
Building Model Reconstruction from Point Clouds Derived from

Oblique Imagery

by

Ming Li

B.S. Wuhan University, 2011

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science

in the Chester F. Carlson Center for Imaging Science

College of Science

Rochester Institute of Technology

May, 2015

Signature of the Author

Accepted by
Coordinator, M.S. Degree Program Date

CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE

COLLEGE OF SCIENCE

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

M.S. DEGREE THESIS

The M.S. Degree Thesis of Ming Li
has been examined and approved by the
thesis committee as satisfactory for the

thesis required for the
M.S. degree in Imaging Science

Dr. John P. Kerekes, Thesis Advisor

Dr. Carl Salvaggio

Dr. David Messinger

Date

ii

Building Model Reconstruction from Point Clouds Derived from

Oblique Imagery

by

Ming Li

Submitted to the
Chester F. Carlson Center for Imaging Science

in partial fulfillment of the requirements
for the Master of Science Degree

at the Rochester Institute of Technology

Abstract

The increasing availability of high resolution airborne imagery increases the accu-

racy of building modelling of urban scenes. This high accuracy of building modelling

offers a strong reference for disaster recovery and asset evaluation. With the ad-

vantage of having more façade information, this thesis builds on previous efforts in

building reconstruction from airborne oblique imagery.

Based on previous work, this thesis presents two schemes to construct building

models from point clouds derived from oblique imagery. With the assumption that

buildings are in a cubic-shape, the first scheme consists of three different steps. Plane

estimation aims at identifying dominant surfaces; edge extraction helps in detecting

and simplifying in-plane edges in each identified surfaces; model construction finishes

the job of assembling the surfaces and edges together and producing a model in a

universally accepted format. We find this scheme works well with complete point

clouds that cover all sides of the building. A second method is proposed to handle

iii

iv

the complications when the point clouds do not cover all sides of the building. The

main structure of the building is estimated using minimum bounding box on the

dominant planes. The rest of the estimated planes are then attached to the main

structure. The process can produce a water-tight building model.

The schemes are tested on point cloud data sets from multiple sources, including

both image derived and lidar derived point clouds. The surface based approach and

minimum bounding box based approach both show the capability of reconstructing

models, while both of them have disadvantages. The limitations such as density of

point clouds; fitting accuracy; and future work, including increasing efficiency and

robustness, are also discussed.

Acknowledgements

Pursuing my graduate studies at RIT has been one of the most important steps of

my life and I have enjoy every day of it. Throughout the highs and lows, a lot of

people have helped me along the way, and I would like to thank them.

First and foremost, my thesis advisor, Dr. John Kerekes. This thesis would not

have been possible without the support and advice from Dr. Kerekes. His advice

helped me get through the difficult days of the research, and his support guided me

into the right career path. He is a more than just an advisor to me.

I am extremely grateful to my thesis committee; Dr. David Messinger and Dr.

Carl Salvaggio. They were very helpful in influencing the direction of my dissertation

work. They asked thought-provoking questions and made a number of very useful

suggestions. I am grateful for their expertise and willingness to give advice.

This work has been completed with the support of Pictometry International. In

addition to their greatly appreciated financial support, Dr. Yandong Wang from Pic-

tometry International offered generous technical support and consultation through-

out the years of the thesis work.

Many thanks go to my team in the project: Jie Zhang and Ming Zhang. Without

them, the project wouldn’t have progressed so quickly. I am truly appreciate their

time and willingness to discuss the work with me.

I would like to thank RIT and Center for Imaging Science for the financial

support for my graduate study. I would also like to thank Sue Chan for all the hard

work to keep me on track with all of the paper work and registration. I’d also like

to thank the many professors I had during my course work. I am grateful to have

v

vi

joined a school with such a wealth of knowledge and talent.

I want to thank my family and friends. My parents’ and my sister’s support

have helped me get through many obstacles in life. Their unyielding support keeps

me working hard every day. It is my greatest honor to have such good friends like

Jiashu Zhang, Bin Chen, Fan Wang, Mike, Brian etc. Thank you for keeping me

sane and entertained during my studies.

Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Project Objectives . 2

1.2 Contributions to Knowledge . 4

1.3 Thesis Overview and Organization 4

2 Background 5

2.1 Oblique Imagery . 5

2.2 Point Cloud Data . 6

2.3 Computer Vision Theories . 8

2.3.1 Projective Geometry . 8

2.4 Parameter Estimation . 12

3 Previous Work 17

vii

Contents viii

4 Data 20

4.1 Pictometry Data . 20

4.2 DIRSIG Data . 22

4.3 Other Point Cloud Data . 25

5 Single Surface Based Method 26

5.1 Plane Estimation . 28

5.1.1 Classical RANSAC algorithm 28

5.1.2 Region Growing . 31

5.1.3 Proposed Method . 33

5.2 Edge Extraction . 37

5.2.1 Determine in-plane Edges . 38

5.2.2 Line Simplification . 41

5.2.3 Line Regulation . 43

5.3 Model Extraction . 47

6 Minimum Bounding Box Based Method 50

6.1 Minimum Bounding Box . 52

6.2 Proposed Approach . 53

6.2.1 Searching for Dominant Planes 54

6.2.2 Histogram based Clustering 55

6.2.3 Model Construction . 61

7 Results and Discussion 63

7.1 Results on Adaptive RANSAC Algorithm 63

Contents ix

7.1.1 Computational Efficiency . 64

7.1.2 Fitting Accuracy . 65

7.2 Results on the Edge related Approach 68

7.2.1 Edge Identification . 69

7.2.2 Model Construction . 71

7.3 Results on Minimum Bounding Box related Approach 72

7.4 Model Accuracy Validation . 75

8 Conclusions and Future Work 80

Bibliography 83

List of Tables

5.1 The result of RANSAC estimation in terms of points on each plane. . 30

5.2 Processing time (seconds) comparison between classical and modified

RANSAC algorithm in seconds. 36

7.1 Processing time (seconds) comparison between original and adaptive

RANSAC algorithm for DIRSIG building. 64

7.2 Processing time (seconds) comparison between original and adaptive

RANSAC algorithm for Airborne Oblique Imagery Data 65

7.3 Fitting Accuracy Comparison betweeen RANSAC and Adaptive RANSAC

for DIRSIG Building . 66

7.4 Fitting Accuracy Comparison (Meters) betweeen RANSAC and Adap-

tive RANSAC for Airborne Oblique Imagery Data 66

7.5 Ground Truth Corner Points vs Projected Corner Points 77

7.6 RMS Error of four sides of the building 79

x

List of Figures

2.1 Oblique Imagery of RIT campus . 6

2.2 Point Cloud of RIT campus derived from oblique imagery 7

2.3 Central Projection Geometry Example.[1] 11

2.4 Line Fitting Comparison between Least Square and RANSAC.[2] . . 13

4.1 Samples of Pictometry airborne oblique imagery 21

4.2 Point Cloud generated from Pictometry oblique imagery 22

4.3 Another Point Cloud generated from Pictometry oblique imagery . . 23

4.4 Samples of DIRSIG generated images. 24

4.5 Point Cloud generated from Pictometry oblique imagery. 24

4.6 Examples of lidar based point clouds 25

5.1 The overall scheme of the project workflow 27

5.2 Example of a building that fits the assumption (Wallace Library of

Rochester Institute of Technology) and its corresponding point cloud. 27

5.3 Made-up point cloud example and plane estimation result of the data 29

xi

List of Figures xii

5.4 Reconstruction example of automobile C-pillar by Region Growing

Algorithm[3] . 33

5.5 Results of Convex Hull algorithm on L-shape data. (a) the sample

”L” shape data; (b) ideal edge extraction result; (b) edge extraction

result from convex hull . 39

5.6 Example of Alpha Shapes in 2D[4], where blue dots represents point

set S, green circle represents scoop with radius α and red line segments

represent identified shapes. 40

5.7 Example of 2D Douglas-Peucker line simplification algorithm[5] . . . 42

5.8 Edge map of 2D imagery . 45

5.9 Vector Description of Edge Point Shifting. (A)the vector formed by

the target points and its neighbors. (B) The theory of determining

direction of shifting. 46

5.10 An example of the OBJ file format. 48

6.1 The problem with Pictometry data set, While points cover roof and

front wall, walls on the other sides are missing. 51

6.2 A preliminary model of library. 51

6.3 An example of minimum bounding box, where blue points are the

input points in 3D and red lines are the minimum bounding box . . . 52

6.4 Minimum Bounding Box algorithm results on (a) Pictometry data

and (b) DIRSIG data . 53

List of Figures xiii

6.5 Dominant plane search on different data sets (a) RIT library data set,

(b) identified 2 dominant planes in red and green, (c) DIRSIG data

set, (d) identified 5 dominant planes in different colors 55

6.6 Two different situations of planes, in (a), 12 surface share the same

plane, in (b) only one surface on the estimated plane 56

6.7 Principal Component Analysis of one point set. (a)(b)(c) are the

points projected into the orthogonal dimensions,(d)(e)(f) are the cor-

responding histograms of the points in each dimension. 58

6.8 Selecting cluster number by histogram (a) histogram of the input data

in one dimension, (b) histogram after selecting local maxima, (c) his-

togram after eliminating low maxima, (d) histogram after eliminating

shallow maxima . 59

6.9 Noise reduction based on histogram. 60

6.10 Clustering result of one plane. Each color represents one cluster . . . 61

7.1 Plane fitting result of a door as circled in red (top view). (a) result

from original RANSAC, (b) result from adaptive RANSAC 66

7.2 Surface Extraction results for both traditional and modified RANSAC

algorithm for library building. (a) the airborne image of library build-

ing; (b) the point cloud of the building; (c) classic RANSAC algorithm

result; (d) modified RANSAC algorithm result 67

7.3 Consensus Set Comparison of (a) traditional and (b) modified RANSAC

algorithm on the point clouds of rooftop 68

List of Figures xiv

7.4 Edge detection results for one single surface. (a)edge points(red)

detected by alpha-shape algorithm; (b) edges from Douglas-Peuker

algorithm; (c) Modified edges after edge correction from 2D image;

(d) modified edges after line simplification on corrected edge points . 70

7.5 Edge identification results on DIRSIG and lidar data sets. 71

7.6 Model construction result on one DIRSIG derived point cloud data

set 1. 72

7.7 Model construction result on DIRSIG derived point cloud data set 2. 73

7.8 Model construction result on oblique imagery derived point cloud

data set. 73

7.9 An example of missing information on the reconstructed model box . 74

7.10 An example of DIRSIG image with projected corner points 76

7.11 Samples of DIRSIG generated images 78

Chapter 1

Introduction

3D building models are becoming increasingly essential among urban planning, dis-

aster management, emergency response, and other applications. Due to the rapid

development of cities and the requirement of up-to-date information, semi- or com-

pletely automated modelling has emerged as an active research field. With the aid

of computer vision techniques, this field of study has experienced a boost in recent

years.

For decades, several different approaches based on various computer vision tech-

niques have been developed. In this thesis, the focus is on the point-cloud based

method. Generally, this method can be divided into two steps, point cloud extrac-

tion and model extraction. For point cloud extraction, the commonly used computer

vision structure from motion (SfM) work flow is an adaptation of the well-known

Bundler software written by Noah Snavley[6]. The imagery data goes through Scale

Invariant Feature Transform (SIFT), Bundler, Patch-based Multi-view Stereo (P-

1

1.1. Project Objectives 2

MVS), and produces camera information and point clouds in the relevant coordinate

system[7]. In model extraction, various methods have been developed based on the

variety of data sources and building shape.

Our primary data source is airborne oblique imagery. Compared to traditional

nadir view imagery or active sensing such as lidar (Light Detection And Ranging)

data, one of the most obvious advantages of oblique imagery is the information

on building facades[8]. With this information in hand, we will be able to extract

information on the building sides which is not possible to achieve with nadir data.

This thesis project mainly focuses on model extraction from 3 dimensional point

cloud data extracted from oblique airborne imagery. Due to the limited accessability

of oblique imagery, the point clouds generated are not as dense as expected, and

several sides are missing. The challenge of the project is thus to reconstruct a

complete building model from the incomplete point cloud.

1.1 Project Objectives

As stated above, the ultimate goal of this thesis project is to extract building models

from point cloud data in a semi- or completely automated process. To achieve this

goal, the task is separated into several tasks that can be easily handled. These tasks

together will accomplish the ultimate goal of constructing a building model. These

several tasks are listed as follows:

1. Develop or adapt a method to estimate surfaces in the 3D point

cloud. The intent of this task is to estimate dominant surfaces in the point cloud and

1.1. Project Objectives 3

identify corresponding points that belong to the related surface. Several estimation

methods have been proposed in previous work. However, the approach is a case-by-

case task due to the variety of data features and building structures. Large efforts

are made to adapt an algorithm to suit our unique data set. Additional difficulties

and issues in the estimation process are also discussed.

2. Detect edges in the estimated surfaces and adjust boundaries ac-

cordingly. In order to get a building model from the surfaces estimated, one needs

to outline the edges of each surface. The goal of this task is to detect the edges of

the surfaces, approximate the boundaries and then adjust the boundaries based on

the general geometry of the building structure. Edge detection in point cloud data

is a relatively difficult process due to the randomness of the points. Thus, the effort

has been mainly put into the edge approximation and linear regression. Because of

the low density of point cloud data, another regularization process is proposed to

make the edges align with the geometry of buildings.

3. Construct building models. This task is to finish the ultimate objective

of this research, that is to connect surface edges to form a building structure mod-

el. And then it will produce the model in a widely used format in the industry.

Moreover, adding texture information of each surface can be a secondary goal of

this task. This texture information can be extracted from the airborne imagery,

including spatial detail and color information.

1.2. Contributions to Knowledge 4

1.2 Contributions to Knowledge

This research provides a baseline workflow to reconstruct 3-dimensional building

models from oblique imagery derived point cloud data. Although several approach-

es were proposed related to this topic, this task is aimed at the unique data we

have. In the effort, a new adaptive RANSAC algorithm is proposed. Two different

reconstruction approaches are developed to achieve the goal of reconstructing mod-

els from point clouds derived from oblique imagery. Also, this research demosntrates

the possibility of produce 3-dimensional models from oblique airborne imagery.

1.3 Thesis Overview and Organization

The rest of this thesis is organized as follows. Basic concepts and background infor-

mation in relation to this research are provided in Chapter 2. Chapter 3 introduces

the previous work that is similar to the research we are conducting. Chapter 4

presents the data sets examined in the thesis work. Chapter 5 and 6 introduces the

baseline of two proposed approaches and a detailed description of the algorithms

used in the process. Results and discussions are shown in Chapter 7 as well as a

description regarding the accuracy of the process. Chapter 8 includes a summary of

the research and suggested future work.

Chapter 2

Background

2.1 Oblique Imagery

Oblique imagery is a type of aerial photography that is captured at a non-vertical

angle with respect to the ground. Apart from orthographic imagery which mostly

captures information from a nadir view, oblique imagery contains information on

the sides as well as the top of buildings. It resembles closely how viewers see the

landscape. Currently, oblique imagery are systematically captured in several cities

by multiple companies including Pictometry[9]. Several applications of oblique im-

agery have been proposed. Hhle proposed to use a single oblique image to estimate

object height[10]. Xiao et al. used multiple oblique images to detect buildings[8]. In

2009, Gerke discussed the possibility of 3D point cloud generation based on oblique

imagery. The overlapping and multi-viewing features of oblique imagery make it

possible to extract 3D point clouds[11].

5

2.2. Point Cloud Data 6

The oblique images used in the research come from Pictometry International.

Their aircraft flew over Rochester Institute of Technology (RIT) and captured the

entire campus. Each image is about 4900x3200 pixels in size. Because of the GPS

and IMU onboard, each picture is geo-referenced. In total, 11 oblique images are

used to generate the point clouds used in this thesis. Figure 2.1 is an example of

the oblique images captured by Pictometry.

Figure 2.1: Oblique Imagery of RIT campus

2.2 Point Cloud Data

A point cloud is a set of vertices representing multi-dimensional structure, and is

most commonly used in 2D and 3D data. In 3D space, usually point cloud data is

defined by X, Y and Z geometric coordinates comprising an external surface of an

2.2. Point Cloud Data 7

object. When color information like RGB components are available, the data turns

4D.

Point clouds can be generated from hardware like 3D scanners, stereo cameras,

or from computer software. In this research, the source is airborne imagery and

previous work has produced the point cloud structure of the entire scene [12]. Figure

4.2 shows the point cloud of the RIT campus generated from 10 airborne oblique

images. In the data, geometric coordinates and RGB information are included, as

well as a normal vector for each point.

Figure 2.2: Point Cloud of RIT campus derived from oblique imagery

2.3. Computer Vision Theories 8

2.3 Computer Vision Theories

Computer Vision is a discipline that tries to perceive our 3D world based on one or

more 2D images. Different from traditional photogrammetry which acquires precise

measurements of the scene, computer vision tends to pursue a more general under-

standing of the scene that requires less precise measurements. This difference makes

the application of computer vision different from photogrammetry. Computer vision

develops more into areas such as object recognition, motion detection, model con-

struction, etc. Techniques in computer vision largely rely on pinhole camera theory

to build and understand 3D object models. In this section, we will introduce some

fundamental computer vision concepts that are used in this thesis.

2.3.1 Projective Geometry

This section will briefly introduce several fundamental concepts in terms of projec-

tive geometry that are widely used in modern computer vision technologies and also

essential in this thesis work. A thorough discussion of all computer vision concepts

is beyond the scope of this thesis. A more detailed description can be found in

Hartley and Zisserman[1]. The rest of this section is primarily taken from this book.

No further reference is presented in the rest of this discussion.

Homogeneous Coordinates

The representation of points, lines, and planes in Euclidean space is the most pop-

ular method used. For instance, a point in 2D Euclidean space is presented as

2.3. Computer Vision Theories 9

(x,y). It also can be considered as a vector representation of the point, x = (x, y)T

However, geometric entities like points and lines are treated differently in projective

representations. Homogeneous coordinates are used, which represent entities only

up to an arbitrary scaler multiplier. It means that a homogeneous representation

of an entity is not unique. Any entities x and kx point at the same thing. In this

sense, an arbitrary homogeneous vector representative of a point in 2D projective

space is x = (kx, ky, k)T , where k is a non-zero scaler. It represents the point (x, y)

in 2D Euclidean space.

A line is naturally represented by vector (a, b, c) in accordance to the equation

ax+ by+ c = 0 in 2D space. However the correspondence between lines and vectors

is not one-to-one. Just like points, any vectors (ka, kb, kc) with a non-zero scalar

k states the same line. This equivalence class of vectors offers us the homogeneous

representation of lines in 2D projective space, l = (a, b, c)T With line representation,

one can easily tell that a point x lies on the line l only if xT l = 0

In the same manner, in 3D projective space, a point is expressed as x = (kx, ky, kz, k)T

representing the point x = (x, y, z)T in Euclidean space. A plane in 3D space can

be described in the equation ax + by + cz + d = 0. Correspondingly, it can be

represented in vector form as (a, b, c, d)T where (a, b, c)T describes the plane nor-

mal. Similar to lines in 2D space, any vector (ka, kb, kc, k)T with non-zero scalar

k describes the same plane. Therefore, a homogeneous representation of a certain

plane is π = (a, b, c, d)T . Again a point x is on the plane π only if xTπ= 0. Up to

this point, we can perform a linear projective transform in 3D homogeneous space,

X’=HX, where H is a projection matrix that has 15 degrees of freedom. A plane

2.3. Computer Vision Theories 10

under the same projection is transformed to be π′=H−T π.

Central Projection

With the introduction above, we can start to describe the basic geometry of a

pinhole camera model. Here we assume the image plane is in front of the projection

center as seen in Figure 2.3. In this simple model, the projection center,O, is the

origin of the local coordinate system; the plane Z = f is the image plane. Under

the pinhole camera model, a point in 3D space X = (X, Y, Z)T is mapped to the

point x = (xc, yc)
T where a line connecting the point X and the origin meets the

image plane. By similar triangles, one can easily calculate that x = (xc, yc)
T =

(fX/Z, fY/Z)T . In the manner of homogeneous representation, the calculation can

similarly be presented in matrix multiplication.

xc

yc

1

 =

fX/Z

fY/Z

1

 =

f 0 0 0

0 f 0 0

0 0 1 0

X

Y

Z

1

(2.1)

One thing to note here is that this equation assumes the coordinate origin of the

image plane is set at the principal point. In practice, it may not be the case. So for

the purpose of generalization, another mapping which adds shift of principal point

2.3. Computer Vision Theories 11

Figure 2.3: Central Projection Geometry Example.[1]

is needed here. This leads to the following solution.

xc

yc

1

 ∼

fX + Zpx

fY + Zpy

1

 =

f 0 px 0

0 f py 0

0 0 1 0

X

Y

Z

1

= K[I| 0]X (2.2)

In a more general case, points in space are expressed in the world coordinate

system other than camera coordinate system. These two systems are related through

a rotation and a translation. In order to use the equations developed above, one

2.4. Parameter Estimation 12

simply needs to calculate the coordinate position of the point X in camera coordinate

system by the formulaXcam = R(X-C) where R is a 3*3 rotation matrix representing

the orientation of the camera coordinate frame, and C is the center of camera

coordinate in the world coordinate frame. It can be expressed in homogeneous

coordinates as

Xcam =

R −RC

0 1

X (2.3)

This equation along with the equation (2.2) will offer the general pinhole camera

mapping as follow.

x = KR[I|-C]X (2.4)

One can see that a pinhole camera model, P = KR[I | -C] has 9 degrees of

freedom. The parameters in K are internal parameters describing internal orienta-

tion of the camera, and the parameters in R and C describes external parameters

representing orientation and positions of the camera in the world coordinate system.

2.4 Parameter Estimation

Almost all computer vision problems involve parameter estimation, such as line fit-

ting, motion analysis, and in our case, surface reconstruction. Traditional estimation

approaches have strong premises. For instance, least square estimation (LSE) con-

fines into a single population model[13] and assumes the noise distributed in a single

pattern such as Gaussian. When the assumptions are not met, these approaches can

turn out to have major error.

2.4. Parameter Estimation 13

In most computer vision cases, the complicated structure separates the data

into multiple populations and creates gross outliers. The sensitivity of traditional

estimators to outliers makes it not ideal for these cases. The idea can be summarized

in the example [2] below.

Figure 2.4: Line Fitting Comparison between Least Square and RANSAC.[2]

In LSE estimation, the estimator includes gross error points in the estimation.

By doing so, the estimated line leans towards the gross error point, and eliminates

points on the ideal line. After several iterations, the line as indicated in Figure 2.4

is closer to the gross error point than points on the correct line.

This situation urged the computer vision community to shift focus to robust es-

2.4. Parameter Estimation 14

timators. Ideally, robust estimators remove the effect of outliers on final estimation.

Several robust estimation techniques have been developed over recent years. The

two most important techniques that were developed independently are the hough

transforms [14] and RANdom SAmple Consensus (RANSAC)[2]. Hough transforms

are basically a voting procedure. In the so-called parameter space, each data point

votes for the parameters with the acceptable small fitting residual. Then the space

is searched to locate a maxima. One disadvantage of hough transforms is that the

voting space increases exponentially which makes it computationally impractical in

many cases [13].

This research thus utilizes the RANSAC technique as the primary approach

to handle parameter estimation problems. RANSAC offers another perspective in

removing outliers. Instead of trying to use as much data as possible for estimation

as in a least square approach, RANSAC tries to find the parameter with the least

outliers. It first starts by estimating parameters with minimum data points necessary

and then evaluates the points that are within a predefined error as inliers. The

algorithm iterates the previous process until a minimum number of inliers is achieved

or a maximum number of iterations is reached. The estimation with the maximum

number of inliers is considered as the ultimate estimation. In detail, RANSAC

algorithm can be explained in the pseudo code below.

2.4. Parameter Estimation 15

Algorithm 1 RANSAC

Definition :

S : The data set that need to be estimated

n : Minimum number of points needed to estimate the parameters

k : Maximum number of iteration allowed

d : Minimum number of inliers to accept an estimation

Start

1. Randomly Select n points to estimate a model using these points

2. Determine consensus set Si of points that are within the error threshold

if The size of Si is larger than d or the iteration exceeds k then

Re-estimate model using Si

end if

if The size of Si is smaller than d and iteration is smaller than k then

return to step 1

After certain trials, return the largest set of Si and re-estimated model

end if

One thing worth noting is that there are only four parameters that need to be

specified. N is determined by the model that one wants to estimate. The parameter

k should be large enough so that there is a high probability of acquiring a large

consensus set.

In the example above, the RANSAC result shows its advantage over the least

square approach. It identifies the gross error point as outlier. The fitting result is

2.4. Parameter Estimation 16

better than least square estimator and includes the minor error point as inlier.

In this research and previous work, RANSAC has been used in multiple cases. It

is used to fit planes to 3-dimensional data points in this research. Moreover, it is able

to estimate multiple planes by analyzing remaining outliers from a previous step. In

an early stage of the project, RANSAC was used to eliminate poorly matched points

from SIFT results. In this thesis, we develop an adaptive RANSAC algorithm to

efficiently estimate planes.

Chapter 3

Previous Work

As mentioned earlier, surface reconstruction is a case-by-case project. The methods

are differentiated by the type of target, the type of data, density of point clouds,

the availability of other useful information of the target, etc. There is no abso-

lutely effective algorithm that can reconstruct all cases. However, there are several

directions that reconstruction research has explored.

One of the most popular data sources in building reconstruction is lidar data. It

offers a high density point cloud that can be easily identified. Taking advantage of

this fact, Turner et al. [15] reconstructed a single surface by using robust least square

interpolation. Normal vectors were utilized when trying to reconstruct complicated

rooftop structures in Verma et al.’s work [16]. However the drawback of aerial lidar

point clouds is that it is almost impossible to reconstruct side walls because it mostly

contains only nadir view information. Frequently, algorithms tend to extrude rooftop

outlines and extend them to the ground [16]. Recently researchers started to use 2D

17

18

imagery to acquire more information and to assess the accuracy as a reference. By

referencing with 2D imagery, it will ease the work of edge identification. Using lidar

point clouds and a building topographic map, Rey-Jer You and Bo-Chen Lin [17]

successfully outlined edges and registered the clouds with a 2D topographic map.

Further, Wang et al. [18] used information from 2D imagery to refine edges in a

region growing process along with lidar data and retrieved texture of the surfaces in

the model.

2D imagery alone is another principle source for data reconstruction. Researchers

started to use 2D imagery to construct building models before lidar data was avail-

able. It developed along with the improvement in multi-view geometry theory.

Carlos Tomasi and Takeo Kanade [19] proposed an early method of utilizing affine

fabrication to extract 3D features from multiple 2D frames. Later on, because of the

increasing popularity of different types of digital imagery, new extraction methods

were developed. Again, it becomes a case-dependent problem. In 1998, Frere et al.

proposed an early method based on edge detection results of 2D imagery in nadir

view [20]. This approach has the same limitation as lidar data. It cannot offer side

information. This research area enjoyed a tremendous boost in the last two decades

with multiple directions to approach the problem. Most recently, Maurer et al de-

veloped a method which utilizes multiple overlapping images from an aerial vehicle

platform and publicly available GIS information to create geo-referenced 3D model

of buildings [21]. An approach combining probabilistic volumetric estimation with

smooth signed distance estimation was proposed by Calakli et al. [22] to produce a

detailed model of large urban scenes.

19

Although the algorithms mentioned above successfully produced building models,

most of them still requires a human-involved process such as selecting matching

points. The goal of this thesis and related work is to find a fully automated approach

to produce point clouds from 2D oblique imagery and generate 3D building models.

Chapter 4

Data

Point cloud data are a major component of computer vision data types, and have

been widely used in the scope of 3D and 2D applications. In the scope of this thesis,

point clouds from multiple sources are used to test and validate the algorithm.

Meanwhile, the focus is still on the point clouds generated from oblique imagery.

4.1 Pictometry Data

Pictometry Data includes oblique imagery from five different perspectives, north,

south, east, west, and nadir respectively. Figure 4.1 shows some samples of the

collected imagery. The site in the imagery is the campus of the Rochester Insti-

tute of Technology (RIT), including various buildings, parking lots, and vegetation.

The resolution of the images are 3248x4872, taken at the altitude of approximately

1400m.

The point cloud data is generated from Jie Zhang’s work[12]. It follows the work

20

4.1. Pictometry Data 21

(a) (b)

(c) (d)

Figure 4.1: Samples of Pictometry airborne oblique imagery

flow established at RIT. The imagery goes through feature detection and matching

algorithms, and finally reprojects back to 3D space and forms the point cloud data.

Figure 4.2 below gives an example of the point cloud data of RIT campus from one

perspective.

Several other Pictometry data sets are provided. Figure 4.3 is another point

cloud sample generated from airborne images of the height of 800m.

4.2. DIRSIG Data 22

Figure 4.2: Point Cloud generated from Pictometry oblique imagery

4.2 DIRSIG Data

In order to validate the robustness of the approach, the algorithms need to be

tested on multiple data from different sources. Another dataset that is used in the

research is provided by Katie Salvaggio [23]. The data set was created with RITs

Digital Imaging and Remote Sensing Image Generation (DIRSIG) software[24]. It

provides high-fidelity radiometric data and also 3D location and surface normals

for each pixel in an image scene. Figure 4.4 shows an example of the scene that

is generated from DIRSIG. It includes multiple buildings with different structure

and also vegetation. The images of the simulated scene were taken at the altitude

of 800m above ground, with a focal length of 125.09mm. The camera is set to be

slightly tilted, thus offering an oblique view of the scene.

The data set comes with minimum and maximum range, corresponding hit co-

4.2. DIRSIG Data 23

Figure 4.3: Another Point Cloud generated from Pictometry oblique imagery

ordinates, and normal coordinates. Using this information, a point cloud data set

can be created with a free space based algorithm. Figure 4.5 shows a sample of the

point clouds generated. One set of point cloud corresponds to one single image with

each pixel corresponding to a point in the 3D coordinate system.

Because of the fact that the data comes from ground truth images with known

3D information, the point cloud generated is noise free. It can serve as a benchmark

data set for 3D reconstruction testing. By combining point clouds of different angles

that cover four sides of a building, one complete point cloud data set of a building

is accomplished.

4.2. DIRSIG Data 24

(a) (b)

(c) (d)

Figure 4.4: Samples of DIRSIG generated images.

Figure 4.5: Point Cloud generated from Pictometry oblique imagery.

4.3. Other Point Cloud Data 25

4.3 Other Point Cloud Data

For the purpose of testing the robustness of some parts of the algorithm, point cloud

data from other sources are used as well. Specifically, lidar point clouds are used

here. Lidar can produce a much denser point cloud with clear edges. The lidar

point cloud used in the research is the point cloud of RIT campus. It is from a

nadir view, and thus it includes only the rooftop of each building. Although it is

not suitable for the entire algorithm, it is a good source to test the edge related part

of the algorithm. Figure 4.6 shows parts of the point clouds that are used in the

thesis.

(a) (b)

Figure 4.6: Examples of lidar based point clouds

Chapter 5

Single Surface Based Method

As stated above, this thesis seeks the feasibility of surface reconstruction of building

models based on point clouds derived from oblique imagery. In order to finish this

goal, the project was divided into several smaller tasks that are easier to handle.

These tasks includes plane estimation, edge extraction, and model construction.

Figure 5.1 demonstrates the overall scheme developed for the thesis project. Al-

though the method developed here is specifically for point clouds generated from

oblique imagery, most of the algorithms can also be applied to other types of point

cloud data such as lidar data.

Before demonstrating the tasks, a few assumptions are made to simplify the prob-

lem. First, based on observation, the buildings to be reconstructed are cubical-shape

with flat surfaces. This is a fact for most of the buildings in an urban scene. Under

this assumption, it is easier to estimate surfaces with simple parameters. Second, all

buildings are assumed to have clear, sharp edges. This assumption can allow us to

26

27

Figure 5.1: The overall scheme of the project workflow

easily isolate edges. Combined with the previous premise, the edges we are looking

for are mostly straight lines which are also easy to represent by parameters. With

these assumption, we rule out buildings with complicated structures such as curved

edges, or spherical surfaces. It will ease our work tremendously in terms of plane

estimation and edge regulation. Fig 5.2 below shows an example of the building we

are processing and its corresponding point cloud.

Figure 5.2: Example of a building that fits the assumption (Wallace Library of
Rochester Institute of Technology) and its corresponding point cloud.

5.1. Plane Estimation 28

5.1 Plane Estimation

As mentioned earlier, this estimation algorithm is modified from the RANSAC al-

gorithm. In order to increase the performance of the algorithm to this specific data,

a few modification are made to the classical RANSAC algorithm. A few aspects of

region growing theory are adopted here.

5.1.1 Classical RANSAC algorithm

When dealing with plane estimation, the RANSAC algorithm will produce a set of

parameters that describes the plane and a consensus set of points that are classified

to the plane. According to the basic plane representation in 3D space, we have the

following equation.

Ax+By + Cz +D = 0 (5.1)

The set of parameters from RANSAC are called Theta = [A, B, C, D].

Figure 5.3 below displays an example of a made-up point cloud and the result

of plane estimation. The point cloud contains 6 surfaces with an average of 4000

points on each surface. Random noise is intentionally added to the data set.

5.1. Plane Estimation 29

Figure 5.3: Made-up point cloud example and plane estimation result of the data

The figure on the right of figure 5.3 shows the extracted planes from the point

cloud. All planes that were set up are successfully identified. Table 5.1 below shows

the comparison of ground truth and estimated consensus set. It demonstrates the

accuracy of the RANSAC algorithm. All points are assigned to planes with small

margins. The existence of outliers in the point cloud does not affect the overall

accuracy of the estimation.

5.1. Plane Estimation 30

Table 5.1: The result of RANSAC estimation in terms of points on each plane.

Ground

Truth

Estimation

Plane 1 6815 6830

Plane 2 4388 4408

Plane 3 4337 4370

Plane 4 2444 2426

Plane 5 2228 2208

Plane 6 1690 1660

Total 21902 21902

Although RANSAC is already capable of extracting multiple planes, it still has

several problems when dealing with real-life targets. Most of the time, buildings

are not a simple cube with flat surfaces. They may have multiple layers in one

orientation. The randomness of estimation may result in highly deviated planes

in order to fit more points onto the plane. Furthermore, when dealing with larger

sets of data, the random estimating process may go to exhaustion and require high

processing capability. In order to reduce the effect of these problems, region growing

theory is adopted to augment the basic RANSAC algorithm.

5.1. Plane Estimation 31

5.1.2 Region Growing

Region growing was originally a region-based image segmentation method. The

basic idea is to examine the neighboring pixels of the selected point and determine

whether it belongs to the region. It iterates until a certain criterion is met such as

the region is not spreading any more. Region growing has been introduced to surface

reconstruction by several researchers because of its advantages such as minimizing

the memory usage when dealing with large data sets. Vieira and Shimada proposed

a surface reconstruction scheme based on the theory of region growing [3]. In their

method, the data is first partitioned into smaller grids, and then it tries to expand

the region from an initial point which is called the seed point. It approximates a

surface based on a small neighborhood near the seed point. Then further neighbors

are checked whether they are compatible with the surface. If so, they are added to

the region. A new surface will be approximated based on this new region. Repeat

this region growing process until the region stops increasing. A final surface is then

extracted. The detailed steps are explained in the pseudo code in Algorithm 2.

Figure 5.4 shows one test result from Vieira’s work. Three different steps were

shown in the image. With a dense point cloud, it produced very detailed reconstruc-

tion results in a time period of 24 seconds. However, the surface fitting algorithm

implemented in this region growing scheme is better for spherical or higher degree

surfaces. In order to connect the region growing idea to our data set, it is combined

with the RANSAC algorithm.

5.1. Plane Estimation 32

Algorithm 2 Surface Extraction using Region Growing

Definition :
X : The data set that need to be estimated
x : A point in the data set X
bold : Initial Estimated surface before region growing
bnew : Updated surface after region growing
b : Final surface estimation
Rb,old : The region before growing
Rb,new : The region after growing
Rb : Final region

Start
Partition X into a cubical grid
For each x, calculate and store k-nearest neighbors
For each x, calculate surface variation based on k-nearest neighbors
Sort x in order of increasing surface variation
if x is labelled as used in estimation then

Skip to next point
end if
Initial estimation of the surface using the first point, and store it in bnew
while Rb,new > Rb,old do
Rb,old = Rb,new

bold = bnew
Region growing and update Rb,new, bnew

end while
if Rb,new < Rb,old then
Rb = Rb,old

b = bold
else
Rb = Rb,new

b = bnew
end if

5.1. Plane Estimation 33

Figure 5.4: Reconstruction example of automobile C-pillar by Region Growing
Algorithm[3]

5.1.3 Proposed Method

In the proposed algorithm, we mainly inherit the idea of using seed points from

Vieira’s algorithm. A small neighborhood of the seed point is used to estimate the

surface. Intuitively, this algorithm works most efficiently when the seed point lies

in the interior of a large group of points that are most likely in the same surface [3].

Under the assumption that surface estimation in regions that have less variation is

potentially more successful, a decision is made to pick seed points based on surface

variation.

The surface variation is evaluated at each point by principal component analysis

(PCA). PCA has been widely used to compute local properties of point clouds such

as point normals [25]. Let N be the k-nearest neighbors of a point x in the data set.

This technique is performed by calculating the covariance matrix of point x and its

5.1. Plane Estimation 34

neighbors N. The covariance matrix C here can be defined as:

C =
∑
p∈N

(p− p̄)(p− p̄)T (5.2)

where p̄ is the 3D centroid of N neighbors in Euclidean space. This 3×3 matrix is

symmetric, positive semi-definite and has three real eigenvalues, λ0, λ1, λ2. Their

corresponding eigenvectors, v0, v1, v2, form an orthogonal basis of 3 dimensional

space. Each eigenvalue λi measures the variation in the direction of corresponding

eigenvector vi. Specifically, v0 approximates the surface normal at point x, assuming

λ0 ≤ λ1 ≤ λ2. And the plane decided by v1 and v2 is recognized as the tangent plane

at point x.[26] Thus, λ0 measures the variation in the orientation of surface normal,

as well as how the points variate from the tangent plane. So surface variation of

point x in the k-nearest neighbors can be defined as:

σk(x) =
λ0

λ0 + λ1 + λ2
(5.3)

The less the surface variation, the more likely that the points lie on the same plane.

When σ(x) = 0, it means point x and its k-nearest neighbors are on the same plane

[26]. After the surface variation of every point in the data set is evaluated, candidate

seed points can be selected by searching for those with the least surface variation.

With the selected seed point and its nearest neighbors, the next step is to esti-

mate a surface from these points. As mentioned earlier, RANSAC is applied here

instead of Bézier surface estimation. However, a modification is made to the classi-

cal RANSAC scheme. In order to use the seed point region, the process of randomly

5.1. Plane Estimation 35

selecting points to perform initial estimation in the classical RANSAC algorithm

is abandoned. Instead, a seed point and its neighboring region is chosen to be the

library for initial estimation. Once a surface is finalized in this process, all points

in the consensus set are labelled. Then another seed point is picked from the unla-

belled points in the same fashion. The process will iterate until there is not enough

points to estimate a plane. By doing so, it will offer the algorithm a better chance

to locate the plane quickly rather than randomly selecting points to estimate planes,

since the points fed to the algorithm are already the ones that are most likely to

be on the same plane. Furthermore, because we use a limited number of points to

estimate the surface, the maximum number of iterations can be easily calculated.

For instance, if we choose to insert one seed point and its 20 nearest neighbors into

RANSAC, the maximum number of iterations possible is C3
21 = 1140. In this way,

the number of iterations for each RANSAC run in multiple surface estimations can

be tremendously reduced by setting a finite number for the maximum iterations,

while in the case of classical RANSAC algorithm this is usually set to be infinite.

A reduction in iterations means less processing time, and much more efficiency as

well.

Taking the example of a cubical point cloud shown in Figure 5.3 again, both

classical and adaptive RANSAC are performed on the data with the same parameter

settings on a consumer laptop (Intel Core i5 2.50GHz, 4G RAM). Both algorithms

return decent result in terms of estimation. However, the gap in processing time

between the two algorithms is large, as one can see in Table 7.6.

The detailed algorithm scheme is shown in the pseudo code below (Algorithm 3).

5.1. Plane Estimation 36

Table 5.2: Processing time (seconds) comparison between classical and modified
RANSAC algorithm in seconds.

Plane 1 2 3 4 5 6 Total

Classical
RANSAC

10.806 5.886 5.822 2.630 1.370 0.019 26.513

Adaptive
RANSAC

3.680 5.234 2.216 6.942 2.645 0.019 18.52

There is one more thing to note before the end of this section. The surface variation

is not an intrinsic feature of a surface. It depends on the number of neighbors taken

into account. Thus, a reasonable neighbor size is a key parameter to be considered

in this algorithm. Failing to choose the right size will either lose the generalization

or lose the efficiency of the algorithm. For instance, if 50 nearest neighbors are

considered, then the maximum iterations possible is 20825. It most likely will not

reduce the iterations compared to the classic RANSAC algorithm.

To make the algorithm more flexible, one more parameter is designed to have a

better fit. Because of the existence of noise, the result might be contaminated due

to the smaller sampling size. In order to control the accuracy, another parameter

is used to compensate the noise. In the estimation round using seed points and its

neighbors, α is defined as the percentage of points from the library lying on the

plane.

5.2. Edge Extraction 37

Algorithm 3 Surface Extraction using modified RANSAC

Definition :
X : The data set that need to be estimated
x : A point in the data set X
Rx : The region formed by x and its k nearest neighbors

Start
Perform k nearest neighbor(knn) search for each point
For each x, calculate surface variation based on Rx

Sort x in order of increasing surface variation
if x is labelled as used in estimation then

Skip to next point
end if
Run RANSAC using points in Rx as parameter estimation library
Label the points in the consensus set of the estimated surface

5.2 Edge Extraction

Primarily, oblique imagery offers points on the sides of buildings. This advantage

of oblique imagery offers a straightforward approach for edge refinement. With

dominant surfaces in hand, one can easily identify the edges by calculating the

intersections of every two planes. With high precision of surface estimation, this

intuitive approach would have high precision as well. However, due to the limita-

tion of available data, information on several sides cannot offer matching points to

produce enough points. Thus it is hard to sharply determine the parameters of such

surfaces. Such inaccuracy of plane parameters will cause the aberrate intersections.

Thus such an intuitive approach may not be the best option for this thesis. In order

to find an alternative approach, the cubic-shape assumption is chosen to be applied

here. This means that the the missing sides are oriented straight down from the

5.2. Edge Extraction 38

boundary of the rooftop surface. Thus the missing side surface can be represented

by a flat surface straight down from related rooftop edge. In this way, the geometry

can be estimated by identifying in-plane edges in each plane.

5.2.1 Determine in-plane Edges

In previous efforts of solving this problem, several different approaches have been

proposed by researchers. One popular approach makes the assumption that build-

ings are all convex hulls. This assumption turns the problem into a task of finding

the minimum bounding box of the points in the plane. When buildings are exactly

a cube, the convex hull algorithm works well. Unfortunately, not all buildings are

simply cubical. When encountering a complicated structure such as ”L” shape or

”U” shape, it cannot well identify all edges. An example is shown in Figure 5.5.

With the ”L” shape structure shown in the exmaple, convex hull fails to recognize

the edges at concave areas.

Here we decide to use another approach that looks similar to convex hull, which

is Alpha Shapes. It is a generalization of convex hull [27]. Unlike the convex hull

algorithm, Alpha Shapes are not confined to convex structures. It can accurately

locate concave areas, and even holes in the structure, such as windows in a surface.

Edelsbrunner[27] described the concept of Alpha Shapes analogously for intuitive

understanding. Thinking of the target as a huge mass of chocolate chip ice cream,

where the chocolate chips stand for point set S, and ice cream as R3 space. Using

a spherical-shape ice cream scoop, we can carve out all the ice cream in the reach

without bumping into the chips. Thereby, we can even carve out holes inside the ice

5.2. Edge Extraction 39

Figure 5.5: Results of Convex Hull algorithm on L-shape data. (a) the sample ”L”
shape data; (b) ideal edge extraction result; (b) edge extraction result from convex
hull

cream. Eventually, we will end up with a shape bounded by caps, arcs and points.

After straightening all round surfaces and connecting the points with line segments,

an intuitive alpha shapes description of the points S will be in hand. A 2D example

of alpha shapes is shown in Figure 5.6. Here the parameter α can be considered

as the radius of the spherical scoop. It is obvious to see that when α is too small

we will be able to carve out all ice cream without touching any chips. Thus it will

keep all the points in S when α → 0. In the same sense, when α is too large, it

will prevent the scoop from moving between two points, especially in concave areas.

We will end up with the convex hull of the set S. Hence, the alpha shapes of S is

the convex hull with α → ∞. Decreasing value of α will produce decreasing sets of

5.2. Edge Extraction 40

shapes and eventually developing cavities.

Figure 5.6: Example of Alpha Shapes in 2D[4], where blue dots represents point
set S, green circle represents scoop with radius α and red line segments represent
identified shapes.

In order to use the alpha shapes algorithm for boundary extraction, a pre-

processing step is needed for the point cloud data. To ease the computational

intensity and simplify the process, it is better to operate alpha shapes in 2D s-

pace. Thus, a projection of points onto 2D plane is performed before the actual

edge extraction. Then, a standard 2D alpha shapes algorithm can be performed on

the projected 2D data. In the end, we will obtain a group of boundaries including

internal cavities. In order to pave the way for further algorithms, a rearrangement

5.2. Edge Extraction 41

process is performed. The output of the alpha shape algorithm is a list of point

pairs that each pair of points are connected. In order to better process the edges in

the following procedures, we reorder the points into an array in which the neighbors

are connected.

5.2.2 Line Simplification

After the stage of the alpha shapes algorithm, we have a primary estimate of the

edges. However, the output from alpha shapes usually has irregular geometry be-

cause of the fact that alpha shapes only identifies points on an edge, but not how

they behave geometrically. This irregularity makes the result undesirable for final

edges. Hence, here a line simplification process is necessary to produce less noisy

results geometrically.

The main goal of this line simplification process is to remove redundant points

and straighten the edges by lines between critical points. Over the years, there have

been various algorithms developed in this area. Several researchers have compared

different simplification algorithms under different circumstances and they all came

to the conclusion that the Douglas-Peucker algorithm shows superior results, espe-

cially for less complicated lines [28][29][30]. Our lines here are simple straight lines

with no curves or high order complications, thus the Douglas-Peucker simplification

algorithm is used in this thesis to finish the task of generalizing lines.

The Douglas-Peucker algorithm, also called the Ramer-Douglas-Peucker algorith-

m, was independently suggested by Urs Ramer [31] in 1972 and by David Douglas

and Thomas Peucker [32] in 1973. It is a recursive process that tries to find few-

5.2. Edge Extraction 42

er points to represent similar curves. Given a set of vertices, the algorithm first

identifies the first and last points as points to be kept. With these two points as

end points, it then checks whether the distance of the farthest point from the line

segment is larger than a predefined threshold ε. If not, then all points between end

points that are unlabelled are discarded. If it is larger than ε, then this point is

labelled to be kept. The algorithm then recursively calls itself with labelled points.

In the end, it will output a new approximation of the structure with reduced number

of points. Figure 5.7 below shows a simple example of Douglas-Peucker algorithm

[5].

Figure 5.7: Example of 2D Douglas-Peucker line simplification algorithm[5]

There is a set of 10 points that needs to be simplified, P0 to P9. In the first

iteration, P5 has the longest distance from the line segment formed by P0 and P9.

Since the distance is larger than the threshold ε, P5 is then identified to be kept. In

5.2. Edge Extraction 43

later iterations, P6 is also identified as a critical point, and the rest are discarded.

The final simplified curves are formed by four critical points shown in part D of the

figure.

Up till this point, the algorithm can produce simplified edges of a certain surface

extracted from point clouds. However, none of the algorithms described above relates

the data to the real geometrical structure of a building. Whether the edges extracted

truly complies with the edges in reality is still yet to be tested.

5.2.3 Line Regulation

As stated above, no algorithms mentioned so far take the real geometry of the

building into account. Alpha shapes only searches for points on edges in the given

data, not considering whether those points lie on actual edges of the building. The

Douglas-Peucker algorithm generalizes the identified edge points to a smoother,

geometrically reasonable shape based only on the location of the points in the entire

set of points. Again, it cannot guarantee that the outputs are the real edges of the

building. In order to make sure the extracted points are on actual building edges,

an algorithm is developed to correct the points in point cloud coordinates based on

positions in 2D images.

The basic idea of this correction scheme is to shift the identified edge points

around until they are on the edges in 2D imagery. In order to finish this task, several

projective geometry techniques are applied here. For the purpose of projecting the

points back to 2D imagery, the camera matrix of the image is used. A camera matrix

consists of intrinsic parameters such as focal length and extrinsic parameters like

5.2. Edge Extraction 44

camera rotation and translation. In early work, the camera matrix for each image is

extracted from the process of bundle adjustment. In Noah Snavely’s documentation,

he describes the process in detail [6]. The method to locate a 3D point in a related

2D image is adapted from his documentation as well.

In the bundler process, the camera matrix extracted is a 5×3 matrix in the

following format such that the first row represents the focal length f followed by

two radial distortion coefficients k1,k2. The next 3 rows represents the 3×3 rotation

matrix R. The last row stands for the translation vector t. Taken point X from 3D

point cloud, it first converts the points from world coordinates to camera coordinates

by:

P = R ∗X + t (5.4)

After equalizing z coordinates to 1 for each point, we can then convert the points to

pixel locations by:

P ′ = f ∗ r(p) ∗ P (5.5)

where r(p) is a scaling factor to compensate radial distortion:

r(p) = 1.0 + k1 ∗ |P |2 + k2 ∗ |p|4 (5.6)

Note that the image pixel coordinate’s origin locates at the center of the image, and

positive x axis points towards right, and y upwards. To adjust the coordinates to

different programming environment, such as Matlab, a translation process is needed

where the origin of the coordinate is top left corner.

5.2. Edge Extraction 45

To make things easier, instead of projecting points to a color image, a pre-

processed edge map of the image is used. In this way, we do not need to deal with

multi-channels when shifting the points around. An edge map is a simple gray-scale

image in which higher pixel value means more likely it is on the edge. It is easier

to set a threshold to identify edge points. Figure 5.8 below shows an example of

an edge map for one of the images. Although we can project 3D points back onto

Figure 5.8: Edge map of 2D imagery

2D world, the inverse is unfortunately troublesome. The reason is obvious. Based

on single position in a 2D image, the depth information is lost. Thus it is hard to

locate the point in 3D coordinates again. To avoid this challenge, we choose to shift

the point in 3D coordinates and project it back to 2D edge map to check whether it

is on the edge. We then iterate until the point is on the edge. The main challenge is

then to determine the proper direction to shift the point. Basically we only need to

decide one of two orthogonal directions to move the point. Fortunately, thanks to

the unique features of oblique imagery, several orthogonal planes can be extracted.

Then, those two orthogonal directions are decided by the three dominant planes

5.2. Edge Extraction 46

that are orthogonal to each other. The normals of two planes will serve as the two

shifting directions for points on the third plane. After close observation, every point

has the tendency of shifting against the concave formed by line segments with two

neighbors. The process is better explained in vector form.

Figure 5.9: Vector Description of Edge Point Shifting. (A)the vector formed by the
target points and its neighbors. (B) The theory of determining direction of shifting.

Figure 5.9 shows the basic theory of edge point shifting based on 2D imagery.

V1 and V2 represent the vectors formed by the point and its neighbors. D1 and D2

represent the two dominant shifting directions. After normalizing V1 and V2, the

combination of these two vectors are calculated as V . Using the dot product, the

angles between V and D1,D2 are determined. Based on the angles, if one’s absolute

value is smaller than a predefined ε, the the point should move in the direction that

produces that particular result. In the other case, if both values are larger than ε,

then the point should move in both directions. In the example above, θ1 is obviously

5.3. Model Extraction 47

smaller than θ2, and smaller than ε, then the point should move in the direction of

D1.

When the shifting direction is determined, then the point is shifted in the direc-

tion at a reasonable interval, and then is projected back to 2D edge map to check

whether or not it is on edge. If not, then it needs to shift more until it satisfies the

condition of reaching a threshold of pixel value. This process iterates for every point

that is produced by the algorithm in the previous stage. In this way, the points are

guaranteed to be on the edge of the building and therefore have decent precision.

In summary of this section, the edge identification process consists of three steps.

First, alpha shapes is applied to identify edge points from the points. Then, the

Douglas-Peucker line simplification algorithm is used to simplify the lines and makes

the lines geometrically reasonable. At last, a shifting scheme is performed to correct

the error between identified edges and real building edges.

5.3 Model Extraction

With edges and plane parameters in hand, now we are ready to construct building

models. In order to produce an output that can be used in various situations, a

universally accepted format is used here to represent the models. Here we propose

to use wavefront OBJ file format.

OBJ format is a simple data format that represents 3D geometry alone. It

includes the positions of vertices, normals and the faces that makes each polygon

defined as a list of vertices. Since OBJ format doesn’t require a unit for the data, it

5.3. Model Extraction 48

can also contain scale information. An example of OBJ format file is shown in the

Figure 5.10.

Figure 5.10: An example of the OBJ file format.

In this format, it starts with listing all vertices that are needed for this model.

It follows the order of (x, y, z) coordinate order without any units. The same case

is for normals, if this information is available. Face definition in an OBJ file has

several different representations. The most simple one is shown in line 1 and 2 of

the face definition in the example. It simple identifies all the vertices that lies in

the same face, and lists them in a counter-clockwise order. The other one shown in

the example attaches vertex normals to each vertex in the surface. There are many

more elements in the format such as texture coordinates, parameter space vertices,

etc. These are beyond the scope of this thesis.

In our case, in order to generate a standard OBJ file, we simply need to list all

5.3. Model Extraction 49

edge points as vertices, and then list all surfaces identified in earlier stages. Since

the data comes from oblique imagery, it should cover all sides, so a simple stitching

process is sufficient to put the model together.

Chapter 6

Minimum Bounding Box Based

Method

In a more realistic case, more often than not, the point cloud is not complete and

does not cover all sides of the building. Just like the case in the Pictometry data, ten

images were facing north, and only four were facing the other three directions. This

fact results in missing walls on three sides while maintaining two complete surfaces,

the rooftop and the surface facing south. The problem is shown in Figure 6.1

With this defect, the approach described in Chapter 5 may not work well. That

approach assumes that the points cover all sides of the building. Without this

assumption, just like in our case, the approach is only able to stitch two surfaces

together while the rest of the walls are left empty. Figure 6.2 shows one result of

such work.

In order to compensate the missing information on some of the walls, another

50

51

Figure 6.1: The problem with Pictometry data set, While points cover roof and
front wall, walls on the other sides are missing.

Figure 6.2: A preliminary model of library.

approach based on a minimum bounding box is proposed here.

6.1. Minimum Bounding Box 52

6.1 Minimum Bounding Box

The technique of minimum bounding box is mostly used in geometry. The goal of

this technique is to find the bounding box that encloses a set of points and also

has the smallest measure. The measure here can be area, volume, or perimeter

of the box. In most cases, another constraint that is taken into consideration is

the orientation. Particularly in model reconstruction, the box must have the right

orientation for further processing. While finding a minimum bounding box is not

a complicated task, making orientation alignment is the most difficult step in this

algorithm. Figure 6.3 gives an example of minimum bounding box on 3D data

points.

Figure 6.3: An example of minimum bounding box, where blue points are the input
points in 3D and red lines are the minimum bounding box

6.2. Proposed Approach 53

The algorithm used here constructs a convex hull of the point set and utilizes

properties of the convex hull such as face edges, face normals, and face orientations

to align bounding box orientations to the data set. Figure 6.4 shows minimum

bounding box results on real data. Figure 6.4(a) shows a result of the algorithm.

By using minimum bounding box, the missing walls are compensated with a flat

surface of the box.

(a) (b)

Figure 6.4: Minimum Bounding Box algorithm results on (a) Pictometry data and
(b) DIRSIG data

6.2 Proposed Approach

Utilizing the idea of minimum bounding box, here a new approach is proposed to

make up the missing walls in the practical point cloud data. Again, the assumption

for this approach stays the same as the previous approach. The building consists of

flat surfaces only. This assumption allows us to use a bounding box to simulate the

missing walls by casting a flat surface to the missing walls.

6.2. Proposed Approach 54

6.2.1 Searching for Dominant Planes

The approach starts with the adaptive RANSAC algorithm described in Chapter

5 to estimate multiple planes from the point cloud. With the estimated surfaces,

the next step is to find the dominant surfaces. The dominant surface is defined as

the surface that covers one side of the building, and that has the most inlier points.

To find the dominant planes, the estimated planes are first sorted in a descending

order based on the number of inliers. By default, the plane with the most inliers

is labelled as one dominant plane automatically. In the sorted order, each of the

remaining planes is checked if it is orthogonal to two unparallel planes, and can only

be parallel to one of the labelled dominant planes. After this process is done, all

the dominant planes are labelled and ready to use. Figure 6.5 shows some results

of dominant plane identification.

Generally, one building has five dominant surfaces depicting four sides and one

rooftop. However, due to the missing information, one building in our data does

not necessarily contain five dominant surfaces. In Figure 6.5, the point cloud in (a)

obviously only contains two dominant surfaces while the one in (b) identifies five

surfaces as dominant.

The labelled dominant surfaces are then used to construct the basic main struc-

ture of the building. Using the inliers from the dominant planes only, a cubic struc-

ture can be acquired by performing the minimum bounding box algorithm on the

points. This structure acts as the base structure of the building, and later processes

are built on this structure.

6.2. Proposed Approach 55

(a) (b)

(c) (d)

Figure 6.5: Dominant plane search on different data sets (a) RIT library data set,
(b) identified 2 dominant planes in red and green, (c) DIRSIG data set, (d) identified
5 dominant planes in different colors

6.2.2 Histogram based Clustering

After the main structure is constructed, the next step is to assemble the remaining

surfaces to the box. This part of the approach is the most difficult part due to the

complicated structure of the remaining planes. Some of the estimated planes contain

only one surface while some contain more than one surface which shares the same

plane. Figure 6.6 shows an example of the complication. In (a), the estimated plane

has 12 surfaces while in (b) there is only one surfac lying on the estimated plane.

6.2. Proposed Approach 56

Minimum bounding box only finds the bounding box that can enclose all the input

points. It cannot preserve these details of small surfaces in one estimated plane. In

order to fully reconstruct the details, we need to separate the surfaces lying on the

same plane into different clusters.

Figure 6.6: Two different situations of planes, in (a), 12 surface share the same
plane, in (b) only one surface on the estimated plane

The method we proposed here to cluster the points is histogram based K-means

clustering. K-means is a clustering method that has been widely used for decades.

It was first proposed by McQueen [33] in 1967 as a local search algorithm that

partitions n points into k clusters. It works in the following way. The points are

first seeded with k initial cluster centers. Then it assigns every remaining data

point to its closest center, and then recalculates the new centers as the means of

their assigned points. This process of assigning data points and adjusting centers is

repeated until the means are stabilized.

The number of clusters, k, affects the result of clustering. An inappropriate

6.2. Proposed Approach 57

choice of k may yield a terrible result. However, in the k-means algorithm imple-

mentation in many data analysis software packages, the number of clusters is set as

an input parameter. This means one has to know how many clusters exist in the

data before processing it. In the interests of automation, the number of clusters is

expected to be determined automatically without any human involvement. In order

to achieve that goal, a preprocessing step is essential before the clustering.

The first step in this process is to perform a principal components analysis on the

data points. In this way, the points can be projected into three dimensions based

on the variation in the distribution of the points. Then a processing of searching for

maxima in the histogram of each dimension is conducted. The number of clusters

is decided by the number of maxima in each dimension. The search for maxima is

explained as follows.

After projecting the points to each dimensions, a statistical histogram of the

distribution is computed for each dimension. Figure 6.7 demonstrates the points

of Figure 6.6(a) projected into the PCA dimensions and their corresponding his-

tograms. Visually, a local peak in a histogram means that the related region has

the most points in the local neighborhood. The points in this peak region can then

be identified as belonging to one cluster. So the problem now breaks down to search

for the number of maxima in the histogram.

In order to correctly find the number of peaks, several rules have been utilized to

eliminate false peaks. Here we use an example histogram shown in Figure 6.8(a) to

better illustrate the process. Let H be the histogram of the points in one dimension,

and p be one bin of the histogram. The first rule is to find all the local maxima

6.2. Proposed Approach 58

(a) (b) (c)

(d) (e) (f)

Figure 6.7: Principal Component Analysis of one point set. (a)(b)(c) are the points
projected into the orthogonal dimensions,(d)(e)(f) are the corresponding histograms
of the points in each dimension.

in the histogram. Np1 = {p|H(p) > H(p − 1), H(p) > H(p + 1)} , is the set that

includes all local maxima bins that have more points than the one before and after

them. The result is shown in Figure 6.8(b). In the set of Np1, there might be some

bins that are peaks among low bins. This means some of them might contain few

points that cannot be identified as clusters. Thus, another rule is set to reduce the

maxima by eliminating extremely low peaks. The set of this rule is named as Np2 =

{Np1|HNp1(p) ≥ α ∗max(H)} as shown in Figure 6.8(c), where α is a factor that

is decided by the size of the input points. Similarly, among the high peaks, there

is a probable case that several high peaks are close to each other. And these high

peaks actually describe only one single cluster. In this case, the peak we are looking

6.2. Proposed Approach 59

for should be distinctive peak in relation to its neighbors and also its neighboring

peaks. So one more rule, Np3 = {Np2|sum{H(Np2(p)), H(Np2(p + 1)}/2 > β ∗

sum{H(Np2(p) : H(Np2(p + 1)))}/(Np2(p + 1) − Np2(p) + 1), is set to eliminate

the shallow peaks to avoid this situation, where β is a factor based on the size of

the input points. The result is shown in Figure 6.8(d). Thus, after the process, the

number of peaks in this dimension is set to be 1.

(a) (b)

(c) (d)

Figure 6.8: Selecting cluster number by histogram (a) histogram of the input data
in one dimension, (b) histogram after selecting local maxima, (c) histogram after
eliminating low maxima, (d) histogram after eliminating shallow maxima

After all three dimensions are analyzed by the histogram peak detection algo-

6.2. Proposed Approach 60

rithm, the number of clusters k is then determined by multiplying the numbers of

peaks of three dimensions together. The reason that we are able to do so is that

PCA projects the points into three orthogonal dimensions that are not correlated.

One more thing to note here is that we can perform noise reduction while searching

for local maxima. During the search in each dimension, the bins with extremely low

points and isolated from the groups of points are considered as misidentified points

and thus removed from the input data. The example is shown in Figure 6.9.

Figure 6.9: Noise reduction based on histogram.

After the histogram process, the number of clusters is determined. Thus, a k-

means clustering is performed on the noise reduced data. One result of the clustering

is shown in Figure 6.10. The clustered data is then treated as multiple estimated

surfaces sharing the same plane primitives.

6.2. Proposed Approach 61

Figure 6.10: Clustering result of one plane. Each color represents one cluster

One thing to point out here is that, since we are trying to achieve automatic

reconstruction, there should be as little human involvement as possible. One possible

human involvement is the user-determined parameter settings that is based on the

size and quality of the point clouds. The single-plane based algorithm, for example,

requires a few parameters such as the alpha parameter in alpha shapes, distance

parameter in line simplification. The bounding box based algorithm, on the other

hand, requires no parameter input from the user. The most obvious parameter, the

number of clusters in the k-means clustering process, is done automatically. This

fact allows the bounding box based algorithm to achieve a better automation.

6.2.3 Model Construction

The next step is to attach the remaining surfaces to the main structure. Again,

the minimum bounding box approach is used here to form a model for the surface.

The minimum bounding box produces eight corner points that describe the box.

6.2. Proposed Approach 62

These eight points are then used to find the main structure plane that this surface

should be attached. The sum of the distances of the corner points to each of the

dominant surfaces is computed. The dominant surface with the least distance is

the main structure plane for which we are looking. Then the four corner points

that are closer to the identified main structure plane are projected onto the plane.

The remaining four points are projected to the targeting surface. To this step, the

targeting surface is attached to the main structure through a bounding box. And

when all the remaining surfaces are attached, a building model is accomplished. The

OBJ file is then generated using the corner points of all bounding boxes. Thanks

to the simplicity of bounding boxes, the OBJ file is created by simply listing all the

surfaces using four corner points.

Chapter 7

Results and Discussion

As mentioned earlier, both approaches introduced in previous chapters are used for

the purpose of reconstructing single building models. The following sections are in

the order of the process explained in the previous chapters so that one can easily

see the effect of each algorithm on the data.

7.1 Results on Adaptive RANSAC Algorithm

The adaptive RANSAC algorithm is used in both approaches. It is important to

discuss its efficiency before presenting the results in both approaches.

The performance of the adaptive RANSAC algorithm along with the strategy

to solve problems occurring in multiple primitive estimation was tested with real

data and compared to the original RANSAC algorithm. The comparison is mainly

conducted in two aspects, computational efficiency and fitting accuracy [34].

63

7.1. Results on Adaptive RANSAC Algorithm 64

7.1.1 Computational Efficiency

Hypothesis testing in RANSAC is an iterative process. Generally a counting of

iterations would be adequate to characterize the efficiency. However, due to the

fact that our modified algorithm includes a nearest neighbor search which is not

processed during each iteration, an elapsed processing time is used here to evaluate

the efficiency. As shown in Table 7.1, almost half the time in our modified algorithm

was consumed in finding the first plane. At that time, the nearest neighbor search

was performed and surface variation was calculated. Even so, it was obvious the

total time was much shorter than the original RANSAC, especially in the first two

runs. In the consideration of iterations, most of the modified algorithm runs were

finished within 50 iterations as expected. As stated in Chapter 2, the decrease in the

estimation pool reduces the number of iterations and thus reduces the processing

time. Table 7.1 and Table 7.2 show a significant drop in total elapsed time compared

to original RANSAC.

Table 7.1: Processing time (seconds) comparison between original and adaptive
RANSAC algorithm for DIRSIG building.

Plane 1 2 3 4 5 Total

Classical RANSAC 10.806 5.822 2.630 1.370 0.019 20.627

Adaptive RANSAC 6.942 2.216 3.680 2.645 0.019 13.286

7.1. Results on Adaptive RANSAC Algorithm 65

Table 7.2: Processing time (seconds) comparison between original and adaptive
RANSAC algorithm for Airborne Oblique Imagery Data

Plane 1 2 3 4 5 Total

Classical RANSAC 61.184 44.786 29.582 12.190 7.743 155.424

Adaptive RANSAC 44.534 33.560 32.231 13.407 12.038 135.77

7.1.2 Fitting Accuracy

A direct visualization of the fitting accuracy is shown in Figure 7.1 where the blue

dots denote the original point cloud. The point cloud depicts a warehouse door.

The grey line represents the estimated primitive. Figure 7.1(a) is the fitting result

from original RANSAC. The primitive fits better in the center while deviated on the

edge. Figure 7.1(b) shows better fitting results from our modified algorithm. The

points are evenly distributed in all areas of the plane. From the top view, the plane

fit by our algorithm looks much thinner than the result from the original algorithm.

To better illustrate the fitting accuracy, a point to plane distance is calculated

at each inlier point. An average distance error is achieved for each estimated plane.

The results are shown in the Table 7.3 and Table 7.4 for the two data sets. The

result again indicates improvements of accuracy from modified algorithm in some

cases.

Besides computational efficiency, our adaptive RANSAC algorithm shows better

results of estimating detailed minor surfaces than the traditional algorithm. The

results in Figure 7.2 show that our modified algorithm has superior performance

than the traditional RANSAC algorithm. First,the traditional algorithm estimated

7.1. Results on Adaptive RANSAC Algorithm 66

Table 7.3: Fitting Accuracy Comparison betweeen RANSAC and Adaptive
RANSAC for DIRSIG Building

Plane 1 2 3 4 5

Classical RANSAC 0.0037 0.0088 0.0122 0.0113 0.0168

Adaptive RANSAC 0.0014 5.50e−4 0.0011 0.0023 5.86e−4

Table 7.4: Fitting Accuracy Comparison (Meters) betweeen RANSAC and Adaptive
RANSAC for Airborne Oblique Imagery Data

Plane 1 2 3 4 5

Classical RANSAC 0.44 1.57 0.34 1.32 0.162

Adaptive RANSAC 0.16 0.33 1.64 0.25 0.89

(a) (b)

Figure 7.1: Plane fitting result of a door as circled in red (top view). (a) result from
original RANSAC, (b) result from adaptive RANSAC

at most three surfaces while our algorithm successfully identified five surfaces. This

makes sense when thinking about the logic behind these two algorithms. RANSAC

algorithm feeds the estimator random points for surface estimation. After two or

7.1. Results on Adaptive RANSAC Algorithm 67

three dominant planes are extracted, the RANSAC algorithm is hard to locate other

small planes that contains detailed layers of the building which have fewer points

on the plane. However, with our algorithm, after dominant planes are found, it still

feeds the algorithm with points that are most likely to be on the same plane for

estimation. Thus, small detailed surfaces have a better chance to be identified.

(a) (b)

(c) (d)

Figure 7.2: Surface Extraction results for both traditional and modified RANSAC
algorithm for library building. (a) the airborne image of library building; (b) the
point cloud of the building; (c) classic RANSAC algorithm result; (d) modified
RANSAC algorithm result

Another advantage shown in the result are the details in the extracted surfaces.

Figure 7.3 shows the points recognized as located on the rooftop of the library

7.2. Results on the Edge related Approach 68

building in Figure 7.2(a). Compared to the actual rooftop, one can easily observe

three different layers. The major layer is a U-shape surface with a flat tower in the

center of the cave. While the traditional algorithm fails to carve out the details of

the plane, the modified algorithm mostly shows the basic outline of the U-shape and

the tower.

(a) (b)

Figure 7.3: Consensus Set Comparison of (a) traditional and (b) modified RANSAC
algorithm on the point clouds of rooftop

7.2 Results on the Edge related Approach

With the estimated planes from adaptive RANSAC, the approach introduced in

Chapter 5 goes through every plane to extract and simplify edges, stitch them

together to build a model from the edges and planes. The rest of this section will

present the results of this approach on different data sets.

7.2. Results on the Edge related Approach 69

7.2.1 Edge Identification

As stated in previous chapter, this edge identification process consists of three steps

with each step restraining the points towards the real edge of the building. To

demonstrate the result, the rooftop of the library building is used as an example.

The result is shown in Figure 7.4 below. In (a), red points are the identified edge

points by alpha shapes. Again, it proves that alpha shapes has effective results

on edge points detection; however, geometrically it does not comply with reality.

(b) shows the results from Douglas-Peucker algorithm. It is obvious that lines are

longer and critical points representing edges are tremendously reduced; but the

actual geometry of the building is still not seen in this step. (c) presents the effects

of 2D imagery correction. Zigzags that appeared in the last step are gone, lines

are more aligned. Another Douglas-Peucker algorithm is performed to eliminate

unnecessary points. It produces results in (d). Lines are straightened and they

mostly comply with the geometry in this result.

The edge identification algorithm was also tested on DIRSIG data and lidar data.

The fact that both data sets have much denser point cloud makes the algorithm more

effective. Denser point clouds tends to have neat and less noisy edges. The results

on both data sets shows the same. DIRSIG data includes almost no noise, the

edges are clear cut and visually straight before processing. The algorithm simply

reduces the number of points needed to describe the plane. Lidar data has redundant

points on edges such that the edges are more obvious and identifiable. Thus, the

edges extracted are straight and comply with geometry. Although the assumption

of this approach claims that the structure of the building is cubical, which means

7.2. Results on the Edge related Approach 70

(a) (b)

(c) (d)

Figure 7.4: Edge detection results for one single surface. (a)edge points(red) detect-
ed by alpha-shape algorithm; (b) edges from Douglas-Peuker algorithm; (c) Modified
edges after edge correction from 2D image; (d) modified edges after line simplifica-
tion on corrected edge points

the shape of each surface is rectangular, the result on lidar data demonstrate that

the algorithm can have a decent estimation of curves when the point cloud is dense

enough.

7.2. Results on the Edge related Approach 71

(a) (b)

Figure 7.5: Edge identification results on DIRSIG and lidar data sets.

7.2.2 Model Construction

When the edges are extracted, along with the planes, a model can be constructed

by simply stitching them together. This construction scheme is based on the as-

sumption that the point cloud covers all sides of the building. DIRSIG data fulfills

the assumption perfectly. Thus the result here focuses on the DIRSIG data.

Figure 7.6(a) shows a point cloud data set from DIRSIG generated images. It

covers all sides of the building while some minor regions are missing points. The

approach has no problem connecting main structure surfaces together. However, the

doors, and stools on the rooftop of one point cloud data failed to be reconstructed

because there is no surface to connect them with the main structure. Instead of

looking for additional planes to connect them, the method we used here is to simply

project the edge points on these surfaces to the closest surface. In this way, the

surfaces are forced to connect. The result is shown in Figure 7.6(b).

As discussed in Chapter 5, when the point cloud is missing major part of a

7.3. Results on Minimum Bounding Box related Approach 72

(a) (b)

Figure 7.6: Model construction result on one DIRSIG derived point cloud data set
1.

building, this approach fails to construct a watertight model because there are not

enough surface edges to stitch together.

7.3 Results on Minimum Bounding Box related

Approach

Using another DIRSIG data set, the minimum bounding box approach is performed.

Figure 7.7 gives the result of the approach. As explained in Chaper 6, minimum

bounding box compensates the missing sides, particularly in the main structure. It

allows us to build a watertight model even when side information is missing. The

door that is not connected to the main structure in the previous approach now is

attached to the wall.

This approach is tested on another set of data, which is generated from oblique

imagery. It is much noisier and denser than the RIT campus data set. The result is

7.3. Results on Minimum Bounding Box related Approach 73

(a) (b)

Figure 7.7: Model construction result on DIRSIG derived point cloud data set 2.

shown in Figure 7.8. In the point cloud data, one side of the wall of the building is

missing due to the trees near the building. The algorithm has no problem recovering

the missing part of the wall. However, the error is obvious at the center of the frontal

wall where there is a spherical surface. The bounding box enclosing this spherical

wall is randomly placed and causes a major error.

(a) (b)

Figure 7.8: Model construction result on oblique imagery derived point cloud data
set.

7.3. Results on Minimum Bounding Box related Approach 74

This brings us to the disadvantages of this approach. The nature of bounding

box confines its capability to reconstruct more complex models. Although projecting

onto the estimated planes enables the approach to construct planes that not parallel

to building orientation, the approach is still strictly confined in flat planes. Another

example of this confinement is in the warehouse model in Figure 7.6. The stools on

the rooftop are cylindrical. The approach can only replace them with cubical. The

detail is lost.

Another drawback of this approach comes with details on the planes. The build-

ing in Figure 7.9 is an example. The walls on all 4 sides extend taller than rooftop.

However, the bounding box cannot identify the design of the building. This detail

is also lost in the reconstructed model. Because of the simplicity of the model from

this approach, a large number of small details are not preserved.

Figure 7.9: An example of missing information on the reconstructed model box

7.4. Model Accuracy Validation 75

7.4 Model Accuracy Validation

The point cloud is generated through a feature matching process. It is similar to

a sampling process, so it is not capable of offering continuous measurement of the

building. The reconstruction scheme we proposed is also aimed at reducing the

number of vertices in the final building model. The result of the reconstruction

should be evaluated against true measurement of the scene. It is almost impossible

to have a qualitative evaluation of reconstruction results due to the fact that ground

truth data is difficult to obtain, especially in urban and residential areas. However,

accuracy evaluation is still necessary. Instead of obtaining ground truth in 3D, we

evaluate the accuracy of reconstruction in 2D imageries where the reconstruction is

built.

For this validation process, we use DIRSIG data set to test the result. As ex-

plained in earlier chapter, DIRSIG is created with known geometry and parameters,

thus making it noise free in the point clouds. Any existing error would come from

the process of reconstruction. Therefore, this data set is an ideal benchmark for

reconstruction quality evaluation.

As stated before, the best way to evaluate the quality of a reconstruction is to

compare the model with known ground truth. However, in most cases, ground truth

is very difficult to obtain. Since our model is constructed mostly with vertices of

corner points, it is easier for us to compare the corner points of the constructed

model with real buildings. Theoretically, the comparison can happen in 2D and 3D

space. However, 3D coordinates of real corners are harder to generate, so we propose

to evaluate the quality of the constructed model in 2D space on the image plane.

7.4. Model Accuracy Validation 76

The building model we constructed contains the corner points and surfaces they

form. If the corner points are correctly located, then the surface should be correctly

reconstructed as well. Hence, by evaluating the accuracy of the location of the

corner points, we will be able to evaluate the quality of the reconstructed model.

As explained in Chapter 5, 3D points can be reprojected back to the image plane

using known camera matrix. The DIRSIG data set comes with accuracy camera

information and thus we are able to project the 3D corner points in world coordinate

system back to 2D image coordinate system using equation (5.4) and (5.5). Figure

7.10 below shows an example of projected 3D corner points in a DIRSIG image.

Figure 7.10: An example of DIRSIG image with projected corner points

The original corner points can easy picked by hand in the image, as shown in the

figure. Then a RMS error is calculated for the visible corners in the images against

projected corner points using the formula below.

7.4. Model Accuracy Validation 77

RMS =

√
1

N

∑
((x− xc)2 + (y − yc)2) (7.1)

The nature of 2D images omits 3D information, thus one image is not enough to

cover all the corner points in all sides of the building. Here we picked four images

covering all four sides of the building, and repeated the process explained above to

obtain RMS errors for all the corner points. The four images selected are shown

in figure 7.11. The detailed corner points among ground truth and projections are

shown in Table 7.5.

Table 7.5: Ground Truth Corner Points vs Projected Corner Points

Ground

Truth X

Ground

Truth Y

Projected

X

Projected

Y

556 432 551 428

583 432 589 428

583 429 589 425

628 429 632 425

628 432 631 428

656 433 659 428

557 528 560 530

655 528 659 530

628 529 625 530

582 529 580 530

7.4. Model Accuracy Validation 78

(a) (b)

(c) (d)

Figure 7.11: Samples of DIRSIG generated images

Here we have used this method to validate the reconstruction results of two

building models in DIRSIG scene. The results are shown in the table below. As

one can see, the error measured in pixel units is reasonably low considering the size

of the building. Converting the pixel units into meters using similar triangles, the

error in the reconstruction in corner points is approximately within one meter. One

thing to note here is that in these error calculations, the rooftop is included in all

sides. This means the real error should be lower than the calculated value.

7.4. Model Accuracy Validation 79

Table 7.6: RMS Error of four sides of the building

Sides RMS(Pixels)

1 4.12

2 3.52

3 5.31

4 3.83

Total 4.29

Chapter 8

Conclusions and Future Work

The ultimate goal of this thesis is to reconstruct 3D building models from point

clouds derived from aerial oblique imagery. The nature of oblique imagery gives us

information on all the sides and enables us to construct a complete and watertight

model of the building. However, the limited availability of images and complications

of registration constrains the quality of the point clouds. Most of the work in this

project is to compensate the drawbacks inherent in oblique image data sets and

construct building models as close to reality as possible. Two approaches have been

proposed to finish the task.

The first approach is a single surface based approach. It first estimates surfaces

from point cloud data and processes one surface after another. We proposed a new

modification to the traditional RANSAC algorithm so that it works more efficiently

in the scope of this project. Instead of randomly feeding points to estimate planes,

a seed point and its neighbors which are most likely to be on the same plane are

80

81

chosen to estimate planes. The algorithm is tested on multiple data sets from

oblique imagery derived point clouds to lidar point clouds. The results show that our

modified algorithm is computationally efficient and accurate. A chain of algorithms

such as Alpha Shapes and Douglas Peucker algorithms are utilized to identify and

simplify the edges and use the edge points as potential polygons. These algorithms

are also tested on multiple data sets from different sources. The results prove that

when the point cloud is dense enough, the method works efficient and align with

geometry. These polygons and estimated surfaces are then used to stitch together

to form a model. The results show that the approach works well on a dense and

complete point cloud. When the point cloud is not complete, and not fully covering

all sides, this method fails at attempting to generate a watertight model.

The second approach is based on minimum bounding box, and looking to com-

pensate the defects due to the incomplete point clouds. In this approach, adaptive

RANSAC is also applied to estimate planes. With the identified dominant planes,

the main structure of the building is achieved. A histogram based clustering scheme

is proposed to separate surfaces that land on the same plane. Then minimum bound-

ing box is used to assemble small detail components to the main structure. This

approach well compensated for the missing information of the point clouds by replac-

ing it with a surface from the bounding box. When the method is tested on multiple

point clouds, it shows decent computational efficiency and watertight models. The

algorithm doesn’t require any parameter input from the user, which reduces the hu-

man involvement and allows the algorithm to achieve better automation. However,

a close inspection reveals that the method potentially loses details in the surfaces.

82

The results of the approaches on various testing data sets demonstrate that both

of the methods are capable of reconstructing building models from point clouds.

However, there are also limitations shown in the results. Both methods assume that

the buildings only consist of flat surfaces without any higher degree primitives such as

curves and spheres. This assumption confines the robustness of the approaches as the

design of architectures has more smooth spheres. In order to extend the robustness

of the approaches, future work may explore the possibility of applying minimum

bounding spheres or cylinders to the approach. While the first approach does not

rely on rectangular shapes as much as the minimum bounding box approach, it is

highly dependent on the density of the point clouds. The approach gets inefficient

when the point cloud is sparse. Further work is needed to increase the robustness

while not applying more assumptions.

The current trend in 3D modelling is shifting to the application of real time

reconstruction, and in smart phone reconstruction. These applications require a

time and memory consumption within a reasonable limit. Although the approaches

proposed here have not shown any high memory consumption, it is highly dependent

on the size of the point cloud data. When dealing with real time processing, the

RANSAC algorithm may increasingly become cumbersome, and the nearest neighbor

search requires a high computation cost. So a less costly surface estimation method

is suggested when applying the approaches to real time processing.

Bibliography

[1] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[2] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradig-

m for model fitting with applications to image analysis and automated cartog-

raphy. Communications of the ACM, 24(6):381–395, 1981.

[3] Miguel Vieira and Kenji Shimada. Surface extraction from point-sampled data

through region growing. International Journal of CAD/CAM, 5(1), 2009.

[4] R.K. Martin. Using alpha shapes to approximate signal strength based posi-

tioning performance. Signal Processing Letters, IEEE, 18(12):741–744, 2011.

[5] Ziluan Liu, Yuehui Jin, Yidong Cui, and Qiyao Wang. Design and implemen-

tation of a line simplification algorithm for network measurement system. In

Broadband Network and Multimedia Technology (IC-BNMT), 2011 4th IEEE

International Conference on, pages 412–416, 2011.

[6] N. Snavely. Bundler: Structure from motion (sfm) for unordered image collec-

tions. http://www.cs.cornell.edu/ snavely/bundler/, 2009.

83

Bibliography 84

[7] David Nilosek, Shaohui Sun, and Carl Salvaggio. Geo-accurate model extraction

from three-dimensional image-derived point clouds, 2012.

[8] Jing Xiao, Markus Gerke, and George Vosselman. Building extraction from

oblique airborne imagery based on robust faade detection. {ISPRS} Journal of

Photogrammetry and Remote Sensing, 68(0):56 – 68, 2012.

[9] Schultz S. Giuffrida F. Wang, Y. Pictometry’s Proprietary Airborne Digital

Imaging System and its Application in 3D City Modelling. The Internation-

al Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, XXXVII,PartB1, 2008.

[10] Joachim Hhle. Photogrammetric measurements in oblique aerial images. Pho-

togrammetrie, Fernerkundung, Geoinformation, (1):7–14, 2008.

[11] M. Gerke. Dense matching in high resolution oblique airborne images. Inter-

national Archives of the Photogrammetry, Remote Sensing and Spatial Infor-

mation Science 38(Part 3/W4), pages 77–82, 2009.

[12] Jie Zhang. Dense Point Cloud Extraction From Oblique Imagery. Master’s

thesis, Rochester Institute of Technology, 2013.

[13] Charles V. Stewart. Robust parameter estimation in computer vision. SIAM

Rev., 41(3):513–537, September 1999.

[14] J. Illingworth and J. Kittler. A survey of the hough transform. Computer

Vision, Graphics, and Image Processing, 44(1):87 – 116, 1988.

Bibliography 85

[15] E. Turner and A. Zakhor. Sharp geometry reconstruction of building facades

using range data. In Image Processing (ICIP), 2012 19th IEEE International

Conference on, pages 1785–1788, 2012.

[16] V. Verma, Rakesh Kumar, and S. Hsu. 3d building detection and modeling

from aerial lidar data. In Computer Vision and Pattern Recognition, 2006

IEEE Computer Society Conference on, volume 2, pages 2213–2220, 2006.

[17] Rey-Jer You and Bo-Cheng Lin. A quality prediction method for building model

reconstruction using lidar data and topographic maps. Geoscience and Remote

Sensing, IEEE Transactions on, 49(9):3471–3480, 2011.

[18] Shugen Wang, Qiuyuan Gou, and Mingwei Sun. Simple building reconstruc-

tion from lidar data and aerial imagery. In Remote Sensing, Environment and

Transportation Engineering (RSETE), 2012 2nd International Conference on,

pages 1–5, 2012.

[19] Carlo Tomasi. Shape and motion from image streams under orthography: a

factorization method. International Journal of Computer Vision, 9:137–154,

1992.

[20] D. Frere, J. Vandekerckhove, T. Moons, and L. Van Gool. Automatic modelling

and 3d reconstruction of urban buildings from aerial imagery. In Geoscience

and Remote Sensing Symposium Proceedings, 1998. IGARSS ’98. 1998 IEEE

International, volume 5, pages 2593–2596 vol.5, 1998.

Bibliography 86

[21] M. Maurer, M. Rumpler, A. Wendel, C. Hoppe, A. Irschara, and H. Bischof.

Geo-referenced 3d reconstruction: Fusing public geographic data and aerial

imagery. In Robotics and Automation (ICRA), 2012 IEEE International Con-

ference on, pages 3557–3558, 2012.

[22] F. Calakli, A.O. Ulusoy, M.I. Restrepo, G. Taubin, and J.L. Mundy. High

resolution surface reconstruction from multi-view aerial imagery. In 3D Imag-

ing, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2012

Second International Conference on, pages 25–32, 2012.

[23] Katie N. Salvaggio and Carl Salvaggio. Automated identification of voids in

three-dimensional point clouds, 2013.

[24] Rochester Institute of Technology. Dirsig — the digital imaging and remote

sensing image generation model. http://www.dirsig.org.

[25] Edward Castillo and Hongkai Zhao. Point cloud segmentation via constrained

nonlinear least squares surface normal estimates. Recent UCLA Computational

and Applied Mathematics Reports, 2009.

[26] M. Pauly, Markus Gross, and L.P. Kobbelt. Efficient simplification of point-

sampled surfaces. In Visualization, 2002. VIS 2002. IEEE, pages 163–170,

2002.

[27] Herbert Edelsbrunner and Ernst P Mücke. Three-dimensional alpha shapes.

ACM Transactions on Graphics (TOG), 13(1):43–72, 1994.

http://www.dirsig.org

Bibliography 87

[28] Robert B McMaster. A statistical analysis of mathematical measures for linear

simplification. The American Cartographer, 13(2):103–116, 1986.

[29] Ellen R White. Assessment of line-generalization algorithms using characteristic

points. The American Cartographer, 12(1):17–28, 1985.

[30] Jill S Marino. Identification of characteristic points along naturally occurring

lines: An empirical study, 1979.

[31] Urs Ramer. An iterative procedure for the polygonal approximation of plane

curves. Computer Graphics and Image Processing, 1(3):244 – 256, 1972.

[32] David H Douglas and Thomas K Peucker. Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature. Carto-

graphica: The International Journal for Geographic Information and Geovisu-

alization, 10(2):112–122, 1973.

[33] J. MacQueen. Some methods for classification and analysis of multivariate

observations, 1967.

[34] Zhizhong Kang, Liqiang Zhang, Baoqian Wang, Zhen Li, and Fengman Jia. An

optimized baysac algorithm for efficient fitting of primitives in point clouds.

Geoscience and Remote Sensing Letters, IEEE, 11(6):1096–1100, June 2014.

	List of Tables
	List of Figures
	Introduction
	Project Objectives
	Contributions to Knowledge
	Thesis Overview and Organization

	Background
	Oblique Imagery
	Point Cloud Data
	Computer Vision Theories
	Projective Geometry

	Parameter Estimation

	Previous Work
	Data
	Pictometry Data
	DIRSIG Data
	Other Point Cloud Data

	Single Surface Based Method
	Plane Estimation
	Classical RANSAC algorithm
	Region Growing
	Proposed Method

	Edge Extraction
	Determine in-plane Edges
	Line Simplification
	Line Regulation

	Model Extraction

	Minimum Bounding Box Based Method
	Minimum Bounding Box
	Proposed Approach
	Searching for Dominant Planes
	Histogram based Clustering
	Model Construction

	Results and Discussion
	Results on Adaptive RANSAC Algorithm
	Computational Efficiency
	Fitting Accuracy

	Results on the Edge related Approach
	Edge Identification
	Model Construction

	Results on Minimum Bounding Box related Approach
	Model Accuracy Validation

	Conclusions and Future Work
	Bibliography

