\n\t\t(1) Load object image");
printf("\n\t\t(2) Load impulse response");
printf("\n\t\t(3) Save image");
printf("\n\t\t(4) Scale image");
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printf("\n\t\t(5) Transform image");
printf("\n\t\t(6) Filter object and impulse response "y
printf("\n\t\t(7) Create chirp impulse response ")
printf("\n\t\t(8) Quit");
printf("\n\n\t\tEnter option...");
scanf("%d", &option);
if(option = 1) load_image(obj_re, obj_im);
if(option = 2) load image(ftr re, ftr im);
if(option = 3){ B
printf("\nSave (1) real/imaginary parts or (2) magnitude: ");
scanf("%d", &choice);
if(choice == 1) save parts(int re, int im);
if(choice == 2) save mag(int mag);
}
if(option = 4){
printf("\n\t\tScale:");
printf("\n\t\t\t(1) object");
printf("\n\t\t\t(2) impulse response");
printf("\n\t\t\t(3) filtered object");
printf("\n\n\t\t\tEnter option...");
scanf ("%d", &option);
printf("\nScale (1) real/imaginary parts or (2) magnitude: ");
scanf ("%d", &choice);

if (option==1 && choice==1) scale parts(obj_re, obj_im,

int _re, int_im);
if (option==2 && choice==1) scale parts(ftr re, ftr_im,

int_re, int_im);
if (option==3 && choice==1) scale parts(mult_re, mult_im,

int_re, int_im);
if (option==1 && choice==2) scale mag(obj_re, obj_ im, int mag);
if (option==2 && choice==2) scale mag(ftr re, ftr_im, int mag);
if (option==3 && choice==2) scale mag(mult_re, mult_im,

int mag);

if(option = 5){
printf ("\n\t\tTransform:");
printf ("\n\t\t\t(1) object");
printf(“\n\t\t\t(2) impulse response");
printf ("\n\t\t\t(3) filtered object");
printf ("\n\n\t\t\tEnter option...");
scanf ("%d", &choice);
printf("\nChoose transform type; (-1) forward, (1) inverse: ");
scanf("%d", &sign);

if(choice == 1) transform(obj_re, obj_im, sign, size);

if (choice == 2) transfomm(ftr re, ftr_im, sign, size);

if (choice == 3) transform(mult_re, mult im, sign, size);
if(option == 6) filter(obj_re, obj_im, ftr re, ftr_im,

mult_re, mult im);
if(option = 7) phase maker(ftr_re, ftr im);
if (option == 8) flag = 0;
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/***************************************************************************

function: load_image.c

description: This function opens an input image file in a raw format
and places the digitial counts of the image into
temp re. Since the input image is completely real with
no imaginary part, the temp im array is filled with
zeros.

return value: none

author: Adam Hanson
Center for Imaging Science, RIT

date: 8/19/92

************************************************************i**************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "image.h"

#define SIZE 64

void load image(double temp re[SIZE][SIZE], double temp im[SIZE][SIZE])

{
struct PICTURE_OPTIONS picops_in;

long number of rows, number_ of columns, number_of bands;
long element size, band;

unsigned char band mask[MX BANDS], *DC;

char input_filename[80];

int status, row,col;

for(band = 0; band < MX_BANDS; band++){
band mask[band] = 0;

band mask[0] = 1;

number_of_ bands 1;
element_size = 1;
number of rows = SIZE;
number of columns = SIZE;

/*** prompt user for filename *kk/
printf("\nEnter the input filename: ");
scanf ("%s", input_filename);

/*** open raw image file to read *Hx [
status = open raw file(number of_ rows, number of_columns,
number of bands, element_size,
input_filename, "r", -1, &picops_in);
DC = (unsigned char *) calloc(sizeof (picops_in.number of columns),1);
/*** place digital count values into temp re and temp im arrays *kk [
for(row = 0; row < picops_in.number_of rows; rowtH+) {
status = getpixel(picops_in, row, 0, band mask,
picops_in.number_of_columns, DC);
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for(col = 0; col < picops_in.number of columns; col++){
temp re[row]([col] (double) *(DC+col);
temp im[row][col] 0.0;
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/***************************************************************************
function: fast fourier transform

description: This function calculates the fourier transform of the
real and imaginary parts of an image. The input
parameters are the real and imaginary arrays, received
as pointers, the sign determines whether a forward or
inverse transform will be performed, the size is the
size of the image (the image must be square).

This function was not written by th author of this

thesis, but was obtained from Michael Heath.
***************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define TWOPI 6.283185307
#define PI 3.141592654
#define SWAP(a,b) tempr = (a); (a)=(b); (b) = tempr

void transform(double *r_im, double *i_im, long sign, long size);
void fourl(double data[], int nn, int isign);

void transform(double *r_ im, double *i im, long sign, long size)
{
double *rt im, *it_im, *data;
double freq, sumr, sumi;
int row, col, x pos, y pos, freq ref, x, y, x_val, y_val;
rt_im = (double *) calloc((size t)size, (size_t)sizeof(double));
it_im = (double *) calloc((size t)size, (size t)sizeof (double));
data = (double *) calloc((size t)(2*size), (size_t)sizeof (double));
for(col=0;col<size;col++){
for (x_pos=0;X_pos<size;x pos++){
*(rt im + x pos) = *(r_im + (size * col) + x pos);
*(it im + x _pos) = *(i_im + (size * col) + x pos);
;_val = size/2.0;
for (x_pos=0;x_pos<(2*size);x pos+t){
*(data + x pos) = *(rt_im + x val);
X _pos++;
*(data + x_pos) = *(it_im + x val);
x val++t;
if (x_val >= size) x_val = x_val - size;

fourl(data-1, size, sign);
x val = size/2.0;
for(x_pos=0;x_pos<(2*size);x_pos-H-){

*(r_im + (col * size) + x val) = *(data + x _pos);

X_pos+t;

*(i im + (col * size) + x val) = *(data + x _pos);
x_val+t+; .

if (x_val >= size){x val = x_val - size;

}
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for (row=0; row<=size-1;rowt++) {
for(y_pos=0;y_pos<size;y pos++){

*(r.'t_J:.m + y pos) = *(r_im + (size * y pos) + row);
*(it_im + y pos) = *(i_im + (size * y pos) + row);

}

y_val = size/2.0;
for(y_pos=0;y_pos<(2*size);y_pos++){

*(data + y_pos) = *(rt_im + y val);
y_pos++;
*(data + y_pos) = *(it_im + y _val);
y_val++;

if (y_val >= size){y val = y val - size;

}

fourl(data-1, size, sign);
y val = size/2.0;
for(y_pos=0;y_pos<(2*size);y_pos++){

*(r_im + (size * y val) + row) = *(data + y_pos);
y_pos+t;
*(i_im + (size * y val) + row) = *(data + y_pos);
y_val++;

if (y_val >= size){y_val =y val - size;

}
}
}
for(y=0;y<size;y++){
for (x=0;x<size;x++){
*(r_im + (size * y) + x)

(*(r_im + (size * y) + x))/

(double) (size*size);

*(i_im + (size * y) + x) = (*(i_im + (size * y) + x))/

}
}
cfree(rt_im);
cfree(it_im);
cfree(data);

}

void fourl(double data[], int nn, int isign)
{
int n, mmax, m, j, istep, i;
double wtemp, wr, wpr, wpi, wi, theta;
double tempr, tempi;
n=nn << 1;
j=1;
for (i=1;i<=n;i+=2){
if(3 > i){
SWAP(data[j], data[i]);
SWAP (data[3+1], data[i+1]);

m=n >> 1;

while(m >= 2 && j > m){
j=m;
m >>= 1;

}

j+=m;
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max = 2;
while(n > mmax){
istep = 2*mmax;
theta 6.28318530717959/ (isign*mmax);
wtemp = sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi = sin(theta);
wr = 1.0;
wi = 0.0;
for (m=1;m<mmax;m+=2) {
for(i=m;i<=n;i+=istep){
j = i + mmax;
tempr = wr * data[j] - wi * data[j+1];
tempi = wr * data[j+1] + wi * data[]j];
data[j] = data[i] - tempr;
data[j+1] = data[i+1l] - tempi;
data[i]+=tempr;
data[i+l]+=tempi;

}
wr = (wtemp = wr) * wpr - wi * wpi + wr;
wi=wi * wpr + wtemp * wpi + wi;

}

mmax = istep;
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/*******************************************************************************
function: phase maker.c

description: When called from the main program. this function will
generate a 2-D quadratic phase filter. The phase rate
is controlled by user input. The input paramters are
the real and imaginary parts of the transfer function.
This function fills these arrays with the real and
imaginary parts of the phase filter, which is then
passed back to the main program.

return value: none

author: Adam Hanson
Center for Imaging Science, RIT

date: 8/19/92

********************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define SIZE 64
#define PI 3.1415926

void phase maker(double ftr re[SIZE]([SIZE], double ftr im[SIZE][SIZE])

double alpha, alpha sq, rho_sq, size;
int row, col, ans, row shift, col_shift;

/*** prampt user for phase rate ***/
printf("\nEnter a value for the rate of phase change: ");
scanf ("%1f", &alpha);
alpha sq = alpha*alpha;

/*** generate real and imaginary phase arrays *kk [
size = SIZE;
for(row = 0; row < SIZE; rowt+){
for(col = 0; col < SIZE; col++){
row shift = row - SIZE/2;
col_shift col - SIZE/2;
rho sq = (row_shift*row_shift +
col_shift*col_shift)/(size*size);

ftr re[row][col] = cos (PI*alpha sg*rho_sq);
ftr_im[row][col] = sin(PI*alpha sg*rho_sq);
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/**********************************************t*******************************

function: filter.c

description: This function performs a complex multiplication on an
input function and a frequency filter. This filtering
multiplication process takes place in the frequency
damain and is of the form (a + ib)(c + id). The input
parameters are the real and imaginary arrays of the
object (after transforming) and transfer function.
The resulting arrays (mult re, mult im) are passed
back to the main program.

return value: none

author: Adam Hanson
Center for Imaging Science, RIT

date: 8/19/92
*******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define SIZE 64

void filter(double obj_re[SIZE][SIZE], double obj_im[SIZE][SIZE],
double ftr re[SIZE][SIZE], double ftr_ im[SIZE][SIZE],
double mult re[SIZE][SIZE], double mult_ im[SIZE][SIZE])

{ int sign, size, row, col, choice;
for(row = 0; row < SIZE; rowt+){
for(col = 0; col < SIZE; col++){
mult re[row][col] = (obj_re[row][col]*ftr_re[row][col]) -
B (obj_im[row][col]*ftr_im[row][col]);
mult im[row][col] = (obj_re[row][col]*ftr_im[row][col]) +
- (obj_im[row][col]*ftr_re[row][col]);
}
}
}
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/*****************************************t************************************
function: scale parts.c

description: This function scales real/imaginary image data to
values between 0-255. The input paramters temp re
and temp_im contain object, filter, or filtered object
data. After scaling, the integer data is stored in
int re and int_im; these arrays are passed back to
the main program.

return value: none

author: Adam Hanson
Center for Imaging Science, RIT

date: 8/17/92

***i***************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define SIZE 64

void scale parts(double temp re[SIZE][SIZE], double temp im[SIZE][SIZE],
int int re[SIZE][SIZE], int int im[SIZE][SIZE])
{
char re out[80], im out[80];
double scale real[SIZE][SIZE], scale_imag[SIZE] [SIZE];
double double re[SIZE][SIZE], double im[SIZE]([SIZE];
double rmin, rmax, imin, imax, a, b, rrange, irange;
int row, col, status;

/*** gcale arrays by N **x/

for(row = 0; row < SIZE; row++){
for(col = 0; col < SIZE; col++){
scale real[row][col] SIZE*temp re[row][col];
scale_imag[row][col] = SIZE*temp_im[row][col];

rmin = HUGE_VAL;
rmax = -HUGE_VAL;
imin = HUGE_VAL;
imax = -HUGE_VAL;
for(row = 0; row < SIZE; row+t){
for(col = 0; col < SIZE; col++){
if (scale real[row][col] < rmin) {
mmin = scale real[row][col];
}else{
if(scale imag[row][col] < imin){
imin = scale imag[row][col];

}
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if(scale real[row][col] > rmax) {
rmax = scale real[row][col];
}else{
if(scale_imag[row][col] > imax){
imax = scale imag[row][col];

}
}

printf ("\nrmax
printf ("\nrmin
printf ("\nimax
printf ("\nimin

$£", rmax);
$f\n", imin);
$£", imax);
$£", imin);

/*** gcale arrays from 0-255 **+*/

rrange = rmax - rmin;
irange = imax - imin;
for(row = 0; row < SIZE; row++){
for(col = 0; col < SIZE; col++){
double re[row][col] = ((scale real[row][col] -
rmin)*255)/rrange;

double_im[row][col] = ((scale_imag[row][col] -
imin)*255)/irange;
int re[row][col] = (int) (double re[row][col] + 0.5);

int im[row][col] (int) (double_im[row][col] + 0.5);
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/*********************************************************************************
function: scale mag.c

description: This function scales decimal magnitude data to

grey values ranging from 0-255. The scaled data is
then passed back to the main program. The function
receives real/imaginary data arrays, calculates the
magnitude as well as the power. The power data is then
stored in rounded integer format and passed back to
main as int mag. The decimal magnitude data can be
stored by calling the writefilter function.

return value: none

author: Adam Hanson
Center for Imaging Science, RIT

date: 8/17/92

*********************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define SIZE 64
void writefilter (double double power[SIZE][SIZE]);

void scale mag(double temp re[SIZE][SIZE], double temp im[SIZE][SIZE],
int int mag[SIZE][SIZE])
{
char output filename[80], filterdata[80];
double mag[SIZE][SIZE], log mag[SIZE][SIZE], sq mag[SIZE][SIZE];
double scale real[SIZE][SIZE], scale_imag[SIZE][SIZE];
double double power[SIZE][SIZE], min, max, a, b, range;
int row, col, status, choice;

/*** gcale arrays by N squared ***/

for(row = 0; row < SIZE; row+t){
for(col = 0; col < SIZE; col++){
scale real[row][col] = SIZE*SIZE*temp re[row][col];
scale imag[row][col] = SIZE*SIZE*temp im[row][col];

}

/*** calculate magnitude and power ***/

for(row = 0; row < SIZE; rowt+t+){
for(col = 0; col < SIZE; col++){
a = scale real[row][col]*scale_real[row][col];
b = scale:imag[row][col]*scale_imag[row][col];
mag[row] [col] = sqgrt(a+b);
log_mag[row][col] = log(mag[row][col]);
sq mag[row][col] = a + b;
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}
/*** find min and max for scaling ***/

min = HUGE_VAL;
max = -HUGE VAL;
for(row = 0; row < SIZE; row++){
for(col = 0; col < SIZE; col++){
if(sq mag[row][col] < min) {
min = sq mag[row][col];
}

if(sq mag[row][col] > max) {
max = sq mag[row][col];
}
}

printf("\nmax value
printf("\nmin value

%f", max);
$f\n", min);

/*** gcale resulting values from 0-255 **%/

range = max - min;
for(row = 0; row < SIZE; row++){
for(col = 0; col < SIZE; col++){

double_power[row][col] = ((sq mag[row][col] -
min)*255.0)/range;
int mag[row][col] = (int) (double power[row][col] + 0.5);
}
}
printf("\nOutput power float file(1/0): ");

scanf ("%d", &choice);
if (choice==1) writefilter (double power);

114



/********************************************************************************
function: save mag.c

description: This function writes out integer magnitude data to
disk. The integer magnitude data is passed into the
function from the main program. The magnitude data
could be object, filter, or filtered object data.

return value: none

author: Adam Hanson
Center for Imaging Science, RIT

date: 8/17/92

*********************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "image.h"

#define SIZE 64
FILE *fpout;

void save mag(int temp[SIZE][SIZE])
{
struct PICTURE_OPTIONS picops_out;
long number of rows, number of_ columns, number_ of bands;
long element size, band;
unsigned char band mask[MX BANDS], *DC;
char output filename[80], filterdata[80];
int row, col, status;

for(band = 0; band < MX BANDS; band++) {
band mask[band] = 0;
}

band mask([0] = 1;
number_of_bands = 1;
element_size = 1;
number of rows = SIZE;
number of columns = SIZE;

/*** store output magnitude image ***/

printf ("\nEnter the output filename: ");
scanf (“%s", output_filename);

status = open raw_file(number of rows, number of columms,
number of_bands, element_size,
output filename, "w", -1, &picops_out);

DC = (unsigned char *) calloc( (size_t) SIZE*SIZE,
(size_t) sizeof( unsigned char ) );

for(row = 0; row < picops_out.number of_rows; row++) {
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for(col = 0; col < picops_out.number of columns; col++){
*(DC+col) = (unsigned char) temp[row][col];
}
status = putpixel(picops_out, row, 0, band mask,
picops_out.number of columns, DC);

}
cfree( DC );
status = (fclose(picops out.file pointer));
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/*********************************************************************************
function: save parts.c

description: This function is similar to the save mag function
except this function saves integer data in real/
imaginary format. The input parameters temp re
and temp_im could contain object, filter or
filtered object data.

return value: none

author: Adam Hanson
Center for Imaging Science, RIT

date: 8/17/92

*********************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "image.h"

#define SIZE 64

void save parts(int temp re[SIZE][SIZE], int temp im[SIZE][SIZE])
¢ struct PICTURE_OPTIONS picops_outr, picops_outi;

long number of rows, number of_ columns, number of bands;

long element_size, band;

unsigned char band mask[MX BANDS], *DCR, *DCI;

char re out[80], im ocut[80];

int row, col, status;

for(band = 0; band < MX BANDS; band++){
band mask[band] = 0;
}

band mask([0] = 1;
number of bands = 1;
element_size = 1;
number of rows = SIZE;
number of columns = SIZE;

/*** store real and imaginary output image files ***/

printf("\n\nEnter the real output filename: ");
scanf ("%¥s", re out);

printf("Enter the imaginary output filename: ");
scanf("%s", im out);

status = open_raw_file(number_ of_ rows, number of columms,
number of bands, element size,
re out, "w", -1, &picops_outr);

status = open raw file(number_ of_ rows, number of_ columms,
- number of bands, element size,
im out, "w", -1, &picops_outi);
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DCR = (unsigned char *) calloc( (size_t) SIZE*SIZE,

(size_t) sizeof( unsigned char ) );
(unsigned char *) calloc( (size t) SIZE*SIZE,

(size_t) sizeof( unsigned char ) );

2
]

for(row = 0; row < picops_outr.number of rows; row++){
for(col = 0; col < picops_outr.number of columns; col++){
*(DCR+col) = temp re[row][col];
*(DCI+col) = temp im[row][col];
}
status = putpixel(picops_outr, row, 0, band mask,
picops outr.number of columns, DCR);
status = putpixel(picops_outi, row, 0, band mask,
picops_outi.number of columns, DCI);

}

cfree( DCR );
cfree( DCI );
status = (fclose(picops outr.file pointer));
status = (fclose(picops outi.file pointer));
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/*********************************************************************************
function: writefilter.c

description: This function writes out the filter magnitude data in
floating point format. This is the data used for the
multiplication in the filtering process. Using float
data as opposed to integer data preserves acuracy.

author: Adam Hanson
Center for Imaging Science, RIT

return value: none

date: 8/17/92

*********************************************************************************/

#include <stdio.h>

#define SIZE 64

FILE *fpout;

void writefilter (double double mag[SIZE][SIZE])
{

char filename[80];

printf("\nEnter a filename for the output datafile: ");
scanf("%s", filename);

fpout = fopen(filename, "w");

fwrite(double mag, sizeof(double), SIZE*SIZE, fpout) ;
fclose(fpout);
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/*********************************************************************************
main program: classifier.c

description: This is the main program for the classifier. It calls
the moment generating function for the reference and
test characters, then calls the minimum distance
function. The reference files are opened from a list
of reference file names called "ref files.dat". The
number of reference mament vectors to be generated is
controlled by user input and corresponds to the number
of reference character names listed in ref files.dat.
More names can be added or subtracted to adjust the
size of the reference set.

return value: none

authors: Adam Hanson
Carl salvaggio
Center for Imaging Science, RIT

date: 8/21/92

*********************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

FILE *filenames;
#define NUMBER OF MOMENTS 6

main()
{
char ref filename[80], test filename[80];
double *test_moments;
double *ref maments;
long number of rows, number of columms;
int class;
int number of references;
int row;
int choice = 1;

/*** input the number of reference characters in the set ***/

printf( "\nHow many reference vectors to form? " );
scanf( "%d", &number of references );

printf("Enter the image size (N,N): ");

scanf("%$1ld, %1d", &number of rows, &number of columns);

/*** allocate memory for reference and test vectors ***/

ref moments = (double *) calloc(
B (size t)
(number of_ references*NUMBER OF_MOMENTS),
T (size_t) sizeof( double ) );
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test_moments = (double *) calloc( (size t) (NUMBER OF MOMENTS) ,
(size t) sizeof( double ) );

/*** open file containing reference character filenames ***/
filenames = fopen("ref files.dat", "r");

/*** call moment generator to calculate feature space of reference
characters **x/

for ( row=0; row<number of references; row+ ) {
fscanf(filenames, "%s", &ref filename);
printf( "\nFor reference (%d): %s\n", row+l, ref filename );
ref class( ref moments+row*NUMBER OF MOMENTS,
number_of rows, number of columns,ref filename);

fclose(filenames);

/*** open file containing test character data ***/
printf( "\n\nEnter the filename of the test data: " );
scanf("%s", &test filename);

/*** call moment generator to calculate feature space of test character ***/

test_class( test_moments, number of rows,
number of columns, test_ filename);

/*** call classifier to calculate distances between test and reference
characters and determine which reference the test character is closest to ***/

min_dist mean( ref moments, test_moments,
number_of references,
NUMBER_OF MOMENTS, &class );

printf("\n");

printf("The test character most closely matches ");
printf ("reference character: %d\n", class);
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/****************************************************t****************************

function: ref class.c

description: This function calculates the mament invariant
feature vector space for the reference
charcater images. The feature vectors are calculated
from the images that are in integer format. The
function first calculates the normalized central
moments, then calculates the feature vector from those
normalized central moments.

return value: none
authors: Adam Hanson
Carl Salvaggio
Center for Imaging Science, RIT

date: 8/25/92

*********************************************************************************/

#include <image.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

ref class( double *moments, long number of rows,

{

long number of columns, char filename[80] )

struct PICTURE_OPTIONS picops_in;

long number_of bands, element_size, band;

long row, col, p, 4;

double phi[7];

double moment, moment array[2][2], term a, term b,image size,
double xbar, ybar, gamma, central moment[4][4], ncm[4][4];
unsigned char band mask[MX BANDS], *DC;

char input filename[80];

int status;

for( band = 0; band < MX BANDS; bandt++){
band mask[band] = 0;

}

band mask[0] = 1;

number_of bands = 1;

element size = 1;

image_szze = number of rows*number of columns;

/*** read in image file ***/

status = open raw file(number of rows, number of columns, number of bands,
element size, filename, "r", -1, &picops_in);

DC = (unsigned char *) calloc(sizeof (picops_in.number of columms), 1 );
for (p = 0; p < 2; pt+){
for (@ = 0; g < 2; q+){

moment_array[p][q] = 0.0;

}
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}
printf("\n");
/*** this section calculates the non central moments from m(0,0) to m(1l,1) ***/

for (p = 0; p < 2; pt+){
for (@ = 0; g < 2; g++){
moment = 0.0;
for (col = 0; col < picops_in.number of columns; col++){
status = getpixel( picops_in, col, 0, band mask,
picops_in.number of rows, DC);
for (row = 0; row < picops_in.number of rows; row++){

if (p = 0){
term a = 1.0;
}else{
if (row == 0){
term a = 0.0;
}else{
term a = pow( (double) row, (double) p );
}
}
if (g = 0){
term b = 1.0;
}else{
if (col == 0){
term b = 0.0;
}else{
term b = pow( (double) col, (double) q );
}

}
moment = moment + term_a*term b*(*(DC+row));
}
}

moment_array[p][q] = moment/image size;

}

for (p = 0; p < 2; pt+){
for (g = 0; g < 2; g+){
printf ("moment (%1d %1d) = $1f\n", p,qg,moment_array[pll[ql):
}
}

xbar = mcment_array[l][0]/nmnmmt_array[0][0];
ybar = nm!mant_array[O][1]/nmnmmt_array[0][0];
printf("\n");

printf ("xbar = $1f\t ybar = $1f\n\n", xbar, ybar);

/*** this section calculates the necessary central maments to be used
in determining the vector spaces *kx/

printf("Calculating normalized central moments...\n");
for (p = 0; p < 4; p++){

for (q = 0; q < 4; a++){
moment = 0.0;
term a = 0;
term b = 0;
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for (col = 0; col < picops_in.number_of_columns; col++) {
status = getpixel( picops_in, col, 0, band mask,
pPicops_in.number of rows, DC);
for (row = 0; row < picops_in.number_of_rows; row++) {
if (p == 0){
term a = 1.0;
}else{
if (row - xbar = 0){
term a = 0.0;
}else{
term a = pow( (double) (row - xbar), (double) p );

}
}
if (q@ = 0){
term b = 1.0;
telse{
if (col - ybar = 0){
term b = 0.0;
}else{
term b = pow( (double) (col - ybar), (double) q );
}
}
moment = moment + term a*term b*(*(DC + row));

}
}
central moment[p][g] = moment;

}
}

for (p = 0; p < 4; p++){
for (@ = 0; g < 4; g+){
if (p+tq >= 2){
gamma = ((p+q)/2.0) + 1;

1;

“%

}
ncm[p][g] = central mcment[p]l[q]/
pow( central moment[0][0], gamma );

printf("Central mament (%1d %1d) = %g\n", p,q,
ncm(p]llql);

}

/*** yvector space calculation ***/

printf("\n");

phi[0] = nam[2][0] + ncm[0][2];

phi[1l] = pow((neam[2][0] - nam[0][2]), 2.0) + 4*pow(nam[1][1], 2.0);
phi[2] = pow((ncm[3][0] - 3*ncm[1][2]), 2.0) +

pow( (3*ncm[2][1] - ncm[0][3]), 2.0);

hi[3] = pow((ncm[3][0] + nam[1][2]), 2.0) +
: pow( (ncm[2][1] + nam(0][3]), 2.0);
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phi[4] = (nem[3][0] - 3*ncm[1][2])*(ncm[3][0] + g
(pow((ncm[3][0] + ncm[1][2];)f 2-‘[3)]£ Pz
3*pow((nam[2][1] + nam[0][3]), 2.0)) +
(3*ncm[2][1] - nam[0][3])*(nem[2][1] + ncm[0][3]) *
(3*pow((ncm[3][0] + nam[1][2]), 2.0) -
pow((ncm[2][1] + ncm[0]([3]), 2.0));

Phi[5] = (ncm[2][0] - nam[0][2]) *
(pow((ncm[3][0] + nam[1][2]), 2.0) -
pow((ncm[2][1] + ncm[0][3]), 2.0)) +
4*nem[1][1]*(nem(3][0] + nem{1][2])*(necm[2][1] + nam[0][3]);

Phi[6] = (3*ncm[2][1] - nam[0][3])*(nem[3][0] + ncm[2][1]) *
(pow((ncm[3][0] + nam[1][2]), 2.0) -
3*pow((ncm[2][1] + ncm([0][3]), 2.0)) -

(nem[3][0] - 3*ncm[1][2])*(ncm[2][1] + nem[0][3]) *
(3*pow((ncm[3][0] + ncm(1](2]), 2.0) -
pow((ncm[2][1] + nam[0][3]), 2.0));

for(row=0; row < 7; row++){
if(phi[row] < 0.0){
phi[row] = phi[row]*(-1.0);
}
}

/*** adjust for contrast invariance **x/

*(maments + 0) sqrt(phi[1])/phi[0];

*(moments + 1) (phi[2]*ncm([0][0])/(phi[1]*phi[0]);

* (maments + 2) phi[3]/phi[2];

* (maments + 3) sqrt(phi[4])/phi[3];

*(moments + 4) = phi[5]/(phi[3]*phi[0]);

* (maments + 5) phi[6]/phi[4];
for(row = 0; row < 6; rowt+){
printf ("\nReference vector (%d) = %g", (rowt+l), *(moments+row));

}

status = (fclose(picops_in.file pointer));
if( status == 0){
return;
}else{
printf ("Error closing file.");
exit(0);

125



/*********************************************************************************
function: test class.c

description: This function is exactly the same as the function
ref class.c execpt that this function calculates
the feature vector for the test character which
is in floating point format. The moments are
calculated from a data file instead of an image file.

return value: none
authors: Adam Hanson
Carl Salvaggio
Center for Imaging Science, RIT

date: 8/25/92

*********************************************************************************/

#include <image.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

#define SIZE 64
double readfilter(double filter[SIZE][SIZE], char filename[80]);

test class( double *maments, long number_ of rows,
long number of columms, char filename[80] )

{
struct PICTURE_OPTIONS picops_in;

long row, col, p, 4;

double phi[7];

double moment, moment array[2][2], term a, term ! b,image size;
double xbar, ybar, gamma, central moment(4][4], ncm(4](41];
double filter[SIZE][SIZE];

char input filename[80];

int status;

image size = number of rows*number of columns;
/*** read in image file ***/
readfilter (filter, filename);
for (p = 0; p < 2; ptt){
for (@ = 0; q < 2; gtt){

moment_array([pl[q] = 0.0;
}

}
printf("\n");

/*** this section calculates the non central moments frcm m(0,0) to m(1,1) ***/
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for (col = 0; col < number of columns; col++){
for_(row = 0; row < number of rows; rowt+){
if (p = 0){
term a = 1.0;

}else{

if (row == 0){

term a = 0.0;

}else{

X term a = pow( (double) row, (double) p );
}
if (q = 0){

term b = 1.0;
}else{

if (col == 0){
term b = 0.0;
}else{
term b = pow( (double) col, (double) q );

}
}
moment = moment + term a*term b*filter[col][row];
}
}
moment_array[p][q] = moment/image size;

}

for (p = 0; p < 2; p++){
for (q = 0; g < 2; g++){
printf("moment (%1ld %1d) = %1f\n", p,qg,moment array[p]l[q]);
}
}

xbar = moment_array[1][0]/mament_array[0]([0];
ybar = moment_array[0][1]/mament_array[0]([0];
printf("\n");

printf("xbar = $1f\t ybar = %1f\n\n", xbar, ybar);

/*** this section calculates the necessary central maments to be used
in determining the vector spaces ***/

printf ("Calculating normalized central mcoments...\n");
for (p = 0; p < 4; p++){
for (@ = 0; g < 4; gH){
moment = 0.0;

term a = 0;
term b = 0;
for (col = 0; col < number_ of_columns; col++){
for (row = 0; row < number of_ rows; rowtt){
if (p == 0){
term a = 1.0;
}else{

if (row - xbar = 0){
term a = 0.0;
}else{
term a = pow( (double) (row - xbar), (double) p );

}
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0){
term b = 1.0;
telse{
if (col - ybar = 0){
term b = 0.0;
}else{
term b = pow( (double) (col - ybar), (double) q );
}
}
moment = moment + term a*term b*filter[col][row];
}
}
central moment[p][g] = moment;
}
}

for (p = 0; p < 4; pt+){
for (@ = 0; g < 4; gH+){
if (ptq >= 2){
gamma = ((p+q)/2.0) + 1;

gamma = 1;
ncm[p][g] = central moment[p][q]/pow( central moment[0][0], gamma );
printf("Central mament (%ld %1d) = %g\n", p,q,
ncm(p](q]);
}

/*** yvector space calculation ***/

printf("\n");
phi[0] ncm[2][0] + ncm[0][2];

phi[1l] = pow((ncm[2][0] - ncm[0][2]), 2.0) + 4*pow(ncm[1][1], 2.0);

phi[2] = pow((ncm[3][0] - 3*ncm[1][2]), 2.0) +
pow((3*nam[2][1] - nam[0][3]), 2.0);

phi[3] = pow((ncm[3][0] + nam[1][2]), 2.0) +
pow((ncm[2][1] + nam[0][3]), 2.0);

phi[4] = (ncm[3][0] - 3*ncm({1][2])*(ncm(3][0] + nem[1][2]) *
(pow((nem(3]1[0] + nem[1][2]), 2.0) -
3*pow((nam[2][1] + nam[0][3]), 2.0)) +
(3*nam[2][1] - nem[0][3])*(nem[2](1] + nem[0][3]) *
(3*pow((ncm[3](0] + nem[1][2]), 2.0) -
pow((nam({2][1] + nem[0][31), 2.0));

phi[5] = (ncm{2][0] - ncm[0][2]) *
(pow( (ncm[3][0] + nem[1][2]), 2.0) -
pow((ncm[2][1] + nem[0][3]), 2.0)) +
4*ncm[1][1]*(nem[3][0] + nem[1][2])*(nem[2][1] + nam[0][3]);

phi[6] = (3*ncm[2][1] - nem[0][3])*(ncm[3][0] + nem[2][1]) *
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(Pow((ncm[3][0] + nam[1][2]), 2.0) -
3*pow((nem[2][1] + nam[0][3]), 2.0)) -

(nem[3][0]) - 3*ncm[1][2])*(nem[2][1] + nem[0][3]) *
(3*pow((nem[3][0] + nem[1][2]), 2.0) -

for (row=0; row

if (phi[row]
phi[row]

}
}

<
<

pow((nam[2][1] + ncm[0][3]), 2.0));

7; rowHt)({
0.0){
phi[row]*(-1.0);

/*** adjust for contrast invariance ***/

* (maments
* (moments
* (moments
* (maments
* (maments
* (maments

for (row =

}

+ 0)
+ 1)
+ 2)
+ 3)
+ 4)

+5)

sqrt(phi[1])/phi[0];
(Phi[2]*ncm[0][0])/(phi[1]*phi[0]);
phi[3]/phi[2];

sqrt(phi(4])/phi[3];
phi[5]/(phi[3]*phi[0]);

phi[6]/phi[4];

0; row < 6; rowt+){
printf("\nTest vector (%d) = %g", (row+l), *(maments+row));
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/*********************************************************************************

function: readfilter.c

description: This function opens and reads the filter data stored
by writefilter.c The input parameters are the filter
array and the filename of the filter array.

return value: none

author: Adam Hanson
Center for Imaging Science, RIT

date: 8/19/92

*********************************************************************************/
#include <stdio.h>

#define SIZE 64

FILE *fpin;

double readfilter(double filter[64][64], char filename[80])

{
fpin = fopen(filename, "r");
fread(filter, sizeof(double), SIZE*SIZE, fpin);
fclose(fpin);

}
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/*********************************************************************************
function min dist mean.c

description: This function calculates the statistical distance
between the test character and each reference character.
The function then selects the reference vector with the
shortest distance to the test character as the proper
match for the test character. The input parameters are
the reference and test vectors, the number of references
and number of moments, and the chosen class (chosen
character that test is classified as).

authors: Adam Hanson
Carl Salvaggio
Center for Imaging Science, RIT

retrun value: none

date: 8/20/92

*********************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include <malloc.h>

FILE *fpout;

min dist mean( double *ref classes, double *test class,
int number of references, int number of moments,
int *class )

double *distance, min_distance;
int class_number, element number;
char datafile[30];

/*** allocate memory for distance values for each reference
character ***/
distance = (double *) calloc( (size_t) number of references,
(size t) sizeof( double ) );

/*** calculate distance between test character and each
reference ***/
for (class number = 0; class_number < number of references; class_number++) {
for (elgment number=0; element number < number of moments; element number++ ) {

*(distance+class_number) = *(distance+class number) +
pow( (* (ref_classes + class_number*number of moments +
eleﬁent_pumber) - *(test_class + element number)),2.0);

}

/*** find minimum distance out of all distances calculated ***/
min distance = HUGE_VAL; ' .
printf("\n\nEnter a filename for the distance data: ");
scanf ("%s", datafile);
printf("\n"); )
fpout = fopen(datafile, "w");
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for (class number = 0; class_number < number of_ references; class number++){
if ( *(distance+class number) < min distance ) {
min_distance = *(distance+class_number);
*class = (class_number+l);

}

/*** classifiy test character as reference character that it is closest to *kk [
printf("class = %d distance = %g\n", (class_number+l) ,
* (distance+class number));
fprintf (fpout, "%d\t%g\n", (class_number+l),
1.0/ *(distance+class number));

}
fclose(fpout);

return;
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/* makefile for mament main */

PACKAGE = moment _main

LIBPATH = $ (HOME ) /1ib/$ (HOSTARCH)

BINPATH = $ (HOME) /bin/$ (HOSTARCH)

OBJPATH = ob3j/$ (HOSTARCH)

INCPATH = $ (HOME ) /include

cc = gcc

CFLAGS = -c -g -I$(INCPATH)

CIOPTS = -L$ (LIBPATH)

ARCHIVE = ar

AROPTS = cr

OBJS = $ (OBJPATH) /getpixel.o \
$ (OBJPATH) /open_raw file.o \
$ (OBJPATH) /putpixel.o \
$ (OBJPATH) /switch_longword.o \
$ (OBJPATH)/switch word.o \
$ (OBJPATH) /fft.o \
$ (OBJPATH)/scale parts.o \
$ (OBJPATH)/scale mag.o \
$ (OBJPATH)/save parts.o \
$ (OBJPATH)/save mag.o \
$ (OBJPATH) /writefilter.o \
$ (OBJPATH)/load_image.o \
$ (OBJPATH) /phase_maker.o \
$ (OBJPATH) /filter.o

all: mament main

$ (OBJPATH ) /getpixel.o: getpixel.c
$(CC) $(CFLAGS) -o $(OBJPATH)/getpixel.o getpixel.c

$ (OBJPATH) /open_raw_file.o: open raw file.c
$(CC) $(CFLAGS) -o $(OBJPATH)/open_raw _file.o open raw file.c

$ (OBJPATH) /putpixel.o: putpixel.c
$(CC) $(CFLAGS) -o $(OBJPATH)/putpixel.o putpixel.c

$ (OBJPATH) /switch _longword.o: switch longword.c
$(CC) $(CFLAGS) -o $(OBJPATH)/switch_longword.o switch longword.c

$ (OBJPATH) /switch_word.o: switch word.c ]
$(CC) $(CFLAGS) -o $(OBJPATH)/switch word.o switch word.c

$ (OBJPATH)/fft.o: fft.c
$(CC) $(CFLAGS) -o $(OBJPATH)/fft.o fft.c

$ (OBJPATH) /scale parts.o: scale parts.c
$(CC) $(CFLAGS) -o $(OBJPATH)/scale parts.o scale parts.c
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$ (OBJPATH) /scale mag.o: scale mag.c
$(CC) $(CFLAGS) -o $ (OBJPATH) /scale mag.o scale mag.c

$ (OBJPATH) /save parts.o: save parts.c
$(CC) $(CFLAGS) -o $ (OBJPATH) /save_parts.o save parts.c

$ (OBJPATH) /save_mag.o: save mag.c
$(CC) $(CFLAGS) -o $ (OBJPATH) /save_mag.o save mag.c

$ (OBJPATH) /writefilter.o: writefilter.c
$(CC) $(CFLAGS) -o $(OBJPATH)/writefilter.o writefilter.c

$ (OBJPATH)/load_image.o: load image.c
$(CC) $(CFLAGS) -o $ (OBJPATH)/load_image.o load image.c

$ (OBJPATH) /phase maker.o: phase maker.c
$(CC) $(CFLAGS) -o $(OBJPATH)/phase maker.o phase maker.c

$ (OBJPATH)/filter.o: filter.c
$(CC) $(CFLAGS) -o $ (OBJPATH)/filter.o filter.c

# Control Routines and Libraries #

$ (OBJPATH) /moment main.o: moment main.c
$(CC) $(CFLAGS) -o $(OBJPATH)/moment main.o moment main.c

$ (LIBPATH)/libmament main.a: $(OBJS)
$(ARCHIVE) $(AROPTS) $(LIBPATH)/lilmcment main.a $(OBJS)
ranlib $(LIBPATH)/libmoment main.a

moment main: $(LIBPATH)/libmoment main.a $(OBJPATH)/moment main.o
$(CC) $(OBJPATH)/moment main.o $(CLOPTS) -lmoment main -lm -o moment main

AR
# Maintenance #

A

clean:
m -f $(OBJS) *.o a.out $(LIBPATH)/libmoment main.a moment main

update: .
mv -f moment main $(BINPATH)/ moment main

architecture:
@ printenv HOSTARCH
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/* classifier makefile */

PACKAGE = classifier
LIBPATH = $ (HOME) /1ib/$ (HOSTARCH)
BINPATH = $ (HOME ) /bin/$ (HOSTARCH)
OBJPATH = ob3j/$ (HOSTARCH)
INCPATH = $ (HOME ) /include
cC = gcce
CFLAGS = -c -g -I$(INCPATH)
CLOPTS = -L$(LIBPA'I'H)
ARCHIVE = ar
AROPTS = cr
OBJS = $ (OBJPATH) /getpixel.o \
$ (OBJPATH) /mdm.o \
$ (OBJPATH) /open_raw file.o \
$ (OBJPATH) /putpixel.o \
$ (OBJPATH) /switch longword.o \
$ (OBJPATH)/switch word.o \
$ (OBJPATH)/ref class.o \
$ (OBJPATH)/test_class.o \
$ (OBJPATH)/readfilter.o
all: classifier

$ (OBJPATH) /getpixel.o: getpixel.c
$(CC) $(CFLAGS) -o $(OBJPATH)/getpixel.o getpixel.c

$ (OBJPATH ) /mdm.o: mdm.c
$(CC) $(CFLAGS) -o $(OBJPATH)/mdm.o mdm.c

$ (OBJPATH ) /moment _gen.o: moment gen.c
$(CC) $(CFLAGS) -o $(OBJPATH)/mament_gen.o moment gen.c

$ (OBJPATH) /open_raw file.o: open raw file.c
$(CC) $(CFLAGS) -o $(OBJPATH)/open raw_file.o open raw file.c

$ (OBJPATH) /putpixel.o: putpixel.c
$(CC) $(CFLAGS) -o $(OBJPATH)/putpixel.o putpixel.c

$ (OBJPATH ) /switch longword.o: switch longword.c
$(CC) $(CFLAGS) -o $(OBJPATH)/switch_longword.o switch longword.c

$ (OBJPATH ) /switch word.o: switch_word.c
$(CC) $(CFLAGS) -o $(OBJPATH)/switch word.o switch word.c

$ (OBJPATH) /ref class.o: ref class.c
$(CC) $(CFLAGS) -o $(OBJPATH)/ref class.o ref class.c

$ (OBJPATH) /test_class.o: test class.c
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$(CC) $(CFLAGS) -o $(OBJPATH)/test_class.o test class.c

$ (OBJPATH) /readfilter.o: readfilter.c
$(CC) $(CFLAGS) -o $(OBJPATH)/readfilter.o readfilter.c

# Control Routines and Libraries #

$ (OBJPATH) /classifier.o: classifier.c
$(CC) $(CFLAGS) -o $(OBJPATH)/classifier.o classifier.c

$ (LIBPATH)/libclassifier.a: $(OBJS)
$ (ARCHIVE) $(AROPTS) $(LIBPATH)/libclassifier.a $(OBJS)
ranlib $(LIBPATH)/libclassifier.a

classifier: $(LIBPATH)/libclassifier.a $(OBJPATH)/classifier.o
$(CC) $(OBJPATH)/classifier.o $(CLOPTS) -lclassifier -1m -lmalloc -o classifier

R
# Maintenance #
AR

clean:
rm -f $(OBJS) *.o a.out $ (LIBPATH)/libclassifier.a classifier

update:
mv -f classifier $(BINPATH)/classifier

architecture:
@ printenv HOSTARCH
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APPENDIX D

The following is an example of the normalized central moments
calculated for the upper-case 'A’' (figure 14), and the feature vector

calculated from the moments.

Central moment (00) =1

Central moment (O 1) = 2.39229e-14
Central moment (O 2) = 0.00104754
Central moment (0 3) =-8.1313e-06
Central moment (1 0) = -4.47264e-16

Central moment (1 1) = -6.86608e-06
Central moment (1 2) = 6.81853e-09
Central moment (1 3) = -1.62363e-08
Central moment (2 0) = 0.00060626
Central moment (2 1) = 1.50311e-05
Central moment (2 2) = 7.3128e-07
Central moment (2 3) = 2.86427e-08
Central moment (3 0) = -2.9026e-07
Central moment (3 1) = -1.72279e-08
Central moment (3 2) = -7.19674e-10
Central moment (3 3) = -3.87885e-11

Reference vector (1) = 0.266957
Reference vector (2) = 8.78835
Reference vector (3) = 0.016833
Reference vector (4) = 2.76669
Reference vector (5) = 0.26661
Reference vector (6) = 6.43944
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