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Abstract

Hyperspectral and Hypertemporal Longwave Infrared

Data Characterization

Nirmalan Jeganathan, M.S.

Rochester Institute of Technology, College of Science, 2017

Supervisor: Dr. John Kerekes

The Army Research Lab conducted a persistent imaging experiment

called the Spectral and Polarimetric Imagery Collection Experiment (SPICE)

in 2012 and 2013 which focused on collecting and exploiting long wave infrared

hyperspectral and polarimetric imagery. A part of this dataset was made for

public release for research and development purposes. This thesis investigated

the hyperspectral portion of this released dataset through data characteriza-

tion and scene characterization of man-made and natural objects. First, the

data were contrasted with MODerate resolution atmospheric TRANsmission

(MODTRAN) results and found to be comparable. Instrument noise was char-

acterized using an in-scene black panel, and was found to be comparable with

the sensor manufacturer’s specification. The temporal and spatial variation
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of certain objects in the scene were characterized. Temporal target detection

was conducted on man-made objects in the scene using three target detection

algorithms: spectral angle mapper (SAM), spectral matched filter (SMF) and

adaptive coherence/cosine estimator (ACE). SMF produced the best results

for detecting the targets when the training and testing data originated from

different time periods, with a time index percentage result of 52.9%. Unsuper-

vised and supervised classification were conducted using spectral and temporal

target signatures. Temporal target signatures produced better visual classifica-

tion than spectral target signature for unsupervised classification. Supervised

classification yielded better results using the spectral target signatures, with

a highest weighted accuracy of 99% for 7-class reference image. Four emissiv-

ity retrieval algorithms were applied on this dataset. However, the retrieved

emissivities from all four methods did not represent true material emissiv-

ity and could not be used for analysis. This spectrally and temporally rich

dataset enabled to conduct analysis that was not possible with other data col-

lections. Regarding future work, applying noise-reduction techniques before

applying temperature-emissivity retrieval algorithms may produce more real-

istic emissivity values, which could be used for target detection and material

identification.
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Chapter 1

Introduction and Objectives

And then there was light. And from the beginning of time, light was

considered to be pure and singular, until in 1666 Isaac Newton showed that

natural light contained colors using two prisms. This knowledge instigated

more questions (i.e. What caused the colors? Was light a particle or a wave?)

which in turn led to major discoveries made by Newton and other researchers

in modern physics and electro-optics [14]. One product of these discoveries

and research that we take for granted presently and make use regularly is

the camera. Ibn-al-Haytham made a mention of this kind of device in his

book, Book of Optics in 1021. The first camera was designed by Johann Zahn

in 1685, but the first photograph was taken in 1814 by Joseph Nicephore

Niepce. Since the earlier cameras were incapable of saving the images, the

first practical photography was credited to Louis Daquerre in 1829. Many

people then started working on improving this technology, and in 1940, color

photography at commercial level started to take effect [9].

The framework for remote sensing, the field of study associated with

extracting information about an object without coming into physical contact

with it [19], was laid by the discoveries of the interrelations among color,

1



frequency, and wavelength since these fundamentals principles can be used

to characterize the reflection of light against objects. Using these principles

and the practical improvements in camera/sensor technology, the integration

of remote sensing technology was inevitable once modern aviation became a

safe and viable platform. Two strong advocates for remote sensing were the

U.S. Departent of Defense (DoD) and the National Aeronautics and Space

Administration (NASA) who sponsored the development of many systems.

The first class of remote sensors used for aerial photography, reconnaissance,

and surveillance were monochrome and panchromatic cameras. In the 1960s,

the DoD U-2 reconnaissance planes carried infrared film cameras retroffited

with special spectral filters. These cameras were among the first multispec-

tral cameras in existence. In July 1972, NASA launched the Earth Resources

Technology Satellite (ERTS), later to be known as Landsat 1, which was the

first system capable of producing multispectral (few spectral bands) data in

digital format. The advances in computer technology resulted in faster com-

puters that could handle the enormous amount of data collected from new and

improved spectrometers, which made the way for hyperspectral (hundreds of

spectral bands) remote sensing to flourish in the defense and commercial sec-

tors [14].

Numerous hyperspectral data collects, both ground-based and airborne,

conducted by government and commercial sectors produced large datasets,

many of them available to the public for research. However, very few col-

lects focused on obtaining data for longitudinal studies (data collected over

2



a period of time). One such rare longitudinal data collect was the Spectral

and Polarimetric Imagery Collection Experiment (SPICE). The SPICE was

a collaborative effort between the US Army Research Laboratory (ARL), US

Army Armament Research, Develepment and Engineering Center (ARDEC)

and the US Air Force Institute of Technology (AFIT) focused on collecting and

exploiting long wave infrared (LWIR) hyperspectral and polarimetric imagery.

SPICE autonomously collected an expansive dataset of hyperspectral and po-

larimetric modalities spanning multiple years in a wide range of meteorological

conditions. Essentially, hyperspectral and polarimetric sensors continuously

imaged a scene approximately every five minutes spanning diurnal cycles and

multiple seasons in 2012 and 2013 [35].

This thesis characterizes the SPICE dataset from a top-down perspec-

tive. First, the data are validated through computer simulation, the instru-

ment noise characterized, and the temporal and spatial variability of materials

examined. Next, the scene is characterized through target detection and clas-

sification. Finally, the materials in the scene are identified through emissivity

signatures.

Overall, this thesis has two objectives:

Objective 1: Characterize the dataset in detail and conduct comprehensive

analysis for further understanding.

Objective 2: Characterize the objects in the scene.

Objective 1 will be accomplished by completing the following tasks:

3



• Locate and remove erroneous data to improve dataset quality.

• Validate data with MODTRAN.

• Characterize the instrument noise.

• Characterize the temporal variability of materials in scene.

• Characterize the spatial variability of materials in scene.

Objective 2 will be accomplished by completing the following tasks:

• Conduct temporal target detection.

• Conduct hypertemporal classification.

• Retrieve emissivity for material identification.

Chapter 2 describes the SPICE collection, including the location of the

collect, the sensor used, the targets in the scene and the data released by

ARL. Chapter 3 summarizes previous studies conducted on similar dataset to

SPICE and analysis conducted on SPICE dataset. Chapter 4 confirms the

data through computer-simulated results, characterizes the instrument noise

using an in-scene object, and characterizes the temporal and spatial variation

of select materials. Chapter 5 characterizes the scene through temporal target

detection and hypertemporal classification. Chapter 6 applies temperature-

emissivity algorithms to retrieve material emissivity. Chapter 7 summarizes

this thesis and presents future work recommendations.
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Chapter 2

Data Set Description

This chapter describes the dataset used in this thesis. It details the

purpose and description of the collection, the location of the collect, the sensor

used, the targets being imaged, and the calibrated data provided by ARL.

2.1 SPICE Data Collection

Despite a high number of publications on adaptive detection and recog-

nition algorithms produced by geoscience and remote sensing community re-

searchers, a considerable percentage of researchers in this community believed

that human innovation and idealized mathematical concepts alone will not

solve the pattern recognition problem. Data were indispensible and needed.

Especially if different sensing modalities, such as hyperspectral and polari-

metric, were to be used for material pattern recognition in remote sensing

applications, additional data were essential [35].

The ARL and ARDEC understood this requirement and acted on it.

With collaboration from AFIT, ARL and ARDEC collected the SPICE data.

SPICE’s aim was to collect a comprehensive dataset of hyperspectral and

polarimetric modalities spanning multiple years with the intent to capture
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sensor performance in a large range of meteorological conditions. The diurnal

data were collected with the scene being continuously imaged approximately

every five minutes, with about 20 seconds for one image to be captured. A

portion of this full dataset was made for public release and disseminated to

the open scientific community for algorithmic research and development [35].

The Digital Imaging and Remote Sensing (DIRS) lab from Rochester Institute

of Technology (RIT) received a portion of the hyperspectral collect of this

released dataset containing several months of data from 2012 and 2013. These

data were studied and reported on this thesis.

2.2 Location

The Precision Armaments Laboratory (PAL), located at ARDEC, Pi-

catinny Arsenal, New Jersey (40o55’40.8”N 74o34’52.0”W) specializes in testing

sensors under adverse weather conditions. For SPICE, the sensors (hyperspec-

tral and polarimetric) were placed atop the 65-m PAL tower (effective height

of 126 m since the tower was positioned atop a 61-m ridge) and the target

site area was 549 m from base of the tower (as seen in Figure 2.1). This

thesis only covers analysis conducted on data obtained by the hyperspectral

sensor. An automated meteorological instrumentation site was located close

to the tower, and its measurement instrumentation included wind speed, wind

direction, temperature, humidity and barometric pressure [28]. A detailed list

of PAL basic meteorological instrumentation types was provided in a previous

publication [29].
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Figure 2.1: The PAL tower, where the sensors were placed, and the target site
[3]

2.3 Sensor

The Telops Hyper-Cam Long-Wave (LW) was used for data collection.

It was a commercially available lightweight Fourier-transform spectrometer

LWIR imager which incorporated a 320 by 256 photovoltaic mercury cadmium

telluride (PV MCT) focal plane array (FPA) [35]. Sensor specifications are

provided in Table 2.1 [28] and the sensor is shown in Figure 2.2.
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Table 2.1: Hyper-Cam LW sensor specification
Region of spectrum (µm) 7.7 to 11.5
Focal length (mm) 86
Cooled FPA 320 by 256
Pixel size (µm) 30
Instantaneous FOV (mrad) 0.35
Black body Internal (2)
Spectral resolution (cm-1) 0.25 to 150
Typical NESR (nW/cm2sr·cm-1) <20

Figure 2.2: Telops LW Hyper-Cam

2.4 Targets

The target site consisted of man-made objects surrounded by natural

vegetation. The man-made targets included three surrogate Russian 2S3 how-

itzers (tanks) oriented in aspect angles of 0o, 90o, and 135o (counterclockwise)

with respect to the sensor, a white panel (skyplate/aluminum panel) and a

black canvas as shown in Figure 2.3 [35].

8



Figure 2.3: Area imaged by Telops Hyper-Cam with a selection of man-made
objects labeled, adapted from Rosario et al [35].

2.5 Accessed Data

ARL conducted SPICE spanning two years, 2012 and 2013. The Telops

LW Hyper-Cam imaged the target site approximately every five minutes. It

took approximately 20 seconds for one image to be captured. The full SPICE

dataset contained over 25 000 LWIR hyperspectral data cubes. The mete-

orological instruments collected data approximately every 2 seconds. The

meteorological data were matched with the corresponding Hyper-Cam data

in accordance with capture time. All the collected data were processed and

delivered in HDF5 file format. Data provided to Rochester Institute of Tech-

nology (RIT) for this study included 5855 LWIR HDF5 files, encompassing 18

days from 2012 and 8 days from 2013 (described in Table 2.2).
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2.5.1 Processed Data

ARL received the SPICE raw data and its corresponding blackbody

raw data in HDF5 file format. These files were used to generate calibrated

files via IDL software written by Dr. Christoph Borel-Donohue [13]. A Quick

Temperature-Emissivity Separation (QTES) algorithm was applied to retrieve

the emissivity [12] [13]. All calibrated data were written in HDF5 file format.

The data in each HDF5 file provided by ARL had, among other data, three

hyperspectral cubes: calibrated spectral radiance, brightness temperature and

relative emissivity. Each 2012 data cube had 256 × 320 pixels × 165 bands.

The 2013 data had its spatial window size altered and its dimensions were

224 × 300 pixels × 165 bands. The 165 bands corresponded to wavelengths

between 7.4081 µm and 12.4493 µm. Due to sensor limitations, only 105 bands

were used in this analysis by omitting the first 30 and the last 30 bands. The

105 bands corresponded to wavelengths between 8.00075 µm and 11.0712 µm.

2.5.1.1 Radiance

The metadata and few publications ([35] [31]) indicated that the pro-

vided spectral radiance was in W/m2sr·cm-1. However, it was discovered that

the spectral radiance was in fact in W/m2sr·µm. A sample spectral radiance

image is shown in the top left portion of Figure 2.6.

The first step was to recreate some published graphs. Figure 2.4 is an

extract from [35], produced from data obtained on 5 July 2012 at 13:11hrs.

Figure 2.5 is a pseudo-recreated image of Figure 2.4 (since the exact time-
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frame data were not available, the recreation used data from 5 August 2012 at

13:09hrs, approximately one month apart). It could be seen that both figures

show the same trend in material spectral radiances.

The spectral radiance unit was confirmed by calculating the bright-

ness temperature from the spectral radiance data and comparing it with the

provided brightness temperature data.

2.5.1.2 Brightness Temperature

The brightness temperature was calculated using the inverse Planck

equation (Eq. 2.1)

Tλ,Lλ =
hc

λk ln( 2hc2

λ5Lλ
+ 1)

(2.1)

where Tλ,Lλ is the brightness temperature in K, h is the Planck constant

(6.626068 × 10−34 Js), c is the speed of light (2.99792458 × 108 m/s), k is

the Boltzmann constant (1.3806504 × 10−23 J/K), λ is the wavelength in m

and Lλ is the spectral radiance in W/(m2srm). A sample brightness temper-

ature image is shown in the top right portion of Figure 2.6.

The brightness temperature obtained using Eq. 2.1 and the radiance

cube yielded very close values to the brightness temperature cube provided in

the HDF5 file. The reason for the minute discrepancy could be attributed to

the number of significant digits used in the constants.
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Figure 2.4: Bottom Fig. 11 from Ref [35] showcasing average spectral radiance
for select material subsets.

Figure 2.5: Pseudo-recreation of Figure 2.4
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2.5.1.3 Relative Emissivity

Emissivity is defined as the ratio of the energy radiated from a ma-

terial’s surface to that radiated from a blackbody at the same temperature

and wavelength and under the same viewing conditions. It is a dimensionless

number between 0, for a perfect reflector, and 1, for a perfect emitter [1]. One

of the provided data cubes was the relative emissivity; it was calculated us-

ing the skyplate from the scene and considering it to be a perfect reflector.

Relative emissivity was the result of the Quick Temperature-Emissivity Sep-

aration (QTES) algorithm, which is described in detail in Section 6.1.3. A

sample relative emissivity image is shown in the bottom left portion of Figure

2.6. For better visualization, the sample relative emissivity data were normal-

ized following histogram equalization (shown in bottom right portion of Figure

2.6). The provided relative emissivity cubes consistently had values greater

than 1, which were not physically possible for material emissivity. To ensure

that errors were not made during the calculation of relative emissivity by ARL

and to validate the QTES algorithm, the QTES alogrithm was implemented

step-by-step using the provided data as explained in Section 6.1.3.

2.5.2 Material Mask

There were several materials in the scene, both man-made (tanks, black

canvas, skyplate) and natural (trees, grass, gravel). In order to identify each

pixel with a specific material, materials masks were created using the Region

of Interest (ROI) tool from ENVI. However, despite using the same sensor and
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Figure 2.6: Top left: Spectral radiance image (W/m2sr·µm). Top right:
Brightness temperature image (oC). Bottom left: Relative emissivity image.
Bottom right: Histogram equalized relative emissivity image for better visu-
alization of the scene.

imaging the same scene, the 2012 and 2013 data had different spatial window

sizes. Figures 2.7 and 2.8 display the masks created to categorize the different

materials in the scene for each year’s data.

2.5.3 Data Screening

While studying the dataset, it was observed that some data had in-

consistent behavior. An example of inconsistent result was a plot of diurnal
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Figure 2.7: Material masks (Tank0
[red], Tank90 [purple], Tank135 [blue],
black panel [black], aluminum panel
[white], gravel [gray], near-trees [light
green], rear-trees [dark green], bush
[yellow] and grass [brown]) for 2012
data.

Figure 2.8: Material masks (Tank0
[red], Tank90 [brown], Tank135 [yel-
low], black panel [black], aluminum
panel [white], gravel [purple], near-
trees [dark green], rear-trees [light
green], bush [dark purple], grass [gray]
and miscellaneous background [aqua])
for 2013 data.

brightness temperature variation of the data. As observed in Figure 2.9, there

were “periodic” data spikes occurring throughout the plot. The following steps

were carried out to explore this observation further:

1. Plot a brightness temperature pixel of one tank for a selected band for

all cubes in one day (see Figure 2.9).

2. Determine the “inconsistent” cubes using the plot (i.e. cubes producing

“spikes” were inconsistent).

3. Individually verify each inconsistent cube to confirm if the whole cube

is inconsistent (the inconsistencies were determined by comparing the
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brightness temperature of vegetation pixels of said cube with its neigh-

boring cubes). It was discovered that all image pixels generated the

spikes for certain cubes and this behavior was not limited to the selected

tank pixel.

4. Repeat for all available data days.

5. Tabulate inconsistent cubes.

Figure 2.9: 01 May 2013 diurnal brightness temperature of a tank pixel. Y-
axis correspond to brightness temperature (oC), x-axis correspond to the 24-hrs
duration of a day and the multiple plots correspond to 105 spectral bands. It
was noted that all bands spike for certain time index cubes.

It was observed by ARL that the data cubes collected immediately

after the automatic hourly blackbody measurements had a low probability

of being reliable data [30]. These inconsistent data cubes corresponded to
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such measurement times. A total of 339 cubes of the dataset studied were

identified as inconsistent (as per Table A.1 in Appendix A), and these cubes

were removed from further analysis for this thesis.
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Table 2.2: Available SPICE dataset
Date Number of hdf5 files
2012 07 27 146
2012 07 30 154
2012 07 31 208
2012 08 01 264
2012 08 02 264
2012 08 03 264
2012 08 04 264
2012 08 05 264
2012 08 06 264
2012 08 07 193
2012 08 10 165
2012 08 11 264
2012 08 12 264
2012 08 13 264
2012 08 14 264
2012 09 04 96
2012 09 05 262
2012 09 06 264
2013 05 01 263
2013 05 02 263
2013 05 03 263
2013 05 04 263
2013 05 05 263
2013 05 06 146
2013 05 07 172
2013 05 08 94
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Chapter 3

Related Literature

SPICE was a hyperspectral (HSI) longwave infrared (LWIR) dataset

collected with a temporal aspect (over a long period of time). The three

major aspects of SPICE were HSI, LWIR and temporal data. This section

reviews some past publications that have used HSI, LWIR or temporal data

in their studies. It also analyzes previous studies that have used the SPICE

data, as well as studies that handled hypertemporal data.

3.1 Previous Studies on Data Similar to SPICE dataset

There is a large amount of HSI datasets available for research. The

variety within them is immense, including a difference of platform used to

image the target (ground-based vs airborne vs satellite), the distance between

the sensor and objects (meters vs kilometers), the spectral regions of the sensor

used, and the various materials being imaged (man-made objects vs natural

vegetation vs living beings).

Some popular airborne/satellite based HSI with ground-truth included

are the Indian Pines, Salinas, and Pavia Centre and University datasets [6].

An interesting ground-based dataset released by T. Skauli and J. Farrell was
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the “faces” dataset (in addition to the test scene and outdoor scenes) which

imaged about 70 subjects using VNIR and SWIR sensors [38]. There are many

other sources to obtain free HSI datasets; for example SpecTIR provides many

sample datasets on their website [7].

3.1.1 Hyperspectral Images

R. Marwha et al [27] used data collected using the same sensor manufac-

turer as the SPICE dataset (Telops’ Hyper-Cam) for classification. However,

this image’s spatial resolution (1 m) and spectral resolution (6 cm−1) were

different from SPICE’s setting, and they used an airborne platform to collect

data of the Thetford Mines, located in Quebec, Canada on May 2013. Only

one HSI cube was used for this study, unlike SPICE, temporal data were not

collected. The LWIR data collected had 84 bands (7.8 to 11.5 µm) and were

noisy. They applied Minimum Noise Fraction (MNF) on the thermal data and

tested eight pixel-based classifiers. They obtained an overall high accuracy of

90.99% using the Spectral Angle Mapper (SAM) algorithm.

Another example of using HSI was done by Zhang and Sriharan [40].

They used data acquired by Airborne Visible-Infrared Imaging Spectrome-

ter (AVIRIS) on July 1999 of the Stennis Space Center. Their data covered

0.3704 to 2.5101 µm range in 224 spectral bands. The AVIRIS image spectra

were compared to the spectral library provided by three different agencies and

labs (1. The United States Geological Survery Vegetation Spectral Library,

2. Jasper Ridge Spectral Library for Green Vegetation, Dry Vegetation, and
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Rocks, and 3. The John Hopkins University Spectral Library for Man Made

Materials, and Vegetation). Visual analysis, as well as spectral analysis using

ENVI were carried out. They concluded that it was extremely difficult to

identify vegetation species by spectral analysis itself, and that the vegetation

spectra changes due to season, climate, environment and growding condition.

They also identified a need for more timely data, and ground sampling and

truthing to verify their identified results.

3.1.2 Longwave Infrared

Another major aspect of the SPICE dataset was thermal LWIR. HSI in

this spectral regime (8-12 µm) provide a useful tool in studying gaseous mate-

rials. Typically, molecular gases exihibit a unique spectral absorption features

in LWIR that could potentially be used for both detection and identification

of these gases, assuming a sensor with appropriate spectral response acquired

the data with a low background emissivity [25].

As such, M. Chilton et al [15] conducted chemical detection using LWIR

HSI. However, due to extreme difficulty and cost in attaining the level of con-

trol of all variables in the natural environment, computer-simulated HSI was

used to conduct their analysis. The InfraRed Systems Analysis General Envi-

ronments code (IR-SAGE) developed at Pacific Northwest National Labora-

tory (PNNL) was used to simulate LWIR hyperspectra of simplified gaseous

plumes over organized background pixels. Their objective was to explore how

well their metrics predicted when a chemical would be detected when com-
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paring one background type to another. Their two predictor metrics correctly

ranked the backgrounds for about 94% of the chemicals tested.

3.1.3 Temporal Data

Although HSI and LWIR were major aspects of SPICE dataset, the

specialty of SPICE rests in its temporal collection. Yet, even temporal data

are not unique, nor a novel concept. Three studies with varying temporal

collections are described in this section.

T. Marrinan et al [24] used a Fabry-Perot Interferometer Sensor Data

Set that included temporal information, in the sense that it was LWIR data of

4-dimensional array (256 rows × 256 columns × 20 bands × 561 frames). The

spectrometer used to collect this data operated in the 8-11 µm range. For this

study, they burst Triethyl Phosphate (TEP) gas near frame 111 of the movie

and a flag-based algorithm was carried out to detect the gas signature. Their

flag-based algorithm performed better than Adaptive Cosine Estimator (ACE)

and Matched Filter (MF) algorithms in detecting the released gas. Although

the temporal duration of this dataset was not specified, it could be argued

that it was minuscule (only 561 movie frames, therefore in terms of minutes at

most) compared to the SPICE data which contained temporal data spanning

multiple years.

Another example of utilizing temporal data for their study was carried

out by A. Lausch et al [23] to monitor chlorophyll, leaf area index, and water

content of barley during a growing season. The AISA-EAGLE (400-700 nm,
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252 spectral bands) collected spectral data twice a week for over a three-month

period from 27 April 2009 to 20 July 2009 under controlled environmental con-

ditions. The time interval between data acquisitions for this study was days

and the total duration of the collection was months, while SPICE’s acquisition

interval was in minutes that lasted multiple years. Another prominent differ-

ence between the two collections was that AISA-EAGLE was VNIR while the

Telops Hyper-Cam was LWIR.

A dataset somewhat similar to the SPICE data in terms of longitudinal

study was collected by J.E. Johnson et al [21] to detect CO2 gas leak. They

used FLIR Systems Inc Photon 320 camera (320 × 256 LWIR thermal imaging

camera) to acquire images every 10 minutes throughout each day for the 2009

CO2 gas release period, every 5 minutes in 2010, and every 1 minute in 2011

at the Zero Emissions Research and Technology (ZERT) field in Bozeman,

Montana. The gas release period in the ZERT field lasted approximately only

one month each year. Although this was not HSI, the acquisition time interval

from 2010 was comparable to SPICE’s, and the acquisition time interval from

2011 was finer than SPICE’s acquisition time interval of five minutes.

3.2 Previous Studies on SPICE dataset

Despite having many publications on LWIR, HSI and temporal data,

not many dataset were available that incorporated all three aspects like the

SPICE dataset. The SPICE dataset has been studied and analyzed by ARL

for the last few years. The hyperspectral sensor used was a lightweight and
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compact imaging radiometric spectrometer manufactured by Telops. Accord-

ing to the manufacturer, the sensor was employed during SPICE in a setting

of continuous and autonomous data collection for the very first time in this

product’s history - all sensor parameters were set to fixed values regardless

of time of day, weather condition, etc. Therefore, one of the initial assess-

ments done by ARL was to characterize the quality of the data obtained by

the sensor. The LWIR Hyper-Cam used in SPICE underwent a 30-days pe-

riod basic assessment at AFIT prior to the data collection at ARDEC [31, 34].

The results were compared with another Telops LWIR Hyper-Cam owned by

AFIT. The AFIT’s model, despite being similar to the one used in SPICE, had

higher spectral resolution. Both sensors were employed in the same indoor lab

setting and limited outdoor experimentations. The AFIT owned sensor had

also collected data on the same target area in 2011, but for limited daytime

period only. Enabled by the small amount of data collected in 2011, AFIT

collection employed a human operator monitoring the collection and making

appropriate sensor parameters adjustments as per changing conditions in the

scene to maximize data quality (e.g., integration time, optical focus). The

average spectrum per material type for the two classes, manmade (e.g., tanks)

and natural (e.g., vegetation, gravel), were plotted for July 2011 and July

2012, and the spectral profiles were found to be comparable between both

data cubes.

Further reassurance regarding the SPICE dataset quality was obtained

through comparison with MODerate resolution atmospheric TRANsmission
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(MODTRAN) model [31, 34], a computer program that models atmospheric

propagation of electromagnetic radiation in the spectral range between 0.2

and 100 micron. The surface-reflected downwelling sky radiance, retrieved

from the skyplate located at the SPICE scene, corresponded to downwelling

sky models featured in MODTRAN. The quality of the Hyper-Cam was also

compared with far more expensive sensors, notably the Air Force sponsored

Spatially Enhanced Broadband Array Spectrograph System (SEBASS) LWIR

hyperspectral instrument, and the Hyper-Cam data was found to be far more

noisier. Despite being noisier than other datasets collected with expensive

sensors, the SPICE dataset formed a unique dataset, rich in spectral content

and temporal variation.

A major algorithm test was carried using the anomaly detection algo-

rithms, notably the Range-Invariant Anomaly Detection (RIAD) and Reed-

Xiaoli anomaly detection (RXD) algorithms [11, 13]. The published result used

the data obtained in 2011 by AFIT’s Hyper-Cam to test these algorithms,

however, since the data were comparable with ARL’s Hyper-Cam as discussed

previously, they are included for completeness. In this case, manmade objects

(tanks and panels) were considered to be anomalies. When RIAD was applied

on the radiance and the brightness temperature data, the anomalies were de-

tected quite easily. However when it was applied to the relative emissivity

data, only the skyplate was detected as an anomaly since its emissivity was

low, but the tanks’ emissivities were too similar to the background. Better

results were expected from both the global and local RXD, but they failed ex-
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pectations. Both the global and local RXD detected the skyplate on radiance,

brightness temperature and relative emissivity data. However, the tanks were

not found by either global or local RXD using any of the data types. The

RXD algorithm was run again by omitting the skyplate pixels, but that did

not improve the performance.

Target detection of the tank paint was performed using two methods:

single-class Support Vector Machine (SVM) and a longitudinal data model

based classifier [32]. The full diurnal cycle target spectrum of the tank paint

(Tank0, Tank90 and Tank135) was used to train the two methods. The single-

class SVM function returned +1 for the training data points (target) and -1

elsewhere (background). The longitudinal study was defined as objects being

measured repeatedly through time, and as a result, data were dependent.

Thus, the longitudinal model took into account the correlation of the samples

across time. It took the spectral and temporal information of one diurnal

cycle of all three tanks during training. The test results were quantified using

three consecutive days data (426 data cubes) - daytime and nighttime - in the

x-axis and the probability of detection on the y-axis. The first diurnal cycle

corresponded to the training data, while the two remaining diurnal cylces

corresponded to the test data (data not seen by the methods before the test).

The single-class SVM had higher detection rate during the daytime period

compared to nighttime period. The longitudinal model detected the three

tanks significantly higher than the single-class SVM regardless of the time

period. It was noted that the longitudinal model employed in this study used
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the temporal data collected over three diurnal cycles, but did not form a

temporal signature for target detection.

Rauss and Rosario studied the generalization and scalability behavior

of a deep belief network (DBN) applied to the SPICE dataset [26]. They used

conditional receiver operating characteristic (ROC) curve to quantify deep

learning performance. Their study, however, raised more questions than an-

swers for employing classifiers based on artificial neural networks to train and

test on spectra representing multiple material classes under changing diurnal

conditions.

The quality of SPICE dataset was verified with MODTRAN results

and compared with similar sensor results. Two major algorithms carried out

with this dataset were anomaly detection and target detection. The published

results frequently used the calibrated radiance to conduct the analysis, but

not much work had been carried out using material emissivity. One way to

augment the existing knowledge on the SPICE dataset is to use emissivity

for target identification. In addition, performing target detection using con-

ventional algorithms will supplement the results observed by D. Rosario et al

[32].

3.3 Hypertemporal Data Studies

A special aspect of this dataset was its temporal information; persistent

imaging of a scene over time. Hyperspectral can be defined as over sampling

of spectral data (hundreds of spectral bands). Likewise, hypertemporal can be
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defined as over sampling of temporal data (hundreds of time indexes). How-

ever, hypertemporal imaging is not a novel topic. For starters, the time series

images could be constructed using the daily imagery acquisitions provided by

sensors such as Moderate-Resolution Imaging Specrometer (MODIS), and the

National Oceanic and Atmospheric Administration (NOAA) Advanced Very

High Resolution Radiometer (AVHRR). Coppin et al [16] used such data to

conduct bi-temporal (between two pairs of images) and temporal trajectories

(between time profiles) change detection of an ecosystem. They concluded

that the major drawbacks were the coarse spatial resolution of the imagery

and the limitations on the available time series.

Bie et al [17] used hypertemporal images for crop mapping and classifi-

cation. They used 10-day composite 1-km resolution SPOT-Vegetation NDVI

images of six global locations to carry out this study. Their results included

maps showing the spatial-temporal characteristics of the findings.

ATK, an American aerospace, defense and sporting goods company

(now Orbital ATK) developed a high-speed Michelson FTIR ground-based

sensor capable of collecting chemical spectra at 1000 interferograms per second

at 4 cm−1 spectral resolution [18]. In 2010, they initiated an effort to space

qualify this product and seek a small satellite mission to carry this payload.

The government sector also showed interest in space-based hypertem-

poral imaging. In April 2014, the US’s Air Force Laboratory’s Space Exper-

iments and Programs Branch announced a $33.7 million, five-year contract

to Raytheon for a payload testing the concepts of persistent surveillance of
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the Earth from space. This payload, the Hypertemporal Imaging Space Ex-

periment, will fly on the ESPA Augmented Geostationary Laboratory Exper-

iment’s (EAGLE) platform bus [4].

The SPICE data was used for hypertemporal target detection methods

by Rosario and Romano [33]. They used four methods to train and detect the

tanks’ paint, and they concluded that detectors based on the estimation of

fixed parameters do not perform well with hypertemporal data.

3.4 Motivation for this Thesis

The SPICE dataset was made for public release and disseminated to

a large number of research community. Despite this action, the most notable

publications using this dataset remained authored by ARL researchers. It was

understood that this dataset can be analyzed with a fresh perspective, adding

to the results published by ARL. Foremost, the results published by ARL can

be validated by an outside party not related to the data collection. Almost all

ARL publications exclusively used the spectral radiance data, the emissivity

data could be used for further analysis. The hypertemporal target detection

studied by [32] and [33] could be further explored. Thus, these open venues of

research motivated the work described in this thesis.
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Chapter 4

Data Characterization

This chapter characterizes the SPICE data obtained from ARL. To

gain initial confidence in the data, they were first compared to a computer

simulated program, MODTRAN. Once the MODTRAN results confirmed the

data, further analysis was done including characterizing the instrument noise.

The temporal and spatial characteristics of the data were then explored.

4.1 Impacts of Precipitation

The SPICE data were collected during various meteorological condi-

tions. This subsection explored the differences observed in one diurnal cycle

with changes in precipitation as categorized by: no precipitation, light hail,

light rain, moderate rain and heavy rain.

Figure 6 from reference [34] (Figure 4.1) was recreated for the different

meteorological instances to compare the effects of precipitation. The effects

of precipitation on the collected data were assessed by comparing the spectral

signatures of select materials during varying meteorological conditions. Figure

4.2 shows the subset of each material used for this analysis.

The diurnal data from 1 August 2012 were used for this analysis. This
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Figure 4.1: Figure 6 from reference [34] Figure 4.2: Subset of materials used for
analysis

date was chosen primarily because it contained the five different precipitation

classes described for collection by ARL. All 165 bands from the data cubes

provided by ARL were used in this analysis. For visualizing the changes, the

band corresponding to 10.1 µm was displayed.

Figure 4.1 displays the daytime radiance effect for the different materi-

als. Figure 4.3, which used the noon timeframe data, shared similar material

trends with Figure 4.1. Since it was a sunny with no precipitation at noon

timeframe, conditions were ideal for data collection. As observed in Figure 4.4,

all three tanks, the two panels and the gravel were visible and distinguishable

from the surrounding vegetation. Even within the vegetation, separation can

be seen between trees, bushes and grass.

Figures 4.5 and 4.6 show the results for data captured with light hail.

There were drastic differences between Figures 4.3 and 4.5. One reason for this
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Figure 4.3: Average spectral radiance
for nine materials in the scene observed
on 1 Aug 2012 at 12:09, with no precip-
itation. Figure 4.4: Band 10.1 µm from 1 Aug

2012, 12:09, calibrated radiance cube.

Figure 4.5: Average spectral radiance
for nine materials in the scene observed
on 1 Aug 2012 at 04:29, with light hail.

Figure 4.6: Band 10.1 µm from 1
Aug 2012, 04:29, calibrated radiance
cube (histogram equalized to accentu-
ate contrast).
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difference is that the data were captured at different times of day, 04:29 and

12:09. Figure 4.3 displays different spectral signatures for various materials,

while Figure 4.5’s spectral signatures for the same materials are similar to each

other. In addition, there was light hail during the capture of data at 04:29,

which may also be a factor for these differences. Visually, the materials in

the scene were indistinguishable from one another, therefore, the image was

histogram equalized in order to accentuate contrast to identify some objects

in the scene as observed in Figure 4.6.

Light rain had less effect on the sensor collection than light hail. This

could be due to the hard pellets of frozen rain compared to the liquid rain

affecting the atmospheric transmission. Figure 4.7 showed spectrally different

trends between the materials, albeit not as much as the noon no-precipitation

timeframe. Figure 4.8 separated the man-made objects and the gravel from

the vegetation, however, differences within the vegetation were not observed.

The moderate and heavy rain data were collected during the early part

of the day (04:39 and 05:58). During the early part of the day, the sun would

not have had enough time to heat some of the materials (i.e. tanks and rocks)

to generate thermal differences between them and vegetation (materials that

would not heat as much). Therefore, it was expected that much spectral

differences between the materials not to be observed, as seen in Figures 4.9 and

4.11. The effects of moderate and heavy rain could also be observed in Figures

4.10 and 4.12, where none of the materials in the scene are distinguishable.

This subsection showed us two findings. First, during light hail, mod-
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Figure 4.7: Average spectral radiance
for nine materials in the scene observed
on 1 Aug 2012 at 15:49, with light rain. Figure 4.8: Band 10.1 µm from 1 Aug

2012, 15:49, calibrated radiance cube.

erate and heavy rain, the spectral radiances between different materials are

too similar to one another as seen in Figures 4.5, 4.9 and 4.11. This was also

visually observed in Figures 4.6, 4.10 and 4.12 where the scene was essentially

uniform with almost non-existing features before histogram equalization. Yet,

even after histogram equalization, real separation between materials were not

observed within the scene, which were noisy images. At the same time, the

indistinguishable features cannot totally be attributed to hail and rain. Since

these data were collected during a time prior to solar heating of the scene, they

were not comparable with the no-precipitation (noon timeframe) data. The

best method to compare the effects of precipitation would be to have moder-

ate and heavy rain data collected during daytime and compare with similar

timeframe no-precipitation data. However, within the data provided by ARL,

there was no moderate or heavy rain during daytime.

Another finding from this subsection were observed in Figures portray-
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Figure 4.9: Average spectral radiance
for nine materials in the scene observed
on 1 Aug 2012 at 04:39, with moderate
rain.

Figure 4.10: Band 10.1 µm from 1
Aug 2012, 04:39, calibrated radiance
cube (histogram equalized to accentu-
ate contrast).

ing the spectral radiances of the scene materials. ARL recommended to not

use the first and last 30 bands of this collection due to the high noise in these

bands. This recommendation was validated since it was observed that when

all 165 bands were plotted, the beginning and end portions of the spetrum did

not follow the trend observed in the 8-11 µm range, but behaved more like

noise.

4.2 MODTRAN Confirmation

One action carried out was to validate the obtained data, to ensure

they were realistic and dependable for further analysis. This validation was

done through MODTRAN simulation, a computer code that is used world-

wide by research scientists for the prediction and analysis of optical measure-
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Figure 4.11: Average spectral radiance
for nine materials in the scene observed
on 1 Aug 2012 at 05:58, with heavy
rain.

Figure 4.12: Band 10.1 µm from 1
Aug 2012, 05:58, calibrated radiance
cube (histogram equalized to accentu-
ate contrast).

ments through the atmosphere [5]. The sensor-reaching radiance was described

through Equation 4.1

L(λ) = εB(T, λ)τatm + (1− ε)Ld(λ) + La(λ) (4.1)

where L(λ) was the sensor-reaching radiance, ε was the material emissivity,

τatm was the atmospheric transmission, B(T,λ) was the blackbody radiance

of the material, Ld(λ) was the downwelling radiance and La(λ) was the path

radiance.

The input for MODTRAN generation are provided in Appendix B. The

same parameters were run twice, once with spectral albedo (SALB) value of

0, and again with a SALB value of 1. Figure 4.13 illustrates a portion of

the MODTRAN results for SALB=1. MODTRAN provided the results in
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Figure 4.13: MODTRAN results for SALB=1 with the input provided as per
Appendix B.

W/cm2sr·cm−1. They were converted to W/m2sr·µm to compare with SPICE

data.

MODTRAN provided τatm, Ld(λ) and La(λ) from Equation 4.1 where

TOT TRANS is τatm, (GRND RFLT - DRCT RFLT) when SALB=1 is Ld(λ),

and PTH THRML when SALB=0 is La(λ). Two assumptions were made

to obtain B(T,λ) and ε. First, the blackbody radiance was calculated using

Planck’s law as described in Equation 4.2. For this, a temperature of 300K was

assumed. The MODTRAN results for the path radiance, downwelled radiance,

blackbody radiance at 300K and the transmission are provided in Figure 4.14.

Planck′sLaw =
2hc2

λ5e
hc
λkT − 1

(4.2)

Second, a near-blackbody object from the scene (black canvas) was se-

lected to compare with the MODTRAN results. Since a perfectly emissive

material was unrealistic, an emissivity value of 0.97 was assumed for this ob-
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Figure 4.14: Top left: MODTRAN path radiance. Top right: MODTRAN
downwelled radiance. Bottom left: Planck’s law blackbody radiance at 300K.
Bottom right: MODTRAN transmission. Results were obtained for a range
of 8.00 to 11.09 µm using 349 spectral bands.
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Figure 4.15: The sensor-reaching radiance using MODTRAN results in green
and the spectral average of the black canvas from the scene in blue.

ject.

Using the MODTRAN results and the two assumptions, the sensor-

reaching radiance for a near-blackbody was calculated using Equation 4.1. To

compare with the SPICE data, the HSI corresponding to 11:58 from 1 May

2013 was selected. The spectral average of the black canvas and the results

from Equation 4.1 were plotted against the wavelength and is shown in Figure

4.15.

Figure 4.15 validated the SPICE data since they were very close to the

MODTRAN simulated data. It was noted that the MODTRAN data were

much finer and incorporated the atmospheric absorption much better. This

was due to MODTRAN having 349 spectral bands to cover approximately 8-

11 µm, while the SPICE data had only 105 spectral bands to cover the same
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Figure 4.16: The sensor-reaching radiance using MODTRAN results in green
and the spectral average of the black canvas from the scene in blue for 105
spectral bands.

spectral range. Yet, Figure 4.15 shows there were dips in the SPICE data for

the same wavelengths as the MODTRAN results for atmospheric absorptions,

just not as prominent.

MODTRAN results were produced with a spectral resolution of one

wavenumber, whereas SPICE was collected with a spectral resolution of four

wavenumbers. A responsivity of one was assumed for this calculation. With

this assumption, the wavenumbers corresponding to the SPICE spectral bands

were interpolated to the MODTRAN bands, and the adjacent four bands’ val-

ues were averaged for each spectral band. The averaged MODTRAN results

were plotted alongside the spectral average of the black canvas. This is dis-

played in Figure 4.16, where the atmospheric absorption is less prevalent.
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4.3 Noise

The data provided by ARL were processed data cubes, and previous

studies concluded that intrinsic system noise in the sensor was a minor to

moderate concern compared to the atmospheric and environmental variation

effects [34]. We characterized the instrument noise by calculating the difference

standard deviation of a uniform object. For this method, we assumed the black

panel to be locally uniform with negligible surrounding contribution.

4.3.1 Difference Standard Deviation

When a sensor is imaging a uniform area, it should result in the same

value for all the pixels. If a subset of such uniform scene is subtracted from

the same subset translated by one pixel to the right, the result should be zero,

and any deviation may be attributed to sensor noise. The noise covariance

can be approximated from the covariance of the neighboring pixel differences

as per Equation 4.3 [37]

Σn '
1

2
Σ∆n (4.3)

where Σn is the desired noise spectral covariance matrix and Σ∆n is the matrix

formed by computing the spectral covariance of the pixel difference image.

Therefore, taking the standard deviation of the subset difference of the

black panel and dividing by
√

2 should approximate the instrument noise.

Figures 4.17 and 4.18 provide the average black panel radiance provided
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by ARL, along with noise as discussed in section 4.3.1 for midnight and noon

timeframes. Telops specified that the typical NESR was <20 nW/cm2sr·cm-1.

The green line is the specified NESR converted to the same units as the cal-

culated noise.

The noise obtained from difference standard deviation on Figure 4.17

was very close to the NESR specified by Telops. We have to take into account

that the NESR was calculated in a lab setting while the calculated noise was

from real data, where there were many other factors influencing the results.

In comparing the noise from the two timeframe (Figures 4.17 and 4.18), they

behaved as expected. There was much higher noise in noon timeframe, because

there was more signal during the day with higher temperature, therefore the

photon noise will be larger.

4.3.2 Noise Correlation Coefficient Matrix

Depending on operating conditions, the noise associated with an imag-

ing spectrometer can change drastically. The noise correlation coefficient ma-

trix, the covariance between two bands normalized by the standard deviations

in the two bands, is often used for visualization.

The correlation coefficient is represented by

ρmn =

∑N
q=1[DCm(q)−DCm][DCn(q)−DCn]

(N − 1)σ
1/2
mmσ

1/2
nn

(4.4)

where ρmn is the correlation coefficient between bands m and n, DCm(q) is
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Figure 4.17: 01 May 2013, 23:58 black panel average radiance with 4.3.1 noise
and provided NESR.

Figure 4.18: 01 May 2013, 11:58 black panel average radiance with 4.3.1 noise
and provided NESR.
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Figure 4.19: 01 May 2013, correlation coefficient matrix for 00:13 (left), 12:13
(center) and 12:18 (right)

the qth digital count from a noise sample of N pixels having mean DCm and

variance σmm in the mth band.

Equation 4.4 was used to compute the correlation coefficient matrix.

Figure 4.19 depicts three correlation coefficient matrices for a difference subset

in the black panel for three times on the same day. The difference subset image

was obtained by taking the difference between a subset of the black panel and

the same subset translated by one pixel to the right. It could be seen that

even for a five minute acquisition time difference using the same sensor, the

correlation matrices differ slightly.

4.4 Diurnal Data

4.4.1 Mean Variation Over Time

One of the significant characteristics of this dataset was its rich tempo-

ral content. The sensor had imaged the scene at approximately every 5 minutes

while maintaining the same field of view. We could explore the temporal be-
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haviour of several materials (manmade and natural) and compare them with

each other. We expect the tanks to heat up during the day and cool down

during the night with distinct variation between time of day. The skyplate

should have the least variation since, unlike large pieces of metals, a thin sheet

of aluminum will dissipate the heat absorbed very fast and since it is highly

reflective, its radiance will vary with downwelled radiance. There should be

slight differences between daytime radiance and nighttime radiance, but not as

drastic to be expected of the tanks (the blackbody radiance of the tanks will

increase since its temperature will increase as time progresses during the day,

but the blackbody radiance of the white panel will remain relatively similar

since its temperature will not rise as much). We also expect the four types of

vegetation (near-trees, rear-trees, grass and bushes) to have similar trends.

The temporal mean variation of seven materials is shown in Figure 4.20

(Tank0, Gravel, White Panel, Black Panel, Grass, Near-trees and Rear-trees).

For these materials, the average radiance at 10.0681µm for each material as

per the masks in Figure 2.8 was plotted. It could be noted that day and

night period were easily distinguishable even if an x-axis labeling the time of

day was not present. During nighttime, all materials had low radiance and

were very similar to each other. However, during daytime, select materials

heated up and emitted higher radiance (notably the tank and the black panel).

The aluminum panel behaved as expected, having very small variation for the

course of the day. The slight increase during the middle of the day could be

explained by the environment effect, since the air temperature ranged from
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Figure 4.20: Temporal mean variation of eight materials for 24-hrs period
using the band corresponding to 10.0681µm.

-1.9oC to 21oC between night and day. Despite being a very good reflector

(as assumed to be a perfect reflector), the aluminum panel could have heated

up during the day (in reality, the perfect reflector assumption is not 100%

accurate), increasing its blackbody temperature, thus increasing the at-sensor

radiance. An interesting phenomena was observed for the vegetation. The

bush and the trees had similar trend during daytime, as one would expect due

to them being all vegetation. However, the grass’s trend was closer to the

gravel than other vegetation. This could be due to soil effects (which indicate

that each pixel in the mask is not definitively one material) as well as the

grass was less exposed to the sky compared to the “taller” vegetation. This

was even further observed during nighttime, when the radiance of the grass

got much lower than any other vegetation.
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4.4.2 Standard Deviation Variation Over Time

Similar to the temporal mean behaviour studied in Section 4.4.1, the

temporal variance of each material could also be visually showcased. Since the

variance is the square of the standard deviation, the trend will be compara-

tively the same when the standard deviation of a material’s subset is plotted.

In this plot, we expect very low variance in the white panel, but higher variance

in “unsteady” material like the trees.

Even with a uniform material, the spatial variation may be influenced

by surrounding materials causing edge effects. In order to minimize this influ-

ence, a smaller subsection of each material was used to calculate the radiance

standard deviation. Note that the variation observed is a combination of in-

strument noise and spatial variability. Figure 4.21 shows that the white panel

has minimal standard deviation. The true standard deviation of the white

panel is expected to be smaller than what is shown in Figure 4.21 when we

consider that the instrument noise is also a factor. Even if the white panel

was considered a perfect reflector, there will be some variation observed by

the sensor due to the path radiance, which will vary diurnally due to changes

in atmospheric (air) temperature. The black panel followed the white panel,

however, unlike the white panel, the temperature of the day did affect the stan-

dard deviation of the black panel. The material with the greatest standard

deviation was the treed area, which was expected since it was the only “un-

steady” material relative to the remaining “stationary” materials. In addition,

the trees were not completely solid material. Despite only having a subset of
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Figure 4.21: Temporal standard deviation variation of eight materials for 24-
hrs using the band corresponding to 10.0681µm.

near-trees and rear-trees, there were “air gaps” that allowed “contamination”

of other materials as well, which increased the standard deviation.

4.5 Spatial Variation

The spatial variation was investigated using the same materials. We

compared the spatial variation of the two panels, the three tanks and the grass,

for two distinct time frames. The range in radiance within each material were

used to characterize the variation. The mask size for the black panel and

the white panel were 8×13 and 7×11 pixels respectively. However, for this

analysis, a subset of the mask (6×11 pixels for black panel, and 5×9 pixels for

white panel) was used to limit adjacency effects.
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4.5.1 Spatial Variation at Midnight

Figure 4.22 shows the spatial variation of two uniform targets (panels)

and two semi-uniform targets (tanks and grass) for midnight time-frame. We

expect minimal spatial variation within the two panels. The low variation (0.21

W/m2sr·µm) in the black panel cannot totally be considered spatial variation.

It is the result of instrument noise as discussed in Section 4.3.1, combined with

material variability and environment/adjacent material effects. The adjacency

effect was better observed in the white panel. There was a larger variation

in the white panel (0.35 W/m2sr·µm). This was after we omitted the edge

pixels contributing to adjacent material effects (very low emissive aluminum

surrounded by large emissive vegetation), yet the adjacency effect was still

observed in the lower left of the panel. For a large surface area covering three

tanks, the variation was only 0.9 W/m2sr·µm. A larger variation was observed

in the grass (4 W/m2sr·µm).

4.5.2 Spatial Variation at Noon

Figure 4.23 shows the spatial variation of the same targets as for Figure

4.22 but for the noon time frame. There was greater variation within the

uniform targets compared to Figure 4.22. This was expected since in reality,

the panels did not heat-up uniformly (the upper portion of the black canvas

absorbed more heat). The edge effects were more prominent in the white panel

where the center of the panel was somewhat uniform while the top pixels and

the left pixels had significant influence from the surrounding vegetation. We
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Figure 4.22: Spatial variation during midnight.

would expect greater spatial variation for the semi-uniform targets during noon

since all parts of the tanks will not heat up equally. This was seen in lower-left

portion of Figure 4.23, where the variation is 2.4 W/m2sr·µm. Despite best

effort, the tank mask incorporated pixels that could be categorized as other

materials due to “air gaps”. As expected, the grass had the highest variation

for this time-frame as well with 4.8 W/m2sr·µm.

The range of variation in the black panel was 0.9 W/m2sr·µm for noon

and 0.21 W/m2sr·µm for midnight, while the range in the white panel was

0.56 W/m2sr·µm for noon and 0.35 W/m2sr·µm for midnight. This reflects

our intuition that the black panel heated up with time, but not necessarily

uniformly. Whereas, the aluminum panel was almost a perfect reflector and

reflected the sky-radiance.
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Figure 4.23: Spatial variation during noon.
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Chapter 5

Scene Characterization

This chapter characterizes the scene using the temporal data. First,

detection of the tanks was explored using three target detection methods.

Next, the objects in the scene were classified using spectral and temporal

signatures.

5.1 Tank Target Detection

Three signature matched detection algorithms were implemented on

this dataset: Adaptive Coherence/Cosine Estimator (ACE) [19], Spectral An-

gle Mapper (SAM) [19], and Spectral Matched Filter (SMF) [19]. For these

algorithms, the target spectral mean vector was calculated using Tank0. Both

the target signature and the image data were in spectral radiance.

5.1.1 SAM

In SAM, the noise is assumed to be zero mean, white and normally

distributed with an unknown variance σ2. The variance is estimated by the

square of the spectrum magnitude (XTX). Under this assumption, the nor-

malized projection is given:
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r(X) =
(STX)2

(STS)(XTX)
(5.1)

where S is the target spectrum and X is the pixel spectrum of the data.

The angle between the data and reference spectral vectors is calculated

by taking the inverse cosine of the square root of Equation 5.1. Therefore, the

detection statistic is:

rSAM(X) = −cos−1

(
(STX)2

(STS)(XTX)

)
(5.2)

5.1.2 SMF

Due to zero-mean, white background clutter assumption, SAM’s utility

is limited. SMF addresses this limitation. One-sided SMF detection statistic

was chosen to omit the detection of spectra less similar to the target spec-

trum than even the background mean. SMF can be applied with either global

background sample statistics or local sample statistics. For this analysis, the

global background will be used, which results in Equation 5.3

rSMF (X) = (S − µ̂)T Σ̂−1(X − µ̂) (5.3)

where S is the target spectrum, µ̂ is the global background average, Σ̂−1 is the

inverse covariance of the data and X is the data pixel spectrum under test.
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5.1.3 ACE

ACE is described by:

rACE(X) =
(ST Σ̂−1X)2

(ST Σ̂−1S)(XT Σ̂−1X)
(5.4)

where S is the target spectrum, Σ̂−1 is the inverse covariance of the data and

X is the pixel spectrum of the data.

5.1.4 Tank Target Detection Results

Temporal target detection was attempted using the dataset. Temporal

target detection in this case is defined as using a target’s spectral signature

from one period of time to detect the target in different time periods (full

diurnal cycle). ACE, SAM, and SMF were implemented for two-scenarios

to detect a target, and the area under the receiver operating characteristic

(ROC) curve was used to quantify the rate of detection. For both scenarios,

the average of Tank0 was used as the target spectrum and all three tanks were

identified as “true” targets. Only 50 bands ( 9-10.5µm) out of 165 bands were

used for target detection. For scenario one, target spectra were obtained from

a noon cube (11:58) and a midnight cube (23:58) from 1 May 2013. They were

used to detect the tanks from the same day data cubes. For scenario two, the

same target spectrum from 1 May was used to detect the tanks on 2 May 2013

data cubes.

Figure 5.1 displays the results for scenario one.
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Figure 5.1: The area under the ROC curve for three detection algorithms are
plotted against time of day for 1 May 2012. Left (top-down): ACE, SAM, and
SMF for noon. Right (top-down): ACE, SAM, and SMF for midnight
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Figure 5.2 displays the results for scenario two.

If we assumed that a threshold higher than 0.8 area under the ROC

curve was a good indicator of target detection, SMF produced better results

for both noon and midnight target spectra. One possible explanation for SMF

yielding better results could be that, unlike ACE and SAM, SMF also used the

background sample statistics in addition to the inverse covariance of the data.

The percentage of detection in a day for both time-frames by each method is

detailed in Table 5.1.

Table 5.1: Time index percentage of area under the curve greater than 0.8
(noon/midnight).

ACE SAM SMF
1 May 2013 0.0% / 13.3% 0.0% / 32.5% 52.1% / 40.0%
2 May 2013 4.2% / 25.6% 0.0% / 35.8% 52.9% / 39.6%

It was noticed that the noon target spectrum produced higher detec-

tion rate for daytime compared to nighttime. However, when the midnight

spectrum was used, daytime sometimes produced higher detection rate than

nighttime. One possible phyical explanation for this phenomena could be that

during daytime, high cloud presence blocked most of the sun, preventing the

man-made materials to heat up. To verify this theory, the relative humidity

was plotted for the full diurnal cycles of 1 and 2 May 2013 as shown in Figures

5.3 and 5.4. However, it was seen that the relative humidity during the day

was low for both days, which implied that cloud formation was not present.

Therefore, high cloud concentration was not the reason for the midnight spec-

trum yielding higher target detection rate for daytime data. On the other
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Figure 5.2: The area under the ROC curve for three detection algorithms are
plotted against time of day for 2 May 2012. Left (top-down): ACE, SAM, and
SMF for noon. Right (top-down): ACE, SAM, and SMF for midnight
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Figure 5.3: Relative humidity for 1
May 2013 diurnal cycle.

Figure 5.4: Relative humidity for 2
May 2013 diurnal cycle.

hand, Figures 5.3 and 5.4 emphasize the fact that in terms of meteorological

comparison, 1 and 2 May 2013 are similar days.

It was also noticeable that the plots in Figure 5.1 were very similar

to plots in Figure 5.2. This indicate that targets could be detected on data

spanning multiple days for time frames approximately similar to when the

target spectra was obtained (given that overall meteorological conditions were

comparable).

5.2 Hyper Temporal Classification

The customary way to classify HSI is to use spectral signature, mostly

from material emissivity or reflectance. This is done so because the spectral

signatures between materials are often different, thus providing a good classi-

fication map. The greatest asset of the SPICE dataset was its temporal data.

With this dataset, a rather unique classification of materials was attempted:

use the temporal signature from the radiance data. Two drastically different

timeframes, noon and midnight, were selected for spectral classification. The
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spectral and temporal image classifications were compared and quantified to

describe their performance.

5.2.1 Data Cubes

The first step was to create a hyper temporal image that could be used

for image classification (this cube will have spatial and temporal data). Hyper

temporal in this case was defined as continuously imaging a scene approxi-

mately every 5 minutes. Two different methods were explored to accomplish

this task; single band and broadband temporal images. To describe the two

methods, the full diurnal data from 1 May 2013 is used, which contained 240

usable HSI (224 × 300 pixels × 105 bands spanning 8.00075 µm to 11.0712

µm).

1. Single Band Temporal Image

For this method, select a high atmospherically transmissive band among

the 105 bands (the band corresponding to 10.1 µm). This band will

be extracted from each of the 240 HSI and concatenated to make a

hypertemporal image consisting of 224 × 300 pixels × 240 time samples

depicting the 24-hour period of 1 May 2013.

2. Broadband Temporal Image

In this method, instead of extracting one single band from the HSI, the

average of all 105 bands will be calculated to simulate broadband sensor

images. This in theory, should increase the signal to noise ratio, thus
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producing better classification results. Similar to the previous method,

the resulting hypertemporal image will be 224 × 300 pixels × 240 time

samples depicting the 24-hour period of 1 May 2013.

The spectral cube will have 105 dimensions while the temporal cube will

have 240 dimensions. In order to compare with similar dimensionality,

the temporal broadband cube will be used in two formats:

• 240-Dimensions

As mentioned in Part 2, the full 240 time samples will be used to

classify the materials.

• 120-Dimensions

To compare with similar dimensionality with the spectral cube of

105 bands, every second time sample from the 240 time samples

will be collected, thus forming a cube consisting of 224 × 300 pixels

× 120 time samples. The results between the 120 time samples

and 240 time samples cubes will also be compared to analyze the

differences.

In total, four different data cubes will be used for classification, one

spectral and three temporal.

1. Spectral Noon

The cube corresponding to noon timeframe from 1 May 2013 and 2 May

2013.
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2. Temporal 10.1um

The band corresponding to 10.1 µm will be concatenated from 1 May

2013 and 2 May 2013.

3. Temporal Broadband 240 time samples

The average of 105 bands will be concatenated from 1 May 2013 and 2

May 2013.

4. Temporal Broadband 120 time samples

The average of 105 bands will be concatenated from 1 May 2013 and 2

May 2013, and every 2nd time sample will be extracted to form a cube

with 120 time samples.

For all these cubes, either the target signature from 1 May 2013 will be

tested on 2 May 2013 data, or training will be done on 1 May 2013 and tested

on 2 May 2013 data.

5.2.2 Reference Map

The ground truth was created using ENVI. The ground truth class map

was similar to Figure 2.8, but included variations. The differences between

Figure 2.8 and the ground truth class maps were the absence of miscellaneous

background pixels and the combination of different classes into one class as

described in Figure 5.5.

Figure 5.5 left classifies all vegetation under one class. Figure 5.5 center

classifies rear-trees, near-trees and bushes as one class, and grass as a different
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Figure 5.5: Ground truth class maps. Left: 7 Classes. Center: 8 Classes.
Right: 10 Classes.(Tank0 [blue], Tank90 [light blue], Tank135 [sky blue], Black
panel [navy blue], Skyplate [dark yellow], Gravel [aqua], Grass [orange], Bush
[yellow], Near-trees [red], Rear-trees [maroon])

class. Figure 5.5 right classifies rear-trees, near-trees, bushes and grass as four

different classes.

Unsupervised and supervised classification methods were used to clas-

sify the spectral and temporal cubes. K-Means was used as the unsupervised

classification method. Three different supervised classification methods were

used to classify the hyper temporal images: Euclidean distance, SAM, and

Support Vector Machine (SVM).

5.2.3 Euclidean Distance

The Euclidean distance is defined using the following formula.

r(Sc,X) =

√√√√ n∑
i=1

(Si −Xi)2 (5.5)

where S is the target temporal signature, c is the class index, X is the pixel

temporal data, and n is the number of bands (for 1 May 2017, n=240). S is
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retrieved by calculating the average material value per band using the material

mask shown in Figure 5.5 for the different variations of the material class

studied.

The euclidean distance between each pixel signature and all target sig-

natures will be calculated. Each pixel will be classified to the target temporal

signature yielding the lowest euclidean distance.

5.2.4 Spectral Angle Mapper

Equation 5.2 was used to calculate the angle between the pixel data and

the target signature. The target class yielding the lowest angle was assigned

to the pixel.

5.2.5 Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning method

that can be used for classification that is effective in high dimensional spaces.

Different kernel function can be specified in SVM. We used two Support Vector

Classification (SVC) kernels, Linear and Radial Basis Function (RBF). The

linear kernel is much faster, however the non-linear (RBF) kernel typically

provides a better predictive performance. A higher classification accuracy is

expected from the RBF SVC compared to the linear SVC [20]. A sample ex-

ample of linear and RBF classification is provided in Figure 5.6, which was

modified from a Python tutorial website [8].
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Figure 5.6: Classification of random points into two classes. Left: Random
points. Center: Linear SVM classification result. Right: RBF SVM classifica-
tion result. [8]

5.2.6 Classification Results Naming Convention

Four classification methods were applied on four image cubes. In or-

der to minimize confusion, the classification method and the image cube the

method being applied on will be amalgamated when discussing the results.

Table 5.2 provides the names that will be used when discussing the results.

The columns are the four classification methods (Euclidean, SAM, Linear SVC

and RBF SVC). The rows are the four image cube types being classified (one

spectral and three temporal cubes).

5.2.7 Comparison Metrics

Once the classification image was retrieved using the various methods

described, three metrics were used to assess their performance and to compare

with the different classification methods. The metrics were weighted accuracy,

non-weighted accuracy and kappa, all calculated from the confusion matrix
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Table 5.2: Classification Results Tabulation

Euclidean SAM
Linear
SVC

RBF
SVC

Spectral
Noon

Euclidean-S SAM-S Linear-S RBF-S

Temporal
10.1um

Euclidean-10.1 SAM-10.1 Linear-10.1 RBF-10.1

Temporal
Broadband

240 time samples
Euclidean-240 SAM-240 Linear-240 RBF-240

Temporal
Broadband

120 time samples
Euclidean-120 SAM-120 Linear-120 RBF-120

derived from the ground truth classification image and the classification result.

To facilitate the explanation of the metrics, a sample confusion matrix is shown

in Figure 5.7.

Weighted Accuracy

The weighted accuracy is calculated by summing the true positive of

each class (diagonal values from the confusion matrix) and dividing by the

total number of image pixels as shown in Equation 5.6.

Accuracyweighted =

∑n
i=1 TPi
TOT

(5.6)

where n is the number of classes, TP is the class true positive, and TOT is

the total number of pixels in the classification image (sum of the confusion

matrix).

Non-weighted Accuracy
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Figure 5.7: Euclidean distance result classification image’s confusion matrix
(target signature: 1 May 2013, testing cube: 1 May 2013)
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The non-weighted accuracy is calculated by averaging the per-class ac-

curacy as shown in Equation 5.7.

Accuracynon−weighted =

∑n
i=1

TPi
GTi

n
(5.7)

where n is the number of classes, TP is the class true positive, and GT is the

per-class ground truth.

Kappa

Kappa (κ) quantifies how well a classifier performed compared to how

well it would have performed simply by chance. It takes into account the ob-

served accuracy and the expected accuracy. In this case, the observed accuracy

is the weighted accuracy as described earlier. Expected accuracy is calculated

using Equation 5.8.

Accuracyexpected =

∑n
i=1(TCi×PCi

TOT
)

TOT
(5.8)

where n is the number of classes, TC is the true value per class (horizontal

sum per class from Figure 5.7), PC is the predicted value per class (vertical

sum per class from Figure 5.7), and TOT is the total number of pixels in the

classification image (sum of the confusion matrix).

κ is calculated using Equation 5.9.

κ =
Accobs − Accexp

1− Accexp
(5.9)
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where Accobs is the observed accuracy, and Accexp is the expected accuracy

(weighted accuracy).

5.2.8 Unsupervised Classification Results

K-Means classification, an unsupervised classification method, was ap-

plied on the data from 1 May 2013 to see the difference in performance between

the spectral and temporal data. For the spectral data, a HSI corresponding to

noon timeframe and another HSI corresponding to midnight timeframe were

selected. For the temporal data, the 10.1 µm band was concatenated to form

the hyper temporal image. The K-Means algorithm from ENVI was run mul-

tiple times with different K values. The results for K=5 and K=10 runs are

displayed in Figures 5.8 to 5.13.

Applying K-Means classification method, the temporal data differenti-

ated the man-made objects better than the spectral data. Figure 5.12 classified

the man-made objects with two colors, aqua (tanks and black panel) and red

(skyplate). Figure 5.13 classified the man-made objects in orange (tanks and

black panel) and red (skyplate). Both figures also classified the gravel in the

same class as the tanks. And in both cases, these materials were explicitly

different from the surrounding vegetation. On the other hand, the spectral

data did not have clear distinction between these objects and the surrounding

vegetation as displayed in Figures 5.8 to 5.11.

In order to quantify the spectral and temporal unsupervised classifica-

tion results, the class corresponding to the tanks were analyzed. An image
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Figure 5.8: K-Means Classification
(K=5), 1 May midnight HSI

Figure 5.9: K-Means Classification
(K=10), 1 May midnight HSI

Figure 5.10: K-Means Classifica-
tion (K=5), 1 May noon HSI

Figure 5.11: K-Means Classifica-
tion (K=10), 1 May noon HSI

Figure 5.12: K-Means Classifica-
tion (K=5), 1 May temporal cube

Figure 5.13: K-Means Classifica-
tion (K=10), 1 May temporal cube

69



Table 5.3: K-Means classification rates for 1 May 2013 spectral and temporal
data.

Noon HSI Midnight HSI Temporal
K=5 K=10 K=5 K=10 K=5 K=10

Accuracy (%) 83.2 85.2 79.9 81.8 97.9 98.2
True Positive (%) 5.0 5.5 2.3 2.2 35.8 37.8
False Positive (%) 0.49 0.53 1.03 1.07 0.32 0.41
Precision (%) 67.9 65.1 35.3 30.9 75.3 68.7

containing only one class (i.e. aqua for K=5 and orange for K=10 for the

temporal data) was created with everything else being background. These im-

ages were compared to a reference class map containing only the three tanks.

The results are displayed in Table 5.3. The accuracy rates are high due to the

high number of background pixels. The precision rates are good indicators for

temporal data, especially when all three tanks are well defined (in addition to

the gravel and black panel).
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5.2.9 Supervised Classification Results

7 Class - Train/Test on 1 May 2013

Unsupervised image classification yielded better image classification

when using hypertemporal data than hyperspectral data. The four supervised

classification methods were tested on the same data as Section 5.2.8 (train-

ing and testing conducted on 1 May 2013) using 7-class ground truth class

map. Being consistent with Section 5.2.8, hypertemporal data outperformed

hyperspectral data in image classification as observed in Figures 5.14 and 5.15.

The two SVM methods yielded a weighted accuracy of over 99% for seven out

of possible eight scenarios, however Linear-240 and Linear-120 obtained the

highest weighted accuracy of 99.36%. Linear-10.1 obtained the highest non-

weighted accuracy with 57%, while all both SVM methods yielded a Kappa

value of 0.99. Although the hypertemporal data outperformed hyperspectral

data when using the same data for training and testing, their differences were

not as drastic as observed in Section 5.2.8.

The remainder of the supervised classification results were obtained

using 1 May 2013 data for training and 2 May 2013 data for testing.

7 Class

The scene was segmented into seven classes (Tank0, Tank90, Tank135,

black panel, skyplate, gravel and vegetation) as displayed in the left portion of

Figure 5.5. Qualitatively (visual inspection), Linear-S provided the best result.

Quantitatively, Linear-S also had the highest weighted accuracy (99%) and
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Figure 5.14: Classification results for 7-class (training and testing on 1 May
2013)

72



Figure 5.15: Weighted accuracy, non-weighted accuracy and kappa for 7-class
classification (training and testing on 1 May 2013).
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Figure 5.16: Classification results for 7-class

the highest κ (0.99), while SAM-120s had the highest non-weighted accuracy

(48.84%).

8 Class

The scene was segmented into eight classes (Tank0, Tank90, Tank135,

black panel, skyplate, gravel, grass and vegetation) as displayed in the center

portion of Figure 5.5. Here, the low level vegetation (grass) was differenti-

ated with higher level vegetation. Qualitatively, SAM-S displayed the best

result. Quantitatively, Linear-S had the highest weighted accuracy (88.42%)
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Figure 5.17: Weighted accuracy, non-weighted accuracy and kappa for 7-class
classification.
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and the highest κ (0.91), while SAM-S has the highest non-weighted accuracy

(62.82%).

It is interesting to note that the RBF-10.1, RBF-120 and RBF-240

yielded results very similar to the 7-class segmentation, while RBF-10.1 classi-

fied all vegetation as grass and the broadbands classified all grass as vegetation

as well. In the temporal cubes for both Euclidean and SAM classification meth-

ods, it was noticeable that a lot of the grass pixels were classified as gravel.

This repeated the phenomena observed in Figure 4.20 where the grass shared

a similar temporal signature to gravel compared to the other vegetation.

10 Class

The scene was segmented into ten classes (Tank0, Tank90, Tank135,

black panel, skyplate, gravel, grass, bush, near-trees and rear-trees) as dis-

played in the right portion of Figure 5.5. For this segmentation, the higher

level vegetation were separated into three classes (bush, near-trees and rear-

trees). Visually, RBF-10.1 yielded the best results. Quantitatively, RBF-S

had the highest weighted accuracy (70.25%) and κ (0.56) while SAM-S had

the highest non-weighted accuracy (68.77%).

The unsupervised classification method seemed to indicate that a bet-

ter classification could be achieved by using the temporal signature instead of

the spectral signature as observed in Figures 5.8 to 5.13. This was supported

by supervised classification methods when using the same data for training

and testing as observed in Figures 5.14 and 5.15. However, different results
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Figure 5.18: Classification results for 8-class
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Figure 5.19: Weighted accuracy, non-weighted accuracy and kappa for 8-class
classification.
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Figure 5.20: Classification results for 10-class
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Figure 5.21: Weighted accuracy, non-weighted accuracy and kappa for 10-class
classification.
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were seen when training and testing data differed. When the temporal cubes

were used for supervised classification, the spectral signature results were com-

parable (or sometimes outperformed) the temporal signature classification as

observed in Figures 5.16 to 5.21. This indicated that differences between two

diurnal cycles, despite having similar meteorological measurements, will im-

pact classification. The differences between these two diurnal cycles may be

caused by slight change in temperature. Some cloud formation earlier on one

day (as shown in Figures 5.3 and 5.4) than the other might have delayed the

heating of certain materials, causing different temporal signatures. Whereas

for the spectral data, the same timeframe data were used for both days, with

similar air temperature and relative humidity, which had more probability of

having similar spectral signatures.

In terms of physical world application, training and testing cannot be

done on the same data. However, this form of analysis is promising despite

hypertemporal data underperforming compared to hyperspectral data. For 7-

class ground truth class map, hyperspectral data produced a weighted accuracy

of 99%, but that does not conclude that using hypertemporal data was a

failure. In fact, RBF-240 produced a weighted accuracy of 98.21%. With

further analyses, hypertemporal data could be optimized to produce better

results when using two different diurnal cycle data.
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Chapter 6

Emissivity

Most ARL publications using SPICE dataset used the spectral radi-

ance. The few publications that used emissivity for analysis reported unsuc-

cessful results. This chapter employed four emissivity retrieval algorithms and

explored the possibility of using material emissivity for target detection.

6.1 Emissivity Retrieval

Any radiance data collected in the longwave infrared (LWIR) region

will be dependent on the object, the atmospheric composition, the time of

day and meteorological conditions. While the sensor-reaching radiance will

vary for an object, the emissivity of the object should be constant. This

unique spectral emissivity per material could be used to identify an object in

a scene. The relative emissivity provided in the dataset constantly had values

over 1 and could not be taken as accurate emissivities, therefore, attempts

were made to estimate the emissivity using the radiance data through few

different methods. These included temperature-emissivity separation (TES)

using the atmospheric transmission and path radiance based on in-scene at-

mospheric compensation (ISAC) blackbody normalization [19] [39], alpha-
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emissivity method [19][22], QTES [12] [13], and ENvironment for Visualizing

Images (ENVI) based emissivity normalization. The various components of

the sensor-reaching radiance are illustrated in Figure 6.1. These components

are referred in the following sections.

Figure 6.1: Radiative transfer model of the scene describing the various com-
ponents of the sensor-reaching radiance.

6.1.1 TES using ISAC Blackbody Normalization

For atmospheric compensation, the underlying model is given by:

Ls(λ) = τatm(λ)Lu(λ) + La(λ) (6.1)

where Ls(λ) is the sensor-reaching radiance, τatm(λ) is the atmospheric trans-

mission, Lu(λ) is the upwelling radiance and La(λ) is the path radiance.

The upwelling radiance model is described by:
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Lu(λ) = ε(λ)B(λ, T ) + [1− ε(λ)]Ld(λ) (6.2)

where B(λ, T ) is the blackbody radiance, ε(λ) is the material emissivity and

Ld(λ) is the downwelling radiance.

For a true blackbody, the brightness temperature (Equation 2.1) equals

the actual surface temperature. ISAC takes advantage of the natural occur-

rence of blackbody or near-blackbody objects within the scene. The first step

is to approximate B(λ, T ) from the data, and use it to perform ISAC. The

following steps were used for this method.

1. Using the brightness temperature band “image” corresponding to the

highest atmospheric transmission (10.102 µm), the radiance (B(λ, T ))

was calculated using the Planck’s equation for the applicable wave-

lengths.

2. Calibrated data cube is represented as L(λ). Plot L(λ) vs B(λ, T ),

and perform sequential line-fitting as per ref [10]. Six-iterations were

conducted for this analysis.

3. The final aggregate slope estimated the atmospheric transmission and

the y-intercept estimated the path radiance. Equation 6.1 could be in-

verted and written as Equation 6.3 using the estimated atmospheric

transmission and the path radiance.
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Lu(λ) =
Ls(λ)− La(λ)

τatm(λ)
(6.3)

However, these are unscaled estimates due to the assumptions that the

scene contain true blackbodies and that the brightness temperatures

represent true surface temperatures.

4. τatm(λ) can be scaled through

τatm(λ) =
τo

τa,u(λo)
τa,u(λ) (6.4)

where τa,u(λ) is the estimated atmospheric transmission, τa,u(λo) is the

atmospheric transmission at the highest transmissive band, and τo=0.975

(atmospheric transmission for the highest transmissive band estimated

from literature).

5. La(λ) can be scaled through

La(λ) = La,u(λ) +
τa,u(λ)

τa,u(λo)
[α(λ, λo){τa,u(λo)− τo}−

β(λ, λo){La,u(λo)− (1− τo)B(λ, Ta)}]
(6.5)

where

α(λ, λo) =

(
1− λ

λo

)
B(λ, To), (6.6)
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β(λ, λo) =
λo
λ

B(λ, To)

B(λo, To)
(6.7)

where To is the assumed scene temperature (300K for this analysis), Ta

is the assumed mean atmospheric temperature (294K for this analysis)

and La,u(λ) is the estimated path radiance.

6. The emissivity could be represented by re-arranging Equation 6.2, which

results in:

ε(λ) =
Lu(λ)− Ld(λ)

B(λ, T )− Ld(λ)
(6.8)

7. With an assumption that the downwelled radiance is small relative to

the emitted radiance due to high emissivity, the downwelled radiance in

the numerator and the denominator in Equation 6.8 could be ignored.

Thus, emissivity is represented as

ε(λ) =
Lu(λ)

B(λ, Tmax)
(6.9)

where Tmax is the maximum brightness temperature associated with the

upwelling radiance.

6.1.2 Alpha Emissivity

The alpha emissivity TES method uses the upwelled radiance calcu-

lated in Section 6.1.1, and similar to step 7 from Section 6.1.1, this method
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also ignores the downwelled radiance. In addition, it employs the Wien’s ap-

proximation to the blackbody radiance instead of Planck’s law. Planck’s law

and Wien’s approximation are provided in Equations 6.10 and 6.11 respec-

tively.

Planck′sLaw =
2hc2

λ5e
hc
λkT − 1

(6.10)

Wien′sApproximation =
2hc2

λ5e
hc
λkT

(6.11)

Equation 6.9 can be rewritten using Wien’s approximation to

Lu(λ) = ε(λ)B(λ, Tmax) ≈ ε(λ)
2hc2

λ5e
hc
λkT

(6.12)

By using the subscript n to denote the spectral index of upwelling radi-

ance Ln = Lu(λn) corresponding to wavelength λn, and taking the logarithm

and multiplying both sides of Equation 6.12 by the wavelength, Equation 6.12

is written as

λn lnLn = λn ln εn + λn ln (2hc2)− 5λn lnλn −
hc

kT
(6.13)

The spectral average of both sides of Equation 6.13 is
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1

N

N∑
n=1

λn lnLn =
1

N

N∑
n=1

λn ln εn + ln (2hc2)
1

N

N∑
n=1

λn

−5
1

N

N∑
n=1

λn lnλn −
hc

kT

(6.14)

By subtracting Equation 6.13 from Equation 6.14 and re-arranging to

have the emissivity term on one side leads to

λn ln εn −
1

N

N∑
n=1

λn ln εn = λn ln εn −
1

N

N∑
n=1

λn lnLn + ln (2hc2)
1

N

N∑
n=1

λn

−λn ln (2hc2)− 5
1

N

N∑
n=1

λn lnλn + 5λn lnλn

(6.15)

An important characteristic of Equation 6.15 is that it is no longer

dependent of the material surface temperature (as opposed to Equation 6.13),

as it has been cancelled out. Both sides of Equation 6.15 are defined as alpha

emissivity αn, therefore the alpha emissivity could be computed directly from

the upwelling radiance as

αn = λn ln εn −
1

N

N∑
n=1

λn lnLn + ln (2hc2)
1

N

N∑
n=1

λn − λn ln (2hc2)

−5
1

N

N∑
n=1

λn lnλn + 5λn lnλn

(6.16)

Alpha emissivity could then be used to estimate surface emissivity ac-

cording to
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ε̂n = εoe
αn
λn (6.17)

where

εo = e
αn
λn (6.18)

and

αn =
1

N

N∑
n=1

λn ln εn (6.19)

In order to estimate the scaling factor εo, the emissivity calculated in

Equation 6.9 was used in Equation 6.19.

6.1.3 Quick Temperature Emissivity Separation

The distance from the sensor to the targets was small, and estimat-

ing the atmospheric parameters using conventional methods for such distance

was difficult. In order to solve and mitigate this issue, Christoph Borel came

up with QTES. This section describes the QTES method in detail [11]. Re-

ferring to the model described in Equation 6.1 with Equation 6.2 included

yield to Equation 6.20. The sensor-reaching radiance is described in equation

6.20 where L(λ) is the sensor-reaching radiance, ε is the material emissivity,

τatm is the atmospheric transmission, B(T,λ) is the blackbody radiance of the

material, Ld(λ) is the downwelling radiance and La(λ) is the path radiance.
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L(λ) = εB(T, λ)τatm + (1− ε)Ld(λ) + La(λ) (6.20)

QTES uses the in-scene aluminum panel assuming it is a perfect reflec-

tor. For a perfect reflector, the emissivity will be zero and thus equation 6.20

could be approximated to:

L(λ) ≈ Ld(λ) + La(λ) (6.21)

Therefore, the sky plate radiance is the sum of the downwelling and

path radiances. The atmospheric transmission, path randiance and down-

welling radiance are calculated using MODTRAN models.

For each pixel:

1. The brightness temperature is calculated using Equation 2.1 for a high

transmission band, in this case the band corresponding to 10.102 µm (the

calculated brightness temperature is verified with the provided bright-

ness temperature).

2. A range of emissivity is calculated by re-arranging Equation 6.20 as per

Equation 6.22.

εk =
Ls − Ld − La

B(Tk, λ)τatm − Ld
(6.22)

where Ls is the sensor-reaching radiance and Tk is a range of tempera-

tures calculated using Equation 6.23.
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Tk = {TBB −
K

2dT
+ kdT}, k = 1, 2, ..., K (6.23)

where TBB is the brightness temperature calculated earlier, dT is incre-

ment of 1, and K is the range of selected temperatures. In this case,

K=20 was used to calculated 20 different temperatures.

3. For a narrow spectral range (9.5-10 µm), the optimal temperature (Topt)

is retrieved. Topt is found by finding the variance in emissivity within

the spectral range, and locating the emissivity with the smallest variance

between the 20 emissivity variances. Using the smallest variance, the

corresponding temperature is declared to be Topt.

Emissivity is calculated using Equation 6.22 where Topt replaces Tk, and

the MODTRAN model atmospheric transmission, path radiance and down-

welling radiance are τatm, Lu and Ld respectively, and Ls is the radiance data

from the calibrated radiance cube. This was the method used to retrieve the

provided relative emissivity cubes.

6.1.4 ENVI Based Emissivity Normalization

The built-in ENVI [2] algorithms were used to retrieve emissivity. Prior

to retrieving emissivity, the data needed to be compensated for atmospheric

effects. This is performed using the built-in Thermal Atmospheric Correction

algorithm. The Thermal Atmospheric Correction approximates and removes
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the atmospheric contributions from thermal infrared radiance data. This al-

gorithm assumes that the atmosphere is uniform over the data scene and a

near-blackbody object is present in the scene. It also ignores the reflected

downwelled radiance.

Once the radiance data is obtained following atmospheric compensa-

tion, Emissivity Normalization algorithm is applied. This algorithm uses the

highest temperature for each pixel to calculate the emissivity values using the

Planck equation.

6.2 Emissivity Retrieval Results

For each of the emissivity retrieval algorithms described in Section 6.1,

two plots will be displayed. The first plot will showcase the emissivity of

two manmade materials (Tank0 and black panel) and two natural materials

(grass and gravel) for a given time of day. This plot will enable to differentiate

the spectral differences between each material. The second plot will showcase

the emissivity of Tank0 for a full diurnal cycle (all the data cubes in a 24-

hrs period). The second plot should provide a “single” emissivity spectrum

irrespective of the time of day since the emissivity is an instrinsic characteristic

of the material that does not change with time.

6.2.1 TES using ISAC Blackbody Normalization

While calculating emissivity using the alpha emissivity separation meth-

ods, some values ended up being negative values. Since negative emissivity was
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Figure 6.2: Emissivity of four distinct materials calculated using the blackbody
normalization technique for data corresponding to 11:48, 1 May 2013.

Figure 6.3: Emissivity of Tank0 calculated using the blackbody normalization
technique for data from 1 May 2013 (diurnal cycle). NOTE: Emissivities
containing negative values following calculation have been omitted in this plot.
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not physically possible (most likely the result of various assumptions made for

this method), the emissivity spectra containing negative values were omitted

when plotting Figure 6.3.

Figure 6.2 shows that there are some spectral differences between the

materials (notably grass and Tank0). However, when the tank emissivity spec-

tra were plotted for a 24-hr period (Figure 6.3), it was clear that the retrieved

emissivity from blackbody normalization was not accurate.

6.2.2 Alpha Emissivity

There were no clear and consistent spectral differences between the

material emissivities as observed in Figure 6.4. We could conclude that the

emissivity retrieved was not viable for any further analysis.

Figure 6.5 used 252 emissivity cubes from 12 Aug 2012 diurnal cycle.

It was very noticeable that there was a big range in emissivity spectrum of the

same material, supporting our earlier conclusion that the emissivity estimates

were not accurate.

6.2.3 Quick Temperature Emissivity Separation

The relative emissivity data provided by ARL were calculated via QTES

algorithm. Since it contained emissivity values greater than 1 (which cannot be

physically explained), we could not take the given data as is and we attempted

to run the QTES algorithm from scratch. Our results also resembled the re-

sults obtained by ARL, where emissivity values greater than 1 were frequently
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Figure 6.4: Emissivity of four distinct materials calculated using the alpha
emissivity separation technique for data corresponding to 11:29, 12 Aug 2012.

Figure 6.5: Emissivity of Tank0 calculated using the alpha emissivity separa-
tion technique for data from 12 Aug 2012.
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observed as seen on Figure 6.6. In addition, the tank emissivity spectra were

not close to each other for different timeframes as seen on Figure 6.7.

6.2.4 ENVI Based Emissivity Normalization

Our last method to retrieve emissivity was fully based on ENVI. Yet,

even in this method, there was no spectral uniqueness in materials as observed

in Figure 6.8. In addition, there was a large range in the Tank0’s emissivity

spectrum for different timeframes as displayed in Figure 6.9. The emissivity

obtained using ENVI also cannot be used for further analysis.

Despite using four methods to retrieve emissivity (three algorithms im-

plemented in Python and one based on built-in ENVI functions), physically-

plausible emissivity data were not obtained in order to be able to conduct

any analysis. First, there was not adequate spectral uniqueness between the

materials, even the expected Reststrahlen feature in gravel was not observed.

Furthermore, when the emissivity of one material from different timeframes

was plotted, the range between them was far too great to consider the result

was in fact the true material emissivity. No further analysis could be done

using the emissivity obtained so far using these methods.
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Figure 6.6: Emissivity of four distinct materials calculated using the QTES
technique for data corresponding to 11:15, 6 Aug 2012.

Figure 6.7: Emissivity of Tank0 calculated using the QTES technique for all
data from 6 Aug 2012 (diurnal cycle).
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Figure 6.8: Emissivity of four distinct materials calculated using ENVI for
data corresponding to 11:08, 12 Aug 2012.

Figure 6.9: Emissivity of Tank0 calculated using ENVI for data from 12 Aug
2012.
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Chapter 7

Summary and Future Work

This section summarizes what has been done on the hyperspectral and

hypertemporal LWIR dataset provided to RIT by ARL. The SPICE data col-

lection was described in detail, including the location of the collection, the

sensor used, the contents of the scene, and the calibrated data provided by

ARL.

The impacts of precipitation on the collection of the data were visual-

ized using five different meteorological conditions from the same diurnal cycle.

It was found that hail and rain adversely affected the quality of the collected

data, and no further analyses were performed on the data collected during

precipitation events.

The first task carried out using this dataset was to confirm the SPICE

data with MODTRAN simulation. The simulation resulted in similar values

to the SPICE dataset which indicated that the data were dependable and

realistic, and further analysis could be carried out. Yet, it was decided to

check the quality of the dataset prior to embarking on the next goal. While

performing quality check, it was discovered there were many unusable data

cubes in the dataset, in that the values in these cubes were not realistic and

99



broke pattern with the adjacent cubes. These cubes were found to be taken

right after the hourly blackbody measurements. These 339 erroneous data

cubes were removed from analysis conducted in this thesis.

The instrument noise was characterized using the black panel from the

scene. The calculated instrument noise was comparable to the manufacturer’s

specified NESR. The noise was also visually represented using the noise corre-

lation coefficient matrix.

The mean variation for a full diurnal cycle was displayed for eight ma-

terials from the scene. The standard deviation variation for a full diurnal cycle

was also displayed for the same eight materials.

Spatial variation was shown for black panel, white panel, tanks and

grass for noon and midnight timeframes.

Tank target detection was also conducted using this dataset. Using

the target spectrum at one time, three target detection algorithms including

ACE, SAM and SMF were applied to find the targets at different times for a

full diurnal cycle. It was found that SMF works best for detecting the targets

for both noon and midnight target spectra. Hyperspectral and hypertemporal

unsupervised and supervised classification were conducted extracting features

from 1 May 2013 and testing on 2 May 2013 data. Using weighted accuracy,

non-weighted accuracy and kappa as comparison metrics, it was discovered

that the hyperspectral cubes performed overall better than the hypertemporal

cubes.
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The last task to be carried out was the retrieval of emissivity esti-

mates with the goal of using this metric for target detection and material

identification. Four temperature-emissivity separation methods (temperature-

emissivity separation using the atmospheric transmission and path radiance

based on in-scene atmospheric compensation blackbody normalization, alpha-

emissivity method, Quick Temperature-Emissivity Separation, and ENVI based

emissivity normalization) were used to estimate material emissivity. The re-

sults from all four methods were not acceptable for data analysis for two main

reasons. One, there was not much spectral differences between two materials

in the estimated emissivities. This will not yield adequate result in either tar-

get detection or material identification. Two, the range in spectral emissivity

for one material were too large between different timeframes. We expected

differences due to different factors from one time to another, but the range

observed in the produced result was not explainable, other than that they do

not represent well the material emissivity.

For future work, a recommendation is to analyze further the results

observed in Figure 4.20, where the grass shared a similar trend to gravel than

other vegetation types. Research could be conducted using linear mixing model

to test the abundance of materials in each pixel and quantify the reason for

this unexpected observation.

Another recommendation is to perform noise-reduction techniques on

the calibrated radiance data and use them for the emissivity retrieval algo-

rithms as performed in this thesis. This may improve the results for emissivity
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estimation and the results may be used for material identification.

It would be interesting to perform image classification using different

models of hypertemporal data than examined in this thesis. It was noted

that hypertemporal data’s weighted accuracy was close to the hyperspectral

data’s weighted accuracy for 7-class ground truth class map. Building different

hypertemporal data models may surpass the models studied in this thesis.
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Appendix A

Inconsistent Data
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Table A.1: Inconsistent SPICE dataset files
Date Number of hdf5 files containing inconsistent data (filenumber)
2012 07 27 5 (33,44,88,99,110)
2012 07 30 8 (11,22,33,66,77,88,132,143)
2012 07 31 10 (44,55,66,109,120,131,142,175,186,197)
2012 08 01 11 (44,55,99,110,121,165,176,187,231,242,253)
2012 08 02 13 (22,33,44,88,99,110,154,165,176,187,231,242,253)
2012 08 03 12 (33,44,55,99,110,121,132,176,187,198,209,253)
2012 08 04 13 (11,22,77,88,99,110,154,165,176,187,231,242,253)
2012 08 05 12 (22,33,44,88,99,110,154,165,176,187,242,253)
2012 08 06 11 (44,55,66,99,110,121,165,176,187,198,253)
2012 08 07 8 (11,55,66,77,121,132,143,154)
2012 08 10 8 (11,22,66,77,88,132,143,154)
2012 08 11 14 (22,33,44,55,88,99,110,121,154,165,176,220,232,242)
2012 08 12 12 (22,33,44,77,88,99,143,154,165,209,220,231)
2012 08 13 14 (11,22,33,44,77,88,99,143,154,165,176,220,231,242)
2012 08 14 12 (22,33,44,88,99,110,143,154,165,209,220,231)
2012 09 04 4 (8,19,30,41)
2012 09 05 12 (11,22,33,88,97,108,119,130,185,196,207,218)
2012 09 06 13 (11,22,33,77,88,99,143,154,165,176,231,242,253)

2013 05 01 23
(10,21,32,43,54,65,76,87,98,109,120,131,142,153,164,175,186,
197,208,219,230,241,252)

2013 05 02 23
(10,21,32,43,54,65,76,87,98,109,120,131,142,153,164,175,186,
197,208,219,230,241,252)

2013 05 03 23
(10,21,32,43,54,65,76,87,98,109,120,131,142,153,164,175,186,
197,208,219,230,241,252)

2013 05 04 21
(10,21,32,54,65,76,87,98,109,120,131,142,153,164,175,186,
208,219,230,241,252)

2013 05 05 22
(10,21,32,43,54,65,76,87,98,109,120,131,142,164,175,186,
197,208,219,230,241,252)

2013 05 06 13 (10,21,32,43,54,65,76,87,98,109,120,131)
2013 05 07 14 (7,18,29,40,51,62,73,84,95,117,128,139,150,161)
2013 05 08 8 (10,21,32,42,52,63,74,85)
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MODTRAN Input Cards
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Figure B.1: Card 1 Figure B.2: Card 2

Figure B.3: Card 1A Figure B.4: Card 1A1

Figure B.5: Card 3 Figure B.6: Card 3A2

Figure B.7: Card 3A1

Figure B.8: Card 4
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