






Figure 6.8: Emissivity of four distinct materials calculated using ENVI for
data corresponding to 11:08, 12 Aug 2012.

Figure 6.9: Emissivity of Tank0 calculated using ENVI for data from 12 Aug
2012.

98



Chapter 7

Summary and Future Work

This section summarizes what has been done on the hyperspectral and

hypertemporal LWIR dataset provided to RIT by ARL. The SPICE data col-

lection was described in detail, including the location of the collection, the

sensor used, the contents of the scene, and the calibrated data provided by

ARL.

The impacts of precipitation on the collection of the data were visual-

ized using five different meteorological conditions from the same diurnal cycle.

It was found that hail and rain adversely affected the quality of the collected

data, and no further analyses were performed on the data collected during

precipitation events.

The first task carried out using this dataset was to confirm the SPICE

data with MODTRAN simulation. The simulation resulted in similar values

to the SPICE dataset which indicated that the data were dependable and

realistic, and further analysis could be carried out. Yet, it was decided to

check the quality of the dataset prior to embarking on the next goal. While

performing quality check, it was discovered there were many unusable data

cubes in the dataset, in that the values in these cubes were not realistic and
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broke pattern with the adjacent cubes. These cubes were found to be taken

right after the hourly blackbody measurements. These 339 erroneous data

cubes were removed from analysis conducted in this thesis.

The instrument noise was characterized using the black panel from the

scene. The calculated instrument noise was comparable to the manufacturer’s

specified NESR. The noise was also visually represented using the noise corre-

lation coefficient matrix.

The mean variation for a full diurnal cycle was displayed for eight ma-

terials from the scene. The standard deviation variation for a full diurnal cycle

was also displayed for the same eight materials.

Spatial variation was shown for black panel, white panel, tanks and

grass for noon and midnight timeframes.

Tank target detection was also conducted using this dataset. Using

the target spectrum at one time, three target detection algorithms including

ACE, SAM and SMF were applied to find the targets at different times for a

full diurnal cycle. It was found that SMF works best for detecting the targets

for both noon and midnight target spectra. Hyperspectral and hypertemporal

unsupervised and supervised classification were conducted extracting features

from 1 May 2013 and testing on 2 May 2013 data. Using weighted accuracy,

non-weighted accuracy and kappa as comparison metrics, it was discovered

that the hyperspectral cubes performed overall better than the hypertemporal

cubes.
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The last task to be carried out was the retrieval of emissivity esti-

mates with the goal of using this metric for target detection and material

identification. Four temperature-emissivity separation methods (temperature-

emissivity separation using the atmospheric transmission and path radiance

based on in-scene atmospheric compensation blackbody normalization, alpha-

emissivity method, Quick Temperature-Emissivity Separation, and ENVI based

emissivity normalization) were used to estimate material emissivity. The re-

sults from all four methods were not acceptable for data analysis for two main

reasons. One, there was not much spectral differences between two materials

in the estimated emissivities. This will not yield adequate result in either tar-

get detection or material identification. Two, the range in spectral emissivity

for one material were too large between different timeframes. We expected

differences due to different factors from one time to another, but the range

observed in the produced result was not explainable, other than that they do

not represent well the material emissivity.

For future work, a recommendation is to analyze further the results

observed in Figure 4.20, where the grass shared a similar trend to gravel than

other vegetation types. Research could be conducted using linear mixing model

to test the abundance of materials in each pixel and quantify the reason for

this unexpected observation.

Another recommendation is to perform noise-reduction techniques on

the calibrated radiance data and use them for the emissivity retrieval algo-

rithms as performed in this thesis. This may improve the results for emissivity
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estimation and the results may be used for material identification.

It would be interesting to perform image classification using different

models of hypertemporal data than examined in this thesis. It was noted

that hypertemporal data’s weighted accuracy was close to the hyperspectral

data’s weighted accuracy for 7-class ground truth class map. Building different

hypertemporal data models may surpass the models studied in this thesis.
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Appendix A

Inconsistent Data
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Table A.1: Inconsistent SPICE dataset files
Date Number of hdf5 files containing inconsistent data (filenumber)
2012 07 27 5 (33,44,88,99,110)
2012 07 30 8 (11,22,33,66,77,88,132,143)
2012 07 31 10 (44,55,66,109,120,131,142,175,186,197)
2012 08 01 11 (44,55,99,110,121,165,176,187,231,242,253)
2012 08 02 13 (22,33,44,88,99,110,154,165,176,187,231,242,253)
2012 08 03 12 (33,44,55,99,110,121,132,176,187,198,209,253)
2012 08 04 13 (11,22,77,88,99,110,154,165,176,187,231,242,253)
2012 08 05 12 (22,33,44,88,99,110,154,165,176,187,242,253)
2012 08 06 11 (44,55,66,99,110,121,165,176,187,198,253)
2012 08 07 8 (11,55,66,77,121,132,143,154)
2012 08 10 8 (11,22,66,77,88,132,143,154)
2012 08 11 14 (22,33,44,55,88,99,110,121,154,165,176,220,232,242)
2012 08 12 12 (22,33,44,77,88,99,143,154,165,209,220,231)
2012 08 13 14 (11,22,33,44,77,88,99,143,154,165,176,220,231,242)
2012 08 14 12 (22,33,44,88,99,110,143,154,165,209,220,231)
2012 09 04 4 (8,19,30,41)
2012 09 05 12 (11,22,33,88,97,108,119,130,185,196,207,218)
2012 09 06 13 (11,22,33,77,88,99,143,154,165,176,231,242,253)

2013 05 01 23
(10,21,32,43,54,65,76,87,98,109,120,131,142,153,164,175,186,
197,208,219,230,241,252)

2013 05 02 23
(10,21,32,43,54,65,76,87,98,109,120,131,142,153,164,175,186,
197,208,219,230,241,252)

2013 05 03 23
(10,21,32,43,54,65,76,87,98,109,120,131,142,153,164,175,186,
197,208,219,230,241,252)

2013 05 04 21
(10,21,32,54,65,76,87,98,109,120,131,142,153,164,175,186,
208,219,230,241,252)

2013 05 05 22
(10,21,32,43,54,65,76,87,98,109,120,131,142,164,175,186,
197,208,219,230,241,252)

2013 05 06 13 (10,21,32,43,54,65,76,87,98,109,120,131)
2013 05 07 14 (7,18,29,40,51,62,73,84,95,117,128,139,150,161)
2013 05 08 8 (10,21,32,42,52,63,74,85)

105



Appendix B

MODTRAN Input Cards
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Figure B.1: Card 1 Figure B.2: Card 2

Figure B.3: Card 1A Figure B.4: Card 1A1

Figure B.5: Card 3 Figure B.6: Card 3A2

Figure B.7: Card 3A1

Figure B.8: Card 4
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