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“The supreme art of war is to subdue the enemy without fighting.”

Sun Tzu

Test of a man

“The test of a man is the fight that he makes, The grit that he daily shows, The way he

stands upon his feet, And takes life’s numerous bumps and blows. A coward can smile

when there’s naught to fear. And noting his progress bars, But it takes a man to stand

and cheer, while the other fellow stars. It isn’t the victory after all. But the fight that

a Brother makes. A man when driven against the wall, still stands erect, and takes the

blows of fate with his head held high, bleeding, bruised, and pale, Is the man who will

win and fate defied, For he isn’t afraid to fail.”

An Unknown Author

“We hold these truths to be self-evident, that all men are created equal, that they are

endowed by their Creator with certain unalienable Rights, that among these are Life,

Liberty and the pursuit of Happiness.”

Declaration of Independnce

Our deepest fear

“Our deepest fear is not that we are inadequate. Our deepest fear is that we are powerful

beyond measure. It is our light, not our darkness that most frightens us. We ask our-

selves, Who am I to be brilliant, gorgeous, talented, fabulous? Actually, who are you not

to be? You are a child of God. Your playing small does not serve the world. There is

nothing enlightened about shrinking so that other people won’t feel insecure around you.

We are all meant to shine, as children do. We were born to make manifest the glory of

God that is within us. It’s not just in some of us; it’s in everyone. And as we let our

own light shine, we unconsciously give other people permission to do the same. As we

are liberated from our own fear, our presence automatically liberates others.”

Marianne Williamson
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Abstract

Activity Based Intelligence (ABI) is the derivation of information from a series of in-

dividual actions, interactions, and transactions being recorded over a period of time.

This usually occurs in Motion imagery and/or Full Motion Video. Due to the growth

of unmanned aerial systems technology and the preponderance of mobile video devices,

more interest has developed in analyzing people’s actions and interactions in these video

streams. Currently only visually subjective quality metrics exist for determining the

utility of these data in detecting specific activities. One common misconception is that

ABI boils down to a simple resolution problem; more pixels and higher frame rates are

better. Increasing resolution simply provides more data, not necessary more informa-

tion. As part of this research, an experiment was designed and performed to address

this assumption. Nine sensors consisting of four modalities were place on top of the

Chester F. Carlson Center for Imaging Science in order to record a group of participants

executing a scripted set of activities. The multimodal characteristics include data from

the visible, long-wave infrared, multispectral, and polarimetric regimes. The activities

the participants were scripted to cover a wide range of spatial and temporal interactions

(i.e. walking, jogging, and a group sporting event). As with any large data acquisition,

only a subset of this data was analyzed for this research. Specifically, a walking object

exchange scenario and simulated RPG. In order to analyze this data, several steps of

preparation occurred. The data were spatially and temporally registered; the individual

modalities were fused; a tracking algorithm was implemented, and an activity detection

algorithm was applied. To develop a performance assessment for these activities a series

of spatial and temporal degradations were performed. Upon completion of this work,

the ground truth ABI dataset will be released to the community for further analysis.
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Chapter 1

Introduction

The intent of this work is to produce a performance assessment methodology for a

new research domain known as Activity Based Intelligence (ABI). This performance

assessment will consider spatial, temporal, and multimodal characteristics of physical

systems when detecting activities of interest.

1.1 Motivation

In today’s intelligence environment, sophisticated sensors are collecting larger volumes

of video data over ever increasing ground swaths. The purpose is to image as many

objects and actions, over as much time as possible in hopes that this aggregated data

can be efficiently analyzed to produce useful information. One drawback to this age of

ever expanding data is the need for someone to sift through the data. The increase in

both sensors and the number of unmanned aerial systems has produced an explosion

of data since 2009. Estimates indicate that each year the military acquires over “24

years’ worth [of video data] if watched continuously” [22–25]. Some have estimated that

this information grows at an exponential rate with increases in stored data expected to

exceed 1000 exabytes (1 million terabytes) biannually [26]. Military commanders have

been cited as saying “We have enough sensors,” but not enough people to analyze the

results, “automating the process is essential to managing the data flood” [24]. In some

operations, this deluge of data has already led to unfortunate consequences in theatre

[27].

1



Chapter 1. Introduction 2

This “more is better” misconception is not exclusive to our nation’s military. Generally

speaking, in today’s market it is presumed that bigger is better, regardless of where or

how the technology will be used. Camera phones provide an example. The “Mega Pixel

War” began with the inclusion of cameras in cell phones and has remained the predom-

inant quantitative metric for consumers to compare cell phone cameras to one another

[28]. More pixels and higher frame rates will produce crisper images and less choppy

videos. The increase in pixel count has, among other things, increased the necessary

storage, without a noticeable increase in quality for most consumers [29]. To their credit,

some consumers have realized that simply increasing spatial and temporal resolutions

within their cell phones does not necessarily provide them with more information from

their cell phones. Manufacturers have begun to shift their emphasis from placing more

pixels in imagery to providing more information from imagery. For example, Google is

working on a smart phone capable of performing 3D mapping of its environment [30].

Like the military commanders, some in these emerging markets have begun developing

tools to analyze the activities that occur within the data [31]. This is the domain of

Activity Based Intelligence.

In 2012 the Director of National Intelligence, James Clapper, indicated that ABI is

not something we should be striving for, it should be a way of information gathering

that we already do. [32] Further stating that “in addition to predicting actions of the

future, we should have the agility and ability to perform real-time tipping and cueing

based to current threats. That dynamic ability to respond is what we now call Activity

Based Intelligence (ABI)” [32]. In a broad sense, ABI is concerned with the actions,

interactions, and transactions of people as they move through a given scene. These

activities can be complex multi-actor situations where the actions of individuals and

groups are tracked, segmented, characterized, and analyzed for points of interest or as

simple as two people passing by one another in an area under surveillance. The premise

behind this concept is the ability to automate a series of algorithms to cue analysts

towards specific times in video streams where events of interest have occurred.

However, using any sensor to derive intelligence from a particular scene is highly con-

tingent on knowing the type of activities that are of interest. The size and speed of

a target produce requirements on the type of sensor that is capable of capturing the

actions those targets produce. Therefore there is an inherent link between what you are
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capturing and the characteristics of the sensor performing the capture. This extends to

capturing activities caused by the interactions of multiple targets.

With such a large trade space, it is nearly impossible for individuals to factor in all

necessary constraints in order to optimize sensor placement and tasking. As such, part

of the intent of this thesis is to learn what these constraints are by developing a common

dataset involving both rudimentary and complex interactions between actors and objects

in a real-world scene.

A multi-spatial, multi-temporal, multimodal tradespace will be developed to attempt to

parse the problem of activity analysis and yield quantifiable results. This research will

also lay the mathematical foundation required to research and develop future remote

sensing systems intended for ABI-type missions. Once complete, this performance as-

sessment methodology will provide mission planners with a tool to help determine which

sensor assets should be utilized when searching for a given Activity of Interest (AoI).

This implies mission planners will have access to at least one algorithm to search for

each AoI under a variety of sensor requirements. A notional activity lookup table is

depicted in Figure 1.1.

This ABI lookup table will continue to expand as researchers developed new techniques

to evaluate activities in motion imagery. Each tuned to operate under a specific set

of environmental, weather, illumination, and sensor conditions. A sufficiently robust

lookup table could allow users to operate in a variety of capacities. These may range

from law enforcement averting gang activity in urban environments to humanitarian

missions searching for survivors during natural disasters.
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AoI #1

Activity Algorithm
Sensor

Parameters

AoI #2

AoI #M

Algorithm 1

Algorithm 2

Algorithm N

Spatial
Resolution

Temporal
Resolution

Spatial
Resolution

Temporal
Resolution

Spatial
Resolution

Temporal
Resolution

Algorithm 1

Algorithm 2

Algorithm N

Spatial
Resolution

Temporal
Resolution

Spatial
Resolution

Temporal
Resolution

Spatial
Resolution

Temporal
Resolution

Algorithm 1 ...

Figure 1.1: Notional ABI Lookup Table
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1.2 System Acquisitions

The novelty of the Activity Based Intelligence domain means individuals attempting to

solve an ABI task are faced with an unknown phenomenology, but a known physical

domain. That being the case, many opt to take a route of transforming the unknown

phenomenology into one more familiar. For example, if an aerial platform were searching

for a car in an empty parking lot during the day, they need only make some assumptions

to develop a tractable problem. The car has a predefined size, high contrast with its

background, and can be seen with visible sensors. Now two metrics known as Ground

Sampling Distance (GSD) and Signal-to-Noise (SNR) can be guessed and fed into an

image quality equation. This will produce a requirement for the type of imaging system

necessary to find said target.

However, if you were interested in finding the same car performing donuts or figure eights

in the parking lot, then you would not have much to go on because the activity itself is ill-

defined. Knowing that it is still a car in the same parking lot would lead you to produce

the same metrics and image quality analysis. You may then be tempted to improve the

previous results to compensate for the unknown of the situation- lower GSD and SNR.

That has been the methodology going forward for technological advancements when the

implementation of the advancement is not understood. Figure 1.2 graphically depicts

this concept in action.

1.3 Trade Space

In the broadest sense, trade studies are used to access the complex interaction of vary-

ing capabilities with a predefined set of constraints. This modeling affords developers

the ability to determine the ideal set of conditions under which experiments, missions,

and technology should progress forward. The trade space presented here examines the

optimal conditions at which activities can be characterized given a series of remote sens-

ing modalities over a range of temporal resolutions. By focusing on a specific AoI, the

performance assessment methodology can develop a notional set of spatial, temporal,

and multimodal sensor parameters which would provide a high probability of detecting

the activity.
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1.3.1 Temporal

As technology advances, so too does the capability of capturing images at a faster rate.

It is certainly possible to continue upgrading sensor platforms with the latest technology

such that temporal resolution rates continue to increase without bound. That begs the

question, are these platforms watching objects that move at such high speeds, that it

justifies the cost of upgrading this system? It is assumed that many activities of interest

will involve people and modern day vehicles. Knowing that, it stands to reason that

each of these categories has a maximum speed at which it can move. Once a framing

system has been developed that can match the speed of the AoI, there should be less

motivation to continue increasing temporal resolution.

Furthermore, having high frame rate imaging systems has brought on the well known

issue of “big data” [22–25]. Innovative solutions are currently being developed to address

this issue, but if the problem that originally spawned it is not curbed, this could grow out

of control. There are already more hours of data being produced than will be possible

to watch in the lifetimes of our current analysts [23].

A methodical analysis of this trade space is proposed to construct the framework by

which future developers can determine the necessary frame rate of new imaging systems.

1.3.2 Spatial

As stated above, consumers of technology may not know how to assess the utility of

the technology they use. As with cell phone cameras, they may simply assume more

is better [28]. Military and law enforcement are not exceptions. The recent advent of

ARGUS, a 1.8 gigapixel DARPA initiative to design a sensor to provide a persistent

stare capability across a roughly 40 square kilometer area, has left analysts with the

same problem as the preponderance of UAV data; there is too much of it [25]. Figure

1.3 depicts a notional concept of the ARGUS imaging system.

In the author’s opinion, one goal in the development of this system was to ensure that

“all” data can be collected, rather than understanding what data needs collecting. While

this provides a modest leap in technology, it still places the burden of turning this data

into information squarely on the analysts.
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Figure 1.3: ARGUS concept image

This research will provide a methodology of assessing the spatial requirements of such

a system that links back to the mission goals.

1.3.3 Multimodal

There are many different types of sensors currently in operation and under development,

however there exist no requirements for what types of sensors will be necessary for

future intelligence capabilities. Thus far the old adage, “bigger is better” has given

the community a myopic view on how and what technologies should be developed for

tomorrow [25, 28]. This has left many without a real set of future requirements stemming

from the future operational purpose.

If a particular object of interest needed to be tracked utilizing a series of Motion Im-

agery (MI) sensor platforms, which platforms should be tasked? Along with that, what

would the requirements be if one of those platforms could be incrementally upgraded to

perform a specific mission? Part of the reason these questions exist is so the research

and development community can have a common focus on the development of future

systems.

While it is understood that innovation for innovation’s sake is an admirable and requisite

component in technology development, it should not be the only component. This
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research will develop a framework whereby future developers and requirements managers

can begin to understand the vast modality trade space. This comprehension would then

allow intelligent, informed decision making in the acquisition of future sensor platforms.



Chapter 2

Objectives

2.1 Problem Statement

Two questions drove this research: Is it possible to utilize a series of multimodal sensors

in a semi- or fully- automated fashion to develop intelligence based on the activities

within a given scene? If so, can an objective performance assessment be developed to

determine if a sensor is capable of detecting specific AoIs in motion imagery?

2.2 Research Objectives

The objectives of this research are twofold: To develop a semi- or fully-automated

method of identifying activities within motion imagery, and to produce a performance

assessment methodology whereby future researchers can understand the tradespace nec-

essary to find specific AoIs in motion imagery.

Each activity recognition algorithm would have an associated “likelihood of detection”

graph indicating how it will perform under specific spatio-temporal sensor character-

istics; Figure 2.1 depicts this notional concept. For multimodal situations, Figure 2.2

depicts a similar graph that would be used to determine the optimal combination of

sensors for detecting the AoI.

10
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Each activity would have a list of algorithms capable of performing the recognition

with varying levels of success. Sensor parameters would dictate the type of activities

that could be perceived while environmental conditions would impact the likelihood of

detecting the activity. Figure 2.3 expands the lookup table in Figure 1.1 by concentrating

on the factors that determine the utility of each technique. By the conclusion of this

research, at least one algorithm should be included for the chosen AoI.



Chapter 2. Objectives 13

A
o
I
#
1

A
ct
iv
it
y

A
lg
o
ri
th
m

S
en
so
r

P
ar
a
m
et
er
s

E
n
v
ir
o
n
m
en
t

C
o
n
d
it
io
n
s

D
et
ec
ti
o
n

L
ik
el
ih
o
o
d

U
ti
li
ty

D
ec
is
io
n

A
lg
o
ri
th
m

1

A
lg
o
ri
th
m

2

A
lg
o
ri
th
m

N

S
p
a
ti
a
l

R
es
o
lu
ti
o
n

T
em

p
o
ra
l

R
es
o
lu
ti
o
n

M
o
d
a
li
ti
es

W
ea
th
er

&
Il
lu
m
in
a
ti
o
n

D
et
ec
ti
o
n

S
u
rf
a
ce

Y
es
/
N
o

S
p
a
ti
a
l

R
es
o
lu
ti
o
n

T
em

p
o
ra
l

R
es
o
lu
ti
o
n

M
o
d
a
li
ti
es

W
ea
th
er

&
Il
lu
m
in
a
ti
o
n

D
et
ec
ti
o
n

S
u
rf
a
ce

Y
es
/
N
o

..
.

F
ig
u
r
e
2
.
3
:
N
o
ti
o
n
a
l
A
lg
o
ri
th
m

L
o
o
k
u
p
T
ab

le
fo
r
a
G
iv
en

A
ct
iv
it
y



Chapter 2. Objectives 14

2.3 Tasks

Due the unique nature of this work, there exists no dataset which can be used to ac-

complish the research. Thus, including designing an experiment there are several steps

required to complete the objectives of this research; they are:

1. Design ABI Experiment

2. Camera Calibration

3. Video Stabilization

4. Registration

5. Data Fusion

6. Tracking

7. Activity Recognition

8. Tradespace Development

2.4 Contributions to the Field

There currently exists no method, semi- or fully-automated, whereby activity based

intelligence is developed from multi-sensor multimodal data. In addition, while there

has been preliminary research into the area of activity based intelligence, there has been

no consideration of the possibility of using multimodal data to augment standard visible

and panchromatic sensors.

Specific contributions to the field of study will be:

• Development of a multimodal ABI dataset

• An end-to-end ABI evaluation of one activity

• Development of a limited multimodal ABI trade space

• Setting the foundation for an ABI lookup table



Chapter 3

Background

3.1 Activity Based Intelligence

Activity Based Intelligence is a developing field, notionally defined as: the inference of

information from agent based interactions, occurring in a multi-temporal environment.

It is primarily concerned with the actions, interactions, and exchanges of people within a

scene of interest. These interactions and exchanges are then used to develop relationships

between the individuals in the scene to identify actions and patterns of life.

It should be emphasized that ABI is dependent on the temporal nature of datasets. If

you were to take a still photo of a crowd at the mall, it could be difficult or impossible to

determine the relationships of entities within the scene. If instead if you were to capture

video data, these relationships may become much more apparent. Another important

aspect of temporal data is the resolution at which the data is acquired. Using the same

mall example, if you took an image a day, you would perceive a very different world than

if you were to take an image every hour. The same could be said decreasing from hours to

minutes, and even minutes to seconds. Time lapsed photography provides an example

of this concept. Figures 3.1 and 3.2 depict two forms of time lapsed photography at

different rates. The first is an image of a daylily blooming over a period of 24 hours

whereas the second image is that of an individual performing a stunt on a motorized

bike likely lasting no longer than several seconds.

15
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Figure 3.1: Kodak capture of a blooming flower [1]

Figure 3.2: Bike stunt [2]

The dependence on the temporal nature of the activity and the capabilities of the sensor

are key to understanding what type of events can be captured with a particular imager.

Section 4.4 will discuss how the actors and objects, in this dataset, were utilized and

why.
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3.1.1 State of the Field

Currently, operational ABI is a manually intensive process whereby analysts sift through

large quantities of video data to develop the relationships among the individuals within

the scenes. In the context of intelligence, it could be stated that this type of video ana-

lytics traces its roots to the days of photo interpretation of images from satellite imaging

systems. Analysts were needed to sift through the imagery to determine the state of

a nation based on its military assets, infrastructure, and even its crop production. As

technology advanced, faster frame rates were possible, leading to what we now call mo-

tion imagery or video data. The proliferation of imaging equipment and video cameras

has led to many forms of analysis in attempts to characterize our environment. Ther-

mal images of blocks in New York City can be used to determine heat dissipation rates

and associated electricity consumption [33]. Also, the advent of social media has led to

network-based analysis that relates digital “traffic” to real world events [34]. A recent

article in The Economist spoke to the ease of acquiring and launching nanosatellites

carrying terrestrial (smartphone) imaging equipment [35]. This proliferation of technol-

ogy has led to an explosion of analysis capabilities. The state of the field is constantly

evolving.

3.2 Quality Metrics

Quality metrics are used as a method of evaluation to determine the utility of a par-

ticular technology to accomplish a task. Some common quality metrics of modern age

computing are processing power (CPU clock speed), memory, and graphics capabilities.

In cell phones, a set of quality metrics may include camera pixel size, screen resolution,

or on-board storage space. In cars, quality metrics of performance may include top

speed or torque.

With each technological breakthrough, people want a method of comparing similar prod-

ucts and ultimately knowing which product is better, or the best value. One of the recent

issues with quality metrics stems from a consumerism which recognizes more as better.

More processing power, higher pixel counts, and increased torque values drive our idea

of performance in today’s market, and yet those metrics may be irrelevant to our needs.



Chapter 3. Background 18

Since the inception of the cell phone camera in the early 2000s, mobile device manufac-

turers have engaged in what has been called “the megapixel war” [36]. This competition

amongst manufacturers began when increasing the pixel count produced a noticeable

improvement in the quality of images from cell phones. As technology improvements

allowed manufacturers to place more pixels in cameras, consumers continued to assume

that more pixels meant a product was better. The caveat to this trend was yes, more

pixels can be better, but only if you need them. The continual improvement of imaging

sensor technology and the need for its evaluation led to the development of a quality

metric to compare image quality in a more objective manner. This metric was called

the General Image Quality Equation (GIQE).

3.2.1 General Image Quality Equation (GIQE)

In order to quantify image quality, a regression-based model was developed using a col-

lection of fundamental image and sensor attributes. This general image quality equation

(GIQE) utilizes these attributes to produce a numerical rating on what is now known as

the National Imagery Interpretability Rating Scale (NIIRS). These attributes are: scale,

as expressed via the Ground Sample Distance of the system; sharpness, as measured

by the Modulation Transfer Function (MTF) of the image; and Signal-to-Noise (SNR).

Leachtenauer, et al developed the analytical form of of NIIRS as

NIIRS = 10.251−a log10GSDGM+b log10RERGM−(0.656·H)−(0.344·G/SNR) (3.1)

where a, and b are regressed coefficients, RER is relative edge response, H is a cor-

rective overshoot parameter derived from the Modulation Transfer Function Correction

(MTFC), and G is the noise gain of the system. This form was developed by having 10

image analysts rate 359 visible images for their quality. The regression of their results

had an R2 value of 0.934 and standard deviation of 0.38 which indicates the equation to

be a good fit for the data.



Chapter 3. Background 19

3.2.1.1 Ground Sample Distance (GSD)

Ground sampling distance is defined as the smallest distance between points on the

ground that is distinguishable by a sensor. It is a geometric relationship using similar

triangles that relates the GSD and the pixel pitch through the altitude (Alt) of the

sensor and the focal length of the optical train. This relationship is calculated by

GSD

Alt
=

p

f
(3.2)

where Alt is the altitude of the sensor, p is the pixel pitch, and f is the focal length.

If a sensor is looking off nadir, a slant range term R, and corresponding angle, replaces

the altitude term as show in equation (3.3)

R = Alt/cos θ (3.3)

where θ represents the look angle of the system. Note this works even at nadir as a zero

angular extent forces the cosine term to become one, thereby causing the slant range

to simply become the altitude. Equation (3.2) represents the case where the sensor is

nadir looking and the slant range equals the altitude. However, equation (3.4) is a more

accurate representation.

GSD

R
=

p

f
(3.4)

The geometric GSD is calculated by multiplying the x and y components of the GSD

and applying an angular extent α for non-square focal plane arrays. This is represented

in its analytical form as

GSDGM = [GSDX ·GSDY · sinα]1/2 (3.5)
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3.2.1.2 Relative Edge Response (RER)

The relative edge response is a measure of how fast the pixel values change when going

from one side of an edge to another. Figure 3.3 depicts this measure.

Figure 3.3: Relative Edge Response [3]

This value (RER) is the slope of the system’s edge response.

3.2.1.3 Overshoot correction (H)

The overshoot-height-based term accounts for the overshoot of the edge-response func-

tion due to the Modulation Transfer Function Correction (MTFC) factor. Take Figure

3.4 as an example. Case 1 occurs before the MTFC is applied to the dataset and case 2

after the correction has been applied. Using position 1.5 there is a 0.4 difference in the

edge response of the two cases. This overshoot is captured in the overshoot correction

term H. This term is measured over a range of 1.0 to 3.0 pixels from the edge in quarter

pixel increments.

Figure 3.4: Overshoot [3]
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3.2.1.4 Noise Gain (G)

This term accounts for the noise gain induced by the MTFC and is computed by taking

the Root Sum Square (RSS) of the MTFC Kernel as

G =

⎡
⎣ M∑

i=1

N∑
j=1

(kernalij)
2

⎤
⎦

1/2

(3.6)

3.2.1.5 Signal-to-Noise Ratio (SNR)

The SNR is described as the “ratio of the noise of the dc differential scene radiance to

the noise of the rms electrons computed before the MTFC and after calibration.” [3]

The analytic form was developed as

SNR = S/N (3.7)

where S is the mean or peak signal of an image and N is the corresponding noise.

3.2.2 National Image Interpretability Rating Scale (NIIRS)

The National Image Interpretability Rating Scale (NIIRS) is the product of the GIQE

equation, and is a method of mapping the results of the equation to real world items. It

is a 10-level rating scale which analysts now use to quantitatively indicate their imaging

needs. The full scale is presented in Figure 3.5.
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Table 1. Visible NIIRS Operations by Level—March 1994a

Rating Level 0
Interpretability of the imagery is precluded by obscuration,
degradation, or very poor resolution.

Rating Level 1
Detect a medium-sized port facility and�or distinguish be-
tween taxiways and runways at a large airfield.

Rating Level 2
Detect large hangars at airfields.

Detect large static radars �e.g., AN�FPS-85, COBRA DANE,
PECHORA, HENHOUSE�.

Detect military training areas.

Identify an SA-5 site based on road pattern and overall site
configuration.

Detect large buildings at a naval facility �e.g., warehouses,
construction halls�.

Detect large buildings �e.g., hospitals, factories�.

Rating Level 3
Identify the wing configuration �e.g., straight, swept, delta�
of all large aircraft �e.g., 707, CONCORD, BEAR, BLACK-
JACK�.

Identify radar and guidance areas at a SAM site by the con-
figuration, mounds, and presence of concrete aprons.

Detect a helipad by the configuration and markings.

Detect the presence�absence of support vehicles at a mobile
missile base.

Identify a large surface ship in port by type �e.g., cruiser,
auxiliary ship, noncombatant�merchant�.

Detect trains or strings of standard rolling stock on railroad
tracks �not individual cars�.

Rating Level 4
Identify all large fighters by type �e.g., FENCER, FOXBAT,
F-15, F-14�.

Detect the presence of large individual radar antennas �e.g.,
TALL KING�.

Identify, by general type, tracked vehicles, field artillery,
large river crossing equipment, wheeled vehicles when in
groups.

Detect an open missile silo door.

Determine the shape of the bow �pointed or blunt�rounded�
on a medium-sized submarine �e.g., ROMEO, HAN, Type
209, CHARLIE II, ECHO II, VICTOR II�III�.

Identify individual tracks, rail pairs, control towers, switch-
ing points in rail yards.

Rating Level 5
Distinguish between a MIDAS and a CANDID by the pres-
ence of refueling equipment �e.g., pedestal and wing pod�.

Identify radar as vehicle-mounted or trailer-mounted.

Identify, by type, deployed tactical SSM systems �e.g.,
FROG, SS-21, SCUD�.

Distinguish between SS-25 mobile missile TEL and Missile
Support Van (MSV) in a known support base, when not cov-
ered by camouflage.

Identify TOP STEER or TOP SAIL air surveillance radar on
KIROV-, SOVREMENNY-, KIEV-, SLAVA-, MOSKVA-,
KARA-, or KRESTA-II-class vessels.

Identify individual rail cars by type �e.g., gondola, flat, box�
and�or locomotive by type �e.g., steam, diesel�.

Rating Level 6
Distinguish between models of small�medium helicopters �e.g.,
HELIX A from HELIX B from HELIX C, HIND D from HIND
E, HAZE A from HAZE B from HAZE C�.

Identify the shape of antennas on EW�GCI�ACQ radars as
parabolic, parabolic with clipped corners or rectangular.

Identify the spare tire on a medium-sized truck.

Distinguish between SA-6, SA-11, and SA-17 missile air-
frames.

Identify individual launcher covers �8� of vertically launched
SA-N-6 on SLAVA-class vessels.

Identify automobiles as sedans or station wagons.

Rating Level 7
Identify fitments and fairings on a fighter-sized aircraft �e.g.,
FULCRUM, FOXHOUND�.

Identify ports, ladders, vents on electronics vans.

Detect the mount for antitank guided missiles �e.g., SAGGER
on BMP-1�.

Detect details of the silo door hinging mechanism on Type
III-F, III-G, and III-H launch silos and Type III-X launch con-
trol silos.

Identify the individual tubes of the RBU on KIROV-, KARA-,
KRIVAK-class vessels.

Identify individual rail ties.

Rating Level 8
Identify the rivet lines on bomber aircraft.

Detect horn-shaped and W-shapted antennas mounted atop
BACKTRAP and BACKNET radars.

Identify a hand-held SAM �e.g., SA-7�14, REDEYE, STINGER�.

Identify joints and welds on a TEL or TELAR.

Detect winch cables on deck-mounted cranes.

Identify windshield wipers on a vehicle.

Rating Level 9
Differentiate cross-slot from single slot heads on aircraft skin
panel fasteners.

Identify small light-toned ceramic insulators that connect wires
of an antenna canopy.

Identify vehicle registration numbers �VRN� on trucks.

Identify screws and bolts on missile components.

Identify braid of ropes �1 to 3 inches in diameter�.

Detect individual spikes in railroad ties.

aThe information in this table was previously published in Ref. 3.

10 November 1997 � Vol. 36, No. 32 � APPLIED OPTICS 8323

Figure 3.5: National Image Interpretability Rating Scale (NIIRS) [3]

This rating scale merges the metrics used by intelligence analysts into a numerical clas-

sification in order to relate their needs to technical systems. Four categories are utilized
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by analysts in this assessment:

• Detection: Identify object from its surroundings

• Classification: target vs. non-target

• Recognition: functional category (i.e. tank)

• Identification: Target is (i.e. this is a M60)

This broad-based categorization works well on traditional imaging systems operating

in the visible regime. As a result of its ubiquotous use, NIIRS began to drive R&D

of future systems by indicating whether a system would or would not be able to meet

a specific imaging need. It also led to a few other NIIRS-esque rating scales specific

to other modalities. This includes an IR-NIIRS, a Multispectral NIIRS, and a Video

NIIRS. Neither the IR nor the Multispectral NIIRS will be discussed here, but their

rating scales are included in appendix A.

3.2.3 Video NIIRS (VNIIRS)

In what appeared to be a natural extension, the still imagery quality metric was ex-

panded for use within the multi temporal domain by Young et al [4]. However, by

simply evaluating motion imagery (MI) by still imagery metrics, you lose the inherent

advantage gained by having a time changing series. Young noted this, saying: “rat-

ing motion imagery using only static criteria lacks content validity ... motion imagery

exploitation is concerned with timing and sequence of events” [4].

It is this concept of a “sequence of events” that lead to the development of activity based

intelligence, as we are concerned with how objects act and interact with one another.

In an attempt to apply a quantitative set of criteria to events of interest Young et al [4]

came up with a set of VNIIRs task requirements; which can be seen in Figure 3.6. They

developed this scale by having 63 motion imagery analysts judge 13 images from a set of

73 in total. The specifics of the analysis can be found in the Young et al paper entitled

Video National Imagery Interpretability Rating Scale Criteria Survey Results [4]. The

regression performance indicated one statistical deviation of a t-value equivalent to 0.02.
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Table 2  Selected V-NIIRS Criteria Frame Rate Requirement 
(10X Temporal Sampling Rule) 

V-
NIIRS 

V-NIIRS Task V-NIIRS Criteria Object V-NIIRS Criteria Action  
(implied in italics) 

Maneuver/
Event 

Duration 
(sec) 

Minimum 
Sampling 

Rate (FPS) 
(10X Rule) 

3 Visually track  convoy  Driving in formation 2.7 4 
4 Visually track  tracked vehicles  Driving in formation 2.1 5 

5 Visually confirm the turret on a main battle tank 
as the main gun slews during training, 

live fire exercise, or combat 1.6 6 

6 Visually track  
an identified vehicle type: car, SUV, 

van, pickup truck 
driving independently 

1.2 8 

7 Visually confirm unidentified deck-borne objects 
as they are dumped over the side or 

stern 0.9 11 

8 Visually confirm 
an individual holding a shoulder fired 

anti-aircraft missile 
as the launcher is raised to the aimed 

firing position 0.7 14 

9 Visually confirm 
the body & limbs of an individual 
holding a long rifle or sniper rifle 

as the weapon is raised to an aimed 
firing position -either standing, 

sitting, or prone 0.6 18 

10 Visually confirm 
the hands and forearms of an individual 

holding a compact assault weapon or 
large frame handgun 

as the weapon is raised to an aimed 
firing position -either standing, 

sitting, or prone 0.4 23 

11 Visually confirm 
individual's fingers and hands while 

aiming a shoulder fired anti tank 
missile 

as they release safety and arm the 
device   

0.3 30 

Figure 3.6: Video National Image Interpretability Rating Scale (NIIRS) [4]

Along with this rating scale, there was an attempt align the NIIRS and VNIIRS criteria.

Figure 3.7 depicts this comparison of scales. The VNIIRS system was the first attempt

at driving system requirements from the actions of objects and individuals within the

scene.

Young also noted that utilizing time series data can lead to advances in spatial recog-

nition: “activity discernment can lead to object recognition at spatial resolution levels

less than what is required in still imagery.” [4] In fact, he and his co-authors indicated

an improvement of object recognition of up to 1/4 of a NIIRS rating [4]. It is currently

being used to assess compression and codecs [37] and is leading to the development of a

Motion Image Quality Equation (MIQE) [38, 39].

VNIIIRS defines image quality by asking two questions:

1) Can you classify the objects within the scene?

2) Can you recognize the actions occurring between the objects?

By reviewing Figure 3.6 it should become apparent that the metrics of classification and

recognition are solely based on subjective visual recognition of data in the visible regime.

While this concept of a video rating scale gives analysts a way to compare video streams,

it still locks the analysts into the loop by requiring human recognition. The explosion of

video data discussed in Section 1.1 means that this manually intensive process will only
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Table 1  Comparison of Selected NIIRS Criteria to V-NIIRS  

 

N
I 
I 
R
S 

NIIRS Criteria 
Task and Object

NIIRS 
Criteria 
Context 

V-
NI
IR
S

V-NIIRS 
Task and 

Object  

V-NIIRS Criteria 
Object 

V-NIIRS Criteria 
Action (implied in 

italics) 

V-NIIRS Criteria 
Context 

3 
Identify a large 
surface ship by 

type. 
In port. 3

Visually track 
the 

movement of 

Convoy of intermediate-
range ballistic missile 

(IRBM) transporter and 
support vehicles 

Making turn 
on an improved road 

near missile base, launch 
site or silo 

4 

Identify, by 
general type,  

tracked vehicles, 
field artillery, 

large river 
crossing 

equipment 

when in 
groups 

4
Visually track 

the 
movement of 

individual,  tracked 
engineering vehicles and 

wheeled prime 
mover/trailer 
combinations 

Making turn 

during tactical road 
march/deployment  in 

the field or on an 
unpaved road 

5 

Distinguish 
between SS-25 
mobile missile 

TEL and Missile 
Support Vans 

(MSVs)  

in a known 
support 

base, when 
not 

covered by 
camouflage

. 

5
Visually 

confirm the 
rotation of 

the turret on a main 
battle tank 

as the main gun slews 
during training, live fire 

exercise, or combat 

at a gunnery range, field 
deployment site, or battle 

zone 

6 

Identify 
automobiles as 

sedans or station 
wagons 

- 6
Visually track 

the 
movement of 

an identified vehicle 
type: car, SUV, van, 

pickup truck 
driving independently 

on roadways in medium 
traffic 

7 
Identify individual 

railroad ties 
- 7

Visually 
confirm the 

movement of 

unidentified deck-borne 
objects 

as they are dumped over 
the side or stern 

of any surface ship or 
fishing vessel at sea 

8 

Identify a hand-
held SAM (e.g. 

SA-7/14, 
REDEYE, 
STINGER) 

- 8
Visually 

confirm the 
movement of 

an individual holding a 
shoulder fired anti-

aircraft missile 

as the launcher is raised 
to the aimed firing 

position 

in the field, in a 
defensive position, or in 
the vicinity of an airfield 

or airport approaches 

9 
Identify cargo (e.g. 

shovels, rakes, 
ladders) 

in a open-
bed, light-
duty truck. 

9
Visually 

confirm the 
movement of 

the body & limbs of an 
individual holding a long 

rifle or sniper rifle 

as the weapon is raised 
to an aimed firing 

position -either standing, 
sitting, or prone 

At a practice range, 
during live fire exercise, 
or during an engagement

. 

- - - 10 
Visually 

confirm the 
movement of 

the hands and forearms 
of an individual holding 

a compact assault 
weapon or large frame 

handgun 

as the weapon is raised 
to an aimed firing 

position -either standing, 
crouched, or prone 

At a practice range, 
during live fire exercise, 
or during an engagement

   11 
Visually 

confirm the 
movement of 

individual's fingers and 
hands while aiming a 

shoulder fired anti tank 
missile 

as they release safety and 
arm the device 

at a tactical position in a 
rural or urban 
environment 

Figure 3.7: VNIIRS - NIIRS Comparison [4]

become worse as time goes on. This rating scale also lacks the novelty of incorporating

higher order interactions. It attempts to address the needs of the community for which it

was made, by simply extending the previous NIIRS categories into the temporal domain

of motion imagery.

Action vs. Activity Recognition Since the word “action” has come up, a digres-

sion is made to make a distinction between action recognition and activity recognition.

Action recognition is generally concerned with the motions of a single individual within
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a given sequence, whereas activity recognition is concerned with the interactions that

individuals have in the environment and with others in the scene. An example of action

recognition would be identifying someone waving their hand, whereas activity recogni-

tion would be concerned with the activity of two people saying “hello” by waving their

hands.

Motion Imagery vs. Full Motion Video Motion imagery is a term used to

describe any dataset of imagery that was captured at a rate of 1Hz or faster. Historically

speaking, Full Motion Video (FMV) has been a subset of motion imagery that operates

at frame rates similar to those of televisions; between 24Hz and 60Hz. [40]

3.2.3.1 Spatial Degradations (GSD vs GRD)

In order to discuss the spatial degradations that occurred in this dataset, a distinction

between Ground Sampling Distance (GSD) and Ground Resolved Distance (GRD) must

first be made. Rearranging Equation (3.4) in terms of GSD

GSD =
R · p
f

(3.8)

where the slant range, pixel pitch, and focal length are represented by R, p, and f

respectively. By keeping the slant range constant, it is possible to change the GSD by

either altering the pitch pitch, focal length, or some combination thereof. Altering the

pixel pitch effectively changes the sampling rate at which the detector can physically

collect data. Assuming a unity fill factor, decreasing the pixel pitch has the effect of

sampling the ground at smaller distances, thereby allowing distinction between smaller

objects. Increasing the pixel pitch has the opposite effect of reducing the distinction

between objects. For example, with a 5cm GSD, two objects placed 6cm apart are

generally distinguishable, whereas the same two objects would not distinguishable if the

GSD were changed to 10cm.

Using a non-exotic lens, the focal length affects the angular extent (FOV) that can be

perceived within the scene. As the focal length increases, the FOV decreases, effectively

spreading the information in the smaller FOV across the focal plane array. This spread
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of information stipulates that the objects within the scene are occupying more pixels,

effectively being sampled more often. Figure 3.8 depicts this concept using 18, 34, and

55mm lenses [5].

Figure 3.8: Focal Length and FOV [5]

In order to effectively simulate a reduction in GSD using one of the two aforementioned

parameters, a few steps would need to be completed. Reducing the pixel pitch requires

a general blurring of the data and downsampling to simulate the loss in sampling and

mixing of the information. For example, performing a 2x reduction could be done by

blurring a 2x2 square and downsampling it to a 1x1 pixel. The blur could be done by

taking a mean between the four pixels or a Gaussian of the pixels within a larger extent

but still nearby. Reducing the GSD by focal length requires a similar procedure, whereby
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the image is blurred and down sampled, but differs in that it adds image content around

the edges of the original image. This would essentially reduce the size of this image and

place it within a larger image. The difference between the two techniques lies in the size

of the focal plane array. Reducing the pixel pitch generally means reducing the size of

the array, again assuming a unity fill factor, as larger pixels would be used to sample

the image. However, reducing the GSD by increasing the focal length leaves the array

unchanged by increasing the FOV of the sensor.
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3.3 Multimodal Trade Space

There are several modalities that could be exploited to characterize AoI within a given

scene. The applicable and available modalities for the problem at hand include: panchro-

matic imaging, multispectral imaging, hyperspectral imaging, polarimetric imaging,

thermal imaging, Light Detection And Ranging (LiDAR) imaging, and Synthetic Aper-

ture Radar (SAR). In the context of this research, each has its own strengths and

weaknesses, which will be discussed below. This review is designed to provide a brief

overview of each modality in order to evaluate its perceived utility in activity recog-

nition. Once chose the modality will be incorporated into an experiment designed to

develop the data for this research.

3.3.1 Panchromatic

Panchromatic imaging provides a good basis when working across different modalities for

several reasons. Since it integrates across a broad band, the SNR of your imaging system

is higher than many other sensing modalities. This increase in SNR can inversely allow

for detector designers to decrease the pixel sizes within the detector, thereby increasing

the GSD of the sensor. This increase provides a higher spatial resolution, which can

make spatial feature detection and multimodal registration a more tractable task. It

is, however, its broadband nature that reduces its usefulness in distinguishing unique

characteristics of objects within the scene. As RIT currently possesses these capabilities,

both in sensor and in simulation, this modality will be included in this research.

3.3.2 Multispectral

Multispectral imaging provides a method whereby objects within a given scene can more

easily be discriminated due to the differences in their spectral signatures. This signature

can be used to track objects spectrally, which is helpful when spatial segmentation may

not be possible. Since RIT maintains these capabilities, both in sensor and in simulation,

this modality will be included in this research. As a point of reference, there are cur-

rent efforts by Bartlett et al [41] to develop motion imagery hyperspectral/polarimetric

capture systems.
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Ideally, the more distinction in signatures the more able the tracking algorithm will be

to keep targets separate from one another. Thus hyperspectral imaging would be more

desirable than multispectral imaging. However, RIT did not have a readily available

hyperspectral imager at the time of this research. It has in the past utilized such

technology, but the necessary time to acquire and utilize said devices was prohibitive.

Therefore, multispectral imaging will suffice.

3.3.3 Polarimetric

Polarimetric imaging provides a method of discriminating objects whose surface and sub-

surface reflections cause light to change its orientation relative to its surrounds. This

affords ready discernment of manmade objects from natural backgrounds [42]. Other

research has shown the ability to perform object classification within a scene [43]. This

modality was incorporated into this experiment for its ability to distinguish targets from

natural backgrounds and due to its ability to separate objects of differing polarimetric

characteristics.

Polarimetric imagery can be developed by placing a polarimetric filter in front of an

imaging device. A common configuration is to have a spinning wheel with two, three,

or four filters with varying angular filter orientations. Linear filters are created by

placing parallel bars of conductive material at close intervals inside of a thin transmissive

lens. Orienting the bars horizontally causes them to absorb horizontal electromagnetic

(EM) radiation and transmit vertical EM radiation. By controlling the orientation of

the filter it is possible to determine if objects in the environment favor a particular

orientation. The modified Pickering method combines this orientation information to

develop a polarization vector known as the Stokes vector [42]. This is written as

S0 =
(E0 + E45 + E90 + E135)

2

S1 = E0 − E90

S2 = E45 − E135

(3.9)
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S =

⎡
⎢⎢⎢⎣
S0/S0

S1/S0

S2/S0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1

S̃1

S̃2

⎤
⎥⎥⎥⎦ (3.10)

with E0 through E135 representing the image as seen through the four polarization filters.

The numerical designation is the angle of the polarized filter. S0 represents the total

energy of the image, S1 represents the energy difference between horizontal and vertical

polarization states, and S2 represents the difference between the energy in the 45 degree

and 135 degree states.

A unique aspect of this modality is the ability to fuse multiple polarimetric orienta-

tions together to develop more advanced products. Two of these include the Degree of

Polarization (DoP) and Degree of Linear Polarization (DoLP) as described by

DoP =

√
S2
1 + S2

2 + S2
3

S0
(3.11)

DoLP =

√
S2
1 + S2

2

S0
(3.12)

DoP ≈ DoLP =

√
S2
1 + S2

2

S0
(3.13)

with E0 through E135 representing the image as seen through the four polarization filters.

The numerical designation is the angle of the polarized filter. S0 represents the total

energy of the image, S1 represents the energy difference between horizontal and vertical

polarization states, and S2 represents the difference between the energy in the 45 degree

and 135 degree states.

It is common for the four polarimetric images to be taken at different times due to the

need to change filters between images. This process is called a “Division of Time” and

has the benefit of using the entire focal plane array to collect data. The downside is the

need to register the images to perform the DoLP and DoP evaluations. Recent research

is taking advantage of the of ability to place small filters directly on the focal plane
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array, alleviating the need for registration [41]. This “Division of Area” has the benefit

of capturing data for all four polarization states at once. A drawback is the need to

demosaic the output to reconstruct four full polarimetric images.

3.3.4 Thermal

Thermal imaging affords the capability of using temperature and emissivity as distin-

guishers between objects within a given scene. This is beneficial to this research for two

reasons. First, since objects will not be placed in the scene until the time of the exper-

iment, their innate temperatures will likely be different from those in the background.

Second, specific objects can be chosen such that their emissivities afford them distin-

guishing characteristics from the surrounding scene. Within an ABI scenario, this data

can be useful in performing multimodal registration, tracking, and activity recognition.

3.3.5 Light Detection and Ranging (LiDAR)

Light Detection and Ranging (LiDAR) provides a high resolution 3-dimensional model of

an environment of interest. This could be useful in distinguishing specific objects within

a scene, as it provides depth to the imagery. A few challenges exist with using this

dataset though. First, the currently available LiDAR sensors require multiple seconds

to build up a full 3D model of the scene. This prevents it from being useful in detecting

activities that occur on time scales less than its ability to capture scenes. While a

problem, that would not prevent it from being used. Further, regarding its capture rate,

it is unclear how moving objects within the scene would affect the scene capture. The

second challenge is incorporating LIDAR data with the other modalities. This would

require registration and fusion of 2- and 3- dimensional data. This is possible by either

creating point clouds from the 2D imagery or directly fusing the 2D imagery onto the

3D points of the LiDAR dataset [44–47]. Rather than fusing 2D imagery with 3D point

clouds, it may be possible to perform tracking on the LiDAR data itself [48, 49]. While

possible, recent work has indicated that neither of these techniques are mature enough

for use within the temporal constraints of this thesis.
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3.3.6 Synthetic Aperture Radar (SAR)

SAR provides an interesting capability. There has been research conducted into tracking

and target recognition of manmade objects in urban and non-urban scenes which would

make SAR a valuable addition to this dataset [50–53]. In order to incorporate this

modality there would need to exist a multimodal dataset wherein specifically coordinated

activities have been captured by SAR and other modalities concurrently. An alternate

method would require a robust simulation capability that provides SAR, and other

modalities the ability to image a scene characterized by predetermined activities. As

neither currently exists, to the knowledge of the researcher, and a SAR system cannot

be readily procured, this modality ruled out as a possibility for this work.

3.4 Registration

Registration is the process of transferring different datasets into a common coordinate

system. In this research, the transfer (or transformation) needs to occur in both the

spatial and temporal domains.

3.4.1 Spatial Registration

Image registration appears to be the most prominent method of transferring different

datasets or images into a common coordinate system [54]. In this process we are at-

tempting to overlay two images of the same scene that are taken at different times, from

different sensors, and potentially from differing perspectives. Currently, several methods

exist for accomplishing this task, including information, frequency, and feature-based ap-

proaches. Information based methods attempt to align the information content of two

separate images by taking a rolling product of the images until the maximum entropy

is reached. Frequency methods take the spatial content of an image to the frequency

domain and use the shift theorem to align the frequencies of the two images, thereby

producing the misalignment translations. Feature based methods use specific features

within the images to indicate those points are in fact the same point in space. This

research elected to use a feature-based method for registering the data.
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3.4.1.1 Speeded Up Robust Features (SURF)

SURF features, are unique scale and rotation-invariant descriptors that identify specific

points in imagery which are useful to registration. This is accomplished in three steps.

First, interesting points are selected within an image. These points may be corners or

abnormal objects within an image. Next, the neighborhood of these points is represented

by a feature vector. This distinct descriptor is robust to noise, geometric transforma-

tions, and photometric transformations. Finally, point correspondences are formed by

matching these interesting points and vectors across multiple images. This match is

generally determined by some distance between the vectors, such as include Euclidean

or Mahalanobis distance. [55]

As the specifics can be read in Bay (2008), only a top-level review of this algorithm will

be provided. Interest points are derived from a Hessian based matrix

H(x, σ) =

⎡
⎣ Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

⎤
⎦ (3.14)

where Lxx(x, σ) is the convolution of the image with the Gaussian second order derivative

∂2

∂x2 g(σ) .

The scale space is used to find scale invariant features. This is accomplished by upscaling

the filter size rather than iteratively reducing the image size. These filters scale images

by a factor of two in a parallel fashion since each works on the original image rather than

a successive scale space image. This space is further divided into octaves to represent a

series of filter response maps. [55]

The descriptor of the interesting points also describes the distribution of intensity content

in the neighborhood of the point. A reproducible orientation is identified for each interest

point by calculating the Haar wavelet response in the x and y directions within a circular

neighborhood defined by a radius of six times the sampling step. This circular region is

set to encompass a 16x16 orientation specific feature vector. This method has proved

to be robust, reliable, and repeatable in its uses among a series of images. [55]
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3.4.1.2 Mutual Information Theory

Mutual information is a method of relating the entropy structures of the underlying

images. Fan, Rhody, and Saber explain this technique in their paper on Airborne Image

Registration [56], but it can be quickly explained as:

E[A] = −
m∑
i=1

PA(ai) log2 PA(ai)

I(A,B) = E[A] + E[B]− E[A,B]

R(A,B) =
I(A,B)

E[A] + E[B]

(3.15)

where PA is the probability of a pixel value occurring within an image. A and B are

images, E[A] and E[B] are the entropy associated with each image, I(A,B) is the mutual

information, and R(A,B) is the scaled version of the mutual information image. The

maximization of mutual information can also be attained by finding the spatial shift

which maximizes the image intensities. This is done by applying a Fourier transform to

the entropy images to the frequency domain and taking the difference of their phases.

This is shown by

F{E[A]} = (...)e−2πi(xA),(yA)

F{E[B]} = (...)e−2πi(xB),(yB)

F{E[A]}
F{E[B]} = (...)e−2πi(xA,yA) · (...)e−2πi(−xB ,−yB) (3.16)

= (...)e−2πi(xA−xB ,yA−yB) (3.17)

Taking an inverse Fourier transform returns the data to the spatial domain and presents

the 2D x and y positional shifts. This is shown as
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F−1
{

F{E[A]}
F{E[B]}

}
= F−1

{
(...)e−2πi(xA−xB ,yA−yB)

}
= δ(xA − xB, yA − yB) (3.18)

Using image A as the base image, the relative x and y translations can be attained.

x = xA, y = yA

x0 = xB, y0 = yB

δ(x− x0, y − y0) (3.19)

where x0 and y0 are the x and y translations of the images to attain proper alignment.

This correlation of information provides the maximum mutual information between the

two images.

3.4.2 Temporal Registration

Similar to spatial registration, temporal registration is the transformation of different

datasets into a common time-based coordinate system. This type of registration is

needed when multiple video streams begin recording the same scene at different times

or when they capture a different number of frames per second. Your essentially trying

to match frames between the separate video streams.

3.5 Data Fusion

Data fusion is a method of taking different types of data and merging them to form

information. A common example is fusing the sound of thunder with the sight of light-

ening to produce the conclusion that a storm is on the way. When considering image

data, fusion can be accomplished at three distinct levels: pixel, feature, and decision.

Since motion imagery is simply a compilation of time varying images, the same fusion
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levels can be utilized. It is also noted that as with the NIIRS to VNIIRS extension, this

simple extension of a single image technique to a multi-image sequence may not fully

utilize the temporal characteristics of the data.

Pixel Level At the pixel level, data is correlated across multiple images by stacking

the corresponding pixels behind one another. This common method is used when build-

ing multi- or hyperspectral data cubes. It is also the simplest to comprehend as it is

directly correlating the lowest value of information from one image to another.

Feature Level At the feature level, specific points of interest across images are

correlated as being the same or similar. This could occur if you were to take edge maps

of two adjacent images and attempt to align the images by aligning the edges from one

image to another. Features exists in a wide variety of descriptors and are generally just

unique characteristics of a particular object in a scene. Facial detection algorithms can

take advantage of the prominent features we call eyes, nose, and mouth to identify the

approximate location of a face within an image.

Decision Level At the decision level, a specific technique has classified the informa-

tion in both images and now looks to find some consensus amongst the classification. An

example would involved merging the results of a clustering algorithm that was applied

to two separate images. Another example could involve multispectral and polarimetric

imagery, where a spectral anomaly detection algorithm and degree of linear polarization

algorithm are separately used to identify points of interest within a scene. Once iden-

tified, a pixel-by-pixel weighting could be placed across the decision maps to determine

which combination of pixels is both spectrally anomalous and polarimetric within the

scene.

3.6 Tracking

Tracking occurs in two phases, first a target is detected and identified with a set of

imagery. Next a maintenance step is used to correlate that target from one frame to the

next.
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3.6.1 Target Detection

Target detection is the isolation of pixels of interest from the remainder of the image at

large. This basically turns into a computer vision problem, whereby the noise, in this

case the background, needs to be reduced in favor of the targets of interest. Forsyth,

Szelinski, and Solem [57–59] all discuss varying methods of filters, averaging, optical

flows, and segmentation algorithms that could be utilized as possible solutions.

Two prior students at RIT, Zhang and Ausfeld [60, 61], utilized a difference image

technique to create a foreground image for each frame of the video sequence. This

foreground image essentially filters out stationary objects from moving objects.

3.6.2 Track Maintenance

After a set of objects are identified within each frame, an inter-frame association needs to

be completed to determine how each object moved throughout the sequence. Blackman

[62] explains a gating technique, whereby an object’s velocity is used to predict how far

it could move from one frame to another. This distance is then converted into a circular

radius centered on the objects current position. Any objects in the future frame that

are within this radius are considered possible updates to the current objects position.

Figure 3.9 depicts this concept. Further distinctions between objects can be made by

comparing the area of the detected objects in one frame to the areas of objects in future

frames.
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Figure 3.9: Gating Technique with Two Objects

3.7 Activity Recognition

As discussed in Section 3.2.3, VNIIRS can be considered an early activity recognition

quality metric. However, being visually subjective and limited in scope of activities,

it falls short of meeting the data analysis needs described in Chapter 1. However, it

does take the step of deriving frame rate requirements for several of its activities. This

type of analysis directly links the characteristics of the AoI to the sensor requirements

necessary for capturing the AoI.

The novelty of the term Activity Based Intelligence means the most of the work done

under this domain has been done in a series of well known names: Wide Area Mo-

tion Imagery (WAMI) [63], Patterns of Life [64], Social Network Analysis [65, 66], and

Content-based Video Retrieval [67] to name a few. Other less prominent names include

multi-target tracking, irregular warfare, and normalcy modeling. However, under each

name the same basic activity recognition research has been performed.

Two authors have begun specifically addressing the use of activity recognition techniques

in MI and Full Motion Video (FMV) [67, 68]. Particularly, Lash includes a high level

discussion of the principles of MI and its applicability toward ABI. He continues with
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some MI techniques for compressing and encoding data. Finally, he finishes with what

he deems to be key technology enablers for ABI [68].

Several others have talked about using a technique called Space-Time Interest Points

(STIPs) as a method for identifying specific segments within video sequences [69–72].

A STIP is a point within an MI sequence where objects are said to display unique

characteristics in both space and time. A similar method of developing SIFT and SURF

descriptors was applied here both spatially and temporally to determine STIP “corners”

in the imagery. An example of one such corner would be a soccer ball hitting a goal

post and rapidly changing direction.

Still others have discussed using spatial extents of people within an environment to

develop actions and intents of actors [73]. This particular research placed a group of

law enforcement officers in a prison setting and had them act out a series of high-

threat inmate scenarios. The purpose of this research was to preemptively determine

the imminent activity in hopes that a notification system could be set up to prevent it

from occurring. Such activities include: multiple actors rapidly approaching one actor

and large groups loitering in an aggressive fashion on the prison yard.

Others are using spatiotemporal data to detect patterns of life within imagery [64, 74].

These patters of life are used to develop normalcy models of a particular scene at some

given time of day. Developing these models allows investigators to then extract abnormal

patterns in the activity and identify behavior that needs further evaluation.

Additional ABI work includes recognizing human activity [75] within motion imagery

and using graph theory approaches to detect activities within data [76]. A recent doctoral

candidate reviewed event-based analytic techniques in the context of a computer science

problem [77]. These are only a few examples of the several disparate domains working

to develop the field of activity based intelligence that may not even know each other

exist [31, 78–81].

3.8 Programming Languages

The work for this project was performed in several programing languages and software

suites. Almost all of the work was done using the Python programming language and
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Open source Computer Vision (OpenCV) library. This section simply serves to provide

a basic reference for what tools were used.

Python The Python programming language is an object oriented language similar to

that of C with an emphasis on readability. This high level opens source programming

language focuses on software quality, coherence, developer productivity and a myriad of

other qualities designed to making coding a relatively easy task. Its support library are

maintained by the open source community and frequently updated.

Open source Computer Vision (OpenCV) One of the most useful tools developed

for the Python coding language (among others) was the Open source Computer Vision

library. This library was mainly developed to provide execution of real-time computer

vision algorithms on a variety of platforms. The functionality of the library includes

basic filtering operations, common tracking algorithms, and various other forms of image

manipulation. The work performed in this research took advantage of several basic and

few high levels tools for manipulating the motion imagery data.
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Experiment

4.1 Goals and Requirements

The purpose of this experiment was to develop a multimodal motion imagery dataset

consisting of several AoIs. To accomplish this, several multimodal sensors were placed

on the roof of a building overlooking a common walkway on a college campus. Several

participants were then asked to act out a choreographed script of independent and group

activities. The dataset was intentionally made large for distribution to the community

for further evaluation.

The thermal, multispectral, and polarimetric modalities placed a set of requirements on

the experiment that are discussed in the following sections. These requirements ranged

from a spectral analysis of the contents within the scene to the inclusion of specific

equipment for post-processing purposes. The unique nature of the sensors required

an in-depth evaluation of the their independent and composite capabilities. Specific

considerations included FOV constraints, GSD requirements, and physical proximity

within the scene. The activities that were chosen also placed a set of constraints on

the experiment as a whole. However, these constraints are mostly on the processing

side. Those calculations will be discussed in Section 5.4.1 and logic behind the included

activities will be discussed in Section 4.4.1.

In order to make a dataset available to the community, this experiment gathered more

data than the author had time to evaluate. Thus, the experiment in its entirety will be

42
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explained in this chapter and a section at the end will clearly state which portion of the

problem is addressed in this research. Since the experiment occurred over a four day

period, the specific time and conditions of the particular data used in this research will

be included in the final section.

4.2 Equipment

Nine imagers, packaged into three sensor suites were used to capture the data for this

experiment. Two of the three sensor suites was developed by the Digital Imaging and

Remote Sensing (DIRS) group in the Chester F. Carlson Center for Imaging Science

at the Rochester Institute of Technology, Rochester NY. The third was a commercial

product purchased for its wide range of capabilities.

4.2.1 WASP-Lite

Figure 4.1: Wildfire Airborne Sensor Platform (WASP) [6]

The Wildfire Airborne Sensor Platform (WASP)-Lite consists of seven sensors encased in

a single platform controlled together using an in-house software suite. Figure 4.1 depicts

a full color view of the system, while Figure 4.2 shows a numbering of each sensor for

further discussion. Each will be briefly introduced, along with the specifications relevant

to the experiment being performed. It was designed to operate in a Cessna 172 flying

at 3000ft with an airspeed of 90knots. Thus, many of these specifications are irrelevant

to this discussion.
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Figure 4.2: WASP Camera Identification [7]

Table 4.1 identifies each camera in figure 4.1 and indicates the spectral bandpass of each

filtered sensor. The filters are 10μm wide, centered at the indicated filter bandpass.

Table 4.1: Experiment Equipment Specs

WASP Label Imaging System Imager Bandpass Filter Bandpass

Camera 1 Spectral Imager 1 0.4-1.0μm 630μm

Camera 2 Spectral Imager 2 0.4-1.0μm 550μm

Camera 3 Spectral Imager 3 0.4-1.0μm 436μm

Camera 4 Spectral Imager 4 0.4-1.0μm 650μm

Camera 5 Spectral Imager 5 0.4-1.0μm 670μm

Camera 6 Hi-Res Panchromatic 0.4-1.0μm N/A

Camera 7 LWIR 8.0-12.0 μm N/A

The specific filter bandpasses were chosen based on the research of a pedestrian tracking

effort completed by Herweg [8–10]. Figures 4.3 and 4.4 depict two sets of spectral

reflectance values for pedestrians and common background materials in an outdoor scene.

The filters were chosen to maximize contrast between the outdoor materials and our

pedestrian participants by focusing on the distinctive and highly reflective nature of the

pedestrians relative to other outdoor objects.
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Figure 4.3: Reflectance Spectra of Background with Filter Centers Indicated by Ver-
tical Lines [8–10]

Figure 4.4: Reflectance Spectra of Pedestrians with Filter Centers Indicated by Ver-
tical Lines [8–10]
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Panchromatic

Camera seven in figure 4.2 is the panchromatic sensor, designed for pan sharpening of

the multispectral data. It is a Sony XCL-U1000 progressive line scanner with a 41823

Cinegon optical attachment made by Schneider [7]. It is assumed that the pixel pitch is

equivalent to the pixel size unless explicitly stated.

Table 4.2: Panchromatic Camera Specifications [7, 17]

Camera Attribute Characteristic

Pixel Size 4.4 x 4.4 μm

Array Size 1628x1236

Dynamic Range 10 bits

Optics Attribute Characteristic

Focal Length 12mm

Focal Ratio (f/N) 1.4-22

Spectral Bandpass 0.4-1.0μm

LWIR

Camera six in Figure 4.2 is the Long Wave Infrared (LWIR) sensor. It is a DRS E3500

uncooled Microbolometer Array with a proprietary optical interface [7]. Table 4.3 indi-

cates the specifications of this imaging system.

Table 4.3: LWIR Camera Specifications [7, 17]

Camera Attribute Characteristic

Pixel Size 25.4 x 25.4 μm

Array Size 320 x 240

Dynamic Range 12 bits

Optics Attribute Characteristic

Focal Length 11mm

Focal Ratio (f/N) 1.0

Spectral Bandpass 8.0-12.0 μm

Multispectral

Cameras 1-5, as indicated in Figure 4.2, are the multispectral sensors of the WASP-Lite

imaging system. Table 4.4 indicates the characteristics of this system.

Table 4.4: Multispectral Camera Specifications [7, 17]

Camera Attribute Characteristic

Pixel Size 7.4 x 7.4 μm

Array Size 648 x 494

Dynamic Range 10 bits

Optics Attribute Characteristic

Focal Length 8mm

Focal Ratio (f/N) 1.4-22

Spectral Bandpass 0.4-1.0μm
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4.2.2 MAPPS

Figure 4.5: Multispectral Aerial Passive Polarimeter System (MAPPS) [11]

This Multispectral Aerial Passive Polarimeter System (MAPPS) is designed to produce

high resolution spectral-polarimetric imagery by using a two spinning wheel design and

a series of spectral bandpass and polarimetric filters. The use of spinning filter wheels

makes this a Division of Time imager. The filters sit in a Sutter Lambda 10-3 dual

filter wheel, capable of accommodating 10 filters per wheel. Before reaching the JAI

BM-500GE CCD camera, light passes through the Schneider Optics lens. The camera

specifications are listed in table 4.5. [11] The polarimetric spinning wheel is configured

to cycle through the four polarimetric filters, then reverse direction and continue the

sequence. Thus a full sequence collects 0, 45, 90, 135, 135, 90, 45, and 0 degree images

in that order.

Table 4.5: MAPPS Camera Specifications [11, 18]

Camera Attribute Characteristic

Pixel Size 3.45 x 3.45 μm

Array Size 2456 x 2058

Dynamic Range 12 bits

Optics Attribute Characteristic

Focal Length 35mm

Focal Ratio (f/N) xxxx

Spectral Bandpass 0.4 - 1.0μm
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Figure 4.6: GoPro Hero 3: Black Edition [12]

4.2.3 GoPro

The GoPro imager is a commercial device developed and produced for use in sporting

and other mobile events. It is housed in a small water resistant case and sold with an

associated wireless transmitter. This RGB imager can operate at frames rates as fast

as 120Hz and as slow as 24Hz. Its spatial resolution capabilities range from 240x240 to

full 4K imagery. The specifications used in this dataset are listed in Table 4.6.

Table 4.6: GoPro 3 Hero Camera Specifications [19–21]

Camera Attribute Characteristic

Pixel Size 1.55 x 1.55 μm

Array Size 4000 x 3000

Dynamic Range 10 bits

Optics Attribute Characteristic

Focal Length 14mm

Focal Ratio (f/N) f/2.8

Spectral Bandpass Visible

Table 4.7 presents a side-by-side comparison of the specifications of all the equipment

used in this experiment.
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4.3 Experimental Setup

This section is designed to walk the reader through the steps necessary to set up the

scene for the experimental collection. The following sections will go through the physical

location, the scenario and actors in the experiment, as well as in-scene fiducials and

meteorological conditions of the collection. All data collection was done at the Rochester

Institute of Technology (RIT) in Rochester, NY between the hours of 10:00am and

4:30pm EST.

4.3.1 The Scene

Figure 4.7: Top view of experiment scene [13]

Figure 4.7 depicts an overhead view of the scene that was used in this experiment.

The focus of the collection was a walkway in front of the Chester F. Carlson Center

for Imaging Science (CIS) on the RIT campus. The previously described sensors were

placed on the roof of the building looking down on the scene below. The participants

were asked to accomplish a series of tasks on the walkways in front of the building.

Figures 4.8 and 4.9 depict the locations of the sensors and participants respectively.
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Figure 4.8: Sensor placement within scene

Figure 4.9: Participant routes within scene

The slant range was determined by using a Nikon N16184 Forestry Pro laser range

finder. The distance from the equipment to the center of the walkway is 54m ±0.5m.

Given that the sensors are not nadir-looking, the pixel sizes on the ground will change

as a function of distance from the building. Using Equation (3.4) from Section 3.2.1.1,

the GSD of each sensor can be calculated. Rearranging the terms of that equation, we



Chapter 4. Experiment 52

obtain one with GSD as a function of pixel pitch, focal length, and slant range written

as

GSD =
R · p
f

(4.1)

By entering the values of each imager, located in Table 4.7, into Equation (4.1), the

GSD can be calculated. For example, for the MAPPS sensor, the GSD is calculated as

GSDMapps =
R · pMapps

fMapps

=
54.0m · (3.45e−6m)

35e−3m

= 0.00532m

= 0.532cm

Table 4.8 includes the GSDs of each of the sensors as set up.

Table 4.8: Equipment GSDs

Attributes MAPPS [11, 18] GoPro 3 [19]
WASP-Lite [7, 17]

Panchromatic LWIR Spectral

GSD(m) 0.00532 0.00598 0.0198 0.125 0.0500

GSD(cm) 0.532 0.598 1.98 12.5 5.00

While this suggests that the GoPro has a better GSD than the WASP-Lite panchromatic

imager, it does not take into account the fish eye lens attached to the former. Figures

4.10 and 4.11 depict the imagery side-by-side for comparison purposes; note the GoPro

imagery has already been registered in this image. Figure 4.12 depicts a close-up of

the white van vehicle. Notice how blurry GoPro image appears when compared to the

panchromatic image.
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Figure 4.10: Panchromatic image of scene

Figure 4.11: GoPro image of scene
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(a) Panchromatic closeup (b) GoPro closeup

Figure 4.12: Closeup comparison of truck in scene

4.3.2 Equipment Within the Scene

Within the scene, the equipment was set up on top of the CIS overlooking the walkway

below. The height of the building is 14.5 meters. Figures 4.13 through 4.17 depict the

setup of the equipment for the experiment. Only five of the ten images are shown in

this section. The remaining images are left for view in Appendix C.

To reduce the amount of parallax in the imagery, the imagers were setup in close prox-

imity to one another. Table 4.9 depicts the height, distance to the buildings edge, and

rotations for each of the imagers. All dimensions was measured as close to the center

point of the device as possible.

Table 4.9: Objects in Experiment

Imaging System Height Distance to edge
Angles (Degrees)

Roll Pitch Yaw

WASP Lite 49”± 1” 81”± 0.1” 0.1± 0.1 17.0± 0.1 0.0± 0.1

MAPPS 49”± 1” 83”± 0.1” 2.9± 0.1 16.9± 0.1 0.0± 0.1

GoPro 55”± 1” 81”± 0.1” 0.1± 0.1 17.0± 0.1 0.0± 0.1
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Figure 4.13: Experimental setup image 1

Figure 4.14: Experimental setup image 6
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Figure 4.15: Experimental setup image 7

Figure 4.16: Experimental setup image 9



Chapter 4. Experiment 57

Figure 4.17: Experimental setup image 10

4.3.3 Fiducials

Fiducials are in-scene objects used to create known tie points, or Ground Control Points

(GCPs), within a scene for use in registration. At the outset of this experiment, it was

unknown if software-based techniques would be able to perform a proper registration on

the data due to the oblique views and possible perspective differences of the imagers.

As such, a series of fiducials and natural GCPs were selected ahead of time to ensure

there existed adequate means to register the data.

Before taking any measurements, a series of calibration tests were performed on the

imaging systems as placed within the scene. One of the purposes was to ensure the

FOVs overlap and determine locations for the in-scene fiducials. The following figures

depict how the sensors with smaller FOVs would fit in the scene of the sensors with

larger FOVs. Since the panchromatic and spectral sensor FOVs were essentially the

same, the panchromatic was used to represent those six imagers. Figure 4.18 depicts

how the MAPPS FOV would look within the panchromatic sensor. Figure 4.19 depicts

the panchromatic FOV within the LWIR imager. Figure 4.20, depicts the LWIR FOV
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within the GoPro sensor. Finally, for registration purposes, a series of fiducials were

concentrated within the overlapping FOVs depicted in Figure 4.21. This was very limit-

ing due to the tight FOV of MAPPS. Thus, additional fiducials were placed throughout

the central portion of the walkway which can be seen by the other sensors.

Figure 4.18: MAPPS FOV as seen through panchromatic imager

From the common overlap image, a series of locations were identified to be used as spatial

registration points. As can be seen in the scene there exist few natural registration

points. The corners of the walkways, the fire hydrant, the light poll, and sign are all

circled in green indicating such points. The yellow circles indicate positions identified

as needed additional fiduciary points for registration. In order to reduce the tripping

hazard to participants but maintain the necessary number of GCPs, some of the points

were created by placing boards over walkway edges. Figure 4.22 depicts all the GCPs

used in this experiment. Due to the multimodal nature of the imaging equipment, a

more stringent examination of the GCPs was done to ensure it can be seen from each of

the sensors. The next two sections describe the visible and LWIR fiducials used within

the scene.
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Figure 4.19: Panchromatic FOV as seen through LWIR imager

Figure 4.20: LWIR FOV as seen through GoPro
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Figure 4.21: Platform FOV Overlap.
Blue=LWIR FOV; Green=Panchromatic FOV; and Red=MAPPS FOV

Figure 4.22: Ground Control Points
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Visible Spectrum Fiducials Nearly anything that can be perceived by the Human

Visual System (HVS) is useful as a visible spectrum GCP. Figure 4.23 depicts one of

the fiducials within the scene. The remaining fiducials can be seen in Appendix D.

Figure 4.23: Fiducial E

LWIR Fiducials To ensure the LWIR camera can perceive the same fiducials as the

visible imagers, each object needed to have distinct emissive and reflective properties

when compared to the surrounding area. This was accomplished by wrapping select

in-scene objects in aluminum foil and aluminum foil tape. Figure 4.23 and Appendix

D depict these specific objects. The aluminum foil was selected due to its emissive

properties. According to the ASHRAE handbook [82], the shiny side of aluminum foil

has an emissivity of 0.05, which drastically differs with the emissivity of green grass at

0.975, water at 0.95 [83], and asphalt at 0.93 [84]. This difference in thermal emissivity

provides a distinct contrast which can be used to create in scene fiducials for the LWIR

imager. As a note, the Handbook of Package Engineering [85], stated that aluminum

foil has a reflectivity of 95%. Thus it will still be seen in the visible regime.

Fiducials Specifications Table 4.10 depicts the dimensions of the fiducials and their

equivalent pixel count as seen by the panchromatic and LWIR imagers. Since LWIR has

the highest GSD, if a particular fiducial can be seen by this imager than it can be seen

by all the imagers. The panchromatic pixel equivalents are included in Table 4.10 for

comparison against the LWIR pixel equivalents.
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Table 4.10: Dimensions of In-Scene Fiducials

Fiducial Letter
Dimensions (cm±0.1cm) Panchromatic (Pix) LWIR (Pix)
Length Height Length Height Length Height

A 93.5 15.6 47.2 7.88 7.48 1.23

B 91.3 40.6 46.1 20.5 7.30 3.25

C1 243.5 25.2 123 12.7 19.5 2.01

C2 243.5 25.2 123 12.7 19.5 2.01

C 172.2 172.2 87.0 87.0 13.8 13.8

D 92.7 28.5 48.8 14.4 7.42 2.28

E 142.2 25.5 71.8 12.9 11.4 2.04

F 243.5 13.1 123 6.61 19.5 1.05

G 69 62.5 34.8 31.6 5.52 5.00

H diameter = 48.3 diameter = 24.4 diameter = 3.64

I 121.8 61 61.5 30.8 9.74 4.88

4.3.4 Synchronizing Equipment Timing

Considering that each sensor suite had its own internal timing sequence, an external

source was used to ensure proper syncing across the imagers. A series of LEDs actuating

in a sequence matched to the fastest frame rate system was chosen to accomplish this

task. Section 5.4.2 will discuss the specifics behind the timing of the LEDs and each of

the sensors.

4.3.5 Meteorological Conditions

This portion of the experiment was accomplished on November 4th, 2013 at 10:30am

EST. The conditions were clear while measurements were taken; depicted in Figures

4.24 and 4.25. During this time of day, at this time of the year, the sun’s nadir is ap-

proximately 17 degrees south of the equator and 75 degrees west of the Prime Meridian.

This places it low in the Rochester sky with its orientation behind the sensor. The

temperature was 40 degrees Fahrenheit at the time of the collection.
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Figure 4.24: Horizon Experiment Sky

Figure 4.25: Overhead Experiment Sky

4.4 Scenario and Participants

Participants were asked to complete a series of tasks representative of activities of inter-

est. Figure 4.26 depicts one set of instructions given to participants in the experiment.

The non-explicit instructions were that individuals were to act as normal as possible
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when conducting their tasks. That means walking, biking, driving, and interacting in

a method that was consistent with the execution of these tasks in their everyday lives.

The idea was to develop a scene that would be as realistic as possible while maintaining

some measure of control of their actions. Figure 4.26 depicts the directions given to one

of the participants. The remaining instructions are located in Appendix E. This section

will discuss the actual events that occurred while Section 4.4.1 will describe the reason

for including specific activities in this research.

A total of nine data sets were collected over a four day period. This included 278 moving

people and cars with only 20 being given explicit instructions. The total execution time

of the datasets was eighteen minutes and seventeen seconds; this translated into 2hr,

44min, and 55s worth of motion imagery across the nine imagers. The first data collection

was the largest and included all the activities described in this research. Subsequent

collections were used to collect addition data on specific AoIs. This section will discuss

the conditions for the first collection and Section 4.5 will present the limited scope

addressed within this research. There were a total of 15 participants with 13 being

given explicit instructions and two being asked to walk around as they saw fit.

4.4.1 Activities

As mentioned earlier, the specific activities within a scene place minimum requirements

on the imager capturing the data. At the onset of this experiment it was decided that

only those activities capable of being perceived by a human reviewing the GoPro imagery

would be included. Sample video data was taken of several activities and the imagery

reviewed. Those activities that were recognized by a human eye were included in this

experiment.

Activities were chosen to cover a wide range of spatial and temporal extents normally

seen within an urban environment. Some of these activities required the use of objects

with unique spectral and polarimetric properties. Table 4.11 lists the activities and

characteristics that make each unique. A characteristic is defined as some unique quality

that can be used to determine if the activity has occurred. For example, the mount

and dismount activity is a relatively quick event and thus is said to have no appreciable

temporal characteristic. The activity is comprised of a vehicle and person in close spatial
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8. Begin in middle of large walkway by parking lot. Walk down the path with subject 
next to you. A little after crossing the gravel pathway, turn right and walk onto the 
bottom of the field in front of Carlson to meet up with three other subjects. Once 
larger group has begun game, move together to join them. 

**Begins with subject 9 

Figure 4.26: Tasking Directions

proximity; this unique set of conditions gives it a spatial characteristic. Spectrally,

each will have a different signature, but in a polarimetric context only the vehicle will

have a signature. Therefore, there is a spectral characteristic to the activity, but no

polarimetric characteristic. Lastly, both will have a thermal signature which can be

used to determined if the activity occurs.

This list of variations was developed with respect to the contexts under which these

activities were being performed. Changing the temporal scale in which these activities

were executed would alter the nature of the expected variations. This research is in-

tuitively operating under human time-scales. Thus, hours, days, and weeks are long

periods of time, whereas seconds and minutes are short periods of time.



Chapter 4. Experiment 66

Temporal variation occurs in any type of ongoing activity; this would include groups

loitering for appreciable amounts of time and sporting events. In this context this does

not include the quick nature of the object exchange activity. Spatial variations tend to

occur in an activity that covers a large spatial extent; these included large area sporting

events, and object exchanges where the object travels across a large portion of the scene.

Spectral variations are those that would provide unique changes in spectral signatures;

this includes object exchanges.

For spatial variations “people”, “bicycles”, and “cars” were executing specific activities

throughout the collection. The mount and dismount activity represented a spatially

large vehicle interacting with a spatially small individual. This range of spatial extents

can be used to develop a notional spatial tradespace for capturing activities occurring

within an urban environment. Furthermore, by having people mount and dismount

vehicles, additional research can be done on identifying activities where varying spatial

extents interact with one another.

For temporal variations, people were asked to walk, run, and bicycle throughout the

scene; representing an increase in speed with each successive activity. A sporting event

was also included to capture short duration, fast pace actions that are indicative of larger

activities. This range of temporal extents can be used to develop a notional temporal

tradespace for capturing activities within an urban environment.

People were also asked to interact with one another in a specific fashion to demonstrate

specific AoIs. For instance, several participants were asked to stand together in a group

and chat amongst themselves. Some of the participants were asked to leave and execute

another portion of this scenario. Other participants external to the group were asked

to join the group at some predefined point within the experiment. These activities

are indicative of people loitering with members of the group coming and going. This

loitering activity can be used to build relationships amongst the group members and

further analyzed to define their interactions within the larger context of the scene [73].

Objects were included to represent several activities. The simulated briefcase and duffel

bag were utilized in exchange situations where one person began the scenario with the

object and another ended the scenario with the object. The difference between the two

is in how they were exchanged. The simulated briefcase was directly passed from one
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individual to another, while the duffel bag was dropped at one point in the sequence

and picked up at a later time.

The PVC pipe was included for use in a simulated RPG scenario. RPGs are round

objects which are known for having a strong polarimetric signature [86]. While the

PVC pipe does not share the exact dimensions of polarimetric characteristics as an

actual RPG, it was deemed comparable enough for use in this research. The actual

situation was to occur in a vegetated part of the scene devoid of highly polarized objects.

Also, although it is well known that vehicles produce strong polarimetric signatures, the

narrow FOV of MAPPS will prohibit their being captured by a polarimetric sensor.

4.4.2 Participant Objects

Some of the participants were asked to utilize specific objects while moving throughout

the scene. Table 4.12 provides a brief description of the object and its purpose in

this research. Each of these items was chosen to maximize its ability to be detected

throughout the scenario. Colors such aks bright orange, red, and white were used to

contrast the typical colors appearing throughout these collections: brown, green, blue,

etc.

4.4.2.1 Simulated Briefcase

The simulated briefcase was used in an object exchange scenario in this experiment. To

execute this, one of the participants carried the item in their hand facing the imagers

and began walking in the scene. The item was placed in the hand facing the imaging

equipment to prevent an occluded sequence. That participant then passed this object

off to another participant and continued walking in the scene. The second participant

placed the object into the hand facing the imagers and continue walking throughout

the scene. Figure 4.27 depicts the front of the simulated object; note that the back is

identical.
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Figure 4.27: Simulated briefcase

4.4.2.2 PVC Pipe

A Polyvinyl Chloride (PVC) pipe was included for use in a simulated Rocket Propelled

Grenade (RPG) launch activity. This activity was chosen for inclusion in this experi-

ment because the NIIRS and VNIIRS quality metrics include a metric for identifying

an RPG launch. This common activity will allow for future comparison between the

aforementioned metrics and the performance assessment methodology described in this

research. The person holding the PVC pipe was instructed to stop at a central portion

in the scene and lift the pipe onto their shoulder, thus simulating launch preparations.

They kept the pipe on their shoulder in a skyward direction while slightly moving the

object around as if to aim at a target. A short time later, the participant removed the

pipe from their shoulder and resumed walking across the scene. Figure 4.28 depicts the

side and front views of the PVC pipe.

Laboratory Measurements In order to determine if the object of interest contained

the necessary polarimetric signature, an in-lab analysis was performed. Since the exact

sun-target-sensor geometry could not be determined beforehand, the PVC pipe was

placed in the center of a laboratory setting where illumination emanated from a series of

extended sources on the ceiling. Due to the small nature of the room, it is expected that

this angle of illumination was less than 45 degrees off nadir, in a 360 azimuth. Figures

4.29a, 4.29b, 4.29c, and 4.29d depict the S0, S1, S2, and DoLP results respectively.
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(a) PVC pipe lengthwise (b) PVC pipe top view

Figure 4.28: PVC pipe imagery

Note, due to the object’s stationary nature in a controlled environment, there is no need

to register the data. In a scene with the object moving, the four frames would need to

be registered before creating the DoLP.

(a) S0 Component (b) S1 Component

(c) S2 Component (d) Degree of Linear Polarization

Figure 4.29: Polarimetric Lab Results of Object
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4.4.2.3 Duffel Bag

The duffel bag was used in a bag drop scenario in a similar manner to that of the

simulated briefcase. A participant held this item in their hand and walked toward the

middle of the scene. At some point the participant set the bag down and continued

walking. Later, another participant walked up to the bag and picked it up. They then

continued walking through the scene. Figure 4.30 depicts the front of the duffel bag;

note that the back is identical.

Figure 4.30: Duffel Bag

4.4.2.4 Frisbee

The Frisbee item was used to include a fast paced group sporting event in the dataset.

Participants were asked to congregate in a grassy area and throw the Frisbee to one

another as they saw fit. Figure 4.31 depicts the front and back of the Frisbee.
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(a) Frisbee front (b) Frisbee back

Figure 4.31: Frisbee imagery

Table 4.12: Objects in Experiment

Object Purpose
Dimensions (cm±0.1cm)
Height Length Width

Simulated Briefcase Object Handoff 26.0 38.5 7.7

PVC Pipe Simulated RPG 16.8 85 16.8

Duffel Bag Bag Drop 26.7 53.3 26.7

Frisbee Group Sport 3.04 diameter = 27.3

4.5 Research Scope

This subset of data was collected on November 14th, 2013 at 4:00pm EST. The sun’s

nadir was approximately 17 degrees south of the equator and 135 degrees west of Prime

Meridian. Figures 4.32, 4.33, and 4.34, depict the oblique, top, and side views of the

scene respectively.

Figures 4.35, 4.36, and 4.37 depict the setup of the equipment in the experiment. Take

note of the sun at an angle directly behind and to the left of the sensor suite. The

temperature was 50 degrees Fahrenheit at the time of the collection with clear skies

above, as seen in Figure 4.35. Table 4.13 lists the activities in this portion of the data

collection. Of those included in the larger experiment, only the object exchange and

simulated RPG were included.
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Figure 4.32: Oblique view of scene

Figure 4.33: Top view of scene from Google Maps [13]

Table 4.13: Activities Specific to the Scope of this Research

Activity Purpose
Variations

Temporal Spatial Spectral Polar

Object Handoff Small object transition No Yes Yes No

Simluate RPG VNIIRS object simulation No No No Yes
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Figure 4.34: Side view of scene

Figure 4.35: Back view of sensor setup
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Figure 4.36: Front view of sensor setup

Figure 4.37: Diagonal view of sensor setup



Chapter 5

Methodologies

5.1 Flow of Data Processing

Figure 5.1 depicts the top level flow methodology of this activity recognition research.

This process begins with the raw data collected from the imaging equipment. Once

obtained, the cameras need to be properly calibrated to remove distortions and aberra-

tions within the imagery due to lens effects. Following calibration, the video sequence

needs to be stabilized if there were environmental factors (i.e. wind, building vibration,

etc) that induced motion in the imaging data. After stabilization, the images must be

registered and the data fused for exploitation. In order to limit exploitation to moving

people and objects within the scene, a tracking algorithm is implemented. Having these

positions, it is then possible to perform activity recognition.

Raw Data
Camera

Calibration
Video

Stabilization

Registration

Data Fusion Tracking
Activity

Recognition

Figure 5.1: Processing Flow Diagram

76
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Figure 5.2 depicts the full flow diagram of the processing specifically involved in this

research. This diagram includes intermediary steps necessary to achieve the results in

chapter 6.
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Raw Data

Camera
Calibration

Video
Stabilization

Registration

Data Fusion

Tracking

Activity
Recognition

Distortion
Coefficients

Homography
&Transform

SURF

KNN
Matcher

Homography
&Transform

Temporal

LED
Matching

Frame
Syncing

Spatial

Blur

SURF

Homography
&Transform

Pixel
Level

Target
Detection

Background

Threshold

Filter

Closing
Operation

Connected
Components

Track Mx

Gating

Munkres

Activity
Recognition
Algorithm

Spatio-
Temporal
Degrade

Detection
Likelihood

Figure 5.2: Processing Flow Diagram with Intermediary Steps
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5.2 Camera Calibration

The purpose of camera calibration is to remove the lens distortion included in the im-

agery from the attached optical train. Upon visual inspection of the WASP-Lite and

MAPPS imagers, the data were found to have a negligible amount of lens distortion

relative to their intended uses. The GoPro imagery displayed large amounts of barrel

distortions due to the fisheye lens. Thus, this section describes the process necessary to

remove those distortions.

To do so, the GoPro was taken to the RIT Calibration Cage and a series of images were

taken at various locations and orientations. Then, the Australis software was utilized

to develop the calibration coefficients necessary to remove the lens distortions. Finally,

the distortions were removed and a notionally calibrated image sequence was produced.

RIT Calibration Cage The RIT calibration cage is a three-dimensional calibration

structure consisting of a series of visible and infrared LEDs. Figure 5.3 shows an image

of the calibration cage as taken by the GoPro imager.

Figure 5.3: RIT Calibration Cage
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Australis Australis is “A software system for automated off-line digital close range

photogrammetric image measurement, orientation/triangulation and sensor calibration

cage [87].” This software was used to take a series of images of the RIT calibration from

several perspectives and orientations in order to determine the calibration coefficients of

a system. These coefficients remove distortions in the radial and tangential directions

of the imagery taken from the imager in question. Figures 5.4 and 5.5 depict the three

dimensional digital version of the RIT calibration cage in straight on and diagonal views.

Figure 5.4: Digital Version of RIT Calibration Cage

Figure 5.6 depicts an output view of some of the camera position and orientations as

calculated by the bundle adjustment software within the Australis framework. The

output of the bundle adjustment software is a list of distortion coefficients; depicted

in Figure 5.7. Table 5.1 depicts the distortion coefficients for the GoPro imager. The

coefficients K1, K2, and K3 adjust for radial distortions in the image and the tangental

coefficients, P1 and P2, adjust for the decentering of the alignment of the array.



Chapter 5. Methodologies 81

Figure 5.5: Rotated Digital Version RIT Calibration Cage

Figure 5.6: Camera Locations using Australis Camera Calibration
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                           Australis Bundle Adjustment Results: Camera Parameters

                                        12 December, 2013   07:56:59

Project:  C:\Users\Public\Documents\Project 1.aus

Adjustment: Free-Network
Number of Points: 210
Number of Images: 18
RMS of Image coords:    0.89 (um)

Results for Camera 1    Go-Pro      Lens 

Sensor Size        Pixel Size (mm)
  H    4000           0.002
  V    3000           0.002

  Camera    Initial      Total          Final        Initial         Final
 Variable    Value     Adjustment       Value       Std. Error     Std. Error
    C        2.7660      0.00377        2.7698       1.0e+003     4.705e-004 (mm)
   XP        0.0271     -0.00015        0.0270       1.0e+003     2.265e-004 (mm)
   YP        0.1335      0.00027        0.1338       1.0e+003     2.559e-004 (mm)
   K1  5.07200e-002   3.428e-004  5.10628e-002       1.0e+003     9.419e-005
   K2  1.08470e-004  -1.355e-004 -2.70112e-005       1.0e+003     2.070e-005
   K3  1.52087e-004   1.040e-005  1.62488e-004       1.0e+003     1.481e-006
   P1  1.07631e-004   8.072e-006  1.15703e-004       1.0e+003     1.841e-005
   P2 -1.15467e-004   6.887e-006 -1.08579e-004       1.0e+003     1.916e-005
   B1 -2.37071e-004   8.997e-005 -1.47096e-004       1.0e+003     4.204e-005
   B2 -2.18761e-004   5.486e-005 -1.63903e-004       1.0e+003     4.071e-005

Figure 5.7: Output of Australis Bundle Adjustment

Table 5.1: Distortion Coefficients

Camera Variable Initial Value Final Value

Focal Length 2.7660 2.7698

K1 0.05072 0.05106

K2 1.0847e−4 −2.7011e−5

K3 1.5209e−4 1.6249e−4

P1 1.1076e−4 1.1570e−4

P2 1.1547e−4 −1.0858e−4
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Sensor Calibration In the sensor calibration step, the above coefficients are applied

to the distorted imagery originally produced by the imager. Figure 5.8 depicts a example

“before and after” image of the correction applied to a fisheye lens using RITs calibration

cage; this image was created by Brent Bartlett [14]. In an effort to achieve the same

goal, we took the first frame in the image sequence and applied the technique above.

Figure 5.9 depicts the before calibration image of the data. Notice the high degree of

bow in the building edge.

Figure 5.8: Fisheye lens calibration before and after [14]

Figure 5.9: Before GoPro Camera Calibration

After attaining the calibration coefficients and applying them to the imagery, it was

noticed that it did not have the intended effect. Figure 5.10 shows this result. The

black around the edge is indicative of an image with some level of distortion removed.

Further investigation revealed that the GoPro video streams and still image data collec-

tion modalities use different pixel bin sizes to capture the scene. This binning of pixels
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Figure 5.10: Original Distortion Correction

causes irregularities in the application of the derived coefficients. Through empirical

trials, a visually appeasing adjustment was achieved. Figures 5.9 and 5.11 depict the

before and after of the same scene.

Figure 5.11: After GoPro Camera Calibration

As can be seen, while it does straighten the curved edge, there are oddities about the

edges of the image, and we cannot be completely sure that similar oddities are not

present in the central portion of the image. As such, the original uncorrected imagery

was selected and only the central portion of the images were used. A closer look at the
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center of the image reveals what appear to be minor radial distortions due to the fisheye

nature of the lens. Figure 5.12 shows this effect.

Figure 5.12: Full Scene Center Closeup

While a fully undistorted image would be ideal for use in this experiment, the individuals

and objects used in this research appear to be of sufficient size to alleviate the need to

have the central portion of the image completely undistorted.

5.3 Video Stabilization

Since the data were taken outside, the sensors were susceptible to the same atmospheric

conditions as the objects in the scene. This included both sustained wind and short

gusts. In order to correct for induced motion in the sensor, a video stabilization process

was implemented. Manually reviewing the first frame provided an indication that the

sensor was stable at this collection, therefore it was used as the base for future frame

stabilization. Figure 5.13 depicts this processing flow. This process occurred on each

frame. First a SURF feature detector was used to find common features within the

sequence. Then a Nearest Neighbor algorithm was implemented to find three neighbors

for each SURF feature in the base image. RANdom Sample Concensus (RANSAC) was
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used to develop the homography. Finally, the homography was used to implement a

perspective transform, removing atmospherically induced motion.

Although this technique was used to stabilize a sequence of images in a video stream

it simply represents a method of registering one image to another. Thus, it will be

referenced in Section 5.4.4 when talking about multimodal spatial registration.

SURF KNN Matcher
Homography
(RANSAC)

Perspective
Transformation

Figure 5.13: Image Stabilization Flow Diagram

The motion imagery collection, for this experiment, was conducted over multiple days

allowing for various environmental conditions. Two of the four collections required video

stabilization due to noticeable oscillations in the videos. This dataset was not one of

them, so video stabilization was not applied.

5.4 Registration

Registration of the data within this experiment occurs in two phases. First, the data

need to be temporally registered so concurrent events can be correlated across the various

imagers. Second, the data need to be spatially registered so common events within the

video streams occur in the same space. Take, as an example, two cameras watching

a ballet. One is set on the left side of the audience and the other on the right side.

One is set to begin recording at the beginning of the ballet, while the other is set to

begin recording five minutes later. After the performance, if you were to play these

videos on side-by-side monitors you would notice a lag between videos and a difference

in perspective. The purpose of this step is to make these two videos streams appear

as though they began at the same time and were placed in the same location in the

audience.
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5.4.1 Registration Accuracies

Determining the necessary registration accuracy depends on the type of activity being

imaged and the capabilities of the imager. Of the two activities being analyzed the object

exchange will be used as the base for the registration accuracy calculations. This is due

to the spatial and spectral extent of the activity. The requirements for the simulated

RPG activity will be addressed in Sections 5.5.3 and 5.7.2.

Beginning with the physical layout of the object exchange, assume a human will be

walking forward with the object held lengthwise in full view of the imager as depicted

in Figure 5.14. To ensure proper spatial and temporal registration, we would like each

object of interest to have a minimum of 50% overlap with itself. Spatially, this means

that 50% of the object needs to occupy the same pixel coordinates each image modality.

Temporally, within each matched set of frames across the video sequences, at least 50%

of the object needs to occupy the same pixel coordinates. An objective would be 75% of

overlap with itself. Since we are evaluating spectral signatures of particular objects, this

constraint will be placed on full pixels of overlap to avoid a pixel unmixing situation.

The details of the effects of this full pixel requirement will be discussed later in this

section; first the variables need to be defined.

As stated in Robinson [88], the average velocity of a marching soldier is said to be

vmarch = 1.5m/s

Using the hand-off object dimensions described in section 4.4.2, the object’s height,

length, and width are known. However, since most of the action occurs in the horizontal

direction, only the length of the object will be used. The object of interest here has a

primary dimension of

lobj = 38.5cm± 0.1cm

The object exchange aspect of the research includes the use of the GoPro and WASP-Lite

sensors. The frame rate of the GoPro is
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Figure 5.14: GoPro image of human holding object of interest

frGoPro = 60Hz

while that of WASP-Lite is

frWASP−Lite = 8Hz

As part of this discussion, we will assume that the object is translated in a linear fashion

between adjacent frames. The translation distance for the object is calculated as
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xobj(t) = vmarch · t (5.1)

xobj(1s) = 1.5m/s · 1s
= 1.5m

5.4.1.1 Temporal Registration

Determining how far it translates with respect to our sensor is done by taking the inverse

frame rate as the time between frames. The temporal registration of this data is done

with respect to the highest frame rate imaging system. Thus the GoPro is used and the

object’s per image translation is calculated as

xobj

(
1s

60

)
= 1.5m/s · 1s/60

= 0.025m

= 2.5cm

Imaging through the GoPro, the object moves 2.5cm each frame. These translations can

be remapped into pixel space by using the GSD of one of the sensors. The GSD of the

multispectral sensor will be used. The pixel space equivalent of the object is calculated

by

GSDspectral = 5.00
cm

pix

lobj(pix) =
lobj(cm)

GSDspectral

=
38.5cm

5.00 cm
pix

= 7.7pix
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Using the above constraint of avoiding mixed pixels, the length of the object fills seven

pixels at a time. However, we will further reduce this by saying that it must be full

pixels at all times. Since we cannot say with certainty that the leading and trailing

edges will not both be partial pixels, we stipulate that only six pixels are considered in

the registration requirements. Moving at the above velocities, the object’s pixel-based

translational velocity is

vobj (pix/frame) =
Vobj(cm/frame)

GSDspectral
(5.2)

=
2.5 cm

frame

5.0 cm
pix

= 0.5pix/frame

Four temporal registration tolerances can be calculated by using a combination overlap

and pixel fill requirements. These tolerances are calculated in terms of frames. Beginning

with the partial pixel requirements the number of frames needed to ensure half of the

object overlaps itself is calculated as

lobj−partial−pix(pix) = 7.7pix

1

2
lobj−partial−pix(pix) = 3.85pix

thalf−overlap(frames) =
1
2 lobj−partial−pix(pix)

vobj (pix/frame)
(5.3)

=
3.85pix

0.5pix/frame

= 7.7frames

Since the data is not being interpolated between frames, the actual requirement must

be rounded to a discrete frame value

thalf−overlap(frames) = 8frames
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By considering only full pixels, a similar number of frames can be calculated as follows

lobj−whole−pix(pix) = 6.0pix

1

2
lobj−whole−pix(pix) = 3.0pix

thalf−overlap(frames) =
1
2 lobj−whole−pix(pix)

vobj (pix/frame)
(5.4)

=
3.0pix

0.5pix/frame

= 6frames

Performing the same evaluation, an objective number of frames can be determined. By

requiring a 3/4s overlap of the object, the calculations indicate that only 1/4 of the object

is not overlapping. This 1/4 is used to calculate the number of frames by

lobj−partial−pix(pix) = 7.7pix

1

4
lobj−partial−pix(pix) = 1.925pix

t3/4−overlap(frames) =
1
4 lobj−partial−pix(pix)

vobj (pix/frame)

=
1.925pix

0.5pix/frame

= 3.85frames

Since the data is not being interpolated between frames, the actual requirement must

be rounded up to a discrete frame value

t3/4−overlap(frames) = 4frames

By considering only full pixels, a similar number of frames can be calculated as follows
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lobj−whole−pix(pix) = 6.0pix

1

4
lobj−whole−pix(pix) = 1.5pix

t3/4−overlap(frames) =
1
4 lobj−whole−pix(pix)

vobj (pix/frame)

=
1.5pix

0.5pix/frame

= 3frames

Table 5.2 consolidates the partial and full pixel calculations for both the threshold and

objective temporal registration requirements in terms of frames. Table 5.3 depicts the

same in units of milliseconds.

Table 5.2: Temporal Registration Requirements (frames)

Requirements Partial Pixels Full Pixels
1/2 Object Overlap 8 frames 6 frames
3/4 Object Overlap 4 frames 3 frames

Table 5.3: Temporal Registration Requirements (ms)

Requirements Partial Pixels Full Pixels
1/2 Object Overlap 133.33ms 100ms
3/4 Object Overlap 66.67ms 50ms

By relating the WASP-Lite imaging suite to the GoPro imager, it is possible to determine

how many GoPro frames occur between WASP-Lite images. At a frame rate of 8Hz the

inter-frame capture time can be calculated by

tb/t−Images−WASP−Lite(s/frame) =
1s

8frames

tb/t−Images−WASP−Lite(ms/frame) =
1000ms

8frames

= 125ms/frame
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The same inter-frame capture time can be calculated for the GoPro in the following

manner

tb/t−Images−GoPro(s/frame) =
1s

60frames

tb/t−Images−GoPro(ms/frame) =
1000ms

60frames

= 16.67ms/frame

A ratio of these two values can be used to determine how many GoPro frames occur

between every WASP-Lite frame.

tb/t−Images−WASP−Lite(s/frame)

tb/t−Images−GoPro(s/frame)
=

125ms/frame

16.67ms/frame

= 7.5

tb/t−Images−WASP−Lite = 7.5 · tb/t−Images−GoPro

Since there are no intermediate frames, this occurs every 8th frame. In the actual syncing,

it is likely that the frames will align every 8th then 7th then 8th again to balance out the

timing.

5.4.1.2 Spatial Registration

With the temporal registration understood, we need to determine how its accuracies or

inaccuracies affect the spatial registration. Figure 5.15 depicts how misregistering the

data will affect the movements spatially.

MAPPS is a lower frame rate sensor operating at 6Hz. Thus expanding this logic, at

frame 10 rather than frame 8, it will have a spatial registration error of 25cm. At

the threshold and objective values, the spatial error caused by mis-registration can be

calculated as
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frame 1

0.0m

frame 2

2.5cm

frame 3

5.0cm

... frame 8

20cm

20cm

2.5cm 2.5cm 2.5cm

Frames

Error

Figure 5.15: WASP-Lite Temporal Registration Error

xobj(cm) = vobj(cm/frame) ·# of frames (5.5)

xobj−minimum(cm) = 2.5cm/frame · 6frames

= 15cm

Replacing the above with an object velocity in pixels per frame, the per frame translation

can be calculated as

xobj(pix) = vobj(pix/frame) ·# of frames (5.6)

xobj−minimum(pix) = 0.5pix/frame · 6frames

= 3pix

Since spatial registration techniques will be utilizing an interpolation method, it is more

accurate to assess object locations to less than a pixel. Making that assumption, it is

assumed that at least 1/10th of a pixel is filled at either end of the object. This translates

to a 0.5cm remainder in spatial registration.

5.4.1.3 Registration Budget

The purpose of leaving this remainder can be seen in the remaining budget for the spatial

registration. Essentially, even if the temporal registration can only meet the minimum

requirements for alignment (6 frames), there is still a small amount of registration bud-

get remaining for the spatial aspect to accomplish the task. Otherwise, meeting the
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minimum threshold value would require a perfect spatial registration of the data. This

is not likely with current techniques. Figures 5.16, 5.17, 5.18 depict the effect temporal

registration has on spatial registration. The three graphs depict the same data plotted

in different units.

0 1 2 3 4 5 6 7

Temporal Registration Budget (pixels)

0

1

2

3

4

5

6

7
S
p
a
ti

a
l 
R

e
g
is

tr
a
ti

o
n
 B

u
d
g
e
t 

(p
ix

e
ls

)
Registration Budget (pixels)

Figure 5.16: Registration Budget in Pixels
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Figure 5.17: Registration Budget in frames and cm
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Figure 5.18: Registration Budget in ms and cm

5.4.2 Temporal Registration

Figure 5.19 depicts how this data association may look temporally. Since the frame rates

are not equivalent, the data cubes will only contain data from multiple modalities when

the modalities are present, i.e. every 6th frame. Due to the need to utilize multiple

frames for polarization products, another layer of temporal alignment needs to occur.

This will be discussed in section 5.5.3. In order to perform the temporal registration, a

series of Light Emitting Diodes (LEDs) were included in the scene. Figure 5.20 depicts

the setup of the LEDs.
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Figure 5.19: Temporal Data Association
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5.4.2.1 Light Emitting Diodes (LEDs)

Figure 5.20: LED Setup

The LEDs were divided into two groups; the three on the left acted as counters for

the sequence performed by the eleven on the right. The group on the right begins by

turning on each diode beginning from right and moving left until all diodes are engaged.

Once all eleven are active, the sequence continues by turning off each diode in the same

sequence they were turned on. This ensures 22 unique states. Once this sequence has

been completed, the rightmost diode of the other group becomes active. The right group

again goes through its sequence and upon completion, the middle diode of the left group

becomes active. This continues in the same fashion, with all three turning on from right

to left, then turning off from right to left. In this fashion, the three left LEDs allows for

six unique combinations. Together, these groups produce 132 unique combinations.

To ensure a uniquely lit diode in each consecutive frame, the diodes must engage at a

rate greater than or equal to the fastest framing system. By setting the sequencing of

the diodes such that they remain on rather than rapidly turning off, the issue of Nyquist

sampling is avoided. Stated differently, by purposely keeping LEDs active much longer
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than the framing capability of the system, we avoid having to ensure the framing systems

are sampling the diode sequence at Nyquist rates or better.

To gain the maximum temporal resolution possible, the LEDs were set to actuate (engage

or disengage) at a rate equivalent to the fastest framing rate sensor in the experiment.

This was set to be 1/60 of a second to match that of the GoPro. This ensures that each

frame of this sensor has a unique timestamp which can be matched to another in the

other modalities. With 132 unique combinations, the sequence begins anew every 2.2

seconds. The experiment occurs over a period of 45 seconds, meaning the sequence occurs

roughly 20.5 times. It is presumed that there is enough distinction between actions of

a scene to allow visual based temporal syncing to within a one second accuracy; LEDs

will be used for finer distinctions.

5.4.3 Multimodal Considerations

The only multimodal concerns using the LEDs come from the thermal imagers inability

to perceive the relatively low change in temperature from the rapidly actuating devices.

However, since it was previously confirmed that the imagers within WASP-Lite image

to within 1/60 of a second of each other, for this application, it is acceptable to use the

timing of another imager to temporally register the data. This induces an acceptable

error accuracy of ±1/60 of a second.

5.4.4 Spatial Registration

As described in Section 4.3.2, the equipment was placed in such a manner as to reduce

or even eliminate the parallax issues within the region of interest. However, due to the

oblique imaging angle, there is no single (x,y) coordinate shift that would align each

plane of the scene. For this reason, we focused on the central portion of the scene as

portrayed in Figure 5.21.

Since none of the sensors were viewing the scene through a common optic, each sensor

needed to be properly registered to the base. In this instance, the WASP-Lite high

resolution panchromatic imager was chosen to act as the spatial registration base. The
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Figure 5.21: Region of Interest within FOV

reasoning was twofold: first, all the WASP-Lite sensors are co-boresighted (they are me-

chanically aligned to have parallel optics), meaning a simple pixel shift would be enough

to properly register them; second, this broadband sensor had the highest resolution that

covered the entire FOV of the region of interest.

We note that the registration occurred on the first image of each temporally registered

sequence. In order to determine the correct transformation matrix to apply to each of

the sensors, a few basic assumptions need to be understood. First, the hardware was

set up such that each sensor was parallel to every other, thereby reducing the odds of

perspective issues between adjacent views. Second, only the multispectral sensors are

using the “exact” same camera and optical train, thereby guaranteeing duplicative FOVs

and GSDs amongst them. That being said, the FOV and GSDs of the panchromatic

imager are different from all the others, thereby forcing a reliance to match specific

features amongst the imagery to properly register. The SURF detection algorithm was

used to perform this task.

5.4.4.1 Feature Matching

Using the assumption that each sensor was placed parallel to every other, it was ex-

pected that enough common matching features amongst the imagery would result in an
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affine transformation matrix for registration. Understanding that each imaging modal-

ity had a different GSD from that of the panchromatic, it was necessary to reduce the

panchromatic GSD to match that of the other imagery before applying the SURF algo-

rithm. This reduction and SURF application was performed in a two step process for

each pairing of imagers (i.e. panchromatic and multispectral camera 1).

First the panchromatic image was blurred by using a standard odd size averaging blur

kernel. Then the SURF algorithm was applied to both images. Once the set of features

was detected in each image, the two nearest neighbors were retained as possible point

correspondences. Finally, a closeness rating of 0.7 was used to determine which pairs

were close enough to be kept as good features.

This process was applied several times by changing the size of the blur kernel and count-

ing the number of ‘good’ features that remained after the process was complete. Figure

5.22 depicts the results of several blur and SURF iterations between the panchromatic

and GoPro imagery.
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Figure 5.22: Blur and SURF Results

This figure shows that there are several peaks that are produced as the image becomes

more and more blurred. These are comparable to adjusting a lens to focus on a particular

object. Not knowing which would produce the best image, the features from the top

three blur kernels were used to perform the registration on the GoPro imagery. This
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registration was done by finding the homography matrix using a RANSAC to determine

the best fit between the panchromatic and GoPro matched features.

To determine which blur kernel provided the best results in an automated fashion, the

Sum Square Error (SSE) of the panchromatic image and the newly registered GoPro

imagery was analyzed. First, the panchromatic image and a grayscale version of the

GoPro imagery were peak normalized and overlaid on a common axis. Then the SSE of

the image registration was evaluated by

SSE =

x=n,y=m∑
x=0,y=0

(IGoPro
x,y − IPan

x,y )2 (5.7)

where x and y represent spatial locations and n & m are stand in variables representing

the full spatial extent of the image (i.e. at 1600x1200 pixels n=1200 and m=1600).

Figure 5.23 depicts the visual results of the various blur kernels in a three-channel (RGB)

image. To simulate this, the Red and Blue channels were filled with the panchromatic

image and the Green channel was filled with the greyscale registered GoPro Image. The

left side depicts the registered imagery with non-common overlap included, whereas the

right side masks out non-overlapping portions of the scene. The titles of each image

indicate the blur kernel size and amount of Sum Square Error (SSE).

Once the appropriate transformation matrices were developed for each of the multispec-

tral cameras and the GoPro, they were individually applied to each of the images in the

image sequence. Appendix B depicts the results of each of the spatial registrations for

the multispectral imagers.
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Figure 5.23: Registration results from varying blur kernel sizes. Note, the left con-
tains the entire image from both imagers, whereas the right masks out non-overlapping
portions of imagery. The Red and Blue channels were filled with the panchromatic
image and the Green channel was filled with the greyscale registered GoPro Image.
The titles of each image indicate the blur kernel size and amount of Sum Square Error

(SSE).

5.5 Data Fusion

As stated in the background section, there are three levels of fusion that can occur: pixel,

feature, and decision. This research will concentrate on the pixel level fusion wherein

each modality will be placed into a multimodal data cube for further evaluation.
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5.5.1 Pixel Level

Upon proper registration of the disparate modalities, each was stacked behind the others

in a multimodal data cube representing the scene. Due to the differences in the temporal

resolution, not all modalities will initially be represented in each data cube produced.

The GoPro will be the basis for each cube, with empty placeholders (channels comprised

of all zeros) being used to keep a consistent order among all the cubes in the temporal

data set. Figure 5.24 depicts a multimodal data cube of one of the frame’s in this

dataset.

Figure 5.24: Multimodal Data Cube

5.5.2 Change Detection

Once the GoPro imagery is evaluated for tracking purposes, only those pixels indicating

foreground objects will be considered for further evaluation. This binary change detec-

tion image will be placed on top of the data cube acting as a mask for the information

in the adjacent modalities. Multimodal information will be subsequently tagged as be-

longing to the pixels indicating motion in the tracking phase and activity recognition

will occur in the next phase.
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5.5.3 Polarimetric Data Fusion

The data from the MAPPS sensor needed to be temporally aligned before polarimetric

analysis could occur. The sensor takes an image for each polarimetric filter then ro-

tates to the next filter in sequence. Figure 5.25 depicts the flow chart for collection and

processing of the MAPPS data and Figure 5.26 depicts how often a polarimetric set is

available to the data cube. For each Stokes vector, a degree of linear polarization is ana-

lyzed. In this case, we are making the inherent assumption that the circularly polarized

component (S3) is roughly equal to zero, thereby equating the Degree of Polarization

(DoP) to our Degree of Linear Polarization (DoLP).

Figure 5.25: Multiplexed Processing Sequence [11]

With the multimodal data cube, per pixel evaluations of objects of interest can be

interpreted. A object depicting a high DoLP relative to its surrounds will be the dis-

criminator to determine what objects are interesting. Once a series of pixels has been

tagged as interesting the target detection algorithm will be cued to track this grouping

of pixels through the remaining sequence of data. Since this activity is only concerned

with moving polarimetric pixels, the tracking algorithm will associate the polarimet-

ric “signature” with the moving object in the scene. Therefore, even if the signature
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Figure 5.26: Temporal Data Association

fades due to a change in the sun-target-sensor geometry, the object will still be tracked

throughout the remainder of the video.

We note that it is possible for a single object to exhibit a range of high DoLPs throughout

a collection period. This change in DoLPs is due to the changing position of the sun

over time. Due to the short temporal span of this experiment, this is unlikely to have

occurred. After developing the DoLP imagery, a tracking method will be applied to

the polarimetric data. These tracks will be correlated with the tracks from the GoPro

imager to match moving people across the two systems. Afterwards, Those people

carrying objects depicting a high DoLP will be identified in the GoPro imagery as

having a polarimetric signature.

5.6 Tracking

Tracking, as described in this section, is broken up into two sections: target detection

and track association.



Chapter 5. Methodologies 106

5.6.1 Target Detection

Target detection is the act of identifying specific points of interest in a given scene. This

is accomplished by walking through a series of steps in the target detection sequence

depicted in Figure 5.27. This essentially becomes a computer vision problem, in which

the noise (i.e. background) needs to be reduced in favor of the targets of interest.

Forsyth, Szelinski, and Solem all describe varying methods of filters, averaging, optical

flows, and segmentation algorithms that could be used as possible solutions[57–59]. A

combination of these are included in the background suppression element depicted in

Figure 5.27. A background image of the entire video was developed by averaging all

the images on a pixel-by-pixel basis. Then a difference image is constructed from the

current frame and background image. Both Zhang and Ausfeld used similar techniques

when assessing change detection in their polarimetric and infrared research, respectively

[60, 61]. Then the remaining steps in Figure 5.27 are applied using empirically derived

values. While helpful, this process does not completely isolate moving objects of interest

from background clutter (i.e., leaves on trees). Finally, tracks are maintained using a

gating technique for further analysis.[62]

Background
Modeling

Foreground
Image

Thresholding

Filtering
Morphological
Operation

Connected
Components

Figure 5.27: Target Detection Flow Diagram

5.6.1.1 Background Modeling

The background of our given sequence is modeled by taking the pixel-by-pixel average

of all the frames within the video sequence. Here we describe the background as the

image that would occur if all the moving objects within the sequence were removed. We

note that ‘background’ of the scene is contingent on how long and how often the imaging

sensor captures an image of the scene. Over a period of months, the dominant change
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in the image would likely be the trees senescence cycle. Comparatively, over hours and

minutes it may be a change in the number of parked cars and people passing through.

Figure 5.28 depicts that modeled background for the evaluated data.

Background Image

Figure 5.28: Background of the video sequence

5.6.1.2 Foreground Image

Once a background was developed, a foreground image was produced for each frame

in the sequence. To accomplish this, each frame in the sequence was differenced with

the background image. Since both images have objects moving through low and high

intensity areas, there exists the possibility of obtaining both positive and negative values.

An absolute value of this image was taken to ensure all values were positive. Figure 5.29

depicts one of the foreground images in the sequence.

5.6.1.3 Thresholding

The foreground image primarily contains moving objects, indicative of actual targets

and noise (leaves moving in trees). The noise is caused by a number of factors including:

slight per pixel intensity changes, leaf movement on trees, and shifting shadows. In order

to reduce the noise due to subtle shifts in intensities, shadows, and slight leaf movements,
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Absolute Value of Difference Image

Figure 5.29: Foreground of first frame in the video sequence

the foreground image was thresholded. Empirically, a threshold of 20 digital counts

was determined to provided an adequate amount of noise reduction while retaining a

reasonable amount of actual targets in the image. Figure 5.30 depicts the output of this

step.

Threshold Image

Figure 5.30: Thresholding of foreground image
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5.6.1.4 Filtering

Another method of reducing the previously mentioned noise is to implement a filter. A

median filter was chosen to find and remove pixels under the median digital count of

the remaining pixels. The thought behind the median was to indicate that legitimate

targets would produce a more easily detected difference from the background in the steps

above. Leaves blowing in the wind would not produce large values in the foreground

image. Figure 5.31 depicts the output of this step.

Median Filter Image

Figure 5.31: Median Filter of threshold image

5.6.1.5 Morphological Operations

Morphological operations were used to ensure confidence in detecting the humanoid

targets within the scene, while removing additional noise throughout the image. To

accomplish this morphological closing was performed with a large elliptical kernel, em-

pirically determined to represent the silhouette of a person within the scene. Figure 5.32

depicts the output of this step.
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Morphological Operation

Figure 5.32: Morphological Operation of Median Filter

5.6.1.6 Connected Components

Finally a connected components analysis was used to differentiate large objects from

closely spaced smaller clusters of objects. Normally, this analysis is utilized to differ-

entiate different islands of objects within a scene, however, in this particular situation,

it was used to differentiate the length of the connected segments of a particular island.

It can be seen that the noise from the above step was still small relative to the actual

targets of interest in the center of the image. Therefore, by counting the length of the

connection in each island, and setting an empirically derived minimum connectivity, we

can filter out smaller remaining noisy elements within the scene. This became a binary

image, where all islands above the threshold were set to one, and everything else was

set to zero. Figure 5.33 depicts the output of this step.

5.6.1.7 Target Locations

Once the final binary connected component image was created, an OpenCV function

called “findcontours” was used to wrap the individual islands and determine their cen-

ters. This function works by implementing a topological border following technique de-

veloped by Suzuki and Abe [89]. It was implemented to follow the borders of structures
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Connected Components

Figure 5.33: Connected Components of Morphological Image

in binary images in order to determine their most external outline. Once completed, the

center of the object is determined and saved for further analysis. Figure 5.34 depicts

the location of the centers outlined by red circles for easy identification.
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Figure 5.34: Centers of identified targets
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5.6.1.8 Consolidation

As indicated in the above Figure 5.34, there can be many targets identified within the

image. In order to reduce the number reduce the number of duplicative and false, a

comparison of points is performed. Even with the previous cleaning steps above, there

are still many points where noise and multiple parts of the same person are identified.

In order to further reduce the noise, a stipulation is placed that there must be at least

one point within the area. This area was defined by creating a ellipse that represents

the silhouette of a humanoid within our video. Then each point was compared against

all others and a series of pairs were formed. Since a series of pairs may have common

points within, an analysis was performed in which all common points were consolidated.

After consolidation, the average location was found and used as the target’s location.

Figure 5.36 depicts the output of this step.
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Figure 5.35: Consolidate centers of identified targets



Chapter 5. Methodologies 113

5.6.2 Track Maintenance

Having detected targets in each frame, the challenge is to now associate the tracks from

one frame to another. When doing so, we can say that a track either belongs to a

previously tracked target or does not. In order to determine whether it is a previously

tracked target, we compare the current location of the tracked object to the locations of

all the new detections in the image. These values are placed into a Munkres assignment

matrix [90, 91] with previously tracked objects.
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Figure 5.36: Consolidate centers of identified targets
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5.6.2.1 Munkres Assignment Algorithm

The Munkres assignment algorithm, also known as the Hungarian Method, is a combina-

torial optimization algorithm that solves the assignment problem in a polynomial time

rather than exponential. In this execution it attempts to minimize the cost associated

with assigning a series of object locations to previously identified objects. Equation (5.8)

depicts a matrix where previously found objects are given the choice of updating to one

of three new positions. Each number in the matrix represents a range between the last

known position of the object and a newly provided position.

⎛
⎜⎜⎜⎜⎝

Obj1 Obj2 Obj3

New Position1 5 9 1

New Position2 10 3 2

New Position3 8 7 4

⎞
⎟⎟⎟⎟⎠ (5.8)

5.6.2.2 Manual vs. Automatic Tracking

Once applied, the automatic tracking algorithm did not perform in an optimal fashion.

The performance of the target detection algorithm can be evaluated by using signal

detection theory. This required a manual target detection of each person in each frame.

A true positive rate is defined as each correct detection the algorithm picked when

compared to the manually detected location of the person within an image. When

comparing the automatically detected position vs. the manually detected position, a

target within 30 pixels was counted as a detection. A false positive is defined as any

detected target that is not within that 30 pixel area of a manually detected target. The

30 pixel threshold was empirically derived.

On average, the true positive rate of the detection algorithm was only 14%, with 3.86

false positives for every target in the image. This led to about 17.3 false positives

per image. Since the activity recognition algorithm needs a higher detection rate, it was

decided that the manual target detection dataset would be used in lieu of the automated

target detection dataset.
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5.6.3 Tracking Results

Using the manually detected targets, the Munkres Assignment algorithm was able to

achieve a 100% correct assignment of each of the people in the scene. Figures 5.37

through 5.40 depict a successful track association sequence where each of the individuals

within the scene maintains a constant numerical indicator above their head. Person 1

and Person 3 are the two individuals engaging in the object exchange. In Figure 5.38

Person 3 can be seen handing off the object to Person 1. In Figures 5.39 and 5.40 a

passerby is tracked through the scene and is represented by the number four over their

position.

Figure 5.37: First Frame in Tracked Sequence
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Figure 5.38: Object Exchange in Tracked Sequence

Figure 5.39: Post Object Exchange in Tracked Sequence
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Figure 5.40: Additional Person in Tracked Sequence
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5.7 Activity Recognition

In this portion of this research, there are two activities considered as interesting. The

first is an object exchange between two people and the second is the detection of an

object with a high DoLP. Section 5.7.1 will address the object exchange while Section

5.7.2 address the polarization activity.

5.7.1 Object Exchange

Once the tracking algorithm produced an adequate set of tracks for the moving objects

within the scene, an activity recognition algorithm was applied. The spectral signature

of each person was computed in the first few frames and compared against all future

frames for signs of change. If two signatures within a close spatial proximity depicted

a change at some point in the sequence, then an exchange is said to have occurred.

By using Spectral Angle Mapper (SAM) between two spectral signatures, an angle can

be used to determine how the spectral signature of a person changes over time. This

technique’s illumination invariant nature makes it possible to compare signatures of a

person moving in and out of shadow. The following steps are used to determine the

existence of an object exchange:

1. Develop a pixel mask indicative of foreground objects. This is done by using the

pixels in the threshold image derived from the target detection workflow; Figure

5.30 depicts the threshold image.

2. Apply the mask to all bands in the data cube.

3. Apply a bounding box around the detected locations of each person within the

image.

4. Take the band-by-band mean of the pixels within the bounding boxes

5. Place the means into a vector. This is considered the spectral signature associated

with the detected person.

6. Perform this technique for every frame and every object in the sequence.
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7. Average each object’s spectral signature from the first 10% of frames in the se-

quence. This average will act as the reference signature for each individual.

8. Calculate the spectral angle between each object’s reference signature and the

signature found in each frame.

9. Determine if any person has a spectral angle above an empirically derived thresh-

old.

10. Reduce the number of people being evaluated by using a spatial filter. If two

people are not within a close spatial proximity, then it is not possible for them to

exchange an object.

Figure 5.41 depicts the above steps in the workflow. Note that as part of this workflow,

there are steps performed on each band, each person detected in the scene, and each

frame in the sequence. The flow begins by taking the threshold image from the target

detection workflow and performing a series of operations.
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Figure 5.41: Object Exchange Activity Recognition Flow Diagram; The dotted boxes
indicate where the type of operation is performed. The flow begins by taking the
threshold image from the target detection workflow as indicated in the upper right

hand corner of the figure.
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5.7.1.1 Band-by-Band Operations

Mask Image The mask is developed by changing the threshold image into a binary

image. Any pixel with a value is changed to a one and any without a value is kept zero.

For example, Figure 5.42 is a sample image from the video sequence. By taking the

threshold image of this particular frame and making it a binary image, the image mask

is created. Figure 5.43 depicts this mask.

Figure 5.42: Image to be Masked

Once the mask is developed, it is applied to the image to remove all background data.

Figure 5.44 depicts the final background image used in the masking. This is accomplished

by multiplying the mask by each channel in the image. Figure 5.45 depicts the inverse

mask, which is easier to interpret.
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Image Mask

Figure 5.43: Image Mask

Masked Image

Figure 5.44: Masked Image
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Inverse Masked Image

Figure 5.45: Inverse Masked Image

Bound People Pixels Once the image has been masked, a bounding box is created

around a point indicative of a detected target. The box is intentionally made such that it

will encompass most of an individual in each frame. Using the image above, Figure 5.46

depicts the two individuals used to describe the bounding situation. The following side-

by-side figures depict the actual size of the bounding boxes used to create the object

spectral vectors. Figures 5.47a and 5.47b depict a side-by-side image of Person 3 in

Figure5.46.

The bounding box could have been made larger to ensure it retained all pixels related

to the object, but empirical results showed that doing so includes other undesired fore-

ground. Figures 5.48a and 5.48b depict a side-by-side image of labeled Person 1 in

image 5.46. Notice the difference in the amount of information included between Fig-

ures 5.47b and 5.48b. When an individual is near others or surrounded by shadows,

the previously defined algorithms include that pixel information in the spectral mean

content. One method to avoid this is by using a smaller bounding box. However, doing

so has presented some adverse empirical results indicative of a loss in spectral signature

uniqueness. A full range evaluation on the proper size of the bounding box was not

completed, but is left for the assessment of future researchers.
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Figure 5.46: Inverse Masked Image with Individuals labeled

(a) Original Image (b) Masked Image

Figure 5.47: Bounding Box Around labeled Person 3

The size of the box is 60 pixels in the x-direction and 100 pixels in the y-direction,

centered on the detected target location. The manual tracking kept the detected target

location on the upper body of the people walking through the scene. There is some
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(a) Original Image (b) Masked Imaged

Figure 5.48: Bounding Box Around labeled Person 1 with Cluttered Surroundings

variability in the tracked position, but its effects appear to be minimal as most of the

head, torso, and legs can be seen in these frames.

Using a panchromatic resolution image, we calculate this window to be roughly 118.8cm

across and 198cm high. The spectral data has a GSD roughly 2.5 times greater than

that of the panchromatic, thus providing roughly 47.5cm across and 79cm high. These

dimensions are enough to cover a significant portion of the person and the object being

held.

Mean of Pixels Once the bounding boxes have been created around each of the

people pixels, the means of each band are taken. Each mean is then placed into a vector

denoting that person’s spectral signature at that frame.

5.7.1.2 Person-by-Person Operations

Due to the existence of multiple objects within the scene, many of the band-by-band

operations that have been previously completed, have to be redone for each person in
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the scene. The prior two operations of bounding the people pixels and taking the mean

of each band, are also done on a person-by-person basis.

Spectral Signature As described in Section 5.7.1.1, the the mean of each channel is

written as a vector. This vector now constitutes the spectral signature of an individual

person. This process is performed for each person identified within the frame.

Reference Spectral Signature In order to develop a reference spectral signature,

each person’s spectral signature is averaged over the first 10% of the frames in the

sequence. The purpose of this is to develop a robust signature unique to the individual

despite extraneous foreground clutter. We also note that since the person is moving,

it is unlikely that the imagers will ever see two positions of the exact same orientation

or spatial extent. Thus, as the person moves through the scene their body and clothes

will reflect different levels of radiance back to the sensors. This reference signature, or

baseline signature, is only completed once for each person in the scene and then used in

future frames.

5.7.1.3 Frame-by-Frame Operations

Aside from the reference signature, each of the steps above was performed on a single

frame. The next set of steps involves evaluating inter-frame data.

Spectro-Temporal Interpolation Due to the mismatch in temporal resolutions,

the spectral data from WASP-Lite was only interspersed throughout the GoPro framing

data. The GoPro equipment was operating at 60Hz while the WASP-Lite was set for 8Hz

operation. While laboratory results confirmed these frame rate before the experiment

was conducted, the WASP-Lite equipment was actually operating at a variable rate

centered around 5.45Hz. Figure 5.49 depicts how the data originally came out of the

process; note the drops where zeros were placed between spectral signatures.

There are 35 frames of spectral data over the 600 frames of GoPro imagery indicative of

the object exchange. To fill in the gaps, a spectro-temporal interpolations was performed.
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Figure 5.49: Original Mean Digital Counts per Frame for 630μm Imager

For brevity, the intermediary steps are left in Appendix F. Figure 5.50 depicts the results

of the interpolation. 565 frames worth of spectral data were developed in this process.
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Figure 5.50: Interpolated Mean Digital Counts per Frame overlaid on Original Data

Spectral Angle Mapper The Spectral Angle Mapper (SAM) is a signature matched

detection algorithm used to compare a reference spectral signature to that of an unknown

signature. The spectral angle between two spectra can be computed by

r(x) =
(sTx)2

(sT s)(xTx)
(5.9)

where s denotes the reference spectrum, and x denotes the unknown spectrum.

This represents the square of the normalized projection of the unknown spectrum onto

the reference spectrum. Understanding that both the inverse cosine and square root are

monotonic functions [92], this can be written as

rSAM (x) = − cos−1
(

(sTx)√
(sT s)(xTx)

)
(5.10)

This suggests that smaller angles are more similar to the reference spectrum. In this

research the spectral angle of a person at one point in time is being compared to the
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spectral angle of the same person at a later point in time. In our case, we know that the

angle between the two spectra should be small because they are theoretically coming

from the same target. What is of interest is when the angle becomes large; this is

indicative of a change in the spectral signature of the person.

Filter People by Distance Since this research is interested in finding an object

exchange between two participants within the scene, the spectral angle charts can be

reduced to retaining only those people that passed by each other within a preset elliptical

distance.

5.7.1.4 Threshold Analysis

Once the people have been filtered, it is possible to determine if an activity has occurred

by evaluating the temporal change in spectral angle. At some point when the object

changes hands, we expect there to be an increase in the immediate and overall angular

difference of the data. In this research, it was decided that the spectral angle should

increase by 10% compared to the pre-exchange mean spectral angle to be considered

a change. Due to the controlled nature of this experiment, the time at which the

exchanged occurred is well known. It is then possible to compare the mean spectral

angles of the data before and after the exchange transpires. After confirming that in

increase of the spectral angle has occurred, the post-exchange spectral angle is used for

further evaluation.

5.7.1.5 Spatio-Temporal Degradations

Once the post-exchange angle has been established, it is possible to perform spatial and

temporal degradations on the data before reassessing the angular disparity associated

with an object exchange. The spectral angle without the degradations would be consid-

ered a 100% likelihood of detection, and as degraded angles diverge from this value, the

likelihood of detection would decrease.

It is important to note that the degradations were only performed on the data after the

tracking occurred. To be clear, this means that all steps up to the activity recognition
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portion of the methodology depicted in Figure 5.2 were done on the original 60Hz 5cm

dataset. This is important to note as spatial degradations would have affected cam-

era calibration, video stabilization, registration and tracking, likely causing systemic

difficulties. The temporal degradations would likely have caused issues in the video sta-

bilization and tracking steps. This portion of the research was interested in developing

an activity recognition algorithm, it was more important to degrade the data going into

the algorithm than into the process. Furthering this reasoning, it was stated earlier that

each of the steps in the methodology could be done with any number of algorithms.

Thus it can be assumed that the data was put through all prior steps with a similar

level of success.

Spatial Degradations In this experiment, a change in pixel pitch was chosen to

perform a reduction in the spatial resolution. However, it was noticed that downsampling

the array caused issues with the location of the tracks developed from the tracking

algorithm. Therefore the array size was kept the same and the blur was used to change

the effective resolution of the imagery. The proper nomenclature with this change in

resolution is Ground Resolved Distance (GRD), and will be used from here on. Section

3.2.3.1 discussed the difference between the two. Since the GSD of the original data is

5cm, each adjacent pixel extent in the blur kernel will change the GRD of the image

data by a factor of 5cm. Thus a 2x2 blur kernel will provide a GRD of 10cm, a 3x3 will

result in 15cm, and so forth.

Temporal Degradations The temporal degradations are developed by taking the

interpolated temporal data, described in Section 5.7.1.3, and skipping select frames. At

60Hz every frame is included in the spectral angle analysis, however at 30Hz, only half

of the original frames are included in the analysis. Without interpolating more frames

into the dataset, it is only possible to attain temporal degradations in integer values

divisible by the total number of frames. Table 5.4 depicts the frame rates included in

this analysis, the associated number of frames, and the steps size between frames. The

Step Size column depicts when the next frame in the sequence was included. Thus, at

1Hz the next frame used was 60 frames away in the sequence. To obtain the number of
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frames skipped between each included frame, simply subtract one from the inter-frame

step size.

Table 5.4: Frame Rates, Frame Count, Step Size, and Skipped Frames

Frame Rate (Hz) # of Included Frames Step Size # of Skipped Frames

60 1000 1 0

30 500 2 1

20 333 3 2

15 250 4 3

12 200 5 4

10 166 6 5

8.57 143 7 6

7.5 125 8 7

6.67 111 9 8

6.0 100 10 9

5.45 91 11 10

5.0 83 12 11

4.0 66 15 14

3.0 50 20 19

2.5 41 24 23

2.0 33 30 29

1.5 25 40 39

1.0 16 60 59

5.7.1.6 Likelihood of Detection

In order to develop a likelihood of detection for the degraded dataset, it is necessary to

compare the degraded spectral angles to the spectral angle of the non-degraded data.

This was done by normalizing degraded spectral angles by the non-degraded spectral

angle; depicted analytically by

θNormalize =
θDegraded

θNon−Degraded
(5.11)

where θ represents the spectral angle of the data. If the non-degraded spectral angle

is indicative of an object exchange, then spectral angles that deviate from this angle,

either positive or negative deviations, present situations where it is less likely that an

object exchange will be detected. For those values below one the values are left as they
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are, however those values greater than one are reduced by their overage. This depicted

analytically in the following example.

θNormalized = 1.3

θOverage = 1.3− 1

θOverage = 0.3

θNormalized Remapped = θNormalized − 2 · θOverage (5.12)

θNormalized Remapped = 0.7

Rather then simply multiplying the spatial and temporal likelihoods together to develop

a likelihood surface, it was decided that developing each point independently would be

best. In order to develop this activity-based likelihood surface, each of the spatial degra-

dations was temporally degraded and the spectral analysis accomplished. The temporal

values were first normalized independently before applying the spatial normalizations

the entire dataset. Since every spatial and temporal degradation will provide a separate

spectral angle, these values can be placed into a matrix for comparison. The columns

will represent the spatial degradations and the rows will represent the temporal degra-

dations. The following uses a notional matrix of spectral angles to depict this point

1. Notional matrix for spectral angles (non-degraded data included)

⎛
⎜⎜⎜⎜⎝

5cm 10cm 15cm

60Hz 9 ? ?

30Hz ? ? ?

20Hz ? ? ?

⎞
⎟⎟⎟⎟⎠ (5.13)
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2. Degrade the data spatially

⎛
⎜⎜⎜⎜⎝

5cm 10cm 15cm

60Hz 9 7 3

30Hz ? ? ?

20Hz ? ? ?

⎞
⎟⎟⎟⎟⎠ (5.14)

3. Degrade the data temporally

⎛
⎜⎜⎜⎜⎝

5cm 10cm 15cm

60Hz 9 7 3

30Hz 8 5 2

20Hz 7 3 1

⎞
⎟⎟⎟⎟⎠ (5.15)

4. Normalize row one from step two

⎛
⎜⎜⎜⎜⎝

5cm 10cm 15cm

60Hz 1 0.78 0.33

30Hz 8 5 2

20Hz 7 3 1

⎞
⎟⎟⎟⎟⎠ (5.16)

5. Normalize each column in step three independently

⎛
⎜⎜⎜⎜⎝

5cm 10cm 15cm

60Hz 1.0 1.0 1.0

30Hz 0.89 0.71 0.67

20Hz 0.78 0.43 0.33

⎞
⎟⎟⎟⎟⎠ (5.17)
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6. Multiply each column in step five by the normalized value in step four

⎛
⎜⎜⎜⎜⎝

5cm 10cm 15cm

60Hz 1.0 · 1 1.0 · 0.78 1.0 · 0.33
30Hz 0.89 · 1 0.71 · 0.78 ...

20Hz 0.78 · 1 ... ...

⎞
⎟⎟⎟⎟⎠ (5.18)

7. Normalized data

⎛
⎜⎜⎜⎜⎝

5cm 10cm 15cm

60Hz 1 0.78 0.33

30Hz 0.89 0.55 0.22

20Hz 0.78 0.33 0.11

⎞
⎟⎟⎟⎟⎠ (5.19)

This normalized data would then be plotted to depict detection graphs similar to those

in Figures 2.1 and 2.2.

5.7.2 Detection of Highly Polarized Objects

Some activities include objects that can be highly polarized or depict a high DoLP.

One such activity of interest is the movement and use of an RPG [86]. A method of

detecting such preparations for launch are to look for objects with a high DoLP moving

throughout the scene. For this activity, Person 2 in Figure 5.38 was given the PVC

pipe described in Table 4.12 and told to execute a series of movements within the scene.

These movements involved transitioning from one location to another, lifting the pipe

onto their shoulder, and moving to a final location. Figures 5.38 through 5.40 depict

and abbreviated portion of the sequence. Figure E.4 in Appendix E displays the full set

of directions.

The specific activity methodology used to detect a polarimetric object is depicted in

Figure 5.51. This activity recognition technique is simply searching the scene for a

moving object with a high DoLP, tagging that object as interesting, and cueing another

sensor for further investigation. The benefit of this technique is that the polarimetric
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sensor only needs to be tipped once for the algorithm to cue an adjacent sensor for further

evaluation. Thus, this subsection will attempt to prove that a polarimetric object exists

and that it is possible to transfer that information to another sensor. Note, each time

the polarimetric nature of the object is depicted, it is done in a different orientation.

That is done to intentionally depict the orientation invariant nature of this technique

against the cylindrical object.

The first step in the process was to determine of the chosen object produced a high

DoLP relative to its surroundings. This is done by following the procedure in Section

5.5.3. The following sections detail the methods necessary to confirm an object has a

high DoLP and how this DoLP is viewed in the field.
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Figure 5.51: Polarimetric Tipping and Cueing Flow Diagram
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5.7.2.1 Stationary In-Scene Stokes Vector

The same PVC pipe was placed in the scene standing on end and evaluated to determine

if it still depicted high DoLP. Figures 5.52 depicts the S0, S1, S2, and DoLP results

respectively of the stationary in-scene object. As the two tests indicate, the object does

have a detectable DoLP.
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Figure 5.52: Stationary Polarimetric In-Scene Results of Object
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5.7.2.2 Moving In-Scene Masks

Due to the motion of the objects, full Stokes vectors could not be produced for the

entire area of the object. However, portions of the object overlap during adjacent time

steps, thus allowing evaluation of the polarization states. To ensure these portions are

compared, a motion mask was developed and implemented to remove areas of non-

overlap. Figures 5.53 and 5.54 depict the original and masked polarized images of the

moving in-scene object. The masks were created by retaining radiance values greater

than or equal to 45% of max value in each image. There are four images representing

the four polarization states.

0 Degree Polar Image

(a) 0 Degree Polar Image

0 Degree Polar Mask

(b) 0 Degree Masked Polar Image

45 Degree Polar Image

(c) 45 Degree Polar Image

45 Degree Polar Mask

(d) 45 Degree Masked Polar Image

Figure 5.53: 0 and 45 Degree Original and Masked Polar Image
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90 Degree Polar Image

(a) 90 Degree Polar Image

90 Degree Polar Mask

(b) 90 Degree Masked Polar Image

135 Degree Polar Image

(c) 135 Degree Polar Image

135 Degree Polar Mask

(d) 135 Degree Masked Polar Image

Figure 5.54: 90 and 135 Degree Original and Masked Polar Image
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5.7.2.3 Moving In-Scene Stokes Vector

As stated in the previous section, due to the movement of the object within the scene,

it is not possible to develop a Stokes vector for each unique position depicted in the

individual images. Each of the previous masks were multiplied together to produce a

single mask covering the extent of the four frames under consideration. This mask was

then applied to each image and the remaining images were used to form the Stokes

vector described in Section 5.5.3. Figure 5.55 depicts the S0, S1, S2, and DoLP results

respectively of the moving in-scene object.
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Figure 5.55: Polarimetric Stationary In-Scene Results of Object
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5.7.2.4 Track Association Between Sensors

Since the polarimetric data is not spatially registered to the data as the other modalities,

a single frame manual comparison is done to associate the high DoLP object in the

MAPPS sequence, with the person holding the object in the GoPro sequence. Once this

match is made, the person in the GoPro data can be watched for further analysis.

A method of automatically matching people in spatially unregistered data could involve

correlating track data between the imagers. In order to compare tracking data, a tracking

algorithm would need to be run on each imager separately. Only the objects depicting a

higher-than-background DoLP would be retained in the polarimetric imagery, whereas

all people and objects would be retained in the GoPro imagery. Following this, the

track data would need to be normalized by the size of the imager to place them in

a common spatial basis. After normalization, a two-dimensional correlation could be

used to compare the track locations of the object in the polarimetric imagery to all

the objects in the GoPro imagery. Due to the narrow FOV and the positioning of

the MAPPS sensor, each of its images is a subset of the much larger GoPro image,

as depicted in Figure 4.21. Thus, it follows that every moving object in the MAPPS

image is also in the GoPro imagery. The final step would be to associate the object or

person with the highest correlation between the track data. The data degradations and

likelihood of detection will be discussed in the results section.
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Results

Two activities were selected for evaluation within this research. The first was an ob-

ject exchange activity, involving two individuals passing one another and exchanging a

briefcase-like object. After the exchange each individual continued along their original

paths. This analysis concentrated on the spectral nature of the briefcase object and the

individuals that exchanged this object.

The second was a simulated RPG activity which followed the steps of an individual walk-

ing to a field and raising a PVC pipe onto their shoulder. This activity was accomplished

by analyzing the polarimetric characteristics of a PVC pipe as it moves throughout the

scene.

6.1 Object Exchange

In this research, an object was exchanged between two individuals walking in the scene.

A spectral signature was calculated for each person walking in the scene and a spectral

angle was calculated for the baseline signature and the signatures of each frame there-

after. Figure 6.1 depicts the output of the spectral angles of each person for each frame

and It is interesting to note that if these data were evaluated alone, a case could be made

that Person 2 and Person 3 must have been the two exchanging the object. This is due

to the abrupt drop in spectral angle from Person 2 at the exact point of joint possession

and the variation in spectral angle of Person 3 after the object exchange has occurred.

142
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The drop in spectral angle for Person 2 is actually completely coincidental. As Person 2

was walking into position the PVC was occluded by their body (frames 250-400), but as

the exchange began to occur, the PVC pipe returned from occlusion as remained unob-

structed throughout the remaining section of the video sequence. By strictly making a

decision based on these figures, that information would have been lost and an inaccurate

analysis developed. It was by filtering the people by their spatial distance that allowed

Figure 6.1 to be reduced to the people involved in the object exchange.
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Figure 6.1: Spectral Angle of All Filtered People

6.1.0.5 Filter People by Distance

Figure 6.2 shows the angles of the two individuals involved in the exchange. This distance

was empirically determined to be 30 pixels in the lateral direction and 15 pixels in the

longitudinal over several frames. The number of frames in dependent on the frame rate

of the data being evaluated. A one second period of data was determined to be adequate.

Therefore, the people should be within the elliptical bounds for at least one second to

be included in the object exchange. For example, at 60Hz they should be within the
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elliptical distance for 60 consecutive frames; at 20Hz they should be within the elliptical

distance for 20 consecutive frames.
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Figure 6.2: Spectral Angle of Spatially Filtered People

6.1.0.6 Threshold Analysis

Figure 6.3 highlights the pre-exchange portion of the video sequence. By taking this

mean angle the value indicative of an exchange can be calculated as

θPost−exchange mean ≥ 1.1 · 7.96
≥ 8.36

where θ represents the spectral angle of the data. Figure 6.4 highlights the post exchange

frames and depicts the mean spectral angle. A value of 8.968 degrees was determined to

be the post exchange mean spectral angle. This is roughly an 18% difference in mean

spectral angle before and after the exchange.
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Figure 6.3: Person 1 Threshold Spectral Angle Before Exchange

After confirming an exchange has occurred, via the criteria stated above, the post ex-

change mean spectral angle is taken as the post exchange spectral angle indicative of an

object exchange. This value will be used as the threshold for developing a “likelihood of

detection” in the spatially and temporally degraded data. It should be noted that before

the mean was used a comparison of the standard deviations was performed. The mean

of the data before the exchange was 7.856 with a standard deviation of 0.8682. After

the exchange, the mean was 8.968 with a standard deviation of 0.8243. The change in

standard deviation after the exchange represents a 5.32% difference from the standard

deviation before the exchange. The almost identical values of the standard deviations

did not afford enough of a change to be considered useful for evaluation.

Throughout this section there have been a several thresholds and ad hoc restrictions used

to evaluate the data at hand. However, it important to understand that this research

is designed to develop a performance assessment methodology capable of characterizing

the utility of a particular system given a specific method of detecting an activity. Since

there existed no objective activity analysis methodology, notional activity and analysis
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Figure 6.4: Person 1 Threshold Spectral Angle After Exchange

schema were developed to depict this point.

Assessing the Noise within the Data As each of the individuals moves throughout

the scene, it is expected that their spectral angle will fluctuate around some mean value.

It is natural to have this measure of variability within the data because the object

never repeats the exact orientation, perspective, or sun-target-sensor geometry within

the sequence. If this variation is considered noise, then it becomes possible to estimate

the SNR using a statistical analysis defined by

SNR =
μ

σ
(6.1)

where this Signal-to-Noise Ratio is the ratio of the mean (μ) of the signal over the

standard deviation (σ) of the signal. Using the values depicted above and those of the

dataset as a whole, Table 6.1 depicts the signal, noise, and SNR calculations of the data

for Person 1.
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Table 6.1: Signal-to-Noise of Spectral Angle Data

Portion of Dataset Mean (degrees) Standard Deviation (degrees) SNR

Before Exchange 7.856 0.8682 9.049

After Exchange 8.968 0.8243 10.88

Before & After Combined 8.412 2.124 3.961

As this table indicates, the SNR of the separate datasets is greater than 9.0, but drops

closer to 4.0 when both sets are merged. The combined SNR will continue to decrease

as the spectral angle before and after the exchange increases. The converse of this

statement provides an interesting and possibly useful method of evaluating the presence

of an object exchange. In order for the combined SNR to increase to the levels of

the before and after SNRs, requires that the angular mean remains relatively constant

throughout the video sequence. Assuming the standard deviation will remain the same,

then the low combined SNR can be associated with the increase in standard deviation

of the data. This increase in standard deviation is directly related to the shift in data

after the exchange. Thus, as the angular disparity describing the exchange reduces, it

stands to reason that the combined SNR will increase. This low SNR presents another

method of determining the existence of an exchange in the dataset.

6.1.0.7 Alternate Methods of Assessing Spectral Angle Data

During the development of this activity recognition technique, the author noted that

the data could have been evaluated in several different methods This section is included

to briefly state each of those methods for evaluation in future research.

Method of Proportions In a real world situation the exact time of an exchange

may not be known a priori. One option for detecting this point would be to compare

x percentage of the first portion of the data, to 1-x percentage of the latter part of the

data. This would be done in an iterative method whereby the first 10% and the latter

90% would be compared, then 20% to 80%, 30% to 70% and so forth.

Method of Angular Difference In the research above, it was decided that the

basis for an object exchange will be the mean spectral angle after an exchange has
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occurred. Another method for evaluating the data is to use the difference in spectral

angle before and after the exchange had occurred. Utilizing this method of evaluation,

would afford researchers a method of evaluating how the angular difference changes as

the spatio-temporal degradations occur.

Method of Sliding Window Another option would be to create a sliding window

that compares the current frame to all prior frames in the window. Figure 6.5 depicts a

notional outcome of this type analysis. For example, using a window size of 20 frames,

the current frame in the analysis is compared to the prior 19 and a relative difference

can be annotated. Normalizing by the maximum difference would point to the frame

where the maximum change in spectral mean is located. Note that this figure is simply

a Gaussian distribution depicting an ideal example of this sliding window concept.

200 250 300 350 400 450 500 550 600 650

Frame Number

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
z
e
d
 C

h
a
n
g
e
 i
n
 S

p
e
c
tr

a
l 
A

n
g
le

Object Exchange Location

Figure 6.5: Sliding Analysis of Spectral Means

Method of Standard Deviations Another option for assessing the spectral angle of

the data would be to perform a comparison of the standard deviations before and after

the exchange. The mean of the data before the exchange was 7.856 with a standard

deviation of 0.8682. After the exchange the mean was 8.968 with a standard deviation
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of 0.8243. The change in standard deviations after the exchange represents a 5.32% dif-

ference from the standard deviation before the exchange. This minor change in standard

deviations is within the noise of the data and thus not considered significant.

6.1.1 Spatial Analysis

Figure 6.6 depicts the spectral angles of the participants as the data is spatially degraded.

By normalizing the spatial degradations a likelihood of detecting the exchange can be

developed. Figure 6.7 depicts this likelihood of detecting as a function of GRD. Figures

6.8 and 6.9 filter the spatial degradation data by only retaining the two individuals

involved in the object exchange.
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Figure 6.6: Spectral Angle per GRD (60Hz)

As the data is spatially degraded, the foreground data becomes more similar to the

background data. This has an overall effect of decreasing each participants spectral

angle. As the uniqueness of the foreground data is reduced, it becomes more difficult to

identify the exchange of a small object from one person to another. In this particular

data set, these spatial degradations have caused some of the detection likelihoods to
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Figure 6.7: Detection Likelihood per GRD (60Hz)
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Figure 6.8: Spectral Angle per GRD (60Hz) of Individuals in Object Exchange



Chapter 6. Results 151

0 20 40 60 80 100

GRD (cm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
L
ik

e
li
h
o
o
d
 o

f 
D

e
te

c
ti

o
n

Detection Likelihoods per GRD (60Hz)

Person 1 Person 3

Figure 6.9: Detection Likelihood per GRD (60Hz) of Individuals in Object Exchange

decrease by over 40%, as seen in Figure 6.7. The differences in the drastic nature of

the decrease can likely be attributed to the unique spatial characteristics of each of

the people involved. Person 2, carrying the PVC pipe, is noted to have the pipe move

in and out of occlusion through the scenario as the participant moves into position.

Once there, the pipe is moved from a vertical position hanging down at the waist to a

horizontal position on top of the shoulder. This drastic change in positioning, coupled

with the occlusions throughout the movement, have left its spectral signal changing quite

drastically throughout the dataset. Person 3 also depicted a high change in likelihood

of detection as the GRD increased. This may be attributed to the size of the person

and their gait. Person 3 had a thin stature and long stride, as seen in Figure 5.47a, as

they moved throughout the scenario. The long length of the stride increased the width

of the bounding box, which meant more non-people pixels would be included in the

spectral signature of the individual. This individual was also moving through the busiest

portions of the scene, affording more opportunities to be around other people, shadows,

and foreground objects. This likely differs from Person 1, also involved in the exchange,

due to the difference in their spatial extent. Person 1 is wearing a book bag through the
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scenario, thus extending their spatial coverage within the scene. This extended coverage

affords a more stable and unique spectral signature and reduces the remaining space

within the bounding box that could be taken by unwanted data. As previously stated,

the large size of the bounding box allows the entire person to be captured at each frame,

but also allows adjacent foreground clutter to be included as well. All individuals in

the experiment experienced a sharp decrease in likelihood of detection as a result the

increase ordecrease in spectral angle after the 20cm degradation. Further evaluation of

the data is needed to determine the exact cause of the simultaneous decrease in spectral

angles for persons 0, 2, and 3, and an increase in Person 1.

6.1.2 Temporal Analysis

The overall effect of the temporal degradation was an increase in the spectral angular

difference over the course of the video sequence. As the number of frames is reduced

in the sequence, the number of frames included in the spectral baseline of each person

is also reduced. This stipulates that each reference signature is more likely to reflect

a frame-unique signature of the person rather than a time-averaged signature. As the

person moves throughout the scene, their sun-target-sensor geometry changed, produc-

ing a different radiance at the aperture. Along with the change in sun-target-sensor

geometry, the perspective of each individual and orientation of their clothes changed in

each successive frame. By averaging more frames, the effect that each of these factors

had on the baseline signature was reduced and thus less important overall. However,

as the number of frames incorporated into the baseline signature was reduced, each of

these effects became more prominent.

Figures 6.10 and 6.12, respectively, depict the spectral angle as a function of frame rate

for all the participants and those engaged in the object exchange scenario. Figures 6.11

and 6.13, respectively, depict the detection likelihood graphs for all the participants and

those engaged in the object exchange scenario.

It was expected that the overall effect of reducing the frame rate would be an increase

in the angular difference and a decrease in the likelihood of detection. Figures 6.10

through 6.13 only show frame rates down to 1Hz, because degradations beyond that

point resulted in drastic decreases in the likelihood of detection. This is due to the
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Figure 6.10: Spectral Angle per GRD (5cm)

limited number (single digit) of frames included in the spectral baseline. Reviewing the

degradations presented, it can be seen that Person 1 has a prominent change in spectral

angle from 15Hz down to 1Hz. This is likely due to the large spatial extent of Person 1

relative to the other individuals in the scene. Person 1 was wearing a book bag which

increased their spatial extent throughout the collection. The book bag was a non-rigid

object attached in a non-rigid manner that allowed the object to freely move on the

person’s back. This movement allowed it to change perspective and orientation both

with, and independent of, the person carrying the bag. A quick visual inspection of the

bag, during the capture, showed that it was made of a material with a higher reflectance

than the clothes Person 1 was wearing. This reflective property appeared more specular

than Lambertian indicating that a change in sun-target-sensor geometry would provide

large differences in the at-aperture radiance values. For these reasons, decreasing the

number of frames in the baseline signature provided, significant changes in the spectral

angle derived for each frame rate. This in turn led to drastically decreased likelihood

of detection. It is noted that while the PVC pipe is also highly specular in nature, it
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Figure 6.11: Likelihood of Detection per Frame Rate (5cm)

differs in that it is a cylindrical object with a reflectivity close to one. Thus regardless

of orientation, there will always be a strong reflection coming back toward the sensor.
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Figure 6.12: Spectral Angle per Frame Rate (5cm)
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Figure 6.13: Likelihood of Detection per Frame Rate (5cm)



Chapter 6. Results 156

6.1.3 Likelihood Surface

Figures 6.15 through 6.17 depict the likelihood of detection surfaces for each of the

people within the scene. As only Person 1 and Person 3 were involved in the object

exchange, the detection surfaces are only valid for these two. However, the remaining

two surfaces are included so that general trends of the spatio-temporal degradations can

be evaluated.
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Figure 6.14: Likelihood Surface - Person 0 (No activity)
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Figure 6.16: Likelihood Surface - Person 2 (PVC Pipe)
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For half of the participants, the spatial degradations up to 100cm were not very impact-

ful, while for the others they were. All the participates maintained the sharp decline in

detection likelihood around the 20cm spatial resolution that was discussed earlier. All

participant surfaces also experienced the temporal cliff that occurs at at frame rates of

1Hz and below. Comparing the temporal and spatial degradations, it would appear that

the impact of GRD can be quite large, whereas all participant surfaces experienced a

temporal decline which reached a point of futility.

Person 0 depicted an almost negligible change in detection likelihood over all the spa-

tial and temporal resolutions. This means the spectral signature of the person did not

change much throughout the sequence. This makes a bit of sense, as this individual

walked around in a small circle for most of the video sequence, neither carrying any-

thing nor exchanging objects with others. Person 1 depicted a 5% decrease in detection

likelihoods over the spatial degradation and sloping decrease in likelihood over the tem-

poral degradations out to the cliff at 1Hz. This states that it is possible to detect an

object exchange over a wide range of spatio-temporal resolutions with a high likelihood

of detection. Person 2 exhibited greater impacts from the spatial degradations than

the temporal degradations, likely due to the object occlusions from the moving PVC

pipe. Even these only brought the likelihood of detection down by about 20% along the

spatial extent. Person 3’s likelihood surface had an opposite trend of the prior three

surfaces in that the temporal degradation caused more loss of likelihood than the spatial

degradation. Person 3 was the other individual engaged in the object exchange. This

individual appeared have been impacted the most by GRD, with a decrease in likelihood

of 40% over the course of the degradations. As stated in the spatial section above, this

could be due to the small stature of the individual relative to the space designated by

the bounding box.

Since two people were involved in the object exchange, we have two detection surfaces

worth of data for this activity. The case could be made that you only need one surface

to represent this activity, since there was in-fact only one activity occurring. If that were

the case and each surface indicates an independent likelihood of detecting the exchange,

then either surface could be considered a valid representation of detecting the object

exchange event. Of course, the surfaces are not truly independent because they are

partially derived from the same spectral data that represents the object. However, for the



Chapter 6. Results 159

purpose of this discussion the independence of the surfaces allows one to choose a surface

to represent the object exchange activity in a future ABI lookup table.. That being the

said, the surface associated with Person 1 with the overall likelihood of detection greater

than 90% will be surface to represent this exchange.

6.2 Polarimetric Tipping and Cueing

Sections 5.7.2 and 5.7.2.4 depicted the steps necessary to accurately identify an object

with a high DoLP and associate tracks between disparate imagers. This section serves

to combine the two concepts by showing it is possible to tip the polarimetric sensor to

an object of interest within the scene, and then cue an adjacent sensor to follow that

object. Figure 6.18 shows the MAPPS frame in which a high DoLP was detected in the

sequence. Figure 6.19 depicts the DoLP image of this frame and Figure 6.20 depicts a

close-up of the region with a high DoLP. Notice that there are points greater than one in

this image. That is due to the motion induced by the person moving the object, which

is why the motion masks are necessary. This motion-induced false DoLP “signature”

is seen throughout the scene in the leaves and people moving between images. One of

the in-scene fiducials is also seen to have a moderately high DoLP. However, since this

fiducial does not move, it was masked out with the other background data.

After masking the imagery to remove non-overlapping pixels, Figure 6.21 remains. This

is the same image that was depicted in Section 5.7.2.3. This particular object had a

value as high as 0.4 with a preponderance of the data hovering closer to 0.1. This is

compared to an environment with an average DoLP no higher than 0.05, as depicted in

Figure 6.19. After a high DoLP object was been detected, a tag was placed over the

object within the polarimetric image. Using a manual association, the GoPro imager is

the cued to track the person holding the object using its wider FOV lens. Figures 6.22

and 6.23 depict the tipping and cueing in the polarimetric and RGB data respectively.

Note that each tracking system had its own numbering scheme, which is why the DoLP

text is over Person 2 in the GoPro image and Person 0 in the MAPPS image.
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Figure 6.18: First frame in DoLP Sequence
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Figure 6.19: Full DoLP Image
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Figure 6.22: Polarimetric Tip in MAPPS Imagery

Figure 6.23: GoPro Imagery with DoLP Cue
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6.2.1 Polarimetric Data Degradations and Likelihood of Detection

Two primary differences exist between the polarimetric data in this data set and the

associated spectral data. First, in order to perform DoLP evaluations, four sequential

polarimetric images are necessary. As described in Section 4.2.2, MAPPS has a unique

spinning wheel configuration, that cycles through the polarimetric filters in the following

order: 0, 45, 90, 135, 135, 90, 45, 0, 0, 45, etc. At a 6Hz configuration the 0 degree

image is captured, then recaptured 1.167 seconds later, then recaptured 0.167 seconds

later. That means any interpolation would have to be done between these intervals, as

it would not be correct to interpolate between differing polarimetric images. The low

frame rate and odd temporal filter wheel configuration of MAPPS did not easily allow

for temporal degradation of this data. Thus, this step is left to future researchers. A

likelihood of detection is determined by the ability to detect a polarimetric object within

the given scene. Since no spatio-temporal degradations were performed on this data,

and a high DoLP object was properly detected, a detection likelihood of 1.0 is assigned

to this scenario.

6.3 Summary

Two activity recognition techniques were successfully implemented in this research. The

first was able to detect an object exchange that occurred within the dataset. As the

data were spatially and temporally degraded the likelihood of detecting the exchange

decreased. The temporal degradations provided only gradual decreases as the frame

rate was decreased from 60Hz to 1Hz. At 1Hz and lower there was a drastic drop in

the likelihood of detecting the activity. For two of the people the spatial degradations

provided a 5% reduction in likelihood of detection, whereas the other two resulted in

20% to 40% reductions in likelihoods. This was attributed to the spatial extents of each

person and the stride of their gait.

The second technique involved identifying a simulated RPG activity and using that data

in a tipping and cueing scenario. The simulated RPG activity was successfully identified

by detecting a high DoLP from the PVC pipe. This information was then used to cue

the GoPro imager to track the person holding the pipe outside the FOV of MAPPS. No
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temporal or spatial degradations were performed on this dataset due to the low frame

rate and odd filter wheel configuration of the MAPPS imager.
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Conclusion

7.1 Problem Statement and Research Objectives

Two questions drove this research: Is it possible to utilize a series of multimodal sensors

in a semi- or fully- automated fashion to develop intelligence based on the activities

within a given scene? If so, could an objective performance assessment be developed to

determine if a sensor is capable of detecting specific AoIs in motion imagery? Based on

the work in this research, the answer to both of these questions is yes.

To address the first question, two AoIs were analyzed. First, an object exchange AoI

was imaged by a series of multispectral sensors. SAM was used to automatically deter-

mine if an exchange had occurred in the motion imagery dataset. The second AoI was

a simulated RPG activity imaged by a polarimetric and RGB sensor. By evaluating the

polarimetric data, it was possible to detect the simulated RPG by identifying its high

DoLP signature, relative to the background. Once detected in the narrow FOV polari-

metric imager, an algorithm cued the wide FOV GoPro imager to continue tracking the

object across the scene.

The second question was related to developing an objective performance assessment

methodology. Two reasons were cited for developing this methodology: Assessing the re-

quirements for developing tomorrow’s imaging platforms and assessing the performance

of current platforms in detecting specific AoIs. As mentioned in the introduction, both

the military and commercial sector have been continually improving the spatial and

165
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temporal resolutions of imaging systems with little regard for the analysts’ objective use

of the data. This “more is better” mindset has led to improved imaging systems but

not necessarily an increase in the amount of information analysts obtain from these sys-

tems. This ABI performance assessment methodology uses the inherent characteristics

of specific AoIs to develop performance measures for detecting those AoIs. It is this

link to the activity which provides system designers and analysts with a credible set of

requirements for use in baseline systems and tasking assets.

In this research, two notional graphs were suggested in Section 2.2. One would analyze

the spatio-temporal tradespace associated with detecting an activity while the other

analyzes the multimodal tradespace. This research produced the former, but left the

multimodal tradespace to future researchers. For the object exchange activity, a spatio-

temproral tradespace was developed by producing a likelihood of detection surface using

a SAM based algorithm. This likelihood of detection surface provides an objective

measure of assessing how this algorithm would perform under a range of spatio-temporal

resolutions. It is expected that in the future, a lookup table similar to that of Figure

2.3 will be used to compare a broad list of algorithms capable of detecting the AoI.

7.2 Research Tasks

Several tasks were designated in Section 2.3 that needing to be accomplished in order to

complete this research. The design and implementation of an experiment was a big step

forward in developing this fairly new research area called Activity Based Intelligence.

This dataset included several activities with varying spatial and temporal extents along

with a few activities with unique spectral, polarimetric, and thermal characteristics. The

rich multimodal nature of this dataset allows future researcher’s to evaluate several ABI

algorithms across a wide spread of activities using a broad range of multimodal sensors.

The co-temporal nature of the activities also allows future researches to perform cross

AoI analysis to determine how sensors handle multiple AoIs in one scene.

After developing the experiment, seven steps were evaluated.

1. Camera Calibration
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2. Video Stabilization

3. Registration

4. Data Fusion

5. Tracking

6. Activity Recognition

7. Tradespace Development

Of those, as previously mentioned, the camera calibration and video stabilization steps

were not used on this dataset. Regarding the tracking step, the target detection was done

manually and the track association was automatic. While each step was evaluated by a

particular method listed in this research, these are not the only ways of addressing these

tasks. In fact, this list of tasks can be thought of as the spanning tree depicted in Figure

7.1. Beginning with the raw data, each branch represents a method of accomplishing

a particular task. The second level presents two options for registration, the SURF

method used in this research or a Maximization of Mutual Information (MMI) technique

discussed in Section 3.4.1.2. This figure shows the nearly limitless combinations that

could be evaluated by swapping out techniques in this sequence. It is presumed that

each change will have some effect on the final detection surface, which would require

evaluation.

7.3 Contributions to the Field

Four contributions to the field were described in Section 2.4:

• Development of a multimodal ABI dataset

• An end-to-end ABI evaluation of one activity

• Development of a limited multimodal ABI trade space

• Setting the foundation for an ABI lookup table
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A multimodal ABI dataset was developed an used to complete the objectives of this

research. Nine multimodal imagers captured several concurrent activities being executed

in a real-world environment. This data is open and available for distribution in its raw

from for interested future researchers.

An end-to-end ABI evaluation of one activity was depicted in both abbreviated and

detailed forms in Figures 5.1 and 5.2 respectively. These two figures list the steps

necessary to transform raw data into a set of detection surfaces for analysis. It is

within the registration section of this evaluation that the object exchange analysis was

performed.

The multimodal ABI tradespace was developed after a series of spatio-temporal degra-

dations were performed on the results of the object exchange dataset. This led to

developing several detection surfaces which can be used to make associations between

AoIs and the sensor parameters needed capture these AoIs. Figures 6.15 through 6.17

depict these results.

Finally, the foundation for an ABI lookup table has been set. The activity recognition

technique was successful in detecting an object exchange within this dataset, and thus

will be included in the lookup table as a baseline for future work. Granted this work

was completed on a limited dataset with a healthy dose of supervision. The purpose

of its inclusion is to cite the novelty of the work; in hopes that someone will find it

interesting enough to replace it with something better. Figure 7.2 depicts the object

exchange lookup table with this technique included.
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Chapter 8

Future Work

Throughout the research, several areas of future work were noted and left for further

discussion. Below are a few of these areas as well as some guidance regarding a possible

direction for future research in this area.

1. Analysis of Other Activities in Dataset

2. Activity-Based Feature Space

3. Bounding Box Sensitivity Study

4. Time to Activity Analysis

5. Temporal Sensitivity Study

6. End-to-End Error Analysis

7. Alternate Methods of Assessing Spectral Angle Data

Analysis of Other Activities in Dataset Due to the limited time of this research,

it was not possible to evaluate all of the activities that occurred within this dataset.

That being an area of continued interest, analysis of these activities will be left to future

researchers interested in continuing this work.
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Activity-Based Feature Space Due to the requirements defined in Section 5.4.1,

it is known that there are specific qualities of the in-scene activities that drive the

requirements of the sensors needed to view these activities. As such, it may be possible

to develop a specific feature space whereby certain activities are exclusively identified

by their locality within this space.

Bounding Box Sensitivity Study In Section 5.7.1.3, we talked about using a

predefined bounding box to isolate the object target pixels from those of other foreground

pixels. In this research, an empirical value was used with objective study of how it

actually affects the spectral angle of each frame.

Time to Activity Analysis While the likelihood surfaces in this scenario were de-

veloped to address specific sensor characteristics, other types of surfaces can be useful

in detecting activities. An important quality that came up during the temporal degra-

dations was the need to have more frames in the baseline spectrum. However, there

was no analysis done to determine how far before the activity the baseline needed to be

developed. If you have a sensor capturing imagery 30s ahead of the activity, can you

reduce the frame rate of the sensor and still achieve a high likelihood of detection? What

if the sensor were only able to capture 1s to 2s before the activity, but had a frame rate

of 120Hz? Would this be enough to characterize the activity as it occurred? Figure 8.1

depicts a notional graphic of this concept.

Completing this type of analysis would allow future tipping and cueing scenarios where

specialized sensors with exotic spatio-temporal characteristics could be cued by a generic

sensor before the activity occurs. Very high frame rate systems with high spatial res-

olutions need large quantities of storage to retain the data they collect. Being able to

minimize the time in which they are collecting could make using one of these sensors

viable in activity recognition scenarios.

Temporal Sensitivity Study When the temporal degradations were performed on

the dataset, they always began with the first frame in the sequence and skipped an

integer number of frames thereafter. When the frame rates reach 1Hz and below the

likelihood of detecting the object exchange dropped drastically. One of the questions
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Figure 8.1: Time to Activity Tradespace

that occurred was, what if the degradations did not begin with the first frame in the

sequence? How sensitive is the likelihood surface to the specific frames in the sequence

begins with?

End-to-End Error Analysis Throughout this methodology, it was possible to per-

form an error propagation analysis to determine how systematic errors could effect the

final result, but the work was not completed. An interesting study would be to develop

an end-to-end analysis and determine how each step in figure 5.2 affects the final likeli-

hood of detecting an activity. This would provide future analysts with a set of tolerances

for each step in the process, thereby expanding the tradespace to include the software

component of this process.

Alternate Methods of Assessing Spectral Angle Data Section 6.1.0.7 lists

several additional methods that can be used to evaluate the spectral data in the object

exchange scenario. Each is only a slightly different method of evaluation, but may prove

useful to future researchers continuing this work.



Chapter 8. Future Work 174

In addition to the methods described in Section 6.1.0.7 one could evaluate the spectral

angle data by using a change detection algorithm based on a mean-shift and outlier-

distance. Zollweg et al [93] discuss this method for automatically detecting change in

sequences based on these two principles.
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Appendix A

IR and Multispectral National

Image Interpretability Rating

Scales

Figure A.1 depicts a small sample of the Multispectral NIIRS. Due to the large tradespace

including in multispectral data, the current rating system is neither all inclusive nor

complete.

Figure A.2 depicts the IR NIIRS.
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Figure A.1: NIIRS Rating Scale [15]
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Figure A.2: IR NIIRS [16]



Appendix B

Spatial Registration Results

Figures B.1, B.2, B.3, B.4 depict the registration results for multistep blur and SURF

feature extraction process. Note, the left contains the entire image from both imagers,

whereas the right masks out non-overlapping portions of imagery. The Red and Blue

channel were filled with the panchromatic image and the Green channel was filled with

the greyscale registered Go Pro Image. The titles of each image indicate the blur kernel

size and amount of Sum Square Error (SSE).
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Figure B.1: Multispectral Filter 1
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Appendix C

Experimental Setup Imagery

Figures C.1, C.2, C.3, C.4, C.5 depict the setup of the equipment for the experiment.

Figure C.1: Experimental Setup Image 2
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Figure C.2: Experimental Setup Image 3

Figure C.3: Experimental Setup Image 4
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Figure C.4: Experimental Setup Image 5

Figure C.5: Experimental Setup Image 8



Appendix D

Experimental Fiducials

Figures D.2, D.1, D.3, D.4, D.5, D.6, D.7, D.8, D.9, D.10, depict the fiducials used in

this experiment. The order begins with Fiducial B to save white space on this page.

Fiducials J and K, depicted in Figures D.9 D.10 respectively, were large pieces of plex-

iglass with cardboard layered behind them. The thermally reflective qualities of the

plexiglass allowed for distinct cold space-based emissions to be directed at the sensor,

portraying a well defined object relative to its surroundings. The cardboard was used

to outline the general shape of the plexiglass for detection in the visible regime. The

two figures above were early, labeled, iterations of the fiducials. In the final implemen-

tation the cardboard was completely covering the backside of the plexiglass without any

overhang.
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Figure D.1: Fiducial B

Figure D.2: Fiducial A
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Figure D.3: Fiducial C
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Figure D.4: Fiducial D

Figure D.5: Fiducial F
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Figure D.6: Fiducial G

Figure D.7: Fiducial H
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Figure D.8: Fiducial I

Figure D.9: Fiducial J
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Figure D.10: Fiducial K



Appendix E

Participant Directions

Figures E.1, E.2, E.3, E.4, E.5, E.6, E.7, E.8, depict the directions given to each of the

participants in this experiment. We begin with page three so as not to waste the white

space on this page.

 

5. Begin in passenger seat of car. Exit the vehicle and walk towards Carlson to 
meet a subject at the corner of the field. Hand-off object. Continue walking onto 
the field and join other subjects in a larger group. 

**Begins with subject 2 

Figure E.1: Directions Page 3
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Directions: 

 

1. Begin at Bausch Blvd loop. Drive forward and turn into the parking lot. Pull over 
after passing a few cars and wait to pick up subject. Once subject is in the car, 
continue driving out of the loop. 

**Links with subject 6 

 

2. Begin parked at Bausch Blvd loop at the turn. Drop off subject then pull out and 
drive out of the loop, going around the parked car. 

**Begins with subject 5 

Figure E.2: Directions Page 1
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3. Begin at edge of gravel path by Bausch and Lomb Center. Walk across the 
gravel sidewalk, cross large intersecting walkway, and walk over to the bottom of 
the field in front of Carlson. Pause and meet up with three subjects then walk 
together up the field until meeting up with a larger group of subjects.  

 

4. Begin by biking down the sidewalk next to Bausch Blvd. Bike towards the back of 
James E. Booth. After passing the gravel pathway, turn right onto the field and 
meet up with three other subjects. Once larger group has begun game, move 
together to join them. 

Figure E.3: Directions Page 2
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6. Begin outside the overhang in the back of James E. Booth, you will be given a 
PVC pipe to carry. Walk up towards the parking lot with subject next to you. Upon 
reaching the gravel pathway, pause and place PVC pipe on shoulder. Remove 
pipe from shoulder and walk across the field towards the parking lot. Get into car 
pulled over in parking lot driven by other subject. (Make sure you enter the 
correct vehicle) ** 

**Links with subject 1 

Figure E.4: Directions Page 4
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7. Begin outside the overhang in the back of James E. Booth, with backpack in left 
hand. Walk up towards the parking lot with the subject next to you. Upon 
reaching the gravel pathway, leave the other subject and walk up diagonally to 
the left to meet a subject at the corner of the fields in front of Carlson. Leave 
backpack in middle of walkway. Continue walking together towards the center of 
the field to join other subjects in a larger group. 

**Begins with subject 6 

Figure E.5: Directions Page 5
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9. Begin in middle of large walkway by parking lot. Walk down the path with subject 
next to you. Pick up backpack in middle of walkway and hold in right hand. A little 
after crossing the gravel pathway, turn right and walk onto the bottom of the field in 
front of Carlson to meet up with three other subjects. Once larger group has begun 
game, move together to join them. 

**Begins with subject 8 

Figure E.6: Directions Page 7
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10. Begin right outside of Carlson. Walk towards parking lot and turn onto the large 
walkway then go towards the James E. Booth building. At the corner of the field, 
meet up with a small group of subjects. Walk together onto the field and join other 
subjects.  
 

 

11. Begin in group at the corner of the field on the side walk. When three other 
subjects reach and join your group, walk together to the field. 
 

Figure E.7: Directions Page 8
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12. Begin in group on the side walk next to the field. Walk up to the corner and meet 
another subject that just got out of a car. Complete trade-off and continue like 
you are walking towards Carlson. Ensure object is being held in left hand. Before 
going into the building, turn around and walk onto the field and join larger group 
of subjects. 

Figure E.8: Directions Page 9



Appendix F

Activity Analysis Interpolation

Results

Picking up from the original spectral angle data in section 5.7.1.3.

From here, the zero values can be removed and actually data points connected; figure

F.1

Figure F.2 depicts the two overlaid.

Performing an interpolation between the missing data points provides inter frame values.

Figure F.3
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Figure F.1: Original Mean Digital Counts per Frame with Zeros Remove
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Figure F.2: Original Mean Digital Counts per Frame with Zeros Remove
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Figure F.3: Interpolated Mean Digital Counts per Frame



Appendix G

Normalized Data

Figures G.1, G.8 depict the normalized data values for the five participants included in

the object exchange dataset.
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# Array shape: (20, 18, 5)
Spatial Degradation - GSD: 5cm
1.00    1.00    1.00    1.00    1.00   
0.97    0.99    0.99    0.86    1.00   
0.96    0.97    0.99    0.88    0.98   
0.90    0.99    0.99    0.75    0.91   
0.96    0.93    1.00    0.77    1.00   
0.97    0.96    0.99    0.67    0.98   
0.98    0.99    0.95    0.87    0.98   
0.87    0.91    0.99    0.89    0.91   
0.99    0.95    0.91    0.61    0.90   
0.84    0.90    0.99    0.54    0.93   
0.84    0.95    0.98    0.89    0.88   
0.89    0.97    1.00    0.49    0.98   
0.89    0.92    0.95    0.66    0.96   
0.80    0.89    0.96    0.88    0.90   
0.86    0.91    0.97    0.73    0.86   
0.65    0.93    0.95    0.63    0.88   
0.79    0.87    0.98    0.95    0.87   
0.69    0.88    0.76    0.79    0.00   
Spatial Degradation - GSD: 10cm
1.00    1.00    0.99    0.98    0.88   
0.97    0.99    0.99    0.82    0.88   
0.97    0.96    0.97    0.86    0.86   
0.93    0.99    0.99    0.73    0.80   
0.94    0.92    0.99    0.74    0.87   
0.96    0.95    0.99    0.62    0.86   
0.98    0.99    0.94    0.84    0.87   
0.84    0.90    0.99    0.87    0.79   
0.98    0.94    0.90    0.57    0.82   
0.82    0.89    0.98    0.51    0.82   
0.84    0.95    0.99    0.83    0.80   
0.87    0.96    0.99    0.47    0.86   
0.90    0.91    0.93    0.62    0.87   
0.79    0.89    0.97    0.83    0.79   
0.88    0.91    0.95    0.70    0.78   
0.66    0.93    0.94    0.58    0.76   
0.78    0.86    0.98    0.96    0.78   
0.69    0.87    0.75    0.82    0.00   
Spatial Degradation - GSD: 15cm
0.99    0.99    0.99    0.99    0.88   
0.96    0.98    0.99    0.84    0.87   
0.95    0.96    0.97    0.88    0.85   
0.90    0.99    0.98    0.74    0.81   
0.95    0.92    0.98    0.75    0.86   
0.96    0.95    0.97    0.65    0.85   
0.98    0.99    0.93    0.85    0.86   
0.85    0.90    0.98    0.88    0.81   
0.99    0.94    0.90    0.59    0.86   
0.83    0.89    0.98    0.53    0.84   
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0.82    0.95    0.98    0.89    0.83   
0.89    0.96    0.98    0.48    0.86   
0.88    0.91    0.94    0.66    0.88   
0.80    0.89    0.95    0.87    0.80   
0.85    0.91    0.97    0.71    0.82   
0.63    0.92    0.93    0.65    0.74   
0.77    0.86    0.98    0.96    0.81   
0.65    0.89    0.75    0.76    0.00   
Spatial Degradation - GSD: 20cm
1.00    1.00    0.97    1.00    0.81   
0.97    0.99    0.96    0.84    0.81   
0.98    0.97    0.96    0.87    0.78   
0.91    0.99    0.96    0.74    0.76   
0.95    0.92    0.96    0.74    0.78   
0.94    0.95    0.97    0.63    0.78   
0.97    0.99    0.93    0.83    0.79   
0.81    0.90    0.96    0.89    0.76   
0.98    0.94    0.89    0.56    0.79   
0.81    0.90    0.96    0.50    0.81   
0.83    0.95    0.96    0.85    0.73   
0.89    0.97    0.97    0.46    0.79   
0.91    0.91    0.92    0.64    0.78   
0.79    0.90    0.94    0.84    0.76   
0.86    0.91    0.95    0.70    0.75   
0.66    0.93    0.91    0.63    0.71   
0.75    0.86    0.97    1.00    0.74   
0.67    0.88    0.72    0.81    0.00   
Spatial Degradation - GSD: 25cm
0.97    0.98    0.88    0.95    0.65   
0.93    0.96    0.87    0.79    0.65   
0.92    0.95    0.87    0.79    0.64   
0.83    0.97    0.87    0.73    0.63   
0.89    0.91    0.87    0.69    0.65   
0.93    0.93    0.86    0.59    0.65   
0.96    0.97    0.84    0.74    0.64   
0.77    0.89    0.85    0.85    0.65   
0.95    0.93    0.84    0.53    0.64   
0.77    0.89    0.88    0.46    0.63   
0.76    0.91    0.87    0.85    0.65   
0.90    0.95    0.85    0.47    0.65   
0.88    0.90    0.81    0.66    0.65   
0.81    0.88    0.80    0.84    0.62   
0.79    0.89    0.85    0.64    0.65   
0.61    0.91    0.76    0.71    0.65   
0.67    0.84    0.83    0.94    0.62   
0.53    0.90    0.65    0.66    0.00   
Spatial Degradation - GSD: 30cm
0.99    0.99    0.94    0.99    0.73   
0.95    0.97    0.93    0.82    0.73   
0.96    0.96    0.93    0.85    0.72   
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0.89    0.99    0.93    0.74    0.70   
0.92    0.92    0.93    0.73    0.72   
0.93    0.94    0.92    0.61    0.71   
0.97    0.98    0.90    0.80    0.72   
0.77    0.90    0.94    0.88    0.72   
0.99    0.94    0.88    0.55    0.72   
0.77    0.89    0.94    0.48    0.72   
0.81    0.94    0.91    0.86    0.68   
0.90    0.96    0.93    0.47    0.69   
0.90    0.91    0.91    0.66    0.72   
0.80    0.89    0.89    0.84    0.69   
0.84    0.91    0.93    0.68    0.69   
0.64    0.92    0.86    0.66    0.67   
0.72    0.85    0.92    0.98    0.67   
0.63    0.89    0.69    0.77    0.00   
Spatial Degradation - GSD: 35cm
0.98    0.98    0.94    0.96    0.74   
0.92    0.96    0.94    0.80    0.73   
0.94    0.95    0.93    0.83    0.74   
0.87    0.97    0.93    0.71    0.73   
0.92    0.92    0.91    0.70    0.74   
0.94    0.94    0.91    0.61    0.72   
0.97    0.97    0.89    0.78    0.74   
0.78    0.89    0.92    0.85    0.74   
0.96    0.93    0.87    0.56    0.71   
0.77    0.89    0.94    0.47    0.74   
0.79    0.94    0.93    0.87    0.71   
0.92    0.95    0.92    0.47    0.72   
0.88    0.90    0.90    0.68    0.74   
0.80    0.89    0.87    0.85    0.72   
0.80    0.90    0.92    0.66    0.72   
0.62    0.91    0.84    0.71    0.72   
0.72    0.85    0.92    0.94    0.69   
0.59    0.90    0.67    0.68    0.00   
Spatial Degradation - GSD: 40cm
0.98    0.98    0.91    0.97    0.70   
0.93    0.96    0.90    0.81    0.69   
0.94    0.95    0.90    0.82    0.69   
0.86    0.98    0.91    0.73    0.69   
0.91    0.91    0.90    0.71    0.69   
0.93    0.94    0.89    0.61    0.68   
0.96    0.98    0.87    0.77    0.69   
0.77    0.89    0.90    0.86    0.68   
0.97    0.94    0.86    0.55    0.67   
0.76    0.89    0.90    0.47    0.69   
0.78    0.93    0.90    0.86    0.67   
0.90    0.96    0.90    0.47    0.68   
0.88    0.91    0.86    0.67    0.69   
0.80    0.89    0.84    0.83    0.69   
0.81    0.90    0.89    0.66    0.68   
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0.62    0.92    0.81    0.69    0.69   
0.69    0.85    0.87    0.97    0.66   
0.57    0.89    0.65    0.71    0.00   
Spatial Degradation - GSD: 45cm
0.97    0.98    0.90    0.94    0.69   
0.93    0.96    0.89    0.78    0.69   
0.91    0.94    0.90    0.80    0.68   
0.86    0.97    0.89    0.71    0.68   
0.90    0.91    0.88    0.68    0.68   
0.94    0.93    0.87    0.60    0.68   
0.97    0.97    0.85    0.75    0.68   
0.77    0.88    0.87    0.84    0.69   
0.93    0.93    0.85    0.53    0.66   
0.76    0.89    0.89    0.46    0.67   
0.77    0.94    0.89    0.87    0.68   
0.91    0.95    0.87    0.48    0.68   
0.87    0.90    0.84    0.68    0.68   
0.81    0.88    0.82    0.85    0.67   
0.77    0.90    0.87    0.63    0.68   
0.61    0.91    0.79    0.74    0.68   
0.69    0.84    0.84    0.92    0.65   
0.54    0.90    0.66    0.63    0.00   
Spatial Degradation - GSD: 50cm
0.97    0.98    0.88    0.95    0.65   
0.93    0.96    0.87    0.79    0.65   
0.92    0.95    0.87    0.79    0.64   
0.83    0.97    0.87    0.73    0.63   
0.89    0.91    0.87    0.69    0.65   
0.93    0.93    0.86    0.59    0.65   
0.96    0.97    0.84    0.74    0.64   
0.77    0.89    0.85    0.85    0.65   
0.95    0.93    0.84    0.53    0.64   
0.77    0.89    0.88    0.46    0.63   
0.76    0.91    0.87    0.85    0.65   
0.90    0.95    0.85    0.47    0.65   
0.88    0.90    0.81    0.66    0.65   
0.81    0.88    0.80    0.84    0.62   
0.79    0.89    0.85    0.64    0.65   
0.61    0.91    0.76    0.71    0.65   
0.67    0.84    0.83    0.94    0.62   
0.53    0.90    0.65    0.66    0.00   
Spatial Degradation - GSD: 55cm
0.97    0.97    0.86    0.93    0.68   
0.94    0.96    0.85    0.76    0.68   
0.92    0.94    0.86    0.77    0.67   
0.84    0.97    0.86    0.71    0.67   
0.88    0.91    0.85    0.67    0.67   
0.94    0.93    0.85    0.60    0.68   
0.96    0.96    0.82    0.72    0.67   
0.77    0.88    0.85    0.83    0.67   
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0.97    0.93    0.82    0.52    0.68   
0.76    0.89    0.86    0.44    0.66   
0.76    0.93    0.84    0.86    0.67   
0.92    0.95    0.84    0.48    0.67   
0.88    0.90    0.80    0.67    0.64   
0.81    0.88    0.78    0.85    0.64   
0.76    0.89    0.82    0.62    0.67   
0.61    0.90    0.75    0.74    0.64   
0.68    0.83    0.82    0.88    0.64   
0.53    0.91    0.64    0.60    0.00   
Spatial Degradation - GSD: 60cm
0.96    0.97    0.84    0.93    0.67   
0.94    0.96    0.82    0.77    0.67   
0.90    0.94    0.84    0.78    0.67   
0.83    0.97    0.84    0.71    0.66   
0.89    0.90    0.84    0.68    0.65   
0.93    0.92    0.84    0.62    0.67   
0.96    0.97    0.79    0.70    0.66   
0.77    0.88    0.83    0.84    0.67   
0.96    0.93    0.79    0.52    0.67   
0.77    0.89    0.84    0.45    0.64   
0.73    0.90    0.81    0.85    0.66   
0.89    0.94    0.82    0.48    0.66   
0.87    0.90    0.77    0.66    0.63   
0.82    0.88    0.76    0.84    0.63   
0.77    0.89    0.81    0.62    0.66   
0.59    0.91    0.72    0.72    0.63   
0.68    0.83    0.81    0.91    0.63   
0.51    0.91    0.61    0.62    0.00   
Spatial Degradation - GSD: 65cm
0.96    0.97    0.83    0.92    0.66   
0.92    0.95    0.82    0.74    0.66   
0.89    0.94    0.83    0.78    0.66   
0.83    0.96    0.83    0.69    0.65   
0.88    0.90    0.82    0.67    0.65   
0.94    0.92    0.83    0.63    0.66   
0.95    0.95    0.79    0.70    0.65   
0.77    0.88    0.82    0.83    0.65   
0.95    0.92    0.78    0.51    0.66   
0.77    0.88    0.82    0.44    0.64   
0.74    0.91    0.80    0.85    0.65   
0.91    0.95    0.82    0.48    0.65   
0.87    0.90    0.76    0.67    0.60   
0.82    0.87    0.76    0.85    0.60   
0.77    0.89    0.78    0.61    0.65   
0.60    0.90    0.71    0.74    0.60   
0.68    0.83    0.82    0.86    0.60   
0.51    0.92    0.60    0.57    0.00   
Spatial Degradation - GSD: 70cm
0.96    0.97    0.82    0.92    0.63   
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0.93    0.96    0.81    0.75    0.63   
0.90    0.94    0.82    0.77    0.63   
0.83    0.97    0.82    0.71    0.62   
0.88    0.90    0.81    0.68    0.63   
0.94    0.92    0.81    0.63    0.63   
0.96    0.96    0.77    0.70    0.63   
0.76    0.88    0.81    0.84    0.63   
0.93    0.93    0.76    0.51    0.62   
0.77    0.88    0.80    0.45    0.61   
0.73    0.90    0.78    0.84    0.63   
0.89    0.93    0.81    0.49    0.63   
0.88    0.90    0.75    0.67    0.58   
0.83    0.87    0.75    0.85    0.58   
0.78    0.88    0.77    0.61    0.63   
0.60    0.90    0.68    0.74    0.58   
0.69    0.83    0.81    0.89    0.59   
0.50    0.92    0.58    0.59    0.00   
Spatial Degradation - GSD: 75cm
0.96    0.96    0.81    0.91    0.65   
0.94    0.95    0.81    0.73    0.65   
0.89    0.94    0.81    0.77    0.65   
0.83    0.96    0.81    0.70    0.65   
0.88    0.90    0.80    0.67    0.65   
0.94    0.91    0.80    0.63    0.65   
0.94    0.95    0.76    0.70    0.64   
0.76    0.88    0.81    0.84    0.64   
0.95    0.92    0.76    0.52    0.64   
0.77    0.88    0.79    0.46    0.63   
0.73    0.90    0.77    0.84    0.64   
0.91    0.93    0.80    0.50    0.65   
0.88    0.90    0.73    0.67    0.57   
0.83    0.87    0.75    0.85    0.58   
0.79    0.88    0.75    0.60    0.64   
0.61    0.90    0.68    0.76    0.57   
0.69    0.82    0.80    0.84    0.59   
0.51    0.93    0.57    0.55    0.00   
Spatial Degradation - GSD: 80cm
0.96    0.97    0.79    0.91    0.62   
0.94    0.96    0.79    0.74    0.62   
0.90    0.94    0.78    0.77    0.62   
0.84    0.96    0.79    0.71    0.62   
0.88    0.90    0.79    0.68    0.62   
0.95    0.92    0.78    0.63    0.62   
0.96    0.96    0.75    0.70    0.61   
0.76    0.88    0.79    0.84    0.62   
0.94    0.93    0.74    0.52    0.61   
0.77    0.88    0.78    0.46    0.60   
0.72    0.90    0.76    0.84    0.61   
0.90    0.93    0.79    0.51    0.61   
0.89    0.89    0.71    0.67    0.56   
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0.83    0.87    0.74    0.85    0.56   
0.79    0.88    0.74    0.60    0.62   
0.61    0.90    0.66    0.76    0.56   
0.70    0.82    0.79    0.87    0.57   
0.51    0.93    0.55    0.58    0.00   
Spatial Degradation - GSD: 85cm
0.97    0.96    0.79    0.90    0.62   
0.94    0.95    0.79    0.72    0.62   
0.93    0.94    0.79    0.76    0.62   
0.83    0.95    0.79    0.70    0.62   
0.87    0.89    0.78    0.67    0.62   
0.94    0.91    0.78    0.62    0.62   
0.95    0.94    0.75    0.70    0.61   
0.76    0.87    0.79    0.84    0.59   
0.96    0.92    0.73    0.53    0.62   
0.77    0.88    0.77    0.46    0.60   
0.75    0.89    0.75    0.84    0.62   
0.94    0.93    0.78    0.51    0.60   
0.91    0.89    0.70    0.68    0.54   
0.83    0.87    0.74    0.86    0.53   
0.79    0.88    0.73    0.59    0.59   
0.65    0.90    0.66    0.77    0.54   
0.70    0.82    0.79    0.82    0.56   
0.54    0.93    0.55    0.54    0.00   
Spatial Degradation - GSD: 90cm
0.96    0.96    0.78    0.91    0.61   
0.94    0.95    0.78    0.73    0.61   
0.91    0.94    0.77    0.75    0.61   
0.83    0.95    0.78    0.71    0.61   
0.88    0.90    0.76    0.68    0.61   
0.95    0.91    0.77    0.62    0.61   
0.95    0.95    0.74    0.70    0.60   
0.76    0.87    0.78    0.85    0.59   
0.95    0.93    0.72    0.53    0.60   
0.78    0.88    0.76    0.47    0.59   
0.72    0.89    0.74    0.84    0.60   
0.90    0.92    0.77    0.52    0.59   
0.90    0.89    0.69    0.68    0.53   
0.84    0.87    0.73    0.85    0.54   
0.80    0.88    0.72    0.60    0.58   
0.62    0.89    0.66    0.77    0.53   
0.70    0.82    0.78    0.86    0.56   
0.52    0.93    0.54    0.57    0.00   
Spatial Degradation - GSD: 95cm
0.97    0.96    0.78    0.90    0.61   
0.94    0.95    0.77    0.72    0.61   
0.93    0.94    0.77    0.75    0.60   
0.83    0.95    0.78    0.70    0.60   
0.87    0.89    0.76    0.67    0.60   
0.93    0.91    0.76    0.61    0.60   
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0.95    0.94    0.73    0.70    0.60   
0.76    0.87    0.78    0.85    0.57   
0.96    0.92    0.71    0.54    0.60   
0.77    0.88    0.76    0.47    0.59   
0.74    0.89    0.74    0.84    0.60   
0.93    0.92    0.76    0.52    0.57   
0.93    0.89    0.69    0.69    0.52   
0.83    0.87    0.73    0.86    0.52   
0.80    0.88    0.71    0.60    0.57   
0.65    0.89    0.66    0.78    0.52   
0.71    0.82    0.77    0.80    0.56   
0.55    0.93    0.54    0.55    0.00   
Spatial Degradation - GSD: 100cm
0.96    0.96    0.76    0.91    0.58   
0.94    0.96    0.76    0.73    0.58   
0.91    0.94    0.75    0.76    0.57   
0.83    0.95    0.76    0.71    0.57   
0.87    0.91    0.74    0.68    0.56   
0.95    0.91    0.76    0.61    0.57   
0.95    0.95    0.73    0.71    0.56   
0.77    0.87    0.76    0.87    0.55   
0.95    0.92    0.70    0.53    0.56   
0.77    0.88    0.74    0.48    0.57   
0.72    0.89    0.73    0.84    0.56   
0.90    0.92    0.76    0.54    0.56   
0.92    0.89    0.67    0.69    0.50   
0.84    0.87    0.73    0.85    0.49   
0.81    0.88    0.70    0.62    0.56   
0.63    0.89    0.64    0.78    0.49   
0.71    0.82    0.76    0.84    0.54   
0.53    0.93    0.53    0.58    0.00   



Appendix H

SAM Code

Figurea H.1 through H.8 depict the spectral angle mapper code used to detect the object

exchange in the motion imagery.

221
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import os, cv2, pickle, time, copy
import numpy as np
import matplotlib.pylab as plt
import find_targets_v2 as ft
#Run using the command below this line
#normalized_data = spatio_temporal_degradation_range(temporal_kernel
#spatial_kernel_range=20,grab=None,plotting = 'no') #111 , plotting=

def sam(array1, array2):
    """
    This function calculates the spectral angle between two arrays
    """
    num = array1.T.dot( array2 )
    denom = np.sqrt( array1.T.dot( array1 ) * array2.T.dot( array2 )
    spectral_angle_mapper = np.arccos( num / denom ) * 180. / np.pi
    return spectral_angle_mapper

def tgt_spectral_mean(img,mask,coord):
    """
    Returns the mean of the pixels defined by a box
    """
    #Determine how many spectral components exist
    row,col,dim = img.shape
    #Given the target location, develop the bounding box.
    row_lower = max(coord[1]-50,0) #50
    row_upper = min(coord[1]+50, row) #80
    col_lower = max(coord[0]-30, 0) #40
    col_upper = min(coord[0]+30,col) #40
    #Mask out the specific portions
    idx=(mask==0) #Develop an index of values where the mask is zero
    img[idx]=0
    #Set all image locations to zero.
    a = img[row_lower:row_upper,col_lower:col_upper,...]
    #Block off that portion of the array indicated by the bounding b
    ##Build the spectral signature
    container = []
    #Create a container for the signatures
    for x in range(dim):
        #For each dimension of the data
        container.append( ( a[...,x].mean(), a[...,x].std() ) )
        #Place the mean and standard deviation into the container
    return container

1
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def interpolate(mean_values_of_data):
    """
    Takes the predefined mean_values and interpolates over the lengt
    sequence.
    Input:mean_values_of_data = a list of the mean data values
    Output:mean_values_of_data_interp = a list of the interpolated m
    """
    mean_values_of_data_interp = []
    #Create a holder for the interpolated values
    holder = [x for x in copy.copy(mean_values_of_data) if len(x)>0]
    #Removed any lists that don't have mean values in them
    for num, obj in enumerate(holder):
        #Cycle through each object
        if len(np.array(obj).shape)==2:
            obj = np.array(obj)[30:,...]#[:,:]
        else:
            obj = np.array(obj)[30:,:,0]#[:,:,0]
        #We only want to deal with the mean values right now. The or
        #has both mean and standard deviation
        frames, spectrum = obj[...,:8].shape
        #Grab the number of frames and spectral dimensions; in this 
        #only have eight, but may have holders with nine
        length = range(frames)
        #Create a list of numbers counting off the frames
        for lens in range(spectrum):
            #Cycle through each spectrum of the object
            b = [x for x in zip( length, obj[:,lens] ) if x[1]>0]
            #Zip the frame numbers and their corresponding data toge
            #Only retain data that has a value greater than zero. Ma
            #without WASP data have placeholders of zero.
            if np.array(b).shape[0]==0:
                #If no data exists in this band, move to the next ba
                continue
            else:
                yinterp = np.interp(length, np.array(b)[:,0], np.arr
                #Interpolate the missing values
                obj[:,lens] = yinterp
                #Replace the original object data with the interpola
        mean_values_of_data_interp.append( obj )
        #Add this object to the list of interpolated data
    return mean_values_of_data_interp

def sam_from_spectral(mean_values_of_data_interp):

2

Figure H.2: Spectral Angle Mapper Code Page 2



Appendix H. SAM Code 224

    """
    Composes the Spectral Angle for each object on a frame-by-frame
    """
    #Average the first :xxx spectral signatures
    spectral_values = []
    for x in (mean_values_of_data_interp):
        #For each object
        mini_spec = []
        #Create a holder for the frame-by-frame SAM values
        top = len(x) * 0.1
        first = (np.array(x)[:top,:]).mean(axis=0)
        #Populate a spectral reference by averaging the first: xxx s
        for y in x:
            #Evaluate over each frame of interpolated mean value dat
            y = np.array(y)
            #Create an array of the list
            frame_SAM = sam(first,y)
            #Calculate the spectral angle for each frame
            #Note: the multiplication simply remaps from 0-1 to 0-10
            if np.isnan(frame_SAM):
                frame_SAM = 0
            mini_spec.append( frame_SAM )
            #Add this objects frame SAM value to a list for later
        spectral_values.append( mini_spec )
        #Compile all this objects' SAM values into a list
    return spectral_values

def mean_values_spatial_degrade(data,flist_raw_full,avg,blur_kernel)
    """
    Calculate the mean spectral vectors of each object for each fram
    Inputs
    ------
    data = locations of targets within each frame in a dictionary wi
    dictionary format. The top dictionary has keys associated with
    the objects, and each value is another dictionary. The second
    dictionary uses the the frame numbers as keys indicated as:
    "frame_#". The values are tuple pair of (x,y) coordinates of the
    target.
    flist_raw_full = a list ofimages with full path lengths
    avg = background image of the sequence
    blur_kernel = size of the blur_kernel in tuple format
    Outputs
    -------

3
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    mean_values_of_data = list of numpy arrays containing the mean..
    """
    #Grab the mean values of all the data by calculating the masks
    mean_values_of_data = []
    for obj in sorted(data.keys()):
        #Cycle through the objects
        mean_val = []
        for key in sorted(data[obj].keys()):
            #Cycle through the target locations associated with each
            img_num = int((key.split('_'))[1]) - 1000
            #Remap the frame key to the numbering system of the save
            image = np.load( flist_raw_full[ img_num ] )
            #Call the image associated with the frame
            thresh = ft.target_detection(np.uint8(image[...,:3]), av
            plot='no',grab='thresh')
            #Calculated the threshold image using the target detecti
            mask = masking(thresh)
            #Turn the target detection image into a mask for the dat
            coord = data[obj][key]
            #Grab the coordinate of this object within this frame
            blur_image = cv2.blur(image,(blur_kernel,blur_kernel))
            #Apply a blur to the image for reduced spatial resolutio
            spec_mean = tgt_spectral_mean( blur_image, mask, coord[:
            #Send the blurred image, mask, and target coordinates in
            #function to find the band means
            #Note: the image coordinates needed to be reversed
            #(i.e.(x,y)[::-1] = (y,x))
            mean_val.append( spec_mean )
            #Place this frames spectral mean into a list for later
        mean_values_of_data.append( mean_val )
        #Place this objects' frame-by-frame spectral mean into a lis
    mean_values_of_data_keep = [x for x in mean_values_of_data if le
    #If any of the mean value data is an empty list
    return mean_values_of_data_keep

def AuC_from_SAM(spectral_angles, temporal_blur):
    """
    Taking the spectral angles, this function calculates the thresho
    top down area under the curve encompasses 10% of the number of f
    sequence.
    Inputs
    ------
    spectral_angles = a list of spectral angle values for each obj

4
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    Output
    ------
    AuC_value = the angle at which at least 10% of the frames above
    """
    length = len(spectral_angles)
    #Determine how many spectral components there are
    AuC_value = []
    #Create holder for probabilites
    for x in range(length):
        #Cycle through the spectral dimensions
        holder = np.array(spectral_angles[x])
        holder_limit = holder[int(150./temporal_blur):int(650./tempo
        #Only review the portion of the experiment which houses the 
        length = len(holder) * 0.1
        #Determine how many frames make up 10% percent of the data
        Thresh = []
        #Create a holder for threshold values
        top =  holder_limit.max() + 1
        if np.isnan(top):
            #If a 'nan' gets through replace it with 1
            top = np.float64(1)
        #Determine the upper limit of the angular disparity
        x_vals = np.linspace(0, top, top*10, endpoint=True)
        #Create a linespace of angular values
        #This determines how accurately you can relate the number of
        #the spectral angle
        for x in x_vals:
            #For each value in the linespace, calculate the area und
            Thresh_calc = len( holder_limit[holder_limit>x] )
            #Calculate the number of frames above the value x in the
            Thresh.append( Thresh_calc )
            #Place this number in a container
        if np.array(Thresh).max()!=0:
            #If the max value is not 0 enter if statement
            pair = zip( x_vals, Thresh )
            #Pair the linespace with the area under the curve calcul
            value=np.array(pair)[::-1][:,0][np.array(pair)[::-1][:,1
        else:
            value = 0
        AuC_value.append( value )
    return AuC_value

def normalize_probabilities_from_AuC(AuC_ranges):
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    """
    Normalize  spectral angles by the spectral angle of the fr senso
    If greater than one reduce by overage.
    Inputs: probabilities = spectral angles of all the the
    Outputs: Normalized data
    """
    D = np.array( copy.copy(AuC_ranges) )
    spatial_norms = 1.0 * D[:,0,:] / D[0,0,:]
    #Normalize by spatial dimension

    ##Correct any normalized values over one by indicating their hig
    #probability as a overage to be reduced.
    C = spatial_norms.T
    #Transpose to use in 'for' operation (Objects are now along rows
    #temporal data along columns)
    for obj_num, x in enumerate(C):
        #For each object
        x[x>x[0]] = x[0] + x[0] - x[x>x[0]]
        #If there are spectral angles, above the spectal angle at th
        #temporal resolution, subtract the amount above
        #the base amount (i.e. 5 + (5 - 5.6))
        C[obj_num,:] = x
        #Replace in array
    spatial_norms = C.T
    #Undo previously applied transpose
    for spatial_num, C in enumerate(D):
        C = 1.0 * C / C[0,:]
        #Normalize them by highest temporal resolution
        #print "Spatial Degrade {0}:\n{1}\n".format(spatial_num,C)
        C = C.T
        #Transpose to use in 'for' operation (Objects are now along 
        #temporal data along columns)
        for obj_num,x in enumerate(C):
            #For each object
            x[x>x[0]] = x[0] + x[0] - x[x>x[0]]
            #If there are spectral angles, above the spectal angle a
            #highest temporal resolution, subtract the amount above
            #the base amount (i.e. 5 + (5 - 5.6))
            x[x<0] = 0
            #If there are negative probabilites, reduce them to zero
            C[obj_num,:] = x
            #Replace in array
        C = C.T
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        #Undo previously applied transpose
        D[spatial_num,...] = C
    E = D * spatial_norms[:,np.newaxis,:]
    #Apply the normalized probabilities to the remainder of the data
    normalized_data = E
    return normalized_data

def spatio_temporal_degradation_range(temporal_kernel_range=1,
spatial_kernel_range=1, plotting='no', grab=None):
    """
    Calls the above functions
    Inputs
    ------
    temporal_kernel_range = top end of temporal kernel eval range
    spatial_kernel_range = top end of spatial kernel eval range
    plotting = plotting option for end results | default = 'yes'
    grab = return output of intermediate steps
    evaluating the entire function | default = None,
    options = "mean", "interp", "temporal", "SAM", "AuC, and 'Pre-No
    Outputs
    -------
    Displays a plot and saves an eps figure of the results for each 
    size
    Spectral_mean_blur_{} file for each set of means developed
    """
    flist_raw_full, avg, data = load_data()
    spatial_AuC_range = []
    for spatial_blur_kernel in xrange(1,spatial_kernel_range+1):
        fname = 'Spectral_mean_blur_{}.p'.format(spatial_blur_kernel
        #Develop the file naming scheme
        if os.path.isfile(fname):
            #If the file exists, open it and use the data in the seq
            with open(fname,'r') as f:
                mean_values_of_data = pickle.load(f)
            if grab == 'mean':
                return mean_values_of_data
        else:
            #If the file does not exist, develop it.
            mean_values_of_data = mean_values_spatial_degrade(data,
            flist_raw_full, avg, spatial_blur_kernel)
            #Spatially degrade the data

            #Save the dictionary of dictionaries
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            with open(fname,'w') as f:
                pickle.dump(mean_values_of_data,f)
            if grab == 'mean':
                return mean_values_of_data
        mean_values_of_data_interp = interpolate(mean_values_of_data
        #Interpolate the missing spectral data
        if grab == 'interp':
            return mean_values_of_data_interp
        temporal_AuC_range = []
        Rates = range(1,13)
        for x in [15, 20, 24, 30, 40, 60]:#, 120, 180 ]:
            Rates.append( x )
        for temporal_blur_kernel in Rates:
            #Evaluate the data through the blur ranges suggested
            temporal_mean_values_of_data = [x[::temporal_blur_kernel
            for x in mean_values_of_data_interp]
            #Temporally degrade the data
            if grab == 'temporal':
                return mean_values_of_data_interp
            SAM_values = sam_from_spectral(temporal_mean_values_of_d
            #Assess the per frame spectral angle of the data
            if grab == 'SAM':
                return SAM_values
            if plotting == 'yes':
            #Plot the data
                plotting_spatio_temp_dat(avg, SAM_values, temporal_b
                spatial_blur_kernel)
            AuC = AuC_from_SAM(SAM_values, temporal_blur_kernel)
            #Determine the probability of detecting the exchange
            if grab == 'AuC':
                return AuC
            temporal_AuC_range.append( AuC )
            #print len(temporal_AuC_range)
        spatial_AuC_range.append( temporal_AuC_range )
    if grab == 'Pre-Norm':
        return spatial_AuC_range
    normalized_data = normalize_probabilities_from_AuC( spatial_AuC_
    prob_plotting( avg, normalized_data, Rates, spatial_kernel_range
    return normalized_data
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