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ERROR CHARACTERIZATION OF SPECTRAL PRODUCTS USING A

FACTORIAL DESIGNED EXPERIMENT

John W. Klatt

Abstract

The main objective of any imaging system is to collect information. Information is

conveyed in remotely sensed imagery by the spatial and spectral distribution of the energy

reflected/emitted from the earth.  This energy is subsequently captured by an overhead imaging

system. Post-processing algorithms, which rely on this spectral and spatial energy distribution,

allow us to extract useful information from the collected data.   Typically, spectral processing

algorithms include such procedures as target detection, thematic mapping and spectral pixel

unmixing.  The final spectral products from these algorithms include detection maps,

classification maps and endmember fraction maps. The spatial resolution, spectral sampling and

signal-to-noise characteristics of a spectral imaging system share a strong relationship with one

another based on the law of conservation of energy.  If any one of these initial image collection

parameters were changed then we would expect the accuracy of the information derived from the

spectral processing algorithms to also change.

The goal of this thesis study was to investigate the accuracy and effectiveness of spectral

processing algorithms under different image levels of spectral resolution, spatial resolution and

noise. In order to fulfill this goal a tool was developed that degrades hyperspectral images

spatially, spectrally and by adding spectrally correlated noise.  These degraded images were then

subjected to several spectral processing algorithms. The information utility and error

characterization of these “degraded” spectral products is assessed using algorithm-specific

metrics.   By adopting a factorial designed experimental approach, the joint effects of spatial

resolution, spectral sampling and signal-to-noise with respect to algorithm performance was also

studied.   Finally, a quantitative performance comparison of the tested spectral processing

algorithms was made.
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Chapter 1

Introduction

Ever since man was provided with a “bird’s eye” view of the earth from the first manned

balloon flight in 1783 earth observation technology has evolved in a manner that allows us to gain

more information about the world we live in.  The evolution of remote sensing started with

simple photographs taken from a balloon by Nadar in 1858 (Schott, 1997) and has grown into

what presently includes hi-tech aerial and satellite based electro-optical sensors. Every remote

sensing system, no matter how simple or complex, has the primary goal of gaining information

from an object or the world below.

In essence, information is conveyed in remote sensing data by the spatial and spectral

distribution of energy that is either reflected or emitted from the earth (Landgrebe, 1978a) and is

subsequently captured by an imaging system. Spatial characteristics of an image relate directly to

the size, shape, pattern, site and geometry of objects within the image.   Spectral information

refers to the electromagnetic (EM) distribution of light and/or thermal energy.    A very simple

explanation of spectral information is to say what “colour” an object is. Beyond the human visual

system’s range more information may be extracted.  For instance, vegetation appears bright at 1.0

µm and dark at 0.65 µm, whereas soil appears bright at both these wavelengths and water appears

dark at 1.0 µm and dull at 0.65 µm.   It is these types of differences in the spectral signature of

materials that allow precise identification and discrimination of materials (Richards, 1995; Wolfe,

1997).

The study of spectral signatures of materials, known as spectroscopy, is important in the

field of remote sensing. The advent and use of hyperspectral remote sensing systems exploit the

spectral domain of image acquisition by sampling the spectrum at intervals of 10 to 20 nm
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(Wolfe, 1997).  The motivation behind spectral sampling at these minute intervals is that

“detailed spectral profiling of absorption features in liquid, solids and some gaseous materials”

can be accomplished (Stoner and Resmimi, 1996), thereby resulting in easier material

identification and discrimination.  The main idea behind hyperspectral imaging is that each image

pixel contains the spectral signature of all materials located within that pixel.

Remote sensing can be simply defined as the “study associated with extracting

information about an object without coming into physical contact with it” (Landgrebe, 1978a).

Our eyes and ears gather data from the world around us, yet it is our brain and cognitive

processes that form this data into information by which we make decisions.  Analogous to this is

the manner in which information is extracted from hyperspectral imagery.  The electro-optical

sensor gathers data from earth reflectance/thermal emittance, yet it is a series of post-processing

algorithms that actually extract information from this raw data.  Generally speaking,

hyperspectral processing algorithms include such procedures as target detection, thematic

mapping/classification routines and unmixing algorithms.  The final products from these

algorithms include such items as material abundance/ fraction maps, classification maps and

target detection/prediction maps.

At this point it should be noted that spectral and spatial resolution share a strong

relationship with one another.  Furthermore, this spectral-spatial relationship is also shared with

the signal-to-noise ratio (SNR) of an electro-optical imaging system. The inter-relationship of the

three parameters of spatial resolution, spectral resolution and noise create a “trade-off space” that

is based on the law of conservation of energy  (Landgrebe, 1978b).    In colloquial terms, the

photons reaching a sensor can only be divided up so that they (photons) contribute to either

improving one or two parameters (SNR, producing finer spatial resolution or spectral resolution)

but not improving all three simultaneously.  The selection of two parameters will automatically

fix the third parameter given a certain sensor design.

Continuing with the previous human analogy, if our eyes and ears are not perfect then it

is quite possible that we will miss valuable information.  Just the same, as we vary the spectral

resolution, spatial resolution and noise characteristics in a remote sensing system, we would

expect the accuracy of information derived from post-processing algorithms to change.   This is

the main thrust behind this thesis study – an examination of how differing spectral resolution,

spatial resolution and noise values effect the performance of hyperspectral algorithms and the

utility of the information derived from them. We wish to characterise the error in spectrally based
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information products. In essence, the utility of processed hyperspectral images will be examined.

This will allow us to better predict and understand the effectiveness of these algorithms under

different sensor parameters. This type of assessment also allows us to make performance

comparisons between different types of processing algorithms.

  In brief, the basic approach that will be followed in this research is to begin with a few

differing scenes (two real images and one synthetic image) acquired from a hyperspectral

imaging sensor and subject these to several hyperspectral algorithms in the pursuit of information

extraction.  These processed images and their final products will act as “references” for later

comparisons.  Subsequently, the original images will be degraded by conducting a change in the

spatial and spectral resolution of the image.  Different amounts of spectrally correlated noise will

also be added to the images in order to degrade the SNR. These degraded images will be

subjected to the same hyperspectral processing algorithms.  The final product information

extracted from these degraded images will be quantitatively compared, using several metrics, to

the reference information.  This will provide a measure of how the fidelity or utility of the image

is effected by varying sensor parameters. This approach will also provide a performance

comparison of different algorithms.  Since a factorial designed experimental approach will be

adopted for altering the levels of the sensor parameters we will also be able to see how the joint

effects of spatial and spectral resolution and noise effect algorithm performance.

Chapter 2 contains a wealth of information providing a background to this research.  In

this chapter the hyperspectral algorithms that will be tested and the metrics employed will be

discussed.  Additionally, a more detailed look at the sensor parameters of spectral resolution,

spatial resolution and spectrally correlated noise will be conducted.  Chapter 3 outlines the

approach and experimental design of this thesis.  In Chapter 4 the results of the experiment are

presented with an accompanying discussion of their analysis.    Chapter 5 provides a summary of

the work completed in this thesis study and makes recommendations towards future work that is

needed in the field of algorithm performance comparison and testing.
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Chapter 2

Background – Literature Review

2.1  The Very Basics

Prior to diving into the detailed background material surrounding this thesis, it is essential

that some basic definitions and concepts be understood. Most importantly, a hyperspectral

imaging system produces hundreds of copies of the same image each at a different wavelength.

As seen, in Figure 2-1, each image pixel is essentially the spectrum of all the materials at that

spatial location on the ground.

Figure 2-1: Hyperspectral Imaging Concept (RSI, 1998)
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The image pixel is the projection of the imaging detector onto the ground from above and is

called the ground instantaneous field of view (GIFOV) or ground spot size.  The GIFOV

represents the smallest spatial feature that can be resolved by an imaging system and is therefore

used interchangeably with the term spatial resolution.  Obviously the larger the GIFOV, the more

ground coverage on a per pixel basis.  This inevitably means more materials are included within a

pixel and therefore more combining of material spectral signatures.  Similar to spatial resolution,

spectral resolution refers to the smallest spectral feature or rate of spectral sampling conducted by

the imaging system. In Figure 2-1, if the stack of images to the left is an image taken every 10

nm, then the spectral resolution, also known as bandwidth, is 10 nm.  These brief definitions

serve only as starting point and will be discussed in more detail later on.

2.2   The Imaging Chain

In order to study the acquisition of remotely sensed data and the transformation of this

data into useful information, a systems approach is advantageous. In this sense, the steps or chain

of events of a remote sensing system, from initial data acquisition to a final useful product, can be

termed as a system called an “imaging chain” (Schott, 1997).

Basically, a remote sensing system can be divided into three major subsystems – the

scene, the sensor and processing (Kerekes, 1987, 1996).  Although seemingly crude, this type of

simplified breakdown was used in the development of the General Image Quality Equation

(GIQE) which predicts image interpretability/utility based on the target, sensor and processing

characteristics of a panchromatic electro-optical system (Leachtenauer et al., 1997).  The GIQE is

a successful demonstration that the imaging chain can be modelled quantitatively.  Figure 2-2 is

adopted from the GIQE work and work by Kerekes (1987, 1996) to show all of the components

of the remote sensing imaging chain.  An excellent and brief description of the entire system is

provided by Kerekes (1987):

“The scene contains the spectral, spatial and temporal variations of the surface
reflectance and in the transmitting medium (atmosphere) which are then present at the
input of the sensor.  These variations include both the information bearing and
information degrading types.  The sensor includes all electro-mechanical effects of
transforming the incident electromagnetic wave signal that represents the scene and is
suitable for processing.  The processing sub-system includes all effects of obtaining the
desired output information from the data obtained by the sensor…in each subsystem
many factors contribute to the data.”
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SCENE

- sun position

- surface characteristics

- target geometry

- atmosphere

SENSOR

- detector size and optics

- System MTF (spatial resolution)

- spectral resolution

- radiometric and calibration errors

- noise

-communication/storage errors

PROCESSING

- measurement conversion errors

- algorithm errors/assumptions

- computer processing errors

- human error

Figure 2-2: Imaging Chain Model of a Remote Sensing System

It is clearly evident from the Figure 2-2 that there are numerous factors contributing to the

final product at the end of the imaging chain.  It should also be noted that many of these factors

are related.  It has already been established in Chapter 1 that the three sensor parameters being

studied in this thesis - spatial resolution, spectral resolution and noise are interrelated based on the

law of conservation of energy  (Landgrebe, 1978).  Another example of factor interaction is that

certain atmospheric inversion techniques (discussed in more detail later) work more effectively

depending on the scene characteristics.  For instance, the Internal Average Relative Reflectance

(IARR) method works best for arid regions with little slope and vegetation. (RSI, 1998).

Schott (1997) states that by adopting an imaging chain approach in analysing the output

product or image, “we can better understand what the product means, the limitations of the

product and where those limitations were introduced by weak links” in the system.  Furthermore,

he purposefully emphasises the point that image utility is only as strong as the weakest link in the

imaging chain.  The main goal of this thesis study is to quantitatively assess the accuracy and

effectiveness of hyperspectral processing algorithms under differing values of spectral resolution,
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spatial resolution and noise. A systematic approach to this study is paramount since we are

examining how factors from one component in the imaging chain effect the results from another

component in the imaging chain.

2.2.1 Processing Levels

    Another way of looking at the imaging chain is to look at the evolution of different

products along the imaging chain. We can define a “product” as the output from one link of the

image chain.  Using the chain analogy from the previous section, we can easily see that the

output, or product, from each step along the image chain becomes the input of the next step.   In

this sense, products are the “interface points” along the processing chain (Alexander and

Cheatham, 1998).  Each product has defining characteristics that relate to how it was produced

and how it is used.  These products can more easily be discussed by dividing the processing chain

into six unique levels (Alexander and Cheatham, 1998).   These levels can be then grouped into

three separate domains, as seen in Figure 2-3.

Figure 2-3: Processing Levels and Domain groupings

The System Domain consists of the first two levels of processing.  Level 0 is the initial

hyperspectral image data cube formed by the electro-optical sensor and either stored for later use

Processing Chain Levels and
Domain Groupings

SYSTEM DOMAIN           Level 0.   Raw Image Formation
                                    Level 1.   Calibration

PRODUCT DOMAIN         Level 2.   Data Resampling
                                    Level 3.   Spectral Products

INFORMATION               Level 4.    Data Exploitation

       DOMAIN               Level 5.    Reporting and Decisons
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or transmitted via a communication link.  Level 1 Calibration involves the radiometric calibration

of the image data cube to generally produce a geolocated radiometrically calibrated image cube.

This calibrated cube becomes the input to Level 2 processing.

Data Resampling (Level 2) is the first processing level of the Product Domain.  Data

resampling involves two types of transforms to the image cube.  The first transform is a

geospatial rectification transform of the image and the second transform is an atmospheric

inversion transform that converts the data cube from units of radiance to reflectance/emittance.

These two transforms will be discussed in more detail in the next section.  In general, the

products resulting from this processing level are directly related to these two transforms –

atmospheric inversion products or geo-rectification products.  A detailed list of all the products

from this level can be found in Appendix A.

 Spectral Data Extraction (i.e. Spectral Products) is the third processing level and the

second portion of the Product Domain.  This is a “transition” level in the sense that from Level 3

and onward the products are aimed more towards application specialists who may not be versed

in spectral analysis (Alexander and Cheatham, 1998).  The Spectral Products, or output from

Level 3, are essentially information formed by the exploitation of the image’s spectral content.

This directly relates back to the field of spectroscopy and the ability to identify/discriminate

between materials based on their spectral signature. These products fall into one of five main

categories.  The categories are temperature maps, classification/thematic maps, endmember or

fraction maps, anomaly maps and spectral matching. It is these types of products, the algorithms

that form these products and the testing of their accuracy that form the main crux of this thesis

study.

The Information Domain is the last grouping of processing levels.  It consists of the Level

4 – Data Exploitation in which Spectral Products from the previous level are grouped and used in

direct application to solving or studying a certain problem. These products, which are typically

very problem specific, become the input to the final level (5) of processing where all pertinent

information that has been extracted is compiled into a report so that well informed decisions can

be made in order to solve a problem or further a study.

The main goal of any imaging system is to collect information.  The description of a

remote sensing system as a level of interrelated products helps in describing the imaging chain.  It

does this by providing a qualitative description of products as they relate to the evolution of

image data into image information used for decisions.  The type of system definition (Alexander
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and Cheatham, 1998) will provide a focus point of products levels that this thesis will investigate.

This thesis is primarily looking at the accuracy and effectiveness of algorithms that result in

Level 3 products based on the changes of Level 0 or sensor parameters of spectral resolution,

spatial resolution and noise.   The specific types of algorithms being studied will be discussed in

more detail in a subsequent section of this chapter.

2.3 Geo-rectification and Atmospheric Inversion (Level 2 Products)

Level 2 processing involves two different types of transforms to the initial image data.

The first transform is a geospatial rectification transform of the image and the second transform is

an atmospheric inversion transform that converts the data cube from units of radiance to

reflectance/emittance. It is not within the scope of this thesis study to examine hyperspectral

algorithm performance with respect to errors introduced by Level 2 processing.  However, a very

brief discussion of the processing involved with these two transforms and accompanying errors

may prove beneficial for a better understanding of the entire imaging chain.

2.3.1 Geo-rectification/Registration

When an image is captured at two different time periods it is possible that the two images

do not share the same spatial location due to varying sensor position, view angle and resolution.

The process to transform the geo-metric co-ordinate system of one image to another, so that a

common spatial co-ordinate system is shared, is known as registration or rectification.  A

hyperspectral imaging sensor captures the same image simultaneously across multiple spectral

bands.  Depending on the design of a hyperspectral sensor, band to band registration may be

necessary (Wrigley et al., 1984; Wolfe, 1997).

The goal of rectification/resampling is to transfer the sample image/band so that it has the

same geometric co-ordinates as a given reference image/band.  In order to do this a relationship

between the reference and sample image/band must be established by using a least-squares-fit to a

polynomial equation (Schott, 1997).  This type of transform equation will account for rotating,

scaling, skewness, shifted pixels and perspective changes and is solved for by the selection of

Ground Control Points from the two images.  Another method of registration is to use block

correlation techniques.  This type of registration was done for the different bands of LANDSAT

TM (Wrigley et al, 1984). Once these transformations are complete for either image-to-image or

band-to-band registration, a method to resample the data is required.  Resampling is done by an
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interpolation scheme.  Examples of interpolation techniques include nearest neighbour

resampling, bilinear interpolation or cubic spline (Schott, 1997; Easton, 1998).  Accompanying

each one of these interpolation techniques are trade-offs with respect to introduced edge artifacts,

image blur and preservation of spectral information (Schott, 1997).

 Errors due to misregistration will inevitably occur.  Misregistration errors occur in the

form of shifted pixels.  Conversely, spectral integrity may be sacrificed depending on the type of

interpolation method that was used.   These types of errors and their associated consequences

must be kept to a minimum since classification accuracy may be effected by any more than a 0.3

pixel registration error (Wrigley et al., 1984).

2.3.2 Atmospheric Inversion

 Information in hyperspectral imagery is based upon the ability to discriminate between

and identify materials based on their spectral signatures and characteristic absorption features.

This information is typically extracted through the use of various algorithms based on the

retrieved surface reflectance of the scene.   In this way, each pixel is a reflectance spectrum.  The

surface reflectance is calculated by following two conversions of the data.

The first conversion is a calibration of the sensor output, be it in digital counts or voltage,

to radiance reaching the sensor (Schott, 1997).  More information regarding radiance calibration

can be read in Schott (1997).  The second conversion of the data is known by many names, all of

which mean the same thing - atmospheric correction, calibration, compensation or inversion.  The

atmosphere scatters and absorbs information-carrying light; thus robbing light from reaching the

sensor.    This results in the atmosphere acting as a low-pass filter by attenuating higher spatial

frequencies in an image.  The amount of blur that results in an image is dependent upon many

factors including type of atmosphere (e.g. hazy or clear), constituents within the atmosphere and

height of the sensor.  Generally speaking, the atmosphere also has strong absorption bands at

certain wavelengths thereby diminishing the spectral signature information of the objects of

interest at those wavelengths.  An example of this type of atmospheric absorption bands is those

imposed by water at 940nm and 1140nm. The justification for methods to “erase” the atmosphere

from hyperspectral imagery is obvious.

There are numerous algorithms available that perform atmospheric inversion and

transform the image data into surface reflectance.  Although it is beyond the scope of this study to

mention each algorithm with all of its respective advantages and disadvantages, we can group
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these algorithms into one of three categories.  These three categories are in-scene techniques,

ground-truth techniques and radiative propagation/transfer models (Schott, 1997; Kerekes, 1998).

The use of a ground-truth method will be discussed in more detail in the following paragraphs

since it was used in this thesis study.  A full discussion regarding other approaches is available in

many sources including Schott (1997).

Ground-truth methods are based on a linear regression that solve for atmospheric variables

based on the observed radiance at the sensor produced by a target of known emissivity or

reflectance (Schott, 1997).  These targets are known either by measuring the data at the same time

as the remotely sensed data or from library spectra. Therefore, with an observed radiance at the

sensor and known reflectance values we are able to calibrate the image from radiance to

reflectance via the following equations:

(2-1)

Where Lobs is the observed radiance at the sensor, Lu is the upwelled atmosphere radiance, Ld is

the downwelled atmosphere radiance, τ is the atmospheric transmission, r is the object reflectance

and Es is the solar spectral irradiance. Slope (m = Esπ-1τ+ Ldτ or τ(Esπ-1+ Ld)) and intercept (Lu)

values found via the regression are applied to the radiance spectra for each pixel to produce an

apparent reflectance spectrum at each pixel.  This method, known as Empirical Line calibration

method (ELM), is a very popular ground-truth approach that forces the image data to match

selected field reflectance spectra (Roberts et al, 1985). This approach assumes a constant

atmosphere over the image and that the known targets are Lambertian. The accuracy of these

methods are highly dependent upon the accuracy of the ground-truth collection, the sensor

calibration and “the uniformity of reference objects over the spatial scale of the remotely sensed

measurement” (Kerekes, 1998).

An investigation of the impact of atmospheric correction techniques on the effectiveness

of hyperspectral algorithm performance is not included as part of this thesis. The effectiveness of

hyperspectral algorithm performance with respect to only spatial, spectral resolution and noise is

done here.  However, this would be an interesting study using this thesis as a starting point.
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2.4 Spectral Products (Level 3 Products)

As discussed previously, various spectral algorithms are available that use the spectral

content of the acquired image to form spectral products (Level 3 products). The final spectral

products include such items as temperature maps, classification/thematic maps, endmember or

fraction maps, anomaly maps and spectral matching.  It is these types of products, the algorithms

that form these products and the testing of their accuracy that form the aim of this thesis study.

These algorithms are based on the field of spectroscopy and mathematically

identifying/discriminating between materials based on their spectral signature.  The five

algorithms tested in this thesis may be categorized as either classification algorithms, spectral

unmixing algorithms or target detection algorithms.  In the following paragraphs each of these

algorithm categories will be discussed in more detail, as will the specifics of the five algorithms

being tested in this thesis study.  It is important to note that the spectral algorithms tested are the

algorithms as they are implemented in ENVI 3.2 (RSI, 1998).

2.4.1 Classification Algorithms

Classification or thematic mapping algorithms segment an image into its class components or

materials - such as vegetation, concrete and types of minerals, for example. The algorithms assign

each pixel to a class based on that pixel’s spectral signature in comparison to reference spectral

signatures.  The reference spectra form part of a larger spectral library or are extracted as regions

of interest from the image itself. The final product of a classification algorithm is a single “class

map” in which each pixel is assigned to a class or material type and is indicated by a colour code,

as seen in Figure 2-4. Classification maps are used in a variety of fields that include cartography,

urban planning, agriculture, mining and defence.
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Figure 2-4: Schematic of the Classification Process

There are several methods of class assignment, which form the basis of algorithm

operation. The three classification algorithms tested as part of this thesis are Binary Encoding,

Spectral Angle Mapper and Gaussian Maximum Likelihood.  Each classification algorithm tested

in this thesis is a supervised classification method meaning that it requires information from the

user regarding what endmembers to include - either from a spectral library, training data or

thresholds.

Binary Encoding (BE)

The binary encoding classification technique first calculates the mean of both image and

reference/endmember spectra across all bands.  Subsequently, both image data and endmember

spectra are encoded into 0s and 1s based on whether the spectrum’s value in each band falls

below or above the spectral mean, across all bands.  This results in each spectrum being stored as

an integer with the number of bits equal to the number of image bands and each bit representing a

point in the spectrum (Kruse et al, 1993a).  In ENVI, an exclusive OR function (XOR) is used to

compare each encoded reference spectrum with the encoded image spectra and a classification

image is produced (RSI, 1998).  Pixels are classified to the endmember with the greatest number

of bands that match.   The implementation of this algorithm in ENVI allows the user to set a

minimum match threshold expressed as a percentage.  A schematic of this algorithm can be seen

in Figure 2-5.

The binary encoding algorithm is simple and fast.  It has been found that this algorithm is

quite accurate for identifying materials with distinct absorption bands, is insensitive to albedo

variations and is not susceptible to high frequency noise (Kruse et al., 1993a).

Initial Image Classified Image
(Level 3 Product)
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Figure 2-5: Schematic of Binary Encoding Algorithm

Spectral Angle Mapper (SAM)

 The SAM algorithm operates under the premise that both the image spectra and

reference/endmember spectra can be represented as vectors in N-dimensional space, where N is

equal to the number of spectral bands.  The algorithm determines the similarity between image

and reference spectra by computing the “spectral angle” between these two vectors (Kruse et al.,

1993b).  Following along with the explanation provided by Kruse et al. (1993b), consider two-

band reference spectrum and image spectrum.   The two spectra may be represented as plotted

points, as seen in Figure 2-6.  The line connecting each point to the origin contains all possible

illuminations of that same material. It should be noted that this simple approach does not account

for shading by transmissive object.  That is, each line represents the material and a point on that

line represents how much that material was illuminated in the image. In this regard, the SAM

algorithm is insensitive to illumination factors and unknown gain factors (RSI, 1998).
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Figure 2-6: Schematic of SAM algorithm (RSI, 1998)

Geometrically, the angle between these vectors remains constant despite their length (i.e.

“illumination”).    SAM determines the similarity of an image spectrum t to a

reference/endmember spectrum r by the following equation:

(2-2)

The spectral angle αα (in radians) is calculated for every spectrum image in the image with respect

to each reference spectrum used.  A small angle between the two vectors indicates more similarity

in the vectors, and the materials they represent, than a larger angle.  Image spectra t are assigned

to the endmember r which yields the smallest spectral angle αα between them. Pixels further away

than the user specified maximum angle threshold, in radians, are not classified to the class

represented by r. More information regarding the SAM algorithm can be found in Kruse et al.,

1993b.
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Gaussian Maximum Likelihood (GML)

Gaussian Maximum Likelihood classification uses Bayesian probability theory and

assumes that the statistics for each class in each band are normally distributed.  GML calculates

the probability that a given pixel belongs to a specific class and assigns each image pixel (i.e.

spectrum) to the class that the pixel has the highest probability of belonging to. The following

brief explanation and derivation of the GML algorithm is similar to that found in Schott (1997)

and Richards (1993).   These two references may be consulted for a more in-depth coverage of

this algorithm.

In determining which class, j, that a pixel/spectrum X, belongs to we are most interested

in the conditional probability p(j | X).  Classification is performed according to: X ε j  if p(ja | X) >

p(jb | X) for all a≠b, where a and b represent different classes.  The conditional probability that

pixel X belongs to class j can be expressed as:

 (2-3)

where p(j) is the a priori probability that any class j will be observed or more simply put it is the

proportion of classes. The probability, p(X), represents the chance that X occurs in the image and

is the normalized multivariate histogram of the image. The term p(X) may be dropped from

equation 2-3 without effecting the final results since it merely scales the calculation of p(j | X)

(Schott, 1997).  The term p(X | j) is the probability that a pixel value or spectrum is observed

given a certain class selection.  This probability is calculated for all pixel/spectrum and class

values based on the training data provided by the user through his/her selection of endmembers

and choosing image regions of interest.  The term p(X | j) is calculated, assuming that the

statistics for each class in each band are normally distributed, by the following equation:

        (2-4)

where nb is the number of spectral bands, Σj  is the covariance matrix for class j, |Σj| is the

determinant of the covariance matrix, Σj
-1 is the inverse of the covariance matrix and (X - 8j)

T
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is the transpose of (X - 8 j) where X j  is the spectral mean of class j.  It should be noted that Σj is a

square matrix with dimension equivalent to the number of spectral bands.  It should also be noted

that “the location of the multivariate normal distribution for a class is fully characterised by the

mean vector X j and the shape of the distribution provided by the covariance matrix Σj” (Schott,

1997). A method to calculate Σj can be found in Schott (1997).  Equation 2-4 is simply substituted

into equation 2-3 to find the conditional probability p(j | X) of pixel/spectrum X belonging to

class j given that the data is normally distributed.  This final formula can be further simplified

into several other discriminant-based forms (Richards, 1993).  Despite these other forms the basis

of assigning pixel X to class j based on a maximum conditional probability p(j | X) never

changes.

Although this algorithm is quite complex it is one of the more popular classification

routines since it minimises classification errors by taking into account the spectral shape of each

individual class (Schott, 1997). In order that this shape is accurately predicted, large training sets

of image pixels/spectra are required.  The statistics of these data training sets must also reveal that

the data is approximately Gaussian distributed.  As we will see in another section the results of

the GML classification algorithm can be further enhanced by reducing the spectral dimensionality

of the image data via transforms like the Maximum Noise Fraction transform (see section 2.6.3)

prior to classification.  This is a common practice and will be used in this thesis study when using

the GML algorithm.

2.4.2 Unmixing Algorithms

Before considering the use of unmixing algorithms and the results derived from them it is

useful to understand the phenomenology behind “mixed pixels.” As stated earlier, an image pixel

is the projection of the imaging detector onto the ground from above and is called the ground

instantaneous field of view (GIFOV) or ground spot size. Obviously the larger the GIFOV, the

more ground coverage on a per pixel basis.  This inevitably means more materials are included

within one pixel and therefore more “mixing” of material spectral signatures.  In this sense, an

imaging spectrometer is an integration device in which the photons reflected from a finite

GIFOV, and all the materials within that GIFOV, are integrated onto a single detector

(Boardman, 1994).

Spectral mixing also occurs naturally by the spatial mixing of materials represented

within a single pixel.  This type of mixing falls into three different categories.  Aggregate mixing
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is the combination of materials on the macroscopic scale where the radiance in a pixel is an

average of the individual materials that the sensor could not spatially separate.  Areal mixing is

occurs due to the limited GIFOV of the sensor and the pixel constituents could be separated with

a higher spatial resolution imager.  Intimate mixtures are defined by materials being combined at

the microscopic level and will involve multiple interactions between materials and the incident

photons (Konno, 1999).  Areal and aggregate mixing models may be modelled by the linear

addition of material reflectances within the finite sized GIFOV.  However, intimate mixing

exhibits non-linear behaviour.  It is apparent that “the degree of linearity of the mixing depends

on the spatial resolution of the sensor, the physical distribution of endmember materials within

that GIFOV and the definition of the endmembers” (Boardman, 1994).  Although there are many

unmixing models available, linear unmixing techniques are an excellent approximation and work

well in many circumstances (Boardman and Kruse, 1994).  The linear spectral unmixing

algorithm, as implemented in ENVI 3.2, is the algorithm being tested as part of this thesis study.

The required inputs into any unmixing algorithm are the hyperspectral image and the

endmembers that are to be “unmixed.”  These are chosen from a spectral library or user-defined

regions of interest. The output from this algorithm is a series of images, one for each selected

endmember, that contain the relative fraction of each specific endmember at each pixel location.

These pixels of these “fraction maps” ideally range from 0 to 1 and their brightness indicates

relative abundance.  A cartoon depicting the unmixing process can be seen in Figure 2-7.

Linear Spectral Unmixing

As mentioned in the above section, a linear spectral unmixing model is an excellent

approximation for calculating the abundance or fraction of an endmember in an image pixel.

The linear model can be expressed by the following equation:

(2-5)

where Rb is either the reflectance or radiance in band b, Fem is the weighting fraction of each

endmember Rem in band b and Errorb is obviously the error term for any unaccounted signal in

band b (Pinzon et al., 1998).   This says that the observed signal (reflectance/radiance) is the



19

Figure 2-7: Schematic of Unmixing Process (Konno, 1999)

weighted sum of the signal from each endmember.  The linear mixing model depicted in equation

2-5 can also be represented in matrix format of Ax = y, where A is the endmember spectra

organised by column, x contains the fractions and y contains the observed radiance or reflectance.

However, a simple inversion of A to solve for x may result in a solution that makes little or no

sense (Konno, 1999).  In this sense, constraints must be placed on the linear unmixing model in

equation 2-5.

Solving equation 2-5 as it is presented is referred to unconstrained unmixing. The

resulting fractions may assume negative values and are not constrained to sum to unity – which

makes physical sense.  Applying the condition that all the resulting fractions must sum to unity

(i.e.  ΣFem =1) is referred to partially constrained unmixing. This unit-sum constraint is then

added to the system of simultaneous equations in the unmixing inversion process. However,

fraction values which are negative or greater than one are still possible. These infeasible fractions

indicate erroneous endmembers.  Fully constrained unmixing dictates an additional condition in

that all determined endmember fractions must be between 0 and 1.  Obviously, fully constrained

unmixing best represents the physical world but is most computationally intensive.  ENVI linear
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spectral unmixing has two constraint options: unconstrained or a partially constrained unmixing

(RSI, 1998).  The partially constrained unmixing model will be used in this thesis study.

It should be noted that the endmembers chosen for linear spectral unmixing should

“explain the spectrally distinct materials that form the convex hull of the spectral volume”

(Pinzon et al, 1998).  That is, only the endmembers that explain the majority of the variance in the

image should be used in selecting the reference endmembers for unmixing.  This fact was

underlined by Konno (1999) in which he found that traditional linear spectral unmixing worked

best with 6 to 8 reference endmembers.  It should also be noted that due to the mathematics

behind the unmixing algorithm that the final results are dependent upon the type and number of

input endmembers.  That is, any changes made to the reference endmembers will alter the system

of equations used to perform unmixing (equation 2-5) and therefore change the final results.

2.4.3 Target Detection Algorithms

Typically, the final product of target detection algorithms is a series of grey-scale target

maps, one for each selected endmember/target.  The grey-scale values are determined via floating

point results from the target detection algorithm.  These floating point numbers could represent

the relative degree of match of the pixel to the reference spectrum and approximate sub-pixel

abundance.  Obviously, 1.0 is a perfect match.  These floating point numbers could also be a

degree of scale and measure the absorption feature depth, which is related to material abundance;

and thus material presence.   In either case the final product is an image that indicates some

confidence level in predicting a user defined target at each image pixel location.  Target detection

algorithms are used in a variety of applications ranging from military reconnaissance to mining.

It should be noted that the two target detection algorithms described here could also be used for

some thematic mapping, but for the purpose of this study these algorithms are primarily used to

detect user-input targets.  As stated previously, the algorithms used are those supplied with ENVI

(RSI, 1998).

Spectrally Matched Filter (SMF)

One can think of matched filtering as a means of performing a partial unmixing.   That is,

we determine the abundance of only the user-defined endmembers – also known as targets.  The

algorithm, as it is implemented in ENVI maximizes the response of the known endmember/target
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and suppresses the response of the composite unknown background, thereby  "matching" the

known signature (RSI, 1998).  Although the exact details of how this algorithm is implemented in

ENVI are not explicitly stated, ENVI refers to the literature regarding the Orthogonal Subspace

Projection (OSP) algorithm used for target detection (Harsanyi and Chang, 1994).  The basics

behind the OSP algorithm are discussed here.

The OSP algorithm (Harsanyi and Chang, 1994) begins in a similar fashion to the

unmixing algorithm in that each pixel may encompass several different constituents and their

respective spectral signatures.  A mixed pixel at (x, y) that contains p distinct endmembers can be

expressed as:

   (2-6)

where r is an nb x 1 vector where nb is the number of spectral bands. M is an nb x p matrix with

the columns representing the endmembers spectral signature and in αα is a p x 1 vector of

endmember fractions.  The nb x 1 vector n is random noise.   If we are interested in the presence

of only one endmember/target in the image, d, then we may rewrite the above equation as:

    (2-7)

where αα is the fraction of the target in the pixel, U is the nb x (p – 1) matrix of all the other scene

endmembers except d, with γγ being a (p – 1) x 1 vector equal to the fraction of the backgrounds.

The goal of the OSP algorithm is to suppress the background effects, represented by U, prior to

the second step of using a matched filter.

The first step is to suppress the background effects by “projecting r onto a subspace that

is orthogonal to the columns of U” (Harsanyi and Chang, 1994).   The second step is to perform a

matched filter to find the target of interest, d.  The overall operator that is applied to equation 2-7

in order to make this happen is:

            (2-8)

where P = I - UU# and U# is the pseudo-inverse of U.  The nb x nb matrix P suppresses the

background by orthogonal projecting r as discussed earlier.  Harsanyi and Chang (1994) provide
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the complete mathematical proof and a more in-depth discussion regarding the mechanics of this

algorithm.

The result of the SMF algorithm as implemented in ENVI is a series of grey-scale

images, one for each selected target.  As discussed earlier, the grey-scale images are based on

floating point numbers that represent the relative degree of match of the pixel to the reference

spectrum where 1.0 is a perfect match.

Spectral Feature Fitting (SFF)

The previously discussed SMF algorithm indicates how similar the material in the image

pixel/spectrum is in comparison to reference spectra.  The Spectral Feature Fitting (SFF)

algorithm is an absorption based method that matches image spectra to reference spectra based on

specific spectral features.  Although not explicitly stated the SFF implemented in ENVI is

analogous to the TRICORDER algorithm (Clark et al., 1991) and ENVI refers to this literature as

background material to its SFF algorithm.

The SFF/TRICORDER algorithm requires that the image is calibrated into units of

reflectance and that a continuum removal be conducted on both the image and reference spectra

prior to absorption feature fitting.  Fitting straight-line segments between the high points of the

spectra forms a continuum.  This corresponds to the background signal unrelated to the spectra

absorption features of interest.  Dividing the original spectrum by the continuum itself is the

process of continuum removal, as depicted in Figure 2-8.

Once continuum removal has been conducted each spectrum is subtracted from one,

thereby making the continuum line zero.  The reference spectra are now multiplied by a scaling

factor that “matches” the reference spectra absorption features to the unknown image spectra at

each pixel location.  “Large scaling factors are equivalent to a deep spectral feature while small

scaling factors indicate weak spectral features" (RSI, 1998).   A least-squares fit is calculated

band-by-band between each reference endmember and image spectra, by utilizing the following

equation. The symbol λ indicates the spectral band dependence within this equation.

(2-9)
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where Oc is the continuum removed image spectra, Lc is the continuum removed reference

spectra, a is a constant and b is the scaling factor discussed earlier (Clarke et al., 1991).

Computing this regression fit for each image pixel produces a measure of band depth and a root-

mean-square (RMS).  The measure of band depth revealed by the scaling factor indicates the

Figure 2-8: Continuum Removal of Kaolinite (RSI, 1998)

abundance and presence of a specified material in a given image pixel. The final product of this

algorithm, as implemented in ENVI, is a series of scale images, one for each target spectrum, that

are a measure of absorption feature depth.  As previously stated, absorption feature depth is

related to material abundance and presence.  Also produced is an RMS image for each target

endmember, which is a measure of the goodness of fit in the regression model and therefore

provides some confidence as to the presence of materials in the image (RSI, 1998).
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2.5 Endmembers, Ground-Truth and Reference Images

One of the most important philosophical questions to answer before beginning this thesis

study was “what is truth?”   That is, if we are attempting to degrade an image spectrally, spatially

and by adding noise, we require references to draw quantitative comparisons about algorithm

performance.   Assuming that the initial images are of the highest spatial and spectral resolution,

we choose the original images as the references.

Another aspect to this problem is answering the question of what constituents or

endmember materials make up a hyperspectral scene.   It can be easily seen in section 2.4 that

many of the hyperspectral algorithms require input spectra to begin processing.   There are two

approaches in determining what endmembers exist within a remotely sensed scene and

determining their respective spectral signatures.

The first approach is by far the simplest and most accurate.  However, it is also the most

costly in terms of time and resources.  This approach involves acquiring knowledge through

ground-truth collection about the scene. This approach involves measuring the spectral signature

of the various materials in the scene using a hand-held spectrometer, usually at the same time the

remotely sensed data is being acquired. In essence, a spectral library can be built from this “truth”

data.  Similarly, spectral libraries are formed without a particular image in mind and are the result

of laboratory measurements of numerous materials.  A spectral library allows the user to later

select endmember spectra for use in classification and advanced spectral analysis techniques

(RSI, 1998).   Another method of knowing exactly what materials a scene is composed of is by

using synthetic or simulated imagery, which will be discussed in more detail later on.

 Similarly, if we know the type of material in a scene at a given location, we can use the

spectral signature from that pixel location as an endmember’s spectral signature.  This in-scene

determination of endmembers is the second approach. This technique is also straightforward as

long as the exact location of recognized materials is known.  ENVI 3.2 provides the user the

ability to match the spectrum from a given location to library spectrum values for comparison

purposes (RSI, 1998).   This method is quite effective if a good knowledge of the area is used

when selecting the endmembers from within the scene.  If the locations and types of materials

that constitute a scene are unknown then the complexity of endmember collection increases.

In the case of unknown material locations and unknown endmembers it is possible to

derive the endmembers of a scene by employing different algorithms.  These work under the

postulate that spectra can be represented as points in an n-dimensional scatterplot, where n is the
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number of spectral bands. The distribution of these points in n-space can be used to estimate the

number of spectral endmembers and their pure spectral signatures (RSI, 1998).   Thus,

endmember selection is equivalent to finding the vertices of a simplex that enclose all the spectra

of a scene in this n-dimensional space (Tsang et al, 1998).  These derived endmember spectra are

more pure and extreme than any other spectra in the image since every observed spectrum in the

image is a linear combination of these vertices or endmembers.

The Pixel Purity Index (PPI) algorithm (RSI, 1998) uses the above theory of discovering

the spectrally pure or spectrally extreme pixels. The Pixel Purity Index is found by repeatedly

projecting n-dimensional scatterplots onto random unit vectors. The number of times a pixel falls

at the extreme end of these projections is recorded.  Obviously, the maximum number of times a

pixel appears as an extreme projection point indicates its likelihood as an endmember in the

scene.  The ENVI user is then able to interactively select endmembers using this information

(RSI, 1998).  More details on how these tools were used in the selection of scene endmembers

from the real imagery can be found in Chapter 3.

2.5.1 Real Imagery

Two scenes acquired from NASA’s instrument AVIRIS (Airborne Visible Infrared

Imaging Spectrometer) are used in this thesis study.  This instrument covers the spectral range of

0.4 to 2.5 µm with an average spectral resolution (sampling interval) of 10 nm over the 224

spectral bands.  The instantaneous field of view is 1 mrad which provides a ground spot size

(pixel size) of 20 m when the instrument is flown at an altitude of 20 km (Vane, Green et al.

1993).  The instrument boasts a spectrally averaged signal-to-noise ratio equal to 500 with

reference to a 50% reflector.  The reasons that images are used from this sensor are twofold.

Firstly, this sensor offers very clean hyperspectral imagery with respect to noise and calibration

issues at a moderate spatial resolution. The second reason stems from the excellent performance

of AVIRIS in that it has become an industry standard for hyperspectral imagers.

The two scenes used can be seen in Figure 2-9.  The first scene was acquired over Lake

Ontario near Rochester, New York in May 1999.  This image is complex and spectrally diverse in

that there are many endmembers in the scene covering many possible classes (urban, water,

vegetation) and respective subclasses. There is also a lot of spatial information within this scene.

The second scene was acquired over Rogers Dry Lake, California in June 1998.  This scene is

somewhat homogeneous both spectrally and spatially speaking.
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Figure 2-9: AVIRIS Images used – Rochester, NY (top) and Rogers Dry Lake, CA (bottom)
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2.5.2 Synthetic Imagery

The use of simulated or synthetic imagery is extremely advantageous in the study of the

imaging chain (Schott, 1997).  The Digital Imaging and Remote Sensing Image Generation

(DIRSIG) model is a computerized model used for image simulation and image chain modelling

at RIT’s DIRS laboratory. More detailed information regarding DIRSIG and its various

interrelated components that model the image chain can be read in Brown (1999).

The primary reason for the use of synthetic imagery in image chain analysis is that all

details of the constructed image are known.   These details include the geometry of the scene and

the spatial relationships of objects in the scene.  Once the scene and all of its components are

constructed we can then assign material identifications to every item in the scene.   Linked to the

material identification is all of the physical characteristics of that material including the spectral

signature as a function of wavelength (Schott, 1997).  In addition to being able to simulate the

operating parameters of the sensor, we can also model radiation propagation to the sensor by

incorporating MODTRAN.   It is readily apparent that all stages along the image chain are

controllable when using synthetic imagery.     The DIRSIG produced truth material map reveals

the exact material contained within each image pixel and is analogous to using an image with

100% complete ground-truth.  Additionally, a spectral library is made for each scene constructed

in DIRSIG thereby making the selection of reference spectra for processing effortless.

The DIRSIG image used is a desert scene entitled Western Rainbow.  It is relatively

homogeneous in the sense that the majority of the scene consists of either desert pavement or

desert wash.  However, there are deciduous trees and military targets (tanks and missile carriers)

scattered throughout the scene.  The image is 400 x 400 pixels in size with a ground spot size of

approximately 2 m.  The spectral range of 0.4 to 2.5 µm is covered with a spectral resolution of 5

nm.  This spectral resolution is then degraded to 10 nm and the reason for this over-sampling

approach will be discussed more thoroughly in Chapter 3.  The DIRSIG scene used can be seen in

Figure 2-10.
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Figure 2-10: DIRSIG Image used – Example of Western Rainbow desert scene

2.6 Spatial Resolution, Spectral Resolution and Noise

As previously mentioned in Chapter 1, the spectral resolution, spatial resolution and noise

characteristics of an electro-optical imaging system share a strong relationship with one another.

This inter-relationship is based on the law of conservation of energy  (Landgrebe, 1978b) which

dictates that energy can be neither created nor destroyed but just transferred from one state to the

other.  Therefore, the radiance reaching the sensor can only be separated in ways that improve

spatial resolution, spectral resolution or SNR - but not improving the performance of all three

parameters simultaneously.   To better observe this trade-off space look at Figure 2-11 (Konno,

1999).  If high spectral resolution is desired then the size of the detector is increased in order to

satisfy SNR requirements since only a small amount of energy is allowed through the spectral

filter. This increases the size of the sensor and a degradation of spatial resolution results.

Conversely, if high spatial resolution is desired then the size of the detector is minimized.  In

order for SNR requirements to be met we can either choose a longer integration time (which will

lead to blur for moving airborne/space imagers) or widen the spectral filter. This ultimately

means coarse spectral sampling when high spatial resolution is desired.
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Figure 2-11: Spectral versus Spatial resolution trade-offs (Konno, 1999)

An example of this trade-off space as it relates to algorithm performance is that finer

spatial resolution will result in higher purity pixels with regard to endmembers.  In this case fewer

spectral bands may be needed to separate the scene using a classification algorithm.  However,

the converse to this is also true in that there will be less spectral information to perform detailed

material identification (Bowles et al, 1996).   This type of spectral/spatial resolution trade-off

study was conducted in the assessment of an unmixing algorithm (Pinzon et al, 1998).  One of the

recommendations of that study was a call for a better understanding of spatial/spectral tradeoffs.

These comments are echoed by Kerekes (1996) in which he emphasizes the importance to better

comprehend the relationships between spectroradiometric hardware specifications and the

performance of processing algorithms.

The following subsections will discuss the spatial, spectral and noise characteristics of

remote sensing systems in more detail.   The first portion of these subsections includes a brief

outline of how these operating characteristics effect system performance.  Since a major piece of

this thesis will be to measure the effectiveness of hyperspectral algorithms under differing values

of spectral and spatial resolution and noise, it is necessary that methods to change these

parameters within an image be established.  The second portion of these subsections will outline

the theory behind image degradation methods.
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2.6.1 Spatial Resolution

The spatial resolution properties of digital images, including hyperspectral images, can be

evaluated by an examination of the Modulation Transfer Function (MTF).  The MTF is used to

characterize the performance of an imaging system and is defined as the modulus of the Optical

Transfer Function (OTF) or System Transfer Function (Gaskill, 1978).  In essence, the MTF

describes “how well sinusoidally varying brightness of a given spatial frequency will be

reproduced by the imaging system” (Schott, 1997).   In other words the MTF represents how well

an imaging system can duplicate the spatial detail of an object as it defines how much an imaging

system attenuates spatial detail.   A more complete discussion regarding MTFs and the

mathematics of Linear Systems and Fourier Transforms necessary for their calculation can be

found in numerous sources (Gaskill, 1978; Gonzalez and Woods, 1992; Easton, 1998).  The

following paragraphs will use concepts from Linear Systems Mathematics (from the listed

sources) in describing how the spatial resolution of an image and its degradation will pertain to

this thesis study.

The Point Spread Function (PSF) of an imaging system is the response of a system to an

impulse of light called a point source (Gaskill, 1978).  Assuming that the imaging chain can be

adequately modelled by a linear shift invariant system, we can derive the MTF directly from the

PSF using the relationship:

                                   (2-10)

In this simple equation, the PSF is in the spatial domain, MTF is in the spatial frequency domain

and they are related by the Fourier Transform operator, ℑ (Gaskill, 1978).   The symbols ξ and η

denote the horizontal and vertical spatial frequencies respectively. Each component of the image

chain will have an individual PSF associated with it.  This is also called the impulse response, h

(x, y), and can be viewed as a filter which acts on the spatial frequencies within an image.   If f (x,

y) represents the brightness of the original image at spatial location (x, y) and h (x, y) is the filter

function (a.k.a. impulse response) then the output image g (x, y) is defined by a convolution

operation (Gaskill, 1978; Easton, 1998):

   (2-11)
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Taking the Fourier Transform of g, h and f will yield G, H and F in the spatial frequency domain

and through the filter/convolution theorem (Gaskill, 1978; Easton, 1998) these functions are

related by multiplication as seen in the equation below,

    (2-12)

where H (ξ,η) is called the transfer function and its magnitude is the MTF (Gonzalez and Woods,

1992; Easton, 1998).

Each component of the imaging chain will have a characteristic MTF.  That is, each

component of the imaging system helps in attenuating (i.e. “blurring”) the spatial frequencies in

the final image (Schott, 1997).  The MTF of the system can be found by application of equation

2-13, where N represents the number of components in the imaging chain (Easton, 1998).

(2-13)

In order to comprehend how an imaging system maintains the spatial integrity, we must

understand how each component of the system degrades spatial information.  Schott (1997)

provides a thorough example of this type of analysis for remote sensing systems.  The final

results of how each component of the image chain effects spatial attenuation can be seen in

Figure 2-12.

Figure 2-12: Cascaded MTFs of the atmosphere, optics, detector, and electronics for a

hypothetical remote sensing system (Schott 1997).
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From Figure 2-12 it is evident that the effects of the atmosphere, and to a certain degree

the optics of the system, act as an all-pass filter.  There is minimal attenuation of the higher

spatial frequencies by these components in comparison to the detector.  Typically, the detector is

the limiting factor in image collection because its dimensions are greater than the PSF of the

optics (Schott, 1997).   In this detector limited case, spatial resolution is typically reported as the

size of the sensor pixel projected onto the ground below and refers to the smallest spatial feature

that can be resolved.  As we have seen previously, this term is known as Ground Instantaneous

Field of View (GIFOV), ground sampling distance (GSD) or ground spot size and is calculated by

the following equation:

          (2-14)

where H is the altitude of the imaging sensor, lO is the side dimension of the square detector /pixel

and f is the focal length of the system (Schott, 1997).

Spatial Resampling

One of the main objectives of this thesis study is to examine the effectiveness of

hyperspectral processing algorithms under differing values of spectral and spatial resolution and

noise.  A method to change the spatial resolution of an image is required. The method will be

based on the assumption that the detector is the limiting factor of spatial resolution.   Stemming

from this first assumption and the application of linear systems mathematics (Gaskill, 1978;

Easton, 1998) is the premise that the image, f (x, y) is sampled by a COMB function in the

construction of a sampled function fs (x, y).    Finite sampling can be represented mathematically

by a window or 2-D RECT function (Gaskill, 1978; Gonzalez and Woods, 1992) which will be

denoted h(x, y) and be considered the spatial response function of the detector.   In essence, the

measured signal now becomes a weighted average of the input over the detector area (Easton,

1998).   Mathematically the sampling process can be seen in equation 2-15 below:

(2-15)
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where ∆x represents the detector spacing and ∆y can be the sample interval for a push-broom

system (Schott, 1997).   As stated already, the spatial response function of the detector, h(x, y),

can be modelled by a RECT function and this is seen in equation 2-16.

(2-16)

It should be noted that in equation 2-16 ∆x is the width of the detector and we are

assuming that the width of the detector is equal to detector spacing.  Therefore we use ∆x and ∆y

interchangeably.  This width of the detector, ∆x, is the same as lO or the side dimension of the

square detector/pixel in equation 2-14 used to determine the GIFOV of a remote sensing system.

Therefore to perform spatial resampling we develop a new impulse function reflecting the

degraded GIFOV,  hdetector-new (x, y).  This is an n x m x k convolution kernel, where n x m is the

spatial dimensions of the kernel and k is the spectral band dimension (Gonzalez and Woods,

1992; RSI, 1998). This new spatial filter or kernel, hdetector-new (x, y), is then convolved with the

image in the spatial domain and the result of this is re-sampled with a nearest neighbour operation

to produce a “spatially resampled” image.  This process is represented by equation 2-17 and the

net result is an image that appears as if were taken with a lower spatial resolution sensor.

       (2-17)

The variables of sensor altitude and focal length remain constant given that the ground swath of

the sensor is not changing.  For example, if we change the GIFOV from 1m to 2m for an image

that is initially 400x400 pixels, the final spatially degraded image will be only 200x200 pixels

given that the ground swath does not change.

The convolution and sampling process described above is fine but computationally

expensive.  Using the premise that the measured signal at each pixel is the average of the input

over the detector area, we adopt a neighbourhood averaging approach to spatial degradation in

this thesis.  That is, we resize or “shrink” the image to dimensions that are based upon the new-

GIFOV and old-GIFOV given that the ground swath is constant.  The new dimensions that the

image is to be “shrunk” to are found by (x-dimension is only shown here):
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The pixels in the degraded image are the aggregate of the initial pixels in a 2x2 or 4x4 manner

(and so forth) depending on the specified GIFOV that the image is to be degraded to.  This type

of method was used in a parameter trade-off study of target and anomaly detection algorithms

(Keller et al, 2000) and can be termed an aggregate or “boxcar” approach to spatial degradation.

 

2.6.2 Spectral Resolution

As explained previously, hyperspectral remote sensing systems sample the spectrum (0.4

µm to 2.5 µm) at intervals, or spectral resolutions of 10 to 20 nm.  The width of the spectral band,

typically at full-width-at-half-maximum (FWHM) is called the spectral resolution (Wolfe, 1997)

and this is usually presented in units of nm or cm-1.  As the resolution decreases in magnitude one

can expect finer detail in the spectral information obtained from the imaging system.  This allows

us not only to differentiate between materials but also to accurately identify materials based on

characteristic absorption features at specific wavelengths.  These types of differences can be

easily seen in Figure 2-13 for the mineral kaolinite.  At 80 nm and 40 nm it may be difficult to tell

the difference between this mineral and any other.  However, as the spectral resolution improves

we can better see the doublet at 2.2µm that is characteristic of kaolinite (RSI, 1998).

Figure 2-13: Kaolinite at different spectral resolutions. Spectral resolution from top to bottom: 5,
10, 20, 40, and 80-nm resolution.  The spectral curves have been offset from one another to better

visualise the differences attributed to changes in spectral resolution.
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It is important that the terms spectral resolution and spectral sampling are not confused.

Spectral resolution is the width of the spectral band-pass while spectral sampling refers to the

band spacing or  “the quantization of the spectrum at discrete steps” (RSI, 1998).   Wolfe (1997)

refers to band spacing as “free spectral range” or the spectral interval between resolution “peaks.”

Despite their difference in meaning these terms are often interchanged because the majority of

spectrometers are designed so that the band spacing is about equal to the band FWHM (Wolfe,

1997).

The ultimate question is how many spectral bands of information are actually needed in

the processing of hyperspectral images to obtain accurate information.  This becomes a very

complex question to answer that involves the topics of are of application, data dimension

reduction and spectral band trade-off studies.

  It is readily apparent that as the spectral resolution improves, there is a high correlation

of information between adjacent bands.  This means that the sensor is actually taking the repeated

measurements of the same quantity (Green et al, 1988).  Most of the information about a scene

can described by less than ten dimensions (Harsanyi and Chang, 1994).  There are several

methods, based on Principle Component (PC) transform, that reduce the dimensionality of

hyperspectral data (Green et al., 1988; Lee et al., 1990; Johnson and Wichern, 1998).  For

example, the final product of the Maximum Noise Fraction (MNF) transform (Green et al., 1988)

is a series of images in descending order of SNR.   Although the MNF transform will be

discussed in more detail in section 2.6.3, it can be mentioned briefly here that the first few images

from this transformation contain the majority of information base on SNR derived from the

calculated eigenvalues of each band.  Another advantage of these types of transformations is that

noisy bands are separated and in essence eliminated from the data set prior to processing (Lee et

al, 1990).  However, these types of transforms are a linear combination of information from

several spectral classes since the spectral signatures are correlated (Harsanyi and Chang, 1994).

This results in newly found PC dimensions that often lack intuitive interpretability.

In addition to studies that reduce the dimensionality of hyperspectral imagery, there have

been numerous investigations into the number of bands required in the analysis of hyperspectral

data.   These studies have typically been done with respect to general tasks such as target

detection or thematic mapping.   When similar materials are grouped together, such as man-made

objects and naturally occurring objects, it is found that the spectral signatures of the two different

groups are uncorrelated.  However, the spectral signatures within each individual group (i.e. the
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man-made group may contain asphalt and concrete) are highly correlated and these correlation

properties are true for signatures taken over more than two bands (Haskett and Sood, 1998).

Applying this knowledge to target detection algorithms reveals that increasing the number of

bands may not necessarily improve detection performance.  Improving spatial resolution and

retaining fewer spectral bands will ultimately improve detection performance (Haskett and Sood,

1998).  This is because a higher spatial resolution ensures that the pixels will contain more purely

distinct and less mixed spectra.  These results where echoed in a study in which it was empirically

determined that matched filter target detection algorithms showed a lack of dependence on

spectral resolution (Keller et al., 2000).

Somewhat similar results were found in a study that examined the effects of spectral

resolution in separating a hyperspectral scene into its constituents (Bowles et al., 1996).  This

study involved an algorithm that calculated matched filters from image derived endmembers to

separate the scene.  The conclusions of this study show that general thematic mapping through the

use of classification algorithms can be accomplished adequately with 10 or more wavelengths and

not hundreds.  However, for a more detailed analysis and improved discrimination between

specific materials the study concludes the obvious - more wavelengths are needed.  Unlike the

study by Haskett and Sood (1998), this study by Bowles (1996) admitted that degrading the

spectral resolution eventually resulted in a loss of spectral contrast and “therefore the ability to

discern targets was compromised” (Bowles et al., 1996).

It is apparent from the above discussion that the level of spectral resolution is both

application and algorithm specific.  It is also evident that certain algorithms, such as target

detection processing, may place a higher dependence on the spatial information within an image

over spectral information.  Again, this points to the requirement for a study of the spectral-spatial

resolution trade-off space with respect to algorithm performance.

Spectral Resampling

To study the effects of spectral resolution on the performance of mapping and target

detection algorithms, a method to change the spectral resolution of the original images is needed.

The following paragraphs outline a few of the available methods to perform spectral resampling

of hyperspectral images.

The first method is a spectral binning process (Haskett and Sood, 1998; Keller, 2000)

whereby neighbouring bands of the original spectral signatures are added together to create a new
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signature appearing as if it where taken over fewer bands.   In this way, the bands of the new

image represent a wider spectral bandwidth.  For example, if two adjacent bands are binned

together then an original 210-band image/spectrum will now become a 105-band image/spectrum.

This works but it does not realistically simulate how a sensor operates spectrally.

The second and more precise method is to perform spectral resampling. ENVI v3.2 (RSI,

1998) allows the user to resample spectral libraries and more importantly hyperspectral image

files.   There are different methods available to the user to perform spectral resampling which

include using the response spectral response function of a given hyperspectral sensor, wavelength

files or user-defined response function/wavelengths.  In all cases ENVI assumes critical spectral

sampling and uses a Gaussian model with a FWHM equivalent to the band spacing to perform

spectral resampling (RSI, 1998).   This method more realistically simulates sensor operation.

2.6.3 Noise

Noise can be defined as “any source or effect that occurs in a system that is not

information bearing or degrades the desired information of the output” (Landgrebe and Kerekes,

1987).  In this manner, we can see that noise not only measures the quality of the signal (Schott,

1997) but noise can be viewed as dependent upon what the “signal” will be used for.   One of the

objectives of this thesis is to study the effects of noise on hyperspectral algorithm performance.

Although it is beyond the scope of this thesis to categorize and describe each noise source in a

remote sensing system, a very brief discussion may serve useful.

As mentioned in section 2-2, the image chain consists of three components – the scene,

the sensor and processing.  Each on of these components introduces data variation or noise to the

final signal or image.   Kerekes and Landgrebe (1987) present a fully detailed taxonomy of noise

sources for remote sensing systems.   Figure 2-14 provides this list of possible noise sources and

how they are categorized according to where they are introduced along the image chain.
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Figure 2-14: Noise and Information degrading effects in a remote sensing system

(Kerekes and Landgrebe (1987))

Noise can also be seen as the random variations about the mean signal level and is

measured by the root-mean-square (RMS) variation of the instantaneous signal, Si, with respect to

the average signal, Savg, as seen in equation 2-19 (Schott, 1997).

(2-19)

Noise is usually a more useful term when it is measured with respect to the signal as done

when expressing a signal-to-noise ratio (SNR).  Typically, when a SNR is provided as part of

sensor specifications it is with reference to a certain degree of reflector or source of flux.  As an

example, the SNR of AVIRIS is given with respect to a 50% reflector. It should also be noted that

the SNR of a hyperspectral sensor is also a function of wavelength.  Other times when noise is

discussed with respect to detector performance specifications it is provided in terms of

radiometric input units (watts) vice the output units of the signal (volts).  In this manner a detector

performance metric is the noise-equivalent-power (NEP) which is wavelength dependent (Schott,

1997).
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In this equation R(λ) is the spectral responsitivity of the sensor.  The NEP(λ) is a level that the

incoming signal must be above in order to be detected (Schott, 1997).   From the calculation of

the NEP of the stystem we can also compute many other sensor performance specifications.

These include noise equaivalent radiance (NER) of a sensor, noise equivalent reflectance (NE∆ρ)

and noise equivalent temperature (NE∆T).  These are similar in definition to NEP and a more

detailed discussion of these metrics can be found in Schott (1997).

One of the primary interests of this thesis study is to investigate the effects of noise and

spatial-spectral resolution changes on hyperspectral algorithm performance.  Similar studies have

been done in the past that have studied only the effects of noise.  These studies not only result in

many intuitively expected conclusions, but also demonstrate the interrelationships of several

noise factors.  The following paragraphs will highlight some of the results of these studies.

One of the most obvious results is that it was determined that adding increasing amounts

of white noise decreased classification accuracy (Kerekes and Landgrebe, 1987).  A study of

periodic noise that results from either striping between detectors, electronic coupling or induced

by outside power supplies was performed with Landsat TM (Wrigley et al, 1984). They found

that periodic noise added unwanted spatial frequencies into the final image and periodic noise

components obscured detail in low contrast areas of certain bands.  Although this study worked

primarily with multispectral imagery, the results may be extended to hyperspectral imaging

systems.

Kerekes and Landgrebe (1987) further illustrate the interrelationship of noise effects on

classification accuracy.  The addition of higher additive noise levels was found to have a more

adverse effect on images acquired under poor visibility than when acquired under excellent

remote sensing conditions.  Similar to this study, Landgrebe and Malaret (1986) investigated the

interrelated effects of atmospherically introduced noise, sensor noise, pre-amplification noise and

quantization noise on classification performance.  The results of their study show that the impacts

of shot noise and thermal noise are similar with respect to classification performance.  Most

importantly, their study demonstrates that “the impact of the atmosphere makes the impact of the

other noise sources more significant as atmospheric conditions deteriorate” (Landgrebe and

Malaret, 1986).  One could say that the atmosphere amplifies the other noise sources. Another
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study found that classification accuracy is dependent upon the type of noise added to the imagery

(Lee and Landgrebe, 1993).  Their investigation concluded that uncorrelated noise added to each

spectral band has a more adverse effect with respect to classification accuracy than adding larger

values of correlated noise.  Finally, a study of target and anomaly detection algorithms revealed

no surprises in that the probability of detection monotonically decreases as more white noise is

added to the initial image data (Keller et al., 2000).   Although all of the above studies were well

investigated they all have one fundamental problem in that either the type of noise added is not

mentioned or it is added white noise.  In the case that the type of noise addition is not mentioned

it most likely that it is white noise or some type of random Gaussian noise.  Indeed this type of

noise addition will degrade the desired information of the algorithm output.  However, the type of

noise addition conducted in the above studies does not necessarily reflect the true behaviour of

hyperspectral sensors.   It was previously mentioned that as the spectral resolution of a sensor

improves, there is a high correlation of information between adjacent bands.  This is just the same

for the noise – it is structured and has correlation.

Noise Modelling and Addition to Imagery

In its most basic form, the imaging process can be represented mathematically by

equation 2-21 (Gonzalez and Woods, 1992, Easton, 1998).  In this equation f (x, y) represents the

object’s spectral distribution at spatial location (x, y) and g (x, y) represents the final image.

Also, in this equation h (x, y) is the impulse response of the entire system and n (x, y) is the

added noise to the entire process.   This added noise comes from the many sources already

discussed.  The bold face (and vector notation) of these functions indicates that they are vectors

representing the spectral information at location (x, y).

(2-21)

This type of simple additive model has been used as an overall system noise model (Landgrebe

and Maralet, 1986) to assess the effects of types of noise on classification routines.  In this type of

modelling the total noise, n (x, y), was further broken down into the noise contributions of the

system components.  This can be seen in equation 2-22, where k represents the total number of

system components that the noise model will include.
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The noise contribution of each system component, ni (x, y), is an independent random vector that

can be statistically modelled.  For example, a Gaussian distribution whose variance is

proportional to the signal level can model shot noise.  It is also known that thermal noise is

independent of signal level, white over a large bandwidth and also Gaussian.  However,

quantization noise is modelled most accurately using a uniform distribution (Landgrebe and

Maralet, 1986).    One can model every type of noise using the correct statistical distribution with

different standard deviations and add this to the initial image.  However, the bookkeeping

involved in this approach will soon prove cumbersome.  Further investigation of equation 2-21

reveals the simple fact that some simple algebra may be applied to find a suitable spectrally

correlated noise model. If the final image g (x, y) is the “sum” of the convolved initial spectral

distribution of the object f (x, y) and noise, n (x, y), then the noise is the simple difference

between the final image and the object’s spectral distribution.  Unfortunately, this mere

subtraction is not as elementary as what is presented here and we require an advanced method to

separate the noise from the final image.

Maximum Noise Fraction (MNF) Transform

The MNF transform allows noise to be removed from an image by transforming the

initial image data into “MNF-space” and then smoothing or removing the noisy components prior

to re-transforming the data into the original image space (Green et al, 1988).  Let Z(x, y)

represent the image spectrum at spatial location x.  Using the premise behind equation 2-21 we

arrive at:

(2-23)

where S(x, y) is the signal and N(x, y) is the noise. Now let ΣS and ΣN represents the covariance

matrices of the signal and noise respectively.   If we assume signal and noise are not correlated

then the overall covariance Σ is the mere sum of ΣS and ΣN.   The noise fraction in the ith band is

defined as the ratio of the noise variance to the total variance for that ith band (Green et al, 1988).

This can be represented mathematically as: VAR{Ni(x, y)}÷VAR{Zi(x, y)}.  Similar to principle

components analysis (Johnson and Wichern, 1998), the maximum noise fraction transform
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chooses linear combinations of the form Yi = aT
i Z(x, y) such that the noise fraction for Yi is the

maximum among all linear transformations and orthogonal to Yi+1.  That is, the first MNF band

contains the most noise and the least information while the last MNF band contains the least noise

and most information.  This ordering is based upon the descending eigenvalues of a, which are

equivalent to the noise fractions (Green et al., 1988). The final results of this algorithm presented

in ENVI (RSI, 1998) are the opposite of what is presented by Green et al.  The MNF bands in

ENVI are ordered by descending order of information so the first band contains the most

information and the last band contains the most noise.

The image in MNF space can be divided into two parts.  The first portion consists of

those MNF-bands that contain information and the second portion includes those MNF-bands that

are dominated by noise.  Noise can be removed from the image data by performing an inverse

MNF transform using only the bands that contain useful information (Green et al, 1988; RSI,

1998) and ignoring the MNF-bands purely characterised by noise.   Likewise, the dimensionality

of the image data can be reduced for processing algorithms by working in MNF space with only

those bands containing useful information and again ignoring the noisy bands.  In the next chapter

it will be evident how this algorithm is used in adding spectrally correlated noise to images.
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2.7 Image Information Utility Metrics

 The primary objective of this thesis is to assess the effectiveness of hyperspectral

processing algorithms under differing values of spectral resolution, spatial resolution and noise.

In essence we wish to measure the information utility of processed hyperspectral imagery.

Obviously, any approach in conducting this must include the use of a metric(s).  We require a

repeatable and reproducible means of objectively quantifying the nature and extent of image

utility after algorithm processing.  Whatever means are used in quantifying image utility, the

metric must be meaningful and relevant to the spectral product being assessed. The metric must

account for both spectral and spatial information.

As we will see in the following sections, fulfilling the above criteria for a metric is a

challenge.  This is because some imaging chain products, discussed in sections 2.3 and 2.4, are

expressed in terms of engineering units (e.g. DC, radiance, reflectance) while other product levels

are defined in terms of end-user metrics (e.g. accuracy, fractions, probabilities). The following

sub-sections outline various possibilities in measuring image fidelity and information utility of

degraded and processed hyperspectral imagery.  Several metrics are included below, yet as we

will see, not all of the metrics meet the above criteria for measuring the effectiveness of

hyperspectral algorithms.  The result of the next sub-sections will be the selection of useful,

meaningful and repeatable metrics for assessing algorithm performance under differing values of

spectral resolution, spatial resolution and noise.

2.7.1 Information Theory

The main goal of any imaging system is to gather information and from this perspective it

makes intuitive sense that information, itself, be included as a metric.  In order for a calculation of

information to be carried out by the use of information theory, an analogy must be drawn between

an imaging system and a communication channel.  In brief, a communication channel consists of

a source producing a message, transmitter that encodes the message, a channel to carry it, a

receiver to decode the message and a destination.  The mathematical theory of communications

(Shannon, 1948) forms the basis of information theory and quantifies information as a metric

called entropy.  Entropy (H) corresponds to statistical variability or uncertainty and has the

equation:

(2-24)
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where pi is the probability of a specific numerical value or event “i” in a series of measurements

(Shannon, 1948).  Obviously a higher entropy value means that there is more uncertainty about an

event or measurement.  Hence, there is more derived information about this specific numerical

value since there is more uncertainty surrounding its occurrence.  Many other metrics can be

derived from this basic entropy definition to numerically describe information (Shannon, 1948).

Using the analogy between a communication channel and the imaging chain it was found

that an informationally optimized imaging system will ensure maximum fidelity of restored

images with respect to spatial features (Huck et al, 1985). Furthermore, it was found that an

informationally optimized design is preferred when processing of the image is to be later

conducted (Huck et al, 1985).   These results were tested in the study of design trade-offs between

detector shape and size and electronic filters of an imaging spectrometer (Feng, 1995).  In this

study it was again found that the informational optimized system maximizes the fidelity of

images and edges.

Evidently information theory is useful in the initial design of an imaging system.

However, its use as a metric when working with existing images proves to be limited.  Since this

thesis study will involve the accuracy measurement of algorithm performance, it will be

necessary to calculate the entropy of images.  There are a few different approaches in estimating

the information content in an image (Gonzalez and Woods, 1992).  The first method involves an

assumption that the image was produced by a source that emits statistically independent pixels

and follows some type of probability distribution.  The second method involves determining the

frequency of occurrence of the same pixel in an image.  It is from this frequency that a probability

of occurrence of that pixel can be found and applied to equation 2-24 to determine the entropy

(first-order estimate).  The third method and final method is an extension of the second whereby

the relative frequency of pixel blocks is determined (higher-order estimates).  These blocks are

essentially groups of neighbouring pixels and “as the block size approaches infinity, the estimate

of information approaches the true entropy of the source” (Gonzalez and Woods, 1992).

There are numerous problems with calculating the information content of hyperspectral

imagery - let alone Level 3 products. First-order estimates of entropy assume that pixels are

statistically independent.  This is not necessary true considering pixel bleed-over during image

acquisition and the geometrical interdependence of some scenes (i.e. scene homogeneity).  This

problem is even extended to the higher-order estimates where blocks are considered statistically

independent and as the order of the estimate increases so does the complexity of the calculation.
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Another problem is that since hyperspectral imaging is being considered we must take into

account the multiple data channels.  Information corresponds to interchannel variability and this

allows us to eliminate equal readings from two different spectral channels (Price, 1984).  This is

because new information is not added by repeated readings.   Therefore, an estimate of source

entropy from a hyperspectral image must treat each pixel as statistically dependent and the

redundancy of channel readings within that pixel must be considered since each pixel is a

spectrum.   The complexities of such a calculation make this metric very ugly and we have not

discussed how to possibly calculate the information content of a Level 3 product.

The final problem with this method is that entropy calculations of this sort are highly

dependent on the scene characteristics.   Since information is associated with variability, any

variability in the scene itself will effect the final estimation of entropy.  For example, one

“expects to find more information per unit area in a heterogeneous region like a city than in a

uniform region like a grassy plain” (Price, 1984) since there is more scene variability in an image

of a city.  In fact, the entropy of a “clean” image will be less than that of a noisy image, again

because more variation is introduced by noise addition.  This does not fulfil the requirements for

a repeatable or meaningful metric of processed images.   It can easily be seen from the above

discussion that the use of information as a Level 3 (let alone Level 1 or 2) metric is pointless in

this study.   However, from an academic perspective it was a worthy investigation.

2.7.2 RMS Error

A very simple approach is to use the principle that every pixel is a spectral vector and

then monitor the change of vector direction and magnitude along the image chain.  This can be

done by looking specifically at the average spectral signature in regions of interest (ROIs), the

changing spectral signatures of known endmembers or the changes in fractional endmember

images and other Level 3 products. This type of approach can be quite useful in assessing the

degradation of the image.  However, adopting this method to assess the accuracy of algorithms by

measuring the magnitude and direction of pixels from different Level 3 products is not useful in

that it is not readily interpretable.

Although the above method is not completely useful, its basis of expressing information

loss as a function of the original image can be extended to other metrics.  A good example of this

is the root-mean-square (RMS) error between an input and output image (Gonzalez and Woods,

1992).   Let f (x, y) represent an input image and let f ’(x, y) represent the same image after it is



46

),(),(),( ' yxfyxfyxe −=

[ ] 2

1
1

0

1

0

2' ),(),(
1









−= ∑∑

−

=

−

=

M

x

N

y
RMS yxfyxf

MN
error

degraded by changing the spectral and spatial resolution and adding noise.  Obviously, both f and

f ‘ are vectors representing the spectral signature of the pixel at spatial location (x, y).   The error,

e (x, y), between the input and output image can be expressed as:

(2-25)

The RMS error is found by taking the square root of the total error between the two images and

averaging it over the entire image (image size is M x N), as seen in equation 2-26 (Gonzalez and

Woods, 1992).

  (2-26)

These metrics offer an understandable and repeatable method of assessing image

degradation along the image chain.  These types of metrics are useful in quantifying the error or

information loss between original images and the images produced by varying spectral and spatial

resolution and noise.  These metrics take into account both spectral and spatial information as

each pixel is treated as a spectral vector at a given spatial location.   However, the spectral

component of this metric is slightly compromised by the mere fact that degrading the image

spectrally will result in fewer bands.  That is, f(x, y) and f’(x, y) will have different spectral

dimensions.  The above calculations will not be done by bands but according to wavelength and

therefore will not be a true representation of the degradation.  However, these metrics could be

used to quantify Level 3 products since they are able to quantify the error between any initial

image and an output image.  For instance, we can produce a series of fraction maps by an

unmixing algorithm and then compare these maps to those produced by applying the same

algorithm to a degraded version of the initial image cube.  Similarly, an error metric can be

calculated between an initial classification map and the classification map of a degraded image.

Although this type of metric suits all of our criteria, we will see that there are even more

meaningful metrics which are related to this one.
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2.7.3 NIIRS, the General Image Quality Equation (GIQE) and Q

A discussion that involves image quality with respect to specific applications and task

performance would not be complete without reference to the National Image Interpretability

Rating Scale (NIIRS).  NIIRS defines and measures image quality by rating an image on a 10

level scale that quantifies the image’s interpretability (Fiete, 1999 and Leachtenauer, 1997).  The

scale was initially developed for the intelligence community but its usage has spilled over to the

development of a Civil NIIRS Guide (www.fas.org/irp/imint/niirs_c/). NIIRS ratings describe the

information that can be extracted from an image based on a pre-defined list of tasks. The tasks

associated with each level use military, cultural, agricultural and natural cues in the image.  An

example of NIIRS scales can be found in Appendix B.  A high NIIRS scale rating means that

more information can be extracted from that image.  For example, if we were able to distinguish

between taxiways and runways in an image of an airport this would be defined as NIIRS 1.  If we

were able to identify aircraft wing configurations and the presence of aircraft servicing equipment

this would indicate a NIIRS level of 5 – and so on.   It should be noted that a Multispectral NIIRS

scale does exist (www.fas.org/irp/imint/niirs_c/).  It rates interpretability based on both the

spectral and spatial information within the acquired image.  Some tasks associated with certain

NIIRS levels are only associated with the spectral character of the image (see Appendix B).  For

example, some of the tasks include the detection of small boats (sub-pixel in size) on open water

and the detection of recently installed minefields.  Based on what was presented in previous

sections, it is easy to see that such tasks are performed using spectral algorithms and are Level 3

products.  It may prove useful to use these types of tasking definitions in this thesis study.

NIIRS proves to be a versatile rating system for image quality.  It provides a method of

communication amongst image analysts about the information potential of images and a new way

to define remote sensing system requirements.   NIIRS, as an “industry standard” has proven

useful in validating image-quality prediction models (Leachentauer, 1997).

One of these prediction models is the General Image Quality Equation or GIQE

(Leachentauer, 1997).  In brief, it predicts the NIIRS rating of an image based on the imaging

systems operating parameters.  The GIQE is a regression based model that accounts for target,

sensor and processing characteristics of the system by including the terms of GSD (ground-

sampled distance), SNR, RER (relative edge response - i.e. sharpness) and MTF (modulation

transfer function).   It is not worth going into the details of this model since the GIQE model only
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assesses the spatial information within an image.  A GIQE model that incorporates spectral

information has not yet been developed.

A more recent and similar prediction model is the calculation of Q which is “the ratio of

the spatial sampling frequency to theoretical bandpass of an incoherent diffraction limited optical

system” (Fiete, 1999).  This ratio is denoted as:

(2-27)

where λ is the mean wavelength, FN is the system f/number (focal length divided by aperture)

and p is the detector sampling pitch.  The value of Q and hence image quality is “sensitive to the

system design parameters of modulation transfer function, signal to noise ratio and ground

sampled distance” (Fiete, 1999).  Again this model deals only with the spatial information within

an image. The value of λ is just the mean wavelength for a panchromatic system and this model

has not been applied to multispectral or hyperspectral sensors.  It is quite possible that a new

value of Q be defined which is a weighted sum of the individual Q-values in each spectral

bandpass of the hyperspectral sensor.  This is just an idea at this point and the investigation of a

new definition of Q is beyond the scope of this thesis.

  The above discussion about NIIRS, the GIQE and Q models of image interpretability and

information demonstrate that it is possible to define image utility in terms of sensor operating

parameters.  This allows us to vary the operating parameters of the sensor and then observe the

effect of these changes on image derived information. Unfortunately, these metrics only account

for the spatial information within the image and not the spectral information that Level 3

processing relies on.  Therefore, they are of no use in this thesis study other than using NIIRS

type tasks in algorithm employment

So far we have many useful metrics to quantify the actual image and its degradation as

the spatial resolution, spectral resolution and noise of the image are varied.  However, none of

these metrics, except perhaps RMS error, properly assess the accuracy and effectiveness of

hyperspectral processing algorithms under differing values of spectral and spatial resolution and

noise.  It is growing apparent that metrics which relate directly to target identification, spectral

unmixing and thematic mapping are necessary.
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2.7.4 Analysis of Variance (ANOVA) and Multivariate Analysis - KAPPA

Analysis of Variance

In the use of classification algorithms that produce thematic maps we require a method to

assess the accuracy of the final Level 3-map product.  In general, comparing the processed

remotely sensed data to some type of reference is a measure of accuracy.  This reference could be

another image or ground truth data about the regions depicted in the image.   The metric becomes

a set of agreements and disagreements between the classes in the reference and those determined

by the classification algorithm used.  The binomial probability density function (better yet a

multinomial pdf) properly represents the exact number of successful classifications (Rosenfield,

1981; Wallpole, 1982).

Rosenfield (1981) used ANOVA in his study of the effects of changing the scale on

classification accuracy.  Although he found that scale significantly effected the results of thematic

mapping, his use of ANOVA as an analysis metric was not well chosen.  Admittedly, ANOVA

allows for the study of measurements that depend on different factors operating simultaneously

(Rosenfield, 1981), yet it is based on several assumptions.  Firstly, it assumes that the data is

normally distributed when it has already been established that classification results have a

somewhat multinomial distribution.  To overcome this problem the binomial results may be

transformed into a normal distribution (Rosenfield, 1981).  Another assumption is that the

variances are homogeneous.  Bartlett’s Test (Johnson and Wichern, 1998) is used to test for the

homogeneity of variance yet it is sensitive to data that is not normal – which essentially the

results are prior to the normal transformation.  The final assumption, that misses the mark, is that

the classification errors with respect to the reference data (i.e. errors) are independent.  This

assumption is not very strong when using remotely sensed data as there may be confusion

between categories due to similar spectral signatures, lack of spectral resolution or noise

(Congalton et al., 1983).  Evidently, the use of ANOVA is limited in the assessment of

classification algorithms.  However, in a later section the benefits of using ANOVA for analysing

the results of a factorial designed experiments will become readily apparent.

Discrete Multivariate Analysis - KAPPA

Another method of accuracy measurement for thematic maps is needed.  This leads us to

the techniques associated with discrete multivariate analysis.  This involves a complete
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examination of the error matrix (Congalton et al., 1983, Congalton and Green, 1999).  The error

matrix, confusion matrix, or contingency table is a square array of numbers in which each cell

contains the number of pixels assigned to a certain class by a classification method compared to

how they were assigned by another method.  Typically the classification method is compared for

agreement to some reference as explained previously – this may be another image or ground

truth.  Table 2-1 shows a typical example of an error matrix from a classification algorithm.

Table 2-1: Example Confusion/Error matrix

We are able to calculate many useful metrics from a confusion matrix.  The first metric is the

overall accuracy, which is equivalent to the sum of the diagonal divided by the total number of

sample pixels in the image. This measures the correctly classified samples and as we can see from

the above table the overall accuracy equals 74%.  We are also able to see errors of commission

and omission.  Classifying a sample into a certain category that it does not belong to entails

making commission errors while omission errors are made by failing to include a sample in its

proper category (Johnson and Wichern, 1998).  Producer and User Accuracy can also be

calculated from the error matrix and these accuracies represent individual category accuracies
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(Congalton and Green, 1999).   The following example taken from Congalton and Greene (1999)

demonstrates the utility of these calculations.

In Table 2-1 we see that the overall accuracy of the classification map is 74%.  The

producer’s accuracy is found by dividing the correctly classified number of samples in a specific

class by its column total which is the total number of sample units as indicated by the reference

data.  Likewise, the user accuracy is found by dividing the number of correctly classified samples

by its row total which represents the number of samples classified by the algorithm into that

category.  This results in a producer accuracy of 87% and a user accuracy of 57% for the

deciduous tree category in Table 2-1.   This means that “although 87% of the deciduous area was

correctly identified as deciduous, only 57% of the areas called deciduous on the mapped image is

actually deciduous on the ground” (Congalton and Green, 1999).    These types of accuracy

metrics are quite useful in assigning confidence to the thematic mapping performed by

classification algorithms.

These accuracy metrics can be shown in equation form by representing the confusion

matrix mathematically, as seen in Table 2-2 (Congalton and Green, 1999).

In this table we see that N samples are assigned into one of k classes.  Let nij represent the number

of samples classified into class i and class j of the reference data.   Equation 2-28 is the number of

samples classified into class i by the classification algorithm (n+i) and equation 2-29 is the

number of samples classified into class j of the reference data set (n+j).

n11 n12 n1+n1k

n21

n+k

n32 n3k

n22 n2k

N

n3+

n2+

n31

n+1 n+2

i = rows

(classification)

j = columns (reference)
1

2

k

n i+ - row total

1

2

n +j - column total

k

Table 2-2: Mathematical Representation of a Confusion Matrix
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(2-29)

It is from these equations that overall, user and producer accuracies can be easily derived as seen

in equations 2-30, 2-31 and 2-32 respectively.

  (2-30)

  (2-31)

(2-32)

We can further take the number of samples occurring in a certain class and convert that to a

proportion of samples in the i-jth cell.  This leads to the following simple equations: 

(2-33)

(2-34)

(2-35)
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The use of the above proportions can be used in a discrete multivariate analysis technique

known as Kappa Analysis, initially adopted by Congalton at al. (1983) in the assessment of the

thematic mapping of remotely sensed data.  This technique is a very useful accuracy metric since

it can be used to determine if two error matrices are statistically different.  This provides a

substantial benefit in performing this thesis study and searching for significant differences

between algorithm performance at various sensor-operating parameters.

In performing Kappa Analysis, a maximum likelihood estimate of kappa, κ/ is

determined.  The value, κ/, is a measure of agreement “based on the difference between actual

agreement (error matrix diagonal) and chance agreement indicated by the row and column

marginals” (Congalton and Green, 1999).  Values of κ/ range from 0 to +1 where the closer the

number is to unity the stronger the agreement between the classified and reference data.  To

calculate κ/ we first define the actual agreement in equation 2-36 and the chance agreement in

equation 2-37.   These values for agreement are then combined into the value κ/ shown in

equation 2-38 – also shown in its expanded form using the notation from the mathematical

representation of the error matrix that was discussed previously.

(2-36)

(2-37)

(2-38)

The variance for the estimate of κ/ can also be determined from the data within the error matrix.

The equations necessary to calculate VAR(κ/) can be found in Appendix C.  It is with the use of

these calculated statistics that a number of tests can be conducted with regards to the

classification performance.  Congalton and Green (1999) outline many of these tests in greater

detail than presented in the subsequent paragraphs.
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The first test that can be performed is to see how well the classified data agrees with the

reference data.  This test is performed by a quick examination of the value of κ/ and where it falls

on the scale of disagreement (0) to complete agreement (1).   Using the fact that the κ/ statistic is

asymptotically normally distributed, confidence intervals for the κ/ value can be generated by

using the sample variance calculation (Congalton and Green, 1999).   Confidence limits for the

diagonal values within the error matrix can also be found.  This is done by first computing the

individual cell probabilities.  These probabilities are then incorporated with the marginal

proportions of the error matrix.

One can test the significance of the κ/ statistic to determine if the agreement between the

processed and reference data is better than random chance.  The standardised and normally

distributed test statistic for significance testing of a single confusion matrix is:

(2-39)

The testing follows standard statistical hypothesis testing (Wallpole, 1982) where the null

hypothesis is Ho:κ = 0 and the alternate is H1:κ ≠ 0.   The null hypothesis is rejected if Z ≥ Zα/2

where α/2 is the confidence level and the degrees of freedom are assumed to be infinity

(Congalton and Green, 1999).

Similar to the above methods is the ability to statistically compare different confusion

matrices.  This provides us the ability to compare the performance of different classification

algorithms with respect  to the same reference/ground truth.  It also provides the ability to “track”

the accuracy of one algorithm being used under varying conditions of noise, spectral and spatial

resolution and observe any significant difference in algorithm performance.  The applicability of

these kinds of tests to this thesis study is quite apparent.  Given that one error matrix produces a

kappa estimate of κ1’ and a second matrix is represented by κ2’ the test statistic becomes:

(2-40)



55

[ ]
2

1 1

1 ∑ ∑
= =

−=
J

j

N

n
jnjn referenceimage

N
SSE

where the null hypothesis Ho: (κ1 - κ2)=0 is rejected if Z ≥ Zα/2 and the alternate hypothesis of

H1: (κ1 - κ2)≠0 is accepted (Congalton et al., 1983).

Although the application of Kappa Analysis to assess classification performance proves

extremely versatile, it is evidently limited to measuring classification accuracy only.  It will only

be able to be used as a metric with those Level 3 products associated with classification/thematic

mapping. It is not a useful or meaningful metric for target detection or products that involve

fractional end-member maps.

Sum of Squared Errors

There is great difficulty in obtaining an error matrix from Level 3 products that consist of

fraction endmember maps. Therefore, the application of Kappa Analysis to algorithms such as

spectral unmixing and orthogonal subspace projection algorithms is pointless and meaningless.

Another statistical metric must be devised.  Studies have been previously conducted that compare

different unmixing techniques (Konno, 1999).  This study by Konno (1999) quantitatively

compared traditional unmixing to a stepwise unmixing technique. The RMS error between the

measured spectra and the regressed spectra was used as a metric.  Yet more importantly, he also

used the Sum of Squared Error between the truth image and processed image (i.e. fraction map)

as a metric to assess the performance of unmixing algorithms. Level 3 unmixing algorithms

produce fraction maps listing the fraction/abundance of each endmember present in the mixed

pixels.  If truth of these fractions is known as a reference images, the error can be calculated as:

(2-41)

where j=1…J represents the endmember and n=1,…N represents the pixels with N being the total

number of pixels.  In this way, both “image” and “reference” refer to the fraction of that

endmember at a specific pixel.  There is an apparent similarity between equation 2-41 and those

metrics discussed in section 2.7.2.  However, the use of the SSE is more meaningful with respect

to measuring unmixing performance.

This metric is quite simple in its calculation but when you consider a large image with

several endmembers this calculation would be intensive without computer assistance.   Based on

the past successful use of this metric in assessing unmixing algorithms, it will be very useful in
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this thesis study to evaluate the performance of Level 3 unmixing algorithms that produce

fractional endmember maps.

2.7.5 Signal Detection Metrics and ROC Curves

The above SSE metric could also be applied to measuring the performance of target

detection algorithms, but the meaning of such a metric would be limited.  Additionally, many

target detection algorithms offer a RMS error image in conjunction with its regular Level 3

products (RSI, 1998). Target detection algorithms, such as spectral matched filtering (OSP) and

spectral feature fitting (TRICORDER), are analogous to signal detection algorithms.  In this

manner we can adopt the methods and metrics used in signal detection theory to develop a metric

for this thesis study.  There are many excellent sources covering the theory and metrics of signal

detection (DeFatta et al., 1988; Kay, 1998).   The following paragraphs summarize the theory and

metrics as they pertain to this study.  Signal detection metrics have been used in previous studies

assessing detection performance with hyperspectral images and results from these studies will

also be cited in the following paragraphs (Zavaljevski et al., 1996; Haskett and Sood, 1998; Tsang

et al., 1998; Keller et al., 2000).

When attempting to identify a target spectrum amid background clutter there are several

quantities that must be considered.  These are the sample size, target size, the signal (i.e. the

image), the false-alarm probability, the background density/distribution and the detection

probabilities (Kassam, 1988).   Our goal is to detect items with a spectrum or signal of interest

(example: army tank) that is mixed within background spectrum or noise (ex. trees and grass).

The detection process can easily be looked at as statistical hypothesis test where a choice must be

made between H0 the noise/background and H1, the signal plus noise/background (DeFatta et al.,

1988, Walpole, 1982).  The signal/spectrum of interest and noise/background can be modelled

and viewed as probability density functions (PDFs) as seen in Figure 2-15.
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Figure 2-15: PDF distributions of signal of interest + background and background/noise

(DeFatta et al., 1988)

As we can see from Figure 2-15, the probability of false alarm, Pfa, is the area under the

background/noise PDF (po) to the right of the threshold, α.  This is represented by equation 2-42.

The probability of detection, Pd, found by equation 2-43, is equivalent to the area to the right of

the threshold α under the signal + background PDF (p1).   The notation accompanying these

equations can be read as the probability of choosing HX when HY is true.  Obviously, P(H1, H1)

would then indicate detection and P(H1, H0) is a false alarm.  Equation 2-44 is another probability

that is of interest, which is the probability of a missed target Pm . The equations below would

become summations for the discrete case.

(2-42)

(2-43)

(2-44)

Signal of Interest

Background
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Evidently the errors introduced by false alarms and misses must be traded off against

each other since they occupy the same space under the P0 PDF curve.  It is impossible to reduce

both error probabilities simultaneously (Kay, 1998).  Typically the probability of false alarms is

constrained at some fixed value, γ (i.e. Pfa = γ) and at this point we wish to maximize the value of

detection probability, Pd.  In other words, we wish to maximize Pd subject to the constraint of Pfa

= γ.  This approach to signal detection is referred to the Neyman-Pearson method (DeFatta et al.,

1988, Kay, 1998).   This method, unlike the Bayes criterion method, does not rely upon costs

associated with errors or a priori probabilities.  The solution to this method is based on the ratio

of the signal plus background/noise to just the noise PDF – called the likelihood ratio test and is

seen here:

(2-45)

The value of β is a function of the threshold setting α which is dependent upon the probability of

false alarms desired (DeFatta, 1988).   The higher the value of β the more likely it is that proper

detection of the signal was obtained.

Values for Pd and Pfa for differing threshold values, α, can be plotted to form a Receiver

Operating Characteristic curve (ROC).  The shape of the sample ROC curve in Figure 2-16 shows

that as α increases in value both Pd and Pfa will decrease.  The ROC curve should lie above the

45o line since a perfectly diagonal line is attained by a detection algorithm that bases its decisions

on “the flip of a coin” (Kay, 1998).  The ROC curve completely specifies detection performance

(DeFatta, 1988).  Furthermore, the presentation of this type of curve is far more informative than

simple presenting error rates associated with various Pm and Pfa at various thresholds.  This is

because the ROC curve is independent of a priori probabilities and the costs of error – all of

which will vary from case to case.
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Figure 2-16: Sample ROC curve

Another way of obtaining this type of curve, with specific reference to remotely sensed

data, is to plot the probability of detection (Pd) versus false alarm rate (Haskett and Sood, 1998).

This approach requires prior knowledge about the scene to derive Pd.  Again knowledge of the

scene is required to compute the false alarm rate (FAR) which is expressed as the [# False

alarms/km2].  In this study (Haskett and Sood, 1998), the required PDFs where based on the

spectral angle between target and background separated by some threshold.

In a study to assess a spectral identification algorithm used on hyperspectral imagery

(Tsang et al., 1998) ROC curves were used in order to conduct performance comparisons.   In this

study detection is defined simply as a spatial pixel on a known target being identified correctly.

Likewise, a false alarm is defined as a “highlighted” spatial pixel outside of the known target area

and the probability of false alarms is defined on a per pixel basis (Tsang et al., 1998).   For

example, if the size of the image is 640 x 480 pixels, then one false alarm pixel equates to a

probability of false alarm equal to3.25x10-6.

Another sub-pixel target detection algorithm (Zavaljevski et al., 1996) used ROC curves

to assess detection performance under varying image acquisition conditions.  These conditions

included different SNR levels, target sizes, target materials (i.e. spectral signature) and

background materials. The results of their study can be summarized into four main points.
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Firstly, detection performance improves with increasing SNR as seen in Figure 2-17.  Secondly,

detection also improves as the physical size of the target increases with respect to the GIFOV.

Thirdly, detection characteristics become worse as the number of endmembers increase that are

used in the prior processing of spectral unmixing.  Finally, detection performance heavily

depends on the spectral contrast between target and background.  Figure 2-17 below shows the

results of increasing SNR.  This figure also demonstrates detection performance improvements

are indicated by the ROC curve moving towards the upper left-hand corner of the chart –

indicating a higher Pd at a lower Pfa.

Figure 2-17: ROC curves for SNR of 10, 20, 30 and 40 dB (1 to 4 respectively) with the target

size and background remaining constant (Zavaljevski et al., 1996)

It can be easily seen that the use of ROC curves, as a performance metric, is beneficial

when assessing target detection algorithms.  ROC curves provide an interpretable performance

measure for each hyperspectral target detection algorithms tested in terms of varying spectral and

spatial resolution and noise.  This type of metric has already been proven in the study of

hyperspectral processing algorithms under differing operating values of spectral information,

target size, endmember selection and noise.
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 2.8 Experimental Strategy – Factorial Designed Experiment

It has been established that there is a naturally occurring interaction between the spatial

resolution, spectral resolution and SNR of a sensor that is based on the law of conservation of

energy.  It has also been established that varying these parameters will effect the collected data

and thus the extracted information from spectral algorithms (Level 3).  A factorial designed

approach to this experiment is necessary to properly study and analyze each of these main effects

(i.e. parameters or factors) and their interaction on algorithm performance.   A one-factor-at-a-

time approach does not allow an examination of factor interactions and is a statistically less

efficient approach to experimentation (Montgomery, 1997).  A fully detailed treatment regarding

the designing of experiments is provided in Montgomery’s text (1997).  For the purposes of this

thesis, a simplified description of factorial designed experiments is provided in the following

paragraphs.

The first step in experimental design is to select an appropriate response variable.  An

exhaustive discussion of candidate metrics can be found in section 2.7.  The second step is

choosing what factors will be varied to test and observe changes in the response variable.  In this

case, the factors to be tested are spatial resolution, spectral resolution and noise.  In a factorial

designed experiment it is necessary to conduct Lk runs/trials of the experiment to investigate all

possible combination of factors, where k is the number of factors to be tested and L is the levels

that each factor will be tested at.   For example, if we wish to test 2 factors (A and B) at 2

differing levels of each factor (high and low), this experiment will require 22  = 4 runs/trials to

fully observe all treatment combinations (i.e. interactions) of the factors.  It is only from this that

we may draw statistical conclusions about the individual effects and their interactions.

Obviously, as the number of factors and levels included in the test increases so does the number

of required trials.  Many times the number of runs may be reduced by a fractional factorial

experiment (Montgomery, 1997).  The third step is deciding whether the model for

experimentation is to be a fixed effects model or a random effects model.  Montgomery (1997)

states that a random effects model has an infinite number of levels to each factor.  In this way

statistical conclusions can be made about the entire population from the levels tested.  This is not

possible with a fixed effects model since conclusions can only be made about those factor levels

tested.  This decision will ultimately determine the extent and type of statistical analysis,

especially with regards to hypothesis testing after raw data collection.  Figure 2-18 shows a

geometric illustration of a 23 factorial designed experiment that tests three factors A, B and C at
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high (+) and low (-) levels.  The design matrix is the small table included in this figure and is a

list of the necessary runs in conducting this hypothetical experiment.

At this point the trials/runs of the experiment are ready to be conducted.  Once the data is

collected a statistical analysis of the data is required.   This typically involves statistical

procedures involved in an analysis of variance (ANOVA).   This includes finding the Sum of

Squares, Mean Squared values and degrees of freedom for each factor, interactions, and

experimental error term.   For example, consider an experiment with two factors A and B.  Factor

A is tested at a different levels (fixed effects model), factor B is tested at b different levels and

there are n replicates of the experiment.  The required ANOVA table for this experiment is

depicted in Table 2-3.

Source of Variation Sum of Squares DF Mean Square Fo

Factor A SS(A) a-1           MS(A) = SS(A) / (a-1)      Fo = MS(A) / MS(E)

Factor B SS(B) b-1 MS(B) = SS(B) / (b-1) Fo = MS(B) / MS(E)

Interaction of A and B SS(AB) (a-1)(b-1) MS(AB) = SS(AB) / (a-1)(b-1) Fo = MS(AB) / MS(E)

Error SS(E) ab(n-1) MS(E) = SS(E) / ab(n-1)

Total SS(T) abn-1

Table 2-3: ANOVA Table for a hypothetical two-factor experiment (Montgomery, 1997)

-   Factor  A  +
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C

  +

-   
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  +

Trial Factor  A Factor  B Factor  C
1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +

Figure2-18:   A hypothet ical  23 factorial experiment  des ign
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The calculated ANOVA values allow the experimenter to test the observed results of

each factor for statistical significance via an “F-test.”   That is, the experimenter can see which

factors and interactions make a significant impact on the outcome (response variable) of the

experiment based on the magnitude and statistical hypothesis testing of F.   Large values of Fo,

calculated in the ANOVA table, indicate that the source of variation is significant.  As alluded to

previously, this can be extended into hypothesis testing where the ANOVA calculated value of Fo

is compared to an F test statistic with a specified degree of significance (Montgomery, 1997).  A

more in-depth discussion regarding ANOVA and statistical testing can be found in any decent

statistics textbook (Wallpole, 1982; Johnson and Wichern 1998; Montgomery, 1997).   Exactly

how this hypothesis testing will be applied to our results will be discussed in Chapter 4.

It can be clearly seen that the primary advantage to this type of experimental approach is

that it allows an examination of both the main factors and their interactions with respect to a

response variable or metric.  This can also be done graphically.  One simple method is to map the

factors and how they varied with respect to the response variable.  An example of this is seen in

Figure 2-19.   In this figure we see that part (X) shows no interaction between the factors while

part (Y) shows interaction between factors A and B.  That is, the level of the response is

dependent upon both the levels of A and B such that a high response will be observed when A is

at a high level and B is at a low level.  A low response is observed when A and B are operating at

the same low level. Intersecting lines indicate interaction.

Figure 2-19: Interaction diagrams of two factors in an experiment

X Y
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Another method to illustrate interaction, along with the effects of individual factors, is by

developing an empirical model of the experimental results via regression analysis.  Again

information regarding linear regression can be easily found in many statistical textbooks

(Wallpole, 1982; Johnson and Wichern 1998; Montgomery, 1997).  After checking the adequacy

of the developed regression model, a response surface and contour plot can be developed. This

type of plot allows the experimenter to visualise the interactions of factors and the individual

factor effects (Montgomery, 1997).   Each of the various analysis methods is a means to the same

end in that each method readily illustrates the significance of the main factors and their respective

interactions.

Obviously, adopting a factorial designed experiment will help in attaining the main

objective of this thesis.  This experimental approach will allow an in-depth study of the accuracy

and effectiveness of hyperspectral processing algorithms under differing values of spectral

resolution, spatial resolution and noise.  It will also allow us to effectively witness the joint

effects of these remote sensing parameters with respect to spectral algorithm performance.
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Chapter 3

Approach and Algorithm

3.1 Overview of the Approach

Prior to a description of the approach and algorithm used in this thesis study, it is useful

to review our main objective.   The principal aim of this thesis study is to examine the accuracy

and effectiveness of hyperspectral processing algorithms (Level 3 processing) under different

image values of spectral resolution, spatial resolution and noise.  This will involve the use of

various scene types and different Level 3 processing techniques.  The Level 3 algorithms that will

be tested are Binary Encoding (BE), Spectral Angle Mapper (SAM), Gaussian Maximum

Likelihood (GML), Linear Spectral Unmixing, Spectral Matched Filter (SMF) and Spectral

Feature Fitting (SFF).   These algorithms were discussed extensively in Chapter 2 and again it

should be noted that the algorithms tested are as they are implemented in ENVI (RSI, 1998).

Also in Chapter 2, a discussion of many possible algorithm assessment metrics was also

conducted.  The metrics that will be used in this thesis are Kappa for classification algorithms,

Sum of Squared Error for unmixing algorithms and ROC curves for target detection algorithms.

By adopting a factorial designed experimental approach we are able to simultaneously analyze

the main and joint effects of the remote sensing parameters of spectral resolution, spatial

resolution and noise with respect to spectral algorithm performance.

It is appropriate to first provide a brief overview of the adopted approach and then

describe each module in more detail.   The basic approach can be best represented schematically

as a flowchart, as seen below in Figure 3-1.
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As seen in Figure 3-1, we start with various initial hyperspectral images that are

characterized by high spatial and spectral resolution and low noise.  The images used were

discussed in Chapter 2 and consist of two AVIRIS scenes (Rochester, NY and Rogers Dry Lake,

CA) and one DIRSIG scene (Western Rainbow).  The real images will not have ground truth

associated with them. Ground truth will obviously be available for the synthetic imagery. More

3 Initial Hyperspectral Image

Image Degradation via Factorial Designed

Experiment (i.e. change spectral and spatial

27 Degraded Hyperspectral Image
Level 3 Processing – Classification,

Unmixing and Target Detection

6 Reference Level 3 Products

Level 3 Processing – Classification,

Unmixing and Target Detection

486 Degraded Level 3 Products

Qualitative Comparison
and Statistical Analysis

Metric

1

2

Figure 3-1: Flowchart of Approach to be used in studying effectiveness of Level 3
hyperspectral processing algorithms

Metric
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details on establishing groundtruth and the selection of endmembers for inputs into Level 3

processing algorithms will be detailed in section 3.3. As seen on the left-hand side of Figure 3-1,

the Level 3 processing results of the initial non-degraded image will serve as references for later

comparisons.

The right-hand side of the flow chart follows a similar path with the addition of a few

extra steps.  The first extra step, labelled as “star-1”, is the degradation of the initial image by

changing the spectral resolution, spatial resolution and adding spectrally correlated noise.  This

part of the overall approach will be discussed in section 3.2.  The initial image will be degraded

by following a factorial designed experiment outlined in Chapter 2 (section 2-8). Spectral

resolution, spatial resolution and noise are tested at three different levels (high, medium and low).

The exact numerical levels/parameters that each initial image will be degraded to is also

discussed in section 3.2.  However, it is worth mentioning here that since each of the three

imaging parameters is tested at three levels the degrees of freedom associated with this

experimental approach is equal to 26. The factorial designed experimental approach produces 33

or 27 degraded copies of the initial image.  Therefore, processing these degraded images through

three thematic mapping algorithms, two target detection algorithms and one unmixing algorithm

results in a grand total of 486 Level 3 products for quantitative comparisons (27 degraded copies

of the initial image x 3 types of image scenes x 6 algorithms).

The same Level 3 algorithms used on the initial image are used to process the degraded

images produced by the factorial “degradation tool”.  This step is labelled as “star-2” in Figure

3-1 and will be discussed in section 3.3 since this step is very specific to the Level 3 processing

utilized. The results from these degraded images are retained and labelled as “Degraded Level 3

Products.” These results are compared to the reference Level 3 products and a metric is computed

to indicate the errors introduced by degrading the image.  It should be noted that each of the

selected metrics – kappa, SSE and ROC curves - are specific to the spectral algorithm employed.

Now that a metric has been calculated for each “degraded” Level 3 product, we analyse

the results by employing statistical techniques such as ANOVA and plot the results to visually

establish trends.  The analysis of the metrics will reveal the significance that the main effects and

interactions of the spatial resolution, spectral resolution and noise on spectral algorithm

performance.  More details regarding the statistical analysis of the data are found in section 3.3.

It is expected that the metric results and trends for each individual algorithm will be similar when

compared between the different scenes used. Furthermore, it is from these results and their
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analysis that we will also determine which algorithm performed best under the given levels of

spectral resolution, spatial resolution and noise.

3.2    Image Degradation

 The image degradation portion, labelled as “star-1” in Figure 3-1, requires further

discussion.  Image degradation is a separate and crucial first part of this entire thesis. As part of

this thesis, programs were written using IDL (Interactive Data Language, RSI, 1998) and ENVI

to degrade hyperspectral images with respect to spatial resolution, spectral resolution and the

addition of spectrally correlated noise.  These programs provide a user-friendly interface for

image selection and parameter choices determining how the input image will be degraded. After

selection of the initial image the user is prompted for a new GIFOV, a new number of bands to

cover the spectral range of the initial image and a new SNR for the degraded image.  The three

programs and instructions for installation/use are available on the CD enclosed with this thesis.

They are entitled degrade_input.pro, degrade_doit_v16.pro and noise_covariance5.pro.  The

program degrade_input.pro provides the user-friendly widgets for initial image and parameter

selection.  The program degrade_doit_v16.pro performs spatial degradation and spectral

resampling.  This program also calls upon noise_covariance5.pro to add spectrally correlated

noise to the spatially and spectrally degraded image cube. Once these programs are installed,

image degradation may be done through the regular ENVI main menu by selecting “Transforms >

Image Cube Degradation.”   The code is based on the following image degradation algorithm that

is best represented as a flowchart (Figure 3-2).

The algorithm treats all input hyperspectral images as an image cube or 3-D array with

the following dimensions – number of samples by number of lines by number of bands (ns,nl,nb).

Obviously, the first input into this algorithm is the original image cube.  The user is then

prompted for the GIFOV, number of bands and SNR they wish to have this initial image cube

degraded to. The specifics of how each one of these degradations is handled will be discussed in

the following sub-sections.  Whether the file is interleaved as Band-Interleaved-by-Pixel (BIP),

Band-Interleaved-by-Line (BIL) or Band-Sequential (BSQ) format the program

degrade_doit_v16.pro is able to read it into an image cube for further processing.   The final

output of this program is a new image cube that is degraded to the user-specified parameters in

the same interleaf format as the initial image file.
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Original Image Cube Read into a 3-D array

Spatially Degrade by averaging
multiple pixels (“shrink & expand”)

Spectrally Degrade using critical
sampling (I.e. FWHM = band spacing)

User Inputs

GIFOV

Number Bands

SNR

Noise Cube

INPUTS

Addition of Spectrally
Correlated Noise

Processing

Degraded ImageOUTPUT

Image Cube Degradation Algorithm

Figure 3-2: Flowchart of Image Cube Degradation Algorithm

3.2.1 Spatial Degradation

It should be noted again that in this thesis spatial resolution changes are synonymous with

GIFOV changes.  As it was discussed previously in Chapter 2, the correct way of approaching

spatial degradation is via a convolution and resampling process. However, this process is

computationally expensive and a slightly different means to the same end is available.  In this

respect, we used a “neighbourhood averaging” approach to spatial degradation. For example, if

we change the GIFOV from 1m to 2m for an image that is initially 400x400 pixels, then the

spatially degraded image will be 200x200 pixels given that the ground swath remains constant.

The pixels in the degraded image are the aggregate of the initial pixels in a 2 x 2 manner.  The

initial image is “shrunk” to dimensions that are based upon the new-GIFOV and old-GIFOV

given that the ground swath is constant.  The new dimensions that the image is to be “shrunk” to

are found via equation 2-18 in Chapter2.  Although this “boxcar” approach to spatial degradation
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is a very good approximation of the convolution and resampling method, it does have limitations.

The first limitation is that the way this neighbourhood averaging approach is implemented in

degrade_doit_v16.pro requires that the size of the degraded image be an integer multiple of the

initial image size.  That is, the user-specified degraded GIFOV must be an integer multiple of the

original GIFOV in consideration with initial size.  The second problem is that the degraded image

is smaller than the original. This is what should physically happen when changing the GIFOV

while keeping the ground swath constant.  However, as we saw in Chapter 2, many of the metrics

used for quantitative comparison are based on image size.  In this regard, we require that,

although the image is spatially degraded via a neighbourhood averaging process, that it also

remain the same size.

To solve this problem, the “shrunken” image produced by neighbourhood averaging is

treated as an intermediate product. This smaller image is then “expanded” back to its initial size

using nearest-neighbour resampling.   The result is a spatially degraded image that is the same

size as the initial image and consists of “super-pixels” which are the aggregate of the initial image

pixels based on the user-specified GIFOV.   The net result of this entire process can be better seen

in Figure 3-3.

GIFOV = 20m GIFOV = 40m

4 initial pixels “Super-
pixel” still
contains 4
pixels

Spatial Degradation

Figure 3-3: Net result of Spatial Degradation Approach
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The image on the left is the initial image that is to be degraded from a GIFOV of 20m to

40m.  This means that pixels will be averaged in neighbourhoods of 2 x 2 and the resulting

average will be placed back into each pixel locations from which they came.  Each of the orange

boxes contains 4 pixels.

3.2.2 Spectral Resampling

Once the degradation program opens the image file, the initial number of bands is

assigned to one variable and the list of wavelengths that these bands represent is stored as a

vector.  The user is asked for the number of bands that they wish to have the image degraded to.

This user-defined number of spectral bands, degrade_nbspect, determines the spectral resampling

of the image.  The dimension of the initial vector of wavelengths is obviously equal to the initial

number of bands.  This initial vector of wavelengths is resampled via linear interpolation to match

the dimensions of degrade_nbspect.  Special attention is made so that the first and last

wavelengths remain same.  In this way, the true spectral range of the image does not change and

it is just the wavelength values within this range that are interpolated.  The net result of this

process is a new vector of wavelengths that have dimensions equal to the number of “degraded”

spectral bands specified by the user.  This new vector of wavelengths represents only the spectral

band centres. The ENVI spectral resampling function assumes critical spectral resampling when

FWHM values are not provided. It uses a Gaussian model with a FWHM equivalent to the band

spacing to perform spectral resampling (RSI, 1998).

The spectral resolution, in nm or µm, of the degraded image can be quickly determined

by simple arithmetic.  For instance, an initial image covers the spectral range 400 – 2500 nm with

210 spectral bands/channels. The spectral resolution of this initial image is approximately 10 nm

(calculation is as follows [2500 – 400] / 210).  We wish to degrade this image so that 75 spectral

bands represent the spectral range.  Following the same simple arithmetic, the spectral resolution

of the spectrally degraded image is 28 nm.   Apparent improvements to this part of the program

are discussed in Chapter 5.

3.2.3 Addition of Spectrally Correlated Noise

Two main methods were fabricated and tested in an effort to add spectrally correlated

noise to a hyperspectral image.  The first method, called the “dark current image approach,”

calculated the covariance matrix of the dark current noise files from AVIRIS flight data.  The
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eigenvalues of this covariance matrix were determined and scaled to reflect a user-defined SNR

for the degraded image. The result is the noise variances for each band in de-correlated space.

Subsequently, 2-D arrays of random numbers were created for each band based on a mean of zero

and a standard deviation equal to the square root of its respective eigenvalues/variance.  A series

of these 2-D arrays stacked together form a 3-D cube of de-correlated noise with a size equal to

the spatial dimensions of the image and the number of degraded spectral bands.  A Principal

Components transform was performed on this de-correlated noise cube so that the result of the

transform is a correlated noise cube.  Although this method did work in producing noise, the

covariance and correlation matrices of the noise never matched that presented in Boardman’s

work (1995), as they theoretically should.  It is believed that one of the problems with this

approach is that a scaling or conversion factor is missing in the overall calculation.  Despite a

great length of time and frustration this mystery was never fully solved.  A further discussion

regarding this approach can be read in Appendix D.  The programs needed for this approach are

also discussed in this appendix and are included on the accompanying CD.

The second method, which used the difference between a noisy image and a noiseless

image, was used to construct a spectrally correlated noise cube.  It is best to first represent this

approach schematically (Figure 3-4) and then discuss its implementation.

Spectrally Correlated Noise
Initial Image

(has noise)

Eigen-Images

Initial Image

(NO noise)
MNF MNF-1

Subtract

Spectrally Correlated

Noise Cube

• subset over a homogeneous region

• resized spectrally and spatially to match image TBD

• multiplied by a scalar to change SNR of image and
   noise added back to MNF-1 image

Figure 3-4: Approach used in Constructing Spectrally Correlated Noise
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It is understood that through the process of image acquisition a final image contains both

signal and noise. In Chapter 2 (section 2.6.3) we were introduced to the MNF transform.  After

performing an MNF transform on an image in ENVI, the MNF bands are ordered by descending

order of information. The first band contains the most information and the last band contains the

most noise.  In this sense the image in MNF-space can be divided into two parts.  The first

portion consists of those MNF-bands that contain information and the second portion includes

those MNF-bands that are dominated by noise.  As it was stated in Chapter 2, noise can be

removed from the image data by performing an inverse MNF transform using only the bands that

contain information (Green et al, 1988; RSI, 1998) and ignoring the MNF-bands characterised by

noise.   This is precisely the starting point of this noise approach.

First, an MNF transform was performed on the AVIRIS Rochester image (216 spectral

bands, including atmospheric bands, in units of radiance – µwatts/cm2/nm/sr).  A spatial subset of

the image over the lake was used to estimate the noise statistics.  This noise estimation works

under the assumption that each pixel contains both signal and noise, and that adjacent pixels in a

homogeneous region (like the deep part of the lake) will contain the same signal, but different

noise (RSI, 1998). Once the MNF transform has been performed, the resulting eigen-images are

inspected for information and noise content.  This inspection is done in conjunction with a look at

the percentage of cumulative variance explained by the calculated eigenvalues.  It was found that

50 MNF-bands explain ~97% of the cumulative variance or image information.  This is

confirmed by visual inspection of the eigen-images in which it was found that bands 51 to 216

were predominantly noise.  As seen in Figure 3-4, an inverse MNF transform is applied only on

the MNF bands containing information – in this case MNF-bands 1 to 50.   This theoretically

results in an image with little noise. As seen in Figure 3-4, the difference between the initial

image with noise and the noiseless MNF transformed image is the noise cube.  A 100x100 pixel

spatial subset of this resulting noise cube is taken over the water region.  This region was selected

because it is spatially homogeneous and contains low signal. This small noise cube is then

resampled spectrally to match the spectral dimension of the degraded image.  Then the small

noise cube is "mirrored" to make multiple copies of itself to fill the spatial dimensions of the

degraded image that it will soon be added to. This mirroring approach was selected to minimise

the spatial effects introduced by mere copying or tiling.  This spectrally resampled and spatially

resized noise cube is then multiplied by a scalar value so it will reflect the user-specified SNR

when added to the degraded image.  Finally, the noise cube is made to match the spatial
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degradation of the image via the same neighbourhood averaging process that was applied to the

image.  Now, the noise cube can be added to the image.  The statistics of the resulting 100 x 100

noise cube are presented graphically in Figure 3-5.
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Figure 3-5: Statistics of Noise Cube used in Image Degradation

It can be easily seen from Figure 3-5, that we have attained the desired results for adding

spectrally correlated noise to hyperspectral images.  The statistics reveal that the noise cube has a

desired mean of zero and there is definite correlation between bands. This correlation structure is

due to the inherent redundancy of both information and noise characteristic of fine spectral

resolution sensors. Close inspection of the corrleation matrix shows the separate spectrometers in

AVIRIS. It is believed that this approach, although different from the dark current approach, best

represents the noise of the entire image chain since the noise was computed directly from an
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image.  An example of this can be seen in Figure 3-5  where we see a periodic distribution in the

horizontal profile of the noise. This profile chart only represents the first spectral band of the

noise cube, yet it is interesting that a similar behaviour is repeated in all bands and is along the

“sampling” direction of the acquired image.

 It should be noted that the noise was added to all images while in units of radianace and

not after the images may have been calibrated to reflectance.  This approach best represents how

noise is introduced along the image chain. Furthermore, noise added to degrade the SNR was

done with reference to a constant signal. That is, all SNR values selected for degradation are with

respect to a 30% reflector for the AVIRIS images and a 36% reflector for the DIRSIG image.

The 30% reflector in the AVIRIS Rochester scene is the beach and the same levels of SNR

degradtion were carried over to the AVIRIS Rogers Dry Lake scene.  The 36% reflector in the

DIRSIG scene is a ground panel of known reflectance.  More information regarding the selection

of these SNR levels and ensuring their consistency given that we are also changing the spatial and

spectral resolution can be found in Appendix D.

3.2.4 Levels of Degradation

The initial images used to produce any degraded images in this thesis were the noiseless

versions made by the MNF transform and removal of noisy bands depicted in Figure 3-4. In this

respect, we always start with an image characterised by high spatial and spectral resolution and

low noise prior to any degradation.  The levels chosen for degradation in this factorial designed

experiment are seen in Table 3-1.

AVIRIS IMAGES - Rochester, NY & Rogers Dry Lake, CA

Spatial Resolution (m) 20 40 80
Spectral Resolution (nm) 10 55 110
SNR @ 30% reflector 225 100 10

DIRSIG IMAGE - Western Rainbow desert scene

Spatial Resolution (m) 2 4 8
Spectral Resolution (nm) 10 55 113
SNR @ 36% reflector 200 (pure) 100 10

Table 3-1: Levels of Degradation for spatial resolution, spectral resolution and noise
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The level of error asscociated with each one of these degradation parameters should be noted. The

error associated with changes of spatial resolution is nil. Spectral resolution error  levels of  ±

0.50 nm are to be expected.  The error associated with SNR levels is approximately ± 5.0 for

SNRs of 225, 200 and 100.  The error for SNRs equal to 10 is ± 1.0.  An explanation of the casue

of these boundaries upon the SNR can be seen in Appendix D.

3.3     Level 3 Products and Image Utility Metrics

We now have a means of degrading hyperspectral images spatially, spectrally and

through the addition of spectrally correlated noise.   The next steps of this experimental approach,

as seen in Figure 3-1, are to process the images through algorithms resulting in “degraded” Level

3 products and analyze these in comparison to the reference products.  To accomplish these next

steps three items needed to be accomplished.  These were endmember selection for input into

each algorithm, establishing groundtruth or reference products and the quantitative assessment of

the collected data. It is these three tasks that will be discussed in the following sub-sections.

3.3.1 Endmember Selection and Algorithm Batch Codes

It was apparent from the discussions in Chapter 2 that each algorithm whether it be for

classification, unmixing or target detection, requires input in the form of endmembers.

Endmembers are the material constituents (e.g. grass, trees, rocks and water) that make up a scene

and are often referred to as “classes”.   The spectral signatures of all the endmembers making up a

scene are typically stored as a spectral library.

Endmembers were derived from the AVIRIS images using in-scene techniques as

described in Chapter 2 (section 2.5).   This worked quite well for the Rochester, NY scene as we

have working knowledge of that area. We could readily identify known regions and cross-

reference the AVIRIS image to a high-resolution aerial photograph of the same land area.

Enough regions of interest (ROI) were selected from the image to best describe its spectral

content.  The mean of the numerous pixels within each of these ROIs was calculated and used to

form a spectral library for the image.  Furthermore, the PPI algorithm and n-D Visualizer tool

available in ENVI (previously described in section 2.5) was used in conjunction with our in-scene

technique.   Using these two ENVI tools we were able to find the most "spectrally pure" pixels in

a hyperspectral image. Theoretically, these pixels correspond to scene endmembers.  The

resulting spectrum from these tools was compared to the spectral library formed by the in-scene
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techniques.  In general, the two methods corresponded very well and the necessary amendments

were made to the final spectral library for any intuitive differences found.  This same approach

was also applied to the AVIRIS Rogers Dry Lake image.  Even though we lack knowledge of the

area, the in-scene technique used in conjunction with the PPI algorithm produced admirable

results for endmember selection.  The only problem is that we may not know the exact name of

these endmembers/classes. A list of the endmembers for the Rochester, NY and Rogers Dry Lake,

CA scenes is available in Table 3-2.  The spectra of each of these endmembers can be viewed

using ENVI and the spectral library data is included on the enclosed CD.

AVIRIS – Rochester, NY AVIRIS - Rogers Dry Lake, CA
Endmember Applied to….  % OF SCENE Endmember Applied to….  % OF SCENE

trees S,BE,GML,U 17.2253 highway-1 S, BE, GML, U 0.9304

marsh-1 S,BE,GML,TD 1.0320 urban-1 S, BE, GML, TD 0.0256

marsh-2 S,BE,GML,U 2.0740 urban-2 S, BE, GML, U 2.0840

beach S,BE,GML 0.5507 playa-1 S, BE, GML, U 14.1324

field-1 S,BE,GML 1.4787 playa-2 S, BE, GML, U 33.9892

field-2 S,BE,GML,U 4.9727 playa-3 S, BE, GML, U 12.8744

grassland S,BE,GML,U 5.6020 mineral 1-1 S, BE, GML, U 1.3516

deep water S,BE,GML,U 34.3673 mineral 1-2 S, BE, GML 0.9080

shallow water S,BE,GMLTD 0.6280 mineral 1-3 S, BE 0.0372

Genesee water S,BE,GML,U 1.2527 mineral 2-1 S, BE, GML, U 32.0024

bay water S,BE,GML,U 8.5007 mineral 2-2 S, BE, GML, TD 0.2112

urban-1 S,BE 0.0280 field-1 S, BE, GML, TD 0.2868

urban-2 S,BE,GML 0.0927 field-2 S, BE, GML, U 1.0416

urban-3 S,BE,GML,U 9.1327

urban-4 S,BE,GML,TD 1.2993

Table 3-2: Endmembers for AVIRIS Rochester, NY and Rogers Dry Lake, CA images and the
Algorithms to which they were applied [Key is: S = SAM, BE = Binary Encoding, GML =

Gaussian Maximum Likelihood, U = Linear Spectral Unmixing, TD = Target Detection (both
Spectral Matched Filter and Spectral Feature Fitting].  Percentage of scene is from SAM results.

Also included in Table 3-2 is a list of the algorithms to which the endmembers were

applied.  As we can see, the classification algorithms used all but one of the endmembers.  The

reason for class exclusion when applied to GML classification will be discussed in Chapter 4.

The input spectra for unmixing were the first 8 endmembers that explained the majority of the

image.  The number eight was chosen based on the results of Konno (1999) in which he found

linear spectral unmixing performed best when 6 to 8 endmembers where used as input.  Target
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detection algorithms were applied on 3 different endmembers for each scene.  It deserves to be

noted that typically these targets/endmembers were spectrally distinct, were interesting targets

and comprised only a small portion of the scene in order to minimise false alarms.  The

percentage of the scene explained by each endmember is the post classification statistics of the

SAM algorithm on the initial non-degraded images.  As we will see in section 3.3.2 the results of

the SAM algorithm were used as a benchmark for the AVIRIS scenes.

The selection of endmembers for the DIRSIG scene was much simpler because a spectral

library is produced by DIRSIG once the scene is rendered.  The only amendments made to this

spectral library were that the various spectra for “vehicle 1” were combined to form one spectral

signature.  Additionally, when using the GML classification algorithm all of the ground panels

were combined into one class as were the two types of deciduous trees.  The reason behind

changing the spectral library for GML classification will be explained in Chapter 4. A list of the

endmembers used for the DIRSIG Western Rainbow scene is available in Table 3-3 and the

spectral library is found on the enclosed CD.  The reasons behind selecting certain endmembers

for certain algorithms follow the same logic that was presented for the AVIRIS images.

DIRSIG - Western Rainbow Desert Scene
Endmember Applied to….  % OF SCENE Endmember Applied to….  % OF SCENE

desert wash S, BE, GML, U 57.5675 rusty tan S, BE 0.0075

dirt road S, BE, GML, U 1.1469 vehicle 2 S, BE 0.0088

desert pavement S, BE, GML, U 37.4613 vehicle 3 S, BE, TD 0.0169

deciduous S, BE, U 0.4238 black wood S, BE 0.0050

deciduous - 2 S, BE, U 2.3187 bare wood S, BE 0.0088

target 1 S, BE, GML, U 0.3187 2% panel S, BE 0.0306

target 2 S, BE, GML, U 0.1613 4% panel S, BE 0.0306

target 3 S, BE 0.0325 12% panel S, BE 0.0306

target 4 S, BE 0.0444 24% panel S, BE 0.0350

target 5 S, BE 0.0425 36% panel S, BE 0.0350

desert bush S, BE, TD 0.0150 48% panel S, BE 0.0350

vehicle 1 S, BE, GML, U, TD 0.1269 60% panel S, BE 0.0306

rubber tire S, BE 0.0056 white card S, BE 0.0306

aluminium S, BE 0.0231

Table 3-3: Endmembers for DIRSIG Western Rainbow Desert image and the Algorithms to
which they were applied [Key is the same as table 3-2]

ENVI allows endmembers to be input into its spectral algorithms in the form of ASCII

files, spectral libraries, statistics files, or from ROI means.  In order to apply consistency in the
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experiment, the same approach was used in providing spectral inputs to all the algorithms except

GML.  The method employed resamples the initial high-resolution spectral libraries to match the

spectral resolution of the degraded images outlined in Table 3-1.  These newly resampled spectral

libraries are made into ASCII files containing only the spectra needed for a specific algorithm.

This follows the “Applied to…” column of Tables 3-2 and 3-3.  For instance, there will be three

spectral libraries for performing unmixing with the DIRSIG scene. Each of these three spectral

libraries will be at a different spectral resolution yet contain the exact same materials – those

indicated with a “U” in Table 3-3.  This method of spectral library input enables us to use ENVI

batch codes.  These programs were created as part of this thesis and are available on the enclosed

CD.  The use of batch codes in this thesis allowed us to classify, unmix or target detect all of the

degraded images at once and calculate our required metrics after being supplied with ASCII

spectral information.

As indicated above, the input into the GML algorithm did not follow the standard method

described above.  Instead, the ROI file used to form the initial spectral library was overlaid on

each degraded image prior to executing the GML algorithm.  The mean, standard deviation and

covariance matrix was calculated from these ROIs in the degraded imagery.  This is typically how

an operator performs GML – by selection of ROIs in the scene.  Experimental consistency is

maintained because the ROI files used remain the same for all degraded images.  Additionally,

the ROIs used are the original ROIs used to form the spectral library for the first method using

spectral libraries described above.

Radiance or Reflectance?

As mentioned above, an in-scene technique was used to construct spectral libraries for the

Rochester and Rogers Dry Lake scenes.  The spectra of these two images is in radiance space

[units of micro-flicks – µwatts/cm2/nm/sr] with atmospheric absorption bands still intact.

Atmospheric inversion was not performed on these two scenes primarily because we lack

sufficient groundtruth to build a spectral library of the true reflectance values or perform an ELM

inversion. Other methods of inversion could have been performed yet it is strongly believed that

the trends we notice in spectral algorithm performance will be the same whether the image is in

reflectance or radiance space; especially since we are using scene derived endmembers.

The DIRSIG Western rainbow scene was atmospherically corrected using ELM.  Since

the spectral library provided by DIRSIG is in units of reflectance this step was mandatory.  Even
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though scene-derived endmembers could have been used, like the AVIRIS scenes, the fact that

true reflectance curves were available allowed us the opportunity to better investigate the entire

image chain.  The images were first degraded spatially, spectrally and by adding correlated noise

while in radiance space prior to ELM inversion.  This was done to best represent the image chain.

A batch code (available on the CD) was used to perform ELM atmospheric correction for all the

degraded images using path radiance and solar irradiance values spectrally resampled to match

the spectrally degraded images they would be applied to. This necessary ELM data was acquired

at the highest spatial resolution of the image without noise addition so as not to introduce artifacts

due to noise or spatial resolution changes into the ELM.  Atmospheric bands, for the most part,

have been removed from these images.

3.3.2 Establishing Groundtruth and Reference Products

The goal of this thesis is to assess the utility of spectral products derived from degraded

imagery. In this regard it is imperative that benchmarks be established so that quantitative

comparisons can be made.  We require groundtruth.  It has been established that there is

insufficient ground truth for both AVIRIS scenes.  To fill the void, the SAM results of the initial

AVIRIS images (no degradation) will serve as “groundtruth” and reference for kappa calculations

for SAM, BE, GML and ROC curve determination for SMF and SFF. A fraction map of the

initial image (no degradation) will be made as the reference for SSE calculations of the unmixing

algorithm.  The reason SAM results were chosen as a benchmark/reference is that the SAM result

of the Rochester scene was the most accurate given our knowledge of the area and when cross-

referenced to the high-resolution aerial photograph.  The SAM result for the initial Rogers Dry

Lake scene was also picked as groundtruth/reference to maintain experimental consistency.

One advantage of DIRSIG is that we are provided with 100% complete groundtruth.

This makes the selection of references for the Western Rainbow scene very simple. In this regard,

the material map produced by DIRSIG was used as groundtruth for metric calculations for all

algorithms.  As a cross-reference, the DIRSIG produced material map was compared to

classification results produced by applying the SAM algorithm to the initial Western Rainbow

scene.  The results between the material map and the SAM results were an 86% match, thereby

indicating that the choice of using SAM results as ground truth for the AVIRIS imagery was a

sound decision.  It is fully realized that better ground truth could have been used given more
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resources and the employment of more complex techniques, but the ground truth we established

will assist in this thesis proof of concept.

3.3.3 Analysis Plan for the Collected Data

At this point we have constructed spectral libraries, degraded all the images to the

parameters dictated by our factorial designed experiment and processed these degraded images

using various classification, linear unmixing and target detection algorithms. The benchmarks

established above, in section 3.3.2, will serve as references for the calculation of the metrics –

kappa, sum of squared error and ROC curve determination.  These calculated metrics are a

measure of how the information has changed with respect to established groundtruth. A second

metric will be calculated for each algorithm to measure how the information changes with respect

to the algorithm itself.  For example, a binary encoding algorithm is performed on a series of

degraded images and a value of kappa is calculated for each BE result with respect to the SAM

reference – the established “groundtruth”.  A second value of kappa is also calculated for each BE

result with respect to a BE reference (no degradation) to see how the results of the algorithm

change with respect to itself.

The calculation of these metrics still require statistical analysis in order to demonstrate

any trends and show the significance of main and joint effects.  A statistical analysis plan has

been developed to tackle the data.

Basic Analysis

Firstly, the mean and standard deviation of all the metric values are determined with

respect to each main effect.  That is, a collective mean of the metric will be calculated for each

level of spatial degradation, spectral degradation and SNR level – a total of 9 means and standard

deviations.  For example, consider one image and its associated series of degraded images.  A

mean for all values of kappa that are associated with a spatial resolution of 20 m, regardless of the

other parameters of spectral resolution or noise, is done.  These means were plotted to help

visualise the data and establish any trends in algorithm performance resulting from a change of

one of the main factors. To statistically demonstrate the level of significance of each main factor

and their interactions an analysis of variance was performed on the metric values.
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Classification

In addition to the basic analysis, the variance and Z-score for each kappa value and its

respective confusion matrix was calculated (as per equation 2-39 and Appendix C). This allows

us to test the significance of the κ/ statistic and determine if the agreement between the processed

and reference data is better than random chance.  Furthermore, this provided us the required

inputs to statistically compare different confusion matrices as per equation 2-40.  This gives us

the ability to compare the performance of different classification algorithms with respect to the

same reference/ground truth and with respect to itself.

Unmixing

Only the basic analysis was conducted with the Sum-of-Squared-Errors calculated from

Linear Spectral Unmixing.

Target Detection

Again, just the basic analysis was conducted with the results from the ROC curves

determined from the Spectral Matched Filter and Spectral Feature Fitting algorithms.  However, it

is worth mentioning some of the specifics of how these metrics were calculated. As seen in

Tables 3-2 and 3-3, three endmembers for each scene are used as input targets.  Each one of these

targets will have an individual ROC curve.  A probability of detecting (Pd) these targets at a fixed

probability of false alarm (Pfa) is read from the curve, using interpolation if needed.  A weighted

average of the three Pd at a common Pfa was calculated and used as the final metric. The weights

of this calculation are the number of pixels that the target is comprised of in the groundtruth/

reference image. For example, a SMF is used to find targets A, B and C in an image.  The

groundtruth for this image reveals that target A is comprised of x number of pixels, target B is

made up of y pixels and target C is comprised of z pixels. After performing the SMF algorithm

and reading the three Pd from the ROC curves at a fixed Pfa we determine the weighted average of

the detection results.  This is the final metric that is reported and is found by:

PD = (Ax + By + Cz) / (x + y + z)   (3-1)

This approach was adopted since it is a better representation of target detection performance than

if just merely selecting one target per scene.
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The calculations of the selected metrics (kappa, SSE and ROC curve) have been

incorporated into the created batch codes.  In some cases, it may be necessary that extra

processing be involved to extract our needed metrics.  These include programs that perform

interpolation on the ROC curves, calculate the variance of kappa (as per Appendix C) and

statistically compare two values of kappa at various confidence limits. These extra programs/tools

are also available on the enclosed CD and their use is detailed in the “extraprograms_readme.txt”

file.
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Chapter 4

Results and Observations

4.1 Overview and Assumptions

Prior to a full examination and discussion of the results it is important that we first outline

how these results will be presented and some of the assumptions used in the statistical analysis.

The results are grouped according to the spectral algorithms and the metrics they were derived

from.   There were three main categories of algorithms tested – classification, unmixing and

target detection algorithms.  Each one of these categories is discussed in its own separate section.

In the respective sections, a data mean and standard deviation of the selected metric at each

parameter level will be presented.  For example, with a given image all values of a metric (e.g.

kappa) that had a 40 m GIFOV associated with it are averaged together - despite what level of

noise or spectral resolution was also part of that degraded image product. The metric averages are

then plotted to visually help establish any trends of the main factors – spatial resolution, spectral

resolution and noise. Finally, an analysis of variance is performed to demonstrate the significance

of each factor and interactions on the metric from the degraded spectral product.  The results of

each one of these analysis steps – means, plots and ANOVA – are compared scene to scene to

establish commonalties.  All of the raw data is available on the enclosed CD.  Summaries of the

data are presented in Appendix E.

As discussed in Chapter 2 (section 2.8) the use of ANOVA tables allows us to determine

the significance of main and joint effects via hypothesis testing.  This hypothesis testing is done

by comparing the calculated value Fo (from the ANOVA tables) to a critical region of the F-

distribution (Montgomery, 1997).  This region is defined by some level of significance, α, and

has numerator degrees of freedom (df1) equal to the degrees of freedom of the source of variation
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being tested and denominator degrees of freedom (df2) equal to that associated with the error.

The set of hypotheses we make for testing all of our results is:

H0:  Equal significance of each main effect and no interaction effects

H1:  Main effects and interactions are significant

We reject the null hypothesis if Fo > Fα, df1, df2.  The level of significance for each test in this

chapter is α = 0.05.  As we will see shortly the values of the F-test statistics we care about are

F0.05, 2, 8 = 4.46 and F0.05, 4, 8 = 3.84.  These values are listed again for convenience under each

ANOVA table.

The layout of the ANOVA tables presented in this chapter are similar to that outlined in

Table 2-3. There are two differences worth mentioning.  Firstly, there is a sequential and adjusted

sum-of-squares calculated.  Adjusted sums of squares are the additional sums-of-squares

determined by adding each particular term last into the linear ANOVA model. Sequential sums of

squares are the sums of squares added by a term with only the previous terms entered in the

model. (Minitab, 1998). These sums of squares will differ when the experimental design is not

balanced. Secondly, an additional column “P” is added to the ANOVA table presented here. The

numbers under this column represent the smallest level of significance that would lead to

rejection of the null hypothesis (Montgomery, 1997).  This allows us to see if and at what level

the factor associated with a certain P-value will become significant other than at the level used in

testing.

One of the principal assumptions made in this thesis concerns the statistical analysis of

the data using ANOVA techniques.  As seen in Chapter 2, the application of ANOVA to the

results from a factorial designed experiment allows the user to statistically test the significance of

all main factors and their interactions.  However, closer inspection of Table 2-3 shows that it is

necessary that at least two runs (n ≥ 2) of the experiment be performed in order to properly

calculate an error sum of squares SSE.  For instance, one run of the experiment is considered

taking a degraded image and applying one of the spectral algorithms. Proper ANOVA techniques,

as depicted in Table 2-3, dictate that this will be done at least one more time to properly establish

the experimental error. In this thesis study only one run of the experiment is performed.  It does

not make sense to perform any portion of this experiment twice since the spectral products will

not change from run-to-run given that the inputs (i.e. endmembers) remain the same. This means
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that experimental error, SSE, cannot be separated from the effect of the three-way interaction/joint

effects of spatial, spectral resolution and noise, SSABC – as seen in Table 2-3. One could argue that

each degraded image set be considered a single run of the experiment.  That is, the degraded

spectral products from AVIRIS Rochester are one run, products from AVIRIS Rogers Dry Lake

are a second run and so forth.  This sort of combination would definitely allow us to individually

calculate a SSE and SSABC.  However, the SSE  would then represent the error introduced by

different image sets and subsequent statistics (such as the mean square and Fo statistic) would be

calculated with respect to a scene dependent error.  This is believed to be an incorrect approach.

In this regard, we could assume that the three-way interaction effect is zero and then proceed with

the usual significance testing of main effects and two-way joint effects.   Another way of looking

at this assumption is that all hypothesis tests are done with respect to a sum-of-squares that

represents the three-way joint effects of spatial resolution, spectral resolution and noise – which is

really denoted as the experimental error, SSE.  This is the assumption made in the production of

the following ANOVA tables and hypothesis testing.

4.2 Classification/Thematic Mapping

Prior to a presentation of the results obtained by using the metric kappa and applying it to

our series of degraded classification products, it is important to first review which algorithms are

being tested and the metric being used.  The classification or thematic mapping algorithms being

tested are the Spectral Angle Mapper (SAM), Binary Encoding (BE) and the Gaussian Maximum

Likelihood (GML) algorithms.  It should be noted that the GML method was done in conjunction

with a Minimum Noise Fraction (MNF) transform of the image data to reduce noise and data

dimensionality.  The employment of the kappa statistic, as discussed in Chapter 2, is more

versatile than merely using a measure of accuracy to grade algorithm performance. It allows us to

test significant differences between spectral products and different algorithms.
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trees  (white)
grassland (cyan)
marsh1  (red)

marsh2  (green)
beach  (blue)

field1   (yellow)
field2   (brown)
urban1 (orange)
urban2  (teal)
urban3 - roads (orchid)
urban4  (chartreuse)
deep water  (magenta)
shore water (maroon)

shallow/bay water (purple)
Genesee water  (sea green)

ENDMEMBERS

GIFOV = 80m

GIFOV = 20m

SAM

Figure 4-1: Example of Degradation of Classification Map (Level 3 Product)

As seen in Figure 4-1, we can see the expected results of a classification algorithm

applied to degraded imagery.  In Figure 4-1, we have only degraded the spatial resolution of the

imagery.  By doing this we are essentially forcing the pixels to become “more mixed.” It is

through this combination of the spectral signatures resident in each pixel that we overlook

classifying such land cover classes as grassland, marsh2 and field1 in the 80 m GIFOV image.

Obviously for each image that is degraded and subsequently classified we will have a

classification map similar to that in Figure 4-1.  This is excellent for assessing visual differences

qualitatively, however, we are interested in the quantitative metric.

The ground truth references used in the calculation of kappa were the initial SAM results

from the non-degraded imagery for the AVIRIS images and the material truth map for the

DIRSIG image.  Using these classification results as ground truth allows us to see how image

utility degrades with respect to selected ground truth.  Likewise, a calculation of kappa was

conducted for each algorithm with respect to its own respective non-degraded spectral product.

This was done to see how the information utility produced by the algorithm behaves with respect
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to itself.  For instance, a BE was applied to all of the degraded Rochester scenes.  Calculations of

kappa for each degraded BE spectral product were determined with respect to the initial SAM

product as reference ground truth.  Subsequently, the BE results of the non-degraded image were

used as ground truth for a second calculation of kappa – a value of kappa showing how the

spectral product changes with respect to its initial non-degraded BE product.

A summary of the collected raw data is available in Appendix E and summarized

below in Table 4-1, 4-2 and 4-3.  Undoubtedly, there is an absolute wealth of data here

and it is better to visualize the data in graphs.  At this point the size of the standard

deviations associated with these metrics should be noted.  Recall that each statistic is the

average or standard deviation of all the values while one parameter is held constant.  For

example, the mean value of kappa for a spatial resolution of 20 m includes all raw data at

all levels of noise or spectral resolution associated with a spatial resolution of 20 m.  This

includes data points with SNR values of 10, 100 and 225 and spectral resolutions of 10,

55 and 110 nm.  Obviously the huge standard deviations (many close to the size of the

mean itself) are attributed to the noisy data with low SNR. Despite these large standard

deviations and the hindrance they may impose on establishing concrete conclusions – the

main aim here is to investigate and observe variable trends with respect to algorithm

performance.
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Rogers Dry Lake Rogers Dry Lake Rogers Dry Lake Rogers Dry Lake Rogers Dry Lake
SAM - Kappa BE - Kappa BE to SAMref - Kappa GML  - Kappa GML to SAMref - Kappa

spatial (m) mean std mean std mean std mean std mean std

20 0.5778 0.4404 0.2509 0.3056 0.1276 0.1422 0.7176 0.2581 0.5577 0.1029

40 0.5166 0.3752 0.2242 0.2639 0.0896 0.1098 0.6130 0.1724 0.5001 0.0920

80 0.4485 0.3309 0.1930 0.2264 0.1135 0.1287 0.2924 0.2821 0.2852 0.2352

Rogers Dry Lake Rogers Dry Lake Rogers Dry Lake Rogers Dry Lake Rogers Dry Lake

spectral SAM - Kappa BE - Kappa BE to SAMref - Kappa GML  - Kappa GML to SAMref - Kappa

(nm) mean std mean std mean std mean std mean std

10 0.5471 0.4146 0.4138 0.3127 0.1691 0.1438 0.5819 0.4501 0.3683 0.2776

55 0.5273 0.3908 0.2543 0.1427 0.1616 0.0918 0.5717 0.1747 0.4952 0.1069

110 0.4684 0.3539 0.0000 0.0000 0.0000 0.0000 0.4916 0.1858 0.4794 0.1468

Rogers Dry Lake Rogers Dry Lake Rogers Dry Lake Rogers Dry Lake Rogers Dry Lake

Noise SAM - Kappa BE - Kappa BE to SAMref - Kappa GML  - Kappa GML to SAMref - Kappa

(SNR@30%) mean std mean std mean std mean std mean std

10 0.0139 0.0118 0.0381 0.0316 0.0215 0.0183 0.4001 0.2967 0.3446 0.1692

100 0.7058 0.1122 0.2602 0.2033 0.1494 0.1127 0.6201 0.2652 0.5004 0.1936

225 0.8231 0.1032 0.3699 0.3309 0.1599 0.1525 0.6416 0.2845 0.4980 0.1917

Table 4-1: Mean and Standard Deviation of Kappa – Rogers Dry Lake

Rochester Rochester Rochester Rochester Rochester

SAM - Kappa BE - Kappa BE to SAMref - Kappa GML  - Kappa GML to SAMref - Kappa

spatial (m) mean std mean std mean std mean std mean std

20 0.5490 0.4292 0.4696 0.2454 0.3504 0.0812 0.7896 0.2058 0.5511 0.0215

40 0.4072 0.3126 0.3983 0.1730 0.3177 0.0695 0.6802 0.1368 0.4785 0.0300

80 0.3237 0.2572 0.3404 0.1385 0.2808 0.0651 0.5706 0.0992 0.4028 0.0344

Rochester Rochester Rochester Rochester Rochester

spectral SAM - Kappa BE - Kappa BE to SAMref - Kappa GML  - Kappa GML to SAMref - Kappa

(nm) mean std mean std mean std mean std mean std

10 0.4653 0.3789 0.5707 0.2200 0.3250 0.0752 0.7981 0.1688 0.4645 0.0652

55 0.4310 0.3558 0.3616 0.1210 0.3108 0.0775 0.6445 0.1497 0.4750 0.0744

110 0.3836 0.3214 0.2760 0.0633 0.3131 0.0813 0.5978 0.1492 0.4929 0.0683

Rochester Rochester Rochester Rochester Rochester
Noise SAM - Kappa BE - Kappa BE to SAMref - Kappa GML  - Kappa GML to SAMref - Kappa

(SNR@30%) mean std mean std mean std mean std mean std

10 0.0034 0.0048 0.2476 0.0714 0.2238 0.0273 0.5603 0.2078 0.4552 0.0729

100 0.5376 0.1610 0.4495 0.1608 0.3467 0.0357 0.7395 0.1216 0.4978 0.0667

225 0.7388 0.1622 0.5112 0.2122 0.3785 0.0369 0.7406 0.1253 0.4794 0.0642

Table 4-2: Mean and Standard Deviation of Kappa – Rochester
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West Rain West Rain West Rain West Rain West Rain West Rain

SAM to GT SAM to SAMref BE to GT BE to Beref GML to GT GML to GMLref

spatial (m) mean std mean std mean std mean std mean std mean std

2 0.5140 0.3859 0.6358 0.4755 0.7305 0.3390 0.8090 0.2642 0.9361 0.0540 0.9573 0.0636

4 0.5336 0.4071 0.4946 0.3757 0.7024 0.2538 0.7306 0.2551 0.8620 0.0564 0.8798 0.0620

8 0.4914 0.3855 0.4510 0.3520 0.6572 0.2784 0.6785 0.2790 0.5220 0.3935 0.5318 0.4012

West
Rain

West
Rain

West
Rain

West
Rain

West
Rain

West Rain

spectral SAM to GT SAM to SAMref BE to GT BE to Beref GML to GT GML to GMLref

(nm) mean std mean std mean std mean std mean std mean std

10 0.4659 0.3677 0.4850 0.3936 0.7311 0.2272 0.7730 0.2369 0.6028 0.4541 0.6158 0.4646

55 0.5167 0.3925 0.5304 0.4138 0.6985 0.2684 0.7371 0.2804 0.8785 0.0671 0.8968 0.0717

110 0.5564 0.4129 0.5659 0.4270 0.6606 0.3653 0.7079 0.2920 0.8388 0.0997 0.8562 0.1074

West
Rain

West
Rain

West
Rain

West
Rain

West
Rain

West Rain

Noise SAM to GT SAM to SAMref BE to GT BE to Beref GML to GT GML to GMLref

(SNR@30%) mean std mean std mean std mean std mean std mean std

10 0.0022 0.0041 0.0030 0.0060 0.3240 0.1448 0.3888 0.0961 0.7244 0.2820 0.7308 0.2846

100 0.7050 0.1196 0.7317 0.1678 0.8812 0.0454 0.9127 0.0533 0.8001 0.3062 0.8206 0.3144

225 0.8318 0.0257 0.8467 0.1136 0.8849 0.0501 0.9166 0.0544 0.7956 0.3055 0.8175 0.3142

Table 4-3: Mean and Standard Deviation of Kappa – DIRSIG – Western Rainbow

Key

mean – mean of all kappa values at that parameter level (spatial or spectral resolution,
or noise)
std – standard deviation of kappa values at that parameter level (spatial or spectral
resolution, or noise)
SAM – Spectral Angle Mapper algorithm results (mean) at that parameter level
BE – Binary Encoding algorithm results (mean) at that parameter level
GML – Gaussian Maximum Likelihood algorithm results (mean) at that parameter
level
GT – Ground Truth (SAM results of initial AVIRIS imagery and material map for
DIRSIG image) to observe how the algorithm results degrade with respect to
established and constant ground truth
SAMref – SAM results of the initial (non-degraded) image used as ground truth for
kappa determination to observe how the algorithm results degrade with respect to itself
BEref – BE results of the initial (non-degraded) image used as ground truth for kappa
determination to observe how the algorithm results degrade with respect to itself
GMLref – GML results of the initial (non-degraded) image used as ground truth for
kappa determination to observe how the algorithm results degrade with respect to itself
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Figure 4-2: Binary Encoding – Kappa as a Function of Spatial Resolution

Immediate inspection of Figure 4-2 reveals that the lines are grouped together according

to their scene.  This is indicative of scene dependence within the calculation of the metric, which

is attributed to the degree of spectral and spatial complexity of the initial images. On first look at

the above plots, it appears that BE performs much better in reflectance space than in radiance

space.  This is mostly due to the fact that DIRSIG’s spectral-spatial variability of backgrounds is

not as nearly complex as the real world.  This fact must be remembered when drawing any

conclusions throughout this thesis when comparing performance of the algorithms in reflectance

or radiance space – we are comparing apples and oranges.  However, when using an image in

radiance space we are initially taking the average of the spectra whose overall shape is dictated by

the exoatmospheric solar irradiance and atmospheric absorption bands.  Therefore BE does not

pick up the spectral detail as well as it is able to in reflectance space during the encoding process.

The way that ENVI has encoded this algorithm does not allow for “localized” averaging of the

spectra prior to encoding.  This type of approach would allow the user to focus in on specific

absorption features.  Additionally, by applying numerous local averages over radiance spectra,

whose shape is dictated by atmospheric absorption and exoatmospheric solar irradiance, the effect

of this shape would be minimized when encoding the data from the calculation of the spectral

mean.
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Figure 4-3: Spectral Angle Mapper – Kappa as a Function of Spatial Resolution

There is an obvious difference between Figure 4-3 and Figure 4-2.  Immediately we see

that there is not as much of a scene dependence associated with the SAM algorithm as there was

with the BE algorithm.  All of the curves in Figure 4-3 are grouped together.  We also see that as

spatial resolution degrades so does the value of kappa in a linear fashion.  However, there appears

to be a strange increase in the performance of the Western Rainbow scene (red), indicated by a

small rise in the “curve” at 40 m.  This is not a peculiarity if we take into consideration the

standard deviations associated with these plotted numbers - as displayed in Table 4-3.  It must be

remembered that each point in these charts is a mean of all data points with a spatial resolution of

20, 40 or 80 m for the AVIRIS images and 2, 4 or 8 m for the DIRSIG scene.   Associated with

this mean is a large standard deviation that cannot be ignored.  It must also be noted that these

graphs were initially plotted with error bars for each data point.  However, the inclusion of these

error bars quickly made these graphs difficult to interpret and readily identify performance trends.
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Figure 4-4: GML – Kappa as a Function of Spatial Resolution

Figure 4-4 exhibits a sharper decrease in performance of the GML algorithm as a

function of spatial resolution.  This can be attributed to the fact that the ROIs used during the

training stage of this classification technique remained the same for all of the degraded images -

even though more pixel mixing was occurring at the larger GIFOVs.  This use of the same ROIs

was done to maintain experimental consistency, but ultimately has contributed to this sharper

degradation. Of special interest is that at the higher spatial resolutions, it appears that GML

outperforms the other two algorithms (Figure 4-2 and 4-3) – this is especially seen with the

DIRSIG scene.  In this scene, the kappa metric was calculated with reference to the material truth

map.  Again we have to be careful in making this conclusion regarding GML performing better

than the other algorithms since these points are a collective mean of all parameters and it is

possible that the noise was suppressed by the use of the MNF transform prior to using the GML.

Nevertheless, the GML results of the AVIRIS images with respect to the SAM reference image

show equal performance between GML and SAM for real imagery.
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Figure 4-5: Binary Encoding – Kappa as a Function of Spectral Resolution

As seen initially in Figure 4-2, again we witness a noticeable scene dependence

associated with the performance of the BE algorithm.  This time the scene dependence is seen

with respect to spectral resolution, as seen above in Figure 4-5.  This is due in part to the spectral

complexity of the different scenes.  Firstly, the Rogers Dry Lake scene is spectrally

homogeneous; thus posing an obstacle when trying to distinguish endmembers within the image.

Along these lines, the pixel spectra in the DIRSIG scene are pure and of a smaller GIFOV so less

mixing of pixels occurs. That is, there is more spectral seperability in the DIRSIG scene then the

other scenes and therefore a better performance.   All of these factors contribute to an overall

scene dependence of the computed metric.

The difference in BE performance of an image in reflectance space versus radiance space

is also noted again.  However, we must remember that the spatial-spectral variability of

backgrounds in a DIRSIG generated image is not as complex in the real world. Again the idea of

a better encoding approach of the BE algorithm using localized averages of spectral features still

holds validity.
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Figure 4-6: Spectral Angle Mapper – Kappa as a function of Spectral Resolution

Immediate inspection of Figure 4-6 reveals an interesting peculiarity of SAM

performance.  The “phenomena” of the kappa metric actually increasing as spectral resolution

worsens (Western Rainbow – red line) is counter intuitive and can be explained by including the

standard deviation of these calculations (from Table 4-3).  If the above charts included error bars

this would be more apparent, since these error bars are quite large.  Given that, it would appear

the tight grouping of curves would indicate there is little to no scene dependence with respect to

spectral resolution changes and the performance of SAM.  These lines are also relatively flat –

indicating that SAM performance may be independent of spectral resolution.  Does this make

sense?  Yes, since spectral resolution changes will not effect the position and direction of the

spectral vectors.  Only the number of dimensions (i.e. number of bands) it takes to represent this

spectral signature as a vector will change.  In other words, all of the spectral vectors still lie in the

same direction - they are just represented by fewer dimensions.  In this respect, the angle between

them has not changed drastically and therefore any changes in spectral resolution do not

contribute much of a change to SAM algorithm performance.
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Figure 4-7: GML – Kappa as a Function of Spectral Resolution

At first glance of Figure 4-7, we could say that the performance of GML increases as

spectral resolution coarsens.  However, closer inspection of the data in Appendix E indicates that

three points need to be excluded in the average calculation of a spectral resolution of 10 nm

associated with a corresponding spatial resolution of 80m.    As seen in Appendix E, the kappa

value at these levels is zero.  This is because the ROIs employed at a low spatial resolution of

80m result in many of the collected spectra being the same (via the aggregate process of spatial

degradation and using the same ROIs throughout).  When the statistics are calculated these equal

spectra are carried over into the covariance matrix.  Equal or proportional rows or columns in a

matrix result in a determinant of zero and therefore the matrix in not invertible.  In our case, the

covariance matrix cannot be inverted to complete the calculations associated with the GML

classifier – and therefore a zero result is delivered.  Throwing these data points out leads to a

trend that is more readily expected in that the value of kappa decreases with a gradual slope as

spectral resolution worsens.  Again, scene dependencies on the performance are noted.
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Figure 4-8: Binary Encoding – Kappa as a Function of Noise

As expected, noise has an adverse effect on the spectral products from the BE algorithm.

This can be seen in Figure 4-8.  It is interesting to note the different effects that noise has on

images in reflectance space versus those in radiance space.  The images in radiance space have a

gentle linear decrease in their performance while the image in reflectance space is quite tolerant

of noise up to some threshold between a SNR of 10 to 100.  In radiance space, noisy spectra lie

above the same average as a noiseless spectrum of the same material since the general shape of

the spectra remains the constant with noise addition. Recall that this shape is dictated by

atmospheric absorption and exoatmospheric irradiance.  The averaging process done prior to

encoding is relatively insensitive to noise in radiance space and there seems to be sensitivity to

noise in reflectance space at a certain threshold. However, it should also be noted that the images

in reflectance space (DIRSIG generated) also correspond to images with a finer spatial resolution

and pixels that are more spectrally pure. More investigation is needed.
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Figure 4-9: Spectral Angle Mapper – Kappa as a Function of Noise

Examination of Figure 4-9 shows that noise has a more profound effect on the

performance of SAM.  Especially when compared to the effects of noise associated with BE seen

in Figure 4-8.  With respect to the SAM algorithm, at high SNR values we have excellent

performance, yet this drops off dramatically.  Essentially noise in a band will change that spectral

vector. The spectral vector’s position and direction in n-dimensional space (where n is the

number of bands) will also change.  In that respect, the angle between the reference spectra and

pixel spectra will correspondingly change.  If enough noise is added then the vector position is

drastically changed and the corresponding angle to the reference/library spectra will also alter,

thereby leading to a sudden drop in algorithm performance.
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Classification - GML - Kappa = f(Noise)
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Figure 4-10: GML – Kappa as a Function of Noise

As expected transforming the degraded images into MNF space and ultimately removing

the noisy bands prior to GML lessens the harsh effects of noise.  This can be seen by the gentle

decreasing linear slope in the kappa metric as plotted in Figure 4-10.   Although there is a slight

demise of performance with the GML algorithm, with respect to noise, it surely is not as drastic

as the decrease in performance of the BE and SAM algorithms seen in Figures 4-8 and 4-9.  This

would suggest that some type of noise removal and data dimensionality reduction is

advantageous.  Again, we must be careful since the averages plotted include the effect of another

parameter (spectral or spatial resolution).

Examination of the ranges of the kappa values corresponding to each algorithm and main

parameters requires further discussion.  For instance, with reference to SAM – its performance

outcome, as indicated by kappa, with respect to spectral resolution has a close range from 0.4 to

0.6.  However, examination of the SAM algorithm with respect to noise delivers a wider kappa

range from approximately 0 to 0.85.  This would indicate that noise is a more significant factor

than spectral resolution for the SAM algorithm.  This approach is useful in determining which

factor is more significant over another in algorithm performance, but this is why the use of
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ANOVA techniques are extremely beneficial and employed in this thesis. Further testing of the

significance of each main factors and interactions is done using ANOVA in the following

paragraphs.

Binary Encoding

Analysis of Variance for BE – Kappa - Rochester

Source             DF     Seq SS     Adj SS     Adj MS       F      P

Spatial             2   0.075371   0.075371   0.037686   52.11  0.000
Spectral            2   0.413502   0.413502   0.206751  285.90  0.000
Noise               2   0.342015   0.342015   0.171008  236.47  0.000
Spatial*Spectral    4   0.035004   0.035004   0.008751   12.10  0.002
Spatial*Noise       4   0.010182   0.010182   0.002546    3.52  0.061
Spectral*Noise      4   0.067922   0.067922   0.016981   23.48  0.000
Error               8   0.005785   0.005785   0.000723
Total              26   0.949783

Table 4-4:  ANOVA for Rochester BE – Kappa (F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84)

As seen in Table 4-4, all main effects of spatial resolution, spectral resolution and noise

do not support the null hypothesis and are therefore significant to the outcome of the BE

algorithm applied to the Rochester scene.  The main factor of spectral resolution is the dominant

factor, which is closely followed by noise and then spatial resolution.  The interaction between

spatial resolution and noise is not significant at this testing level.

Analysis of Variance for BE to SAMref - Rochester

Source             DF     Seq SS     Adj SS     Adj MS       F      P

Spatial             2  0.0218305  0.0218305  0.0109153  788.22  0.000
Spectral            2  0.0010510  0.0010510  0.0005255   37.95  0.000
Noise               2  0.1200765  0.1200765  0.0600382 4335.54  0.000
Spatial*Spectral    4  0.0016688  0.0016688  0.0004172   30.13  0.000
Spatial*Noise       4  0.0009857  0.0009857  0.0002464   17.79  0.000
Spectral*Noise      4  0.0014355  0.0014355  0.0003589   25.91  0.000
Error               8  0.0001108  0.0001108  0.0000138
Total              26  0.1471587

Table 4-5:  ANOVA for Rochester BE to SAM reference – Kappa
 (F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84)
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Table 4-5 shows that all main effects and interactions are still significant when

comparing the results of BE to a SAM reference image as ground truth.  However, we can see

that by comparing the magnitudes of the F-statistics that the interaction of spatial resolution and

noise is the least significant.  This corresponds to the results in the previous table, in which the

trade-space between spatial resolution and noise was also the least significant.

Analysis of Variance for BE – Kappa – Rogers Dry Lake

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2   0.015143   0.015143   0.007572    6.05  0.025
Spectral            2   0.784066   0.784066   0.392033  313.43  0.000
Noise               2   0.514423   0.514423   0.257211  205.64  0.000
Spatial*Spectral    4   0.016519   0.016519   0.004130    3.30  0.071
Spatial*Noise       4   0.005497   0.005497   0.001374    1.10  0.420
Spectral*Noise      4   0.383551   0.383551   0.095888   76.66  0.000
Error               8   0.010006   0.010006   0.001251
Total              26   1.729205

Table 4-6: ANOVA for Rogers Dry Lake BE – Kappa
 (F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84)

As seen in Table 4-6, none of the main effects support the null hypothesis and are

therefore significant to BE performance when applied to the Rogers Dry Lake scene.  Similar to

the Rochester scene, the main effect of spectral resolution is the dominant factor and the

interaction between spatial resolution and noise has no significance in algorithm performance.

Scene dependence is evident here since the size of the F-statistic for the main effect of spatial

resolution for the Rogers Dry Lake scene is much smaller in comparison to the Rochester scene.

This is primarily due to the fact that the Rogers scene is spatially homogeneous.

Analysis of Variance for BE to SAMref- Rogers Dry Lake

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2   0.006659   0.006659   0.003329    0.78  0.489
Spectral            2   0.164295   0.164295   0.082147   19.31  0.001
Noise               2   0.106866   0.106866   0.053433   12.56  0.003
Spatial*Spectral    4   0.013564   0.013564   0.003391    0.80  0.559
Spatial*Noise       4   0.017304   0.017304   0.004326    1.02  0.454
Spectral*Noise      4   0.054568   0.054568   0.013642    3.21  0.075
Error               8   0.034030   0.034030   0.004254
Total              26   0.397285

Table 4-7:  ANOVA for Rochester BE to SAM reference – Kappa
 (F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84)
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As seen in Table 4-7, with respect to BE applied to the Rogers Dry Lake image, the only

factors which are significant when the BE algorithm is compared to some reference ground truth

(SAM results) are the factors of spectral resolution and noise.  This compares well with the

results from the Rochester scene.  Again, due to the lack of spatial detail in the Rogers Dry Lake

scene, we see that the main effect of spatial resolution is of no significance.

Analysis of Variance for BE - Kappa GT – Western Rainbow

Source             DF     Seq SS     Adj SS     Adj MS       F      P

Spatial             2    0.02465    0.02465    0.01233    1.57  0.266
Spectral            2    0.02244    0.02244    0.01122    1.43  0.294
Noise               2    1.87517    1.87517    0.93759  119.52  0.000
Spatial*Spectral    4    0.00706    0.00706    0.00177    0.23  0.917
Spatial*Noise       4    0.01433    0.01433    0.00358    0.46  0.766
Spectral*Noise      4    0.07289    0.07289    0.01822    2.32  0.144

Table 4-8: ANOVA for Western Rainbow BE to Material Map Ground Truth reference – Kappa
 (F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84)

Analysis of Variance for BE – Kappa to SAMref – Western Rainbow

Source             DF     Seq SS     Adj SS     Adj MS       F      P

Spatial             2   0.077606   0.077606   0.038803  103.64  0.000
Spectral            2   0.019133   0.019133   0.009566   25.55  0.000
Noise               2   1.659024   1.659024   0.829512 2215.56  0.000
Spatial*Spectral    4   0.001162   0.001162   0.000290    0.78  0.571
Spatial*Noise       4   0.002969   0.002969   0.000742    1.98  0.190
Spectral*Noise      4   0.016466   0.016466   0.004117   10.99  0.002
Error               8   0.002995   0.002995   0.000374
Total              26   1.779355

Table 4-9: ANOVA for Western Rainbow BE to SAMref Ground Truth reference – Kappa
 (F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84)

Examination of Tables 4-8 and 4-9 reveal some interesting results with respect to the BE

algorithm and its application to the DIRSIG generated scene.  It is readily seen that the

significance of factors is dependent on the selected ground truth.  For instance, in Table 4-8, only

the main effect of noise is significant to the performance of the BE when the material map is used

as ground truth.  However, when using the non-degraded SAM results as ground truth, all three

main factors carry a large degree of significance in the algorithm’s performance.  This may

suggest that our previous findings, with respect to the significance of main effects and

interactions, may be erroneous.  Again, more investigation is needed and as stated earlier the need

for better ground truth is realized. However, this was non-existent at the time of this thesis study.
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The analysis of the collected data and ANOVA tables made for the SAM and GML

algorithms are included on the enclosed CD in the “data/minitab” directory.  The in-depth

analysis of the BE algorithm that was conducted above is similar to that done from the ANOVA

tables produced from analysing the two other classification algorithms.  However, for the sake of

brevity only the highlights from this analysis will be discussed in the following paragraphs.  The

user is invited to cross reference the ANOVA tables on the CD if so desired.

Spectral Angle Mapper (SAM)

The application of ANOVA techniques to the kappa values found after applying the SAM

algorithm to the Rochester and Rogers Dry Lake images exhibit very similar results.  With both

images, all main factors were significant contributors to algorithm performance.  The main factor

of noise was the most significant factor, by approximately two orders of magnitude, in the

ANOVA tables of both images.  This is followed by the main factor of spatial resolution and then

spectral resolution.  Since the ranking of the main factors is the same for each image, the point

made earlier about less scene dependence associated with the SAM algorithm is further validated.

Furthermore, the significance ranking of spectral resolution as the last of all main factors

completely agrees with the findings arrived at previously from Figure 4-6.  It was from Figure 4-

6, that the results of the SAM algorithm being somewhat independent of spectral resolution

changes were discussed.  Additionally from these ANOVA tables (Rochester and Rogers Dry

Lake), it is found that the interaction of spatial resolution and noise was significant with the

products from both images and ranked as fourth.

Application of ANOVA techniques to the values of kappa generated by applying the

SAM algorithm to the Western Rainbow scene immediately reveal that there seems to be a

dependence on the selected ground truth. All three main factors of spatial resolution, spectral

resolution and noise were significant to SAM algorithm performance.  However, similar to the

BE results of the Western Rainbow scene, the level and ranking of significant factors changes

when we use the material map as ground truth compared to using the non-degraded SAM results

as ground truth. When using the material map as ground truth the main factor of noise was most

significant (by two orders of magnitude), followed by spectral resolution and spatial resolution.

However, when using the initial SAM results as ground truth it was found that, noise is the most

significant main factor, followed by spatial resolution and then the interaction between spatial

resolution and noise.  Despite the fact that spectral resolution is still of statistical significance, in
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this “SAM” case, it is the least.  This difference in ranking and corresponding significance levels

is similar to those discovered from conducting an ANOVA on the BE results from the Western

Rainbow scene.  This brings to mind a few questions that need further investigation.  Firstly,

despite the relative match between the material map and the initial SAM results, it is possible that

a better selection of reference ground truth than the initial SAM results could be done.  However,

with a complete lack of ground truth for the AVIRIS images, something had to be chosen as

ground truth.  More investigation is needed. Secondly, it is possible that the independence of

spectral resolution on the value of kappa exhibited with the AVIRIS images is due mostly to the

ground truth that was selected – despite the fact that this independence makes theoretical sense.

Yet, using the initial SAM results, as in this case, is an attempt at seeing how the information

utility produced by the algorithm degrades with respect to itself.  Either way, more investigation

is required.  Of special note when using the material map as ground truth was that the magnitude

of the F-statistic for the interaction of spectral resolution and noise was approximately equal to

that of the main factor of noise – which was also of very high significance.

Gaussian Maximum Likelihood

When examining the ANOVA results of the GML algorithm applied to the Rogers Dry

Lake scene we see similar results whether we use the initial/non-degraded SAM product as

ground truth reference or the initial GML product as a reference.  The main factor of spatial

resolution was most significant to algorithm performance in both ANOVA tables.   The second

most significant factor, when using the initial GML product as ground truth, was the interaction

between spatial and spectral resolution.  The third most significant factor in this case was the

main factor of noise.  The results from the ANOVA of Rogers Dry Lake, using the initial SAM

product as reference, closely follow those in which the GML product was used as the reference.

Using the initial SAM results as reference yields the trade-space between spatial and spectral

resolution as the second most significant factor.  Additionally, the value of the F-statistic for

spatial-spectral resolution interaction closely matches the F-statistic of noise, which was third.

The similar ranking of these results possibly suggests that the selection of ground truth does not

make as much of a difference with the GML algorithm as it does with the SAM and BE

algorithms. It also suggests that the GML algorithm degrades with respect to itself in a very

similar fashion as it does with respect to selected ground truth.  Obviously, we need to examine

the ANOVA results from the other two scenes before arriving at any further conclusion.
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The ANOVA table showing the results of the GML algorithm applied to the Rochester

scene, using the initial SAM results as ground truth indicates that the spatial resolution is the most

significant main factor to GML performance - by an order of magnitude.  This is followed by the

main factors of noise and spectral resolution – which share approximately the same value. The

ANOVA table of the GML algorithm applied to the Rochester scene, using the initial GML

results as ground truth, show that the significance of factors can be ranked as follows: spatial

resolution, spectral resolution and noise. Given that the ranking from these two ANOVA tables is

the same, one could conclude that the GML algorithm behaves similar with respect to ground

truth as it does when looking at how it degrades with respect to itself.  This has been previously

hinted at already.  It should be noted that all main factors share approximately equal F-statistic

values when using the initial GML product as ground truth and thereby could be considered of

equal significance to the outcome of the GML algorithm. Despite what spectral product was used

as ground truth reference, in either case, the interaction between spectral resolution and noise was

of notable significance and ranked as fourth.

Immediate inspection of the ANOVA tables produced by applying the GML algorithm to

the Western rainbow scene show that all of the main factors are significant contributors to GML

performance.  Regardless of whether the material map or the non-degraded GML product was

used as ground truth the ranking of significant factors was the same.  This ranking of significant

contributors to GML performance is as follows: spatial resolution, spectral resolution and noise.

Again, the similar results between selected ground truth references suggest that the GML

algorithm degrades with respect to itself in a very similar fashion as it does with respect to

selected ground truth.  It should also be noted that in all cases and with all images used, the main

factor of spatial resolution has consistently been the most significant contributing factor to GML

performance.  This was initially discovered when looking at the results shown in Figure 4-4.

However, it was also discussed previously that this might be attributed to using the same ROIs

throughout the experiment.  Again, more investigation is needed to see whether in fact spatial

resolution is the most significant factor to GML performance as is strongly indicated by this

study.
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The next portion of our analysis was using kappa to statistically compare the

classification products from two different degraded images.   This permits us to track the

accuracy of an algorithm as the images are degraded with different levels of spatial resolution,

spectral resolution and noise.  For example, we can statistically test whether there is a difference

in the SAM thematic map produced by an image with a spectral resolution of 20 m and spectral

resolution of 10 nm and the SAM product from the same image with resolutions of 40 m and  55

nm respectively.  This is done by using equation 2-40 from Chapter 2.  The results of this

statistical comparison are presented in Appendix F.

However it is worth mentioning here that the results from this type of statistical

comparison were not as remarkable as expected.  It was anticipated that definite patterns would

be apparent.  Immediately these patterns would be easily attributed to spatial resolution, spectral

resolution and noise changes.  Patterns were noticed but they were not as prominent as first

anticipated. However, what was not expected is the most interesting result of all. From an

examination of the tables in Appendix F, it can be generally concluded that any degradation of

the initial image will result in an immediate difference in the information conveyed by the

produced thematic map compared to the original.  Likewise, when one “degraded” classification

product was statistically compared to another “degraded” classification product the null

hypothesis (see section 2.7.4) was rejected the majority of the time at the lowest confidence limit

tested. This means that there is an immediate difference between classification maps produced

from an image at one level of degradation compared to another.  In other words, an image

acquired with a certain spectral resolution, spatial resolution and noise characteristics will

produce a different thematic map than the same image collected with different acquisition

parameters.  This makes sense.
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4.3 Linear Spectral Unmixing

The Sum-of-Squared Error (depicted here as simply SE) was calculated using equation 2-

41 from Chapter 2.  The squared error is calculated from the fraction maps produced by unmixing

the degraded imagery with respect to some reference fraction map.  The references for the

AVIRIS scenes are the fraction maps of the untouched initial images.   The reference for the

DIRSIG image is the material truth map converted into a fraction map.  Obviously the reference

never changes for these calculations.  Summaries of the SE data for each scene and each level of

degradation are available in Appendix E.  Presented below, in Table 4-10  are the mean and

standard deviations of the SE at each level of degradation.  Again, the first number listed under

the parameter columns refers to the degradation levels of the AVIRIS images while the second

number refers to the DIRSIG scene.  If there is only one number than the level of degradation is

shared between the two image sets.

Rogers Dry
Lake

Rochester DIRSIG - West Rain

Unmixing - SE Unmixing - SE Unmixing - SE
spatial (m) mean stdev mean stdev mean stdev

20 / 2 5070.5721 10227.7361 341.2885 691.3684 0.4910 0.7183
40 / 4 5628.4617 11325.8693 381.1470 771.4130 0.5800 0.8364
80 / 8 7142.9845 14297.4494 491.3965 991.2883 0.8828 1.3511

Rogers Dry Lake Rochester DIRSIG - West Rain
Unmixing - SE Unmixing - SE Unmixing - SE

Spectral (nm) mean stdev mean stdev mean stdev

10 11506.4605 17294.7267 835.8456 1259.8336 0.5387 0.8808
55 5684.0691 8568.3167 218.3019 329.1770 0.8028 1.2573

110/ 113 651.4887 982.9718 159.6845 240.9147 0.6123 0.8587

Rogers Dry Lake Rochester DIRSIG - West Rain
Unmixing - SE Unmixing - SE Unmixing - SE

Noise(SNR@30%) mean stdev mean stdev mean stdev

10 17688.2722 14395.9071 1203.2343 996.4574 1.8809 0.7642
100 142.0403 116.3830 9.7231 8.0684 0.0432 0.0071

225 / 200 11.7058 12.1875 0.8744 0.8431 0.0296 0.0052

Table 4-10:  Mean and Standard Deviation of Squared Error Metric for Linear Unmixing
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Similar to the classification results, we see that the SE associated with low SNR

dominates the means and standard deviations in the above table. This can be confirmed by an

examination of the raw data available in Appendix E.  For example, consider the Rogers Dry

Lake image, the mean SE with of image products with a spatial resolution of 20 m is 5070.5721

with a standard deviation of 10227.7361.  Looking at the raw data in Appendix E, we see that the

calculations of these statistics cover a range of numbers from 0.5394 to 29356.900.  The low

values of SE are associated with those 20 m images with a high SNR (low noise content) and the

high value of SE are associated with the 20 m images with a very low SNR (high noise content).

This behaviour is also extended to the calculation of factor means for spectral resolution and is

also witnessed in each image used. Obviously, there is an inversely proportional relationship

between SNR and SE – that is as SNR decreases the SE resulting from unmixing with respect to

some reference will increase. As we would expect, as the spectra within the image are degraded

by adding increasing amounts of noise it would become more difficult to discriminate between

materials because their spectra are changing. Despite the fact that noise dominates our mean and

standard deviation calculations we are still able to note some interesting trends.

As we can see in the first portion of Table 4-10 (SE averages at different spatial

resolutions) that as we degrade the spatial resolution of the image the SE increases.  In other

words, as the GIFOV increases the error (SE) made from unmixing also increases.  This makes

sense because as we increase the ground spot size/GIFOV we also increase the number of

endmembers within each pixel.  This was seen in the visual example of spatial degradation

provided in Figure 3-3.  This obviously leads to more mixed pixels in the image which will

inevitably increase the complexity of the unmixing process, thereby leading to higher values of

SE.  We have already discussed the deteriorating effect of noise on the SE results.  The trends

discussed above can be better seen in Figures 4-11 4-12 and 4-13 below. The difference in

magnitude of the SE between scenes will be discussed shortly.

Most interesting, are the SE results with respect to changes in spectral resolution.  It is

apparent from Table 4-20 and Figure 4-12 that as we degrade the spectral resolution the SE

actually improves by getting smaller.  This is counter intuitive and goes against the entire

principle behind using high spectral resolution data to better discriminate between different

materials. These results do not agree with the previous results of Konno (1999) in which he found

that finer spectral resolution leads to an overall decrease in SE.  However, a difference may be

that he was working with a step-wise unmixing algorithm and not a linear spectral unmixing
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algorithm like that tested here.  This strange behaviour may be attributed to the “relative

insensitivity that linear spectral unmixing has to subtle absorption features that result in

quantification errors due to endmember variability in a pixel from linear and non-linear mixtures

(e.g. scattering and lighting effects)” (Pinzon et al, 1998).   That is, the naturally occuring

variability of endmembers due to differing lighting effects and scattering are not accounted for in

the simplicity of the linear spectral unmixing algorithm. Another explanation to this peculiarity is

due to the approach adopted in the degradation of the image.  Changing the spatial resolution or

GIFOV by a pixel aggregation process, like adopted here and discussed in Chapter 3, works quite

well.  However, “there is no guarantee that the initial material fractions are maintained” from the

initial image pixels and carried over to the new aggregated pixel (Keller et al, 2000) after

spatially resampling the image. Either way, these spectral degradation results are counter intuitive

and unreliable for any interpretation.

Figure 4-11: Linear Spectral Unmixing Results – Squared Error as a function of Spatial

Resolution

Unmixing - SE = f(Spatial Resolution)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100

Spatial Resolution - GIFOV (m)

S
q

u
ar

re
d

 E
rr

o
r mean - SE Rogers

mean - SE Rochester

mean - SE DIRSIG WestRain
x1000

2 8 104 6



110

Figure 4-12: Linear Spectral Unmixing Results – Squared Error as a function of Spectral
Resolution

Figure 4-13: Linear Spectral Unmixing Results – Squared Error as a function of Noise
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the Rochester scene.  The value of SE for the DIRSIG scene was multiplied by 1000 so that it

could be plotted on the same charts.  The SE for the DIRSIG scene is so low because this scene

begins with a GIFOV of 2 m and the image is degraded to a maximum GIFOV of 8 m (in

comparison with 20 m and 80 m).  The very low SE can also be explained by the characteristic

nature of DIRSIG in which each pixel only contains one spectral endmember.  Nevertheless, the

trends are much the same between real and synthetic imagery.   The second main difference is the

magnitude of SE contributed by each main effect.  This can also be seen in Table 4-20 from

which this data was plotted.  Using the Rochester scene as an example, we see that the range of

SE means attributed to changes to spatial resolution is 341.2885 to 491.3965.  However changes

in the SE attributed to a change in spectral resolution or noise have a more profound effect as the

SE range is 159.6845 to 835.8456 and 0.8744 to 1203.2343 respectively.  This shows that

although changing the spatial resolution of an image will degrade the information derived from

unmixing, it will not have as profound an effect as a change in the spectral resolution or noise

because it has a tighter range.   This behaviour is also apparent in the other scenes tested. We can

further see the impact of each main factor and their interactions by examining the ANOVA tables.

Analysis of Variance for Unmixing – Rogers Dry Lake

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2   20699739   20699739   10349869    4.05  0.061
Spectral            2  531172567  531172567  265586284  103.92  0.000
Noise               2 1861044731 1861044731  930522366  364.09  0.000
Spatial*Spectral    4   10587284   10587284    2646821    1.04  0.446
Spatial*Noise       4   40019184   40019184   10004796    3.91  0.048
Spectral*Noise      4 1035121691 1035121691  258780423  101.25  0.000
Error               8   20446221   20446221    2555778
Total              26 3519091416

Table 4-11: Analysis of Variance for Unmixing – Rogers Dry Lake
(F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84)

Using the statistical hypothesis testing strategy outlined in section 4.1, we see that the

main factor of spatial resolution and any interaction it may have with other factors have no

significance in determining the outcome of linear spectral unmixing (by measure of SE) at the

level of significance tested.  This does not mean to say that spatial resolution does not matter, it

only says that spatial resolution is not as significant as the other two factors or any other joint

effect.  This is primarily true because the AVIRIS pixels are initially quite mixed with a 20 m

GIFOV. We also see that the main effect of noise carries the most significance (largest F-statistic)
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to the outcome of linear unmixing.  The main effect of spectral resolution and its joint effect with

noise have equally weighted significance.

Analysis of Variance for Unmixing – Rochester, NY

Source             DF     Seq SS     Adj SS     Adj MS       F      P

Spatial             2     108828     108828      54414    3.76  0.071
Spectral            2    2525970    2525970    1262985   87.25  0.000
Noise               2    8610650    8610650    4305325  297.42  0.000
Spatial*Spectral    4      59977      59977      14994    1.04  0.445
Spatial*Noise       4     210126     210126      52532    3.63  0.057
Spectral*Noise      4    4923239    4923239    1230810   85.03  0.000
Error               8     115805     115805      14476
Total              26   16554594

Table 4-12: Analysis of Variance for Unmixing – Rochester
(F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84).

Similar to the Rogers Dry Lake image,  we see here with the Rochester scene (Table 4-

22) that the main factor of spatial resolution and any interaction it may have with other factors

has no significance at this test level (α = 0.05).  Inspection of the F-statistics shows that the main

effect of noise contributes most to the degradation in performance of the linear spectral unmixing

algorithm.  Again, like the Rogers scene we see here with the Rochester scene that the main effect

of spectral resolution and its interaction with noise have nearly equal significance.

Analysis of Variance for Unmixing – DIRSIG Western Rainbow

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2     0.7595     0.7595     0.3797    3.31  0.090
Spectral            2     0.3344     0.3344     0.1672    1.46  0.289
Noise               2    20.4142    20.4142    10.2071   88.95  0.000
Spatial*Spectral    4     0.4764     0.4764     0.1191    1.04  0.445
Spatial*Noise       4     1.5350     1.5350     0.3838    3.34  0.069
Spectral*Noise      4     0.6497     0.6497     0.1624    1.42  0.312
Error               8     0.9180     0.9180     0.1147
Total              26    25.0872

Table 4-13: Analysis of Variance for Unmixing – DIRSIG Western Rainbow
(F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84)

Examination of the ANOVA table (Table 4-23) for unmixing the DIRSIG scene shows,

that like the AVIRIS scenes, noise is the most significant factor on the degradation of information
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from linear spectral unmixing as measured by SE.  Interestingly, all other factors are insignificant

with respect to this scene.  However at a different significance level (P = α = 0.09) the main

factor of spatial resolution would become significant prior to the main effect of spectral

resolution.  This is quite different from the previous AVIRIS scenes in which spatial resolution

had a very low F-statistic associated with it in comparison to the other factors.  This tends to

indicate that if the starting resolution is very fine (like 2 m) then any degradation from this

resolution has a more profound effect than any other main factor in comparison to degrading an

image with a larger GIFOV.  This makes perfect sense since the AVIRIS scenes initially begins

with mixed pixels, because of a relatively large GIFOV (20 m), and the DIRSIG generated scene

is comprised of smaller spectrally pure pixels with a 2 m GIFOV.  Furthermore, even if the

smaller pixels were spectrally mixed in the DIRSIG scene it follows that with a smaller GIFOV it

is more likely that each pixel contains very few endmembers compared to an image with a larger

GIFOV. The numbers presented here would tend to indicate this theory holds true, but more

testing would be needed to make any valid conclusions.  Another suitable, but not as important,

reason that this difference may exist is that the DIRSIG image is in reflectance space and not

plagued by atmospheric absorption bands like the AVIRIS images.  The endmembers in

reflectance space are typically more spectrally distinct since their spectral shape is not defined by

the atmosphere and the general shape of the exoatmospheric irradiance. In this case, spectral

resolution is not as significant as spatial resolution.
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4.4  Target Detection Algorithms

The target detection routines tested were the Spectral Matched Filter (SMF) and Spectral

Feature Fitting (SFF) algorithms.  The metric used to measure the performance of these

algorithms was the ROC curve.  More specifically the metric employed was the probability of

detection read from these curves at a fixed probability of false alarm. As mentioned in Chapter 3

and seen in Tables 3-2 and 3-3, three different endmembers from each scene were used as input

targets.  Each one of these targets will produce an individual ROC curve.  A weighted average of

the three Pd’s at a common Pfa was calculated and used as the final metric. This approach was

adopted since this final metric, an average probability of detection, is a better representation of

target detection performance for this study than merely one target per scene.  Unfortunately, the

targets are not the same in each scene. The groundtruth/references for the AVIRIS scenes were

the SAM results of the initial untouched image.  The groundtruth/references for the DIRSIG

image was the material truth map.  It should also be noted that the fixed Pfa chosen was as low as

possible while still enabling meaningful readings from the ROC curves.  Readings at two Pfa’s

were taken so as to better characterize the curve and to also see if the significance of spatial

resolution, spectral resolution and noise are dependent on where the ROC curve readings were

taken.  Summaries of the final weighted Pd’s at fixed Pfa data for each target detection algorithm,

each scene and level of degradation are available in Appendix E.

Spectral Matched Filter (SMF) Results

Presented below, in Table 4-24 are the mean and standard deviations of the Pd at each

level of degradation for the SMF results from each scene tested.
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Rogers Dry Lake Rogers Dry Lake Rochester Rochester

SMF - PD
@ PFA =0.01

SMF - PD
@ PFA =0.001

SMF – PD
 @ PFA =0.01

SMF – PD
 @ PFA =0.001

spatial (m) mean stdev mean stdev mean stdev mean stdev

20 0.5878 0.0736 0.4135 0.1347 0.5274 0.0910 0.2726 0.0467

40 0.5673 0.0744 0.4008 0.1408 0.5094 0.0952 0.2425 0.0492

80 0.5338 0.0798 0.3780 0.1475 0.4659 0.0853 0.1847 0.0430

Rogers Dry Lake Rogers Dry Lake Rochester Rochester

SMF - PD
@ PFA =0.01

SMF – PD
@ PFA =0.001

SMF – PD
@ PFA =0.01

SMF - PD
@ PFA =0.001

spectral (nm) mean stdev mean stdev mean stdev mean stdev

10 0.5958 0.0235 0.4623 0.0105 0.5984 0.0356 0.2837 0.0388

55 0.5671 0.0527 0.3879 0.1219 0.4649 0.0743 0.2173 0.0502

110 0.5260 0.1136 0.3420 0.1929 0.4394 0.0606 0.1988 0.0494

Rogers Dry Lake Rogers Dry Lake Rochester Rochester

SMF - PD
@ PFA =0.01

SMF - PD
@ PFA =0.001

SMF – PD
@ PFA =0.01

SMF – PD
@ PFA =0.001

Noise(SNR@30%) mean stdev mean stdev mean stdev mean stdev

10 0.4934 0.0996 0.2586 0.1660 0.4479 0.1177 0.2064 0.0690

100 0.5974 0.0231 0.4679 0.0149 0.5127 0.0694 0.2428 0.0500

225 0.5981 0.0199 0.4657 0.0137 0.5421 0.0545 0.2506 0.0493

DIRSIG - West Rain DIRSIG - West Rain

SMF - PD @ PFA =0.001 SMF - PD @ PFA =0.0001

spatial (m) mean stdev mean stdev

2 0.7739 0.3565 0.5885 0.4035

4 0.6922 0.3752 0.3378 0.2607

8 0.5394 0.2876 0.1221 0.1557

DIRSIG - West Rain DIRSIG - West Rain

SMF - PD @ PFA =0.001 SMF - PD @ PFA =0.0001

spectral (nm) mean stdev mean stdev

10 0.8708 0.1188 0.5468 0.2948

55 0.5929 0.3743 0.3339 0.3621

113 0.5418 0.3972 0.1678 0.2800

DIRSIG - West Rain DIRSIG – West Rain

SMF - PD @ PFA =0.001 SMF - PD @ PFA =0.0001

Noise(SNR@30%) mean stdev Mean stdev

10 0.3189 0.3704 0.1417 0.2820

100 0.8305 0.1553 0.3582 0.3541

200 0.8561 0.1208 0.5486 0.2819

Table 4-14: Mean and Standard Deviation of Weighted Pd  for Spectral Matched Filter
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Visual inspection of the numbers contained in the above table reveals no surprises or

peculiar trends.  All results meet our intuitive expectations and may be confirmed with previous

studies.  It is evident that as any of the main factors are degraded – be it spatial resolution,

spectral resolution or noise – the Pd suffers from these degradations.  Also according to

expectation, a lower selected value of Pfa results in a lower Pd.  This is caused by the distinctive

ROC curve shape discussed in Chapter 2. To better illustrate and discuss these trends further the

data from Table 4-24 is plotted below.

Figure 4-14: Spectral Matched Filter – Probability of Detection as a function of Spatial
Resolution

From Figure 4-14, we see that the probability of detecting targets decreases somewhat

monotonically as the GIFOV is increased.  This agrees with previous studies of this nature (Keller

et al., 2000). The probability of detection for the Rogers Dry Lake scene is consistently higher

than the Rochester scene.  The scene dependence of the result and metric can be attributed to the

fact that the Rogers Dry Lake image is spectrally and spatially homogeneous.  Therefore we

expect better results when attempting to find a distinct spectral target within this image then when

posed with a more spatially and spectrally complex image.  It should be noted that the selected

Pfa’s for the two AVIRIS images are the same. Lower Pfa's (0.001 and 0.0001) were chosen for
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the DIRSIG scene.  Retaining the same Pfa for the DIRSIG images as the AVIRIS imagery would

have resulted in a constant Pd near unity – thereby not allowing any observations.  This is to be

expected given the smaller GIFOV and spectrally pure pixels characteristic of DIRSIG scenes.

Lower values for Pfa‘s were chosen to hopefully witness the same behaviour as that with real

imagery and be able to draw valid conclusions. Nevertheless, the same monotonic demise in Pd is

witnessed with the synthetic imagery at an appropriate Pfa.  It is interesting to note that requiring a

lower Pfa in the DIRSIG scene results in a sharper Pd decrease with respect to changes in spatial

resolution.  It is possible that this may have also been the same case with the AVIRIS images, but

any lower than a Pfa equal to 0.001 would have resulted in many Pd   readings equal to zero – and

meaningless results.  It is also interesting to note the sharper slopes associated with the synthetic

image in comparison to the real images.  Like the results from unmixing, this may be attributed to

the fact that with this synthetic image we are starting with pixels with a much smaller GIFOV,

they are essentially spectrally pure without complex spatial-spectral variability and the scene is in

reflectance space vice radiance.

Figure 4-15: Spectral Matched Filter – Probability of Detection as a Function of Spectral
Resolution

At first glance it appears that Figure 4-15, depicting probability of detection as a function

of spectral resolution, is a duplicate of the chart depicting detection as a function of spatial
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resolution (Figure 4-14).  There is a monotonic decrease in detection performance, as the spectral

sampling of an image becomes coarser. This makes sense since many of the fine absorption

features that allow us to identify and discriminate among materials are lost when we degrade the

spectral resolution.   Again we note a difference between the spectrally homogeneous scene

(Rogers Dry Lake) versus a more complex scene (Rochester).  That is, the spectral contrast

between target and background is more pronounced in a homogeneous scene – thereby leading to

higher Pd. Similar to the results from spatial resolution, the DIRSIG image shows a more

dramatic drop in performance as the spectral resolution is widened.  Again this can be attributed

to a smaller initial GIFOV, the spectral purity of the pixels and the underlying difference between

scene-derived endmembers that are in radiance space (like the AVIRIS scene) and endmembers

from true reflectance values.

Figure 4-16: Spectral Matched Filter – Probability of Detection as a Function of SNR

It is interesting to note that the probability of detection as a function of SNR does not

have a monotonic decrease with respect to its degradation like spatial resolution and spectral

resolution did.  This can be seen in Figure 4-16 and by confirmation of the numbers in Table 4-

24.   Unfortunately, there are only three points on any of the above plots.  Notwithstanding this

fact, it would appear from the above plot that the probability of detection remains relatively

constant for SNR between 225 (or 200 with the DIRSIG scene) and 100.  It is only at some point
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between a SNR of 100 and 10 that the probability of detection begins to decrease. This type of

behaviour is evident with each image tested.    The only exception is the second DIRSIG result

with a Pd acquired at a very low Pfa of 0.0001.  In this regard, it is quite possible that a re-read of

Pd at lower Pfa is required for these scenes.  Conversely, if we remember from section 2.4.3, the

basis behind the OSP or SMF is that an operator q is applied to equation 2-7 that represents the

contents of the image cube.  This operator effectively not only suppresses the background spectral

effects, represented by U, via an orthogonal projection but “it also suppresses the original noise

by Pn” (Chang and Ren, 2000).  It is possible that this noise is effectively suppressed up to a

certain SNR.  After this point it begins to become more of a crucial factor in the detection

performance of the algorithm.

Another interesting observation of noise with respect to SMF performance can be seen by

an examination of the collected data in Appendix E (highlighted portions).  Looking at the real

image data we see that the value of Pd does not change with regard to noise as long as the image

is at the highest spectral resolution.  For example, looking at the Rogers Dry Lake scene, we see a

constant Pd for all images with a spectral resolution of 10 nm  - regardless of the noise content.

Obviously, there are fluctuations due to changes in spatial resolution with this metric, but at each

spatial resolution the constant prevails. This behaviour is also seen in the Rochester image, but

not with the DIRSIG image.  One could prematurely conclude that an analyst could expect the

same results when attempting to find a target within an image regardless of the noise content as

long as the image acquisition included very fine spectral sampling (and the spatial resolution

remains constant).  This observation only holds valid for the real imagery used and needs further

testing.
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Analysis of Variance for SMF PD @ PFA = 0.01 – Rogers Dry Lake

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2  0.0134157  0.0134157  0.0067079   93.75  0.000
Spectral            2  0.0222067  0.0222067  0.0111033  155.18  0.000
Noise               2  0.0652817  0.0652817  0.0326409  456.20  0.000
Spatial*Spectral    4  0.0000196  0.0000196  0.0000049    0.07  0.990
Spatial*Noise       4  0.0004301  0.0004301  0.0001075    1.50  0.289
Spectral*Noise      4  0.0500947  0.0500947  0.0125237  175.04  0.000
Error               8  0.0005724  0.0005724  0.0000715
Total              26  0.1520209

Analysis of Variance for SMF PD @ PFA=0.001– Rogers Dry Lake

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2   0.005824   0.005824   0.002912  100.27  0.000
Spectral            2   0.066273   0.066273   0.033137 1141.10  0.000
Noise               2   0.259943   0.259943   0.129971 4475.71  0.000
Spatial*Spectral    4   0.000571   0.000571   0.000143    4.91  0.027
Spatial*Noise       4   0.000386   0.000386   0.000097    3.33  0.070
Spectral*Noise      4   0.150458   0.150458   0.037614 1295.29  0.000
Error               8   0.000232   0.000232   0.000029
Total              26   0.48368

Table 4-15: Analysis of Variance for SMF – Rogers Dry Lake(F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84)

As seen in Table 4-25, the significance of factors (measured by the F-statistic) seems to

be dependent upon the required  Pfa.  For instance, if the operator requires a smaller Pfa then the

significance of both spectral resolution and noise effects increase by an order of magnitude when

using the Rogers Dry Lake scene.  However, the significance of the spatial resolution remains

relatively constant as the Pfa is changed.  This can be attributed to a general lack of spatial

complexity in the Rogers scene.  The joint effects between spatial-spectral and spectral-noise are

insignificant (or very close) in at both Pfa readings.
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Analysis of Variance for SMF PD @ PFA = 0.01

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2   0.017966   0.017966   0.008983   95.17  0.000
Spectral            2   0.131247   0.131247   0.065624  695.21  0.000
Noise               2   0.041819   0.041819   0.020909  221.51  0.000
Spatial*Spectral    4   0.000958   0.000958   0.000240    2.54  0.122
Spatial*Noise       4   0.000488   0.000488   0.000122    1.29  0.350
Spectral*Noise      4   0.021686   0.021686   0.005421   57.43  0.000
Error               8   0.000755   0.000755   0.000094
Total              26   0.214919

Analysis of Variance for SMF PD @ PFA = 0.001

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2  0.0359662  0.0359662  0.0179831  812.88  0.000
Spectral            2  0.0358327  0.0358327  0.0179164  809.87  0.000
Noise               2  0.0099963  0.0099963  0.0049982  225.93  0.000
Spatial*Spectral    4  0.0003383  0.0003383  0.0000846    3.82  0.050
Spatial*Noise       4  0.0001931  0.0001931  0.0000483    2.18  0.161
Spectral*Noise      4  0.0050580  0.0050580  0.0012645   57.16  0.000
Error               8  0.0001770  0.0001770  0.0000221
Total              26  0.0875616

Table 4-16: Analysis of Variance for SMF – Rochester
(F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84)

In table 4-26, we see an underlying dependence of factor significance on the Pfa.  For

example, with a Pfa = 0.01 the F-statistic for the main effect of spatial resolution is 95.17 and with

a Pfa =0.001 this same F-statistic jumps to 812.88.  This would indicate that as we wish to detect a

target with a lower Pfa, then the importance of finer spatial resolution dramatically increases when

using the Rochester scene. However, one cannot make this conclusion for the all images. The

significance of the main effect of spatial resolution did not change much from one Pfa to another

with the Rogers Dry Lake scene.  Again, this scene dependence on the level of the metric and

therefore performance may be ascribed to the level of complexity within the scene and the

similarity of endmembers. Spectral resolution has approximately the same weighting of

importance with respect to detection at both Pfa . The interaction between spatial-spectral and

spatial-noise is not significant at either Pfa .  Furthermore, it is interesting in this image that the

significance placed on the main effect of noise (221 and 225) and all two-way interactions remain

relatively constant with changes in Pfa.  Scene dependence seems to prevail.
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Analysis of Variance for SMF PD @ PFA = 0.001 - DIRSIG Western Rainbow

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2    0.25507    0.25507    0.12754   24.49  0.000
Spectral            2    0.56437    0.56437    0.28218   54.19  0.000
Noise               2    1.65284    1.65284    0.82642  158.70  0.000
Spatial*Spectral    4    0.01510    0.01510    0.00377    0.72  0.599
Spatial*Noise       4    0.02198    0.02198    0.00549    1.06  0.437
Spectral*Noise      4    0.50925    0.50925    0.12731   24.45  0.000
Error               8    0.04166    0.04166    0.00521
Total              26    3.06026

Analysis of Variance for SMF PD @ PFA = 0.0001 - DIRSIG Western Rainbow

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2    0.98079    0.98079    0.49039   16.68  0.001
Spectral            2    0.64987    0.64987    0.32494   11.05  0.005
Noise               2    0.74606    0.74606    0.37303   12.69  0.003
Spatial*Spectral    4    0.09166    0.09166    0.02291    0.78  0.569
Spatial*Noise       4    0.10527    0.10527    0.02632    0.90  0.509
Spectral*Noise      4    0.21228    0.21228    0.05307    1.81  0.221
Error               8    0.23517    0.23517    0.02940
Total              26    3.02109

Table 4-17: Analysis of Variance for SMF – Western Rainbow
(F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84)

The results displayed in Table 4-27 does not seem to make any intuitive sense at first.

However, closer inspection reveals some interesting facts.  As seen in the two previous series of

ANOVA tables, there is an underlying dependence on the significance of the factors with respect

to the Pfa.  The ANOVA table for the DIRSIG scene is no different.  At a Pfa = 0.001, the main

factor of noise is the most significant factor followed by the spectral resolution.  The significance

of spatial resolution is third.  However, if an image analyst changes the desired Pfa to 0.0001 then

the ranking of these main effects changes, as seen in Table 4-27. At this lower Pfa level, the main

effect of spatial resolution becomes most significant - followed by spectral resolution and noise.

A closer examination of the numbers in Table 4-27 shows that all factors share approximately

equal weighting of significance.  A similar change to the level of significance for the main effect

of spatial resolution was also seen in the AVIRIS Rochester products as the value of Pfa changed.

It is from this trend that one could draw a conclusion – a weak one based on only three

observations, but a conclusion just the same.  In general it appears that at certain Pfa levels the

spectral resolution and noise dictate the performance of the SMF algorithm.  However, as we

require a lower Pfa the importance of fine spatial resolution overrides these other two main

factors.   This trend obviously needs further investigation to solidify such a conclusion.
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Spectral Feature Fitting (SFF)

Prior to an examination of the results from the SFF data it needs to be mentioned that the

entire image spectrum was not used in the application of this algorithm (unlike all the other

algorithms tested).  As we saw in Chapter 2, the SFF algorithm is an absorption-based method

whose product results are directly linked to how well the absorption features of reference spectra

match the absorption features of  image spectra.  If this method were applied directly to the

AVIRIS real images, which are in radiance space with atmospheric bands still included, the

produced detection results for each endmembers/targets selected would all be exactly the same.

This is because the algorithm would match just the pre-dominate atmospheric absorption bands

which are common to all spectral signatures in radiance space.   This theory was tested and was

proven correct.  Two approaches could be adopted to solve this problem, besides the most

obvious which is to convert the image into reflectance.  The first solution was to remove the

atmospheric bands in both the image and library.  This was not done since the spectral shape  is

still governed by the exoatmospheric solar irradiance curve and the spectra now being

discontinuous could effect proper continuum removal.  The second, and chosen method, was to

chose a common spectral subset from both the image and library that is relatively void of

atmospheric bands (except 960 and 1140 nm) and shows the most spectral distinction between

endmembers.  The spectral range used was 385 to 1240 nm. This method was adopted for both

AVIRIS scenes.  To maintain experimental consistency with SMF, the entire spectral range is

used for the DIRSIG scene since it has been calibrated to reflectance space and each endmember

contains only one or two distinct absorption features.  This brings up another important point.

The algorithm requires that the scene first be calibrated to reflectance prior to continuum removal

and scaling.  As previously mentioned in here and in Chapter 2, this calibration was not done for

any of the real imagery.  This may help to explain some of the odd results from this algorithm.

Presented below, in Table 4-28 are the mean and standard deviations of the Pd at each level of

degradation.
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Rogers Dry Lake Rogers Dry Lake Rochester Rochester

SFF - PD @ PFA =0.2 SFF - PD @ PFA = 0.1 SFF - PD @ PFA =0.6 SFF - PD @ PFA = 0.4

spatial (m) mean stdev mean stdev mean stdev mean stdev

20 0.5914 0.1011 0.5168 0.1724 0.3813 0.0908 0.0909 0.0746

40 0.5790 0.1205 0.5036 0.1716 0.3648 0.0845 0.0938 0.0791

80 0.5546 0.1473 0.4690 0.1811 0.3406 0.0910 0.0958 0.0791

Rogers Dry Lake Rogers Dry Lake Rochester Rochester

SFF - PD @ PFA =0.2 SFF - PD @ PFA = 0.1 SFF - PD @ PFA =0.6 SFF - PD @ PFA = 0.4

spectral (nm) mean stdev mean stdev mean stdev mean stdev

10 0.5147 0.1618 0.4329 0.2243 0.4077 0.1041 0.0923 0.0757

55 0.5693 0.1075 0.4869 0.1663 0.3290 0.0861 0.0904 0.0850

110 0.6410 0.0220 0.5697 0.0686 0.3501 0.0512 0.0978 0.0714

Rogers Dry Lake Rogers Dry Lake Rochester Rochester

SFF - PD @ PFA =0.2 SFF - PD @ PFA = 0.1 SFF - PD @ PFA =0.6 SFF - PD @ PFA = 0.4

Noise(SNR@30%) mean stdev mean stdev mean stdev mean stdev

10 0.4493 0.1412 0.2976 0.1611 0.4655 0.0606 0.1965 0.0077

100 0.6366 0.0195 0.5957 0.0172 0.3110 0.0387 0.0462 0.0060

225 0.6391 0.0159 0.5961 0.0200 0.3103 0.0383 0.0379 0.0085

DIRSIG - West Rain DIRSIG - West Rain

SFF - PD @ PFA =0.2 SFF - PD @ PFA = 0.05

spatial (m) mean stdev mean stdev

20 0.6185 0.3339 0.2679 0.1052

40 0.4826 0.2522 0.0862 0.0540

80 0.2640 0.1961 0.0302 0.0362

DIRSIG - West Rain DIRSIG - West Rain

SFF - PD @ PFA =0.2 SFF - PD @ PFA = 0.05

spectral (nm) mean stdev mean stdev

10 0.2654 0.1686 0.1191 0.1440

55 0.5048 0.3011 0.1698 0.1248

110 0.5948 0.3181 0.0954 0.1025

DIRSIG - West Rain DIRSIG - West Rain

SFF - PD @ PFA =0.2 SFF - PD @ PFA = 0.05

Noise(SNR@30%) mean stdev mean stdev

10 0.2101 0.1147 0.1090 0.0964

100 0.5432 0.2848 0.1375 0.1391

225 0.6117 0.2957 0.1377 0.1442

Table 4-18: Mean and Standard Deviation of Weighted Pd  for Spectral Feature Fitting
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One of the first observations from Table 4-28 is that the probability of detection is read at

different probability of false alarms for each image.  Common Pfa could not be selected for the

two AVIRIS images as was done with the assessment of the SMF algorithm.  This is primarily

due to the fact that the ROC curves associated with each scene were quite different in shape.  As

seen in Table 4-28, the Pd in the Rochester scene at a Pfa  = 0.4 is very low  - numbers less than or

around 0.1.  Applying this same Pfa to the Rogers scene resulted in Pd of 1.0 for all endmembers.

A lower Pfa for the Rogers Dry Lake image was applied to better observe its performance.  One

could say that the use of different Pfa’s between scenes does not allow valid observations with

respect to scene dependence.   While this is somewhat true, the converse to this is also very true.

The simple fact that a higher Pfa was needed to acquire Pd readings is a direct reflection of the

algorithms poor performance as spectral and spatial complexity of the scene increase.  The same

Pfa’s used to assess the SMF algorithm were applied to the SFF algorithm and this resulted in all

Pd’s equal to zero.  Obviously, SMF outperforms the SFF when detecting the same targets.

Again, the lower Pfa’s were used with the DIRSIG scene than the real images. To better illustrate

and discuss these trends the following data from Table 4-28 is plotted below.

As seen in Figure 4-17 below, the probability of detecting targets decreases

monotonically as the GIFOV is increased.  This completely agrees with our expectation and the

results of the SMF algorithm.  As observed previously with the SMF results, the probability of

detection for the Rogers Dry Lake scene is consistently higher than the Rochester scene even with

a lower Pfa. Like the other algorithms tested, the difference between homogeneous and complex

images has an apparent bearing on the performance of this algorithm. Although lower Pfa's are

chosen for the DIRSIG scene the same decrease  in Pd is witnessed.  Similar to the SMF results,

the SFF results show a steeper slope for the detection performance in the DIRSIG scene as the

spatial resolution is degraded. Again this may attributed to initial GIFOV differences, spectrally

pure pixels and working in reflectance space vice in units of radiance.
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Figure 4-17:  Spectral Feature Fitting – Probability of Detection as a function of Spatial Resolution

Figure 4-18:  Spectral Feature Fitting – Probability of Detection as a Function of Spectral Resolution
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The general trend presented in Figure 4-18 would indicate that as spectral resolution

worsened the probability of detection increased.  This seems to be counter-intuitive but closer

investigation reveals that this phenomenon is somewhat valid.  For example, when considering

the Rogers Dry Lake scene we see that as spectral resolution is degraded the probability of

detection increases.  This means that better matches of absorption features were attained by the

SFF at these lower resolutions.  This inherently means that the absorption features must be more

distinct after a continuum removal is performed on these lower resolution spectra.  As mentioned

previously, the spectral range of the real image was reduced to a range of 385-1240 nm.

Admittedly, this range still contains two absorption features (at 960 and 1140 nm) but these were

left in so a better comparison could be drawn between the SFF and SMF algorithm.  All the

atmospheric bands were left in  place when the SMF was run.  It is readily apparent in Figure 4-

19 that the absorption features of the specified targets become more distinct with spectral

degradation and continuum removal.  Many of the small non-influential absorption features are

smoothed out and the distinction between mineral and field becomes more prominent especially

between 680-980 nm.  The result is better detection as spectral resolution is degraded.

Figure 4-19: Spectral Library used for SFF with Rogers Dry Lake at different Spectral Resolutions
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 This type of phenomena is also observed (but not shown here) with the DIRSIG scene

when the Pfa = 0.2 and also at Pfa = 0.05 when we include the associated standard deviation to

explain the bend in the curve at 55 nm.  Taking standard deviation (from Table 4-28)  into

account for the Rochester image we see that the probability of detection is somewhat independent

of the spectral resolution for this scene.

Figure 4-20:  Spectral Feature Fitting – Probability of Detection as a function of SNR

The overall trend seen in Figure 4-20 shows that as SNR decreases so does the

probability of detection.  This agrees with our intuition and the results from testing other

algorithms.  However, the performance of the Rochester scene with respect to noise degradation

seems to contradict the general trend.  Is it possible that adding noise to the image spectra makes

its absorption features more distinct and better matches to the library spectra?  Highly doubtful.

As mentioned in Chapter 2, one product of this algorithm is an RMS error image for each

specified target.  This gives the user some confidence as to the actual presence of materials within

a scene by a providing a visible “goodness of fit” of the regression model used.  Every RMS error

image produced in this thesis, despite the level of degradations assigned or whether it was

synthetic or real imagery, had a vertically striped pattern to it.  An example of this garbage is seen

in Figure 4-21.   Although not fully tested, the periodicity of these stripes seems to be a function

of the user- specified spatial resolution.  In any case, the user cannot place much reliance in this
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type of “goodness of fit.”  Furthermore, if this is the RMS of the regression model used to fit

absorption features then one can only wonder how accurate are the scale maps that indicate

material abundance. Interestingly enough, this stripping effect is not present in the scale maps that

show material abundance.  If the regression model is not accurate, which these consistently poor

RMS images may indicate, then little faith can be put into the scale maps of material abundance.

 Figure 4-21:  RMS Image from SFF Rochester, NY image using Shallow Water
 as the Specified Target

It is useful to see if any of these peculiarities are apparent or better explained by

conducting an ANOVA on the collected probabilities of detection.

Analysis of Variance for SFF PD @ PFA = 0.2 – Rogers Dry Lake

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2   0.006321   0.006321   0.003161    6.22  0.023
Spectral            2   0.072253   0.072253   0.036126   71.12  0.000
Noise               2   0.213425   0.213425   0.106713  210.08  0.000
Spatial*Spectral    4   0.001636   0.001636   0.000409    0.81  0.555
Spatial*Noise       4   0.004679   0.004679   0.001170    2.30  0.147
Spectral*Noise      4   0.075508   0.075508   0.018877   37.16  0.000
Error               8   0.004064   0.004064   0.000508
Total              26   0.377887

(continued)
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Analysis of Variance for SFF PD @ PFA= 0.1 – Rogers Dry Lake

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2   0.010939   0.010939   0.005469   18.97  0.001
Spectral            2   0.085412   0.085412   0.042706  148.09  0.000
Noise               2   0.533686   0.533686   0.266843  925.33  0.000
Spatial*Spectral    4   0.000973   0.000973   0.000243    0.84  0.535
Spatial*Noise       4   0.002752   0.002752   0.000688    2.39  0.137
Spectral*Noise      4   0.110722   0.110722   0.027680   95.99  0.000
Error               8   0.002307   0.002307   0.000288
Total              26   0.746790

Table 4-19: Analysis of Variance for SFF – Rogers Dry Lake
(F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84)

Like the results from the SMF, it appears from Table 4-29(above) that the level of

significance is a function of the PFA level specified   The ranking between the two Pfa’s is

consistent and it is only the magnitude of the F-statistic that changes. At both PFA levels, noise

remains the most significant contributing single factor with spectral resolution as the second most

significant.  This makes sense based on  the fact that this algorithm is trying to match absorption

features and any noise would lessen the chance of a good fit. At both Pfa levels, the interactions

between spatial-spectral and spatial-noise remain insignificant at the test level of α=0.05.

The trends, indicated in Table 4-30 (below) for the Rochester image, do not follow those

previously seen with the Rogers scene.  Furthermore they are not as intuitive.  As seen in Table 4-

30, as the level of required Pfa drops, the significance of all the main effects, with the exception of

noise, drops.  Yet, the significance of noise on detection performance dramatically increases as

the required Pfa level is reduced.  Another interesting result is that the ranking of joint effect

significance changes as the Pfa level is changed.  As seen in Table 4-30 the interaction between

spatial-spectral resolution is significant at Pfa = 0.6 yet it is not at Pfa = 0.4.  The exact opposite of

this is true for the interaction between spatial resolution and noise.  None of the observations

made from the Rochester image agree with observations made from the other AVIRIS scene.

Again, this could be attributed to scene dependence or the poor results obtained from the SFF

algorithm.
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Analysis of Variance for SFF PD @ PFA = 0.6 - Rochester

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2   0.007541   0.007541   0.003771   34.46  0.000
Spectral            2   0.029909   0.029909   0.014954  136.68  0.000
Noise               2   0.143803   0.143803   0.071901  657.18  0.000
Spatial*Spectral    4   0.002328   0.002328   0.000582    5.32  0.022
Spatial*Noise       4   0.000988   0.000988   0.000247    2.26  0.152
Spectral*Noise      4   0.011397   0.011397   0.002849   26.04  0.000
Error               8   0.000875   0.000875   0.000109
Total              26   0.196841

Analysis of Variance for SFF PD @ PFA = 0.4 - Rochester

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2  0.0001133  0.0001133  0.0000566   10.86  0.005
Spectral            2  0.0002664  0.0002664  0.0001332   25.53  0.000
Noise               2  0.1433928  0.1433928  0.0716964 1.4E+04  0.000
Spatial*Spectral    4  0.0000167  0.0000167  0.0000042    0.80  0.557
Spatial*Noise       4  0.0001116  0.0001116  0.0000279    5.35  0.021
Spectral*Noise      4  0.0007973  0.0007973  0.0001993   38.19  0.000
Error               8  0.0000417  0.0000417  0.0000052
Total              26  0.1447400

Table 4-20: Analysis of Variance for SFF – Rochester (F0.05, 2, 8 = 4.46  and F0.05, 4, 8 = 3.84)

Analysis of Variance for SFF PD @ PFA = 0.2 - Western Rainbow

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2    0.57596    0.57596    0.28798   40.60  0.000
Spectral            2    0.52183    0.52183    0.26091   36.78  0.000
Noise               2    0.83065    0.83065    0.41532   58.55  0.000
Spatial*Spectral    4    0.06144    0.06144    0.01536    2.17  0.164
Spatial*Noise       4    0.09921    0.09921    0.02480    3.50  0.062
Spectral*Noise      4    0.13825    0.13825    0.03456    4.87  0.028
Error               8    0.05675    0.05675    0.00709
Total              26    2.28408

Analysis of Variance for SFF PD @ PFA = 0.05 - Western Rainbow

Source             DF     Seq SS     Adj SS     Adj MS       F      P
Spatial             2   0.277958   0.277958   0.138979   64.88  0.000
Spectral            2   0.025967   0.025967   0.012983    6.06  0.025
Noise               2   0.004897   0.004897   0.002448    1.14  0.366
Spatial*Spectral    4   0.006824   0.006824   0.001706    0.80  0.560
Spatial*Noise       4   0.040247   0.040247   0.010062    4.70  0.030
Spectral*Noise      4   0.027350   0.027350   0.006837    3.19  0.076
Error               8   0.017137   0.017137   0.002142
Total              26   0.400379

Table 4-21: Analysis of Variance for SFF – Western Rainbow (F0.05, 2, 8=4.46 and F0.05, 4, 8=3.84)
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Yet again, the results from performing an ANOVA on the Western Rainbow scene (Table

4-31) do not permit any broad conclusion when compared to the other images. At a Pfa  = 0.2 all

main effects are significant to the performance of this algorithm.  However, as the operator

requires a lower Pfa  the level and ranking of significant factors changes.  At a Pfa  = 0.05 the main

effect of spatial resolution is by far the most significant.  This agrees with the spatial resolution

trends seen with the SMF at lower Pfa, and its relationship to higher pixel purity.  However, the

trend witnessed here does not agree with the two AVIRIS scenes tested.

The bottom line is there are problems with the way the SFF algorithm was tested as part

of this thesis and in the way it is implemented in ENVI.  Firstly, we used scene-derived

endmembers from a scene in radiance space as inputs into this algorithm.  The SFF algorithm

requires that the image be in units of reflectance prior to continuum removal.  This may, in part,

explain the better performance of this algorithm with the atmospherically corrected DIRSIG

image.  The second problem is that this method would work better if very specific and

characteristic absorption features are sought.  In this manner using this algorithm over the entire

reflectance image, although it produces results, would have yielded better results if a narrow

spectral range of interest (e.g. only covering a range of 50-100 nm) were selected.  This was

somewhat done with the AVIRIS images, yet this range included atmospheric bands and the

spectral range was still to wide.  Even without these improvements to our approach one would

expect some more commonality between the final SFF products from the image sets used when

looking at the ANOVA tables.  Despite these improvements to our approach in using the SFF

algorithm, full confidence cannot be placed in this algorithm given that the RMS images exhibit a

strange and unexplained periodic pattern.   As stated earlier, we can only wonder how accurate

the scale maps are that indicate the material abundance/presence when our “goodness of fit” does

not look so good.  The bottom line is that the poor performance of the SFF algorithm reduces our

interest in using this algorithm in future work and it brings any delivered results into question.

The way this algorithm is implemented within ENVI requires further investigation and possible

correction.
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Chapter 5

Conclusions and Recommendations

5.1       Conclusions

The primary objective of this thesis study was to conduct an examination into how

differing values of spectral resolution, spatial resolution and noise effect the performance of

hyperspectral algorithms and the utility of the information derived from them. In other words, the

goal was to characterize the error in spectrally based information products by measuring the

utility of processed images.  This was accomplished by utilizing several meaningful metrics to

measure image utility and the employment of a factorial designed experiment. This ultimately has

provided us with better insight into the effectiveness of these algorithms under different image

acquisition parameters. This type of assessment has also allowed us to make performance

comparisons between different types of processing algorithms.

In summary, a tool has been made that degrades hyperspectral images spatially, spectrally

and by adding spectrally correlated noise.  This has allowed us to “simulate” image acquisition

under different sensor collection parameters.  Several spectral algorithms were selected as testing

candidates.  These included Spectral Angle Mapper (SAM), Binary Encoding (BE), Gaussian

Maximum Likelihood (GML), Linear Spectral Unmixing, Spectral Matched Filter (SMF) and

Spectral Feature Fitting (SFF).  A full investigation into image information content/utility metrics

has also been conducted.  This investigation resulted in the use of three meaningful algorithm-

specific metrics – kappa for classification/thematic mapping, squared error for unmixing

techniques and ROC curves for target detection.  Applying these metrics to spectral products

derived from degraded imagery has shown that definite trends exist which indicate the

effectiveness of spectral algorithms under differing levels of spatial resolution, spectral resolution
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and noise.   However, it has also been demonstared that there is an underlying scene dependence

on algorithm performance.  That is, the effectiveness of the tested algorithms depends on the

spectral and spatial complexity of the initail images.

Through the use of a factorial designed experiment an investigation into the joint effects

of these three sensor parameters (spatial resolution, spectral resolution and noise) was possible.

This revealed that the main factors, by themselves, hold more significance in the outcome of

spectral algorithm performance than any of the combined effects of these parameters.  It was also

discovered from the interpretation of our data that each algorithm tested seems to have one factor

that is more significant in determining its performance and information degradation.  For

instance, it appears from our data that if an operator using the SMF algorithm requires lower

probabilities of false alarm, then the significance of spatial resolution increases.  At higher values

of probability of false alarm it seems that spectral resolution carries more importance.

It has been shown that the use of a factorial designed experiment is a very effective way

of testing algorithm performance.  Furthermore, this experimental approach allows the

investigator to study several different factors, simultaneously, along the image chain.  The output

from this type of experimental design permits easy identification of trends and readily allows

statistical hypothesis testing to establish the significance of the parameters on algorithm outcome.

 The results of this thesis study are useful and important in three main areas.

Firstly and as previously mentioned, as a proof of concept, we have demonstrated that the use of a

factorial designed experiment is an excellent approach for simultaneously studying several factors

along the image chain and their impact on image information utility.  Secondly, this thesis is the

first and necessary step to establishing confidence limits on information derived from spectral

products acquired under certain collection parameters. For example, an image analyst is using the

SMF algorithm to find a certain target within an image characterized by a specific spatial

resolution, spectral resolution and noise content.   Continuing with the example, with this

information the image analyst will be 80-85% confident in his/her information from the spectral

product.  Finally, the information from this thesis may be applied during the first phases of

spectral sensor design. Given that a specific imaging system is designed to fulfil a certain role,

designers and engineers can better investigate the trade-offs between sensor parameters.
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5.2 Recommendations

The following recommendations can be divided into two main categories - changes to the

image degradation tool and future work.  As stated previously, this thesis has proven that definite

trends exist indicating the effectiveness of spectral algorithms under differing levels of spatial

resolution, spectral resolution and noise.  It has also shown that the factorial designed experiment

is an extremely useful tool for investigating factors along the imaging chain.  However, it is also

realized that this is just a preliminary step towards a much larger goal – improvements and more

work are required.

Changes to Image Degradation Tool

Although a tool has been made that degrades hyperspectral images spatially, spectrally

and by adding spectrally correlated noise, improvements to this tool are needed prior to any future

work.  By implementing the improvements listed below the degradation tool will better

“simulate” the acquisition of an image under different and “degraded” collection parameters.

  With regards to spectral resampling, the user should be allowed to input the desired

spectral resolution by entering the spectral bandwidth in nanometers or microns.  As explained in

Section 3.2.2, the user is presently requested to input the number of bands he/she wishes the

initial image to be degraded to.  This requires the user to manually calculate the number of bands

desired for a certain spectral resolution before input into the degradation tool. This improvement

would make the program more user-friendly.  It would also be advantageous to incorporate a

user-defined list of FWHM for each new/degraded spectral band centre.  Currently, the

degradation tool assumes critical spectral resampling by establishing a Gaussian model with a

FWHM equivalent to the band spacing. Incorporating the optional input of FWHM values would

provide more realistic spectral resampling.

It would be also be beneficial to implement the theoretically correct method of spatial

degradation using a convolution process and subsequent resampling to maintain image size.  The

aggregate process or “box car” approach currently used, although very effective, does not truly

represent the exact phenomenology of image acquisition.  Additionally, the current approach does

not maintain consistent material fractions when resampling – as seen in the testing the spectral

unmixing algorithm.
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The method by which spectrally correlated noise was added to the imagery needs to be

revisited for two reasons.  Firstly, a further validation of the “reverse MNF” process used here

(via image subtraction of noisy image and noiseless image) needs to be done.   Secondly, re-

investigating the use of dark current images that was first attempted and outlined in Appendix D

would also be worthwhile. It is believed that the approach using a dark current image is more

theoretically sound and would achieve better results with respect to noise addition.  However, the

proper implementation proved more difficult and time consuming than ever anticipated.  I believe

the algorithm and code available on the enclosed CD is close to working and requires a little more

attention.

Finally, the degradation tool should be revamped to enable the program to run in batch

mode.  The present method degrades one image at a time.  This improvement would definitely

save time and labour when future work is conducted in degrading numerous image sets to new

parameters of spatial resolution, spectral resolution and noise.

Future Work and More Testing

The factorial designed experimental approach used in this thesis study has definitely

proved itself effective.  Yet many of the spectral algorithm performance trends witnessed in this

study cannot yet be formed into concrete conclusions without further testing. More images need

to be tested since there is an obvious scene dependence on the performance of these algorithms.

Just the same, conclusions cannot be drawn with merely three points on a curve.  More levels of

each factor (spectral resolution, spatial resolution and noise) also need to be tested.  By using

many more scenes and testing at more levels, we will be better able to notice more global trends

with respect to algorithm performance and eventually reduce the scene dependence from our

statistics.  In conducting any further studies, we should entertain the use of a “random effects”

factorial designed experiment vice the fixed effects approach adopted here.  A random effects

factorial approach will allow us to conduct hypothesis tests that will deliver conclusions with

respect to a population of possible parameter levels.  The testing done in this thesis only allows us

to draw conclusions about the levels that were tested.

In conjunction with more images being tested at more parameter levels, a proper

regression model could then be developed for each spectral algorithm tested.  This would allow a

user to input the image parameters of spatial resolution, spectral resolution and noise of an image

into the developed regression equation and subsequently be delivered the expected metric result.
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That is, the measure of information utility/degradation they may expect with regards to any

selected algorithm will be available by the use of a regression model.  Obviously, this requires

more testing and further study.  Additionally, it would be advantageous to re-plot the graphs

shown in this thesis to better show the three dimensional trade-space of the parameters of spectral

resolution, spatial resolution and noise.  Examples of what these plots may look like and ideas

with respect to developing a 3-D representation of this trade-space are discussed in Appendix H.

Prior to moving ahead, certain aspects of the work conducted in this study need more

investigation.  Firstly, the bizarre behaviour of linear unmixing with respect to changes in spectral

resolution needs to be revisited.  Furthermore, more investigation is needed into the performance

of these algorithms in radiance space versus reflectance space. It is clearly evident that spectral

algorithm performance is also dependent upon the atmospheric inversion technique used since the

type of inversion used may effect retrieved reflectance values.  Along these lines, it would be

interesting to run the same experiment and algorithms on an atmospherically corrected Rochester

image for comparison to the results achieved here.  The SFF algorithm also needs further

attention by either recoding it or abandoning it.  Part of this should include using the algorithm in

reflectance space only (as it was designed for) and selecting very narrow and distinct spectral

absorption bands vice wide ranges.  The details into how the RMS error image is produced within

ENVI also needs to be investigated.

In this light, it is imperative that we try implementing these algorithms ourselves by using

our own code instead of ENVI.  We are not entirely sure what is happening “underneath the

hood” of ENVI.  By recoding these algorithms ourselves, we would have better control on

algorithm testing, be provided with a better understanding of the algorithms and establish another

benchmark.

In hindsight, DIRSIG should have been used to produce “AVIRIS-like” scenes by

matching the same collection parameters as AVIRIS (spectrally, spatially, swath, etc.).  We were

unable to model AVIRIS scenes exactly to these parameters at the time of this thesis study.  This

would have provided us a better benchmark of spectral algorithm performance between real and

synthetic images. However, at this point in time it can be concluded that the spectral-spatial

variability and spectral purity of DIRSIG images provide significant obstacles when conducting

rigorous algorithm testing.  In other words, although DIRSIG does an absolute superb job at

modelling the image chain and spectral phenomenology, it is not as quite as complex as the real

world - yet.  Food for thought.
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Appendix A

Spectral Product Levels

The following chart is extracted from Alexander and Cheatham’s (1998) proposal for an

automated hyperspectral processing system.  Essentially, this system splits the image chain into a

series of processing levels.  As discussed in section 2.2.1, the interface points along this

processing chain are called products. Each product has defining characteristics that relate to how

it was made and what purpose it fulfils. Examples of different products at each processing level

can be seen in Table A-1.  The top two rows consist of the level name and a brief level

description.  Under the double line is a list of different products organized according to their

respective level - in a column-wise fashion.  The shaded Level 3 Spectral Products are the

spectral products being studied as part of this thesis.  Classification routines, such as Binary

Encoding (BE), Spectral Angle Mapper (SAM) and Gaussian Maximum Likelihood (GML),

produce classification maps.  Linear Spectral Unmixing produces fractional endmember maps.

The final products of the Spectral Matched Filter (SMF) and Spectral Feature Fitting (SFF)

algorithms are target probability/detection maps.  Those products associated with Level 5

(Reporting and Decisions) are not included in Table A-1.  The various reports, and the decisions

made from them, rely on the information compiled, organised and properly interpreted from

Level 4 products.
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PROCESSING LEVELS

LEVEL 0:
RAW
HYPERSPECTRAL
IMAGE CUBE

LEVEL 1:
CALIBRATION

LEVEL 2:
DATA
RESAMPLING

LEVEL 3:
SPECTRAL
PRODUCTS

LEVEL 4: DATA
EXPLOITATION

Initial image cube
from down-linked
data

Spectral &
Radiometric
Calibration of
Level 0 raw
sensor data

Atmospheric
Correction and
Geospatial
Rectification

Extracted spectral
information,
rendered as raster
images, tables and
parsable text files

Customer products
for mission-
specific needs –
hardcopy or
softcopy products

Raw Data Image Cube Radiometrically
Corrected Image
Cube

Atmospheric
Absorption
Profiles

Temperature Map Annotated Target &
Material ID Graphic
with text

Telemetry Data
describing cube
location, acquisition and
sensor calibration

Data Cube Header –
Lat/Long

Water Vapour and
Aerosol Overlays

Scene
Characterisation
(Classification and
Endmember) Maps

Material Mixture
Constituents
Description &
Location Map

Failed detector
artifacts and
geometric mis-
registration error
overlay

Atmospheric
Correction
Transform

Anomaly Detection
Maps

Geospatial & Terrain
Feature Vectors &
Maps

Radiometric
Saturation Mask

Spectrally
Corrected
Image/Data Cube

Signatures of Interest
– Detection maps

Lines of
Communication
Vectors & Maps

Quick Look Image
(grey scale or RGB)

Lat/Long Pixel
Transform

Spectral Analysis of
Objects of Interest

Data Fusion Products

Pixel Spatial
Reference
(elevation, slope,
normal)

Visual Reference
Image

Change Detection
Overlays

Cloud Mask Annotated Summary
Graphics and/or
Spreadsheet

Mosaicked Products
& Image/Data Cubes

Atmospherically
Corrected
Image/Data Cube

Table A-1: Processing Levels and Respective Products

PRODUCTS
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Appendix B

National Image Interpretability Rating Scales (NIIRS)

This appendix contains a brief description and examples of the NIIRS scale. The NIIRS

scale primarily describes the type of information that can be extracted from an image and the

extent of image interpretability based on a pre-defined list of tasks.  The tables included in this

appendix contain some examples of tasks/information extracted from NIIRS level 3, 4, 5 and 6

imagery. A more detailed and complete NIIRS tables can be found at www.fas.org/irp/imint/niirs_c/.

As seen in the tables below, the extracted information is dependent upon the type of sensor used

to acquire the image.  For instance, visible NIIRS tasks rely primarily on the spatial resolution

and content of an image while multispectral NIIRS also utilise the spectral content of the image.

An example of using spectral content is the ability to detect certain types of camouflage netting

against a scattered tree background. The NIIRS system offers a qualitative method of rating

image information quality.  As mentioned in section 2.7.3, we use only quantitative metrics in

this thesis study.  However, tasks such as those listed in the NIIRS tables were used, as much as

possible, in the employment of the spectral algorithms.

“The aerial imaging community utilizes the National Imagery Interpretability Rating
Scale (NIIRS) to define and measure the quality of images and performance of imaging systems.
Through a process referred to as "rating" an image, the NIIRS is used by imagery analysts to
assign a number that indicates the interpretability of a given image. The NIIRS concept provides
a means to directly relate the quality of an image to the interpretation tasks for which it may be
used. Although NIIRS has been primarily applied in the evaluation of aerial imagery, it provides
a systematic approach to measuring the quality of photographic or digital imagery, the
performance of image capture devices, and the effects of image processing algorithms.”

Source: www.fas.org/irp/imint/niirs_c/
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NIIRS 3 [2.5 - 4.5 m GSD]

Visible
NIIRS

Radar
NIIRS

Infrared
NIIRS

Multispectral
NIIRS

Identify the wing
configuration (e.g., straight,
swept, delta) of all large
aircraft (e.g., 707,
CONCORD, BEAR,
BLACKJACK).
Identify radar and guidance
areas at a SAM site by the
configuration, mounds, and
presence of concrete
aprons.
Detect a helipad by the
configuration and
markings.
Detect the presence /
absence of support vehicles
at a mobile missile base.
Identify a large surface ship
in port by type (e.g.,
cruiser, auxiliary ship, non-
combatant/merchant).
Detect trains or strings of
standard rolling stock on
railroad tracks (not
individual cars)

Detect medium-sized
aircraft (e.g., FENCER,
FLANKER, CURL,
COKE, F-15).
Identify an ORBITA site on
the basis of a 12-meter dish
antenna normally mounted
on a circular building.
Detect vehicle revetments
at a ground forces facility.
Detect vehicles/pieces of
equipment at a SAM, SSM,
or ABM fixed missile site.
Determine the location of
the superstructure (e.g.,
fore, amidships, aft) on a
medium-sized freighter.
Identify a medium-sized
(approx. six track) railroad
classification yard.

Distinguish between large
(e.g., C-141, 707, BEAR,
A300 AIRBUS) and small
aircraft (e.g., A-4,
FISHBED, L-39).
Identify individual
thermally active flues
running between the boiler
hall and smokestacks at a
thermal power plant.
Detect a large air warning
radar site based on the
presence of mounds,
revetments and security
fencing.
Detect a driver-training
track at a ground forces
garrison.
Identify individual
functional areas (e.g.,
launch sites, electronics
area, support area, missile
handling area) of an SA-5
launch complex.
Distinguish between large
(e.g., greater than 200
meter) freighters and
tankers.

Detect vegetation/soil
moisture differences along
a linear feature (suggesting
the presence of a fenceline).
Identify major street
patterns in urban areas.
Identify golf courses.
Identify shoreline
indications of predominant
water currents.
Distinguish among
residential, commercial,
and industrial areas within
an urban area.
Detect reservoir depletion.

NIIRS 4 [1.2 - 2.5 m GSD]

Visible
NIIRS

Radar
NIIRS

Infrared
NIIRS

Multispectral
NIIRS

Identify all large fighters by
type (e.g., FENCER,
FOXBAT, F-15, F-14).
Detect the presence of large
individual radar antennas
(e.g., TALL KING).
Identify, by general type,
tracked vehicles, field
artillery, large river
crossing equipment,
wheeled vehicles when in-
groups.

Distinguish between large
rotary-wing and medium
fixed-wing aircraft (e.g.,
HALO helicopter versus
CRUSTY transport).
Detect recent cable scars
between facilities or
command posts.
Detect individual vehicles
in a row at a known motor
pool.
Distinguish between open

Identify the wing
configuration of small
fighter aircraft (e.g.,
FROGFOOT, F- 16, and
FISHBED).
Detect a small (e.g., 50
meter square) electrical
transformer yard in an
urban area.
Detect large (e.g., greater
than 10 meter diameter)
environmental domes at an

Detect recently constructed
weapon positions (e.g. tank,
artillery, self-propelled
gun) based on the presence
of revetments, berms, and
ground scarring in
vegetated areas.
Distinguish between two-
lane improved and
unimproved roads.
Detect indications of
natural surface airstrip
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Detect an open missile silo
door.
Determine the shape of the
bow (pointed or
blunt/rounded) on a
medium-sized submarine
(e.g., ROMEO, HAN, Type
209, CHARLIE 11, ECHO
11, VICTOR II/III).
Identify individual tracks,
rail pairs, control towers,

and closed sliding roof
areas on a single bay garage
at a mobile missile base.
Identify square bow shape
of ROPUCHA class (LST).
Detect all rail/road bridges.

electronics facility.
Detect individual thermally
active vehicles in garrison.
Detect thermally active SS-
25 MSV's in garrison.
Identify individual closed
cargo hold hatches on large
merchant ships.

maintenance or
improvements (e.g., runway
extension, grading,
resurfacing, bush removal,
vegetation cutting).
Detect landslide or
rockslide large enough to
obstruct a single-lane road.
Detect small boats(15-20
feet in length) in open
water

NIIRS 5 [0.75 - 1.2 m GSD]

Visible
NIIRS

Radar
NIIRS

Infrared
NIIRS

Multispectral
NIIRS

Distinguish between a
MIDAS and a CANDID by
the presence of refuelling
equipment (e.g., pedestal
and wing pod).
Identify radar as vehicle-
mounted or trailer-
mounted.
Identify, by type, deployed
tactical SSM systems (e.g.,
FROG, SS-21, SCUD).
Distinguish between SS-25
mobile missile TEL and
Missile Support Vans
(MSVS) in a known
support base, when not
covered by camouflage.
Identify TOP STEER or
TOPSAIL air surveillance
radar on KIROV-,
SOVREMENNY-, KIEV-,
SLAVA-, MOSKVA-,
KARA-, or KRESTA-II-
class vessels.

Count all medium
helicopters (e.g., HIND,
HIP, HAZE, HOUND,
PUMA, and WASP).
Detect deployed TWIN
EAR antenna.
Distinguish between river
crossing equipment and
medium/heavy armoured
vehicles by size and shape
(e.g., MTU-20 vs. T-62
MBT).
Detect missile support
equipment at an SS-25 RTP
(e.g., TEL, MSV).
Distinguish bow shape and
length/width differences of
SSNS.
Detect the break between
railcars (count railcars).

Distinguish between single-
tail (e.g., FLOGGER, F-16,
TORNADO) and twin-
tailed (e.g., F-15,
FLANKER, FOXBAT)
fighters.
Identify outdoor tennis
courts.
Identify the metal lattice
structure of large (e.g.
approximately 75 meter)
radio relay towers.
Detect armoured vehicles in
a revetment.
Detect a deployed TET
(transportable electronics
tower) at an SA-10 site.
Identify the stack shape
(e.g., square, round, oval)
on large (e.g., greater than
200 meter) merchant ships.

Detect automobile in a
parking lot.
Identify beach terrain
suitable for amphibious
landing operation.
Detect ditch irrigation of
beet fields.
Detect disruptive or
deceptive use of paints or
coatings on
buildings/structures at a
ground forces installation.
Detect raw construction
materials in ground forces
deployment areas (e.g.,
timber, sand, and gravel).
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NIIRS 6 [0.40 - 0.75 m GSD]

Visible
NIIRS

Radar
NIIRS

Infrared
NIIRS

Multispectral
NIIRS

Distinguish between
models of small/medium
helicopters (e.g., HELIX A
from HELIX B from
HELIX C, HIND D from
HIND E, HAZE A from
HAZE B from HAZE C).
Identify the shape of
antennas on EW/GCI/ACQ
radars as parabolic,
parabolic with clipped
comers or rectangular.
Identify the spare tire on a
medium-sized truck.
Distinguish between SA-6,
SA- I 1, and SA- 17 missile
airframes.
Identify individual launcher
covers (8) of vertically
launched SA-N-6 on
SLAVA-class vessels.
Identify automobiles as

Distinguish between
variable and fixed-wing
fighter aircraft (e.g.,
FENCER vs. FLANKER).
Distinguish between the
BAR LOCK and SIDE
NET antennas at a BAR
LOCK/SIDE NET
acquisition radar site.
Distinguish between small
support vehicles (e.g.,
UAZ-69, UAZ-469) and
tanks (e.g., T-72, T-80).
Identify SS-24 launch
triplet at a known location.
Distinguish between the
raised helicopter deck on a
KRESTA II (CG) and the
helicopter deck with main
deck on a KRESTA I (CG).

Detect wing-mounted
stores (i.e., ASM, bombs)
protruding from the wings
of large bombers (e.g., B-
52, BEAR, Badger).
Identify individual
thermally active engine
vents atop diesel
locomotives.
Distinguish between a FIX
FOUR and FIX SIX site
based on antenna pattern
and spacing.
Distinguish between
thermally active tanks and
APCs.
Distinguish between a 2-
rail and 4-rail SA-3
launcher.
Identify missile tube
hatches on submarines.

Detect summer woodland
camouflage netting large
enough to cover a tank
against a scattered tree
background.
Detect foot trail through tall
grass.
Detect navigational channel
markers and mooring buoys
in water.
Detect livestock in open but
fenced areas.
Detect recently installed
minefields in ground forces
deployment area based on a
regular pattern of disturbed
earth or vegetation.
Count individual dwellings
in subsistence housing
areas (e.g., squatter
settlements, refugee
camps).
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Appendix C

Calculation of the Variance of Kappa – VAR (Kappa)

The same mathematical representation of the confusion matrix (Table 2-2, page 51) that

was used in determining kappa (κκ - equation 2-38) is used here to determine the variance of

kappa.  This is denoted below as var(κ) in equation C-1.  An approximate large sample variance

of kappa is found using the Delta method (Congalton and Green, 1999) by the following

equation:
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Appendix D – Noise Approach and SNR Determination
It can said without any hesitation that the work conducted in attempting to add spectrally

correlated noise to an image could have been considered a separate thesis on its own.  This

proved to be a very time consuming and frustrating effort.  However, we succeeded in the

implementation of a unique approach that utilizes the difference between the initial image and a

noiseless image.  The noiseless image was produced via an MNF-transform.  The difference

between these two images is a noise cube, which accounts for all of the noise along the image

chain and it is spectrally correlated.  This approach to noise was fully discussed win Chapter 3.

This method seems quite simple and yields effective results.  In arriving at this final method, two

other approaches were first attempted.  These first two approaches were more robust and

theoretical sound yet never delivered expected results.  It is necessary that these two approaches

be discussed here in the event that more investigation into these methods is conducted and our

“oversight” is found. After these methods are discussed, a more in-depth look at the problems

associated with the final approach adopted will be discussed.

Prior to a look at these first two approaches, the reader is directed to the enclosed CD.  In

the directory “noise” one may find the different noise algorithms coded in IDL.  In fact, the

reader is asked to cross reference these program with the discussion here, since the programs

contain a lot of comments with regards to their overall approach.

Common to the two methods is the use of the AVIRIS dark signal that comes with any

image data that is ordered.  This is the dark current image (224 channels x 1 sample x 512 lines)

of the system and it is divided into two files.  The first file, “*.drk1” contains the 12 most

significant bits of data while “*.drk2” contains the 12 least significant bits of data. The data in

these two files is in digital counts.  The two dark current files are then combined to form a 24-bit

number representing the total dark signal. This total dark signal is then divided by 4096 (212) and

subsequently divided by the AVIRIS channel gains.  The result of these steps is the dark current

associated with AVIRIS in radiance units [micro-watts/cm2/nm/sr].  One problem identified at
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this step, is that these gains are provided with the AVIRIS data to convert the 16-bit image data

from DC to radiance. When each image spectrum is divided by their respective gain factor the 16-

bit integers are converted to radiance.  The problem is that we are applying these gain factors (the

only ones provided) designed for 16-bit numbers to 24-bit noise data.   The results could prove to

be wrong and this could haunt us later on.  However, not having any other gain factors to use, we

pressed on.

The next step was to spectrally resample the total dark current noise file to match the user

specified spectral resolution of the image file that was to be degraded.  Subsequently, the

covariance of this total noise data was found along with the corresponding eigenvectors and

eigenvalues of this matrix.  These above steps are common to the two approaches that will be

discussed and can be best seen in Figure D-1.

       Figure D-1 Combination of AVIRIS *.drk1 and*.drk2 files to form Noise Covariance Matrix

Noise *.drk1
12 most significant bits

[DC]

Noise Total [DC]

Noise *.drk2
12 least significant bits

[DC]

Noise Total
Radiance [micro-watts/cm2/nm/sr]

BYTE ORDER

Divide by 4096 (212) and
AVIRIS channel gains

Resampled Noise Total
Radiance [micro-watts/cm2/nm/sr]

Spectrally resample noise spectra
to match spectral resolution of
degraded image

Noise Covariance Matrix

Find Noise Covariance of
Dark Signal
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NINI Σ+Σ=Σ +

NININI •+ Σ+Σ+Σ=Σ 2

The first real attempt at adding spectrally correlated noise to an image can be entitled the

“Principal Components” approach and is depicted in Figure D-2.  This method involved finding

the covariance matrix of the entire image and adding this to the covariance matrix of the noise.

The eigenvectors and eigenvalues of this new covariance matrix, of both image and noise, were

then found.  Following this addition, the original image was subjected to a forward principal

component rotation using the eigenvectors and eigenvalues of the image.  Subsequently, an

inverse principal component rotation was applied to the image, yet this time using the eigenvalues

from the covariance matrix of image and noise. The result of this manipulation was an image with

spectrally correlated noise added to it from the AVIRIS dark current signals.  If  more noise was

needed, a scaling factor was applied to the covariance matrix of the noise prior to addition to the

image covariance matrix. The problem with this method was the assumption that the covariance

of the image plus noise was simply equal to the covariance of the image plus the covariance of

the noise as seen here:

(D-1)

Where Σ denotes a covariance matrix while I and N correspond to image and noise respectively.

Equation D-1 holds true for small values of noise but is fundamentally incorrect unless both I and

N are completely independent or otherwise uncorrelated (Johnson and Wichern, 1998).  This

cannot be true for an imaging system since both image and noise are ultimately gathered by the

same sensor.  The correct equation should read:

(D-2)

where ΣI.N is the covariance matrix between the image and the noise covariance matrices.

Obviously we run into complications of how this is computed, but this explains why this

approach was abandoned.

Other problems encountered with this approach that are found with other approaches, is

the problem of scaling the eigenvalues of the noise covariance matrix or the covariance matrix

itself so that the noise added to the initial imagery meets some user-defined SNR value.

Evidently, the scaling problem added to the 16-bit and 24-bit data scaling problem starts to

indicate a theme as to where these algorithms may have gone astray.  Additionally, the spatial

resampling of the image had to be taken into account as well.  The method used here was a

boxcar or aggregate process, which averages pixels and their corresponding noise value.  A

scaling factor for spatial degradation was also included in the process.  The programs on the

enclosed CD identify where these scaling factors were applied.
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Figure D-2: Principal Components Transform Approach to Correlated Noise Addition

Covariance Matrix of Image -Radiance
COV(Image)

Covariance Matrix of Noise - Radiance
COV(Noise)

Normalize COV(Noise) by dividing
matrix by its maximum value

Find Eigenvalues and Eigenvectors of
COV(Image)

Forward PC Transform of Image using
Eigenvalues and Eigenvectors of

Image

Find Eigenvectors and Eigenvalues of
New Covariance Matrix

COV(New)

Add Covariance of Image and Covariance of Noise
to find new Image Covariance Matrix with Noise

addition in decorrelated space

COV(New)=COV(Image)+ (LEVEL)*COV(Noise)

Use newly found Eigenvalues of
COV(New) in conducting an Inverse

PC Transform of Image

Result: Image with Spectrally
Correlated Noise at scale level

specified by user

User-specified Level of
Noise to be added

LEVEL
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The other abandoned approach, seen in Figure D-3, calculated the covariance matrix of

the dark current noise files from the AVIRIS flight data.  The eigenvalues of this covariance

matrix were determined and scaled to reflect a user-defined SNR for the degraded image. The

result is the noise variances for each band in de-correlated space.  Subsequently, 2-D arrays of

random numbers were created for each band based on a mean of zero and a standard deviation

equal to the square root of its respective eigenvalues/variance.  A series of these 2-D arrays

stacked together form a 3-D cube of de-correlated noise with a size equal to the spatial

dimensions of the image and the number of degraded spectral bands.  A Principal Components

transform was performed on this de-correlated noise cube so that the result of the transform is a

correlated noise cube.  Although this method also worked in producing noise, the covariance and

correlation matrices of the noise never matched that presented in Boardman’s work (1995), as

they theoretically should. Like the other approach, it is believed that one of the problems here is

that a scaling or conversion factor is missing in the overall calculation.  Despite a great length of

time and frustration this mystery was never fully solved.

In order to figure out the problems with the above two approaches, the covariance

produced from the dark current data was compared to the covariance matrix produced from a dark

uniform area within an AVIRIS image.  Theoretically, these two covariance matrices should be

very similar in the magnitude of each matrix element and overall structure.  Unfortunately, there

was a  difference.  Additionally, we tried matching the SNR produced via our method to that

published in the literature.  We did this by propagating a top of the atmosphere irradiance through

a MODTRAN atmosphere and reflected this off of a 50% reflector to yield a signal.  This signal

was then divided by the AVIRIS dark current file that we produced.  Theoretically, this should

yield a similar SNR curve to that published with the AVIRIS system specifications (Boardman,

1995; Vane et al., 1993).   Once again, no match.  It is firmly believed that these two methods are

theoretically sound.  The problem lies in some mysterious unknown scaling factor that would

allow us to convert the dark current files into proper and usable units from which we may

construct spectrally correlated noise.  Given the time constraints to thesis completion and the lack

of response from the AVIRIS office regarding this matter, we pressed on with the “MNF –

subtraction” method.
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Figure D-3: Random Numbers Approach to Correlated Noise Addition

Covariance Matrix of Noise
COV(Noise)

Calculate Eigenvectors and
Eigenvalues of COV(Noise)

LEVEL User-specified
Level of Noise to be

added by requested SNR

New Noise Variance = (LEVEL)2*Eigenvalue(COV(Image))

Generate 2-D Array of Random Numbers for each band.
This 2-D Array will have a Normal Distribution of:

N(mean = 0, std dev = SQRT(New Noise Variance)).
There will be one of these arrays for each spectral band.

Stack 2-D Noise Arrays together to form 3-D
Array of De-correlated Noise.

Conduct Inverse PC Transform to 3-D Array of De-
correlated Noise using Eigenvectors and

Eigenvalues determined previously.

Result: 3-D Array of Spectrally Correlated Noise

Spectrally and Spatially Resample 3-D Array of
Noise to match User-specified Degradation Levels



7

One of the major problems encountered with the noise approach that was used in this

thesis study (MNF method) was, again, related to scaling.  Resampling the noise cube to match

the spatial degradation of the subject image was necessary – but this essentially averages the

noise.  That is, the image had to be degraded spatially as well.  In order to properly add the noise

to this spatially resampled image, the noise image/array also had to be spatially resampled.  The

spatially resampling, which follows an aggregate process, averages neighbourhood pixels.  This

averaging process lowers the noise content of the resampled noise cube in comparison to the

initial noise cube.  In this respect, the initial noise cube had to be multiplied by a scaling factor

that accounts for this spatial degradation.  This scaling factor was included with the scaling factor

determined from the user-specified SNR.  This can be better seen in the programs included in the

“noise” directory on the enclosed CD. To verify that the desired SNR was produced in the final

degraded image, the average spectrum from an ROI of a bright area (eg. the beach -

approximately 30% reflector) was assumed to be signal.  This was subsequently divided by the

standard deviation of an ROI over a dark portion of the image (water).  This yields a SNR for

each channel, which was then averaged to produce a mean SNR.  This average SNR was

compared to that input by the user.  In most cases, a higher SNR had to be input by the user to

produce the desired SNR in the final degraded image.  For instance, if an image was spatially

degraded to 80 m, then an input SNR of 290 yielded a SNR of approximately 220.  However, at a

spatial resolution of 40 m, an input SNR of 380 yields a SNR of 220.   This scaling factor

problem within the program was never completely solved, yet it was always accounted for by

determining the SNR of each finally degraded image to ensure that it matched, as best as possible,

the desired SNR levels selected as part of the factorial designed experiment.  Sometimes, these

SNR values were not exact matches, with respect to each other, and this explains for the error

limits on SNR presented in Chapter 3.  For example, an image with a GIFOV of 20 m would have

a SNR of 225, while that of an image degraded to 80 m may have a calculated SNR of 220 – for a

desired SNR experimental level of 225.
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Appendix E – Summary of Collected Raw Data

AVIRIS - Rogers Dry Lake, CA

SMF SMF - SFF - SFF
Spatial
Res.

(GIFOV -
m)

Spectral
Res.
(nm)

Noise
(SNR
@30%)

SAM -
Kappa

BE - Kappa BE to
SAMref -
Kappa

GML -
Kappa

GML to
SAMref -
Kappa

Unmixing SE PD @
PFA=0.01

(avg)

PD @
PFA=0.00

1 (avg)

PD @
PFA=0.2

(avg)

PD @
PFA=

0.1 (avg)

20 110 225 0.8950 0.0000 0.0000 0.6601 0.6298 0.5394 0.6188 0.4824 0.6546 0.6182
20 110 100 0.6571 0.0000 0.0000 0.6467 0.6397 12.9222 0.6261 0.4817 0.6558 0.6182
20 110 10 0.0044 0.0000 0.0000 0.3034 0.3428 1630.7000 0.4036 0.1106 0.6278 0.5470
20 55 225 0.9564 0.3794 0.2324 0.7476 0.6117 4.6370 0.6199 0.4792 0.6536 0.6155
20 55 100 0.8146 0.3530 0.2206 0.7192 0.6190 115.6140 0.6169 0.4819 0.6540 0.6130
20 55 10 0.0023 0.0753 0.0454 0.3815 0.4241 14272.2000 0.5438 0.2596 0.4505 0.3085
20 10 225 0.9750 0.8906 0.3867 0.9999 0.5840 11.7397 0.6205 0.4753 0.6258 0.5944
20 10 100 0.8911 0.4915 0.2302 1.0000 0.5840 229.8970 0.6205 0.4753 0.6165 0.5958
20 10 10 0.0042 0.0687 0.0333 0.9999 0.5840 29356.9000 0.6205 0.4753 0.3843 0.1403
40 110 225 0.7849 0.0000 0.0000 0.6307 0.5642 0.9168 0.6017 0.4772 0.6579 0.6157
40 110 100 0.6227 0.0000 0.0000 0.6212 0.5742 12.8951 0.6088 0.4820 0.6586 0.6116
40 110 10 0.0276 0.0000 0.0000 0.2893 0.3121 1829.6300 0.3825 0.0937 0.6154 0.5054
40 55 225 0.8237 0.3628 0.2305 0.7054 0.5550 9.0211 0.5959 0.4680 0.6429 0.6014
40 55 100 0.7299 0.3373 0.2173 0.6788 0.5558 129.1830 0.5965 0.4797 0.6435 0.5997
40 55 10 0.0336 0.0700 0.0437 0.3545 0.3762 15937.5000 0.5196 0.2259 0.4348 0.2823
40 10 225 0.8330 0.7342 0.0363 0.7457 0.5211 19.1010 0.6002 0.4602 0.6244 0.5833
40 10 100 0.7856 0.4667 0.2537 0.7457 0.5211 254.3080 0.6003 0.4602 0.6183 0.5896
40 10 10 0.0084 0.0466 0.0246 0.7457 0.5211 32463.6000 0.6003 0.4602 0.3151 0.1434
80 110 225 0.6831 0.0000 0.0000 0.5807 0.5100 1.8884 0.5743 0.4472 0.6509 0.6011
80 110 100 0.5218 0.0000 0.0000 0.5585 0.5065 19.6861 0.5709 0.4492 0.6504 0.5913
80 110 10 0.0193 0.0000 0.0000 0.2229 0.2354 2354.2200 0.3470 0.0542 0.5980 0.4183
80 55 225 0.7226 0.3454 0.2256 0.6433 0.5064 19.8765 0.5844 0.4503 0.6233 0.5750
80 55 100 0.6409 0.3139 0.2091 0.6112 0.5029 166.1900 0.5700 0.4499 0.6225 0.5721
80 55 10 0.0216 0.0515 0.0297 0.3034 0.3056 20502.4000 0.4568 0.1970 0.3982 0.2142
80 10 225 0.7340 0.6167 0.3274 0.0000 0.0000 37.6322 0.5668 0.4513 0.6186 0.5601
80 10 100 0.6889 0.3790 0.2133 0.0000 0.0000 337.6670 0.5668 0.4513 0.6100 0.5697
80 10 10 0.0039 0.0305 0.0165 0.0000 0.0000 40847.3000 0.5668 0.4513 0.2195 0.1194
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AVIRIS - Rochester, NY

SMF SMF  SFF SFF
Spatial
Res.

(GIFOV
- m)

Spectral
Res.
(nm)

Noise
(SNR@

30%)

SAM -
Kappa

BE -
Kappa

BE to
SAMref -
Kappa

GML -
Kappa

GML to
SAMref -
Kappa

Unmixing -
SE

PD @
PFA=0.01

(avg)

PD @
PFA=0.001

(avg)

PD @
PFA=0.6

(avg)

PD @
PFA= 0.4

(avg)

20 110 225 0.8842 0.3392 0.4061 0.7463 0.5671 0.2263 0.5077 0.2739 0.3417 0.0473
20 110 100 0.5713 0.3380 0.3768 0.7434 0.5887 3.2502 0.4765 0.2560 0.3400 0.0542
20 110 10 0.0002 0.2044 0.2216 0.4313 0.5245 398.5200 0.4003 0.1856 0.4064 0.1850
20 55 225 0.9509 0.5348 0.4159 0.8428 0.5433 0.2395 0.5645 0.2905 0.2820 0.0266
20 55 100 0.7296 0.4657 0.3765 0.8180 0.5710 4.4890 0.4962 0.2724 0.2862 0.0406
20 55 10 0.0001 0.2404 0.2429 0.5247 0.5601 546.5260 0.4117 0.2190 0.4445 0.1953
20 10 225 0.9835 0.9367 0.4376 1.0000 0.5350 0.8408 0.6298 0.3187 0.3747 0.0367
20 10 100 0.8210 0.7785 0.4011 0.9999 0.5350 16.4545 0.6298 0.3187 0.3773 0.0431
20 10 10 0.0001 0.3888 0.2753 1.0000 0.5350 2101.0500 0.6298 0.3187 0.5792 0.1891
40 110 225 0.6649 0.3190 0.3760 0.6949 0.5019 0.3393 0.5055 0.2291 0.3245 0.0462
40 110 100 0.4449 0.3127 0.3549 0.7042 0.5312 3.2610 0.4655 0.2198 0.3237 0.0525
40 110 10 0.0136 0.1993 0.2146 0.4080 0.4381 447.3310 0.3623 0.1632 0.4159 0.1958
40 55 225 0.7024 0.4607 0.3766 0.7371 0.4712 0.4515 0.5423 0.2471 0.2786 0.0278
40 55 100 0.5120 0.4025 0.3404 0.7374 0.5041 5.0509 0.4784 0.2363 0.2797 0.0389
40 55 10 0.0077 0.2240 0.2226 0.4895 0.4404 609.8380 0.3900 0.1901 0.4377 0.2091
40 10 225 0.7231 0.7184 0.3828 0.7835 0.4733 1.3353 0.6136 0.2990 0.3406 0.0383
40 10 100 0.5960 0.6117 0.3460 0.7835 0.4733 18.4258 0.6136 0.2990 0.3442 0.0446
40 10 10 0.0001 0.3361 0.2458 0.7835 0.4733 2344.2900 0.6136 0.2990 0.5384 0.1914
80 110 225 0.5481 0.2979 0.3448 0.6374 0.4446 0.6075 0.4643 0.1733 0.2911 0.0486
80 110 100 0.3192 0.2937 0.3326 0.6344 0.4656 4.9703 0.4338 0.1690 0.2887 0.0532
80 110 10 0.0063 0.1801 0.1906 0.3800 0.3744 578.6550 0.3386 0.1195 0.4187 0.1977
80 55 225 0.5831 0.3957 0.3350 0.6127 0.3933 0.9282 0.4993 0.1905 0.2532 0.0291
80 55 100 0.3901 0.3410 0.2963 0.6236 0.4262 6.5745 0.4690 0.1804 0.2532 0.0402
80 55 10 0.0029 0.1897 0.1913 0.4145 0.3654 790.6190 0.3329 0.1296 0.4457 0.2061
80 10 225 0.6093 0.5983 0.3315 0.6110 0.3852 2.9017 0.5518 0.2332 0.3061 0.0403
80 10 100 0.4545 0.5014 0.2956 0.6110 0.3852 25.0320 0.5518 0.2332 0.3063 0.0486
80 10 10 0.0000 0.2661 0.2097 0.6110 0.3852 3012.2800 0.5518 0.2332 0.5027 0.1988
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DIRSIG – Western Rainbow

SMF SMF  SFF SFF

Spatial
Res.

(GIFOV -
m)

Spectral
Res.
(nm)

Noise
(SNR@

30%)

SAM -
Kappa

GT

SAM -
Kappa
SAMref

BE -
Kappa

GT

BE -
Kappa
Beref

GML -
Kappa

GT

GML -
Kappa
GMLref

Unmixing-
SE

PD @
PFA=0.0
01 (avg)

PD @
PFA=0.00
01 (avg)

PD @
PFA=

0.2
(avg)

PD @
PFA=
0.05
(avg)

2 113 200 0.8106 0.9973 0.9973 0.9695 0.9686 0.9954 0.0411 0.9606 0.8307 0.9880 0.2623

2 113 100 0.7987 0.9757 0.9757 0.9642 0.9644 0.9911 0.0536 0.9606 0.1461 0.9511 0.2287

2 113 10 0.0122 0.0183 0.0183 0.3789 0.8178 0.8238 1.6971 0.1299 0.0000 0.3763 0.1999

2 55 200 0.8098 0.9964 0.9126 0.9907 0.9693 0.9966 0.0315 0.9606 0.8701 0.9356 0.3293

2 55 100 0.7409 0.9187 0.9115 0.9810 0.9664 0.9941 0.0434 0.9520 0.8465 0.9266 0.3453

2 55 10 0.0001 0.0001 0.4033 0.4386 0.9219 0.9328 1.6385 0.1614 0.0197 0.3626 0.2808

2 10 200 0.8074 0.9943 0.9137 0.9947 0.9695 1.0000 0.0282 0.9606 0.9029 0.4725 0.3688

2 10 100 0.6462 0.8211 0.9135 0.9908 0.9674 0.9958 0.0351 0.9606 0.8976 0.4645 0.3599

2 10 10 0.0000 0.0000 0.5288 0.5722 0.8799 0.8857 0.8505 0.9190 0.7835 0.0895 0.0360

4 113 200 0.8688 0.7961 0.8677 0.8873 0.8893 0.9121 0.0332 0.8537 0.3969 0.8876 0.0315

4 113 100 0.8471 0.7817 0.8653 0.8854 0.8944 0.9185 0.0477 0.7915 0.0354 0.7368 0.0285

4 113 10 0.0046 0.0053 0.2896 0.3136 0.7212 0.7288 1.8914 0.0118 0.0000 0.1714 0.0285

4 55 200 0.8653 0.7948 0.8709 0.9056 0.8801 0.9047 0.0265 0.8561 0.5888 0.6812 0.1031

4 55 100 0.7580 0.7089 0.8691 0.9019 0.8938 0.9145 0.0417 0.8741 0.3555 0.6049 0.1097

4 55 10 0.0001 0.0001 0.3654 0.3905 0.8705 0.8790 1.8540 0.0630 0.0000 0.2282 0.1965

4 10 200 0.8496 0.7837 0.8689 0.9023 0.8801 0.9051 0.0262 0.9539 0.5971 0.4066 0.1089

4 10 100 0.6093 0.5810 0.8753 0.9074 0.8967 0.9166 0.0334 0.9667 0.6165 0.3378 0.0943

4 10 10 0.0000 0.0000 0.4497 0.4815 0.8317 0.8392 1.2655 0.8587 0.4496 0.2891 0.0745

8 113 200 0.8406 0.7657 0.8370 0.8482 0.8018 0.8213 0.0294 0.6288 0.1008 0.5979 0.0158

8 113 100 0.8222 0.7499 0.8326 0.8436 0.8100 0.8274 0.0422 0.5389 0.0000 0.4745 0.0346

8 113 10 0.0029 0.0030 0.2615 0.2809 0.6815 0.6879 1.6748 0.0000 0.0000 0.1697 0.0288

8 55 200 0.8317 0.7582 0.8442 0.8726 0.8014 0.8222 0.0273 0.7095 0.3242 0.4607 0.0159

8 55 100 0.6440 0.5965 0.8423 0.8685 0.8081 0.8274 0.0528 0.6417 0.0000 0.1831 0.0236

8 55 10 0.0000 0.0000 0.2670 0.2843 0.7950 0.8001 3.5095 0.1181 0.0000 0.1608 0.1236

8 10 200 0.8022 0.7335 0.8516 0.8782 0.0000 0.0000 0.0234 0.8211 0.3259 0.0755 0.0043

8 10 100 0.4787 0.4518 0.8458 0.8715 0.0000 0.0000 0.0388 0.7884 0.3259 0.2094 0.0124

8 10 10 0.0000 0.0000 0.3326 0.3587 0.0000 0.0000 2.5471 0.6083 0.0225 0.0439 0.0128
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Appendix F – Classification Algorithm Comparisons
using Kappa

In this section we wish to statistically compare the classification products from two

different degraded images. The results presented in this Appendix are those associated with the

use of equation 2-40 in Chapter 2. For each image a kappa value is calculated as is a variance of

this kappa value.  Using equation 2-40 we are able to compute a Z-score that can be used in

testing the following hypothesis set.

Ho: (κ1 - κ2)=0  (i.e. there is NO difference between classification products)

H1: (κ1 - κ2)≠0  (i.e. there is a difference between classification products)

Ho is rejected if Z ≥ Zα/2 and the alternate hypothesis of H1 is accepted.

The results are best presented in a square matrix format with the set of degraded images

making up the columns and rows.  The notation is as follows : x represents the GIFOV, s

represents spectral resolution and n represents the SNR value. For example, each cell represents

the results of the statistical hypothesis test done by indicating the level of confidence that the null

hypothesis was rejected at.  Obviously the diagonal of these matrices should indicate that there is

no statistical difference.  The colour code displayed in Table F-1 indicates the confidence levels

at which the null hypothesis was rejected.  For instance, if a cell is coloured blue, this means that

there is a difference between the product of degraded image 1 and degraded image 2 at the 95%

confidence level.   These results were produced by using the program Zcompare.c (found on the

enclosed CD) and MS Excel.

For example, this sort of hypothesis testing allows us to statistically test whether there is

a difference in the SAM product produced by an image with a spectral resolution of 20 m and
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spectral resolution of 10 nm and the SAM product from the same image with resolutions of 40 m

and 55 nm respectively.

The following tables are grouped first by image and then by classification algorithm.

With respect to each of the AVIRIS images, there are two tables for the BE and GML algorithms.

One of the tables is derived from using the initial SAM results (SAMref) as ground truth. The

other table is derived from using the initial BE and GML results of the non-degraded image as

ground truth.  These are denoted as BEref and GMLref.

The results discovered from examination of the following tables were not as remarkable

as expected.  It was anticipated that obvious patterns would be apparent which would be easily

attributed to spatial resolution, spectral resolution and noise changes.  Patterns are noticed but

they were not as earth shattering as anticipated.   This can be easily seen in the following tables

by the abundance of “white” cells which represent a rejection of the null hypothesis at an 80%

confidence limit – the lowest limit tested. This was exactly what was not expected. However,

from an examination of these tables, it can be generally concluded that any degradation of the

initial image will result in an immediate difference in the information conveyed by the produced

thematic map compared to the original.  Likewise, when one “degraded” classification product

was statistically compared to another “degraded” classification product the null hypothesis (see

section 2.7.4) was rejected the majority of the time at the lowest confidence limit tested. This

means that there is an immediate difference between classification maps produced from an image

at one level of degradation compared to another.  In other words, an image acquired with a certain

spectral resolution, spatial resolution and noise characteristics will produce a different thematic

map than the same image collected with different acquisition parameters.  In this regard, a

conclusion is drawn from this type of analysis.  Furthermore, this type of analysis has proven

itself quite useful.

The following tables are now presented with brief comments below each table, where

appropriate. An example of this type of commentary is as follows: “As seen in Table F-2, little

difference is found between those images associated with a low SNR value.  This is seen by the

rejection of the null hypothesis with noisy images at higher confidence limits. This is because the

kappa values for these noisy images is quite low.”
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Table F-1: Confidence Level Colour Key
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Table F-2: Z-Comparison of Classification Maps produced by the SAM algorithm – Rochester
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Table F-3: Z-Comparison of Classification Maps produced by the BE algorithm compared to BE
Ground Truth– Rochester

In Table F-3 it is interesting to note that those images with a spatial resolution of 20 m, a

spectral resolution of 110 nm and a SNR value of 225 or 100 show no difference in the kappa

value (and corresponding classification maps).
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Table F-4: Z-Comparison of Classification Maps produced by the BE algorithm compared to
SAMref Ground Truth– Rochester
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Table F-5: Z-Comparison of Classification Maps produced by the GML algorithm to GML
Ground Truth – Rochester

In Table F-5, there is a lack of significant difference when the image is spectrally

sampled at 10 nm despite the level of noise.  This is evident with those images having a spatial

resolution of 40 m and 80 m.  This trend starts to appear at a spatial resolution of 20 m and a

spectral resolution of 10 nm.
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Table F-6: Z-Comparison of Classification Maps produced by the GML algorithm to SAMref
Ground Truth – Rochester

In Table F-6, there is a lack of significant difference when the image is spectrally

sampled at 10 nm despite the level of noise.  This is most evident with those images having a

spatial resolution of 20 m and 40 m.
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Table F-7: Z-Comparison of Classification Maps produced by the SAM algorithm – Rogers Dry
Lake
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Table F-8: Z-Comparison of Classification Maps produced by the BE algorithm to BE Ground
Truth – Rogers Dry Lake

Interesting results from Table F-8 show that there is no difference in kappa, and the

corresponding spectral product, whenever a coarse spectral resolution of 110 nm is used for the

BE algorithm.  This lack of difference is independent of the spatial resolution and the noise

content of the image.  From cross-referencing the results shown here to Figure 4-5, we see that a

spectral resolution of 110 nm produced very low values of kappa – thereby explaining this

“checkerboard” appearance.
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 Table F-9: Z-Comparison of Classification Maps produced by the BE algorithm to SAMref
Ground Truth – Rogers Dry Lake

Again similar results here in Table F-9 as those previously seen in Table F-8.  This again

shows that there is no difference in kappa, and the corresponding spectral product, whenever a

coarse spectral resolution of 110 nm is used for the BE algorithm.  This lack of difference is

independent of the noise content of the image and the spatial resolution.
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Table F-10: Z-Comparison of Classification Maps produced by the GML algorithm to GML
Ground Truth – Rogers Dry Lake

The results in Table F-10 demonstrate that there is no difference in the values of kappa,

and their corresponding thematic maps, whenever a fine spectral resolution (like 10 nm) is used –

regardless of the noise level within the image.  This corresponds to results presented in Chapter 4

where the level of noise associated with the images did not effect the performance of the GML

algorithm as drastically as noise effected the SAM and BE algorithms. This can be attributed to

the prior application of the MNF transform to the image data and use of fine spectral resolution.
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Table F-11: Z-Comparison of Classification Maps produced by the GML algorithm to SAMref
Ground Truth – Rogers Dry Lake

The results in Table F-11 demonstrate the same concepts as those discussed for Table F-

10.  The differences between these two tables may be attributed to use of a different spectral

product as ground truth.
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Table F-12: Z-Comparison of Classification Maps produced by the SAM algorithm to Ground
Truth – Western Rainbow

Of note in Table F-12 is that there is little to no difference in the kappa values associated

with images characterized by a low SNR value (SNR =10).  In fact these cells correspond to very

low values of kappa that were initially charted in Figure 4-9.  It was in Figure 4-9 that the adverse

effects of noise with respect to SAM performance were first observed.
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Table F-13: Z-Comparison of Classification Maps produced by the SAM algorithm to SAMref
Ground Truth – Western Rainbow

The discussion regarding the behaviour seen here in Table F-13 is equivalent to the

discussion regarding Table F-12.
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Table F-14: Z-Comparison of Classification Maps produced by the BE algorithm to Ground Truth
Western Rainbow

In Table F-14 a trend begins to occur within the red circled area.  It seems that at a spatial

resolution of 4m, there is little difference between the kappa values associated with 55 nm or 113

nm spectral resolution.  This means that there is little difference in the classification maps

produced at these levels.  This trend is similar to the indicated by the blue circle in that there is a

little to no difference in those products with the original 2 m spatial resolution, relatively high

SNR (200 and 100) and a spectral resolution of either 55 or 11m nm.  This can be attributed to the

initial spectral purity of the pixels with the DIRSIG scene and lack of mixed pixels
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Table F-15: Z-Comparison of Classification Maps produced by the BE algorithm to BEref
Ground Truth – Western Rainbow
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Table F-16: Z-Comparison of Classification Maps produced by the GML algorithm to Ground
Truth – Western Rainbow

The same discussion regarding Table F-14 holds true, to a certain extent, for Table F-16 above.
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Table F-17: Z-Comparison of Classification Maps produced by the GML algorithm to GMLref
Ground Truth – Western Rainbow
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Appendix G – Contents of Enclosed CD

Enclosed with this thesis is a CD (see back cover envelope) which complements the

written portion of this thesis study.  The enclosed CD is readable on PC and UNIX platforms.

The CD contains several different items including programs used to degrade the images, batch

programs to process the imagery, initial copies of the images used in this study, all of the data

collected, statistical analysis of this data, a softcopy of this written report and defence

presentations.  The directory structure of the CD closely follows that depicted in Figure G-1.  It is

important that the file entitled “READ_ME_FIRST” is opened when using the contents from this

CD.

Figure G-1: Directory Structure of Enclosed Thesis CD

KLATT_THESIS programs

images

data

degradation_levels

reports

initial_images

spectral_lib

excel_files

minitab_files

degrade_codes

batch_codes

noise_codes



1

Appendix H – Representation of the Three –
Dimensional Trade Space of Spectral
Resolution, Spatial Resolution and Noise

As previously mentioned in Chapter 5, it would be advantageous to re-plot the graphs

shown in this thesis to better show the trade-space shared by the parameters of spectral resolution,

spatial resolution and noise.  Examples of what these plots may look like and preliminary ideas

with respect to developing a full 3-D representation of this trade-space are discussed here.

In this thesis study, plots depicting algorithm performance with respect to each individual

parameter of spatial resolution, spectral resolution and noise were constructed.  Statistical

analysis of the collected data was performed by the use of ANOVA techniques.  This analysis

included a study of the effects of both individual factors and combined factors on algorithm

performance.  However, three dimensional or surface plots were not constructed.  These would

help portray the overall trade-space that represents algorithm performance with respect to the

three tested parameters.  In Chapter 5, one of the recommendations made was that a further

analysis of the collected data is required.  This should include plotting the collected data to form

surface plots to better visualize the spectral resolution, spatial resolution and noise trade-space.

Discussed below is how this further analysis could be conducted.

With the collected data it is first necessary to construct matrices that chart one factor

against another.  An example of these types of matrices can be seen in Table H-1.  As seen in the

first matrix, in Table H-1, we are examining the trade space of spatial resolution and spectral

resolution with respect to the performance of the SAM algorithm applied to the Rochester scene.

We run into the same problem that was encountered with our previous analysis.  That is, each cell

within the matrix is an average of all the data points with that specific combination of spectral

resolution and spatial resolution from the collected raw data (Appendix E).  For example, the grey



2

box in the first matrix of Table H-1 is the combined average of all kappa values associated with a

spectral resolution of 110 nm and a spatial resolution of 20 m.  This includes each result with

SNR values of 10, 110 and 225.  Again, because of this averaging approach we can expect a high

standard deviation to be associated with the calculated means.  Nevertheless, this approach will

allow us to plot one parameter against another in order to gain a better understanding of the trade-

space.  It is fully realized that this only accomplishes charting the behaviours of just two image

collection parameters.  Attempting to plot the trade-space of all three parameters at once is a

much more difficult problem and will be discussed later.

Spatial Resolution (m) Spectral Resolution (nm)
110 55 10

20 0.4852 0.5602 0.6015
40 0.3745 0.4073 0.4397
80 0.2912 0.3254 0.3546

Spectral Resolution (nm) Noise (SNR @ 30%)
225 100 10

110 0.6991 0.4451 0.0067
55 0.7455 0.5439 0.0036
10 0.7719 0.6238 0.0001

Spatial Resolution (m) Noise (SNR @ 30%)
225 100 10

20 0.9395 0.7073 0.0001
40 0.6968 0.5176 0.0072
80 0.5801 0.3879 0.0030

Table H-1: Trade-space statistics of the SAM algorithm applied to the AVIRIS Rochester scene

These values once plotted, as seen in Figures H-1 through H-3, reveal expected and

interesting behaviours.  Examination of Figure H-1 shows the expected result of the highest value

of kappa being associated with the finest spectral and spatial resolution.  Likewise, the lowest

value for kappa in Figure H-1 occurs at the coarsest values of spectral and spatial resolution.  It is

from these points that a sloped and contoured surface occurs.  Of note is the contours (colour-

coded) that depict similar values of kappa.  For instance, as seen by the “ third-blue” range of

0.400-0.500, similar values of kappa result at 40 m spatial resolution regardless of the level of

spectral resolution.
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Figure H-1: Spatial-Spectral Resolution Trade Space – Rochester SAM

Figure H-2: Spectral Resolution – Noise Trade Space – Rochester SAM
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Figure H-3: Spatial Resolution – Noise Trade Space – Rochester SAM

The most interesting observation seen in Figures H-2 and H-3 is the stratification of the

surface plot due to changes in SNR.  The adverse effects of noise were also witnessed in Chapter

4.  This plot better shows the dependence of kappa on SNR values independent of the other

parameters it is plotted with in the trade-space.  Also of interesting note, from Figures H-2 and H-

3, is the relatively constant contours of the surface plots with respect to spectral resolution (Figure

H-2) and spatial resolution (Figure H-3).  For example, the eighth interval (0.200 – 0.300) in

Figure H-3 does not change with respect to spatial resolution – as do the other intervals.

Similar surface plots were produced for the SMF algorithm when applied to the Western

Rainbow scene.  Table H-2 is the compilation of the parameter trade-space matrices.  It is from

this table that we are able to plot the surface plots seen in Figures H-4 through H-6.

As mentioned previously, another analysis of the collected raw data should be conducted

to produce surface plots - such as those shown here.  Any future work and testing should result in

the production of both individual factor plots, as seen in the main body of this thesis, and trade-

space plots like those seen here.

However, the problem of accounting for scene dependence still remains.  Each image

tested has a unique spectral and spatial complexity associated with it.  In order to produce a single

“global” surface plot depicting parameter trade-spaces independent of scene spectral and spatial

complexity, these scene complexities must be somehow accounted for.  In order to do this, a

weighted average could be applied to the surface plots from each individual scene. For example, a
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Spatial Resolution (m) Spectral Resolution
(nm)

110 55 10

2 0.6837 0.6913 0.9468
4 0.5523 0.5977 0.9265
8 0.3892 0.4898 0.7393

Spectral Resolution (nm) Noise (SNR @ 30%)
225 100 10

110 0.8144 0.7637 0.0472
55 0.8421 0.8226 0.1142
10 0.9119 0.9053 0.7953

Spatial Resolution (m) Noise (SNR @ 30%)
225 100 10

2 0.9606 0.9577 0.4035
4 0.8879 0.8774 0.3112
8 0.7198 0.6563 0.2421

Table H-2: Trade-space statistics of the SMF algorithm applied to the Western Rainbow scene

Figure H-4: Spatial – Spectral Trade Space – SMF Western Rainbow

110

55

10

2

4

8

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

PD @ PFA = 0.001

Spectral Resolution 
(nm)

Spatial Resolution 
(m)

Spatial - Spectral Trade Space - SMF Western Rainbow

0.9000-1.0000

0.8000-0.9000

0.7000-0.8000

0.6000-0.7000

0.5000-0.6000

0.4000-0.5000

0.3000-0.4000

0.2000-0.3000

0.1000-0.2000

0.0000-0.1000



6

Figure H-5: Spectral Resolution – Noise Trade Space – SMF Western Rainbow

Figure H-6: Spatial Resolution – Noise Trade Space – SMF Western Rainbow
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surface plot depicting the trade space between spatial and spectral resolutions will be produced

for both the SAM results of the AVIRIS Rochester and Rogers Dry Lake scene.  These two

surface plots of kappa share common axis and therefore the surfaces can be combined.  The way

by which they are combined is through the use of a weighted average that takes into account the

spectral and spatial complexity of each individual scene.  Metrics to arrive at these weighting

functions may include such things as scene spectral seperability for measuring spectral

complexity and metrics derived from the spatial frequency of the image calculated by taking the

Fourier transform.  This approach at eliminating scene dependence is merely an idea at this point

in time and has never been tested.  However, an investigation into eliminating scene dependence

from the calculated image utility metrics is required and lies in the correct direction of arriving at

one global surface plot for each algorithm tested – independent of scene complexities.

As seen in the above discussion, the task of producing a surface plot depicting the trade

space of all three tested parameters simultaneously (spectral resolution, spatial resolution and

noise) has not yet been approached.  Producing a chart that demonstrates the performance of a

spectral algorithm with respect to all three parameters simultaneously is a more difficult problem.

However, extending the above approach of using coloured-contours to chart the metric values in a

three-dimensional space seems appropriate.  As seen, in Figure H-7, the three axis are spectral

resolution, spatial resolution and noise.  The coloured contours of the “triangular” surface plot

represent a range of metric values – be it kappa, squared error or probability of detection. This

approach is in the conceptual stage and has not been applied to the data.  Having said that, it is

believed that this approach, in concert with scene dependence normalization, would produce an

easily interpretable trade space of spectral algorithm performance with respect to spatial

resolution, spectral resolution and noise characteristics.
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Figure H-7: Conceptual Three-Dimensional Trade Space of Kappa with respect to Spectral

Resolution, Spatial Resolution and Noise
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