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Abstract

Global illumination rendering algorithms are capable of producing images that are visually

realistic. However, this typically comes at a large computational expense. The overarching

goal of this research was to compare different rendering solutions in order to understand why

some yield better results when applied to rendering synthetic objects into real photographs. As

rendered images are ultimately viewed by human observers, it was logical to use psychophysics

to investigate these differences.

A psychophysical experiment was conducted judging the composite images for accuracy to

the original photograph. In addition, iCAM, an image color appearance model, was used to

calculate image differences for the same set of images. In general it was determined that any

full global illumination is better than direct illumination solutions only. Also, it was discovered

that the full rendering with all of its artifacts is not necessarily an indicator of judged accuracy

for the final composite image. Finally, initial results show promise in using iCAM to predict a

relationship similar to the psychophysics, which could eventually be used in-the-rendering-loop

to achieve photo-realism.
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Chapter 1

Introduction

Computer graphics and vision research have become more intimate in recent years. It seems

logical as a human observer is typically the final discriminator of the output imagery. One

author even remarks that “[A]t Microsoft Research, the computer vision and graphics groups

used to be on opposite sides of the building. Now we have offices along the same hallways, and

we see each other every day” [34]. This area of research is currently of great interest. Perhaps

as interesting is that it spans areas including, but not limited to, computer science, vision

science, biology, digital image processing, perception, and psychophysics. The application of

all of these areas amounts to a system-level approach which lends itself to a discussion using

the ‘imaging-pipeline’.

1.1 Computer Graphics and the Rendering Pipeline

The idea of the imaging pipeline is depicted in Figure 1.1. In this example, the input is a scene

in the world, realizing the input could be purely imaginary as well. This could be an object in

a light booth or a cluttered desk in an office. Typically this scene is imaged onto film or a CCD

1
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in a digital camera. In order to create a synthetic image of the scene, certain characteristics

must be acquired from the real scene. These include surface reflectances, object dimensions

and global positions, radiometry and geometry of light sources, and camera geometry and

characteristics. For the purposes of this discussion, assume that these measurements can be

made with relatively high accuracy (unless otherwise stated). These parameters are input into

a rendering engine, typically a global illumination solver. As the name implies, this software

calculates the amount of light leaving the sources, interacting with the objects, and entering

the camera to produce a final radiance image. (Camera models can be used to modulate this

sensor-reaching radiance). The radiance image typically contains values (high-dynamic-range)

that cannot be reproduced on a normal display device such as a CRT or LCD (low-dynamic-

range). The radiance image must be tone-mapped in order to be displayed. The tone-mapped

image is presented to a human observer and using a psychophysical technique compared to

the real scene, or photograph of the real scene. Based on the results of these experiments,

the parameters can be tweaked and the scene re-rendered or, ideally, the synthetic scene is

perceived as indistinguishable from the real image of the scene and declared realistic.

Synthetic 
Image

Real Scene

Render 

Acquire 
Images, 

geometry,  
material 

parameters, 
lighting...

Tonemap

Photorealistic?

Calibrated
Display

Figure 1.1: Photo-realistic Image Generation Pipeline
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The specifics of each of the elements in this pipeline depend on the desired output as different

applications warrant different results. As stated above, the ideal output is an image that is

realistic. This begs the question, What is meant by realistic?

1.2 Realism in Computer Graphics

James Ferwerda of Cornell wrote a paper [20] that is meant to serve as a framework to help

define realism in the context of computer graphics. As stated above, the final output of the

rendering pipeline is a synthetic image. It is important to realize that an “image is a visual

representation of a scene, in that it “re-presents” selected properties of the scene to the viewer

with varying degrees of realism” [20]. The driving force for computer graphics has long since

been about creating realistic images. Much of the past research used in this thesis starts with

near identical discussions about this goal to create realistic images. As [20] states, and is realized

in the literature, the need for realistic image synthesis is often questioned because there is not

a standard set of metrics to delineate realism. The idea being that there is ambiguity in the

term realism itself, and really three types of realism in computer graphics can be described:

physical realism, photo-realism, and functional-realism.

Physical realism results in an image that “provides the same visual stimulation as the scene...this

means that the image has to be an accurate point-by-point representation of the spectral ir-

radiance values at a particular viewpoint in the scene...and is overkill if one’s job is to create

images for human observers” [20]. This is essentially the driving force behind Dirsig, the Dig-

ital Imaging and Remote Sensing Image Generation tool, created within the Digital Imaging

and Remote Sensing Laboratory at RIT [8].

Photo-realism “requires that the image has to produce the same visual response as the scene

even though the physical energy coming off the image may be different than the scene...this
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criterion allows us to take advantage of the limitations of vision to simplify the task of making

realistic images” [20].

Ferwerda discusses valid pros and cons about adopting photo-realism as the criterion. However,

it seems that this is currently many researcher’s goal. He proposes functional realism, whose

requirement is to provide the same visual information as the scene, and ideas of metrics for

functional realism.

The idea of photo-realism is intriguing due to the intimate relationship between the human

visual system (HVS), image synthesis, and image evaluation. For photo-realism, the HVS has

been considered in the rendering, tone mapping, image metrics and image comparison. The

primary focus of this research is dependent on the idea of photo-realism, and to a lesser degree,

physical realism, and the relationship, if any, between the two.

1.3 Goals of this Research

To this point only purely synthetic images have been considered. There is however, a lot of

research and interest in images that contain both real and synthetic components. Rendering

synthetic objects into real images is sometimes referred to as augmented reality (AR). This

idea is realized in most recent movies that combine computer generated images (CGI) with real

human actors or scenery. In this case, the final composite image must meet the requirements

of photo-realism as described in section 1.2.

This general idea of augmented reality will be used in this research. Several goals of this research

are introduced here at a high level. A synthetic object will be rendered into a real scene. This

will be performed in an environment (e.g.light booth), where parameters can be measured and

controlled. Then, relationships between physical realism and photo realism will be explored

through the use of radiometry, colorimetry, and psychophysics.
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Another goal is to use an image appearance model to predict image differences. These results

will be compared to human observers through the use of psychophysical experiments. While im-

age appearance models may not fully replace human observers, they may provide an extremely

useful tool in image quality and realistic image generation.



Chapter 2

Background

2.1 Synthetic Image Generation

This section addresses the process of synthetic image generation (SIG). Section 2.1.1 describes

the theoretical background of SIG. It describes, at a high level, the interaction of electromag-

netic radiation with matter in the world that eventually reaches a given sensor. Section 2.1.2

introduces the rendering process, and gives a high level introduction to global illumination al-

gorithms. Finally, there is a discussion of pbrt, a physically based ray-tracer, that was used in

this research in Section 2.1.3.

2.1.1 Radiation Propagation and Material Properties

Whether the goal of SIG is to calculate physically accurate radiance values, or create a visually

pleasing stimulus, it is dependent at some level on radiation propagation. This section is not

meant to be a complete, low-level description of all of the physics and optics necessary to

describe these interactions. Rather it introduces the reader to the physical processes that must

6
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be considered when developing reflection and illumination models. Most of these processes are

captured in one or many of the available simulation tools at levels ranging from rigorous physical

solutions, to approximations based on empirical results. Even so, a basic understanding of the

physical phenomena should allow rendering parameter tuning to provide expected results.

The author must assume the reader has a knowledge of basic radiometry and physics. For

a more thorough explanation of these phenomena and phenomena not discussed here, please

consult [24], and associated references or [27], which starts with Maxwell’s Equations to derive

them.

Our current understanding of light allows it to be described both as a wave and as particle.

The wave description is most useful when discussing computer graphics, as it describes the

optical interactions of most concern. Light used in the context of this document refers to

the visible portion of the electromagnetic (EM) spectrum, with wavelengths on the order of

0.4 to 0.7 [ µm]. The wavelength of light corresponds roughly to the perceived hue, where

0.4[ µm] is violet, and 0.7[ µm] is red. It is a transverse wave containing both an electrical

field and an orthogonal magnetic field. This allows electromagnetic radiation to propagate

using itself as the medium, and thus has a speed of approximately 3x108 [m/s] in a vacuum.

The reflective portion of the EM spectrum refers to the visible (VIS) and short wave infrared

(SWIR), roughly 0.3 to 3.3 [ µm], and the thermal portion of the EM spectrum refers to the

long wave infrared (LWIR), approximately 8-14 [ µm]. The reflective region is characterized by

the sun or some other external source as the dominant source of radiation, and the intensity

of energy on surfaces is determined by the interaction of these sources with the surfaces. The

thermal region is the region of the EM spectrum where the dominant source of photons is due

to thermal self-emission [51]. While these terms will arise in the following discussion of the

underlying physics and Dirsig, the primary focus will be on light. The reason for this is that

the images rendered as part of this research will be presented to human observers, where the
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eye’s sensitivity is in the VIS.

Interaction of Light and Matter

A robust model must account for all sources of photons, and the way in which they interact with

materials in the environment. These interactions are governed by physical processes. As stated

in [26], “[T]here are two illumination phenomena of major importance in generating imagery.

The first is the interaction of light with the boundaries between materials. The second is the

scattering and absorption of light as it passes through the material.”

There are two general categories of materials that light can interact with: dielectrics (or insu-

lators) and conductors. As indicated by the name, these materials are described primarily by

their electrical properties. Dielectrics include materials such as glass and quartz crystals, which

are largely transparent in the VIS to EM radiation. Their electrons are in stable orbits that

are not affected by passing light. The main interaction of dielectrics with light is caused by the

decrease in speed of the light wave. This causes an incident wavefront to change direction as it

enters the material, provided it was not normal to the surface upon entering. This phenomena

is described by Snell’s law:

n1sinθ1 = n2sinθ2 (2.1)

and is shown in Equation 2.1, where n is referred to as the index of refraction and is the ratio of

the speed of light in a vacuum to the speed of light in the material. As light travels the fastest

in a vacuum, this number will always be greater than 1.

Conductors, as their name implies have electrical interactions with EM radiation. This is due to

the fact that there is a “sea of electrons” in loosely bound orbits. When light strikes the surface

of a conductor, the
−→
E field causes the electrons of the conductor to oscillate and reradiate
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the incident radiation in the form of reflected light. The electrons are not completely free to

oscillate and can be thought of as being tethered by a dampening spring. This has the effect of

absorbing some of the incident energy in the form of heat. Thus the reflected light is less than

the incident light. In order to characterize this behavior, two new variables are introduced:

the complex index of refraction k, and the absorption coefficient. “The absorption coefficient

k/n, is a measure of the absorption characteristics of a conductor” [26]. Hall also provides

some useful approximations of Fresnell’s equations for conductors, and plots of several Fresnell

relationships.

Regardless of the material, when light reaches a boundary or interface between two materials,

one of two events occurs, it is reflected and/or transmitted. The Fresnell Equations [27], which

are derived from Maxwell’s equations provide a relationship of the percentage of the light that’s

reflected and transmitted. These equations are based on the indices of refraction of the two

materials, and yield results in terms of the polarization states parallel and perpendicular to the

plane of incidence. Hall [26] states that “[F]or the purposes of image synthesis, it is convenient

to assume light is always circularly polarized, and that interactions are characterized as the

average of the perpendicular and parallel components of polarized light.” Energy conservation

dictates the transmitted energy is simply 1 minus the reflected energy.

The angle at which the reflected component leaves the surface is a function of wavelength,

surface roughness, and incident illumination angle. If the surface is a perfect mirror, for ex-

ample, all of the incident energy will be reflected off of the surface into an angle equal to the

negative, relative to the surface normal, of the incident angle. This is referred to as specular

reflection. However, as the surface becomes rougher, incident light is scattered into more di-

rections about the specular direction, until a surface is perfectly diffuse, or Lambertian and

reflects light equally into all directions. Therefore it is not enough to specify a single number r

that represents the surface reflectance if the surface is something other than Lambertian. The
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reflectance r is thus a function of all combinations of input and output angles.

The function that describes this is called a bidirectional reflectance distribution function or

BRDF. Figure 2.1 from [51] shows representative BRDFs for materials that range from per-

fectly diffuse to perfectly specular. “When we care only about opaque surfaces in vacuum (or

homogeneous air which we are content to treat as vacuum), then we need only find a description

of the. . . BRDF at each point on each surface. If the surfaces are partly transparent then the

bidirectional transmission distribution function (BTDF) must also be considered. Together,

these functions form the bidirectional scattering distribution function (BSDF)” [24]. All of

these functions can be thought of as three-dimensional probability distribution functions. They

specify the direction light is most likely to take based on the various combination of input

and output angles. Hall and Glassner give generalized illumination expressions that account

for coherent reflection and transmission, bidirectional incoherent reflection and transmission,

diffuse reflection and transmission, and the emissivity of a surface.

It is important to understand that aggregate behavior may not be representative of the material.

Hall gives several examples to illustrate this point. As stated above, many dielectrics appear

transparent to light, like glass. However, if one looks at a pile of crushed glass, it will look white.

On the microscopic scale, each little piece of glass is still as transparent as the original sheet.

At a macroscopic scale however, the glass appears white due to scattering (i.e. all wavelengths

are scattered equally into all directions). This is the same phenomenon observed in clouds

and the blue sky. The blue, rather than white color of the sky is due to the fact that there

is a wavelength dependence of scattered light due to atmospheric constituents. This change

of observed behavior with scale introduces another level of complexity that must be captured.

More information about scattering and optical depth can be found in [51].
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Figure 2.1: Reflectance characteristics for idealized surfaces [51]

The Big Equation

Now that the behavior at surfaces has been introduced, mathematical descriptions can be used

to follow energy from the source to the sensor. The big equation is a term that Schott [51] uses

for the governing equation for the spectral radiance reaching the sensor that is well suited for

remote sensing. However, the equation is complete, and though the numerical methods may

change, the physics remains the same whether the source is the sun or a desk lamp. This section

will serve to introduce the energy paths accounted for and their corresponding terms in the big

equation. A detailed explanation is given in [51].
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Figure 2.2 shows all of the energy paths accounted for, and they are referred to as Types

A through I photons. Generally the radiance reaching the sensor is given by Equation 2.2.

As alluded to above, there are solar (or source energy paths), and thermal paths. The solar

paths are shown in blue, and the thermal photons in red. As indicated by their names, the

solar photons originate at the sun and interact with the world. The thermal photons can

originate anywhere an object is above absolute zero Kelvin. They emit photons according

to the Planckian blackbody function modulated by the emissivity of the surface, which is a

complimentary term to reflectance (i.e. ε = 1− r) for the thermal portion of the EM spectrum.

Strictly speaking, the sun also emits photons according to the black body equation, however

due to its temperature, the peak wavelength is in the visible and falls off very quickly in the

SWIR and MWIR.

Equation 2.2 shows the total radiance, L, as the sum of all of the radiance due to photon paths

A through H, where multiple bounce photons have been ignored. The definitions of the photon

paths are given below.

L = LA + LD + LB + LE + LG + LH + LC + LF (2.2)

A Direct solar photons originate at the sun (or source), pass through the atmosphere, inter-

act with the material (reflect), and are redirected through the atmosphere back towards

the sensor.

B Sunlight or skylight photons originate at the source and are scattered by the atmosphere

towards the target, reflect off of the surface, and continue through the atmosphere towards

the sensor. These photons account for light in the shadows of A type photons. As

atmospheric constituents increase, there is an increased probability of scattering, and

thus it is likely to have a higher ratio of B to A type photons.
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Figure 2.2: Photon Energy Paths in the big equation [51]
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C Upwelled radiance photons originate at the sun and are scattered by the atmosphere at the

sensor, without ever reaching the target. These photons therefore carry no information

about the surface, and thus reduce the contrast of the image. They can be thought of as

flare.

D Self-emitted thermal photons that originate at the target and propagate through the

atmosphere to the sun.

E Thermal downwelled photons are emitted by the atmosphere due the fact that it has a

temperature, are directed towards the target and again are direct back towards the sensor.

F Thermal upwelled photons that propagate directly from the atmosphere towards the sen-

sor, again reducing the contrast as they contain no target information

G Solar background photons bounce off of background object before hitting the target, and

then head back towards the sensor. As Schott says “. . . whether multiple bounce photons

are important depends on the sensitivity of our measurements”

H Thermal background photons originate at some background object and then bounce off

of the target, through the atmosphere to the sensor.

I Multiple bounce photons are scattered by surrounding objects, and then into the line of

sight of the sensor without ever having reached the target. This phenomena is called the

adjacency effect. As Schott says, if the background reflectance is slowly varying, then

these photons can be considered part of C type photons. From the diagram, it can be

seen that these photons contaminate the target radiance with non-target radiance.

Equation 2.3 expands each of the terms given in Equation 2.2.
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Lλ =
{

E′
sλ cos σ′τ1(λ)

r(λ)
π

+ ε(λ)LTλ + F [Edsλ + Edελ]
rd(λ)

π

+ (1− F )[Lbsλ + Lbελ]rd(λ)
}

τ2(λ) + Lusλ + Luελ

(2.3)

where:

Lλ Sensor reaching spectral radiance

E′
sλ Exoatmospheric solar irradiance

σ′ Angle from target to the sun

τ1 Atmospheric transmission from sun to the target

τ2 Atmospheric transmission from target to sensor

r Target reflectance

ε Target emissivity

LTλ Self-emitted thermal radiance of target at temperature, T

F Shape factor - Fraction of hemisphere above the target which is sky

Edsλ Solar downwelled irradiance

Edελ Self-emitted downwelled irradiance due to atmosphere

Lbsλ Background radiance from scattering

Lbελ Self-emitted background radiance

Lusλ Solar upwelled radiance due to atmospheric scattering

Luελ Self-emitted upwelled radiance due to atmosphere

Chapter 4 in Schott’s book gives derivations and detailed explanations of these variables. Most

of the variables in the equations are the result of simplifications. For example the reflectance,



CHAPTER 2. BACKGROUND 16

r, represents the full BRDF or the target. Additionally, the transmission terms, τ , are the

comprised of scattering phase functions and optical depths (accounting for absorption and

scattering) due to the atmosphere. As stated above, this equation is driven by the application

to remote sensing, and as such does not account for radiation paths from man made sources

and the moon and stars. These paths are accounted for in pbrt

The big equation is essentially the rendering equation referred to in the graphics community.

The goal is to account for all energy paths, both self-emitted and reflected. The big equation is

perhaps more general in that it captures the thermal energy paths explicitly. Derivations and

detailed explanations of the rendering equation can be found in Kajiya’s seminal work [33], as

well as [25], [45], [26].

Conclusion

Reiterating, this section was not meant to be a complete rehash of physics and optics. In fact,

not all processes were described, including fluorescence and phosphorescence. The intention

was to quickly brush up on some of the important phenomena and to give the reader a sense

of how quickly the problem expands if it is to be modeled by first principles physics. One

thing to keep in mind is that in order to fully describe a surface in terms of physical processes,

numerous properties must be known. It is often difficult to measure or find databases of

materials. When the user does not have access to all of the required parameters, as is often the

case, certain approximations must be made, often in the form of parameterized surface models.

These approximations vary by application. Another thing to note is that modeling using a

first-principles approach allows the simulation of phenomena such as rainbows, fog, and orange

sunsets without the need for a talented artist.
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2.1.2 Rendering

The previous section gave a brief overview of the physics of the interaction of light and matter,

and the physical equation that captures the energy paths. In practice, the rendering equation

is almost impossible to solve analytically, so approximations must be made. The broad cat-

egorization of these algorithms is global illumination. As the name implies, these algorithms

“...take into account the distribution of light in the entire scene when deriving the color for

any one surface point or image pixel” [24]. As an example, imagine a red box inside of a dif-

fuse white box. As shown in Figure 2.3 the white walls appear reddish due to color bleeding.

This effect can only be physically captured using global illumination. Global illumination is

Figure 2.3: Radiosity solution displaying color bleed phenomena

typically divided into two broad areas: radiosity and ray-tracing. Radiosity emerged from the

field of thermodynamics and deals with calculating the energy transfer between patches in the

scene. It is a view-independent solution, and makes an assumption that all objects in the en-

vironment are diffuse. Classical ray-tracing traces rays from the camera to the light sources,

assuming objects in the path are purely specular. Since the rays are traced from the camera, it
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is considered a view-dependent solution. An infinite number of rays is required to account for

all possible sources of photons. It is obvious that neither solution independently can account

for all interactions. Hybrid algorithms have been created, exploiting the strengths of each of

the algorithms. The primary focus of this research will be ray-tracing algorithms, employing

different techniques (but not radiosity), to capture the various diffuse-specular interactions.

Different ray-tracing algorithms have been developed based on first principles physics. Re-

gardless of the algorithm, every ray-tracer must address the following areas. First, the scene

geometry must be represented in three-dimensional (3D) space. This three dimensional geom-

etry is then augmented with material parameters, and includes things like spectral reflectance

and surface roughness, and how light is scattered from the surface. Of course, it would be a

trivial image without light sources, so methods to model these must be incorporated. Perhaps

the most important component is what is sometimes referred to as the integrator [45], which is

used to solve the integral in the big equation 2.3. Finally, the radiance values are recorded as

an image through the use of a sensor model.

2.1.3 pbrt

pbrt , which stands for Physically Based Rendering Techniques, was the software used in ren-

dering the synthetic images. It was written over a period of approximately ten years at Stanford

University [45], to aid in teaching physically based rendering to students. As such, there is ex-

tensive documentation and access to the source code. The authors of pbrt have implemented

many computer science techniques to make it relatively straightforward for users to add plug-

ins, modifying its behavior. In addition, there are many different built-in routines the user can

select. For example, there are several different sampling techniques, integrators (ray-tracing

algorithms), and surface reflectance models. This makes it an ideal test bed to use for psy-

chophysical experimentation as only specific components can be changed, while all others are
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held constant.

As the name implies, pbrt attempts to render “a 2D image from a description of a 3D scene...”

using the “...principles of physics to model the interaction of light and matter” [45]. This is an

important statement as many rendering systems used to create imagery, especially those in the

entertainment industry, are at best loosely based on physics, rather than first principles based.

There are advantages and disadvantages to each type of system. The non-physics based systems

allow more degrees of freedom for the artist to manipulate the image throughout the entire

process. With pbrt however, the user can only manipulate the input, including descriptions of

the geometry, surface properties, and color of objects. pbrt uses this information as input to

physics-based equations. Therefore, even those user specified inputs are expected to be based in

reality. The result is a high quality, realistic image demonstrating real physical phenomenology,

as in Figure 2.4. The tradeoff however is typically large amounts of computation time, and fewer

degrees of freedom for the user. This type of rendering system is ideal for the author for several

reasons. The first is that the author is not an artist, but rather a scientist. Physical properties

can be measured using analytical devices (i.e. spectrophotometers) and those measurements

can then be directly input into pbrt. Also, the final solution (including artifacts) is more easily

understood by looking to the equations and methods of implementation.

How pbrt works

The intent of this section is to give a high-level introduction to pbrt, highlighting its features

and data pipeline. Readers should not expect to find the minutia of the implementation or

underlying physical methods and equations, and are encouraged to read pbrt’s accompanying

text, [45], which contains many examples, images, lines of code, as well as the references to the

seminal work upon which this system, and global illumination algorithms in general, are based.

Much of the following description is based on the overview from the first chapter of the pbrt
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Figure 2.4: Image rendered using pbrt demonstrating subsurface scattering through the use of
photon mapping. [45]

book.

At its core, pbrt is a ray-tracing algorithm. “[I]t is based on following the path of a ray of

light through a scene as it interacts with and bounces off objects in an environment” [45]. The

authors go on to list the minimum requirements that a ray-tracing system must be able to

simulate. These include:

• Cameras
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• Ray-object intersections

• Light distribution

• Visibility

• Surface scattering

• Recursive ray-tracing

• Ray propagation

Cameras The camera is essentially like any camera one might use in real life. There is an

aperture and a film plane at a bare minimum defining a pinhole camera. These two things

and their dimensions define a viewing volume, outside of which, objects are not visible to the

camera. Stated another way, once the camera is defined, so too is the portion of the scene that

is visible to the camera. It makes sense therefore to propagate rays ‘backwards’ into the scene

from the camera. In the case of a pinhole, one can think of this direction as a vector from the

eye (or pinhole) through each pixel into the scene. Of course it is possible to stochastically

trace rays from the light sources into the scene, let them bounce around and eventually reach

the camera. However, it would take an extremely large number of rays in order for enough

of them to randomly reach the camera, let alone produce a low-noise image. In addition to

a simple pinhole, pbrt is capable of simulating a camera with real optics, in other words a

non-infinitesmal aperture, and thus such phenomena as motion blur and depth of field. pbrt

also supports orthographic and non-orthographic cameras, and environment cameras useful for

creating environment maps. For the purposes of this research these advanced features were not

required, and therefore not used in order to save computational time.
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Ray-Object Intersections Rays originating from the camera, propagate into the scene and

may or may not hit objects. The ray-tracer must test for these intersections, the details of

which are provided in [45]. One interesting thing to note is that in a scene with multiple

objects, it can quickly become computationally expensive to test a given ray against every

single object. Therefore, pbrt uses specially designed data structures to store the scene in a

spatially meaningful manner, eliminating unnecessary calculations, and accelerating required

ones.

Light Distribution At this point, the camera has been defined, and objects have intersected

by rays originating from the camera. The next step is to determine the amount of light inter-

acting with that object and eventually reaching the film plane. Therefore light sources must

be defined in terms of both their geometry as well as their power. pbrt being physically-based

implies these light sources exhibit properties such as cosine projection and the 1
r2 falloff of light

with distance. Light sources can be analytically defined as point sources, spheres or disks. pbrt

can also use any user-defined geometry as a source, while still obeying the laws of physics. pbrt

uses many techniques to stochastically sample these sources, which are described in detail in

the book. Figure 2.5 shows examples of different geometries as light sources.

Visibility The previous section ignores one important thing, shadows. “Fortunately, in a ray

tracer it is trivial to determine if the light is visible from the point being shaded. We simply

construct a new ray whose origin is at the surface point and whose direction points toward the

light...called shadow rays” [45].

Surface Scattering Recapping, we currently know both the incident lighting and location.

The next step is to scatter that light off of the intersected surface. The scattering behavior of a

surface is defined by its material parameters, specifically the Bidirectional Reflection Distribu-
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Figure 2.5: This figure shows light sources in pbrt using different geometries. The image on the
left is a sphere illuminating a box. The image on the right shows two disk sources of different
colors illuminating the inside of a box.

tion Function (BRDF), as described earlier in Section 2.1.1. This BRDF can be generalized for

both reflective and transmissive surfaces to a function referred to as the Bidirectional Scattering

Distribution Function (BSDF), again, an inherent property of the material. “pbrt supports a

variety of both physically and phenomenologically base BSDF models” [45]. As is described

later in Section 3.1, the scene designed for this research consisted of a majority of objects that

were assumed to be Lambertian, the same reflectance value for any combination of input and

output angles. Some, however, did use some of the more complex BSDFs.

Materials Materials in pbrt are modeled using combinations of surface reflectance functions.

The three predefined pbrt materials used in this research were mirror, matte, and plastic. Mir-

ror is self explanatory, and it uses a perfectly specular, or delta BRDF. Matte attempts to

create a very dull looking material, essentially by eliminating any specular component. De-

pending on the user-defined parameters, a perfectly Lambertian or Oren-Nayar BRDF is used.

An Oran-Nayar diffuse surface is described by a “collection of symmetric V-shaped grooves...”

[45] This empirical approach captures the phenomena that real-world rough surfaces tend to
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appear brighter as the illumination direction approaches the viewing direction, unlike a per-

fectly Lambertian surface. Finally, the plastic material is defined as a combination of glossy

and diffuse scattering BRDFs. The user can control the color and the amount of diffuse and

glossy reflection components with the surface roughness parameter. A Lambertian BRDF is

used for the diffuse component while a Blinn microfacet distribution BRDF is used for the

specular. The Blinn BSDF models the surface as a distribution of microfacets whose normals

falls off exponentially perpendicular to the surface normal. Smooth surfaces fall off quicker than

rough surfaces. Figure 2.6 shows examples of an object rendered using the matte and plastic

materials.

Figure 2.6: These images from [45] show the same object rendered with two different materials.
The image on the left shows the killeroo with the matte material, and in this case a perfectly
Labertian BRDF. The image on the right shows the killeroo rendered using the plastic material
in pbrt. The plastic material adds a specular component to the object. Note that the illumi-
nation conditions are not identical in both of these images. The image on the left appears to
be a spot or point source due to the hard shadows, and yet the matte material still exhibits no
specular lobe.

Recursive Ray Tracing “In general the amount of light that reaches the eye from a point on

an object is given by the sum of emitted light and reflected light” [45]. This idea was presented
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earlier in Section 2.1.1, or as is referred to in the graphics community, the light transport

or rendering equation, “...which says that the outgoing radiance Lo(p, ωo) from a point p in

direction ωo is the emitted radiance at that point in that direction, Le(p, ωo), plus the incident

radiance from all directions on the sphere S2 around p scaled by the BSDF f(p, ωo, ωi) and a

cosine term:

Lo(p, ωo) = Le(p, ωo) +
∫

S2
f(p, ωo, ωi)Li(p, ωi)|cosθi |dωi. (2.4)

This equation is almost always too complicated to be solved by anything other than numerical

integration techniques. The method used to solve this integral can be changed to one of several

options included with pbrt. These surface integrators were the primary variable manipulated

to create the stimuli for this research. The integrators are described briefly below.

Whitted As stated in [45], “Turner Whitted’s original paper on ray tracing emphasized its

recursive nature.” Many of the original ray-traced images took advantage of this feature and

were able to produce renderings of perfectly reflecting and refracting surfaces like glass and

mirrored spheres. A ray is propagated from the camera to a perfectly reflecting mirror. In order

to find what objects are being reflected onto that mirror, a ray is reflected about the mirror’s

surface normal, and the ray-tracing algorithm recursively called to add this contribution to the

final solution. This results in the appearance of a reflection in the mirror. If we think about

this further, it is apparent that Whitted does not solve the integral over the entire sphere, only

in the specular direction. Stated another way, Whitted can only effectively render the direct

and indirect illumination associated with objects that have a delta distribution BRDF. Figure

2.7 shows an image rendered using the Whitted integrator, capable of accurately simulating

global illumination for the ideal point source and delta BRDFs.
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Figure 2.7: This image from [45] shows perfectly refractive and reflective spheres rendered using
the Whitted surface integrator. Note also the hard shadows, indicative of point light sources.

Direct The direct lighting surface integrator only accounts for light arriving at a surface

directly from a light source. In other words, it does not include indirect illumination from

non-emissive objects. This reduced light transport equation can be written as:

Lo(p, ωo) = Le(p, ωo) +
∫

S2
f(p, ωo, ωi)Ld(p, ωi)|cosθi |dωi (2.5)

where the only difference from 2.4 is that only the direct lighting, Ld is considered. It is

different from the Whitted in that it solves the integral (using various sampling techniques)

over the entire hemisphere. Therefore, the direct lighting solution of environments including

objects with delta and non-delta BRDF’s can now be solved. The solution presented in the

book for solving the direct lighting can be used independently, or in conjunction with irradiance

caching or photon mapping. In those cases, irradiance caching and photon mapping are used

to solve the indirect illumination component which is added to the solution from the direct

illumination surface integrator, yielding a complete solution to the light transport equation.
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Path Tracing “Path tracing was the first general-purpose unbiased Monte Carlo light trans-

port algorithm used in graphics” [45]. The simplest explanation of path tracing is that it is

like Whitted, except that it supports both delta and non-delta BRDF’s and light sources. It

generates paths that begin at the camera and propagate into the scene, eventually ending at

the source. At each vertex along a path there is a scattering event, based on the BSDF of the

surface, from which a new path is propagated (see Figure 2.8). The radiance arriving at the

P1

P2

P3

P4

Figure 2.8: Iconic representation of path tracing.

camera is emitted radiance of the light modulated by the throughput of the path defined as

the product of all of the vertex BRDFs. Different techniques are used to handle special cases

such as delta BRDFs, as well as how to randomly terminate a given path so as not to trace
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forever. Path tracing yields an unbiased solution to the sensor reaching radiance. While the

mean value of an image may be correct, the variance may be high, resulting in an image with

high frequency noise. The upside is that this can be predictably lowered by casting more rays

into the scene, in other words, increasing the number of samples per pixel.

Irradiance Caching As stated above, path tracing is an unbiased algorithm, that decreases

high frequency noise with an increased number of samples. This can be computationally pro-

hibitive as it sometimes requires a large number of additional rays to reduce the objectionable

noise to an acceptable level. Furthermore, if there is no noise present in the image, one can still

be assured that the solution is not only visually pleasing, but also accurate. Figure 2.10 shows

a direct comparison of the noise in irradiance cached and path tracing rendered images. On the

other hand, there is a direct relationship between the number of rays, and the noise present in

the final image.

This is not the case with biased algorithms. Biased algorithms also have artifacts, but are

typically not the more objectionable high frequency noise as in path tracing. In addition, it

is not true that increasing the number of samples will predictable reduce the noise present.

On top of all of these problems, it is not even true to call an image with no visible noise an

accurate representation to the actual scene radiance distribution. The reader should be asking

themselves, ‘Why would you ever use biased rendering algorithms?’. These biased algorithms

will produce a very realistic image, capturing the indirect illumination effects, while using a

significant amount less computation time. “They can often create good-looking images using

relatively little additional computation compared to basic techniques like Whitted ray tracing”

[45]. Referring back to the definitions of realism presented in the Introduction, biased algorithms

do not produce physically realistic images, but they may be photo-realistic, which is appropriate

for this research.
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a

c

b

Figure 2.9: This image from [45] is dominated by indirect illumination. (a) was rendered
using direct illumination only. (b) and (c) were rendered using path tracing, but with different
numbers of samples per pixel. Image (b) rendered with fewer [spp] shows the noise of variance
characteristic of an unbiased algorithm.
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a b

c

Figure 2.10: This image from [45] was rendered using irradiance caching (a) and path tracing
(b) with approximately the same amount of computation time. Note how the noise manifests
itself with each algorithm. (c) shows the locations of the precomputed irradiance cache samples.
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Irradiance caching is one of these biased techniques. The idea behind irradiance caching is to

pre-compute irradiance values at a select number of locations, typically locations where there

would be the highest frequency change in the indirect lighting distributions. As the image is

being rendered, these pre-computed irradiance samples are reused, interpolated, and averaged

for intersected points that do not correspond directly with one of the stored samples. If the

error is larger than a user-defined value, a new irradiance cache will be computed on-the-fly.

Irradiance rather than radiance samples are calculated and stored, which have smaller memory

requirements. Recall that irradiance can be thought of as an average of the radiance over the

entire hemisphere. In other words, irradiance caching assumes the surfaces are Lambertian.

This is actually a good assumption for the most part for this research based on the scene

construction of nearly Lambertian objects, described later, but not in general.

Photon Mapping Photon mapping is the final biased, surface integrator that was used in

this research. Photon mapping is a two-pass technique. The first pass is to propagate no

more than a user-specified number of rays into the scene from the light sources. These rays

are propagated based on the surface reflectance properties and stored into a 3D data structure

called a kd tree. The scene is then ray-traced as usual starting from the camera and propagating

into the scene. The ray stops at the first object it hits, and the photon map is accessed. Based

on some user-defined parameters, the photon map is searched for nearby photons, and the

solution for the given point solved by averaging these photon within a given search radius. The

photon map can be used to solve the indirect illumination component only (in conjunction with

the direct surface integrator described above), or it can be used to solve both the direct and

indirect as shown in Figure 2.11. Since photon mapping propagates rays from the source to the

scene, it allows for computation of complex illumination phenomena such as caustics in water.

One of the major disadvantages is the number of parameters that can be adjusted in order to

tune the photon map. This can also be a distinct advantage over other algorithms.
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a b

Figure 2.11: This image is from [45]. (a) was rendered using the photon map for both indirect
and direct illumination, while (b) used the photon map for the indirect only. Note the blotchy
artifacts in (a) due to the photon map.

One of the most important settings in photon mapping is the use of what is called final gathering.

Final gathering is a technique to reduce the visibility of artifacts. As stated earlier, the photons

within a given radius are used to compute the exitant radiance at a point. Final gathering,

however, samples the Bidirectional Scattering Distribution Function (BSDF) as that point, and

traces rays back into the scene, and finds incident radiance along those rays. The error of

interpolation is now at these rays, rather than the exitant radiance point, thus reducing the

artifacts in the final image. Figure 2.12 shows the effect final gathering has on final image



CHAPTER 2. BACKGROUND 33

a b

Figure 2.12: This image is from [45]. (a) was rendered using photon mapping, and (b) was
rendered using photon mapping with final gathering. Notice how the artifacts are greatly
reduced with final gathering.

quality.

Ray Propagation The final requirement of a ray-tracer is the ability to propagate rays. pbrt

has the ability to do this in a vacuum or with participating medium present such as smoke or

fog.
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A Note on Color in pbrt

In general, pbrt is designed to handle spectral representations for the materials and light

sources, however, in its default configuration, it essentially reduces to a RGB triplet configura-

tion, based on the primaries in the sRGB specification [3]. Therefore, if no changes are made,

the user must specify the color of lights and objects using a triplet. The most straightforward

way to calculate these triplets is to measure spectral reflectances of the objects and lights, calu-

late XYZ’s from these spectra, and then use the sRGB 3x3 to transform these to the expected

primaries of pbrt. The other option is to modify pbrt to read and write spectral files.

Conclusion pbrt

This section provided a high level description of pbrt a physically-based ray-tracer. pbrt is a

sophisticated piece of software with many rendering options. It is very capable of producing

an extremely realistic image. The quality of the final image however relies heavily on the input

material parameters, and surface integrator settings.

2.2 Augmented Reality

To this point the discussion has focused on creating a purely synthetic image. There is, however,

a growing body of research in the area of augmented reality [4]. Augmented reality attempts to

fuse real and synthetic images together. The application areas relate closely to the definitions

of realism in Section 1.2 and can include military training or guided surgery, where functional

realism is important. Figure 2.13 shows examples of these application areas. It is clear that

if a surgeon is operating on a patient’s liver, a photorealistic rendition is not as important as

a real-time image depicting the accurate location of the organ highlighted in an unmistakable

color. Other applications of augmented reality include compositing live actors onto virtual sets
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via a green-screen method. In this case, photo-realism is key, to provide the viewer with a sense

that the actors were actually in that environment when the image was taken. This research is

more concerned with the latter example, where the goal is photo-realism, with no emphasis on

the ability to compute the solution in real-time, or to derive all of the necessary parameters

from the imagery. This section highlights the general procedure, and specifically Debevec’s

technique [11], Rendering Synthetic Objects into Real Scenes. 1

The problem addressed by his paper is to add synthetic objects to the image of a real scene.

This is not a simple compositing problem. The synthetic objects must occlude and shadow

the real scene, and vice versa. The novelty of this technique is to use a global illumination

algorithm in conjunction with image-derived lighting and material parameters.

2.2.1 Modeling

Debevec proposes a solution based on global illumination utilizing image-based lighting, within

the framework of a novel scene representation shown in Figure 2.14. The scene representation

indicates the light interaction, required material and geometric parameters of each. The distant

scene is represented by a light-based model. This is a term he uses “to refer to a representation

of a scene that consists of radiance information [12], possibly with specific reference to light

leaving surfaces, but not necessarily containing material property (BRDF) information” [11].

It is important not to confuse this with a material-based model, the pre-cursor to a light-based

model, or an image-based model in which the values may not represent absolute radiance. The

reason can be seen in the diagram (Figure 2.14), where the distant scene is used to illuminate the

synthetic objects. Also noted is that light reflected back towards the distant scene is ignored.

The local scene is the area of the real scene that interacts with the synthetic objects, both

in terms of illumination and geometric considerations. Therefore, the geometry and material
1It is noticed that Debevec refrains to referring to the problem as augmented reality, as it has many conno-

tations with virtual reality, not relevant here.
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Sportvision's 1st and Ten Augmented Reality Guided Surgery

Augmented Reality in Star Wars

Figure 2.13: Examples of Augmented Reality Applications
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Figure 2.14: Interaction of the Scene Components in Debevec’s Technique

properties must be known at some level. Debevec explains that the geometry can be determined

both actively and passively, and there is a lot of literature on both. Additionally, there are

methods for estimating the BRDF if accurate measurements are not available [11, 49, 50, 57,

23, 35, 13, 22]. The idea being that enough information should be gathered from the scene

in situ, without separate instrumentation to measure these parameters. The local scene must

be modeled accurately enough so that the global illumination algorithm yields an acceptable

solution. The synthetic objects of course must be modeled accurately, and be represented by

any material supported by the global illumination solution.

2.2.2 Rendering and Compositing

At this point, the scene has been divided into three components, and modeled at different levels.

The next obvious step is to input this information into a rendering engine, and create images.

The distant scene is mapped to an approximate model of the room (the inside of a cube for
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example), and used as the illumination source. A global illumination solution like Dirsig or

pbrt , is run which creates the output image as well as a binary mask, where white corresponds

to the local scene and synthetic objects, and black the distant scene. The resultant image

is composited [7] with the background photograph using the mask to choose pixels from the

background or rendered image. Debevec points out that occlusion by the distant scene can be

included if there was some model of its geometry.

2.2.3 Differential Rendering

Debevec further refines the procedure using a technique called differential rendering. This

is useful because using the rendering procedure above requires the geometry and material

properties be measured to a high degree of accuracy. The reason being the global illumination

solution is used in place of all local scene components in addition to the added synthetic

components. It is often difficult to capture spatially varying textures, and an accurate, full

BRDF. The background photograph in effect contains all of this information. The idea is

therefore to only render in the difference between the local scene, and the local scene with

the synthetic objects added. Using Debevec’s notation, LSb refers to the background image,

LSnoobj is the rendered local scene without the synthetic objects, and LSobj is the rendered

local scene with the synthetic objects. The error of the rendered local scene, Errls is defined

as:

Errls = LSobj − LSb (2.6)

The final rendered local scene is then:
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LSfinal = LSobj − Errls (2.7)

LSfinal = LSb + (LSobj − LSnoobj) (2.8)

It can be seen from Equation 2.8 that nothing is added to the background when there is no

difference in the rendered local scenes. If the term in parentheses is negative, light is subtracted

from the background, implying a shadow. Conversely, light can also be added back into the

images if that term is positive. Problems can occur if the error term is negative, in which case

Debevec adjusts for the relative error :

LSfinal = LSb

(
LSobj

LSnoobj

)
(2.9)

2.3 The Human Visual System and Computer Graphics

As discussed in Section 1.2, there is difference between physical realism and photo realism, in

that a perceptual match does not guarantee accurate radiance values. However, as the eye

is typically the final discriminator, this may not cause a problem. In order to understand

this discrepancy and which tradeoffs can be made, the human visual system (HVS) must be

investigated.

2.3.1 The HVS: Relevant Properties for Photo-Realism

This section describes the Human Visual System and the properties that are leveraged to the

advantage of image synthesis. Typically, a vision (computational) model is built from these

properties. The vision models range from rather simplistic to very involved. In any case, these
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models are based upon the current body of knowledge on the HVS. The HVS is not completely

understood, and therefore a perfect model does not exist. The specific properties that will

be discussed are adaptation, non-linearity of response, contrast sensitivity and masking are

properties of the HVS that are used in these models.

General adaptation refers to the changes in the HVS in response to the overall luminance of

the scene. This effect can be summarized by stating humans are not absolute light meters as

they adapt to the current light level. This makes it possible to give the illusion of very bright or

dark scenes on rather limited monitors. Depending on the scene, two different luminances may

be mapped to the same or to vastly different pixel values [21]. In the natural world, humans

are exposed to large dynamic ranges of luminance. The absolute dynamic range for humans

is on the order of 10 million to 1 (comparing sunlight to startlight). At any give time the

dynamic range can be on the order of 10,000 to 1. The human visual system is able to function

over this broad range by the process of adaptation. Adaptation involves changes in the pupil

diameter, rods and cones, photopigments and neural processing [18]. These systems allow the

HVS to operate over 14 log units of luminance. It is important to understand that vision as a

whole is not constant across that range. Visual acuity and color vision are better at increased

luminance levels, but “absolute sensitivity is low and luminance differences have to be large to

be detectable” [44]. Conversely, for scotopic conditions, acuity and color vision are decreased,

and sensitivity to luminance differences is increased. This behavior is more formally known as

Weber’s Law, and was first described by Weber in the early nineteenth century [32]. This law

states that the ratio ∆I/I is equal to a constant K, where I is a given stimulus intensity level,

and ∆I is the minimum change in intensity resulting in a perceptible difference. Intuitively

this behavior makes sense, and is evident in everyday situations. Consider the example of a

person talking in a quiet room who is easily heard, versus that same person in a loud room.

In order to be heard, the person must speak even louder. Threshold experiments have been

used to measure the adaptation effects, and in these conditions are well characterized and obey
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Weber’s law over wide luminance ranges. Additionally, humans are not relative light meters

either. For example doubling luminance does not double the perception of brightness. This

effect has to do with the non-linearity of response in the HVS.

Acuity is often characterized in terms of the Contrast Sensitivity Function (CSF)2. The CSF

measures the sensitivity of the HVS to sinusoidal gratings at different frequencies. The CSF

is measured through psychophysical experiments and standard results can be found in the

literature [41]. There are several important, general results [44]. First, the spatial frequency

response of the achromatic channel is like a bandpass filter while the chromatic channels act like

low pass filters. Second, the high frequency cutoff for the achromatic channel is 60 cycles per

degree [cpd] and slightly less for the chromatic channels. It is important to note that the CSF

is a function of mean field luminance, retinal eccentricity, time, color, adaptation, distance,

size and more. These parameters change the the shape of the CSF and the high frequency

cutoff. For example, at higher luminance levels the CSF has a bandpass shape, and higher

cutoff frequency than at lower luminance levels. The reader must also understand that the

CSF is not a modulation transfer function (MTF), for many reasons. An obvious reason is that

the HVS does not behave as a linear system. The CSF describes only the sensitivity of the

HVS to sinusoidal gratings at different spatial frequencies.

Masking is the phenomenon where the visibility of a signal at a particular spatial frequency may

be more or less visible due to the presence of another signal at a nearby frequency. Masking

is due to spatial processing in the HVS. When a mask and a test have very close spatial

frequencies, the test is difficult to perceive. The presence of the test is more visible when the

spatial frequencies are different. There is also a contrast effect, and in general a mask facilitates

the test detection at low contrasts and masks detection at high contrasts [54]. Computational

models of visual masking have been created for computer graphics [19].
2Various researchers have performed experiments to understand the reasons the HVS has developed to be

optimized for certain frequencies [42].
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The descriptions of adaptation and spatial vision above are based on threshold experiments.

Therefore they describe the performance of the HVS in its limits. However, real-world scenes

provide conditions well above threshold, or suprathreshold. “Stevens’ model of brightness and

apparent contrast...summarizes much of what is known about the intensity dependence of sur-

face appearance at suprathreshold levels” [44]. The relationship can be described by Stevens’

Power Law (with a power less than 1), where brightness increases as a power of the luminance.

In general, “as we turn up the lights, the world becomes more vivid” [44]. This suprathreshold

model has been applied to both adaptation and spatial vision. It turns out that the threshold

experiments are special cases of the general processes. Threshold versus intensity experiments,

(TVI), demonstrate these effects under more natural conditions [44].

In depth research has been performed on each of those areas. Therefore this section was meant

to serve as a high-level overview of some visual phenomena. Operational characteristics of the

HVS described above at threshold and suprathreshold levels are important to creating complete

visual models. The functionality of the model is application driven. Therefore, rendering

engines will utilize different aspects of tone mapping operators due to different constraints and

their placement along the pipeline for creating synthetic imagery.

2.3.2 HVS and Image Synthesis

Rendering the scene is computationally expensive. If the final discriminator is a human observer,

then the HVS can be used during the rendering to reduce the rendering time by foregoing

calculations that would result in information below the HVS thresholds. In addition to reducing

calculations, using vision models should result in more photo-realistic images as the output has

been ‘tuned’ for human observers.

There are two major categories of rendering algorithms: local and global illumination. Local

illumination is computationally easier, but renders each object independent of the rest of the
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scene. Global illumination techniques take object inter-reflections into account, or in other

words calculate the transport of light on a global scale. In addition to inter-reflections, this

allows for the calculation of shadows and other effects not possible with local illumination

(volumetric lighting, refraction...). To reiterate, the goal is to achieve photo-realistic images.

Therefore the focus here is on the global illumination techniques3. Ray-tracing, radiosity, and

photon mapping are three global illumination rendering algorithms. The fundamental details

of these techniques can be found in graphics texts [56, 24].

Common to all is the idea of sampling. This is due to the fact that computers can only store

samples of continuous signals and not the analog signal itself. Sampling results in aliasing, where

high frequencies are aliased to lower frequencies. Discussions of aliasing can be found in [25].

Aliasing can be mitigated by taking more samples. This does not help in computational costs

however. Rather than uniformly taking more samples, people have been smart about where

the samples should be placed. “Mitchell realized that deciding where to do extra sampling can

be guided by knowledge of how the eye perceives noise as a function of contrast and colour

[36]. The previous discussion of the CSF explained the HVS’s sensitivity is a maximum around

4.5[cpd] and the cutoff (below the sensitivity of the HVS) is approximately 60[cpd]. Therefore

the HVS is most sensitive to aliasing artifacts around 4.5[cpd] frequencies. Essentially, Mitchell

used non-uniform sampling techniques based on the frequency content of the images. He used

a contrast metric to decide where the extra samples should be placed. This technique does

not eliminate aliasing, rather it causes aliasing at higher frequencies where humans are less

sensitive. “Although this idea has the beginnings of a perceptual approach, it is at most a

crude approximation to the HVS” [36].

Meyer and Liu again take advantage of the HVS’s spatial vision, realizing that acuity is different

for the chromatic and achromatic channels, specifically, the chromatic spatial acuity is worse.
3Tricks and hacks can be used in conjunction with local illumination to give the effect of global illumination

by approximating shadows or object interactions.
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The image is processed and stored in a kd-tree data structure. A kd-tree is a data structure

that is often used for photon-mapping as it lends itself to non-uniform sampling [29]. In this

case the kd-tree stores higher frequency information towards the bottom. When they were

performing calculations they would obtain the image information from the kd-tree. For spatial

color calculations, a complete traversal of the kd-tree was unnecessary based on results of

psychophysical experiments. Their results showed some computation savings while maintaining

image fidelity [36].4

The next in the progression of vision model complexity is a frequency-based ray tracer [6]. Bolin

and Meyer’s vision model takes into account contrast sensitivity, spatial frequency response, and

masking. They control where the rays are cast into the scene based on these HVS properties.

“A specific luminance difference at low intensity is considered to be more important than the

same difference at high intensity” [6]. They use a Monte Carlo ray tracer to calculate the global

illumination solution. Using their algorithm, more rays are spawned when low frequency terms

are being determined than when high frequency terms are being found. Overall, they were able

to remove the visible artifacts first, and any noise due to ray tracing is channeled into areas

where it is less noticeable.

There have been several other rendering solutions that have incorporated vision models that

primarily leverage spatial vision characteristics of the HVS. Details of their implementation

have been omitted for brevity. The important thing to realize is how aspects of the HVS have

been embedded into vision models which in turn are used to efficiently and photo-realistically

render images. More complex vision models have also been tested, but at a certain point the

complexity reduction in the global illumination solution is outweighed by the added complexity

in the vision model. Therefore the overall computation is increased at no gain in visual fidelity

[14, 36].
4It is important to note that they used psychophysics for rating the output of their algorithm. Often in the

graphics community, the ‘looks good’ approach is used.
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2.3.3 Tone Mapping Operators

As stated before, the output from the rendering solution contains values that cannot be repro-

duced on normal displays. The high-dynamic range of the input tones must be mapped into the

range of values allowed by the display which is inherently a low-dynamic range device. There

are many different techniques that are broadly categorized as global or local tone mapping

operators. The global operators apply the same operator to every pixel in the image based on

the entire scene content. Local operators on the other hand apply different operators to each

pixel based on the spatially local scene content. There are advantages and disadvantages to

each approach. This is a very popular area of research currently, and readers are encouraged to

consult [47] for details on the subject of high dynamic range imaging, including examples and

explanations of tone mapping operators.

2.3.4 Image Evaluation

At this point in the pipeline a synthetic scene has been rendered and tone-mapped to a display.

This is arguably the most critical point in the pipeline; evaluating the image. It is at this stage

where it is ascertained whether or not the correct tradeoffs were made. Ideally the output

image will provide the same visual response as the original scene per the requirements outlined

in Section 1.2. The obvious question is How are these images evaluated?. There are two answers.

The images can be presented to human observers as part of a psychophysical experiment, or

they can be computationally evaluated using a defined image quality metric.

Experiments using Psychophysics

The most obvious experiment is to compare a photograph of the real world scene to the synthetic

image. Meyer et al. [39] used an image synthesis approach that is based on two specific modules:
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physical and perceptual. Their approach was to achieve accurate light simulation before the

image was degraded with a perceptual transform.

Their experimental scene consisted of diffusely reflecting objects placed in a small dark room.

A synthetic scene was created using a radiosity solution. Radiometric values of the scene and

image were measured using a spectral integrating radiometer and compared. In their paper they

outline constraints they used for the radiosity solution to achive results that were in agreement

with the real scene measurements.

After verifying the output of the model, the next step was to compare the physical model with

an image on a television screen. The synthetic image was then converted to RGB values to

create a color television image using color science techniques. The observers viewed the monitor

and the real scene through a view camera. They justify this methodology stating it allows

simultaneous side-by-side comparisons without introducing the effect of the observer’s memory.

Twenty observers (10 experts and 10 naive) performed the image comparison. Nine out of the

twenty people (45%) selected the real scene when asked to pick the computer generated scene.

They concluded that the observers did not perform better than if they were just guessing. The

overall scene and color were judged good by the observers, however, there were weaknesses cited

in the sharpness of shadows and in the brightness of the ceiling panel.

The results of this study (from 1986) show promise in achieving photo-realism. However, there

are certain weaknesses in their approach. First, the scene was very simple consisting of simple

shapes that were purely diffuse. Also, the methodology for comparison was not inherently

controlled, and the view cameras reduced sharpness. McNamara [36] suggests a more robust

approach is required.

They developed a technique for measuring the perceptual equivalence of a graphical scene to a

real scene. They began by running several psychophysical experiments where human observers

were asked to compare two-dimensional target regions of a real physical scene to regions of the
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synthetic representation of that scene. The results of these experiments showed that the visual

response to the real scene was similar to the high-fidelity rendered image [38].

This was extended to comparisons of complete three-dimensional objects, which inherently

allowed comparisons of scene characteristics such as shadow, object occlusion and depth per-

ception. Their scene consisted of seventeen test objects. In their paper [37], they describe the

training procedure on Munsell chips prior to the experiment. The observers were presented

with 10 images of the scene of which one was the photograph, and nine were created using

different rendering solutions. They were asked to match the lightness of the 17 objects and

5 sides of the environment, to test patches, resulting in a total of twenty two matches. Their

results indicate a difference between the rendering techniques. Three of the methods are of the

same perceptual quality as the photograph of the scene in terms of lightness matches. More

important is that they provide a framework for measuring the perceptual equivalence of a real

scene and a rendered equivalent.

Realism Cues

Rademacher, et al. [46] approached the photo-realistic question from a different perspective.

He proposed that the key to creating good rendering algorithms is to first understand the

perceptual process. They proceeded to measure the visual realism in images using psychophys-

ical experiments. The experiments focused on shadow softness, surface smoothness, number

of light sources, number of objects, and variety of objects. It is clear that they wanted to

hone in on which cues in an image contribute to the realism, not just that the final output

appears realistic. The question posed to the observers was to rate a series of images as “real”

or “not real.” The problem is what definition do the observers use for real? The researchers,

in an effort not to bias the observers, gave them minimal instructions, only using those two

phrases in the context of computer-generated imagery. The images were of very simple scenes
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and objects. The methodology explained in the paper is indicative of the method of constant

stimuli. Rather than assign thresholds though, they created a scale of realism. The realism

scale was defined as the proportion a feature was judged real, where 0 is not real, and 1 is

real. For example, if a certain shadow was presented to the observers 20 times and judged

as real 10 times, then the realism scale would be 0.5. The results are summarized as follows.

First, sharper shadows were perceived as being less real. Second, diffuse surfaces were rated as

being more real than spray-painted (more specular) surfaces. The observers realism response

did not increase with an increase in the number of objects, variety of object shapes or number

of lights. The interesting thing to note is that these first experiments all used images of real

scenes, which did indeed look like computer-generated images. Different lighting was used to

change the shadow hardness, and different material types and object types were also varied

with real parameters. The same experiments were run using computer-generated imagery. The

results were qualitatively in agreement with the experiments using the photographs. A χ2 test

confirmed a statistical significance between the computer generated imagery and the shadow

softness and surface-smoothness experiments.5

Compositing Errors

Selan [52] performed psychophysical experiments most closely related to this research. He

isolated four sources of lighting error in compositing: brightness errors, chromaticity errors,

shading directionality errors, and case shadow directionality errors. In the experimenters stim-

uli, both components composited together were real, as opposed to rendering a synthetic object

into a real scene. Also, a local, rather than global, illumination method was used to shade and

render shadows on the composited elements. A set of stimuli was created varying one of these
5Interesting experiments have also been performed to distinguish paintings from photographs based on the

photorealism of the images. The methods in [9] were also verified through psychophysics. There is also a lot of
literature on other visual cues that affect three dimensional visualization and renderings. [28, 48, 55]
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parameters along its continuum. Four separate two-alternative forced-choice experiments were

conducted where the subject was asked to determine which element in the image was compos-

ited. Their results showed observers are very sensitive to chromaticity and brightness errors.

By and large, observers were insensitive to illumination direction errors. This is a significant

result because it indicates that compositors need to worry less about lighting effect. Finally,

this experiment found that there was a dependence on whether the shadows were converging

or diverging. Diverging shadow errors were less likely to be detected than converging shadow

errors. This was primarily due to the fact that diverging shadows are more likely to exist in

natural settings.

2.4 icam

To this point, several major topics have been reviewed: generating physically based synthetic

images, augmenting real imagery with synthetic components, and evaluating the realism of

these images through the use of psychophysics. The final topic that will be discussed is a

specific model of human vision capable of predicting image differences, appearance, and overall

image quality. This model is termed icam (Image Color Appearance Model), and was described

as a part of Johnson’s Ph.D. dissertation [30]. The motivation of his research was to devise a

modular framework, that would mimic various properties of the HVS, thus creating a device-

independent image quality model, with the ultimate goal “to predict perception” [30].

The first important aspect of this research was to make the model a collection of modules. This

allows the use of current color difference research, while maintaining the flexibility to add new

modules as more research is done. Johnson also presented the idea of a pool of modules, where

each module accepts input, and provides output, while acting as a self-contained unit. The

strength of this design is that it allows the modules to be linked together to provide an overall

metric, and at the same time the individual modules can be used to determine the cause for
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the image difference. This idea is shown in Figure 2.15.

2.4.1 Modular Image Difference Framework

The image difference functionality of icam is based on decades of CIE color difference research.

As Johnson points out though, traditional color difference equations were developed based on

uniform color patches, not complex spatially varying stimuli like images. Therefore, applying

these equations to images would essentially be treating the individual pixels as separate stimuli,

not accounting at all for the coherence in the imagery. It is well known that the HVS keys on
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certain features in imagery, like edges, in addition to the color difference. The idea then is

to preprocess the images spatially in a similar manner as the HVS, and then apply the color

difference equations. The first incarnation of this idea was called S-CIELAB, where S stands for

spatial, accounting only for the CSF. Johnson extends the S-CIELAB concept to also account

for spatial-frequency adaptation, spatial localization, and local and global contrast detection

by introducing modules for each. Again, each of these modules provides its own results on the

image differences. However, it is also beneficial in some cases to reduce all of these results into

a single number, the image difference. This number is some weighted sum of the individual

modules, giving a measure of how different a pair of images is in terms of image difference

units. In reducing to a single number, information is inevitably lost, yet the result could be a

scale of image differences along some variable continuum, which in turn can be compared to a

psychophysical scale. Of course, in some situations this could replace, or at least pre-process

the stimuli for a psychophysical experiment, reducing the burden on human observers. Johnson

also points out that “. . . an image difference model is only capable of predicting magnitudes of

errors, and not direction.” This can be obviated by examining the output of each of the modules

individually. Rather than using the traditional color difference equations which essentially

measure a scalar distance, calculations of entities like ∆L∗ can be performed. Figure 2.16

indicates specific causes for image differences, and the corresponding module that contains this

information.

2.4.2 Image Appearance Modeling

In the same way color difference equations were extended to images, color appearance modeling

research is extended to spatially complex stimuli, creating image appearance modeling. Color

appearance attempts to quantify and predict attributes such as lightness, brightness, color-

fulness, chroma and hue. Image appearance extends this to include things such as sharpness,
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graininess, contrast and resolution [30]. The most logical step is to replace the core metric at the

heart of the image difference framework with an appearance space. Johnson gives his argument

for using the IPT color space. The overall framework for the image appearance model, icam

, is given in Figure 2.17. The input is a colorimetric image as well as the surround adapting

stimulus. The first stage is to account for the chromatic adaptation. Following this, the image is

converted from cone-similar RGB space, to opponent-color signals (IPT), representative of color

encoding within the brain. These are then non-linearly compressed via an exponential term, in

order to “predict response compression that is prevalent in most human sensory systems” [17].

Johnson demonstrates how this model is capable of predicting such phenomena as simultane-

ous contrast, crispening, and spreading. He has also shown success in rendering high-dynamic

range images to low-dynamic range displays using icam, and producing results consistent with

psychophysical experiments. In addition, image difference calculations are also possible using

this new framework, as it relies heavily on the modular image difference framework. The input

is two images rather than one. The difference modules are applied after chromatic adaptation.

2.4.3 icam Conclusion

icam has been shown through [30] to be a robust tool for measuring and predicting overall image

differences. Even more important is the modular nature of icam . The ability to examine the

output from each module pinpoints specific causes for differences between images. The module

output can also be weighted to create a scale of difference. In general, icam provides a new tool

that extends traditional, robust color difference equations, with models of specific properties of

spatial / spectral human vision, that can be used to examine complex stimuli.
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Chapter 3

Approach

This chapter describes the experimental approach used in this research. Overall the process can

be divided into the following areas. First, the scene was constructed in a light booth. This scene

was then photographed using special techniques and equipment. In parallel, a virtual model

of the scene was built and used to render images. The renderings and photographs were then

used in the compositing step to create the stimuli. The stimuli were presented to observers in

a psychophysical experiment as well as iCAM. The results of those experiments were analyzed

both individually, as well as in concert with each other. The details of each of the preceding

areas is described below.

55
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3.1 Lightbooth Scene Construction

3.1.1 Object Creation

There were several important requirements that influenced the design of the scene. First, it

needed to be a controlled environment. Control in this context refers to the illumination both

in terms of its color and geometry. This requirement was satisfied by constructing the scene

in a standard viewing lightbooth. Second, in order to be rendered, the objects comprising the

scene needed to be defined both geometrically and in terms of their material composition. As

such, the author chose objects with well-behaved BRDFs, close to the idealized Lambertian or

perfectly specular BRDFs, and simple in terms of their geometry, with the exception of the cow

described later.

It was difficult finding a variety of objects that were approximately Lambertian, regardless of

the geometric complexity. Several different approaches and materials were used. First, the

author purchased wooden craft blocks and spheres, sanded them using fine grit sandpaper, and

applied several coats of spray-paint primers 1. This resulted in objects that were uniform and

nearly diffuse, but with the most difficult type of BRDF to model. The painted wooden objects

exhibited a BRDF with both specular and diffuse components as in Figure 3.1. The BRDF

exhibited by the paint could be reasonably modeled using the built-in BRDF models in pbrt,

however determining the values for the parameters is often not straightforward or physically

based.

The author quickly realized that even approximately Lambertian surfaces are like point light

sources and frictionless surfaces, existent only in the mind of a physicist. However, after con-

tinuously searching, it was noticed that racquetballs and foam bath toy blocks exhibited the

‘nearly-Lambertian’ surface the author sought and were included in the scene.
1The author consulted with local craftsman Mark Robinson regarding painting techniques to provide a uniform

matte finish
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Figure 3.1: A wood sphere painted with a matte finish primer spray paint still exhibits a
specular highlight so it cannot be assumed Lambertian.

Ultimately a photograph of the scene would be compared to a photograph of the scene including

one rendered object. This object must exist both as a physical model, as well as a 3D model in

the computer (see Figure 3.2). As this object was the focus for the research, the author wanted

an object that was more realistic and intricate than a simple wooden block. The typical process

is to choose a real object and then spend a large amount of time modeling that object in a

modeling program such as Blender. This posed a problem as it would require great expertise

in the use of a modeling package, and the author is a novice. This problem was averted by

following the opposite path. First, a geometric file was purchased. This file was of a cow, and

was extremely intricate, including textures. The file was emailed to a company called Stratasys

[2], specializing in rapid prototyping. The company uses a process called Fused Deposition

Modeling (FDM), which essentially prints a 3D version of the file by building up layer upon

layer of extruded plastic. Different colors and materials can be chosen, and the final product is

quite accurate and precise with resolutions in the thousandths of inches. The cow ordered was

made of white ABS plastic, relatively strong and nearly opaque. In this case, nearly opaque
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Figure 3.2: Screen shot from Blender showing a shaded view of the cow model.

implied the cow exhibited a fair amount of subsurface scattering, the impact of which will be

discussed later. Finally, to complete the collection of objects to construct the scene, a mirror,

terra cotta pot, and a clay vase were included.

3.1.2 Object Placement

As important as the object materials were the object placements within the booth and relative

to each other. Recalling the ultimate objective of this research, the author wanted to ac-

centuate differences in global illumination rendering algorithms. Therefore diffuse-diffuse and

diffuse-specular interactions between the cow and other objects were created through careful

object placement. First the cow was placed on a mirror, which created a significant amount of

illumination on the underside of the cow, as well as a unique pattern of light on the large white

vase in the back of the scene. Secondly, the multicolored foam blocks were placed almost in

direct contact with the camera-side of the cow (see Figure 3.3). In addition to producing color
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Figure 3.3: Photograph of the scene built inside of the light booth. Notice the reflection from
the mirror onto the vase, as well as the color bleeding from the foam blocks onto the underside
of the cow. These are the very visible indirect illumination effects reproduced in renderings
physically through the use of a global illumination algorithm.

bleeding on the front of the cow, the object occlusion produces complexity that adds to realism

and something an observer might encounter in real life. This scene could not be divided simply

into local and distant scenes. In [11], the synthetic rendered objects were significantly distant

from the surrounding scene and did not ‘interact’ with it. Additionally, the author was careful

to place the objects with the less-idealized BRDFs further from the cow so as any interactions

would be negligible. As will be discussed later in the compositing step, the effect of the cow

on the scene is important as well, and includes effects such as shadowing and reflection on the

multicolored blocks and the vase.
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When looking at the final arrangement of the real scene and the objects, it looks like early

computer-graphic renderings. The reason has to do with the nearly idealized BRDFs of the

objects, which are significantly easier to model in a rendering package.

3.1.3 3D Model Constructions

After the scene was constructed, it needed to be modeled in the computer both geometrically

and in terms of surface properties. Although the cow was the only object to be composited into

the photograph, the entire scene required a virtual counterpart in order to model the object

interactions. The entire scene was modeled in Blender, a freeware 3D software package [1]. As

stated above, the cow model was purchased, and only needed the appropriate scaling to match

the physical model dimensions printed using the FDM method. The remainder of the objects

were all modeled individually. Some of these objects were very simple to model and included

the wooden spheres and cubes, foam blocks, the mirror, and of course the racquetballs.

The physical dimensions of the vase were difficult to measure and model accurately for a novice

such as the author. To aid in the modeling, a photo of the vase was taken, imported into

Blender and used as a background image, analogous to tracing paper. The image was moved

such that the vase was vertically bisected by the z-axis and seated on the xy plane. A Bezier

curve was drawn over the photo that followed the profile of the vase. This curve was then ‘spun’

around the z-axis, forming a complete 3D model. The model was then scaled appropriately to

match the proportions of the the real vase (see Figure 3.4).

Perhaps not obvious at first, the actual light booth needed to be modeled as well. At a minimum

the interior and light geometry needed to be modeled. The author modeled the booth first and

used it as a practice in learning Blender and thus accurately modeled the interior and exterior

of the booth. This included the metal interlocking tabs on the floor of the booth. The final

scene configuration changed throughout this work and in hindsight this level of detail in the
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a b c

Figure 3.4: (a) is a screenshot from Blender using a photo of the vase as the tracing paper and
the profile of the vase in pink. (b) shows the model after rotating the profile 135 degrees. (c)
shows the complete vase model.

light booth model was excessive as the interactions of things such as the tabs and the cows are

perceptually insignificant.

The virtual objects were placed inside of the virtual light booth to match the real scene. The

reader can envision one of several ways to accomplish this such as direct measurement of all of

the objects or a more complex, computer-vision approach. This was accomplished by using a

technique similar to how the vase was modeled. First, the model of the light booth was inserted

and centered in the scene. Next, a photograph of the scene was taken. This image was then

imported into Blender and used as a backdrop. A virtual camera was placed in the scene, and its

parameters (focal length and field-of-view) were matched visually to the imported photograph

and known dimensions of the interior of the light booth. The virtual camera viewport was used

to place models into the light booth. The are many more elegant solutions to this problem and

can be found in the augmented reality literature. If the author was building multiple scenes,
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Figure 3.5: Screenshot from Blender showing various views of the complete scene model.

a alternate approach such as a calibration grid would have been useful. Since this is a very

controlled instance of augmented reality, this approach was tractable and sufficient. Figure 3.5

shows the entire scene as it was being modeled in the software package Blender.

3.1.4 Material Parameters

To this point only the geometry of the objects has been discussed. However, pbrt must also

know something about the optical properties of the object surfaces in order to render an image.

These material parameters at a minimum include the ‘color’ and BRDF. The BRDFs of the

objects were not measured for this research and were assumed ‘idealized’ in most cases. The

surface reflectance characteristics (BRDF) were assumed Lambertian for the foam blocks, rac-

quetballs, light booth interior, dark gray and black wooden blocks, and the cow. The mirror



CHAPTER 3. APPROACH 63

was modeled using a perfect specular BRDF. The vase and red wooden objects were modeled

using more realistic BRDFs. They were determined iteratively and visually.

The term color is perhaps not sufficient. The least ideal method (especially for a scientist) would

be to adjust RGB sliders in the modeling package until the screen matched the object. There

are many problems associated with this method and include things such as visual subjectivity,

monitor calibration, and calibrated viewing conditions. Ideally, the author would have liked

to render the images spectrally, and process the spectral cubes appropriately for a specific

display. In this way, no information is discarded until the last possible step. This approach

was not used, however, due to the extremely long rendering times required even for as little as

9 bands. The most reasonable approach was to measure the spectral reflectance of the objects

using a spectrophotometer and then calculate XYZ values. These XYZ tristimulus values

were then transformed to RGB triplets required by the renderer using a 3x3 matrix. This

is a reasonable method in that it is based on instrumental measurements and standardized

colorimetry. Therefore any color issues are likely a result of the renderer and not with the

inputs, which is exactly what the author wants to exploit.

It is important to realize two important characteristics of the materials that help improve the

accuracy of this approach. First, the materials chosen have a smooth spectral curve shape. If

there were any spikes in the curves, they would not be appropriately sampled and color errors

would result. Additionally, the materials chosen did not exhibit any fluorescence phenomena,

which can only be accurately rendered spectrally [31].

The objects were measured on a Spectraflash 500 spectrophotometer with spectral coverage from

400 to 700 [nm]. The measured spectral curves are shown in Appendix A.1. XYZ values were

calculated by multiplying the spectral reflectance (r(λ)) by the 1931 2 degree color matching

functions (x̄, ȳ, z̄) by the spectral power distribution of the source (S(λ)) and then integrating

as in Equations 3.1 - 3.3. From here, the values need to be input into pbrt. The authors
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of pbrt make a point of stating how they do not use a simple RGB triplet model for their

color. After looking through their source code, indeed they do perform calculations spectrally.

However in the default configuration, pbrt is hardcoded to handle only 3 values, R, G, and

B. The RGB values it expects are based on the International Telecommunication Union (ITU)

HDTV recommendation (the same 3x3 as the sRGB matrix) [3]. Therefore, the XYZ values

were multiplied by the 3x3 transformation matrix. Internally, pbrt takes those RGB values and

immediately inverts them back to XYZ, performs the lighting calculations, and then converts

back to RGBs using the XYZ to sRGB 3x3. It is a very roundabout process, but yields the

expected results. Most importantly, it did not require any manipulation of their source code.

X =
∫
λ r(λ)S(λ)x̄(λ)dλ (3.1)

Y =
∫
λ r(λ)S(λ)ȳ(λ)dλ (3.2)

Z =
∫
λ r(λ)S(λ)z̄(λ)dλ (3.3)

The cow was originally measured using the procedure above. However, the results of the render-

ing process were not consistent with the photograph. After trying several different measurement

techniques, the author noticed that the cow exhibited a fair amount of subsurface scattering.

Therefore, when measuring with a spectrophotometer, some of the calibrated source was scat-

tered out of the measuring aperture, and anomalous results were recorded. The author ac-

counted for this by measuring the cow with the PR-650 under D65 simulated illumination. A

piece of PTFE was also measured as the reflecting standard and ultimately the ratio of the two

measurements was used as the spectral reflectance of the cow.

Finally, the source spectrum was mesaured. A PTFE diffuser was placed on the light booth

floor. The booth was set to use the D65 (daylight) source (filtered tungsten). The PTFE was
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measured using the PR-650. XYZ’s and other triplets were calculated from the spectrum using

principles of colorimetry as described above.

3.2 Scene Image Capture

After the scene was constructed, and material attributes measured, the scene was photographed.

Typical consumer digital cameras make nice color photographs, but are not designed to perform

accurate colorimetry. Since it was imperative to control the color throughout this process, it

was necessary to use a camera over which the user would have more control and information.

Another student in the lab was working with just such a camera for his Ph.D. research. The

camera did not have a color filter array on the sensor, rather a color wheel in front of the

camera. The filters were approximately a linear transform of the color matching functions.

The author assisted this student in calibrating the camera both in terms of its response and

colorimetrically. The first step was to recover the response function of the camera for each

of the three color filters. This was accomplished by photographing a target with a series of

grayscale patches, for a range of camera exposures, and for each of the three color filters. The

method is described in more detail in [12]. A series of photographs were then taken of the

Macbeth ColorChecker DC. This data was used to determine the 3x3 matrix transform from

camera digital counts to XYZ’s. More details of this technique can be found in [5]. The result of

the calibration work was a software package. This software package allowed multiple exposures

through the three color filters to be combined into a colorimetrically calibrated, high-dynamic

range XYZ photograph.

The camera was placed on a tripod in front of the light booth, looking downward slightly into

the booth. Photographs of the scene were taken with exposures ranging from 1 second, to

1/60th of a second for each of the three filters. Photographs of the booth with and without
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Figure 3.6: Photographs of the booth in linear XYZs and rendered as RGB directly, which is
why they appear dark and incorrect in terms of color. Note the color banding in uniform areas,
and the defined specular highlights on the top of the vase

.

the cow were taken using this method and can be seen below in Figure 3.6. Additionally,

colorimetric measurements of the PTFE (XYZ for the 2 degree observer) were taken with the

PR-650. The in-house camera software was then used to combine these photographs along with

the measurement of the PTFE, into a high dynamic range image of XYZ values. At this point,

the image contains high-dynamic range values. The image has not been tone-mapped in any

way and still retains information in the very bright and very dark regions. For example, defined

specular highlights can be seen at the top of the white vase at this point. However, in order to

display these values in 8-bit monitor RGB’s, values must be adjusted to fit within this range.

3.3 Rendering in pbrt

At this point, photographs of the booth have been taken and colorimetrically calibrated. The

next step was to render the light booth scene in pbrt and use those results to composite the

synthetic cow into photograph without the cow, Figure 3.6-b. It was not the author’s intention

to determine thresholds of realism for a given rendering method. Rather, the author wanted
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to investigate coarse increments in several global illumination techniques to see how realism

varied within and across algorithms. The goal was to span a large range of rendering times

and realism, including the various algorithm artifacts. As stated earlier, this made pbrt an

excellent research tool as it has a plug-in type architecture to test different techniques. pbrt

comes with several surface integrators that were all used for this research and include direct,

whitted, irradiance caching, photon mapping, and path tracing. In order to render an image,

pbrt needs three things: a light source, objects, and a camera. The objects were geometrically

modeled and attributed as described above. The light source also needs a geometry and color.

In the real light booth, the manufacturer creates the daylight source by overdriving tungsten

halogen lights and then filtering them to provide the appropriate spectral power distribution.

The light bulbs were recessed into the ceiling of the booth and behind a diffuser used to create

uniform illumination. In reality it would have been possible to geometrically model the diffuser

and light source explicitly and have pbrt solve the illumination by tracing rays through the

glass diffuser to the light sources. This approach was not taken, however, as it would have

added a large level of complexity and rendering time. A simpler approach was taken. Ideally,

if the diffuser was perfect, one could imagine using one single rectangular source the size of the

ceiling of the light booth. This was clearly not the case and was observed by looking at the

shadows formed by objects in the light booth. While the diffuser did distribute a fair amount of

the light, faint shadows could be seen on either side of an object (see Figure 3.7). This indicated

that there was slightly more power in and around the areas of the light sources directly behind

the diffuser. In pbrt this was modeled using two disk sources 10 inches in diameter on either

side of the booth ceiling center. An exact match is not required for this research, but the

illumination needed to be fairly close so as not to be the dominant source of artifacts.

The color of the lights in pbrt were set to [10, 10, 10]. Recall that the default configuration of

pbrt expects RGB triplets for the color of the objects based on the sRGB color transformation.

If D65 XYZs are converted to RGBs, it results in equal R, G, B values.
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a b

Figure 3.7: (a) is the photograph of one of the blocks in the booth showing the shadows on
both sides and (b) is the rendering of the booth demonstrating similar shadows.

.

Similar to the photographs, two renderings for each algorithm were completed, with and without

the cow. Therefore, a total of 32 full-scene images were rendered. Two additional renderings

were also done to assist in the compositing step, which will be described later. pbrt not only

calculates pixel R,G,B’s but also an alpha, α, value, which corresponds to the transparency of

the material hit within a given pixel. For example, if an opaque object is hit, the α = 1.0. If

no object is hit, then α = 0.0. Alpha values in between are possible even without transmissive

objects. This occurs at the border of objects and is a result of oversampling and anti-aliasing.

Figure 3.8 shows the alpha channel of the cow when it was rendered independent of anything

else. In total, 34 images were required to produce the stimuli.

3.3.1 Computational Concerns

Computational resources were an important concern in rendering these images. Several dif-

ferent approaches were considered. Originally, all images were going to rendered on an Apple

Powerbook G4 1GHz laptop. While possible, it would have completely monopolized that com-

puter. Fortunately, pbrt is supported on most operating systems including Unix. Originally,

pbrt was compiled for an SGI running Irix. This computer was ideal due to the 8 processors
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a b

Figure 3.8: Alpha channel for the rendering of (a) the cow only and (b) zoom in of area around
cow’s horn, showing intermediate alpha values indicating partial transmission.

with 1 Gigabyte of RAM for each processor. However, Irix was one of the versions of Unix not

officially supported, and eventually rendering errors precluded further use of the SGI computer.

The author was eventually allowed exclusive use of two PowerMac G5 desktop computers with

dual 2.0GHz processors and 2 Gigabytes of RAM each. pbrt is not multi-processor capable

in its default configuration. However, it is possible to break a job into as many segments as

desired and render them individually. This is possible because in ray tracing, each pixel is

solved independently of other pixels. In combination with this feature, a Tcl script was written

that divided a single job into n sub-jobs, one for each processor. Additionally, this script peri-

odically checked rendering status, and would immediately start the next job when a processor

was available. While not the most elegant solution, it sufficiently maximized and managed the

rendering jobs.
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3.4 Compositing

The basic idea of compositing is to layer various image elements into one complete final image.

It is used in many motion pictures to combine computer generated elements with live action

footage. At this point in the process there are two photographs and 34 rendered images.

The idea was to use compositing techniques and differential rendering [11] in order to add

the rendered cow to the photograph without the cow. Figures 3.9-3.11 show flowcharts of the

different steps used to create the final composite image. Please refer to them throughout this

section.

The Apple program Shake was used to assist in this process. Shake is a professional compositing

package capable of manipulating high-dynamic range images with floating point computations,

as well as processing sequences of images. Shake uses a node-based approach for its workflow.

Nodes can be concatenated together to create an image processing workflow from beginning

to end. Figure 3.12 shows a screen grab from the Shake program giving the user a sense of

the node workflow concept. Additionally, the workflow can be exported and edited as a simple

text script. The nodes operations include things such as color transformations, image filtering,

and warping. While this research utilized relatively simple nodes, the use of Shake provided

an extremely solid and optimized platform that saved the author a significant amount of time.

The basic process is explained below.

First, the photographs were imported into the Shake. The photographs were normalized to the

Y component of the PTFE ( Y of the PTFE will be 100). This is what has previously been

referred to as ‘relative colorimetry’.

This next step involved extracting the cow from the renderings in order to composite it into

the photograph. The simplest way to think about this step is to imagine a cookie cutter that

cuts the cow out of the image. This is the basic idea of a multiplying the image by a matte.
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Occluding ObjectsObject by itself

Create a composite mask

Rendering with cow (XYZ)

Cow extracted from rendering

Figure 3.9: The steps required to extract the occluded cow from the renderings.
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due to cow

Rendering-with-Cow
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Figure 3.10: The steps required to extract the shadow and other lighting interactions not
included in the cow.
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Figure 3.11: Steps to add the extracted object and other illumination interactions to the pho-
tograph to create the full composite image.
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Figure 3.12: Screen grab from the Shake compositing program.

The matte contains zeros in areas to be excluded from the photograph, and values greater than

zero (primarily ones), elsewhere. The scene was constructed such that the cow was behind an

occluding object. Therefore, the matte must take that into account. The matte image itself

was a combination of individual renderings of the the cow and occluding block objects.

Recall that the rendered images were in pbrt’s default RGB space. The first step in processing

the renderings in Shake was to convert them to XYZ. This was done using the 3x3 matrix

from pbrt as shown in [3]. Next a chromatic adaptation transform was applied. Due to the

problems with the spectrophotometric measurements of the cow (Section 3.1.4), it was rendered

in pbrt using the same RGB triplet as the measured PTFE. This resulted in a cow that was
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too white. In order to account for this, a chromatic adaptation transform was applied in Shake

using Equation 3.4 and 3.5. As [16] states, the process begins with a “transformation from CIE

tristimulus values (XYZ) to sharpened cone responsivities (RGB) using the MCAT02 matrix

transformation.

∣∣∣∣∣∣∣

X2

Y2

Z2

∣∣∣∣∣∣∣
= M−1CAT02

∣∣∣∣∣∣∣

Radapt2 0 0

0 Gadapt2 0

0 0 Badapt2

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

1/Radapt1 0 0

0 1/Gadapt1 0

0 0 1/Badapt1

∣∣∣∣∣∣∣
MCAT02

∥∥∥∥∥∥∥

X1

Y1

0

∥∥∥∥∥∥∥
(3.4)

MCAT02 =

∣∣∣∣∣∣∣∣∣∣

0.7328 0.4296 −0.1624

−0.7036 1.6975 0.0061

0.0030 0.0136 0.9834

∣∣∣∣∣∣∣∣∣∣

(3.5)

The RGB values are then divided by the adapting RGB values for the first viewing condition

and multiplied by the adapting RGB values for the second viewing condition prior to a linear

transformation back to corresponding CIE tristimulus values.” Figure 3.13 shows the XYZ

composite images with and without the chromatic adaptation applied. A pixel analyzer node

was then used to examine a region of pixels on the surface of the PTFE. These values were input

into a node to normalize the image such that YPTFE = 100. The matte, created several steps

earlier, was used to extract the cow from the rendering. This was done using a ‘switchmatte’

node in Shake, which simply copies the selected channels from the second image, to the alpha

channel of the first image. By definition of an alpha channel, the image is multiplied by the

values in the alpha channel (between 0 and 1) to determine a pixel’s visibility. At this point,

the cow has been properly extracted from the renderings and can be composited onto the

photograph of the booth without the cow.
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a b

Figure 3.13: These two images show the difference (a) with and (b) without the chromatic
adaptation applied. It is obvious even displayed in XYZ, that the cow is too white (b), as
compared to Figure 3.6-a

In rigorous augmented reality applications the camera position in three-space is explicitly

known, or determined through the use of computer vision techniques and/or calibration tar-

gets. Complex computer vision techniques were not used in this research. Rather, the gross

location of the camera was measured relative to the center of the lightbooth. These coordinates

were then used as a starting point, and refined visually through iterative rendering. Also in

typical augmented reality, the camera used is thoroughly specified and measured. The internal

geometry of the camera must be known. In this research, a complete geometric calibration of

the camera used was not done. Instead, a couple of quick measurements were taken, and a

fixed focal length used in order to determine the field of view. It was not necessary to measure

every parameter because a simple camera model was used in pbrt and only required the field

of view and camera position.

The renderings were created using these parameters. It is obvious that they are not an exact

match to the photographs (see Figure 3.14). In general, they would be acceptable and believable

if they were not being compared side-by-side to the original photograph. Additionally, these

large errors would cause problems with iCAM image difference calculations. In order to mitigate
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a b

Figure 3.14: This figure shows approximately the same area in the (a) photo, and (b) one of
the renderings. It is noticed that the camera geometry was not exactly matched between the
two.

these problems, the extracted cow was moved and warped in Shake, rather than completely re-

rendering the images. The justification for this was two-fold. First, all of the renderings were

manipulated identically. Second, if the camera position and geometry were perfectly specified,

an advanced renderer such as pbrt would have no problem calculating the correct image. Again,

this research was not to compare pbrt against another renderer, rather it was a comparison of

global illumination algorithms within pbrt. Therefore the decision was made to make a simple

calculation in Shake that would take less than a minute to calculate instead of re-rendering,

which could take several days in certain cases.

Just as the cow was extracted from the rendering, the same was done for the interactions. These

interactions included things like shadows and object inter-reflections. The general procedure

to isolate these interactions was to simply subtract the rendering without the cow from the

rendering with the cow. However, using the arguments above for the camera position errors,

it was decided not to incorporate these interactions from the renderings. Rather, the shadow

from the cow was extracted from the photograph, and composited into the photograph with
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the rendered cow. The remainder of the interactions were perceptually negligible due to scene

design, or were not captured in the renderings and thus not included.

At this point the photograph contains the rendered cow with shadows, and is ready to be saved

from Shake. Shake supports floating point pixel values, but typical displays only support 8-

bit integers. In order to prepare the images for display they were normalized to the brightest

pixel in the image, which turned out to be the specular highlights of the sources on the vase.

The images were then converted to 16-bit and written out as 16-bit TIFF files. Finally, the

images were resized to [859 by 564] pixels using the Mitchell filter by default. The resize was

performed to prepare the images for display in the psychophysical experiment. The images were

named sequentially, which allowed Shake to automatically process all of the images without user

interaction.

3.5 Display Characterization and Rendering Images to Display

The stimuli for the experiment have been created. The next step was to convert them from the

16-bit TIFF format, to an 8 bit image based on the colorimetric calibration of 22” Apple Cinema

liquid crystal display (LCD). The calibration procedure was based on [10]. The general idea

was to display carefully selected color patches on the liquid crystal display and measure them

with an LMT colorimeter. Three one-dimensional look up tables (LUTs) were created based

on measurements of primary ramps. These LUTs were used to invert the nonlinearities of the

display, manufacturer imposed in the case of LCDs. A matrix is calculated in this linear space

to convert XYZs to monitor RGBs based on the input versus measured values. The matrix

was further refined through an optimization routine to minimize CIEDE2000, an equation to

calculate the difference between colors in an approximately uniform color space [5]. The three

one-dimensional LUTs and the matrix constitute the required parameters to construct a monitor

model, necessary to convert between XYZ values (floats) and monitor RGBs (0-255).
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The 16-bit TIFF XYZ images were read into Matlab and immediately converted to double

precision. The pixel value of the PTFE in the image was retrieved and a scale factor computed

based on the measured XYZ of the PTFE in the light booth with the PR-650 (0.9605, 1.040,

1.11120). The image was divided by this scale factor and then multiplied by 100, effectively

scaling the image such that the PTFE pixel values are X = 97.3668, Y = 102.2528, Z = 111.5436,

very close to a perfect diffuser under a perfect D65 illuminant. The image was reshaped to two

dimensions, (height * width, 3), and the measured LCD model applied. It is important to

understand that any XYZ can be run through the matrix and three one-dimensional LUTs to

obtain an RGB value specific to that monitor. However, care must be taken to ensure the value

is within the monitor gamut, and if not, handled appropriately. In the case of this research,

any values outside the monitor gamut were simply clipped. After all of the images had been

processed by this model, they were ready for the psychophysical evaluation.

3.6 Comparing the Images

The final step is to compare the images against one another. The stimuli were presented to

observers using a paired-comparison psychophysical experiment. In paired comparison, the

observer is presented with two stimuli, and asked to choose one based on some criterion. The

paired-comparison experiment was analyzed using Thurstone’s Law of Comparative Judgement,

Case V. The result was an interval scale of quality.

In this experiment, the observer sat 36” from the screen, and was presented with three images

on screen, the original photograph on top, and the pair of images on the left and right halves

of the bottom of the screen, see Figure 3.15. The observer was asked “Choose the image on

the bottom of the screen by clicking on it, that is most like the image on the top. This is an

accuracy, not preference judgement. You may focus your attention in and around the area of

the cow” After the observer clicked on one of the images, three noise images were displayed
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for one second, and the next pair was presented. There were 17 total images, 16 that included

the rendered and composited cow, and the completely real photograph. This implies that there

were trials where the photograph was presented along with one of the renderings. Also, all trials

were unique in that there were no trials where both images were the same. In total there were

(n)(n−1)/2 total trials, where n is 17, for a total of 136 trials. It should be noted that although

the real photograph was the image presented on top for every trial, it was not explicitly stated.

Also, the observers were told to look in and around the area of the cow. This was to reduce

any noise due to the randomized presentation order. In other words there were trials where it

was very obvious that the only difference between images was the cow, and there were others

where this was not the case. After a few trials though, every observer would be focusing their

attention around the cow and not in the areas of the image that remained constant.

The images were also evaluated using iCAM in the image difference configuration. Each of the 16

composite images were compared against the original photograph, resulting in image difference

maps (see Figure 3.16). Bright pixels indicate a larger difference between the photograph and

the test image. One of the inputs to the image difference model is the viewing distance. This is

used to calculate the pixels per degree as shown in Equation 3.6, which in turn blurs the image

appropriately to provide the spatial adaptation stimulus. The resulting contrast sensitivity

function (CSF) used by icam enhances perceptible frequencies and modulates those frequencies

that are less perceptible. In the equation, 100 represents the pixels per inch of the monitor and

ppd is the pixels per degree of visual angle. Note the multiplier of 2, which converts from cycles

per degree to pixels per degree. Each image was processed by adapting to the frequency content

and luminance of themselves. After the images have been processed they were compared to the

original processed photograph. Differences were only calculated for the cow and surrounding

area. This was to match the psychophysical experiment where observers were instructed to

focus their attention in that area.
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Figure 3.15: This image depicts the display presented to observers for the psychophysical
experiment. The reference photograph was placed in the top-middle portion of the screen, and
the two photographs to choose from were placed at the bottom of the screen, over a neutral
gray background.

ppd =
100[ppi]

180
π arctan( 1

viewdist)
2 (3.6)

The difference calculation was performed as follows. First the images were individually pro-

cessed both spatially and colorimetrically using the iCAM modules. The resulting images were

in the IPT [15] color space, an opponent color space. Then each of the composited images were

subtracted band-by-band from the photograph. The bands are squared, summed, square rooted

and then cropped to the area around and including the cow, resulting in the image difference

map as shown in Figure 3.16. Two types of analysis can be done on these images. The first
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Figure 3.16: This image shows an image difference map between the photograph and one of the
renderings.

was to look at each difference map individually to look for trends. The second was to reduce

these maps into a single number so relationships with other variables can be explored. Several

different techniques were performed for the latter. They included finding the maximum value,

median value, as well as several different percentile values. There are a limitless number of ways

to reduce this data, however only a few make sense. The idea was to choose methods that can

be explained at least initially in a perceptual manner, with the intent for others to continue

this research. These results are in Chapter 4.



Chapter 4

Results and Discussion

4.1 Renderings

In this section, the unprocessed renderings are shown. They have not been colorimetrically

adjusted, and therefore are in pbrt RGBs. Additionally, they have not been normalized by

the PTFE and therefore appear darker in order to display as much detail as possible. Figures

4.1-4.3 show the pbrt parameters set for each rendering, and the abbreviated name that will

be used in the rest of this document.

83
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Image 1 2 3 4 5 6 7

maxdepth 5

GI W W D D P P P

SPP 1 16 1 16 16 128 1024

Time [s] 7.4 88 103.7 1738 225 1909 16536

Name Whitted_1 Whitted_16 Direct_1 Direct_16 Path_16 Path_128 Path_1024

Figure 4.1: The rendering settings for the Whitted, Direct, and Path tracing integrators.

Image 8 9 10 11

spp 16

maxspeculardepth

&

maxindirectdepth

5

maxerror 2.0 2.0 0.02 0.02

nsamples 256 4096 256 4096

Time [s] 2912 3031 4066 40,000

Name Irrad_2_256 Irrad_2_4096 Irrad_02_256 Irrad_02_4096

Figure 4.2: The rendering settings for the Irradiance Caching integrator.
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Image 12 13 14 15 16

spp 16

maxdepth 5

directwithphotons T F F

finalgather T F T F

directphotons 10M -

indirectphotons 1M

causticphotons 20k

nused 150

maxdist 1.0 2.0 1.0 2.0 2.0

finalgathersamples 64 - 64 -

Shoot Time [s] 411 411 388 131 114

Render Time [s] 54K 1463 1214 53K 2395

Name Photon_d_1.0_nfg Photon_d_2.0_nfg Photon_d_1.0_fg Photon_i_fg Photon_i_nfg

Figure 4.3: The rendering settings for the Photon Mapping integrator
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The first two images (see Figure 4.4) are the renderings using the Direct Illumination surface

integrator with 1 and 16 samples per pixel respectively. The difference in the number of samples

per pixel essentially changes the total number of rays cast. Increasing the number of samples

per pixel using this integrator is essentially anti-aliasing the final image. This can be seen by

looking at the boundary between the top of the cow’s back and the vase. In the image using

only one sample per pixel, [spp], that line is jagged, as opposed to the smooth line seen in

the image with 16 [spp]. Looking closely, one can see this effect on the borders of all of the

objects. Additionally, more noise is seen in the shadows of the image with 1 [spp] image. It

is also noticed that the images rendered using the Direct illumination are very dark, especially

on the underside of the cow and on the vase. This is due to the fact that as the name suggests,

this surface integrator only accounts for the illumination that reaches a surface directly from

the sources, and not indirect illumination such as light that bounces off of the mirror, onto the

underside of the cow.

a b

Figure 4.4: Direct illumination integrator renderings with (a) 1[spp] and (b) 16 [spp] respec-
tively.

The next pair of images (see Figure 4.5) were rendered using the Whitted integrator. The image

on the left corresponds to using the Whitted integrator with 1 [spp], and the on the right is the
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Whitted with 16 [spp]. There are several things to notice in these images. First, as with the

Direct, the difference in the samples per pixel changes the number rays cast. Thus the image

with 16 [spp] shows smoother edges on the objects. It is also noticed that these images are very

dark, again like the Direct illumination surface integrator. Unlike the Direct, Whitted does

not explicitly exclude all indirect illumination effects. Whitted supports recursion for perfectly

specular or perfectly refractive surfaces, in other words, surfaces with delta type BRDFs. Since

all but the mirror are non-delta BRDFs, there is seemingly no indirect illumination effects. The

other obvious artifact in the Whitted images is the increased variance noise. The reason for

this is that since Whitted assumes simple recursive ray-tracing, it only samples the light source

once for each ray, as opposed to the Direct illumination where even with only 1 [spp], it still

computes the integral, sampling both the surface BRDF and the light source with 32 [spp] as

specified in the pbrt configuration files.

a b

Figure 4.5: Whitted integrator renderings with (a) 1[spp] and (b) 16 [spp] respectively.

The next three images were rendered using the path integrator. The path integrator is similar

to the Whitted in that it traces a ray into the scene, but will sample non-delta BRDF’s and

non-point sources to get an estimate of the indirect illumination. The only variable for the



CHAPTER 4. RESULTS AND DISCUSSION 88

path integrator is again the samples per pixel, essentially the number of rays cast into the

scene. The images from let to right were rendered with 16, 128 and 1024 samples per pixel

respectively. Again, with the path integrator the dominant source of noise, is noise of variance.

The variance noise is prevalent in Figure 4.6.a and is seen as the high-frequency pixel brightness

variation. With only 16 [spp], the noise is very apparent and distracting. As more rays are

cast, the variance decreases towards the mean value in a predictable manner. As a further

demonstration of this, a region corresponding to the back wall of the light-booth was selected

and the mean and standard deviation were calculated for each of the three images. In Figure

4.7, the standard deviation is shown decreasing while the mean remains virtually the same for

all three images.
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a b

c

Figure 4.6: Path integrator renderings with (a) 16[spp] and (b) 128 [spp], and (c) 1024[spp].
Notice the decrease in high frequency noise (variance) with an increased number of samples.
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Noise as a function of sample per pixel [spp]
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Figure 4.7: The noise decreases predictably with an increase in samples per pixel for the path
tracing integrator. In addition, the average pixel value is approximately constant regardless of
the number of samples per pixel.
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The next four images were rendered using irradiance caching (see Figure 4.8) to calculate the

indirect illumination component. The two parameters adjusted were the error metric value,

and the number of samples per pixel. Two levels of each were chosen; 0.02 and 2.0 for the

error metric, and 256 and 4096 samples per pixel. Four total images were rendered using the

combinations of these values. The absolute values of the error metric are perhaps meaningless,

but their relative relationship is not. As described earlier in Section 2.1.1, irradiance caching

pre-calculates irradiance samples at various locations. The error metric is used as a threshold

to determine whether or not additional samples should be calculated at render time. The larger

the value, the more error the algorithm is ‘willing’ to allow before calculating more irradiance

samples on the fly. In other words, the ray tracer will calculate the final result using fewer

cached samples.
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a b

c d

Figure 4.8: Irradiance caching integrator renderings. (a) and (b) were both rendered using 256
[spp] but with an error metric of 0.02 and 2.0 respectively. (c) and (d) were rendered using
4096 [spp] and the same 0.02 and 2.0 error metric respectively.
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The effect of the error metric is readily apparent in this set of images. In Figure 4.8-b the error

metric was set to 2.0, a relatively large value. One can almost see the area over which a given

irradiance sample is used. In Figure 4.8-a, the noise is of a higher spatial frequency due to the

increased number of irradiance samples cached using the error metric of 0.02. The other images

use show how the image artifacts change when the number of samples is changed. As shown in

previous examples, the increased number of samples reduces the noise and smoothes the image.

The final five images were rendered using the photon mapping surface integrator (Figure 4.9).

Within pbrt, there are many parameters that can be varied for photon mapping, but only a

couple were chosen, and within those parameters, only a few discrete points were used. The

parameters varied were whether final gathering was used, the maximum distance, and whether

or not the photon map was used to solve the indirect and direct lighting interactions, or only

the indirect. pbrt defines the maximum distance as the “maximum distance between a point

being shaded and a photon that can contribute to that point.” The first two images show the

photon mapping integrator being used to solve the entire radiative transport equation, with a

maximum distance of 1.0 and 2.0 respectively. As shown, there is essentially no visual difference

between the two images. The reason being, that the maximum distance of 1.0 was already too

large, so doubling it to 2.0 has no effect on the quality. The poorly chosen maximum distance

is what leads to the ‘splotchy’ appearance of the renderings when using photon mapping to

solve the direct interactions. However, in Figure 4.9-b, the parameters are the same, with the

exception of using final gathering. The final gathering option goes a long way to increasing the

quality. The final two images used the photon mapping algorithm to solve the indirect portion

of the integral only. The first image did not use final gathering. While it looks significantly

better than Figures 4.9-a,b, there is still some “splotchiness”, as well as other large errors such

as the purple spot to the right of the vase and the dark area on the PTFE. The last image used

photon mapping with final gathering to solve only the indirect interactions. In this image the

final solution produces a very nice image, with no splotches, or large artifacts. The cow is very
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smooth, and the indirect, colored interactions are displayed clearly on its belly. To this point,

one may choose this as the best rendering. However, as will be shown later, that was not the

case for the augmented reality images, due in part to the fact that the full-rendered images

were not shown to observers, only the cow composited into a photograph.
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a b

c d

e

Figure 4.9: Photon mapping surface integrator renderings. (a), (b) and (c) all used the photon
map to solve both the indirect and direct illumination. In addition, (c) used final gathering to
reduce the visible artifacts. (d) and (e) used the photon map to solve the indirect component
only with and without using final gathering respectively.
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As stated earlier, the primary noise associated with path tracing was noise of variance. Photon

mapping, however, exhibits bias. In other words, the final solution may have little noise, but an

incorrect average pixel value, unlike path tracing, which predictably gets more accurate with

more samples. So, image quality is not necessarily correlated to the correct pixel value. From

the path tracing example shown above (Figure 4.7), the correct value for the average pixel value

is approximately 70. Even with a large amount of noise, the average value is still very close

to 70. With photon mapping however that value jumps from 65.2 to 87.2, while the standard

deviation varies from 8.4 to 2.6. Additionally, it will be shown later that with photon mapping,

these statistics do not correlate with the best perceived image.

4.2 Composite Renderings

This section discusses the final composite renderings that were presented to observers during

the psychophysics experiment. The rendered cow was composited onto the photograph of the

lightbooth scene and color calibrated for the Apple Cinema Display. A few things should be

noted before presenting the results of the experiments. First, it should be apparent that the

shadow of the cow onto the lightbooth floor is the same for all images. As explained in Section

3.4, it was decided early on to use the shadow of real cow from the photograph to avoid any

additional error, primarily geometric distortion. The justification was that any artifacts visible

in the shadows would also be visible in the cow, and thus including the rendered shadows

should not change the results. Also, recall that the goal of this research was not to determine

absolutes about specific rendering algorithms, but more importantly, the relationship between

psychophysics and iCAM predictions.

The images are labeled below corresponding to the rendering algorithm used (see Figure 4.10).

In general, the information presented in the previous section sufficiently describes the images

and the artifacts present in the final composite images. However, there are a couple of things
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to discuss. Prior to display on the 8-bit monitor, all of the images, including photographs and

renderings, were stored in formats that supported at least 16-bits of information. This larger

bit-depth sufficiently captured the dynamic range of the original scene in the lightbooth. In

other words, detail was preserved in the shadows and specular highlights on the vase. In order

to preserve as much of that information as possible on an 8-bit display, complex tonemapping

algorithms would need to be used. However, since the images were only slightly higher dynamic

range than could be displayed on an 8-bit monitor, no-such tonemapping algorithm was used.

Rather, as the raw images were being processed through the LCD model, out-of-gamut colors

were simply clipped. This had the biggest impact on the specular highlights on the top of the

vase, as well as the top of the cow. Pixel saturation can be seen if one pays close attention.

After all images had been processed, observers performed the experiment.

4.3 Psychophysics

Thirty one observers took part in this experiment comparing the composite images against

each other and the real photograph. The observer pool consisted of 15 expert, including the

author, and 16 naive observers. The typical time to complete the experiment ranged from

approximately 10 to 20 minutes, although the exact time taken for an observer to complete

the 136 comparisons was not recorded. The observers were allowed to take as much time as

necessary to make a decision for a given trial pair. They were limited only by the brief time the

noise images were shown between trials. The error bars used in this research were calculated

using the method described in [40]. This method is empirical and takes into account not only

the number of observations, but also the number of stimuli. In the case of this research, there

were 31 observers and 136 pairs, both fairly large numbers, which should lead to smaller 95%

confidence intervals (CI).

Figure 4.11 shows the combined results of naive and expert for the paired comparison experi-
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Whitted_1 Path_16Direct_1 Whitted_16 Direct_16

Path_128

Path_1024 Irrad_2_4096Photon_i_nfg Photon_d_2.0_nfg Photon_d_1.0_nfg

Irrad_02_256

Irrad_02_4096

Photon_i_fg

Photon_d_1.0_fg

Irrad_2_256

Photograph

Figure 4.10: The composite images, along with a map of the rendering algorithm used. These
images are being shown in RGBs optimized for the Apple Cinema LCD that was used for
the psychophysics experiment. Additionally, only the entire photograph is shown due to size
constraints.
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ment. This plot shows the interval scale value for each of the rendering algorithms used, as well

as the photo. Large negative numbers represent the worst images based on the question asked,

and increase with increasing quality of the image. There are a couple of important results

that can be seen. First is the importance of using a full-global illumination algorithm. Direct

illumination, and for the purposes of this scene, Whitted surface integrators, were chosen by

the observers as less like the original. This result is not a surprise remembering the question

for the observers was to choose the image most like the original, and not which they preferred.

However, observers consistently chose the noisier results of algorithms such as path tracing, to

the smooth, but dark cows created by the Direct and Whitted algorithms. The only exception

to this is the extremely noisy result of the path tracing integrator using only 16 [spp] and

the direct illumination integrator also using 16 [spp]. The path tracing image demonstrates

significant amount of noise in capturing the indirect illumination effects, whereas the direct

illumination produces a cow that is dark, but with very smooth tone transitions. As the plot

shows, the observers did not think one image was closer to the photograph than the other within

the 95% CI’s.

The final important result shown in the graph is the image created using photon mapping to

solve both direct and indirect illumination with final gathering was chosen (outside of the 95%

CI’s) by observers to be a better reproduction of the photograph, than the photograph itself!

The composited image using photon mapping does indeed look a lot like the original, with the

exception that it is a bit brighter. The author proposes the following explanation for this result.

The observers were unaware of the fact that the image on the top was the original photograph,

or that it never changed. Additionally, they were unaware that the original photograph, the

same as the image at the top of the screen, was randomly being presented in the test pairs.

Perhaps then the observers, particularly the naive, were assuming that every image presented

to them was in some way manipulated from the original image. Therefore they switched their

criteria from image accuracy to preference, thereby choosing the image with the brighter cow.
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Psychophysical Experiment Results
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Figure 4.11: The interval scale plotted against the rendering algorithm for the entire pool of
obsevers.

This is still valid, because in cases where they are very different or very similar, the observer

is being asked to make a comparison where two images may be equidistant along two different

axes, and therefore must choose one image or the other, resulting in a 50% likelihood of either.

In order to explore this further, the data were divided into naive and expert observers and

analyzed again. The following plots in Figures 4.12-4.14, show the results when analyzed this

way. The first plot shows the naive results plotted versus the interval scale, with recalculated

error bars. There are a couple of interesting results. First, the photograph is ranked even lower

on the scale, implying all rendering algorithms above it are at least the same visually as the

photograph. Also, the naive observers tended rank all of the dark (i.e. no indirect illumination)

as the worst in terms of accuracy to the original photograph with the exception of the noise

path tracing rendering (path 16) which is equally bad as whitted 16 and direct 16.

The next plot (Figure 4.13), shows the results of the psychophysical experiment for the expert

observers only. Interestingly, the experts disagree with the naive observers in that the path
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Figure 4.12: The interval scale plotted against the rendering algorithm for the naive obsevers.

tracing rendering with 16 [spp] is a lot worse than the direct with 16 [spp], however it is still

within the error bars. Also, the experts ranked the irrad 02 256 (irradiance cache, 0.02 error

metric, 256 samples per pixel), as being in the low grouping for accuracy. Both the path 16 (path

tracing, 16 samples per pixel), and irrad 02 256 displayed a significant amount of high frequency

noise in the cow. Also, the experts ranked the photograph at the top, which one would expect.

However, it is still within the error-bars of the next best rendering using photon mapping and

final gathering, the same image the naive group judged as most accurate. In the case of the

experts, they chose the smoothest photon mapping image. The final plot in Figure 4.14 shows all

of the psychophysical experiment results together. In nine out of seventeen stimuli, the expert

and naive groups disagreed significantly. If nothing else it points out the need to look within

the observer pool to understand the trends. When the two groups are examined separately, it

is obvious that to the naive observers believe the photo is not the best statistically, and to the

expert observers, it is. In either case, it is possible to create augmented reality images using
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Figure 4.13: The interval scale plotted against the rendering algorithm for the expert obsevers.

a global illumination algorithm such as photon mapping, irradiance caching or path tracing,

yielding a realistic result, indistinguishable from the original to human observers.

4.4 iCAM versus the Psychophysics

This section discusses the results using iCAM to compute an image difference. In general,

one would expect that iCAM should predict a large image difference where the psychophysics

scale value is small as well as the converse. Several different analyses were completed using

iCAM. The first is a general plot (Figure 4.15), similar to the ones in the preceding section.

However, keep in mind that low image difference values imply a closer match to the original

photograph. Of course, in this computational example, the photograph will always receive an

image difference of exactly 0. Additionally, as one might expect, all of the Whitted and direct

integrator images have a significantly larger image difference than all of the other algorithms
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Figure 4.14: The interval scale plotted against the rendering algorithm for the entire pool of
obsevers along with the naive and expert separately.

due to the fact that they do not incorporate indirect illumination effects. Other than that, the

only thing that can be said about this plot, in general, is that it appears that the irradiance

caching and photon mapping algorithms yield images with a larger difference than the path

tracing. It seems then that iCAM calculates a smaller image difference for the noisy unbiased

path tracing algorithms rather than the biased algorithms. The spatial noise is weighted less

than the absolute color difference.

The next logical thing to do is to compare the iCAM results against the psychophysics results.

Recall that iCAM inherently produces an image difference map as shown in Figure 3.16, yet

in the plots a single number is used. In all cases it was determined that the 92nd percentile of

the image difference map was a reasonable method to reduce the data. It highlighted the area

of the image that observers considered when making a decision. If one looks at those other

percentiles, either too much or too little of the cow and surrounding area is included. Other
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Figure 4.15: The 92% threshold of the iCAM image difference maps for each of the rendering
algorithms is shown. Higher values indicate less accuracy to the original photograph.

statistics of the image difference images were calculated and included the mean and median,

but were quickly discarded. The rationale was because statistics, such as the mean, would

not correspond to real observers who performed the experiment, and imply a person is able

to average all of the color differences and then make a judgement. This is typically not the

behavior observed. Most people search for the first differences they see, which is more analogous

to the percentile concept. Remember that the observers were asked to look at two images and

choose the one that was closest in terms of accuracy to the photograph. Humans do not look

at all of the differences for each image and then take an average. They start by looking at the

most extreme differenes. As they need to examine the images more closely for differences, they

are looking at the less extreme color differences, until one image looks worse than the other.

Figure 4.16 shows all of the image difference maps along with a scale for the magnitude of the

pixel values for each rendering algorithm. As expected, large, uniform differences are shown for
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the Direct and Whitted algorithms especially underneath the cow where no indirect illumination

is calculated. Also interesting is the high frequency noise especially prevalent in the path 16

and irrad 02 256 images. The noise has been blurred slightly from the original images due to

the icam spatial filtering. Figure 4.17 shows the image difference maps with the 92nd threshold

applied. Again one can see the pixels in white above that threshold. As stated earlier, this

threshold does a good job of highlighting the differences that are most perceptible to a human

observer.

The plot (Figure 4.19), shows iCAM versus the paired comparison interval scale for all observers

combined. Recall that an inverse relationship (negative slope) is desired. In general, the plot

shows this relationship, with an r2 = 0.55 if all data points are included. It is apparent that

there are three significant outliers, shown in red. These three correspond with irradiance caching

(error = 0.02, 256 [spp]), path tracing (16 [spp]) and path tracing (128 [spp]). If these three

images are removed from the data set, a much stronger relationship exists with a r2 = 0.9217 as

well as a higher slope. It is obvious that the common characteristic of these three outlier images

is a significant amount of high frequency noise. Referring back to the plot, according to the

psychophysics, these three images scored low on the interval scale. One would expect a large

image difference value calculated by iCAM, which is not the case. Recall that iCAM computes

an image difference map, which is then reduced to a single number using the 92nd percentile

statistic. This procedure of reducing the difference map to a single value does not explicitly

include any spatial information such as high frequency noise. This is an extremely important

as one of the major advantages of using iCAM versus a simple color difference equation is the

incorporation of the spatial dimension.
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Figure 4.16: Image difference maps calculated using icam, between the all-real photograph,
and each of the composite photographs.
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Figure 4.17: Image difference maps with the 92nd percentile threshold applied. White pixels
indicate image difference values above the threshold.
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85% 90% 95%

99.5% 99.9%

Figure 4.18: Image difference map where white are all of the image difference values above the
annotated threshold level.

4.5 Rendering Time versus Accuracy

This section presents a plot showing the iCAM image difference scale (Figure 4.20) versus

the rendering time in seconds. An analytical relationship is difficult to derive from this plot

due to an insufficient number of data points within a given rendering algorithm. In general,

the algorithms that took longer to compute yielded images that the observers judged as more

like the original photograph. The only exceptions are the Direct and Whitted data points

which took a longer time to render due to more samples per pixel. For approximately the

same computation time, any number of algorithms can be chosen to give better results such as

photon mapping using final gathering. Another way to look at it is for a given computation

time, say approximately 3000 seconds, there is a large variance in the perceived accuracy within

and between algorithms. This leads to the idea of specifying the maximum amount of compute

time available, and adjusting the algorithm settings until an acceptable image is produced.
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iCAM vs. Psychophysics
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Figure 4.19: iCAM vs. the psychophysical experiment results, with the three outlier data points
removed from the data fit.

4.6 Tolhurst’s method

This section is presented purely out of interest. The author met researchers from the UK while

at a conference, who were developing an algorithm similar to iCAM, but from a completely

different starting point, primarily physiology and psychology. The details of the algorithm are

given in [53]. Essentially “a low-level model calculates differences in local contrast between

pairs of images within a few spatial frequency channels with bandwidth like neurons in V1 (pri-

mary visual cortex)” [43]. Their original research was looking in to how human discrimination

changes as a function of the ‘naturalness’ of an image. Naturalness is defined in terms of the

Fourier spectrum having a stable relationship between the frequency and the amplitude of that

frequency. This idea shown as an equation is:
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Rendering Time vs. iCAM
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Figure 4.20: iCAM versus the rendering time.

Amplitude(f)α
1
fα

. (4.1)

From this research they developed a model of visual discrimination, and were interested in

processing this data with their model. The author provided them with the cropped images

in XYZ space, as predicted by the LCD forward model of the monitor RGB images (clipping

maintained), the maximum luminance of the display, as well as the the maximum luminance

of the Apple Cinema Display (100 cd
m2 ). Results were emailed back, and are presented below.

The first plot shows their scale, called Tolhurst’s Values, plotted against the psychophysics

interval scale. As can be seen, similar results are obtained using their discrimination model or
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Tolhurst's Method vs. Psychophysics Interval Scale
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Figure 4.21: The psychophysical interval scale vs Tolhurst’s method with the outliers included
in the regression.

iCAM. This is encouraging in the fact that two different approaches based on human vision are

yielding similar results. Additionally, it is also noticed that there are the identical outliers in a

similar pattern. This could indicate that neither model is capable of capturing some perception

phenomena, or perhaps the psychophysics yielded an error. More research will need to be

completed to answer this question.
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iCAM Image Difference Value vs. Tolhurst's Method
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Figure 4.22: The iCAM image difference values vs Tolhurst’s Method with outliers included in
the regression.
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Tolhurst's Method vs. Psychophysics Interval Scale
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Figure 4.23: The psychophysical interval scale vs. Tolhurst’s method with the same three
outliers removed.



Chapter 5

Conclusions and Future Directions

The goal of this research was to begin to explore various global illumination rendering algo-

rithms, specifically those based on ray-tracing, as applied to the rendering synthetic objects into

real photographs. Furthermore, these algorithms in conjunction with augmented reality were

analyzed through the use of psychophysical experiments and iCAM, a computational model of

human vision. Through all of this, one could hopefully learn something about image synthesis,

the human visual system and perception, and perhaps the confluence of the two.

In terms of image rendering, several things were learned, specifically when applied to rendering

synthetic objects into real photographs. First, it seems that any global illumination algorithm

will perform better than one that does not account for indirect illumination, except in the

presence of significant noise of variance. This may not seem like a significant effect, until

one considers the stimuli for the experiment. Consider the images rendered with the Direct

illumination integrator as compared to the path integrator. Both the expert and naive observers

ranked the noise path tracing image lower than the direct integrator with 16 [spp]. However,

iCAM calculates the greatest image difference for all four algorithms that do not consider

indirect illumination. There were trials where the observer was presented with two images that

114
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a b c

Figure 5.1: (a) The irrad 2 256 rendering, notice the artifacts on the vase and cow. (b) is the
extracted cow, the artifacts are harder to see, unless one compares to the rendering. (c) The
final composite with some clipping applied, making the artifacts harder yet to see.

may have been equally ‘wrong,’ leading them to judge a preference rather than accuracy.

Secondly, the experiments concluded that rendering time alone is not a direct indicator of the

most accurate match to an original. It is generally true that more samples (i.e. more time) are

required to achieve a better rendering especially for unbiased algorithms such as path tracing.

However, when biased and unbiased algorithms are pooled, this is no longer the case. Stated

differently, Figure 4.20 shows algorithms that take roughly the same time to render, but vary

wildly both psychophysically and to iCAM. Related to this result is the fact that the most

refined or ‘tuned’ rendering will always rank the best. Again this is true both for iCAM and

the psychophysics. Clarifying, this result is most likely the case for the augmented reality

application only. In other words, let us assume one looks at the entire rendering with all of the

artifacts, and then extracts one object such as the cow and composites that into a photograph

and compares the two images (see Figure 5.1). The cow does not necessarily appear as bad as

the entire rendering because the artifacts are not as pronounced. This could be because of the

material or lighting, or a number of other things. The converse is probably also true that some

rendered objects show much more of the artifacts than the original rendering, thus making the

final composite appear worse.
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One of the most promising results was the correlation between iCAM and the psychophysical

experiment. The expected relationship was present, with some outliers. The outliers all tended

to be the renderings that had high frequency artifacts, where as the other images contained

lower frequency artifacts. In other words, it seems as though the human observers judged these

images using different criteria than the other 13 stimuli. Remember that there was strong

agreement of these results with those from the researchers in the UK with those obtained from

iCAM. Not only did they produce a similar relationship with iCAM, there were also the same

artifacts present. Again this could be indicative of a deficiency in the models, or something

with the manner in which the observers were making judgments during the experiment.

This last result leads to a discussion of future recommendations. First, it would be interesting to

work further with these researchers in the UK and complete more psychophysical experiments

to see under what conditions iCAM and their method agree and disagree. This would likely

further the refinement of both. In doing so, the conclusions from this research could also be

solidified by testing a variety of scenes. The scene used in this experiment appeared non-realistic

in real life, which may have impacted the results.

In addition, it would be nice to enhance the pipeline for creating an augmented reality image.

This includes more algorithms to calibrate the scene and camera. A more general compositing

process could be implemented as described in the background and theory. More specifically, the

effects of the object on the scene and scene on the object could be generically included. Also,

more rendering algorithms could be used, including local illumination shaders that use a hack for

the ambient term. It would be interesting to see where along the continuum these algorithms

would fall. It is also possible to implement some of these algorithms and other shaders in

GPU’s (graphics processing unit), allowing even more possibilities of real-time rendering and

interaction with the real scene. Ideally, it would be interesting to use this research to extract a

baseline ‘threshold for reality.’ This could be used with iCAM in the rendering loop to produce
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images that are believed to be within an acceptable accuracy to an original. Of course, all of

these results would then be analyzed psychophysically. This is, of course, more tractable when

the image rendering is on the order of minutes (GPU) rather than days with a ray-tracer.

Perhaps the most important recommendation is to continue research in reducing the data

in image difference maps to a single number. The strength of iCAM is that it produces a

map, of image differences. In other words, it calculates color differences spatially on complex

spatial stimuli images. It seems counterintuitive to discard that spatial information in order

to determine a relationship with a psychophysical experiment. This research clearly points

out the need for more study into the reduction of the map into a single number. The author

believes all of information is there at various stages of the iCAM image processing. Parameters

could be derived at these various steps, and a multi-variable equation derived that reduces the

difference map, including the color and the spatial characteristics. The outliers in the iCAM

/ psychophysical relationship may not be outliers at all, but just not completely described by

the 92nd percentile statistic.

In completely different direction, it would be very interesting to apply the compositing technique

(in a more refined mode) to the remote sensing modality. For example, there are many existing

image data sets flown over areas with known sensors. This information could be input into

a spectral radiometric renderer such as pbrt or Dirsig along with a local model of an area

to be augmented and a composite image created. There are a lot of details to be wary of

including sensors and absolute radiometry, but this could bridge the gap between doing large

scale modeling and using existing data sets as they are.
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Appendix

This appendix shows some of the ancillary files, scripts and data used in this research.

A.1 Spectral Reflectance of Materials
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Spectral reflectance of objects in the scene
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Figure A.1: Measured spectral reflectance of the objects used in the research.
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A.2 Tcl Script to break and monitor rendering jobs

#!/usr/bin/tclsh

#create a master list of pbrts to run?

#Need to add the ability to create cow and no cow images

#Grab the pbrt filename from the command line arguments

proc split_jobs {fname nimages} {

#set the number of images to break the pbrt cfg file into

#set inc [ expr 1.0 / $nimages ]

set inc 0.1869

#open the pbrt file for reading

set templateId [open $fname r]

#decided to read the file using gets rather than read, which reads the file in

#one line at a time and appends each line, as a string, to the list infile

while {[eof $templateId] < 1} {

lappend infile [gets $templateId]

}

close $templateId

#search for cropwindow in each of the entries of the infile list

#which returns the index of the occurrence

set croplinenumber [lsearch -regexp $infile cropwindow]

#hard coded to strip off [0 1 0 1] from the end of the cropwindow line
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set minuswindow [string range [ lindex $infile $croplinenumber ] 0 23]

#search for filename in each of the entries of the infile list

#and strip off the original filename assumed to be $fname.exr"]

set exrfilename [string trimright $fname .pbrt]

set filename_linenumber [lsearch -regexp $infile filename]

set filenameline [lindex $infile $filename_linenumber]

set minusexrfilename [string trimright $filenameline "$exrfilename\.exr\"\]" ]

#puts stdout $minusexrfilename

#set boo [lindex $crap $croplinenumber]

#puts stdout $boo

#Maybe just loop through and make nimages lists and then write out the

#nimages lists to the nimages filenames created below

#Initializing the variables to create the files

# set upinc 0

set upinc 0.3178

set newname [string trimright $fname .pbrt]

set dirname [string toupper $newname]

file mkdir $dirname

cd $dirname

#This loop is the meat of the program. It first creates tempstr, which is

#the new cropwindow values in the square brackets, [0 0.125 0 1] for example.
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#The upinc is then incremented by the inc (0.125 for 8 images), and then

#a new string is created called nline which is the concatenation of

#the line from above with the [0 1 0 1] removed, and the tempstr just created.

#A new list is created called outfile, which is essentially the same as

#the infile list read from the pbrt file, with the cropwindow line (a string variable)

#replaced with the new cropwindow line. Then a file name is created of the form

# "oldfname_i.pbrt" inside of the $dirname and the file is opened for reading.

#The outfile, a list variable, is written line by line to that filename.

#I also execute pbrt from within this script, and catch any errors

for {set i 0} {$i < $nimages} {incr i} {

set poo "$newname\_[expr $i + 1]"

set tempstr "\[$upinc [expr $upinc + $inc] 0.4693 0.8883\]"

set upinc [expr $upinc + $inc]

set nline "$minuswindow $tempstr"

set exrline "$minusexrfilename$poo\.exr\"\] "

set outfile [ lreplace $infile $croplinenumber $croplinenumber $nline]

set outfile [ lreplace $outfile $filename_linenumber $filename_linenumber $exrline]

set tempId [open "$poo\.pbrt" w]

for {set j 0} {$j < [ expr [ llength $outfile] - 1] } {incr j} {

puts $tempId [ lindex $outfile $j ]

}

close $tempId
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#puts stdout [pwd]

set command1 "$poo\.pbrt"

set command2 "$poo\.log"

#puts stdout " $command1 $command2"

if [ catch { exec nohup pbrt $command1 >>& $command2 &} result] {

global errorInfo

puts stderr $result

puts stderr "***Tcl TRACE****"

puts stderr $errorInfo

} else {

#command body ok, result of last command is in result

}

unset poo

}

}

#This loop is the main program that loops through the major pbrt files

#and then calls the split_jobs procedure described above. It then invokes the

#after command, and sets x to the list of exr files in the directory where pbrt
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#is rendering. Once the number of exr images is nimages, that image is completely

#rendered and the program can then move on to the next pbrt file and repeat the process

set pbrtfiles [ glob *.pbrt]

set nimages 2

#set waittime 300000

set waittime 60000

for {set i 0} {$i < [llength $pbrtfiles]} {incr i} {

split_jobs [lindex $pbrtfiles $i] $nimages

set dname [string toupper [string trimright [lindex $pbrtfiles $i] .pbrt] ]

set x 0

#set x [glob -nocomplain $dname\/*exr]

while {$x < $nimages} {

# puts stdout [pwd]

after $waittime {set x [glob -nocomplain *exr] }

vwait x

# puts stdout [ llength $x ]

}

cd ..

puts stdout [pwd]

}
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