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Abstract

The increasing availability of high resolution airborne imagery increases the accu-

racy of building modelling of urban scenes. This high accuracy of building modelling

offers a strong reference for disaster recovery and asset evaluation. With the ad-

vantage of having more façade information, this thesis builds on previous efforts in

building reconstruction from airborne oblique imagery.

Based on previous work, this thesis presents two schemes to construct building

models from point clouds derived from oblique imagery. With the assumption that

buildings are in a cubic-shape, the first scheme consists of three different steps. Plane

estimation aims at identifying dominant surfaces; edge extraction helps in detecting

and simplifying in-plane edges in each identified surfaces; model construction finishes

the job of assembling the surfaces and edges together and producing a model in a

universally accepted format. We find this scheme works well with complete point

clouds that cover all sides of the building. A second method is proposed to handle
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the complications when the point clouds do not cover all sides of the building. The

main structure of the building is estimated using minimum bounding box on the

dominant planes. The rest of the estimated planes are then attached to the main

structure. The process can produce a water-tight building model.

The schemes are tested on point cloud data sets from multiple sources, including

both image derived and lidar derived point clouds. The surface based approach and

minimum bounding box based approach both show the capability of reconstructing

models, while both of them have disadvantages. The limitations such as density of

point clouds; fitting accuracy; and future work, including increasing efficiency and

robustness, are also discussed.
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Chapter 1

Introduction

3D building models are becoming increasingly essential among urban planning, dis-

aster management, emergency response, and other applications. Due to the rapid

development of cities and the requirement of up-to-date information, semi- or com-

pletely automated modelling has emerged as an active research field. With the aid

of computer vision techniques, this field of study has experienced a boost in recent

years.

For decades, several different approaches based on various computer vision tech-

niques have been developed. In this thesis, the focus is on the point-cloud based

method. Generally, this method can be divided into two steps, point cloud extrac-

tion and model extraction. For point cloud extraction, the commonly used computer

vision structure from motion (SfM) work flow is an adaptation of the well-known

Bundler software written by Noah Snavley[6]. The imagery data goes through Scale

Invariant Feature Transform (SIFT), Bundler, Patch-based Multi-view Stereo (P-
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MVS), and produces camera information and point clouds in the relevant coordinate

system[7]. In model extraction, various methods have been developed based on the

variety of data sources and building shape.

Our primary data source is airborne oblique imagery. Compared to traditional

nadir view imagery or active sensing such as lidar (Light Detection And Ranging)

data, one of the most obvious advantages of oblique imagery is the information

on building facades[8]. With this information in hand, we will be able to extract

information on the building sides which is not possible to achieve with nadir data.

This thesis project mainly focuses on model extraction from 3 dimensional point

cloud data extracted from oblique airborne imagery. Due to the limited accessability

of oblique imagery, the point clouds generated are not as dense as expected, and

several sides are missing. The challenge of the project is thus to reconstruct a

complete building model from the incomplete point cloud.

1.1 Project Objectives

As stated above, the ultimate goal of this thesis project is to extract building models

from point cloud data in a semi- or completely automated process. To achieve this

goal, the task is separated into several tasks that can be easily handled. These tasks

together will accomplish the ultimate goal of constructing a building model. These

several tasks are listed as follows:

1. Develop or adapt a method to estimate surfaces in the 3D point

cloud. The intent of this task is to estimate dominant surfaces in the point cloud and
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identify corresponding points that belong to the related surface. Several estimation

methods have been proposed in previous work. However, the approach is a case-by-

case task due to the variety of data features and building structures. Large efforts

are made to adapt an algorithm to suit our unique data set. Additional difficulties

and issues in the estimation process are also discussed.

2. Detect edges in the estimated surfaces and adjust boundaries ac-

cordingly. In order to get a building model from the surfaces estimated, one needs

to outline the edges of each surface. The goal of this task is to detect the edges of

the surfaces, approximate the boundaries and then adjust the boundaries based on

the general geometry of the building structure. Edge detection in point cloud data

is a relatively difficult process due to the randomness of the points. Thus, the effort

has been mainly put into the edge approximation and linear regression. Because of

the low density of point cloud data, another regularization process is proposed to

make the edges align with the geometry of buildings.

3. Construct building models. This task is to finish the ultimate objective

of this research, that is to connect surface edges to form a building structure mod-

el. And then it will produce the model in a widely used format in the industry.

Moreover, adding texture information of each surface can be a secondary goal of

this task. This texture information can be extracted from the airborne imagery,

including spatial detail and color information.
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1.2 Contributions to Knowledge

This research provides a baseline workflow to reconstruct 3-dimensional building

models from oblique imagery derived point cloud data. Although several approach-

es were proposed related to this topic, this task is aimed at the unique data we

have. In the effort, a new adaptive RANSAC algorithm is proposed. Two different

reconstruction approaches are developed to achieve the goal of reconstructing mod-

els from point clouds derived from oblique imagery. Also, this research demosntrates

the possibility of produce 3-dimensional models from oblique airborne imagery.

1.3 Thesis Overview and Organization

The rest of this thesis is organized as follows. Basic concepts and background infor-

mation in relation to this research are provided in Chapter 2. Chapter 3 introduces

the previous work that is similar to the research we are conducting. Chapter 4

presents the data sets examined in the thesis work. Chapter 5 and 6 introduces the

baseline of two proposed approaches and a detailed description of the algorithms

used in the process. Results and discussions are shown in Chapter 7 as well as a

description regarding the accuracy of the process. Chapter 8 includes a summary of

the research and suggested future work.



Chapter 2

Background

2.1 Oblique Imagery

Oblique imagery is a type of aerial photography that is captured at a non-vertical

angle with respect to the ground. Apart from orthographic imagery which mostly

captures information from a nadir view, oblique imagery contains information on

the sides as well as the top of buildings. It resembles closely how viewers see the

landscape. Currently, oblique imagery are systematically captured in several cities

by multiple companies including Pictometry[9]. Several applications of oblique im-

agery have been proposed. Hhle proposed to use a single oblique image to estimate

object height[10]. Xiao et al. used multiple oblique images to detect buildings[8]. In

2009, Gerke discussed the possibility of 3D point cloud generation based on oblique

imagery. The overlapping and multi-viewing features of oblique imagery make it

possible to extract 3D point clouds[11].

5
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The oblique images used in the research come from Pictometry International.

Their aircraft flew over Rochester Institute of Technology (RIT) and captured the

entire campus. Each image is about 4900x3200 pixels in size. Because of the GPS

and IMU onboard, each picture is geo-referenced. In total, 11 oblique images are

used to generate the point clouds used in this thesis. Figure 2.1 is an example of

the oblique images captured by Pictometry.

Figure 2.1: Oblique Imagery of RIT campus

2.2 Point Cloud Data

A point cloud is a set of vertices representing multi-dimensional structure, and is

most commonly used in 2D and 3D data. In 3D space, usually point cloud data is

defined by X, Y and Z geometric coordinates comprising an external surface of an
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object. When color information like RGB components are available, the data turns

4D.

Point clouds can be generated from hardware like 3D scanners, stereo cameras,

or from computer software. In this research, the source is airborne imagery and

previous work has produced the point cloud structure of the entire scene [12]. Figure

4.2 shows the point cloud of the RIT campus generated from 10 airborne oblique

images. In the data, geometric coordinates and RGB information are included, as

well as a normal vector for each point.

Figure 2.2: Point Cloud of RIT campus derived from oblique imagery
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2.3 Computer Vision Theories

Computer Vision is a discipline that tries to perceive our 3D world based on one or

more 2D images. Different from traditional photogrammetry which acquires precise

measurements of the scene, computer vision tends to pursue a more general under-

standing of the scene that requires less precise measurements. This difference makes

the application of computer vision different from photogrammetry. Computer vision

develops more into areas such as object recognition, motion detection, model con-

struction, etc. Techniques in computer vision largely rely on pinhole camera theory

to build and understand 3D object models. In this section, we will introduce some

fundamental computer vision concepts that are used in this thesis.

2.3.1 Projective Geometry

This section will briefly introduce several fundamental concepts in terms of projec-

tive geometry that are widely used in modern computer vision technologies and also

essential in this thesis work. A thorough discussion of all computer vision concepts

is beyond the scope of this thesis. A more detailed description can be found in

Hartley and Zisserman[1]. The rest of this section is primarily taken from this book.

No further reference is presented in the rest of this discussion.

Homogeneous Coordinates

The representation of points, lines, and planes in Euclidean space is the most pop-

ular method used. For instance, a point in 2D Euclidean space is presented as
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(x,y). It also can be considered as a vector representation of the point, x = (x, y)T

However, geometric entities like points and lines are treated differently in projective

representations. Homogeneous coordinates are used, which represent entities only

up to an arbitrary scaler multiplier. It means that a homogeneous representation

of an entity is not unique. Any entities x and kx point at the same thing. In this

sense, an arbitrary homogeneous vector representative of a point in 2D projective

space is x = (kx, ky, k)T , where k is a non-zero scaler. It represents the point (x, y)

in 2D Euclidean space.

A line is naturally represented by vector (a, b, c) in accordance to the equation

ax+ by+ c = 0 in 2D space. However the correspondence between lines and vectors

is not one-to-one. Just like points, any vectors (ka, kb, kc) with a non-zero scalar

k states the same line. This equivalence class of vectors offers us the homogeneous

representation of lines in 2D projective space, l = (a, b, c)T With line representation,

one can easily tell that a point x lies on the line l only if xT l = 0

In the same manner, in 3D projective space, a point is expressed as x = (kx, ky, kz, k)T

representing the point x = (x, y, z)T in Euclidean space. A plane in 3D space can

be described in the equation ax + by + cz + d = 0. Correspondingly, it can be

represented in vector form as (a, b, c, d)T where (a, b, c)T describes the plane nor-

mal. Similar to lines in 2D space, any vector (ka, kb, kc, k)T with non-zero scalar

k describes the same plane. Therefore, a homogeneous representation of a certain

plane is π = (a, b, c, d)T . Again a point x is on the plane π only if xTπ= 0. Up to

this point, we can perform a linear projective transform in 3D homogeneous space,

X’=HX, where H is a projection matrix that has 15 degrees of freedom. A plane
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under the same projection is transformed to be π′=H−T π.

Central Projection

With the introduction above, we can start to describe the basic geometry of a

pinhole camera model. Here we assume the image plane is in front of the projection

center as seen in Figure 2.3. In this simple model, the projection center,O, is the

origin of the local coordinate system; the plane Z = f is the image plane. Under

the pinhole camera model, a point in 3D space X = (X, Y, Z)T is mapped to the

point x = (xc, yc)
T where a line connecting the point X and the origin meets the

image plane. By similar triangles, one can easily calculate that x = (xc, yc)
T =

(fX/Z, fY/Z)T . In the manner of homogeneous representation, the calculation can

similarly be presented in matrix multiplication.


xc

yc

1

 =


fX/Z

fY/Z

1

 =


f 0 0 0

0 f 0 0

0 0 1 0





X

Y

Z

1


(2.1)

One thing to note here is that this equation assumes the coordinate origin of the

image plane is set at the principal point. In practice, it may not be the case. So for

the purpose of generalization, another mapping which adds shift of principal point
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Figure 2.3: Central Projection Geometry Example.[1]

is needed here. This leads to the following solution.


xc

yc

1

 ∼

fX + Zpx

fY + Zpy

1

 =


f 0 px 0

0 f py 0

0 0 1 0





X

Y

Z

1


= K[I| 0]X (2.2)

In a more general case, points in space are expressed in the world coordinate

system other than camera coordinate system. These two systems are related through

a rotation and a translation. In order to use the equations developed above, one
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simply needs to calculate the coordinate position of the point X in camera coordinate

system by the formulaXcam = R(X-C) where R is a 3*3 rotation matrix representing

the orientation of the camera coordinate frame, and C is the center of camera

coordinate in the world coordinate frame. It can be expressed in homogeneous

coordinates as

Xcam =

R −RC

0 1

X (2.3)

This equation along with the equation (2.2) will offer the general pinhole camera

mapping as follow.

x = KR[I|-C]X (2.4)

One can see that a pinhole camera model, P = KR[I | -C] has 9 degrees of

freedom. The parameters in K are internal parameters describing internal orienta-

tion of the camera, and the parameters in R and C describes external parameters

representing orientation and positions of the camera in the world coordinate system.

2.4 Parameter Estimation

Almost all computer vision problems involve parameter estimation, such as line fit-

ting, motion analysis, and in our case, surface reconstruction. Traditional estimation

approaches have strong premises. For instance, least square estimation (LSE) con-

fines into a single population model[13] and assumes the noise distributed in a single

pattern such as Gaussian. When the assumptions are not met, these approaches can

turn out to have major error.
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In most computer vision cases, the complicated structure separates the data

into multiple populations and creates gross outliers. The sensitivity of traditional

estimators to outliers makes it not ideal for these cases. The idea can be summarized

in the example [2] below.

Figure 2.4: Line Fitting Comparison between Least Square and RANSAC.[2]

In LSE estimation, the estimator includes gross error points in the estimation.

By doing so, the estimated line leans towards the gross error point, and eliminates

points on the ideal line. After several iterations, the line as indicated in Figure 2.4

is closer to the gross error point than points on the correct line.

This situation urged the computer vision community to shift focus to robust es-
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timators. Ideally, robust estimators remove the effect of outliers on final estimation.

Several robust estimation techniques have been developed over recent years. The

two most important techniques that were developed independently are the hough

transforms [14] and RANdom SAmple Consensus (RANSAC)[2]. Hough transforms

are basically a voting procedure. In the so-called parameter space, each data point

votes for the parameters with the acceptable small fitting residual. Then the space

is searched to locate a maxima. One disadvantage of hough transforms is that the

voting space increases exponentially which makes it computationally impractical in

many cases [13].

This research thus utilizes the RANSAC technique as the primary approach

to handle parameter estimation problems. RANSAC offers another perspective in

removing outliers. Instead of trying to use as much data as possible for estimation

as in a least square approach, RANSAC tries to find the parameter with the least

outliers. It first starts by estimating parameters with minimum data points necessary

and then evaluates the points that are within a predefined error as inliers. The

algorithm iterates the previous process until a minimum number of inliers is achieved

or a maximum number of iterations is reached. The estimation with the maximum

number of inliers is considered as the ultimate estimation. In detail, RANSAC

algorithm can be explained in the pseudo code below.
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Algorithm 1 RANSAC

Definition :

S : The data set that need to be estimated

n : Minimum number of points needed to estimate the parameters

k : Maximum number of iteration allowed

d : Minimum number of inliers to accept an estimation

Start

1. Randomly Select n points to estimate a model using these points

2. Determine consensus set Si of points that are within the error threshold

if The size of Si is larger than d or the iteration exceeds k then

Re-estimate model using Si

end if

if The size of Si is smaller than d and iteration is smaller than k then

return to step 1

After certain trials, return the largest set of Si and re-estimated model

end if

One thing worth noting is that there are only four parameters that need to be

specified. N is determined by the model that one wants to estimate. The parameter

k should be large enough so that there is a high probability of acquiring a large

consensus set.

In the example above, the RANSAC result shows its advantage over the least

square approach. It identifies the gross error point as outlier. The fitting result is
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better than least square estimator and includes the minor error point as inlier.

In this research and previous work, RANSAC has been used in multiple cases. It

is used to fit planes to 3-dimensional data points in this research. Moreover, it is able

to estimate multiple planes by analyzing remaining outliers from a previous step. In

an early stage of the project, RANSAC was used to eliminate poorly matched points

from SIFT results. In this thesis, we develop an adaptive RANSAC algorithm to

efficiently estimate planes.
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Previous Work

As mentioned earlier, surface reconstruction is a case-by-case project. The methods

are differentiated by the type of target, the type of data, density of point clouds,

the availability of other useful information of the target, etc. There is no abso-

lutely effective algorithm that can reconstruct all cases. However, there are several

directions that reconstruction research has explored.

One of the most popular data sources in building reconstruction is lidar data. It

offers a high density point cloud that can be easily identified. Taking advantage of

this fact, Turner et al. [15] reconstructed a single surface by using robust least square

interpolation. Normal vectors were utilized when trying to reconstruct complicated

rooftop structures in Verma et al.’s work [16]. However the drawback of aerial lidar

point clouds is that it is almost impossible to reconstruct side walls because it mostly

contains only nadir view information. Frequently, algorithms tend to extrude rooftop

outlines and extend them to the ground [16]. Recently researchers started to use 2D
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imagery to acquire more information and to assess the accuracy as a reference. By

referencing with 2D imagery, it will ease the work of edge identification. Using lidar

point clouds and a building topographic map, Rey-Jer You and Bo-Chen Lin [17]

successfully outlined edges and registered the clouds with a 2D topographic map.

Further, Wang et al. [18] used information from 2D imagery to refine edges in a

region growing process along with lidar data and retrieved texture of the surfaces in

the model.

2D imagery alone is another principle source for data reconstruction. Researchers

started to use 2D imagery to construct building models before lidar data was avail-

able. It developed along with the improvement in multi-view geometry theory.

Carlos Tomasi and Takeo Kanade [19] proposed an early method of utilizing affine

fabrication to extract 3D features from multiple 2D frames. Later on, because of the

increasing popularity of different types of digital imagery, new extraction methods

were developed. Again, it becomes a case-dependent problem. In 1998, Frere et al.

proposed an early method based on edge detection results of 2D imagery in nadir

view [20]. This approach has the same limitation as lidar data. It cannot offer side

information. This research area enjoyed a tremendous boost in the last two decades

with multiple directions to approach the problem. Most recently, Maurer et al de-

veloped a method which utilizes multiple overlapping images from an aerial vehicle

platform and publicly available GIS information to create geo-referenced 3D model

of buildings [21]. An approach combining probabilistic volumetric estimation with

smooth signed distance estimation was proposed by Calakli et al. [22] to produce a

detailed model of large urban scenes.
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Although the algorithms mentioned above successfully produced building models,

most of them still requires a human-involved process such as selecting matching

points. The goal of this thesis and related work is to find a fully automated approach

to produce point clouds from 2D oblique imagery and generate 3D building models.



Chapter 4

Data

Point cloud data are a major component of computer vision data types, and have

been widely used in the scope of 3D and 2D applications. In the scope of this thesis,

point clouds from multiple sources are used to test and validate the algorithm.

Meanwhile, the focus is still on the point clouds generated from oblique imagery.

4.1 Pictometry Data

Pictometry Data includes oblique imagery from five different perspectives, north,

south, east, west, and nadir respectively. Figure 4.1 shows some samples of the

collected imagery. The site in the imagery is the campus of the Rochester Insti-

tute of Technology (RIT), including various buildings, parking lots, and vegetation.

The resolution of the images are 3248x4872, taken at the altitude of approximately

1400m.

The point cloud data is generated from Jie Zhang’s work[12]. It follows the work

20
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(a) (b)

(c) (d)

Figure 4.1: Samples of Pictometry airborne oblique imagery

flow established at RIT. The imagery goes through feature detection and matching

algorithms, and finally reprojects back to 3D space and forms the point cloud data.

Figure 4.2 below gives an example of the point cloud data of RIT campus from one

perspective.

Several other Pictometry data sets are provided. Figure 4.3 is another point

cloud sample generated from airborne images of the height of 800m.
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Figure 4.2: Point Cloud generated from Pictometry oblique imagery

4.2 DIRSIG Data

In order to validate the robustness of the approach, the algorithms need to be

tested on multiple data from different sources. Another dataset that is used in the

research is provided by Katie Salvaggio [23]. The data set was created with RITs

Digital Imaging and Remote Sensing Image Generation (DIRSIG) software[24]. It

provides high-fidelity radiometric data and also 3D location and surface normals

for each pixel in an image scene. Figure 4.4 shows an example of the scene that

is generated from DIRSIG. It includes multiple buildings with different structure

and also vegetation. The images of the simulated scene were taken at the altitude

of 800m above ground, with a focal length of 125.09mm. The camera is set to be

slightly tilted, thus offering an oblique view of the scene.

The data set comes with minimum and maximum range, corresponding hit co-
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Figure 4.3: Another Point Cloud generated from Pictometry oblique imagery

ordinates, and normal coordinates. Using this information, a point cloud data set

can be created with a free space based algorithm. Figure 4.5 shows a sample of the

point clouds generated. One set of point cloud corresponds to one single image with

each pixel corresponding to a point in the 3D coordinate system.

Because of the fact that the data comes from ground truth images with known

3D information, the point cloud generated is noise free. It can serve as a benchmark

data set for 3D reconstruction testing. By combining point clouds of different angles

that cover four sides of a building, one complete point cloud data set of a building

is accomplished.
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(a) (b)

(c) (d)

Figure 4.4: Samples of DIRSIG generated images.

Figure 4.5: Point Cloud generated from Pictometry oblique imagery.
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4.3 Other Point Cloud Data

For the purpose of testing the robustness of some parts of the algorithm, point cloud

data from other sources are used as well. Specifically, lidar point clouds are used

here. Lidar can produce a much denser point cloud with clear edges. The lidar

point cloud used in the research is the point cloud of RIT campus. It is from a

nadir view, and thus it includes only the rooftop of each building. Although it is

not suitable for the entire algorithm, it is a good source to test the edge related part

of the algorithm. Figure 4.6 shows parts of the point clouds that are used in the

thesis.

(a) (b)

Figure 4.6: Examples of lidar based point clouds



Chapter 5

Single Surface Based Method

As stated above, this thesis seeks the feasibility of surface reconstruction of building

models based on point clouds derived from oblique imagery. In order to finish this

goal, the project was divided into several smaller tasks that are easier to handle.

These tasks includes plane estimation, edge extraction, and model construction.

Figure 5.1 demonstrates the overall scheme developed for the thesis project. Al-

though the method developed here is specifically for point clouds generated from

oblique imagery, most of the algorithms can also be applied to other types of point

cloud data such as lidar data.

Before demonstrating the tasks, a few assumptions are made to simplify the prob-

lem. First, based on observation, the buildings to be reconstructed are cubical-shape

with flat surfaces. This is a fact for most of the buildings in an urban scene. Under

this assumption, it is easier to estimate surfaces with simple parameters. Second, all

buildings are assumed to have clear, sharp edges. This assumption can allow us to
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Figure 5.1: The overall scheme of the project workflow

easily isolate edges. Combined with the previous premise, the edges we are looking

for are mostly straight lines which are also easy to represent by parameters. With

these assumption, we rule out buildings with complicated structures such as curved

edges, or spherical surfaces. It will ease our work tremendously in terms of plane

estimation and edge regulation. Fig 5.2 below shows an example of the building we

are processing and its corresponding point cloud.

Figure 5.2: Example of a building that fits the assumption (Wallace Library of
Rochester Institute of Technology) and its corresponding point cloud.
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5.1 Plane Estimation

As mentioned earlier, this estimation algorithm is modified from the RANSAC al-

gorithm. In order to increase the performance of the algorithm to this specific data,

a few modification are made to the classical RANSAC algorithm. A few aspects of

region growing theory are adopted here.

5.1.1 Classical RANSAC algorithm

When dealing with plane estimation, the RANSAC algorithm will produce a set of

parameters that describes the plane and a consensus set of points that are classified

to the plane. According to the basic plane representation in 3D space, we have the

following equation.

Ax+By + Cz +D = 0 (5.1)

The set of parameters from RANSAC are called Theta = [A, B, C, D].

Figure 5.3 below displays an example of a made-up point cloud and the result

of plane estimation. The point cloud contains 6 surfaces with an average of 4000

points on each surface. Random noise is intentionally added to the data set.
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Figure 5.3: Made-up point cloud example and plane estimation result of the data

The figure on the right of figure 5.3 shows the extracted planes from the point

cloud. All planes that were set up are successfully identified. Table 5.1 below shows

the comparison of ground truth and estimated consensus set. It demonstrates the

accuracy of the RANSAC algorithm. All points are assigned to planes with small

margins. The existence of outliers in the point cloud does not affect the overall

accuracy of the estimation.
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Table 5.1: The result of RANSAC estimation in terms of points on each plane.

Ground

Truth

Estimation

Plane 1 6815 6830

Plane 2 4388 4408

Plane 3 4337 4370

Plane 4 2444 2426

Plane 5 2228 2208

Plane 6 1690 1660

Total 21902 21902

Although RANSAC is already capable of extracting multiple planes, it still has

several problems when dealing with real-life targets. Most of the time, buildings

are not a simple cube with flat surfaces. They may have multiple layers in one

orientation. The randomness of estimation may result in highly deviated planes

in order to fit more points onto the plane. Furthermore, when dealing with larger

sets of data, the random estimating process may go to exhaustion and require high

processing capability. In order to reduce the effect of these problems, region growing

theory is adopted to augment the basic RANSAC algorithm.
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5.1.2 Region Growing

Region growing was originally a region-based image segmentation method. The

basic idea is to examine the neighboring pixels of the selected point and determine

whether it belongs to the region. It iterates until a certain criterion is met such as

the region is not spreading any more. Region growing has been introduced to surface

reconstruction by several researchers because of its advantages such as minimizing

the memory usage when dealing with large data sets. Vieira and Shimada proposed

a surface reconstruction scheme based on the theory of region growing [3]. In their

method, the data is first partitioned into smaller grids, and then it tries to expand

the region from an initial point which is called the seed point. It approximates a

surface based on a small neighborhood near the seed point. Then further neighbors

are checked whether they are compatible with the surface. If so, they are added to

the region. A new surface will be approximated based on this new region. Repeat

this region growing process until the region stops increasing. A final surface is then

extracted. The detailed steps are explained in the pseudo code in Algorithm 2.

Figure 5.4 shows one test result from Vieira’s work. Three different steps were

shown in the image. With a dense point cloud, it produced very detailed reconstruc-

tion results in a time period of 24 seconds. However, the surface fitting algorithm

implemented in this region growing scheme is better for spherical or higher degree

surfaces. In order to connect the region growing idea to our data set, it is combined

with the RANSAC algorithm.
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Algorithm 2 Surface Extraction using Region Growing

Definition :
X : The data set that need to be estimated
x : A point in the data set X
bold : Initial Estimated surface before region growing
bnew : Updated surface after region growing
b : Final surface estimation
Rb,old : The region before growing
Rb,new : The region after growing
Rb : Final region

Start
Partition X into a cubical grid
For each x, calculate and store k-nearest neighbors
For each x, calculate surface variation based on k-nearest neighbors
Sort x in order of increasing surface variation
if x is labelled as used in estimation then

Skip to next point
end if
Initial estimation of the surface using the first point, and store it in bnew
while Rb,new > Rb,old do
Rb,old = Rb,new

bold = bnew
Region growing and update Rb,new, bnew

end while
if Rb,new < Rb,old then
Rb = Rb,old

b = bold
else
Rb = Rb,new

b = bnew
end if
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Figure 5.4: Reconstruction example of automobile C-pillar by Region Growing
Algorithm[3]

5.1.3 Proposed Method

In the proposed algorithm, we mainly inherit the idea of using seed points from

Vieira’s algorithm. A small neighborhood of the seed point is used to estimate the

surface. Intuitively, this algorithm works most efficiently when the seed point lies

in the interior of a large group of points that are most likely in the same surface [3].

Under the assumption that surface estimation in regions that have less variation is

potentially more successful, a decision is made to pick seed points based on surface

variation.

The surface variation is evaluated at each point by principal component analysis

(PCA). PCA has been widely used to compute local properties of point clouds such

as point normals [25]. Let N be the k-nearest neighbors of a point x in the data set.

This technique is performed by calculating the covariance matrix of point x and its
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neighbors N. The covariance matrix C here can be defined as:

C =
∑
p∈N

(p− p̄)(p− p̄)T (5.2)

where p̄ is the 3D centroid of N neighbors in Euclidean space. This 3×3 matrix is

symmetric, positive semi-definite and has three real eigenvalues, λ0, λ1, λ2. Their

corresponding eigenvectors, v0, v1, v2, form an orthogonal basis of 3 dimensional

space. Each eigenvalue λi measures the variation in the direction of corresponding

eigenvector vi. Specifically, v0 approximates the surface normal at point x, assuming

λ0 ≤ λ1 ≤ λ2. And the plane decided by v1 and v2 is recognized as the tangent plane

at point x.[26] Thus, λ0 measures the variation in the orientation of surface normal,

as well as how the points variate from the tangent plane. So surface variation of

point x in the k-nearest neighbors can be defined as:

σk(x) =
λ0

λ0 + λ1 + λ2
(5.3)

The less the surface variation, the more likely that the points lie on the same plane.

When σ(x) = 0, it means point x and its k-nearest neighbors are on the same plane

[26]. After the surface variation of every point in the data set is evaluated, candidate

seed points can be selected by searching for those with the least surface variation.

With the selected seed point and its nearest neighbors, the next step is to esti-

mate a surface from these points. As mentioned earlier, RANSAC is applied here

instead of Bézier surface estimation. However, a modification is made to the classi-

cal RANSAC scheme. In order to use the seed point region, the process of randomly
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selecting points to perform initial estimation in the classical RANSAC algorithm

is abandoned. Instead, a seed point and its neighboring region is chosen to be the

library for initial estimation. Once a surface is finalized in this process, all points

in the consensus set are labelled. Then another seed point is picked from the unla-

belled points in the same fashion. The process will iterate until there is not enough

points to estimate a plane. By doing so, it will offer the algorithm a better chance

to locate the plane quickly rather than randomly selecting points to estimate planes,

since the points fed to the algorithm are already the ones that are most likely to

be on the same plane. Furthermore, because we use a limited number of points to

estimate the surface, the maximum number of iterations can be easily calculated.

For instance, if we choose to insert one seed point and its 20 nearest neighbors into

RANSAC, the maximum number of iterations possible is C3
21 = 1140. In this way,

the number of iterations for each RANSAC run in multiple surface estimations can

be tremendously reduced by setting a finite number for the maximum iterations,

while in the case of classical RANSAC algorithm this is usually set to be infinite.

A reduction in iterations means less processing time, and much more efficiency as

well.

Taking the example of a cubical point cloud shown in Figure 5.3 again, both

classical and adaptive RANSAC are performed on the data with the same parameter

settings on a consumer laptop (Intel Core i5 2.50GHz, 4G RAM). Both algorithms

return decent result in terms of estimation. However, the gap in processing time

between the two algorithms is large, as one can see in Table 7.6.

The detailed algorithm scheme is shown in the pseudo code below (Algorithm 3).
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Table 5.2: Processing time (seconds) comparison between classical and modified
RANSAC algorithm in seconds.

Plane 1 2 3 4 5 6 Total

Classical
RANSAC

10.806 5.886 5.822 2.630 1.370 0.019 26.513

Adaptive
RANSAC

3.680 5.234 2.216 6.942 2.645 0.019 18.52

There is one more thing to note before the end of this section. The surface variation

is not an intrinsic feature of a surface. It depends on the number of neighbors taken

into account. Thus, a reasonable neighbor size is a key parameter to be considered

in this algorithm. Failing to choose the right size will either lose the generalization

or lose the efficiency of the algorithm. For instance, if 50 nearest neighbors are

considered, then the maximum iterations possible is 20825. It most likely will not

reduce the iterations compared to the classic RANSAC algorithm.

To make the algorithm more flexible, one more parameter is designed to have a

better fit. Because of the existence of noise, the result might be contaminated due

to the smaller sampling size. In order to control the accuracy, another parameter

is used to compensate the noise. In the estimation round using seed points and its

neighbors, α is defined as the percentage of points from the library lying on the

plane.
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Algorithm 3 Surface Extraction using modified RANSAC

Definition :
X : The data set that need to be estimated
x : A point in the data set X
Rx : The region formed by x and its k nearest neighbors

Start
Perform k nearest neighbor(knn) search for each point
For each x, calculate surface variation based on Rx

Sort x in order of increasing surface variation
if x is labelled as used in estimation then

Skip to next point
end if
Run RANSAC using points in Rx as parameter estimation library
Label the points in the consensus set of the estimated surface

5.2 Edge Extraction

Primarily, oblique imagery offers points on the sides of buildings. This advantage

of oblique imagery offers a straightforward approach for edge refinement. With

dominant surfaces in hand, one can easily identify the edges by calculating the

intersections of every two planes. With high precision of surface estimation, this

intuitive approach would have high precision as well. However, due to the limita-

tion of available data, information on several sides cannot offer matching points to

produce enough points. Thus it is hard to sharply determine the parameters of such

surfaces. Such inaccuracy of plane parameters will cause the aberrate intersections.

Thus such an intuitive approach may not be the best option for this thesis. In order

to find an alternative approach, the cubic-shape assumption is chosen to be applied

here. This means that the the missing sides are oriented straight down from the



5.2. Edge Extraction 38

boundary of the rooftop surface. Thus the missing side surface can be represented

by a flat surface straight down from related rooftop edge. In this way, the geometry

can be estimated by identifying in-plane edges in each plane.

5.2.1 Determine in-plane Edges

In previous efforts of solving this problem, several different approaches have been

proposed by researchers. One popular approach makes the assumption that build-

ings are all convex hulls. This assumption turns the problem into a task of finding

the minimum bounding box of the points in the plane. When buildings are exactly

a cube, the convex hull algorithm works well. Unfortunately, not all buildings are

simply cubical. When encountering a complicated structure such as ”L” shape or

”U” shape, it cannot well identify all edges. An example is shown in Figure 5.5.

With the ”L” shape structure shown in the exmaple, convex hull fails to recognize

the edges at concave areas.

Here we decide to use another approach that looks similar to convex hull, which

is Alpha Shapes. It is a generalization of convex hull [27]. Unlike the convex hull

algorithm, Alpha Shapes are not confined to convex structures. It can accurately

locate concave areas, and even holes in the structure, such as windows in a surface.

Edelsbrunner[27] described the concept of Alpha Shapes analogously for intuitive

understanding. Thinking of the target as a huge mass of chocolate chip ice cream,

where the chocolate chips stand for point set S, and ice cream as R3 space. Using

a spherical-shape ice cream scoop, we can carve out all the ice cream in the reach

without bumping into the chips. Thereby, we can even carve out holes inside the ice
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Figure 5.5: Results of Convex Hull algorithm on L-shape data. (a) the sample ”L”
shape data; (b) ideal edge extraction result; (b) edge extraction result from convex
hull

cream. Eventually, we will end up with a shape bounded by caps, arcs and points.

After straightening all round surfaces and connecting the points with line segments,

an intuitive alpha shapes description of the points S will be in hand. A 2D example

of alpha shapes is shown in Figure 5.6. Here the parameter α can be considered

as the radius of the spherical scoop. It is obvious to see that when α is too small

we will be able to carve out all ice cream without touching any chips. Thus it will

keep all the points in S when α → 0. In the same sense, when α is too large, it

will prevent the scoop from moving between two points, especially in concave areas.

We will end up with the convex hull of the set S. Hence, the alpha shapes of S is

the convex hull with α → ∞. Decreasing value of α will produce decreasing sets of
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shapes and eventually developing cavities.

Figure 5.6: Example of Alpha Shapes in 2D[4], where blue dots represents point
set S, green circle represents scoop with radius α and red line segments represent
identified shapes.

In order to use the alpha shapes algorithm for boundary extraction, a pre-

processing step is needed for the point cloud data. To ease the computational

intensity and simplify the process, it is better to operate alpha shapes in 2D s-

pace. Thus, a projection of points onto 2D plane is performed before the actual

edge extraction. Then, a standard 2D alpha shapes algorithm can be performed on

the projected 2D data. In the end, we will obtain a group of boundaries including

internal cavities. In order to pave the way for further algorithms, a rearrangement
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process is performed. The output of the alpha shape algorithm is a list of point

pairs that each pair of points are connected. In order to better process the edges in

the following procedures, we reorder the points into an array in which the neighbors

are connected.

5.2.2 Line Simplification

After the stage of the alpha shapes algorithm, we have a primary estimate of the

edges. However, the output from alpha shapes usually has irregular geometry be-

cause of the fact that alpha shapes only identifies points on an edge, but not how

they behave geometrically. This irregularity makes the result undesirable for final

edges. Hence, here a line simplification process is necessary to produce less noisy

results geometrically.

The main goal of this line simplification process is to remove redundant points

and straighten the edges by lines between critical points. Over the years, there have

been various algorithms developed in this area. Several researchers have compared

different simplification algorithms under different circumstances and they all came

to the conclusion that the Douglas-Peucker algorithm shows superior results, espe-

cially for less complicated lines [28][29][30]. Our lines here are simple straight lines

with no curves or high order complications, thus the Douglas-Peucker simplification

algorithm is used in this thesis to finish the task of generalizing lines.

The Douglas-Peucker algorithm, also called the Ramer-Douglas-Peucker algorith-

m, was independently suggested by Urs Ramer [31] in 1972 and by David Douglas

and Thomas Peucker [32] in 1973. It is a recursive process that tries to find few-
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er points to represent similar curves. Given a set of vertices, the algorithm first

identifies the first and last points as points to be kept. With these two points as

end points, it then checks whether the distance of the farthest point from the line

segment is larger than a predefined threshold ε. If not, then all points between end

points that are unlabelled are discarded. If it is larger than ε, then this point is

labelled to be kept. The algorithm then recursively calls itself with labelled points.

In the end, it will output a new approximation of the structure with reduced number

of points. Figure 5.7 below shows a simple example of Douglas-Peucker algorithm

[5].

Figure 5.7: Example of 2D Douglas-Peucker line simplification algorithm[5]

There is a set of 10 points that needs to be simplified, P0 to P9. In the first

iteration, P5 has the longest distance from the line segment formed by P0 and P9.

Since the distance is larger than the threshold ε, P5 is then identified to be kept. In
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later iterations, P6 is also identified as a critical point, and the rest are discarded.

The final simplified curves are formed by four critical points shown in part D of the

figure.

Up till this point, the algorithm can produce simplified edges of a certain surface

extracted from point clouds. However, none of the algorithms described above relates

the data to the real geometrical structure of a building. Whether the edges extracted

truly complies with the edges in reality is still yet to be tested.

5.2.3 Line Regulation

As stated above, no algorithms mentioned so far take the real geometry of the

building into account. Alpha shapes only searches for points on edges in the given

data, not considering whether those points lie on actual edges of the building. The

Douglas-Peucker algorithm generalizes the identified edge points to a smoother,

geometrically reasonable shape based only on the location of the points in the entire

set of points. Again, it cannot guarantee that the outputs are the real edges of the

building. In order to make sure the extracted points are on actual building edges,

an algorithm is developed to correct the points in point cloud coordinates based on

positions in 2D images.

The basic idea of this correction scheme is to shift the identified edge points

around until they are on the edges in 2D imagery. In order to finish this task, several

projective geometry techniques are applied here. For the purpose of projecting the

points back to 2D imagery, the camera matrix of the image is used. A camera matrix

consists of intrinsic parameters such as focal length and extrinsic parameters like
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camera rotation and translation. In early work, the camera matrix for each image is

extracted from the process of bundle adjustment. In Noah Snavely’s documentation,

he describes the process in detail [6]. The method to locate a 3D point in a related

2D image is adapted from his documentation as well.

In the bundler process, the camera matrix extracted is a 5×3 matrix in the

following format such that the first row represents the focal length f followed by

two radial distortion coefficients k1,k2. The next 3 rows represents the 3×3 rotation

matrix R. The last row stands for the translation vector t. Taken point X from 3D

point cloud, it first converts the points from world coordinates to camera coordinates

by:

P = R ∗X + t (5.4)

After equalizing z coordinates to 1 for each point, we can then convert the points to

pixel locations by:

P ′ = f ∗ r(p) ∗ P (5.5)

where r(p) is a scaling factor to compensate radial distortion:

r(p) = 1.0 + k1 ∗ |P |2 + k2 ∗ |p|4 (5.6)

Note that the image pixel coordinate’s origin locates at the center of the image, and

positive x axis points towards right, and y upwards. To adjust the coordinates to

different programming environment, such as Matlab, a translation process is needed

where the origin of the coordinate is top left corner.
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To make things easier, instead of projecting points to a color image, a pre-

processed edge map of the image is used. In this way, we do not need to deal with

multi-channels when shifting the points around. An edge map is a simple gray-scale

image in which higher pixel value means more likely it is on the edge. It is easier

to set a threshold to identify edge points. Figure 5.8 below shows an example of

an edge map for one of the images. Although we can project 3D points back onto

Figure 5.8: Edge map of 2D imagery

2D world, the inverse is unfortunately troublesome. The reason is obvious. Based

on single position in a 2D image, the depth information is lost. Thus it is hard to

locate the point in 3D coordinates again. To avoid this challenge, we choose to shift

the point in 3D coordinates and project it back to 2D edge map to check whether it

is on the edge. We then iterate until the point is on the edge. The main challenge is

then to determine the proper direction to shift the point. Basically we only need to

decide one of two orthogonal directions to move the point. Fortunately, thanks to

the unique features of oblique imagery, several orthogonal planes can be extracted.

Then, those two orthogonal directions are decided by the three dominant planes
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that are orthogonal to each other. The normals of two planes will serve as the two

shifting directions for points on the third plane. After close observation, every point

has the tendency of shifting against the concave formed by line segments with two

neighbors. The process is better explained in vector form.

Figure 5.9: Vector Description of Edge Point Shifting. (A)the vector formed by the
target points and its neighbors. (B) The theory of determining direction of shifting.

Figure 5.9 shows the basic theory of edge point shifting based on 2D imagery.

V1 and V2 represent the vectors formed by the point and its neighbors. D1 and D2

represent the two dominant shifting directions. After normalizing V1 and V2, the

combination of these two vectors are calculated as V . Using the dot product, the

angles between V and D1,D2 are determined. Based on the angles, if one’s absolute

value is smaller than a predefined ε, the the point should move in the direction that

produces that particular result. In the other case, if both values are larger than ε,

then the point should move in both directions. In the example above, θ1 is obviously
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smaller than θ2, and smaller than ε, then the point should move in the direction of

D1.

When the shifting direction is determined, then the point is shifted in the direc-

tion at a reasonable interval, and then is projected back to 2D edge map to check

whether or not it is on edge. If not, then it needs to shift more until it satisfies the

condition of reaching a threshold of pixel value. This process iterates for every point

that is produced by the algorithm in the previous stage. In this way, the points are

guaranteed to be on the edge of the building and therefore have decent precision.

In summary of this section, the edge identification process consists of three steps.

First, alpha shapes is applied to identify edge points from the points. Then, the

Douglas-Peucker line simplification algorithm is used to simplify the lines and makes

the lines geometrically reasonable. At last, a shifting scheme is performed to correct

the error between identified edges and real building edges.

5.3 Model Extraction

With edges and plane parameters in hand, now we are ready to construct building

models. In order to produce an output that can be used in various situations, a

universally accepted format is used here to represent the models. Here we propose

to use wavefront OBJ file format.

OBJ format is a simple data format that represents 3D geometry alone. It

includes the positions of vertices, normals and the faces that makes each polygon

defined as a list of vertices. Since OBJ format doesn’t require a unit for the data, it
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can also contain scale information. An example of OBJ format file is shown in the

Figure 5.10.

Figure 5.10: An example of the OBJ file format.

In this format, it starts with listing all vertices that are needed for this model.

It follows the order of (x, y, z) coordinate order without any units. The same case

is for normals, if this information is available. Face definition in an OBJ file has

several different representations. The most simple one is shown in line 1 and 2 of

the face definition in the example. It simple identifies all the vertices that lies in

the same face, and lists them in a counter-clockwise order. The other one shown in

the example attaches vertex normals to each vertex in the surface. There are many

more elements in the format such as texture coordinates, parameter space vertices,

etc. These are beyond the scope of this thesis.

In our case, in order to generate a standard OBJ file, we simply need to list all
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edge points as vertices, and then list all surfaces identified in earlier stages. Since

the data comes from oblique imagery, it should cover all sides, so a simple stitching

process is sufficient to put the model together.



Chapter 6

Minimum Bounding Box Based

Method

In a more realistic case, more often than not, the point cloud is not complete and

does not cover all sides of the building. Just like the case in the Pictometry data, ten

images were facing north, and only four were facing the other three directions. This

fact results in missing walls on three sides while maintaining two complete surfaces,

the rooftop and the surface facing south. The problem is shown in Figure 6.1

With this defect, the approach described in Chapter 5 may not work well. That

approach assumes that the points cover all sides of the building. Without this

assumption, just like in our case, the approach is only able to stitch two surfaces

together while the rest of the walls are left empty. Figure 6.2 shows one result of

such work.

In order to compensate the missing information on some of the walls, another

50
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Figure 6.1: The problem with Pictometry data set, While points cover roof and
front wall, walls on the other sides are missing.

Figure 6.2: A preliminary model of library.

approach based on a minimum bounding box is proposed here.
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6.1 Minimum Bounding Box

The technique of minimum bounding box is mostly used in geometry. The goal of

this technique is to find the bounding box that encloses a set of points and also

has the smallest measure. The measure here can be area, volume, or perimeter

of the box. In most cases, another constraint that is taken into consideration is

the orientation. Particularly in model reconstruction, the box must have the right

orientation for further processing. While finding a minimum bounding box is not

a complicated task, making orientation alignment is the most difficult step in this

algorithm. Figure 6.3 gives an example of minimum bounding box on 3D data

points.

Figure 6.3: An example of minimum bounding box, where blue points are the input
points in 3D and red lines are the minimum bounding box
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The algorithm used here constructs a convex hull of the point set and utilizes

properties of the convex hull such as face edges, face normals, and face orientations

to align bounding box orientations to the data set. Figure 6.4 shows minimum

bounding box results on real data. Figure 6.4(a) shows a result of the algorithm.

By using minimum bounding box, the missing walls are compensated with a flat

surface of the box.

(a) (b)

Figure 6.4: Minimum Bounding Box algorithm results on (a) Pictometry data and
(b) DIRSIG data

6.2 Proposed Approach

Utilizing the idea of minimum bounding box, here a new approach is proposed to

make up the missing walls in the practical point cloud data. Again, the assumption

for this approach stays the same as the previous approach. The building consists of

flat surfaces only. This assumption allows us to use a bounding box to simulate the

missing walls by casting a flat surface to the missing walls.
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6.2.1 Searching for Dominant Planes

The approach starts with the adaptive RANSAC algorithm described in Chapter

5 to estimate multiple planes from the point cloud. With the estimated surfaces,

the next step is to find the dominant surfaces. The dominant surface is defined as

the surface that covers one side of the building, and that has the most inlier points.

To find the dominant planes, the estimated planes are first sorted in a descending

order based on the number of inliers. By default, the plane with the most inliers

is labelled as one dominant plane automatically. In the sorted order, each of the

remaining planes is checked if it is orthogonal to two unparallel planes, and can only

be parallel to one of the labelled dominant planes. After this process is done, all

the dominant planes are labelled and ready to use. Figure 6.5 shows some results

of dominant plane identification.

Generally, one building has five dominant surfaces depicting four sides and one

rooftop. However, due to the missing information, one building in our data does

not necessarily contain five dominant surfaces. In Figure 6.5, the point cloud in (a)

obviously only contains two dominant surfaces while the one in (b) identifies five

surfaces as dominant.

The labelled dominant surfaces are then used to construct the basic main struc-

ture of the building. Using the inliers from the dominant planes only, a cubic struc-

ture can be acquired by performing the minimum bounding box algorithm on the

points. This structure acts as the base structure of the building, and later processes

are built on this structure.



6.2. Proposed Approach 55

(a) (b)

(c) (d)

Figure 6.5: Dominant plane search on different data sets (a) RIT library data set,
(b) identified 2 dominant planes in red and green, (c) DIRSIG data set, (d) identified
5 dominant planes in different colors

6.2.2 Histogram based Clustering

After the main structure is constructed, the next step is to assemble the remaining

surfaces to the box. This part of the approach is the most difficult part due to the

complicated structure of the remaining planes. Some of the estimated planes contain

only one surface while some contain more than one surface which shares the same

plane. Figure 6.6 shows an example of the complication. In (a), the estimated plane

has 12 surfaces while in (b) there is only one surfac lying on the estimated plane.
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Minimum bounding box only finds the bounding box that can enclose all the input

points. It cannot preserve these details of small surfaces in one estimated plane. In

order to fully reconstruct the details, we need to separate the surfaces lying on the

same plane into different clusters.

Figure 6.6: Two different situations of planes, in (a), 12 surface share the same
plane, in (b) only one surface on the estimated plane

The method we proposed here to cluster the points is histogram based K-means

clustering. K-means is a clustering method that has been widely used for decades.

It was first proposed by McQueen [33] in 1967 as a local search algorithm that

partitions n points into k clusters. It works in the following way. The points are

first seeded with k initial cluster centers. Then it assigns every remaining data

point to its closest center, and then recalculates the new centers as the means of

their assigned points. This process of assigning data points and adjusting centers is

repeated until the means are stabilized.

The number of clusters, k, affects the result of clustering. An inappropriate
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choice of k may yield a terrible result. However, in the k-means algorithm imple-

mentation in many data analysis software packages, the number of clusters is set as

an input parameter. This means one has to know how many clusters exist in the

data before processing it. In the interests of automation, the number of clusters is

expected to be determined automatically without any human involvement. In order

to achieve that goal, a preprocessing step is essential before the clustering.

The first step in this process is to perform a principal components analysis on the

data points. In this way, the points can be projected into three dimensions based

on the variation in the distribution of the points. Then a processing of searching for

maxima in the histogram of each dimension is conducted. The number of clusters

is decided by the number of maxima in each dimension. The search for maxima is

explained as follows.

After projecting the points to each dimensions, a statistical histogram of the

distribution is computed for each dimension. Figure 6.7 demonstrates the points

of Figure 6.6(a) projected into the PCA dimensions and their corresponding his-

tograms. Visually, a local peak in a histogram means that the related region has

the most points in the local neighborhood. The points in this peak region can then

be identified as belonging to one cluster. So the problem now breaks down to search

for the number of maxima in the histogram.

In order to correctly find the number of peaks, several rules have been utilized to

eliminate false peaks. Here we use an example histogram shown in Figure 6.8(a) to

better illustrate the process. Let H be the histogram of the points in one dimension,

and p be one bin of the histogram. The first rule is to find all the local maxima
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Principal Component Analysis of one point set. (a)(b)(c) are the points
projected into the orthogonal dimensions,(d)(e)(f) are the corresponding histograms
of the points in each dimension.

in the histogram. Np1 = {p|H(p) > H(p − 1), H(p) > H(p + 1)} , is the set that

includes all local maxima bins that have more points than the one before and after

them. The result is shown in Figure 6.8(b). In the set of Np1, there might be some

bins that are peaks among low bins. This means some of them might contain few

points that cannot be identified as clusters. Thus, another rule is set to reduce the

maxima by eliminating extremely low peaks. The set of this rule is named as Np2 =

{Np1|HNp1(p) ≥ α ∗max(H)} as shown in Figure 6.8(c), where α is a factor that

is decided by the size of the input points. Similarly, among the high peaks, there

is a probable case that several high peaks are close to each other. And these high

peaks actually describe only one single cluster. In this case, the peak we are looking
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for should be distinctive peak in relation to its neighbors and also its neighboring

peaks. So one more rule, Np3 = {Np2|sum{H(Np2(p)), H(Np2(p + 1)}/2 > β ∗

sum{H(Np2(p) : H(Np2(p + 1)))}/(Np2(p + 1) − Np2(p) + 1), is set to eliminate

the shallow peaks to avoid this situation, where β is a factor based on the size of

the input points. The result is shown in Figure 6.8(d). Thus, after the process, the

number of peaks in this dimension is set to be 1.

(a) (b)

(c) (d)

Figure 6.8: Selecting cluster number by histogram (a) histogram of the input data
in one dimension, (b) histogram after selecting local maxima, (c) histogram after
eliminating low maxima, (d) histogram after eliminating shallow maxima

After all three dimensions are analyzed by the histogram peak detection algo-



6.2. Proposed Approach 60

rithm, the number of clusters k is then determined by multiplying the numbers of

peaks of three dimensions together. The reason that we are able to do so is that

PCA projects the points into three orthogonal dimensions that are not correlated.

One more thing to note here is that we can perform noise reduction while searching

for local maxima. During the search in each dimension, the bins with extremely low

points and isolated from the groups of points are considered as misidentified points

and thus removed from the input data. The example is shown in Figure 6.9.

Figure 6.9: Noise reduction based on histogram.

After the histogram process, the number of clusters is determined. Thus, a k-

means clustering is performed on the noise reduced data. One result of the clustering

is shown in Figure 6.10. The clustered data is then treated as multiple estimated

surfaces sharing the same plane primitives.
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Figure 6.10: Clustering result of one plane. Each color represents one cluster

One thing to point out here is that, since we are trying to achieve automatic

reconstruction, there should be as little human involvement as possible. One possible

human involvement is the user-determined parameter settings that is based on the

size and quality of the point clouds. The single-plane based algorithm, for example,

requires a few parameters such as the alpha parameter in alpha shapes, distance

parameter in line simplification. The bounding box based algorithm, on the other

hand, requires no parameter input from the user. The most obvious parameter, the

number of clusters in the k-means clustering process, is done automatically. This

fact allows the bounding box based algorithm to achieve a better automation.

6.2.3 Model Construction

The next step is to attach the remaining surfaces to the main structure. Again,

the minimum bounding box approach is used here to form a model for the surface.

The minimum bounding box produces eight corner points that describe the box.



6.2. Proposed Approach 62

These eight points are then used to find the main structure plane that this surface

should be attached. The sum of the distances of the corner points to each of the

dominant surfaces is computed. The dominant surface with the least distance is

the main structure plane for which we are looking. Then the four corner points

that are closer to the identified main structure plane are projected onto the plane.

The remaining four points are projected to the targeting surface. To this step, the

targeting surface is attached to the main structure through a bounding box. And

when all the remaining surfaces are attached, a building model is accomplished. The

OBJ file is then generated using the corner points of all bounding boxes. Thanks

to the simplicity of bounding boxes, the OBJ file is created by simply listing all the

surfaces using four corner points.
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Results and Discussion

As mentioned earlier, both approaches introduced in previous chapters are used for

the purpose of reconstructing single building models. The following sections are in

the order of the process explained in the previous chapters so that one can easily

see the effect of each algorithm on the data.

7.1 Results on Adaptive RANSAC Algorithm

The adaptive RANSAC algorithm is used in both approaches. It is important to

discuss its efficiency before presenting the results in both approaches.

The performance of the adaptive RANSAC algorithm along with the strategy

to solve problems occurring in multiple primitive estimation was tested with real

data and compared to the original RANSAC algorithm. The comparison is mainly

conducted in two aspects, computational efficiency and fitting accuracy [34].

63
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7.1.1 Computational Efficiency

Hypothesis testing in RANSAC is an iterative process. Generally a counting of

iterations would be adequate to characterize the efficiency. However, due to the

fact that our modified algorithm includes a nearest neighbor search which is not

processed during each iteration, an elapsed processing time is used here to evaluate

the efficiency. As shown in Table 7.1, almost half the time in our modified algorithm

was consumed in finding the first plane. At that time, the nearest neighbor search

was performed and surface variation was calculated. Even so, it was obvious the

total time was much shorter than the original RANSAC, especially in the first two

runs. In the consideration of iterations, most of the modified algorithm runs were

finished within 50 iterations as expected. As stated in Chapter 2, the decrease in the

estimation pool reduces the number of iterations and thus reduces the processing

time. Table 7.1 and Table 7.2 show a significant drop in total elapsed time compared

to original RANSAC.

Table 7.1: Processing time (seconds) comparison between original and adaptive
RANSAC algorithm for DIRSIG building.

Plane 1 2 3 4 5 Total

Classical RANSAC 10.806 5.822 2.630 1.370 0.019 20.627

Adaptive RANSAC 6.942 2.216 3.680 2.645 0.019 13.286
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Table 7.2: Processing time (seconds) comparison between original and adaptive
RANSAC algorithm for Airborne Oblique Imagery Data

Plane 1 2 3 4 5 Total

Classical RANSAC 61.184 44.786 29.582 12.190 7.743 155.424

Adaptive RANSAC 44.534 33.560 32.231 13.407 12.038 135.77

7.1.2 Fitting Accuracy

A direct visualization of the fitting accuracy is shown in Figure 7.1 where the blue

dots denote the original point cloud. The point cloud depicts a warehouse door.

The grey line represents the estimated primitive. Figure 7.1(a) is the fitting result

from original RANSAC. The primitive fits better in the center while deviated on the

edge. Figure 7.1(b) shows better fitting results from our modified algorithm. The

points are evenly distributed in all areas of the plane. From the top view, the plane

fit by our algorithm looks much thinner than the result from the original algorithm.

To better illustrate the fitting accuracy, a point to plane distance is calculated

at each inlier point. An average distance error is achieved for each estimated plane.

The results are shown in the Table 7.3 and Table 7.4 for the two data sets. The

result again indicates improvements of accuracy from modified algorithm in some

cases.

Besides computational efficiency, our adaptive RANSAC algorithm shows better

results of estimating detailed minor surfaces than the traditional algorithm. The

results in Figure 7.2 show that our modified algorithm has superior performance

than the traditional RANSAC algorithm. First,the traditional algorithm estimated
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Table 7.3: Fitting Accuracy Comparison betweeen RANSAC and Adaptive
RANSAC for DIRSIG Building

Plane 1 2 3 4 5

Classical RANSAC 0.0037 0.0088 0.0122 0.0113 0.0168

Adaptive RANSAC 0.0014 5.50e−4 0.0011 0.0023 5.86e−4

Table 7.4: Fitting Accuracy Comparison (Meters) betweeen RANSAC and Adaptive
RANSAC for Airborne Oblique Imagery Data

Plane 1 2 3 4 5

Classical RANSAC 0.44 1.57 0.34 1.32 0.162

Adaptive RANSAC 0.16 0.33 1.64 0.25 0.89

(a) (b)

Figure 7.1: Plane fitting result of a door as circled in red (top view). (a) result from
original RANSAC, (b) result from adaptive RANSAC

at most three surfaces while our algorithm successfully identified five surfaces. This

makes sense when thinking about the logic behind these two algorithms. RANSAC

algorithm feeds the estimator random points for surface estimation. After two or
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three dominant planes are extracted, the RANSAC algorithm is hard to locate other

small planes that contains detailed layers of the building which have fewer points

on the plane. However, with our algorithm, after dominant planes are found, it still

feeds the algorithm with points that are most likely to be on the same plane for

estimation. Thus, small detailed surfaces have a better chance to be identified.

(a) (b)

(c) (d)

Figure 7.2: Surface Extraction results for both traditional and modified RANSAC
algorithm for library building. (a) the airborne image of library building; (b) the
point cloud of the building; (c) classic RANSAC algorithm result; (d) modified
RANSAC algorithm result

Another advantage shown in the result are the details in the extracted surfaces.

Figure 7.3 shows the points recognized as located on the rooftop of the library
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building in Figure 7.2(a). Compared to the actual rooftop, one can easily observe

three different layers. The major layer is a U-shape surface with a flat tower in the

center of the cave. While the traditional algorithm fails to carve out the details of

the plane, the modified algorithm mostly shows the basic outline of the U-shape and

the tower.

(a) (b)

Figure 7.3: Consensus Set Comparison of (a) traditional and (b) modified RANSAC
algorithm on the point clouds of rooftop

7.2 Results on the Edge related Approach

With the estimated planes from adaptive RANSAC, the approach introduced in

Chapter 5 goes through every plane to extract and simplify edges, stitch them

together to build a model from the edges and planes. The rest of this section will

present the results of this approach on different data sets.
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7.2.1 Edge Identification

As stated in previous chapter, this edge identification process consists of three steps

with each step restraining the points towards the real edge of the building. To

demonstrate the result, the rooftop of the library building is used as an example.

The result is shown in Figure 7.4 below. In (a), red points are the identified edge

points by alpha shapes. Again, it proves that alpha shapes has effective results

on edge points detection; however, geometrically it does not comply with reality.

(b) shows the results from Douglas-Peucker algorithm. It is obvious that lines are

longer and critical points representing edges are tremendously reduced; but the

actual geometry of the building is still not seen in this step. (c) presents the effects

of 2D imagery correction. Zigzags that appeared in the last step are gone, lines

are more aligned. Another Douglas-Peucker algorithm is performed to eliminate

unnecessary points. It produces results in (d). Lines are straightened and they

mostly comply with the geometry in this result.

The edge identification algorithm was also tested on DIRSIG data and lidar data.

The fact that both data sets have much denser point cloud makes the algorithm more

effective. Denser point clouds tends to have neat and less noisy edges. The results

on both data sets shows the same. DIRSIG data includes almost no noise, the

edges are clear cut and visually straight before processing. The algorithm simply

reduces the number of points needed to describe the plane. Lidar data has redundant

points on edges such that the edges are more obvious and identifiable. Thus, the

edges extracted are straight and comply with geometry. Although the assumption

of this approach claims that the structure of the building is cubical, which means
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(a) (b)

(c) (d)

Figure 7.4: Edge detection results for one single surface. (a)edge points(red) detect-
ed by alpha-shape algorithm; (b) edges from Douglas-Peuker algorithm; (c) Modified
edges after edge correction from 2D image; (d) modified edges after line simplifica-
tion on corrected edge points

the shape of each surface is rectangular, the result on lidar data demonstrate that

the algorithm can have a decent estimation of curves when the point cloud is dense

enough.
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(a) (b)

Figure 7.5: Edge identification results on DIRSIG and lidar data sets.

7.2.2 Model Construction

When the edges are extracted, along with the planes, a model can be constructed

by simply stitching them together. This construction scheme is based on the as-

sumption that the point cloud covers all sides of the building. DIRSIG data fulfills

the assumption perfectly. Thus the result here focuses on the DIRSIG data.

Figure 7.6(a) shows a point cloud data set from DIRSIG generated images. It

covers all sides of the building while some minor regions are missing points. The

approach has no problem connecting main structure surfaces together. However, the

doors, and stools on the rooftop of one point cloud data failed to be reconstructed

because there is no surface to connect them with the main structure. Instead of

looking for additional planes to connect them, the method we used here is to simply

project the edge points on these surfaces to the closest surface. In this way, the

surfaces are forced to connect. The result is shown in Figure 7.6(b).

As discussed in Chapter 5, when the point cloud is missing major part of a
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(a) (b)

Figure 7.6: Model construction result on one DIRSIG derived point cloud data set
1.

building, this approach fails to construct a watertight model because there are not

enough surface edges to stitch together.

7.3 Results on Minimum Bounding Box related

Approach

Using another DIRSIG data set, the minimum bounding box approach is performed.

Figure 7.7 gives the result of the approach. As explained in Chaper 6, minimum

bounding box compensates the missing sides, particularly in the main structure. It

allows us to build a watertight model even when side information is missing. The

door that is not connected to the main structure in the previous approach now is

attached to the wall.

This approach is tested on another set of data, which is generated from oblique

imagery. It is much noisier and denser than the RIT campus data set. The result is
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(a) (b)

Figure 7.7: Model construction result on DIRSIG derived point cloud data set 2.

shown in Figure 7.8. In the point cloud data, one side of the wall of the building is

missing due to the trees near the building. The algorithm has no problem recovering

the missing part of the wall. However, the error is obvious at the center of the frontal

wall where there is a spherical surface. The bounding box enclosing this spherical

wall is randomly placed and causes a major error.

(a) (b)

Figure 7.8: Model construction result on oblique imagery derived point cloud data
set.
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This brings us to the disadvantages of this approach. The nature of bounding

box confines its capability to reconstruct more complex models. Although projecting

onto the estimated planes enables the approach to construct planes that not parallel

to building orientation, the approach is still strictly confined in flat planes. Another

example of this confinement is in the warehouse model in Figure 7.6. The stools on

the rooftop are cylindrical. The approach can only replace them with cubical. The

detail is lost.

Another drawback of this approach comes with details on the planes. The build-

ing in Figure 7.9 is an example. The walls on all 4 sides extend taller than rooftop.

However, the bounding box cannot identify the design of the building. This detail

is also lost in the reconstructed model. Because of the simplicity of the model from

this approach, a large number of small details are not preserved.

Figure 7.9: An example of missing information on the reconstructed model box
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7.4 Model Accuracy Validation

The point cloud is generated through a feature matching process. It is similar to

a sampling process, so it is not capable of offering continuous measurement of the

building. The reconstruction scheme we proposed is also aimed at reducing the

number of vertices in the final building model. The result of the reconstruction

should be evaluated against true measurement of the scene. It is almost impossible

to have a qualitative evaluation of reconstruction results due to the fact that ground

truth data is difficult to obtain, especially in urban and residential areas. However,

accuracy evaluation is still necessary. Instead of obtaining ground truth in 3D, we

evaluate the accuracy of reconstruction in 2D imageries where the reconstruction is

built.

For this validation process, we use DIRSIG data set to test the result. As ex-

plained in earlier chapter, DIRSIG is created with known geometry and parameters,

thus making it noise free in the point clouds. Any existing error would come from

the process of reconstruction. Therefore, this data set is an ideal benchmark for

reconstruction quality evaluation.

As stated before, the best way to evaluate the quality of a reconstruction is to

compare the model with known ground truth. However, in most cases, ground truth

is very difficult to obtain. Since our model is constructed mostly with vertices of

corner points, it is easier for us to compare the corner points of the constructed

model with real buildings. Theoretically, the comparison can happen in 2D and 3D

space. However, 3D coordinates of real corners are harder to generate, so we propose

to evaluate the quality of the constructed model in 2D space on the image plane.
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The building model we constructed contains the corner points and surfaces they

form. If the corner points are correctly located, then the surface should be correctly

reconstructed as well. Hence, by evaluating the accuracy of the location of the

corner points, we will be able to evaluate the quality of the reconstructed model.

As explained in Chapter 5, 3D points can be reprojected back to the image plane

using known camera matrix. The DIRSIG data set comes with accuracy camera

information and thus we are able to project the 3D corner points in world coordinate

system back to 2D image coordinate system using equation (5.4) and (5.5). Figure

7.10 below shows an example of projected 3D corner points in a DIRSIG image.

Figure 7.10: An example of DIRSIG image with projected corner points

The original corner points can easy picked by hand in the image, as shown in the

figure. Then a RMS error is calculated for the visible corners in the images against

projected corner points using the formula below.
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RMS =

√
1

N

∑
((x− xc)2 + (y − yc)2) (7.1)

The nature of 2D images omits 3D information, thus one image is not enough to

cover all the corner points in all sides of the building. Here we picked four images

covering all four sides of the building, and repeated the process explained above to

obtain RMS errors for all the corner points. The four images selected are shown

in figure 7.11. The detailed corner points among ground truth and projections are

shown in Table 7.5.

Table 7.5: Ground Truth Corner Points vs Projected Corner Points

Ground

Truth X

Ground

Truth Y

Projected

X

Projected

Y

556 432 551 428

583 432 589 428

583 429 589 425

628 429 632 425

628 432 631 428

656 433 659 428

557 528 560 530

655 528 659 530

628 529 625 530

582 529 580 530
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(a) (b)

(c) (d)

Figure 7.11: Samples of DIRSIG generated images

Here we have used this method to validate the reconstruction results of two

building models in DIRSIG scene. The results are shown in the table below. As

one can see, the error measured in pixel units is reasonably low considering the size

of the building. Converting the pixel units into meters using similar triangles, the

error in the reconstruction in corner points is approximately within one meter. One

thing to note here is that in these error calculations, the rooftop is included in all

sides. This means the real error should be lower than the calculated value.
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Table 7.6: RMS Error of four sides of the building

Sides RMS(Pixels)

1 4.12

2 3.52

3 5.31

4 3.83

Total 4.29



Chapter 8

Conclusions and Future Work

The ultimate goal of this thesis is to reconstruct 3D building models from point

clouds derived from aerial oblique imagery. The nature of oblique imagery gives us

information on all the sides and enables us to construct a complete and watertight

model of the building. However, the limited availability of images and complications

of registration constrains the quality of the point clouds. Most of the work in this

project is to compensate the drawbacks inherent in oblique image data sets and

construct building models as close to reality as possible. Two approaches have been

proposed to finish the task.

The first approach is a single surface based approach. It first estimates surfaces

from point cloud data and processes one surface after another. We proposed a new

modification to the traditional RANSAC algorithm so that it works more efficiently

in the scope of this project. Instead of randomly feeding points to estimate planes,

a seed point and its neighbors which are most likely to be on the same plane are

80
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chosen to estimate planes. The algorithm is tested on multiple data sets from

oblique imagery derived point clouds to lidar point clouds. The results show that our

modified algorithm is computationally efficient and accurate. A chain of algorithms

such as Alpha Shapes and Douglas Peucker algorithms are utilized to identify and

simplify the edges and use the edge points as potential polygons. These algorithms

are also tested on multiple data sets from different sources. The results prove that

when the point cloud is dense enough, the method works efficient and align with

geometry. These polygons and estimated surfaces are then used to stitch together

to form a model. The results show that the approach works well on a dense and

complete point cloud. When the point cloud is not complete, and not fully covering

all sides, this method fails at attempting to generate a watertight model.

The second approach is based on minimum bounding box, and looking to com-

pensate the defects due to the incomplete point clouds. In this approach, adaptive

RANSAC is also applied to estimate planes. With the identified dominant planes,

the main structure of the building is achieved. A histogram based clustering scheme

is proposed to separate surfaces that land on the same plane. Then minimum bound-

ing box is used to assemble small detail components to the main structure. This

approach well compensated for the missing information of the point clouds by replac-

ing it with a surface from the bounding box. When the method is tested on multiple

point clouds, it shows decent computational efficiency and watertight models. The

algorithm doesn’t require any parameter input from the user, which reduces the hu-

man involvement and allows the algorithm to achieve better automation. However,

a close inspection reveals that the method potentially loses details in the surfaces.
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The results of the approaches on various testing data sets demonstrate that both

of the methods are capable of reconstructing building models from point clouds.

However, there are also limitations shown in the results. Both methods assume that

the buildings only consist of flat surfaces without any higher degree primitives such as

curves and spheres. This assumption confines the robustness of the approaches as the

design of architectures has more smooth spheres. In order to extend the robustness

of the approaches, future work may explore the possibility of applying minimum

bounding spheres or cylinders to the approach. While the first approach does not

rely on rectangular shapes as much as the minimum bounding box approach, it is

highly dependent on the density of the point clouds. The approach gets inefficient

when the point cloud is sparse. Further work is needed to increase the robustness

while not applying more assumptions.

The current trend in 3D modelling is shifting to the application of real time

reconstruction, and in smart phone reconstruction. These applications require a

time and memory consumption within a reasonable limit. Although the approaches

proposed here have not shown any high memory consumption, it is highly dependent

on the size of the point cloud data. When dealing with real time processing, the

RANSAC algorithm may increasingly become cumbersome, and the nearest neighbor

search requires a high computation cost. So a less costly surface estimation method

is suggested when applying the approaches to real time processing.
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