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Abstract 
This thesis investigated possible features that are used to guide saccadic eye movements 

in specific tasks, including a visual search task, answering questions about an image, and freely 
viewing images.  Current eyetracking technology was used to gather eye movement records of 
subjects as they viewed images.   

A classical experiment that shows the influence of task on eye movements conducted by 
Alfred Yarbus was replicated under natural viewing conditions. In this experiment, 17 viewers 
were given a set of different instructions before viewing a Russian painting.  Eye movement 
records were compared between tasks, and it was found that the instruction a viewer is given did 
affect which regions of the image are fixated.  Even though the viewing times in the two 
experiments were drastically different (3 minutes compared to ~20 seconds), the behaviors of the 
17 subjects were remarkably similar to the original record published by Yarbus; regions that were 
‘informative’ for the task were fixated. Behavior between the 17 subjects (within one task) was 
more similar than between the seven tasks (within one subject).     

In a second experiment, 23 observers performed a visual search task in images of real-
world scenes.  Before each trial, the subject was shown a preview image of the target.  This image 
was either pixel-for-pixel exactly as it appeared in the image (‘Extracted Object’ condition) or 
was a cartoon icon representation of the target (‘Cartoon Icon’ condition). On average, the 
reaction time in finding the target in the Cartoon Icon condition was 3.0 seconds, and less than 
2.5 seconds in the Extracted Object condition. This increase in reaction time was caused primarily 
by the viewer taking longer to initially fixate on the target.  

Perceptual saliency and other feature content of the images at fixated and random 
locations were compared to gain insight into what features the visual system was using to guide, 
and expedite, visual search in each of the two conditions.  Several commonly used metrics were 
used to measure the performance of each of 18 different topographical feature maps. It was found 
that feature maps that weight areas according to the color and spatial characteristics of the target 
perform better than general low-level saliency maps, showing that the visual system can be fine-
tuned according to the task.  However, a general model of visual attention for search in real-world 
scenes cannot be created using only low-level stimulus properties.  
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Chapter 1  

1 Introduction 

1.1 Overview 

Art students are often taught that a piece of art with good composition is one that 

smoothly ‘leads the eye’ throughout it, toward or away from the focal point of the piece.  Color, 

shape, and line are common elements used to lead a viewer through a painting.  “Lines may be 

used to guide the eye of the spectator or to stop it.  Rule: The eye follows the length of a line, and 

across a gradation from the tone nearest the ground tone to that farthest removed in value 

[Thompson 1936].”   This ability to control the movement of the viewer’s eyes is often discussed 

in critiques: 

“[Nine Spaces by Ron Kroutel] (shown in Figure 1) is a thicket of diagonal shapes, which 

direct the eye past vertical barriers. The viewer's eye enters the picture plane at the bottom left, 

then zig zags over an impenetrable wall at the back, and soars up to a distant sky. … The forms 

themselves are almost like arrows, relentlessly pointing the eye upwards. The ellipses in the 

middle offer a visual pause for the eye as it follows the strong, sharp diagonals to the top of the 

piece.  Next, look at the color; since the warmest colors are reserved for the distant sky, the eye is 

pulled towards the top of the piece. In the lower left corner, you'll notice a pale blue color that is 

repeated in the center, then again at the upper right. Kroutel provides the eye a direct route to the 

top of the painting by inviting the viewer to connect the dots through the use of this light blue 

paint… [ArtSmart]” 
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Figure 1: ‘Nine Spaces’ by artist Ron Kroutel with overlay of supposed path of eye movements  

 

However, researchers in human visual perception know that the eye actually behaves 

much differently than artists claim.  Instead of smoothly following lines in a piece of art, the eye 

actually makes a series of rapid jumps and pauses to various regions in the image.  These ‘jumps’ 

are saccadic eye movements, which reorient the eye to regions where the eye pauses, or fixates, 

several times per second.  When different people look at the same painting, the paths created by 

the movement of their eyes are never identical.  They may fixate on similar regions, but often not 

in the same temporal order.  

A significant amount of research has been done to investigate the behavior of eye 

movements during various tasks such as looking at pictures, reading, and doing complex, 

everyday tasks like washing hands or making tea.  From these studies, we know that eye 

movements are neither random nor simply reactive; rather, movement of the eyes is a very active 

process even though we are typically unaware of it.  We also know that fixations land on the most 

‘informative’ regions of the image for the task given [Brandt, 1945; Yarbus, 1967]. What features 

of the region make it most informative?  Comparisons between computational models of vision 

and human fixation patterns show that saccades are not simply directed by low-level (bottom-up) 

attractors such as contrast, color, edges, high spatial frequencies, as artists may claim, but are 

influenced by a person’s task, background experience, or interests [Canosa, 2003; Noton and 

Stark, 1971; Privitera and Stark, 2000]. 
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1.2 Objectives 

The objective of this research project is to utilize current eyetracking technology to gain 

insight into how humans choose areas of interest in a scene (i.e., what to fixate on next) in 

different tasks.  What features of a region make it most “informative” for a specific task?  This 

question will be investigated by analyzing the system as an active imaging system.  By examining 

the image content at locations of fixation, inferences can be made about what types of 

information this active system is seeking, and how that information is affected by the person’s 

task.  

Recent work involving computational models of visual attention involves first building a 

model, and then seeing how well the model predicts locations of fixations obtained by 

eyetracking experiments.  It is difficult to estimate how well a model performs due to the 

inconsistency in performance metrics, observer tasks, and images used.  

This research project does not attempt to produce a new model to be verified by 

eyetracking experiments. Rather, it will take a step back and first analyze the information selected 

by the visual system when viewing images.  The results will then provide guidelines for 

constructing better (or task specific) models of visual attention. 

The main objectives of this thesis are: 

- Replicate the classical experiment of Alfred Yarbus that shows task influence on viewing 
behavior 

- Conduct an experiment in which observers search for targets in real-world scenes; the 
target preview is either exactly the same as in the containing image, or a cartoon icon 
representation of it 

- Determine relationship between features of target preview and features of fixated 
locations in the image 

- Investigate factors that influence how humans choose locations of future fixations in 
order to improve computational models of visual attention 

Chapter 2 of this report will give an overview of the human visual system, and present 

background information about previous research on the task influence of eye movements, scene 

content selected by active vision, computational models of visual attention, and performance 
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metrics.  Chapter 3 will discuss the eyetracking technology used to perform the experiments.  

Chapter 4 describes the replication of a classical experiment performed by Alfred Yarbus under 

more natural conditions.  Chapter 5 presents a visual search experiment in which the features of 

the target preview were varied.  Chapter 6 contains general conclusions and a discussion of future 

work.   
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Chapter 2 

2 Background 

2.1 Overview 

The following subsections give an overview of the nature of the human visual system and 

discuss research on saccadic eye movements, fixation patterns, and computational models of 

visual attention.  

 

2.2 The Foveal Compromise 

The human visual system is highly sophisticated, and allows for the subjective perception 

of a full field of high-resolution vision.  This perception is created by sampling the environment 

through a complex process that occurs below consciousness [Pelz and Canosa, 2001].  In 

everyday vision, the surrounding environment is sampled spatially and temporally by a pool of 

sensors located on the retina.  There are two types of photosensitive receptors used; the first is the 

cone, which is used for color vision during normal levels of illumination.  The rods, on the other 

hand, are highly sensitive and are useful in low levels of illumination.  These sensors are not 

evenly distributed throughout the retina, as in a CCD camera; the cones are clustered on the back 

of the retina near the optical axis and comprise the fovea, while a greater number of rods compose 

the periphery, as illustrated in Figure 2. 
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Figure 2: (a) Degrees of visual angle relative to the position of the fovea in the left eye. (b) Distribution of 
rods and cones on the retina of the human eye [Wandell, 1995]. 

 

Although we perceive high resolution vision everywhere, it is only in the fovea that we 

have high-resolution capabilities.  The central 1-2 degrees of the visual field is represented with a 

resolution that is almost 100 times greater than the periphery [Rao, et al., 1996].  In fact, a larger 

amount of computational resources in the cortex is responsible for processing the central areas in 

comparison to peripheral areas [Palmer, 1999, page 155].   

In order to create the effect of high resolution everywhere with our resolution-limited 

system, it is necessary to move the detector across the visual field rapidly. The oculomotor 

system allows humans to move their eyes at speeds up to 700 degrees per second [Rao, et al., 

1997]. These eye movements are used to stabilize an image on the retina, follow an object that is 

moving, or to reorient the eye to gather new information about a scene.  On average, a person 

makes over 100,000 eye movements every day.  Saccades are rapid, ballistic eye movements that 

reorient the fovea to new targets that require high acuity or that are of interest for a given task. 

Saccades take only 150-200 milliseconds to plan and execute, and the actual movement of the eye 

is completed in only 20 milliseconds + 2 milliseconds per degree of visual angle.  During the 

execution of a saccadic eye movement, perception is suppressed so that blurring of the retinal 

image is not perceived.  Fixations occur when the eye pauses at a particular spatial location and 

typically last about 250 milliseconds in visually engaging tasks such as reading.  It is during these 

brief pauses that high resolution information about the visual environment is collected.   

Eye movements are external manifestations of selective visual attention.  By studying 

these eye movements, it is possible to understand how visual attention is deployed in the 

environment in various conditions and tasks [Pelz and Canosa, 2001].   

a) b)
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2.3 Monitoring Eye Movements 

The mechanics of the oculomotor system have been studied in depth through experiments 

in controlled laboratory settings.  Typically, eye movements are tracked as observers are asked to 

perform simple tasks while the head is held stationary.  These tasks involve looking at small 

lights or searching for a specific shape in a field of similar shapes.  While these research studies 

have learned much about the visual system, the findings cannot be applied to visual perception 

during complex, natural tasks.  Several studies have shown significant differences between eye 

movements when the head is fixed and eye movements when the head is allowed to move freely.  

For example, it was found that retinal image stabilization decreased when the subject’s head was 

not supported [Skavenski, et al., 1979].  Other research showed that saccades are faster and more 

accurate when the head is free to move [Collewijn, et al., 1992].  Also under natural conditions, it 

has been seen that vergence eye movements (counter-rotation of the eyes) are carried out at a 

higher velocity than previously thought [Steinman, et al., 1990].  

2.4 Eye Movements and Picture Viewing  

2.4.1 General behavior during picture viewing 

The first thorough objective investigation into how people look at pictures was published 

in 1935 by Guy T. Buswell [Buswell, 1935].  Prior to his research, most information about eye 

movements was based on subjective and introspective analysis. In his experiments, Buswell 

recorded eye movements of over 200 participants as they viewed 55 photographs of various types 

of fine art.  He compared eye movements of trained and untrained artists, but found no significant 

differences.  However, he concluded that although no two subjects exhibited the exact same 

viewing behavior, two general classes of viewing behavior could be formed. The first is 

represented by a global survey of the image, where subjects made brief fixations, averaging 210 

milliseconds, over the main features of the image.  The second behavior is characterized by long 

fixations, averaging 350 milliseconds, over smaller sections of the image.  In general, the global 

fixations were made early, followed by longer fixations as viewing time increased.  

When fixation patterns were plotted collectively over a specific image, areas of high 

fixation density often corresponded to “information-rich” regions in the image.  This suggests that 

observers fixated on the same spatial locations in the image, but not in the same order over time.   

Generally, people did not randomly explore the images.  Instead, they focused on foreground 

elements including faces and people, and rarely focused on background elements.  



8 

2.4.2 Task dependencies of eye movements 

In 1967, Alfred Yarbus reported that as a subject viewed I.E. Repin’s painting entitled 

They Did Not Expect Him, eye movement patterns changed when different instructions were 

given, as shown in Figure 3. For example, when the observer was asked to remember the clothes 

the people in the painting are wearing, or to estimate the age of the people, the most informative 

regions (as defined by the task) received the most fixations. Eye movements were recorded for 

three minutes for each instruction, and while this is a very unnatural viewing condition, the 

results suggest a high degree of task influence on visual behavior.  

 

Figure 3: Seven records of eye movements by the same subject while viewing a painting (top left). Each 
record lasted three minutes.  (a) Free examination of the picture. Subsequent records were made after the 
subject was asked to: (b) estimate the material circumstances of the family in the picture, (c) give the ages 

of the people, (d) surmise what the family had been doing before the arrival of the "unexpected" visitor," (e) 
remember the clothes worn by the people, (f) remember the position of the people and objects in the room, 
(g) estimate how long the "unexpected visitor" had been away from the family [Yarbus, 1967, adapted from 

Figure 109]. 

 

Research presented by Molnar in 1981 also showed that eye movement patterns change 

depending upon the task given to observers.  A group of fine-art students viewed eight classical 

paintings as their eye movements were recorded.  Half of the group was told that they would later 

be questioned about what they saw.  The other half was told that they would be asked about 

aesthetic qualities of the painting.  Molnar found that fixations were much longer for the group 

making aesthetic judgments.  In other research done by Nodine, Locher, and Krupinski in 1991, it 

was found that composition of images affected eye movement patterns of trained artists.  

Observers made long fixations and tended to focus on spatial relationships between foreground 
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objects and background.  Untrained viewers made shorter fixations, and focused on semantically 

important regions of the image.  

In a study [Babcock, Lipps and Pelz, 2002] in which subjects were eyetracked as they 

took digital photographs and later cropped them, it was shown that eye movement behavior 

differed between the two tasks.  During image capture, each subject was asked to take a 

photograph of a person, sculpture, and interior environment.  The amount of time spent looking at 

the primary object, surrounding environment, and camera differed between subject matter.  

However, as the subjects cropped the same photographs that they took, the differences found 

between scenes in the image capture task were not found. 

Research by Canosa [Canosa, 2003] also explicitly showed differences in visual routines 

for subjects performing different tasks.  First considering low-level eye movement metrics, it was 

found that mean fixation duration and saccade amplitude vary between tasks.  For example, 

visually engaging tasks such as reading and sorting blocks elicited short fixation durations of 200-

350 milliseconds, as well as small saccade amplitudes of 4-6 degrees of visual angle.  Other tasks, 

such as walking down a hallway or having a face-to-face conversation elicited longer fixation 

durations as well as larger saccade amplitudes. Differences between fixation locations were also 

shown.  Subjects performed different tasks in the same environment, and it was found that an 

average of 65% of fixations were on task-relevant objects, or objects that may be potentially 

useful.  Figure 4 shows the amount of time spent looking at various objects in a washroom, across 

three different tasks: washing hands, filling a cup with water, and combing hair.   

 

 

Figure 4: Relative amount of time spent on objects in the washroom environment for all subjects.  Note that 
fixations on hands/water area for “fill a cup” is 52%, and fixations on mirror for “comb your hair” is 90%. 

[Canosa, 2003, page 151]. 
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These studies suggest that patterns or locations of fixations cannot be predicted by the 

structure of the stimulus alone. Rather, eye movements are guided by the interaction between the 

contents of the stimulus with the perceptual goals of the observer.   

2.4.3 Idiosyncrasies of eye movements 

Noton and Stark found that observers execute very characteristic scan paths, or temporal 

sequences of fixations, when repeatedly viewing a particular image.  However, there is much 

variation between these scan paths across different observers viewing the same image; this result 

is in agreement with previous findings that subjects tend to fixate on similar regions but in 

different temporal sequences [Buswell, 1935].  The authors suggest that perception proceeds in a 

serial fashion, in which a growing collection of fixated features facilitates recognition.  

Another study by Andrews and Coppola in 1999 investigated whether temporal and 

spatial characteristics of eye movements are idiosyncratic. Subjects were eyetracked under five 

different viewing conditions for comparison: in a dark room, while looking at simple textured 

patterns, while looking at a complex natural scene, while performing visual search, and while 

reading. In general, the visual environment had significant influence on the mean saccade size 

and fixation duration.  It was also found that the mean fixation duration and saccade size when 

viewing a complex natural scene covaried significantly with those parameters in the absence of 

visual stimuli (dark room).  Similarly, the same spatio-temporal parameters covaried between 

reading and visual search, but did not correlate with patterns of eye movements in the other visual 

environments, such as viewing a complex scene.  From this analysis, the authors claim that an 

individual’s eye movements in a dark room predict the pattern observed when viewing a complex 

natural scene, i.e., there is significant endogenous influence on oculomotor control. 
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2.5 Scene content selected by foveal vision 

2.5.1 Statistical analysis of fixated regions of images      

A study by Krieger, Rentschler, et al. [2000], investigated statistical properties of fixated 

regions of images. The 49 images included photographs of people, natural environments, man-

made structures, cartoons and abstract artwork, and were presented in grayscale at a resolution of 

512 x 512 pixels. The stimuli subtended 18 x 18 degrees of visual angle, and were present for 5 

seconds.  Eleven subjects’ eye movements were recorded using a dual Purkinje-image eyetracker, 

which required that the subjects head be fixed during the experiment. Subjects were instructed to 

view each image as carefully as possible, to be able to perform subsequent tests with the images. 

For each image, small regions (author does not give size of regions) around fixation 

points were extracted for statistical analysis. Initial analysis showed that in comparison to 

randomly selected regions, fixated regions contained higher spatial variance, suggesting that 

saccadic eye movements avoid regions with little structural content. However, a closer look at the 

power spectra of the fixated and random regions show no significant difference in structure.  

Further analysis into the image regions’ bispectra yielded some differences.  The bispectrum is 

the Fourier transform of an image which has been multiplied by two shifted copies of itself.  The 

bispectrum of fixated regions was more circular in shape in comparison to the bispectrum of 

random regions, suggesting that the eye selects regions of an image that contain strong statistical 

dependencies between frequency components of different orientation.  These regions include 

curves, occlusions, and corners, rather than straight lines and edges.  

A similar study by Reinagel and Zador [1999] showed agreement regarding the higher 

spatial variance (local contrast) of fixated regions, but found conflicting results regarding second-

order statistics.  Subjects were eyetracked with an IScan RK-416 infrared pupil tracking system 

as they viewed grayscale images subtending 23 degrees of visual angle. Square image patches (1 

x 1 degree) were extracted at gaze positions every 20 milliseconds, a small percentage of which 

are samples during saccades.  When analyzing the spatial correlation between central pixels at the 

points of fixation and neighboring pixels, they found significantly lower correlation in the fixated 

regions compared to randomly chosen locations.   

Parkhurst and Niebur [2003] repeated the analyses conducted by Krieger, et al., and 

Reinagel, et al., to determine why conflicting results were found.  Four large databases of images 

(300 images total) were used, containing images of: fractal patterns, natural landscapes, buildings 
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and city scenes, and home interiors.  Four participants were eyetracked (IScan RK-416) while 

they viewed images subtending 30 degrees of visual angle horizontally and 22.4 degrees 

vertically.  Images were displayed at a resolution of 640 x 480 pixels in 16-bit color.  Each image 

was displayed for 5 seconds, and images were blocked according to image type.  

Image patches at points of fixation were extracted and used to create an ‘image ensemble’ 

for further analysis.  Image ensembles were also created from randomly generated locations for 

each image.  To account for any misleading results caused by a central bias of fixations, image 

ensembles created by participants’ fixations were applied to random images (image-shuffled 

ensembles).  Ensembles were also created using various sizes of round image patches.  Average 

contrast of the image patches were found for each image database, for all image patch sizes, and 

it was found that the amount of local contrast varied with image type as well as image patch size, 

as shown in Figure 5.  The local contrast of fixated regions was found to be significantly higher 

than in both the image-shuffled and uniformly random ensembles.  Interestingly, the magnitude 

of this difference also varied with image type.  For images that contained a higher amount of local 

contrast, larger differences were seen between the local contrast fixated regions compared to the 

image-shuffled.  Also, this difference was found to be largest for image patches with a radius of 

about 1 degree.   

 

Figure 5: Average contrast in each image database as a function of image patch size in the participant 
selected image ensemble (dashed line; circle), the uniformly selected image ensemble (solid line; square) 
and the image-shuffled ensemble (solid line; triangle). Error bars represent 1 standard error of the mean 

contrast. Arrows indicate maximal difference between participant-selected and the image shuffled 
ensembles. Regions with non-significant differences between the participant-selected and the image-

shuffled ensembles are lightly shaded [Parkhurst and Niebur, 2003].  
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The two-point correlation between pixels at the center of the image patch and 

neighboring pixels was calculated.  This analysis showed a significantly lower correlation value 

for fixated regions for all image types, which is consistent with the findings of Reinegal, et al.  

Again, the largest amount of decorrelation was found between pixels at the center of gaze and 

pixels at a radius slightly larger than 1 degree.  The magnitude of difference in correlation 

differed from the results of Reinagel, et al.; the authors suggest that this is a result of differences 

in analysis techniques. Reinagel used points of gaze, including samples during saccades when 

perception is suppressed, rather than points of fixation.  Also, Reinagel averaged over horizontal 

and vertical orientations only, rather than all orientations.  

To compare this to the results of Krieger, et al., spatial autocorrelation was performed 

with the image patches.  This method is the spatial-domain equivalent to the Fourier analysis 

performed by Krieger.  It was found that the correlations resulting from the autocorrelation 

technique were higher than the two-point correlations.  Also, the differences between correlations 

of the fixated and random image patches were smaller.  The authors claim that the difference in 

analysis techniques and small image sample size are the primary causes of the discrepancy in 

results.  The autocorrelation analysis measures the average correlation between any two points in 

the image patch separated by a certain distance, whereas the two-point spatial correlation 

measures only the correlation between the central pixels and others displaced by a certain 

distance.  This also means that the autocorrelation technique is inherently influenced by image 

patch size. However, the comparison of central pixels at the point of fixation with the surrounding 

pixels is not appropriate given the accuracy of the eyetracker, which is on the order of 0.5 to 1 

degree of visual angle.  The authors show that for various image patch sizes, the difference in 

correlation between the fixated regions and random regions decreases with increasing image 

patch size.  

2.5.2 Discrimination (Classification) Images 

Rajashekar, et al. [2002] conducted a visual-search experiment in which subjects 

searched for a simple shape (shown in Figure 6) that was embedded in random noise.  The noise 

used had a frequency spectrum amplitude that was inversely proportional to the frequency, also 

called “1/f noise.”  Three subjects were eyetracked using an SRI Generation V Dual Purkinje 

eyetracker, which has an accuracy of < 10’ of arc.  Horizontal and vertical eye positions were 

sampled at 200 Hz. 
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Figure 6: Targets used in visual search experiment. From [Rajashekar, et al., 2002] 

At each fixation location, the surrounding patch of 128 x 128 pixels was extracted (4 x 4 

degrees of visual angle).  The patches of the noise image were averaged to produce a 

“discrimination image” (also called a “classification image” in the field of psychophysics).  This 

image will reveal any image features that the human visual system uses as a “filter” or “template” 

to search for the target. The left side of Figure 7 shows the resulting discrimination image when a 

subject searched for a dipole.  Pixel values that were not significantly different from the mean 

were set to an average gray value in order to more easily visualize pixels that are significantly 

different from the mean.  The right image in Figure 7 shows the discrimination image created 

from an equal number of random image locations. Interestingly, a structure emerges in the 

discrimination image that contains features present in the preview target (dark upper region, 

bright lower region).  This effect extends to other targets as well, as shown in Figure 8.  

 

Figure 7: Discrimination image from fixated locations during dipole search (left), discrimination image 
from an equal number of random locations (right).  Pixel values that were not significantly different from 

the mean have been set to gray. From [Rajashekar, 2002]. 

 

Figure 8: Discrimination images created from fixations (from one observer) made during search for each of 
the three different search targets, as well as an image produced from random locations. From [Rajashekar, 

2002]. 
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The evidence presented in this paper suggests that the visual system may use a linear 

filtering technique to guide saccadic eye movements to regions of the image that may contain a 

subset of features in the target, thus suggesting that the visual system is primarily driven by the 

bottom-up features.  In a more recent paper [Rajashekar, et al., 2004], the discrimination images 

are shown for the other two observers; the images do not contain the exact same spatial structure 

as those presented above, showing idiosyncrasies between observers’ strategies. The authors also 

expand on the previous analysis by filtering the noise image with each observer’s discrimination 

image.  The result is a correlation map, where peaks indicate where the image closely matched 

the kernel.  Clusters of fixations from all three observers were overlaid on the correlation map to 

qualitatively visualize how well the map predicts locations of fixations. In the examples given, 

the map predicts locations of fixation very well. The Kullback-Leibler distance was used as a 

metric to quantify the similarity between the map and a fixation density map.  The resulting 

Kullback-Leibler distances were found to be smaller that those measured from maps created by 

using the ‘random’ discrimination image as a kernel.  Additionally, the distance was about the 

same value as measured using a map generated by filtering the original target with the noise 

image.  These results show that in this task, the visual system is not random, but uses a very 

efficient filter that resembles (in spatial structure) the target.  Also, observer’s discrimination 

images are good fixation prediction kernels. However, the design of the experiment did not allow 

for any interference from top-down or cognitive features.  It is difficult to say whether this linear 

filtering strategy may be used by the visual system when searching complex, real-world scenes. 

2.5.3 PCA of natural images 

A study by Hancock, Baddeley, et al. [1992], aimed to extract the principal spatial 

components found in images of natural scenes.  In these types of images, nearby pixels will often 

be part of the same object and are therefore statistically related.  Principal components analysis is 

a common method for analyzing the inter-relations between variables. A set of 15 images of 

natural scenes was used; these included people, animals, plants and terrain, but did not include 

any obvious horizons or man-made structures.  The images were grayscale, and 64x64 pixel 

pieces of the original 256x256 pixel images were chosen at random for analysis. The image 

samples were masked with a Gaussian window in order to remove any effects created by the 

edges of the image windows. To find the principal components (PCs), the eigenvectors of the 

correlation matrix of the 4096 variables (pixels) were found using a neural network technique.  

The resulting PCs are shown in Figure 9.  The procedure was also performed on copies of the 

input images that were rotated by 45 degrees, and resulted in the same PCs also rotated by 45 
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degrees, suggesting that the horizontal and vertical orientations of the first few components were 

artifacts only of the image content itself.  The PCs were also found to be independent of scale of 

the input images.  The results were verified using a larger set of 40 images, containing some man-

made structures as well as more natural images, and produced PCs of similar shape and output 

variance.  

 

 

Figure 9: First 15 principal components of natural images, numbered from left to right, top to bottom 
[Hancock, et al., 1992]. 

 

The procedure was also performed on images of text documents of different scales.  This 

resulted in PCs resembling Gaussian-modulated sinusoidal patterns oriented either horizontally or 

vertically. These PCs also changed with scale of the input image, unlike those of natural images. 

The first few PCs of natural images have the general form of receptive fields that are 

thought to be used in the early stage of visual processing in humans as well as some animals 

[Palmer, 1999, Chapter 4]. A natural question is whether the early visual cortex is performing 

such PCA. PCA is an efficient method of detecting the most important information due to the fact 

that all PCs are mutually orthogonal, or independent.  However, the authors claim that it seems 

more likely that various constraints operating in the primary visual cortex lead it to do something 

other than PCA. 

2.5.4 Weighting of Features 

In the experiment by Rajashekar, et al. [2002], presented above, a similar PCA was 

performed on the image patches at fixation locations.  When comparing the first few principal 

components between the circle search and the dipole search, the spatial features were similar.  

However, in the dipole search, a horizontal pattern produces a larger PCA score (weight) than the 
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other features. For the circle search, the first horizontally oriented PC and vertically oriented PC 

were nearly equally weighted. This suggests that during a simple visual search task in random 

noise, the visual system may selectively weight ‘basis’ features or channels that match the target.  

In an experiment conducted by Navalpakkam, et al. [2004], observers were eyetracked as 

they searched for a target amongst distracters. The target consisted of one horizontal line, and one 

vertical line conjoined in an “L” shape, shown in Figure 10.  The distracters were designed to 

either contain the same amount of features as the target, more of those features, or new features. 

Relative numbers of fixations falling on each of the three types (Same, More, and New) were 

compared.  It was found that subjects fixated more on the Same distracters than on the More and 

New type.  This indicates that the visual system may actually suppress certain target features 

when performing a simple visual search task. 

 

Figure 10: Target and distracters used in search experiment. From [Navalpakkam, 2004]. 

2.6 Models of Eye Movements and Visual Attention 

In recent years, a large amount of work has been done in the areas of active vision 

modeling for use in artificial vision systems. The goal of these models is to locate areas of interest 

within a scene, and then shift attention (or computational resources) to those areas sequentially 

over time.  Each model begins with low-level information of the visual scene, typically pixels of 

an image of a natural scene.  By processing these images in a way that mimics early visual 

processes, ‘saliency’ can be determined at each spatial location of the image.  In this sense, these 

models are purely “bottom-up” in that they do not take into account any high-level or cognitive 

information about the scene, the viewer’s goal or previous experiences.  As discussed earlier in 

this chapter, these factors have a significant influence on a viewer’s behavior.   A few researchers 

are beginning to investigate how cognitive or “top-down” information about the scene or viewer’s 

task can be integrated into these models.    
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2.6.1 Feature integration and retinotopic maps 

There exists physiological evidence of the presence of retinotopic feature maps which 

contain information about the presence and location of certain features.  These retinotopic feature 

maps code different visual properties including redness, greenness, orientation of edges, etc., 

while retaining spatial location [Treisman, 1980]. 

2.6.1.1 Saliency Maps 

A computational model first suggested by Koch and Ullman [1985] and implemented by 

Parkhurst, Law & Niebur [2002] as well as Itti & Koch [1998, 2000], utilizes color, intensity, and 

orientation feature maps in order to create an overall saliency map of a visual scene.  Given an 

input digital image in RGB color space, feature maps for each of the three categories are 

generated at various resolutions, and then combined to make three feature maps.  The three maps 

are then combined to create a master topographical saliency map.  A ‘winner-take-all’ mechanism 

locates the area of highest saliency, and directs attention to that location.  The saliency of that 

area is then depressed, or inhibited, and the next area of high saliency is then chosen, and so on.  

Attention is directed to a new location every 30-70 milliseconds, and attended locations are 

inhibited for 500-900 milliseconds [Itti, et al., 1998]. 

This model is inspired by the behavior and neural architectures of the early primate visual 

system, but all computation is performed in RGB space.  Although it is biologically plausible, it 

does not correspond well with human saccadic eye movements in natural tasks, even when a 

person is freely viewing a scene [Canosa, 2003]. However, the model is widely used as a basis for 

many active computer vision systems because it is dependent only on low-level visual 

information.  

Recent work has expanded on the model to incorporate more top-down influence to mask 

or boost saliency of various regions.  Walther [2002] uses a modulated saliency map to determine 

the location and size of regions that are likely to be objects in a scene.  Instead of using the final 

topographical saliency map, Walther uses the most influential feature map as a mask to modulate 

saliency.  The results show promise in quickly identifying regions of probable objects in which 

computational resources can then be allocated for further object recognition.   
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2.6.1.2 Conspicuity Map 

A model developed by Canosa [2003] built upon the salience model and incorporates 

high-level information and task-specific constraints.  The first piece added to the salience model 

was a preprocessing step that converts the input RGB image into a representation in terms of the 

early physiological responses of the human visual system.  The RGB image was first converted to 

XYZ tristimulus values, which take into account the spectral properties of the display device as 

well as the color-matching functions of the CIE Standard Colorimetric Observer.  The XYZ 

values were then converted into long (L), medium (M) and short (S) wavelength cone responses, 

as well as rod responses.  The L, M, and S images were used to create two color-opponent 

channels and one achromatic channel.  The achromatic channel was also weighted with the rod 

response, and used for subsequent spatial processing. The two color channels were combined to 

create one color feature map. 

In parallel, the oriented edge and “proto-object” maps were computed from the 

achromatic channel. The orientation map was created through convolution with four oriented 

Gabor filters of different spatial frequencies (via Gaussian Pyramid).  At this point, the responses 

of different spatial frequencies were weighted according to the contrast sensitivity function of the 

human visual system.   The proto-object map was another addition to the salience model, and 

found potential objects in the scene by detecting texture from edge densities.  First, a local 

estimate of the background was subtracted (figure/ground segmentation), the image was then 

thresholded and a Canny edge operator was applied.  Morphological operations were performed 

to fill holes and smooth boundaries.  The result was a binary mask that was used to enhance 

regions of the saliency map that are potential objects, and inhibit uniform regions.  

In Canosa’s model, the color (C), intensity (I), and edge (E) maps were combined with 

equal weighting to create the basic saliency map, referred to as the CIE map.  The CIEP map 

included the proto-object map (P) as an additional channel as well as a binary mask.  Finally, the 

C_Map was the CIEP map with unique weightings for the different channels, given by Equation 

(1) below.  The weights were found via a genetic algorithm trained on data collected from 

eyetracking experiments; they are image specific and are used only to show that the performance 

of the model can be improved when the channels are weighted.  Figure 11 shows an example 

input image of a room containing a copy machine, computer, and office supplies.  The CIE map 

found the ceiling light, wall, floor, and some objects on the desk to be most salient, whereas the 
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C_Map allotted high conspicuity values to the computer monitor and other machines more likely 

to be fixated on.  

( ) PwPwEwIwCwMapC ⋅⋅⋅+⋅+⋅+⋅= 54321_                                  (1) 

 

Figure 11: Example of input image and corresponding maps. Fixation locations for one subject during 
freeview are overlaid on the input image. Adapted from [Canosa, 2003], pg. 208. 

 

The four maps were compared to fixation data from 11 subjects who each freeviewed 152 

images.  The conspicuity values of the fixation locations (1x1 degree window) were averaged, 

and then divided by the mean value of the map for each image to create the F/M (fixation to map) 

ratio.  An F/M ratio near 1 means that the areas of high values in the map did not correlate with 

fixation locations, since a set of random locations would perform just as well.  As shown in 

Figure 12, the low-level saliency map (CIE) produced an F/M ratio near 1.  Both the P map and 

CIEP map produced F/M ratios which were considerably higher.  The weighted C_Map produced 

the highest mean F/M ratio, which was greater than 2.  Because the C_Map enhances the 
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computed conspicuity of potential objects in the image, it naturally preserved any location bias 

revealed in the fixation data, unlike other models that impose an artificial central location bias.  

 

Figure 12: Mean F/M ratios for four different maps, averaged across 152 images.  Taken from [Canosa, 
2003], pg. 206. 

Figure 13 shows F/M ratios for the C_Map of different locations of the image, compared 

across tasks.  Three different instructions were given as the subjects viewed the image of a 

hallway scene: “Put something in the garbage can,” “Find a bathroom,” and “The fire alarm just 

went off.”  The F/M ratios were computed using only one of nine sections of the C_Map.  In this 

example, there is a strong central bias, demonstrated by the high F/M ratio for section 5 for all 

tasks. However, the section of the image containing the exit sign produced a high F/M ratio for 

the “Fire alarm” task.  Also, sections 4 and 6, where bathroom doors are likely to be found, 

produced high F/M ratios for the “Find a bathroom” task.  It is suggested that having a large 

database of empirically determined expected locations for various tasks would provide a way of 

introducing top-down information into computational models of attention.  Expected locations of 

novel scenes and tasks could be derived from existing information about similar scenes and tasks. 

 

Figure 13: Task influences on fixation locations for the hallway scene. The numbered sections of the image 
are shown on the left, and the F/M ratios of those sections are shown in the graph on the right.  Instructions 
heard before a subject viewed the image included: “Put something in the garbage can,” “Find a bathroom,” 

and “The fire alarm just went off.”  Adapted from [Canosa, 2003], pg. 223. 
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2.6.1.3 Region-based importance maps 

Wilfried Osberger [1998] has developed a model of assigning perceptual importance to 

regions of an image.  The model provides a robust prediction of a viewer’s locus of attention 

across a wide range of image content.  Evidence has shown that visual attention is directed 

toward objects rather than location, so the model begins with a rough segmentation of a scene 

into homogenous regions that are likely to be objects or parts of objects.  Computations are 

performed on each region in the image, and an importance factor for various features is assigned.  

These features include the region’s size, shape, intensity contrast, color contrast, 

foreground/background content, location, amount of skin tone, etc.  For each feature, an 

importance map is produced, which are combined via a weighted average to create a master 

importance map.  To define the weights of each feature in the final map, an eyetracking 

experiment was conducted to find the regions that are most perceptually important to humans. 

The features receiving the highest weights included location, foreground/background, and amount 

of skin tone.  The algorithm was trained on one set of images, and tested on a different set.  When 

the testing set was compared to human fixation locations, Osberger reports that 75% of viewers’ 

fixations occurred in the 30% area estimated as most perceptually important by the algorithm.  

The importance map algorithm is very modular and can easily incorporate additional 

features such as motion, which expands the algorithm’s application into motion video sequences. 

Also, weights can be easily adjusted so that the algorithm can be applied to various tasks, such as 

a visual search task in which the features of the target are known.  It also gives insight into high-

level perceptual features that guide saccadic eye movements, including the location of the region, 

whether it is part of a foreground object, and whether it contains skin tones.  These features 

proved to be more important in guiding eye movements than a region’s intensity contrast with 

neighboring regions, and other features used by the saliency model. 

2.6.1.4 Oriented spatial filter decomposition 

Rao, Zelinsky, et al., [1996] have constructed a model of saccadic targeting in visual 

search in order to gain insight into possible computational mechanisms that underlie the guiding 

of saccadic eye movements.  An eyetracking experiment was conducted in which subjects 

searched for an object in a natural scene (items on a table). The subject was shown a preview 

image of the target for 1 second, and then instructed to determine whether the target object was 

present in the following scene.  Eye movement records of four subjects showed that several 
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saccades were typical, each moving closer to the target object.  Rather than using only bottom up 

saliency models to generate scan paths, this model uses bottom-up scene representations in 

conjunction with previously memorized top-down object representations.  This iconic object 

representation is a feature vector containing the responses of an image patch to a set of oriented 

spatial filters (derivatives of Gaussians) at several different spatial scales.  Saliency images are 

made that compare the similarity between regions of the image with the known target feature 

vector. The algorithm begins by analyzing the saliency image of the largest scale, or coarsest 

spatial resolution.  A weighted population averaging scheme chooses a location that is the center 

of gravity between possible target locations. The process is iterated with smaller scales 

(increasing spatial resolution), until the target is fixated.  

The model assumes a coarse-to-fine matching mechanism, inspired by the variation in 

resolution of the retina.  Comparison between the model’s saccades and subjects’ eye movements 

show “remarkably good correspondence,” producing very similar histograms of placement of the 

first three fixations.  

2.6.1.5 Color histogram backprojection  

A study by Swain, Kahn and Ballard [1992] explores low resolution cues that are suitable 

for guiding saccades, and have shown that color cues are an efficient method of locating known 

objects by computational algorithms. An experiment was conducted in which a computer vision 

system performed visual search using only low-resolution color histograms as a guide in finding 

the target.  The technique is called histogram backprojection and effectively re-indexes the colors 

of an image with its ratio histogram value.  The ratio histogram is defined as the color histogram 

of the target divided by the histogram of the image.  The backprojection process creates a 

saliency map of sorts, in which colors that are not present in the target are deemphasized. The 

map is smoothed and dilated via convolution with a mask which is a circle of the same area as the 

object. A spatially variant sensor first locates the peak value of the map and performs further 

processing of high resolution color information to verify whether the object matches the target.  If 

not, the sensor chooses the next highest peak to evaluate.  The algorithm proceeds in a series of 

fixations and saccades, and its performance is measured by the number of saccades needed to find 

the target object.  The image used consisted of 32 un-occluded target objects consisting of cereal 

boxes, items of clothing, and other products. Out of the 32 items, 29 were correctly identified by 

the algorithm. Most were detected in 1-3 saccades, and the maximum number of saccades needed 

was 6.  
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2.6.1.6 Other algorithmically defined regions-of-interest (ROIs) 

Privitera and Stark [2000] conducted a survey of a wide variety of image processing 

algorithms that can be used to define regions-of-interest in images.  These algorithms include 

simple convolutions with various masks of different shapes, including an x-like shape, a center-

surround receptive field, Laplacian of the Gaussian, and Gabor masks of different orientation. 

Also used were measures of spatial frequency, energy, entropy, contrast, as well as transforms 

including discrete wavelet and discrete cosine transforms.  The goal of the study was to propose 

an engineering (rather than biologically plausible) approach to modeling vision and eye 

movements.  

The algorithms were each applied to a set of test images for which human fixation data 

was collected.  Comparisons between the first seven fixations and the seven most important 

regions (defined by each algorithm) were compared both spatially and temporally using a defined 

similarity metric.  Different human subjects looking at the same picture yielded a spatial 

similarity value of 54%, which is used as a guideline when comparing the performance of 

algorithms to humans.  Temporally, the similarity value fixated regions between subjects for one 

image was only 28%, which agrees with previous findings [Buswell, 1935; Yarbus, 1967] 

showing that humans tend to look in similar places but not in the same temporal order.  

After comparing the performance of the algorithms, it was found that the wavelet 

transform was most efficient in matching human ROIs (producing a high spatial similarity value) 

for several classes of images, most likely due to its implicit multiresolution analysis. The 

symmetry metric performed well on general images such as paintings, and the contrast metric 

correlated well for images of terrain. The discrete cosine transform performed poorly when 

compared to human fixation data.  

2.6.2 Performance Metrics 

2.6.2.1 Chance-Adjusted Cumulative Probability (CPa) 

The chance-adjusted cumulative probability (CPa) metric was developed by Parkhurst, et 

al. [2000] in an effort to make a distribution- and scale-independent metric for assessing the 

performance of a saliency model. The absolute magnitude of the stimulus dependence of visual 

selection is difficult to estimate given that the range of salience values are scaled or normalized 

on a per-image basis.  In the database of images used by Parkhurst, et al. (which contained natural 

landscapes, buildings and city scenes, home interiors and fractal images), the mean salience for 
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an image was usually between 30 and 35 units on a scale of 0 to 100.  The histograms of saliency 

values per image were in general positively skewed, resembling a Raleigh or log-normal 

distribution.   

For each fixation on an image, the cumulative probability of observing a salience value 

less than the value at the fixation location is calculated.  For each image, the cumulative 

probability of observing a salience value below the mean value of the map was also calculated, 

giving the cumulative probability expected by chance. This value was usually above 0.5 because 

the distributions were positively skewed.  The chance-adjusted cumulative probability (CPa) is 

given by Equation (2). This metric was then used by Parkhurst, et al., to estimate the magnitude 

of the influence of bottom-up stimulus properties on visual selection.  A value of 0 indicates that 

fixations were essentially random, and a value of 1.0 indicates that fixations fell only on regions 

of very high salience as defined by the model.  

CPa = (observed cumulative probability – chance cumulative probability)              (2) 
        (1.0 – chance cumulative probability) 

 

2.6.2.2 F/M ratio 

The metric used by Canosa [2003] is also designed to be distribution- and scale-

independent.  For each fixation location, the value of the salience map is extracted.  That value, F, 

is then divided by the mean salience value of the entire map, M.  This value is referred to as the 

F/M ratio.  If the ratio is near 1, then the model did not match locations of observed fixations 

more than expected by chance.  This metric is somewhat sensitive to the mean of the salience 

map, but not to the range that the map is scaled to.  For example, a map for a specific image has a 

mean value of 20.  An observed (fixated) location has a value of 60, producing an F/M ratio of 3.  

Now imagine a second map, with the same shape of distribution as the first image, but shifted 

toward a higher mean of 40.  An observed value of 80 would produce an F/M ratio of 2.  In both 

cases, both the difference in salience units and the chance-adjusted cumulative probability remain 

the same.   

To compare the behavior of the CPa and F/M Ratio metrics, six salience histograms were 

simulated.  These included normal, log normal, Rayleigh, hyperbolic tangent, and uniform 

distributions, as shown in Figure 14.  Figure 15 shows a comparison of the CPa and F/M Ratio 

metrics for each distribution. For each possible saliency value between 0 and 100, the metrics 

were computed and plotted to make one line per distribution. Values for the CPa converge to 1 as 

the saliency value increases, whereas the maximum possible F/M ratio is completely dependent 
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on the mean saliency.  The rate at which the CPa increases is dependent on the shape of the 

distribution; this slope changes if the distribution is not uniform, whereas the rate of increase of 

the F/M Ratio is constant within each distribution. 

 

Figure 14: Simulated histograms of salience values 

 

Figure 15: Comparison of the behavior of CPa and F/M Ratio metrics for the histograms shown in Figure 
14.  The mean salience of each distribution is marked with a circle.  
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2.6.2.3 ROC Curve Area 

A common analysis tool for signal detection experiments in the field of psychophysics is 

the Receiver Operating Characteristic Curve.  This curve shows the number of true positives (or 

“hits”) compared to the number of false positives (“false alarms”) for a particular binary threshold 

that separates two distributions, as shown in Figure 16.  These distributions are typically thought 

of as a noise distribution, and a signal-plus-noise distribution. Example ROC curves are shown in 

Figure 17.  For threshold A the number of hits is large while the number of false alarms is small, 

indicating that the two distributions can be discriminated with few errors. For threshold B, the 

number of hits is only slightly higher than the number of false alarms, meaning that the signal and 

noise distributions can not be discriminated accurately.  As distributions are more easily 

distinguishable, the area under the ROC curve increases. 

 

Figure 16: Example probability distributions separated by a threshold 

 

Figure 17: Example ROC Curves 

For use as a performance metric of predictive models, [Tatler, et al., 2004] the 

distribution of saliency values that are not fixated can be thought of as the noise distribution.  The 

distribution of saliency values at fixated locations can be considered the signal plus noise 
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distribution.  Given a set of fixation locations, and an equal number of randomly chosen locations 

(“non-fixated”), a hit is defined as when the saliency value at a fixated location is above some 

threshold.  A false alarm is when the saliency value at a non-fixated location is also above the 

threshold.  Assuming the goal of the model is to assign high saliency values to regions where 

fixations are likely to occur, while assigning low values to regions where fixations are not likely 

to occur, the area of the ROC curve will be high if the model accurately predicts locations of 

fixation.   

2.6.2.4 Chance-Adjusted Saliency “Accumometric” (CASA)  

The Chance-Adjusted Saliency Accumometric (CASA), used by Carmi and Itti [2004], is 

defined as the weighted sum of the binwise differences between the frequency of salience values 

of human fixations and random fixations.  In other words, the histogram of salience values of 

random locations in an image (or video frame) is subtracted from the histogram of salience values 

of actually fixated locations.  This difference histogram is then weighted by the value of the 

salience at that bin. For this metric, salience maps are normalized to range from 0 to 1. The 

weighting step serves to attenuate any differences in low salience values. A high CASA value 

indicates that a.) human fixations differ from random, and that b.) human fixations fall on areas of 

high salience.  

Figure 18 shows three examples; in each example the histogram of random fixations is 

the same. The first column is an example where the human fixation locations corresponded with 

high salience values, producing a high CASA value of 0.29.   In the second column, the 

histogram of human fixations is uniform, producing a CASA value of 0.15.  The last column 

shows an example where human fixations fall mostly on medium to low salience values.  From 

this histogram, it seems that the example map does not do a very good job of assigning high 

values to locations where people are likely to look; however, because of the artificial weighting of 

each bin, the CASA value is very close to that of the second example.  The weighting step creates 

ambiguity, and may therefore not be an appropriate metric of the performance of a prediction 

model. Additionally, the number of bins used will change how certain values are weighted, and 

will thereby affect the CASA value, as illustrated in Figure 19.     
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Figure 18: Examples of computation of CASA values.  In each column, the first row represents the 
histogram of saliency values at locations of human fixations. The second row is the histogram using 

uniformly random locations. The third row is the difference between the Human and Random histograms.  
The last row is the difference histogram weighted by the saliency value of that histogram bin.  
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Figure 19: Example in which the number of bins used to create the histograms influences the resulting 
CASA value 
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Chapter 3 

3 Approach 

3.1 Overview 

Research summarized in Chapter 2 shows that eye movements are highly tailored to the 

observer’s perceptual goal, environment, motivation, experience, and expectations.  Therefore, 

creating one general model of visual attention is not feasible at this point in time.  Models that 

mimic human visual routines can be made more flexible and adaptive by incorporating prior 

knowledge of the task and environment, and the corresponding characteristic eye movement 

behavior. 

In this research study, properties of regions of an image that are chosen by saccadic eye 

movements will be studied and compared in specific tasks.  In [Canosa, 2000], it was shown that 

different tasks could be grouped according to the temporal characteristics of eye movements.  

Similarly, relationships between features of fixated regions and specific tasks will be investigated. 

This chapter will give an overview of the eyetracking methods used in the experiments 

discussed later.  Methods of analyzing image content at locations of fixation will also be 

described. 

3.2 Bright Pupil Configuration 

The eye movement records of the experiments presented in this thesis were obtained 

using a bright pupil video-based eyetracking system.  This type of system makes use of the fact 

that the back of the retina is highly reflective in the near-infrared.  By illuminating the eye with 
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an infrared (IR) LED that is coaxial with an IR-sensitive video detector, an image of the eye can 

be obtained in which the pupil appears as a bright circle, illustrated in Figure 20.  The 

illumination is also brightly reflected off of the cornea (first Purkinje reflection).  The difference 

in position of the center of the pupil and the corneal reflection varies with rotation of the eye; this 

vector difference is used to calculate the line of gaze.  Tracking the position of the pupil alone is 

not sufficient for an accurate track; if the camera moves with respect to the head, the system will 

mistake that shift for a shift of gaze.  The position of the pupil with respect to the corneal 

reflection does not change significantly if the eye camera is moved.   

 

Figure 20: a) An infrared source illuminates the eye. b) When aligned properly, the illumination beam 
enters the eye, retro-reflects off of the retina and back-illuminates the pupil. c) The center of the pupil and 
corneal reflection are detected and the vector difference computed by the ASL control box. (Illustrations 

from [Babcock 2002], with permission.) 

3.3 Video-based Eyetracking 

The Applied Science Laboratories (ASL) Model 501 video-based eyetracking system, 

shown in Figure 21, was used for the experiments presented in this thesis.  The system contains a 

head-mounted optics module, which is comprised of a miniature IR-sensitive CMOS video 

camera, an infrared LED illuminator, and a beam splitter used to align the illumination beam and 

camera so they are coaxial.  The optical path of the IR illumination beam is folded via a mirror 

that reflects IR and passes visible light.  This mirror directs the illumination toward the pupil and 

simultaneously reflects an image of the eye to the CMOS camera.  

A second miniature CMOS camera records video of the scene from the subject’s 

perspective.  A small laser and two-dimensional diffraction grating was added to the headgear 

and is used for calibration purposes (explained further below).  

The video signals from both the eye and scene camera are sent to the ASL control unit, 

which outputs a digital data stream of horizontal and vertical positions of the eye at a rate of 60 

Hz.  A video record is also recorded in which black crosshairs are superimposed over the scene 
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video indicating the subject’s point of gaze.  A small version of the eye camera video is 

superimposed using a picture-in-picture video mixer.  This reference provides information about 

blinks, track losses, and extreme eye movements. The output video record is recorded to MiniDV 

tapes using a JVC video deck.   

  

Figure 21: Applied Science Laboratories Model 501 eyetracker. 

 

3.4 Integrated Eye and Head Tracking 

The Applied Science Laboratories eyetracking system also provides support for the use of 

a head-tracking system. By integrating both the position of the eye in the head, and the head in 

space, the intersection of gaze on a predefined plane can be calculated. This allows for the 

tracking of eye movements without constraining the subject’s head. 

A Polhemus 3-Space Fastrak magnetic head tracker (MHT) was used in conjunction with 

the video-based eyetracking system.  The MHT uses a fixed transmitter, mounted behind the 

subject, and a small receiver that is attached to the ASL headgear.  Position (x, y, and z) and 

orientation (azimuth, elevation, and roll) of the receiver are reported with respect to the position 

of the transmitter.  

When using the MHT, the output data stream from the ASL control box reports the 

integrated eye-head data, the intersection of gaze on a 2-D plane, at a rate of 60 Hz.  This plane 

corresponds to the image display used in the experiments.  
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3.5 Eye and Head Calibration 

Before each experiment, the eye and head trackers were calibrated. The calibration 

process can be described as 4 steps: 

1. Optical alignment of the cameras and illumination source with the subject’s eye and 
scene.  Also, one laser point (produced by the diffraction grating) is aligned with a 
calibration point on the screen.  This provides feedback to the subject when asked to 
hold his or her head still during calibration. 

2. Definition of the nine calibration points (shown in Figure 22) with respect to the 
scene video image 

3. Recording the vector difference between the center of the pupil and corneal 
reflection as the subject fixates on each of the nine calibration points 

4. Recording the position and orientation of the subject’s head as he/she fixates on the 
central fixation point 

After these steps are performed, the calibration accuracy is assessed by examining the 

video record and the coordinates of the point of gaze on the image plane.  It is possible that the 

video record (eye gaze only) may be correct while the integrated point-of-gaze coordinates are 

incorrect.  If the headgear shifts on the subjects head, the integrated data will be offset.  The eye-

in-head position will still be correct since the relative positions of the pupil and corneal reflection 

do not change if the camera is moved with respect to the head (as described earlier).  

Once the calibration is finished and verified, the laser is turned off and the subject is free 

to move his/her head naturally. Subjects were re-calibrated if needed during the experiment.  

 

Figure 22: Set of nine points shown on the image plane during the calibration process 
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3.6 Fixation Location Accuracy 

The accuracy of the output fixation locations is dependent on several factors.  First, 

because the video system tracks the retro-reflection through the pupil and the corneal reflection, 

differences between each subject’s retina and shape of cornea may affect the tracking algorithm’s 

performance.  Secondly, using the MHT in conjunction with the eye tracker introduces noise if 

the subject moves his or her head very quickly or very frequently during the experiment, although 

the classification algorithm discussed below was designed to be less sensitive to these sources of 

noise.  In a previous study in which this system was used [Babcock, 2002], angular deviation 

between fixation points and target calibration points (during calibration checks) was found to 

range between 0.4 to 1.1 degrees across 26 subjects, with an average deviation of 0.7 degrees of 

visual angle.  Additional uncertainty of fixation location may be introduced by the algorithm used 

to classify fixations and saccades, discussed below.  An eye movement record was discarded if 

the final angular deviation was greater than 1 degree, or if more than 10% of the samples were 

classified as blinks or track losses.  

 

3.7 Fixation, Saccade, and Blink Classification 

As mentioned earlier, the horizontal and vertical positions of the point-of-gaze on the 

image plane is recorded at 60 Hz.  Fixations, saccades, blinks, and any track losses were extracted 

from this data stream using an adaptive-velocity threshold method developed by Constantin 

Rothkopf.  The velocity threshold chosen to differentiate between fixations and saccades changes 

dynamically with the amount of noise in the signal, which varies between subjects.    Figure 23 

shows an example of raw data samples from the eyetracking system, along with locations of 

classified fixations. The location of each fixation is the average location of the samples classified 

as being part of that fixation. This classification process outputs the times that each fixation began 

and ended as well as location on the image plane. 
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Figure 23: Example of raw data samples (small blue dots) and fixation locations as determined by the 
adaptive-velocity threshold method (large red dots). 

3.8 Offset Correction 

In the event that the eyetracking headgear shifted on the subject’s head, the output point-

of-gaze coordinates will be offset in the direction opposite to the movement of the headgear.  This 

offset can be seen when the fixation locations are plotted over the image. Fixation location data 

from calibration checks, plotted over the nine calibration points, provide information about any 

global offset caused by a shift in the headgear. Also, for each subject and each experiment, the 

output fixation locations were superimposed over the image using Matlab. These graphs were 

then compared to the video record of the experiment to determine any offsets. 

Offsets were manually corrected by adding the appropriate value to the horizontal and 

vertical fixation positions, as illustrated in Figure 24.  

Samples during a saccade 
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Figure 24: Example data from a calibration check during an experiment. Open, red circles represent the raw 
eye-head integrated data that was offset up and to the left due to movement of the headgear.  Blue, closed 

circles represent the offset-corrected coordinates.  

3.9 Stimulus Display 

For the experiments presented in Chapters 4 and 5, images were displayed on a 50” 

Pioneer Plasma display. Subjects were seated approximately 40” from the display, which 

subtended 50 degrees of visual angle horizontally, and 35 degrees vertically.  Images were 

presented in 24-bit color at a resolution of 1280 by 768 pixels.  One degree of visual angle 

corresponds to 25 x 21 pixels for an average viewer distance. 

 

 

Figure 25: Experimental setup showing the Pioneer 50” Plasma display, the eyetracking headgear, magnetic 
head tracker transmitter and receiver.  

MHT Transmitter 
MHT Receiver 
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Chapter 4 

4 Yarbus Revisited 

4.1 Overview 

This chapter discusses the work of Alfred Yarbus, the importance of his work, and the 

replication of his classical experiment that shows the influence of task on an observer’s viewing 

behavior.  Spatial and temporal characteristics of fixations are analyzed to find whether the 

results of the replicated experiment support the claims of Yarbus. 

4.2 Eye Movements and Vision 

The doctoral work of Alfred Yarbus was published in 1965 in Moscow.  In 1967, it was 

translated to English by Basil Haigh and Lorrin Riggs (editor) and published in the book, “Eye 

Movements and Vision” [Yarbus, 1967].  This collection of work spans a great number of topics.  

Yarbus researched and characterized the mechanics of the oculomotor system, including the 

velocities and durations of different types of eye movements.  He also showed photographic 

records of corrective saccades, curved saccades, and eye movements of patients with disorders 

such as nystagmus and glaucoma.  Most impressively, Yarbus constructed a series of miniature 

optical devices, or suction “caps,” that were attached to the eye in order to project images on the 

retina and record eye movements. 
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Figure 26: Diagrams of suction “caps” used. From [Yarbus, 1967]. 

An entire chapter is devoted the perceptual effects of stimuli presented stationary to the 

retina. These stimuli included blank fields, fields of high luminance and color contrast, and also 

flickering objects.    

Eye movement patterns were recorded for observers viewing both stationary and moving 

objects, including simple stimuli, text, and optical illusions. The last chapter of Eye Movements 

and Vision shows records of observers viewing complex objects such as paintings and 

photographs.  While he was not the first researcher to conduct this sort of analysis (see Buswell, 

1935), he was one of the first to investigate the relationship between a person’s eye movement 

pattern and his or her attention or thoughts.  

In Figures 107-112 of his book, Yarbus shows photographic records of people viewing 

I.E. Repin’s painting, “They Did Not Expect Him” (1884).  This is a very politically significant 

painting portraying a Russian revolutionary returning from exile.  All of Yarbus’ observers were 

highly educated and very familiar with the painting. In Figure 109, shown below, Yarbus shows a 

set of seven eye movement patterns of one subject as he viewed the painting; before each three-

minute viewing the subject was given a different instruction.  In the first viewing, the subject was 

not given a specific instruction, but only asked to look at the painting. Before each of the 

subsequent six viewings, the instructions were: “Estimate the material circumstances of the 

family in the picture,” “Give the ages of the people,” “Surmise what the family had been doing 

before the arrival of the ‘unexpected visitor,’” “Remember the clothes worn by the people,” 

“Remember the position of people and objects in the room,” and “Estimate how long the 

‘unexpected visitor’ had been away from the family.” 
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Figure 27: Figure 109 from [Yarbus, 1967]. 

There is a striking difference in the eye movement patterns between the different 

conditions. These differences are more pronounced than between records of seven different 

subjects freely viewing the painting without instruction.  From this experiment, Yarbus concluded 

that the eyes “fixate on those elements of an object which carry or may carry essential or useful 

information [Yarbus, 1967, page 211].”  The eyes are not reactively drawn to salient, low-level 

properties of the image such as bright regions or edges.  Instead, the elements fixated are those 

that provide most information for the task at hand.  As the task changes, so does the 

‘informativeness’ of certain regions, thereby changing the observers viewing behavior. 

Furthermore, the patterns and locations of eye movements give insight into what the observer was 

thinking; Yarbus was one of the first researchers to recognize eye movements as an external 

manifestation of cognitive processes.  
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Other than being qualitatively different, Yarbus also noted a “cyclic” pattern of eye 

movements.  Acknowledging that the three-minute view time was more than long enough to 

fixate on the important regions of the picture, he noted the fact that once these regions were 

fixated, the subject did not move on to examine the secondary elements and details in the picture.  

Instead, the observer looked at these primary regions again and again. Yarbus concluded from 

other freeview experiments that this “cycle” can last from a few seconds to many tens of seconds.  

Below are visualizations made by overlaying the original photographic records on an 

image of Repin’s painting.  

                  

Original Image     Freeview         

                

Estimate material circumstances                                Give the ages of the people 
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Surmise what family was doing    Remember the clothes of the people 

 

            

Remember the position of people                       Estimate how long away 

Figure 28: Visualizations of original photographic records overlaid on top of the stimulus 

4.3 Implications  

The results from this experiment are very significant in that they demonstrate a “top-

down” component of visual selection, showing that the human visual system is an active system. 

An observer’s cognitive goal and past experiences interact with the visual stimulus in order to 

execute an appropriate behavior.  The system is not passive; it does not randomly or uniformly 

sample the visual environment.  

4.4 Yarbus’ Methods 

Yarbus’ Figure 109 is very well known and often cited in literature concerning eye 

movements and behavior. The fact that is often not recognized or overlooked is that the records 

published are for only one observer.  The text “Eye Movements and Vision” does not make any 
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reference to other observer’s performing these tasks or producing similar results.  The original 

Russian journal article [Yarbus, 1961] contains the same set of records as shown in Figure 109 of 

the translated text.  

Also, each of the photographic records was made as the subject viewed the picture for 

three minutes at a time. During the recording, the subject’s eyes were anaesthetized and his 

eyelids were taped open with heated strips of adhesive plaster.  A small suction device (“cap”) 

holding a small mirror was then firmly attached to the sclera.  Light was projected onto the mirror, 

and reflected onto a piece of photographic film.  The subject’s head was constrained using chin 

and forehead rests.   

 

Figure 29: Figure of configuration of eyelids for recording eye movements. From [Yarbus, 1967, page 44]. 

 

Figure 30: Suction device containing small mirror used to record eye movements. From [Yarbus, 1967, 
page 30]. 
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Figure 31: Apparatus used in recording eye movements.  The setup contains chin and forehead rests, light 
sources, and a control panel. From [Yarbus, 1967, page 41]. 

 

4.5 Replication of Experiment 

Given the significance of Figure 109, and the fact that the records were made for only 

one subject using a constrained, and likely painful, experimental setup, it is important to know if 

many subjects show the same task-influenced eye movement patterns when the experiment is 

replicated under more natural conditions.  

For this experiment, each subject freely viewed a set of 57 digital images of paintings, 

photographs, and drawings while being eyetracked.  The subject’s head was unconstrained, and 

images were presented on a 50” Plasma display (see Chapter 3 for more information on the 

experimental setup).  On this display, the image of Repin’s painting subtended approximately 35 

by 35 degrees of visual angle, when seated 40 inches from the display, as illustrated in Figure 32. 
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The viewing was self-paced; the subject pressed the spacebar to move on to the next image.  

Between every 10 images, the subject was asked to look at a sequence of 9 points to check the 

accuracy of the track.  Subjects were recalibrated if needed (see Chapter 3).  Following the 

calibration check, a screen with written instructions was presented.  These instructions are the 

same as those reported in Yarbus’ book, and were also presented in the same order. (For the no-

instruction task, Repin’s painting was shown randomly within the first 10 images without any 

instruction; it was simply another painting within the set of random images.) The only exception 

is that “Estimate the material circumstances…” was reworded as “Estimate the financial 

circumstances…” because during the pilot experiments some subjects did not readily understand 

the meaning of the original wording.  When the subject had read the instruction, he or she pressed 

the spacebar to view Repin’s “They did not expect him.”  The subject then performed the task, 

which sometimes involved answering questions out loud.  When the subject completed the task, 

the spacebar was pressed to freely view the next random image.  Including the calibration checks, 

instruction screens, and repetitions of Repin’s painting, there were 78 images displayed during 

the experiment.  On average, the experiment lasted 15 minutes. Twenty-five subjects performed 

the experiment; seventeen were successfully eyetracked.  

 

 

Figure 32: Experimental setup for replication of Yarbus’ experiment.  
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A subset of subjects (12 of the 17) also freely viewed Repin’s painting for a forced three 

minutes following the first experiment.   At this point, the subject had seen the painting 8 times.    

One subject’s eye movements were recorded as he viewed Repin’s painting in three-

minute intervals for each of the seven tasks. For this experiment, no other images were shown 

between the tasks. This experiment lasted 21 minutes, plus the time the subject spent reading the 

instruction screens.  

4.6 Results 

Given that the results published by Yarbus were very qualitative, and lacked any 

information about the temporal sequence of viewing, it is difficult to make a direct, quantitative 

comparison between the results of the present experiment and Yarbus’.  In the following sections, 

several qualitative and quantitative methods are used to compare the eye movement patterns of 

subjects across the different tasks and viewing conditions.  

4.6.1 Self-terminated 

Figure 33 shows eye movement records of two subjects as they performed each of the 

seven tasks during this experiment.  Subject A, shown on the left, represents a typical subject.  

For this subject, the view times ranged from 6 to 92 seconds.  Although the view times are 

significantly less than 3 minutes, the eye movement patterns are remarkably similar to those 

published by Yarbus. Fixations in the “Freeview,” “Ages,” and “How long away” tasks fell 

primarily on faces and figures. The “Financial” and “Position” tasks elicited more spatially 

distributed patterns of fixations. Subject B represents an atypical subject, whose eye movement 

patterns are not drastically different between tasks.  Also, the view times were short, ranging from 

5 to 19 seconds. It is important to note that the subject did complete all tasks and answered the 

questions out loud; it is not the case that these records are a result of subjects not following 

directions.  
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Figure 33: Eye movement records from two subjects as they performed each of the seven tasks.  Subject A 
represents a typical subject whose view patterns resemble those published by Yarbus.  Subject B represents 

an atypical subject, whose view patterns do not differ significantly between task.  

 

Figure 34 shows the amount of time each subject viewed Repin’s painting for each task.  

For the “Freeview” task, subjects’ viewed the painting for, on average, only 9 seconds.  Nineteen 

seconds was the average time subjects spent answering the question, “Estimate the financial 

circumstances.”  When asked to give the ages of the people, the painting was viewed for an 

average of 50 seconds, which is significantly longer than any other task. For the tasks “Surmise 

what the family had been doing”, “Remember the clothes,” and “Remember the position of 

people and objects,” the image was viewed for an average of 25, 24, and 29 seconds, respectively.  

The last task, “Estimate how long the visitor has been away,” was completed in an average of 15 

seconds.  
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Figure 34: View times for each of the seven tasks in the order in which they were performed.  Black 
rectangles mark the average across 25 subjects. Error bars represent one standard error of the mean.  Tasks: 
1: Freeview; 2: Financial circumstances; 3: Give the ages; 4: Surmise what family was doing; 5: Remember 

the clothes; 6: Remember the position of people and objects; 7: Estimate how long the visitor was away 

 

Figure 35 shows histograms of fixation durations for 17 subjects for each task.  Listed on 

each graph is the distribution’s mean, median, standard deviation, and number of fixations. Each 

distribution resembled a Raleigh distribution in that they are all positively skewed.  The task 

“Give the ages of the people” elicited the longest fixations, which were 376 milliseconds on 

average.  About 14% (133) fixations were longer than 1 second in duration.  This distribution also 

had the largest standard error of 495 milliseconds. When judging the “Financial Circumstances” 

of the family, fixations were typically 250 milliseconds, which was the shortest average of all the 

tasks. 
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Figure 35: Histograms of fixation durations for each task across 17 subjects.   
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The image of Repin’s painting was segmented into 22 different regions (e.g., the man’s 

face, the man’s figure, chairs, floor, etc.).  The regions and associated labels are shown in Figure 

36. The total gaze duration in each of these regions was found for every subject.  These durations 

were then normalized by the viewing time for that particular subject and task to produce the 

percentage of time spent viewing each region.  The results for each task are shown in Figure 37, 

and are averaged across all subjects.  

 

Figure 36: Image segmented into 22 regions with associated labels.  The faces and figures of each person 
are two separate regions, although not labeled in this illustration. 
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Figure 37: Percentage of time spent viewing each region.  Error bars represent standard error of the mean 
across 17 subjects. 

Task #1

Task #7

Task #3

Task #2

Task #5

Task #4

Task #5
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During the freeview task, 20% of the time was spent fixating on the man’s face, followed 

by the faces of the mother, wife, maid, and children.  This result agrees with Yarbus’ observer’s 

behavior: the most fixations fell on the faces of the people followed by the figures.  

The distribution of gaze durations for the task “Estimate how long the ‘unexpected 

visitor’ was away” is very similar to that of the freeview task.  Again the faces received the most 

fixations.  In this task, more of the viewers’ time, around 35%, was spent looking at the man’s 

face and figure.  For this task, Yarbus noted particularly intensive movements between the faces 

of the children and man, in hopes to gain information from the expressions of the children.  

The task “Give the ages of the people” resulted in a more uniform distribution across the 

faces.  Yarbus reported that for this task, all of the observer’s attention was concentrated on the 

faces, with few saccades between faces.  

For the task, “Estimate the financial circumstances of the family,” the faces were again 

the most attended-to regions. However, the clothing and furniture received more fixations than in 

previous tasks.  Yarbus’ observer paid particular attention to the women’s clothing, armchair, and 

tabletop. 

For the task, “Remember the position of people and objects in the room,” every region 

received fixations in most cases, producing a more uniform distribution of gaze durations 

throughout the image.  The pictures on the wall were examined for a larger fraction of time (12%) 

than in other tasks.  Yarbus reported that for this task, his observer examined the whole room and 

all of the objects.  

When asked to “surmise what the family had been doing before the arrival of the 

unexpected visitor,’” the tabletop proved to be the most informative, in that viewer’s typically 

spent 30% of their time looking at it.  The piano and sheet music also received a larger percentage 

of viewing time than in other tasks.  These are also the regions that Yarbus’ subject attended to 

the most: “the observer directed his attention particularly to the objects arranged on the table, the 

girl’s and the woman’s hands, and to the music (Yarbus, 1967, page 192).”   

Lastly, when asked to “remember the clothes worn by the people,” viewer’s typically 

spent the majority of time examining the figures in the image, as did Yarbus’ subject.  It is worth 

noting that in every task, the faces of the people in the image were fixated.  

The fraction of time spent in each of the regions in the image can be thought of as a 22-

element feature vector.  As a measure of between-subject variability within each task, the 

Euclidean distance between each possible pair of vectors was found.  The average distances for 
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each task are show in Figure 38.  Also shown is the within-subject/between-task distances, 

averaged across all 17 subjects; this value was 0.39.  For the first six tasks, the between-subject 

distance is lower than the between-task distance, indicating that the eye movement patterns across 

subjects for that task were more similar than the patterns of one person performing different tasks.  

“Give the ages” task (#3) was the most similar between subjects, with an average distance of 0.26.  

The average distance for the “How long away” task (#7) was not significantly different than the 

within-subject distance, suggesting that observers used different viewing strategies to perform 

that task.    

 

Figure 38: Between-subject distance for each task defined by the average distance between region 
histogram vectors. Error bars represent one standard error of the mean.  The thick dotted red line represents 
the within-subject (between-task) distance, averaged across 17 subjects. The lines above and below the red 
line represent one standard error of the mean.  Tasks: 1: Freeview; 2: Financial circumstances; 3: Give the 

ages; 4: Surmise what family was doing; 5: Remember the clothes; 6: Remember the position of people and 
objects; 7: Estimate how long the visitor was away 
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The correlation coefficient between each pair of vectors was also computed.  The average 

correlation coefficient for each task is shown in Figure 39.  Also shown is the within-

subject/between-task correlation, averaged across all 17 subjects (shown as the red dotted line).  

The high correlation coefficients for the “Give the Ages” task (#3) and “Remember the Clothing” 

(#5) indicate that subjects’ behavior within these tasks were most similar. The “Remember the 

Position of People and Objects” task (#6) resulted in an average correlation coefficient of 0.16, 

which was below the average between-subject correlation coefficient of 0.23. 

 

 

Figure 39: Between-subject correlation for each task defined by the average correlation coefficient between 
region histogram vectors. Error bars represent one standard error of the mean.  The thick dotted red line 

represents the within-subject (between-task) correlation coefficient, averaged across 17 subjects. The lines 
above and below the red line represent one standard error of the mean.  Tasks: 1: Freeview; 2: Financial 

circumstances; 3: Give the ages; 4: Surmise what family was doing; 5: Remember the clothes; 6: 
Remember the position of people and objects; 7: Estimate how long the visitor was away 
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For each of the 17 subjects, there are seven feature vectors corresponding to each of the 

seven tasks, yielding 119 vectors.  A 22x119 matrix was constructed, and Principal Components 

Analysis (PCA) was performed on the data.  PCA can be used to display the data in the most 

informative way.  The first principal component (PC) represents the dimension in which most of 

the variability of the data lies.  The second is orthogonal to the first principal component, and 

represents the dimension in which the next largest amount of variability is contained, and so on.  

For this data, 28% of the variability is explained by the first PC; an additional 16% is explained 

by the second, and 11% by the third.  Figure 40 shows each of the 119 vectors projected onto the 

first and second PCs, and Figure 41 shows the projections on the first and third PCs.  Each point 

represents one subject viewing the image for one task.   

The first component seems to separate the data according to the fraction of time spent 

looking at faces.  In the tasks “How long away” and “Freeview,” subjects spent almost all their 

time examining faces, whereas for the tasks “What the family was doing,” and “Remember the 

Clothes,” subjects’ attention shifted to other objects in the scene. The second component may 

separate by which objects were attended to the most.  “What the family was doing” is a fairly 

distinct cluster, possibly caused by the amount of time spent on one single object, the tabletop.  

The third component differentiates between the tasks “Ages” and “How long away.”  The 

averages of these vectors, shown above in Figure 37, differ primarily in the amount of time spent 

on the man’s face.  Similarly, “What the family was doing” and “Clothes” differ from the other 

tasks in that one or two regions receive the majority of fixations.      
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Figure 40: Data projected onto first and second principal components.  Each point represents one subject 
performing one task. Twenty-eight percent of the variability is explained by the first PC; and additional 

16% is explained by the second. 

 

 

Figure 41: Data projected onto first and third principal components. Each point represents one subject 
performing one task.  An additional 11% of the variability is explained by the third component. 
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4.6.2 Enforced three-minute view, all tasks 

Figure 42 shows the eye movement records for the subject who viewed the painting for 3 

minutes for each task.  Figure 43 shows the fraction of time the subject spent viewing each of the 

22 regions. When compared to the average behavior during the self-terminated condition, shown 

in Figure 37, there are many similarities, which may support Yarbus’ idea of eye movement 

patterns being composed of cycles.  For example, for the “How long away” task, the subject spent 

most of his time looking at the man’s face, and the expressions on the faces of the mother, girl, 

and boy, which were also the most fixated regions in Figure 37.  The subject reported that he was 

trying to guess whether both of the children recognized the man.   For the “Financial” and 

“Position of Object” tasks, the histograms are more uniform, as they were for the self-terminated 

condition.  For the “Ages” task, this subject’s behavior was also similar in that almost all 

fixations fell on the faces, although he did spend some time examining the pictures on the wall.  

The histogram for “Clothes” is also similar, but the subject did spend almost an equal amount of 

time looking at the people’s faces as he did at their clothing.  

When guessing “What the family was doing,” the subject did examine the table top, but 

unlike in the self-terminated task where subjects spent almost 30% of their time, he did not spend 

more than 10% of the time viewing it.  Instead, more time was spent examining the faces of the 

people in the room; the subject reported that by the end of the task, he was developing a story 

about the characters in the scene, their personalities, and what they were doing.        

For the “Freeview” task, although the subject did spend time looking at the faces in the 

scene, many of the other objects, or “secondary details” were attended to.  The subject was 

particularly interested in the furniture and pictures on the wall.  It is possible that during the first 

portion of viewing, the faces were fixated, and by the end of the 3 minutes, the subject had moved 

on to the secondary elements; this behavior would not support Yarbus’ assertion that a viewer 

would revisit the same regions over and over.  
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Figure 42: Eye movement records of one subject. For each task, the subject viewed the painting for 3 
minutes.  The minutes in which each task was performed is labeled in the corner of each record.  
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Figure 43: Percentage of time one subject spent viewing each region as he viewed the image for 3 minutes 
per task.  
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To determine if the subject’s viewing behavior was indeed cyclic, or whether it changed 

over time, the temporal order of regions fixated (i.e., shifts of gaze) for the “Freeview” task is 

shown in Figure 44.  These regions are grouped into three areas of interest: Faces, Figures, and 

Background/Furniture.  The reason for this grouping is that these are the elements Yarbus 

referred to as primary (faces and figures) and secondary (other foreground items and background).  

During the first 20-30 seconds of viewing, the subject made many short fixations on each of the 

faces, most of the figures, and almost all the background elements.  For the next 30 seconds, the 

subject seems to change behavior.  Gaze durations become longer, and are spent on the 

background elements for 10 seconds, then to the man’s figure, and then to the man’s face.  During 

the next 30 seconds, the background elements are again examined.  After that, there are again 

short fixations distributed among the faces, figures, and background, which is similar to the 

behavior at the beginning of the task.  For the rest of the viewing time, the background elements 

and figures are examined with long gaze durations.  

The six figures following Figure 44 show this visualization for the rest of the tasks.    For 

the “Financial” task, the behavior seems to be consistent: short fixations distributed between the 

areas over time. For the “Ages” task, the faces are fixated during the first 40 seconds.  During the 

rest of the trial, the figures and background elements are examined. During the first half of the 

“What the family was doing” task, many short gaze durations were distributed throughout all the 

regions, followed by specific examination of the tabletop and girl.  The subject spent almost all 

the remaining time shifting his gaze between all of the faces in the scene.  In the “Clothes” task, 

again we see a change in viewing behavior halfway through.  During the first half, the faces and 

clothes are each examined in turn.  During the second half, the background elements are 

examined, and gaze shifts frequently between different regions.  The pattern of gaze shifts in the 

“Position of Objects” task resembles that of “Freeview” in that the first 30-40 seconds were spent 

fixating on all of the objects in the scene.  Following that, the pictures on the wall were examined 

for almost 10 seconds, then a figure, and then a face. The second half was again spent shifting 

gaze between all types of regions except for one long gaze on the wall/floorboards.  In the “How 

long away” task, there were many transitions between each of the faces in the scene throughout 

the viewing, specifically between the boy’s and the girl’s faces.  Toward the end, the subject 

looked between the man’s, maid’s, and mother’s faces several times.  
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Figure 44: Temporal order for one subject during the “Freeview” task. The length of each line represents 
fixation duration.  Each vertical level represents a different region.  The bottom section, shown in blue, 

shows all of the Face regions.  The regions in the middle section, shown in green, are the Figures.  The top 
section, shown in red, shows all other regions. (The time does not extend to the full 3 minutes, or 180 

seconds, because the time during blinks and saccades has been removed.) 
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Figure 45: Temporal order of fixations during “Financial” task 

 

Figure 46: Temporal order of fixations during “Give the Ages” task 
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Figure 47: Temporal order of fixations during “What the family was doing” task 

 

Figure 48: Temporal order of fixations during “Remember the clothes” task 
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Figure 49: Temporal order of fixations during “Remember the position of people and objects” task 

 

 

Figure 50: Temporal order of fixations during “How long away” task 
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4.7 Conclusions 

This chapter presents the work of Alfred Yarbus and his classical experiment that showed 

the influence of task on viewing behavior.  In his experiment, Yarbus had one subject view a 

painting 7 times for 3 minutes each time; before each viewing the observer was given a different 

instruction.  From records of the spatial pattern of eye movements, Yarbus’ concluded that the 

observer’s fixations fell on regions that were most important or “informative” for the particular 

task.  This experiment was replicated using current eyetracking technology that is not as 

restrictive or uncomfortable as the methods used by Yarbus.  

Seventeen subjects were eyetracked as they performed each of seven tasks that Yarbus 

used in his experiment while viewing I. E. Repin’s painting, “They did not expect him.”  These 

tasks were: 1) Freeview (no instruction); 2) “Estimate the financial circumstances of the family in 

the picture;” 3) “Give the ages of the people;” 4) “Surmise what the family had been doing before 

the arrival of the ‘unexpected visitor;’” 5) “Remember the clothes worn by the people;” 6) 

“Remember the position of people and objects in the room;” and 7) “Estimate how long the 

‘unexpected visitor’ had been away from the family.” 

Viewing time was self-terminated. The average view time for each task was 9, 19, 50, 25, 

24, 29, and 15 seconds, respectively; these times are significantly less than the three-minute view 

time of Yarbus’ subject. The task, “Give the ages of the people,” elicited the longest fixations, 

with an average across all subjects of 376 milliseconds; fourteen percent of fixations during this 

task were longer than 1 second.  The shortest average fixation duration was 250 milliseconds in 

the task “Estimate the financial circumstances of the family.” 

Figure 37 shows the amount of time spent viewing each of 22 regions per task, averaged 

across 17 observers.  These results are in agreement with Yarbus’ findings.  Although the viewing 

times were much different, observers attended to specific regions of the image – the same regions 

that Yarbus’ observer fixated on.  In each of the tasks, the faces of the observers were fixated.  

Yarbus’ single observer showed behavior typical of most subjects performing these tasks.  

However, some subjects’ view patterns were not dramatically different between tasks, as shown 

in Figure 33.   

The Euclidean distance between these 22-element feature vectors was used as a measure 

of both within-subject and between-subject variability.  The average within-subject (between task) 
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distance was found to be 0.39.  All tasks except for “How long away” resulted in between-subject 

average distances that were less than the within-subject distance, shown in Figure 38.  The 

average distance for the “Give the ages” task was 0.26, which was the smallest of all tasks.  This 

indicates that the eye movement patterns were most similar between the subjects, compared to the 

other tasks. The “How long away” task showed the most variability between subjects, suggesting 

that observers used different viewing strategies to complete this task.  

Yarbus’ observation of a “cyclic” behavior of eye movements was also investigated.  One 

subject performed each of the 7 tasks with an enforced three-minute view time.  The temporal 

sequences of fixations are shown in Figure 44 through Figure 50.  The viewing behavior for the 

“Financial” task was consistent across the viewing in that the subject frequently shifted his gaze 

between faces, figures, and background objects.  Other tasks, including “Remember the Clothes,” 

show a distinct change in behavior.  For this task, the subject began the task by examining the 

clothes and faces of the people in the scene, with some fairly long gaze durations. Halfway 

through the viewing time, the subject began to examine furniture and background elements.  

Yarbus’ subject did not show this behavior of moving attention to secondary elements, but 

instead spent the entire three minutes re-fixating on the ‘informative’ regions.  This cyclic 

behavior may in part be a result of the uncomfortable setup of his experiment, which may have 

made his subject conscious of where he was looking.  In doing so, the observer may have 

changed his viewing behavior to adhere strictly to the given instructions.   
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Chapter 5 

5 Visual Search Experiment 

5.1 Overview 

A visual search experiment was designed to investigate how the characteristics of a target 

preview affect the allocation of attention by the visual system.  Several types of saliency maps are 

presented and used to examine differences in scene content at locations of fixation.  Features that 

are considered include variants of color content, spatial structure, intensity, and edge content.    

5.2 Methods 

A visual search experiment was designed in which subjects searched for known objects in 

images of real-world scenes (shown in the Appendix).   The experiment consisted of 60 trials, and 

was separated into two blocks of 30 trials.  For one block, the target preview was pixel-for-pixel 

exactly the same as it was in the image to be searched.  This condition will be referred to as the 

“Extracted Object” condition.  For the other block of trials, the target preview was a cartoon 

representation of the object, which was varied in orientation, color, size, or number of details.  

This condition will be referred to as the “Cartoon Icon” condition.  Figure 51 shows examples of 

Extracted Object and corresponding Cartoon Icon targets (see appendix for all sets of targets). 
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(a)                             (b) 

Figure 51: Examples of targets used in the search experiments.  Some subjects were presented with the 
Extracted Object version of the target (a), and others were presented with a Cartoon Icon representation (b). 

 

Before each block, the subject read a short set of instructions and saw one example of a 

target and image pair.  The subject then pressed the spacebar to view the first target for as long as 

needed.  When the subject was ready, he or she pressed the spacebar to display the image to be 

searched.  As soon as the target was found, the spacebar was pressed again.  At that time the next 

target preview was shown, and so on.   

The images were displayed at a resolution of 1280 x 768 pixels in 24-bit color.  They 

were presented on a large-field plasma display which subtended approximately 50 x 35 degrees of 

visual angle (see Chapter 3 for more information). The target preview in each condition was 

shown on a white square, which subtended 5 x 5 degrees of visual angle. Within each block, 

images were randomized, and block order was balanced across subjects, as shown in Table I. 
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Table I: Experimental Conditions for different sets of subjects, balanced for order of presentation and 
image set 

 

 

 

Subjects were eyetracked using an Applied Science Laboratories Model 501 video-based 

eyetracker in conjunction with a Polhemus Magnetic Head Tracker.  By using both, the 

intersection of a person’s line of gaze on the display plane can be computed at 60 Hz without 

constraining the person’s head (see Chapter 3 for more information).  Twenty-three subjects were 

successfully eyetracked.    

 

 

 

5.3 Reaction Time Results 

The following results from the experiment contain reaction times from 53 of the 60 

images.  Images in which some subjects could not find the target in less than 20 seconds were 

discarded.  Additionally, each subject’s first trial was discarded.  Eye movement data was used to 

verify that the subjects fixated on the true target. Figure 52 shows the average and median of all 

reaction times in each target condition pooled across all subjects and all images.  The total 

reaction time is calculated as the time between the image appearing on the screen and the subject 

pressing the spacebar.  On average, subjects found the target in 2.5 seconds when presented with 

the Extracted Object, and found the target in 3.1 seconds in the Cartoon Icon condition.   This 

difference in time is seen regardless of which block condition was presented first.  The difference 

in median times was smaller, but still consistent.  The median reaction times were 2 and 2.3 for 

Extracted Object and Cartoon Icon conditions, respectively.  Figure 12 shows the median reaction 

 Set A1  Set A2 
 Target Condition Images   Target Condition Images 

Part 1: Extracted Object Images #1-30 Part 1: Cartoon Icon Images #1-30 
Part 2: Cartoon Icon Images #31-60 Part 2: Extracted Object Images #31-60 

      
 Set B1  Set B2 
 Target Condition Images  Target Condition Images 

Part 1: Extracted Object Images #31-60 Part 1: Cartoon Icon Images #31-60 
Part 2: Cartoon Icon Images #1-30 Part 2: Extracted Object Images #1-30 
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times in each condition for each subject.  Twenty of the 23 subjects had a longer median reaction 

time in the Cartoon Icon condition. Figure 13 shows a histogram of reaction times in each target 

condition.  A Wilcoxon Rank-Sum test at alpha level of 0.05 gives a p-value of 5.4 x 10-8, 

meaning the means of the two distributions are significantly different.  
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(a)                                                                                   (b) 

Figure 52: Average (a) and median (b) reaction times for each target condition across all subjects and 
images.  Error bars represent one standard error of the mean. Subjects in sets A1 and B1 were presented 

with the Extracted Object block first, then Cartoon Icon.  Sets A2 and B2 saw the Cartoon Icon block first, 
then Extracted Object.   
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Figure 53: Median reaction times for the two conditions, per subject. Twenty of twenty-three subjects had a 
longer median reaction time for the Cartoon Icon condition. 
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Figure 54: Histogram of reaction times in each target condition 

Figure 55 shows the average reaction times in each condition for 53 images.  In some 

images, reaction times were nearly equal (points falling close to line with a slope of 1).  However, 

many images have much longer Cartoon Icon reaction times.  In some cases, it proved easier to 

find the target object in the Cartoon Icon condition than in the Extracted Object condition.   
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Figure 55: Average reaction times for the two conditions for 53 images.    

 

One hypothesis was that the increased amount of time needed to find the target in the 

Cartoon Icon condition was a result of subjects being uncertain that the item in the image was in 

fact the target.  In this case, a person would take the same amount of time to initially fixate on the 

target, but spend more time ‘deciding’ or ‘reacting’ in the Cartoon Icon condition.  However, 

further analysis of the eye movement data showed otherwise.  On average, it took subjects longer 

to initially fixate on the target in the image in the Cartoon Icon condition, as shown in the first 

pair of columns in Figure 56.  The time between first target fixation and the pressing of the 

spacebar (including subsequent target fixations and fixations elsewhere) did not show as large of 

a difference between conditions.  However, both differences were significant at a level of α = 

0.05 (p = 0.015 in both cases). This suggests that knowing the target’s exact features helps 

expedite visual search.   
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Figure 56: Breakdown of reaction times during visual search. (a) shows the average time it took before a 
subject first fixated on the target object in the image, and the average time between the first target fixation 
and when the spacebar was pressed. Error bars represent standard error. (b) shows the medians of the same 

data.  

 

A breakdown of reaction times for Image 51 is shown in Figure 57.  In this image, the 

target was a purple sunburst shape on a woman’s shirt.  The Cartoon Icon representation was of a 

similar shape, but in grayscale, shown in Figure 58.  Figure 57 shows that knowing the color 

features of the target improved the reaction time.  In this case, the average time until the first 

target fixation was 1.2 seconds in the Extracted Object condition, and 2.4 seconds in the Cartoon 

Icon condition.  Again, the time between first target fixation and spacebar press were not 

significantly different.  Figure 59 and Figure 60 show eye movement records of two subjects 

performing the visual search task for this image under each condition.  When shown the Extracted 

Object target preview, the subject found the target immediately, in one saccade.  The subject who 

saw the Cartoon Icon preview took longer to find the target. 
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Breakdown of Reaction Times for Image 51: 'Sunburst'
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Figure 57: Breakdown of Reaction Times for Image 51: Sunburst.  Error bars represent standard error for 7 
subjects in the Extracted Object condition, and 8 subjects in the Cartoon Icon condition.  

 

 

                                 

(a)                                                           (b) 

Figure 58: Target previews for Image 51. (a) Extracted Object. (b) Cartoon Icon. 
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 Figure 59: Eye movement record of one subject during the visual search task.  The subject was shown the 
Extracted Object preview image of the target (Figure 58 a), and found the target in one saccade.  

 

 

Figure 60: Eye movement record of one subject during the visual search task.  The subject was shown the 
Cartoon Icon preview image of the target (Figure 58 b), and did not find the target immediately.  
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5.4 Topographical Feature Maps 

 

To investigate what features are used by the visual system to perform the visual search 

task in the different conditions, feature content at fixated locations was extracted.  A set of 

topographical feature maps was created and used to compare different types and combinations of 

features. The following section describes the creation of each map.  

 

5.4.1 List of Maps 

[1] Original Image in RGB color space values (‘RGB’) 

 

Figure 61: Example image 

 

[2] Image in 1976 CIELab color space values (‘Lab’).  The RGB image was converted via 
a Matlab function, “srgb2lab.”   

 

 

[3] Intensity, (‘I_RGB’), where  

3
)( BGRI ++

=  

[4] Intensity, (‘I_Lab’), where 
*LI =  

[5] Intensity, (‘I_Cone’), where I is defined by a model of rod and cone responses to the 
stimulus. From [Canosa, 2003].   
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Figure 62: Example ‘I_rgb’ map 

 

 

[6] Colorfulness, (‘C_RGB’) where 
)( GRBGRC +−+−=  

[7] Colorfulness, (‘C_Lab’), where 
** baC +=  

[8] Colorfulness, (‘C_Cone’), where C is defined by a model of rod and cone responses to 
the stimulus. From [Canosa, 2003]. 

 

 

 

Figure 63: Example ‘C_rgb’ map 
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[9] Oriented edge (‘Edge’) content, defined by [Canosa, 2003] 
 

 

 

Figure 64: Example ‘Edge’ map 

 

[10] Proto-object map (‘P_object’).  This is a binary map that defines regions that are likely 
to be objects using figure/ground segmentation techniques. See Chapter 2 for a more 
detailed description.  From [Canosa, 2003]. 

 

 

Figure 65: Example ‘P_object’ map 
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[11] Saliency (‘CIE_RGB’), where 
 

EdgeRGBIRGBCRGBCIE ++= ___  

[12] Saliency (‘CIE_Lab’), where 
 

EdgeLabILabCLabCIE ++= ___  

[13] Saliency (‘CIE_Cone’), where 
 

EdgeConeIConeCConeCIE ++= ___  

[14] Conspicuity (‘CIEP_Cone’), from [Canosa, 2003] where 
 

( ) objectPEdgeConeIConeCConeCIEP ____ ⋅++=  

      

 

Figure 66: Example ‘CIE_rgb’ (left) and ‘CIEP_cone’ (right) maps 
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[15] Histogram backprojection – Extracted Object 
 

Beginning with the image in L*a*b* color space, the image is quantized and indexed into 

1000 colors as follows.  Each axis in L*a*b* space was divided into ten sections, as shown in 

Figure 67; each voxel was given an index number.  For each pixel in the image, the voxel in 

which the pixel’s L*a*b* value resides was found.  An indexed image was created by inserting 

the voxel index number into the pixel location.   

The same process was performed for the Extracted Object target.  Using this indexed 

target, a one-dimensional histogram was created, which then was used as a look-up table.  Each 

pixel in the indexed image was replaced by the histogram value of the corresponding color (index 

value).  

Figure 68 shows an example image and a target.  The target, a tree, contains mostly green 

and a lesser amount of brown.  In the output backprojected image, green regions will be given a 

high value, and brown regions a smaller value.  All other regions will be set to zero, as shown in 

Figure 69.   

[16] Histogram backprojection – Cartoon Icon 
 

This map is made in the same way as the previous one, except that the color histogram of 

the Cartoon Icon target is used.  For some Cartoon Icons, a color that appears in the target does 

not appear in the image.  

 

Figure 67: Color cube used to create indexed images in L*a*b* space 



81 

 

 

 

                     

Figure 68: Example image and target.  

     

Figure 69: Target histogram and resulting backprojected image. Green regions in the image were assigned a 
high value (white), brown regions were assigned a lower value (gray), and regions of other colors were set 

to zero (black). 
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Extracted Object                          Cartoon Icon 

    

 

Figure 70: Example targets, ‘Hist_object’ (left), and ‘Hist_icon’ (right) maps.  

 

 

 

[17] Ratio histogram backprojection – Extracted Object 
 

This algorithm is similar to the backprojection process described above.  Instead of 

assigning the target histogram values to corresponding pixels, values of a ratio histogram are used.  

The ratio histogram is simply the target histogram divided by the image histogram.  An example 

for the tree image is shown in Figure 71.  By using the ratio histogram values as a look-up table, 

the colors that are heavily present in the image are suppressed, and the colors that are less 

common are weighted more.  The resulting image is shown in Figure 72. 
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Figure 71: Target, image, and ratio histograms.  The ratio histogram is made by dividing the target 
histogram by the image histogram.   

 

Figure 72: Result of ratio histogram backprojection.  

 

[18] Ratio histogram backprojection – Cartoon Icon 
 

This map is made in the same way as the previous one, except that the color histogram of 

the Cartoon Icon target is used.  It is possible, although unlikely, that a color that appears in the 

target does not appear in the image.  

        

 

Figure 73: Example ‘Ratio_object’ (left) and ‘Ratio_icon’ (right) maps.  Targets are shown in Figure 70. 
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[19] Spatial Cross-correlation – Extracted Object 
 

The L* channel of the image is convolved with the L* channel of the Extracted Object 

target.  This process produces large values where the image closely matches the spatial structure 

of the target.  The absolute value of the image is used as the final map so that large, negative 

correlations are also considered.  

[20] Spatial Cross-correlation – Cartoon Icon 
 

This process is the same as above, except that the Cartoon Icon target is convolved with 

the image.  

 

       

 

Figure 74: Example ‘Spatial_object’ (left) and ‘Spatial_icon’ (right) maps. Targets are shown in Figure 70. 
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5.5 Extraction of Features at Fixated Locations 

For each of the maps listed above, content at fixated locations in each of the two visual 

search conditions was extracted.  Fourteen subjects’ eye movement records were used for this 

analysis; there were 7 subjects for each target preview condition. Circular image patches of a 

radius of 25 pixels, which corresponds to a radius of approximately 1 degree (depending upon the 

distance between the subject and the display), were extracted.  In current literature, the maximum 

saliency value of each patch is used.  Effects of using the maximum value, instead of using the 

average value, are explored.   Four performance metrics, as described in Chapter 2 (page 24), are 

used to compare results.  These include: Chance-adjusted Cumulative Probability (CPa) 

[Parkhurst, 2000]; F/M Ratio [Canosa, 2003]; ROC Curve Area [Tatler, et al, 2004]; and Chance-

Adjusted Saliency ‘Accumometric’ [Carmi and Itti, 2004].  Additionally, Chance-adjusted 

Cumulative Probability and F/M Ratios were also computed using fixation durations as weights.  

For the metrics requiring a set of non-fixated points, locations were chosen at random from a pool 

of locations that were fixated across all subjects and all conditions (~8000 fixations).  The 

distribution of all fixations is shown in Figure 75.  Uniform random locations were not used due 

to the central biasing of eye movements and salience in natural images [Parkhurst, 2000; Canosa, 

2003]. 

 

Figure 75: All fixated locations throughout the entire visual search experiment 
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5.5.1 Effects of using the maximum versus average value at fixation 

locations 

Figure 76 shows the histogram of all map values for the CIE_rgb map of Image 24 

(shown as the shaded gray curve).  Also shown on the graph is the histogram of maximum values 

of the patches extracted at fixation locations (solid red line).  The solid black line represents the 

maximum values of patches at non-fixated locations.  These locations were selected at random 

from the pool of fixated locations shown in Figure 75.  Note that even though these locations are 

random, the histogram does not approximate that of the entire map due to the act of selecting only 

the maximum value around each location.  

The red dotted line is the distribution of values at fixated locations when the average 

around each location is used.  Similarly, the black dotted line is the distribution of values at 

random, non-fixated locations when the average around each location is used.  Here the 

distribution of random locations more closely approximates the distribution of the entire image.  

However, the separation between the distributions at fixated and random locations is reduced by 

the act of selecting the average value around each fixation location.  

 

 

Figure 76: Histogram of feature map values for the CIE_rgb map for Image 24 (shown in gray);  using 
maximum map values at fixated locations (solid red line); using maximum map values at random non-fixed 
locations (solid black line); using average map values at fixated locations (dotted red line); using average 

map values at random non-fixated locations (dotted black line) 
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Table II: Performance values for Image: 24, Map: CIE_rgb 

 

 

Table II shows the value of each performance metric for the example image and map 

shown in Figure 76.  The percent difference between the conditions was calculated as the 

difference divided by the value when using the maximum value of the patch.  For example, (0.88 

- -0.06) / 0.88 = 1.06 = 106% difference.  When using the average of each patch, the resulting 

CPa value is near zero, indicating that the probability of selecting those feature map values is no 

greater than chance.  However, when using the maximum of each patch, the CPa is 0.88.  This 

value is very high, indicating the selection of those feature map values is much greater than 

chance.  However, after selecting the maximum of each patch, comparing to the mean of the 

entire map is not truly comparing to chance.  Instead, comparing to the maximum values at 

random locations may be more appropriate.  

The same trend is seen in each of the other three metrics.   The ROC Curve Area metric 

shows the smallest increase between these two conditions.   When using the average patch value, 

the ROC Curve Area for this image is 0.45, which means that the distributions of values at fixated 

and non-fixated are nearly indistinguishable.   When using the maximum value, the ROC Curve 

Area increases to 0.61. 

Figure 77 shows the same visualization for Image 57.  In this example, the distributions 

of map values at fixated and non-fixated locations are more distinct. In comparison to Image 24, 

it is expected that the performance metrics would indicate that this map does a good job assigning 

high saliency values to locations where people look.  Each of the performance metrics, shown in 

Table III, is indeed higher than the one shown in Table II.  Comparing the values when using the 

average versus maximum of each patch, the increase in CPa and F/M Ratio is not as drastic as in 

the previous example, primarily because this map has a higher mean value.  The ROC Curve Area 

again is the least affected by using the average versus maximum of each patch because it is not 

affected by where the distributions lie on the saliency axis.  The ROC Curve is reduced somewhat 

when using the average value because that act of averaging will reduce the separation between 

 Using Average Using Max Difference % Difference 
CPa -0.06 0.88 0.94 106 

F/M Ratio 1.03 1.59 0.56 35 
ROC Curve Area 0.45 0.61 0.16 27 

CASA -0.01 0.05 0.06 129 
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the two distributions.   The CASA metric is also, ideally, unaffected by a shift in the distributions 

along the saliency axis; however in this case it is more sensitive than the ROC Curve Area metric 

to whether the maximum or average of the patch is used.  

 

 

Figure 77: Histogram of feature map values for the CIE_rgb map for Image 57 (shown in gray);  using 
maximum map values at fixated locations (solid red line); using maximum map values at random non-fixed 
locations (solid black line); using average map values at fixated locations (dotted red line); using average 

map values at random non-fixated locations (dotted black line) 

 

 

Table III:  Performance values for Image: 57, Map: CIE_rgb 

 

 

 

 

 

 Using Average Using Max Difference % Difference 
CPa 0.61 0.97 0.37 38 

F/M Ratio 1.50 2.09 0.59 28 
ROC Curve Area 0.74 0.81 0.08 10 

CASA 0.10 0.18 0.08 45 
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5.5.2 Effects of using Different Color Spaces 

Figure 78 shows a comparison of the performance of the three types of Intensity maps.   

The performance metrics were calculated when using the average of each patch surrounding a 

fixation location (first column of Figure 78) as well as when using the maximum value (second 

column).  As described above, each of the metrics showed an increase when the maximum value 

of the patch was used.  For this condition, the F/M Ratio, shows a large increase in performance 

for the I_cone map.   The CASA metric also shows a slight increase.  These differences are most 

likely due to the fact that the mean of the I_cone map is usually much lower than either of the 

other two maps, as shown in Figure 79.  For maps scaled from 0 to 1, the mean value of the 

I_cone map across 60 images was 0.25; the means for the I_rgb and I_lab maps were 0.40 and 

0.43, respectively.  

Table IV show the results of paired t-tests between each map for the condition in which 

the average value of the patch was used. When comparing the I_rgb, I_lab, and I_cone maps, the 

CPa metric shows better performance by the I_lab map, whereas the F/M Ratio and ROC Curve 

Area metrics show better performance for the I_cone map.  The CASA metric shows no 

significant difference in performance across the three maps.  
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Figure 78: Comparison between the three types of Intensity maps using four performance metrics.  The first 
column shows results when the average of the patch surrounding the fixation location is used; the second 
column shows the results when the maximum value is used.  Each gray point represents the value for one 

image and one search target condition; the square represents the mean, and error bars represent one 
standard error of the mean.  

 

Table IV: Results of paired t-test between the performances of each map (when the average of each patch 
was used) A value of 1 indicates a significant difference between the means.   

 

CPa       ROC Curve Area     
  I_lab I_cone     I_lab I_cone   
I_rgb 1 1   I_rgb 0 0   
I_lab   1   I_lab   1   
                

F/M Ratio     CASA    
  I_lab I_cone     I_lab I_cone   
I_rgb 0 1   I_rgb 0 0   
I_lab   1   I_lab   0   
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Figure 79: Means of saliency maps after scaling from 0 to 1, averaged across 60 images.  Error bars 
represent standard error of the mean. 

 

The same analysis was performed on the three types of Colorfulness maps, as well as the 

three types of CIE maps.  The results are shown in Figure 80 and Figure 81.  Results from paired 

t-tests are shown in Table V and Table VI.  Three of the four metrics show little difference in 

performance between the C_rgb and C_lab maps; the F/M Ratio metric shows that the C_rgb map 

performed better than the C_lab.  The CPa metric shows performance is below chance, on 

average, for the C_cone map when using the average value of each patch; this difference in 

performance between the maps is not shown in the CPa values when the maximum of the patch is 

used.  The F/M Ratio metric also shows a lower value for the C_cone map compared to the others; 

this is a result of the C_cone map having a higher mean compared to the other two, shown in 

Figure 79.   Each of the metrics shows that the C_cone map’s performance value was 

significantly less than the others’.  

When comparing the three types of CIE saliency maps created by adding the colorfulness, 

intensity, and oriented edges maps, the ROC Curve metric shows no significant difference 

between the maps. The F/M Ratio metric shows an increase in performance for the CIE_cone 

map when using the maximum value of each patch, possibly due to the fact that this map has a 

smaller mean value, on average, than the others (shown in Figure 79).  Interestingly, when using 

the average value of each patch, the CPa metric shows a decrease in performance for the C_cone 

map. This may be caused by differences in the shape of the distributions.  If the distribution of the 

C_cone has a small mean and a long tail, as in Figure 14 B, the rate at which the CPa value 

increases is lower than it would be for a distribution such as in Figure 14 A or D.  

The results of the paired t-tests show that when using the CPa metric, the CIE_lab map 

performed better than the CIE_rgb map, which performed better than the CIE_cone map.  
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However, the F/M Ratio metric showed that the CIE_rgb map performed better than the CIE_lab 

map. Each of the metrics shows that the CIE_cone map’s performance value was significantly 

less than the others’.  

 

 

Figure 80: Comparison between the three types of Colorfulness maps using four performance metrics.  The 
first column shows results when the average of the patch surrounding the fixation location is used; the 

second column shows the results when the maximum value is used.  Each gray point represents the value 
for one image and one search target condition; the square represents the mean, and error bars represent one 

standard error of the mean. 
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Table V: Results of paired t-test between the performances of each map (when the average of each patch 
was used) A value of 1 indicates a significant difference between the means.   

 

 

 

 

Figure 81: Comparison between the three types of Saliency (CIE) maps using four performance metrics.  
The first column shows results when the average of the patch surrounding the fixation location is used; the 
second column shows the results when the maximum value is used.  Each gray point represents the value 

for one image and one search target condition; the square represents the mean, and error bars represent one 
standard error of the mean. 

CPa       ROC Curve Area     
  C_lab C_cone     C_lab C_cone   

C_rgb 0 1   C_rgb 0 1   
C_lab   1   C_lab   1   
                

F/M Ratio     CASA     
  C_lab C_cone     C_lab C_cone   

C_rgb 1 1   C_rgb 0 1   
C_lab   1   C_lab   1   
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Table VI: Results of paired t-test between the performances of each map (when the average of each patch 
was used). A value of 1 indicates a significant difference between the means.   

 

 

5.5.3 Effect of weighting by fixation duration 

For each image and each target condition, the CPa value was calculated by averaging the 

CPa values for each fixation.  A second calculation was also performed, in which the CPa value 

for each fixation was weighted by its duration.  That way, if a subject spent a long time looking at 

locations of high salience values, and fixated for shorter amounts on areas of lower values, then 

weighting by the duration will show an increase in the performance metric for that image.  This 

weighting was also done for the F/M Ratio metric.  Figure 82 shows histograms of the differences 

between the unweighted and weighted CPa and F/M Ratio metrics across all conditions (2), all 

maps (18), across all images (60), for a total of 2x18x60 = 2160 trials.  This calculation was 

performed for the condition when the average value surrounding each fixation location was used 

(shown in the left column), as well as when the maximum was taken (right column).  The 

histograms show that the mean difference in each case is very close to zero, but positive.  A t-test 

was performed on each distribution at a significance level of 0.01 to test whether the mean is zero.  

For both CPa distributions, the hypothesis that the mean was zero was rejected (p = 4.8x10-10 and 

p = 0.0). This was also the case for the F/M Ratio when using the average of each patch (p = 

2.9x10-13).  For the F/M Ratio metric when using the maximum of each patch, the hypothesis that 

the mean is zero cannot be rejected due to the large standard deviation.  The p-value for this test 

was 0.12.  When using the average of each patch, there were some instances where weighting by 

the fixation duration increased (or decreased) the CPa value by more than 0.5 units, which can be 

very significant given that this difference is larger than the average CPa value for all images for 

CPa       ROC Curve Area     
  CIE_lab CIE_cone     CIE_lab CIE_cone   

CIE_rgb 1 1   CIE_rgb 0 0   
CIE_lab   1   CIE_lab   0   

                
F/M Ratio     CASA     

  CIE_lab CIE_cone     CIE_lab CIE_cone   
CIE_rgb 1 0   CIE_rgb 0 1   
CIE_lab   0   CIE_lab   0   
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the CIE saliency maps (shown in Figure 81).  When the maximum value of the patch is used, the 

differences in CPa values are less dramatic, as shown by the smaller standard deviation (0.1 

compared to 0.18).  For the F/M Ratio, increases larger than 1.5 units were found.  

  

 

Figure 82: Histograms of the change in each metric (across 2160 trials) when fixation duration is included 
as a weight during the calculation.  The left column shows the condition in which the average feature map 

value surrounding fixated locations is used, and the right column shows the condition in which the 
maximum feature map value is used.  
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5.5.4 Influence of target preview 

For the following analyses, the feature content at fixated locations is compared between 

the Extracted Object and Cartoon Icon conditions.  A paired t-test, at a significance level of α = 

0.01, was used to determine if there was a significant difference in the amount of the particular 

feature at fixated locations between the target conditions.  The means of the maps used, averaged 

across 60 images, are shown in Figure 83.  The means for the four maps that used the histogram 

backprojection process are very low; these maps are essentially zero except where there are colors 

similar to those in the target.   

Mean of Saliency Map, across 60 images 
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Figure 83: Means of saliency maps after scaling from 0 to 1, averaged across 60 images.  Error bars 
represent standard error of the mean. 

5.5.5 Influence of spatial structure of target preview  

Table VII lists the average of each performance metric for the Spatial_object feature map.  

The values are given for both target preview conditions, along with the result of the paired t-test 

using a significance level α = 0.01.  Also, the left table lists the results when the average value of 

the map surrounding each fixation is used; the right lists the results when the maximum 

surrounding each fixation is used.  

For the Spatial_object map, if the search strategy was to fixate at locations that closely 

match the target preview spatially, it is expected that the metrics will show a high value in the 

Extracted Object condition compared to the Cartoon Icon condition. When using the average of 
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each patch, each metric shows the performance to be slightly above chance. Both the CPa and 

F/M Ratio metrics show high values in the Extracted Object (when using the maximum of each 

patch): 0.84 and 4.1, respectively.  In addition, weighting by fixation duration produced an 

increase in the F/M Ratio metric by almost 1 unit.  The F/M Ratio metric is the only metric that 

shows a significant difference between the two search conditions (when using the maximum of 

each patch), which would indicate that subjects fixated more on locations with a spatial structure 

that was similar to the true target after they had seen the Extracted Object target preview.  

Table VIII shows the average of each of the performance metrics for the Spatial_icon 

feature map.  When using the average of each patch, each of the metrics showed the performance 

to be slightly above chance.  When using the maximum of each patch, all but the ROC Curve 

Area metric show an increase in performance.  Although none of the metrics show a significant 

difference between the target preview conditions, most show that the average for fixations in the 

Cartoon Icon condition is slightly higher.  This indicates that for some images, the spatial 

structure of the Cartoon Icon target preview influenced the search strategy.  

 

Table VII: Performance metrics for the Spatial_object map, averaged across 60 images. 

 

 

Table VIII: Performance metrics for the Spatial_icon map, averaged across 60 images. 

 

 Using Average  Using Maximum 

 Object Icon 
Significant 
difference  Object Icon 

Significant 
difference 

CPa 0.08 0.08 No  0.84 0.83 No 
F/M Ratio 1.25 1.24 No  4.09 3.95 Yes 

ROC Curve Area 0.60 0.59 No  0.65 0.63 No 
CASA 0.02 0.02 No  0.08 0.07 No 

CPa weighed 0.14 0.14 No  0.88 0.87 No 
F/M weighted 1.32 1.33 No  5.02 4.66 Yes 

 Using Average  Using Maximum 

 Object Icon 
Significant 
difference  Object Icon 

Significant 
difference 

CPa 0.01 0.02 No  0.80 0.81 No 
F/M Ratio 1.14 1.16 No  3.27 3.30 No 

ROC Curve Area 0.56 0.57 No  0.58 0.59 No 
CASA 0.01 0.01 No  0.04 0.05 No 

CPa weighed 0.02 0.04 No  0.81 0.82 No 
F/M weighted 1.13 1.16 No  3.27 3.32 No 
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5.5.6 Influence of color of target preview 

Table IX shows the results for the Hist_object map, and Table XI lists the results for the 

Hist_icon map.  When using the maximum of each patch, the CPa and F/M Ratio metrics show 

high values; however, when using the average of each patch, the CPa value is below chance.  The 

CPa value is below zero in this case because of the typical shape of the Ratio Histogram maps. 

Figure 84, Figure 85 and Figure 86 show the behavior of the CPa and F/M Ratio metrics for this 

distribution.  Because the map is mostly zero, many fixations will also have an average patch 

value near zero or below the low mean value.  The CPa value for these fixations will be negative; 

in this example, a fixation with a salience value of zero corresponds to a CPa value of -1.35.  

Since there will be few fixations with an average patch value in the higher saliency ranges, the 

large negative CPa values will outweigh any positive values when the average CPa value is 

computed.  Considering the F/M Ratio metric, a fixation with a salience value of zero 

corresponds to an F/M Ratio value of zero.  Because this metric converges at zero, fixations at 

areas of very low salience will not outweigh those at higher salience values as much as in the CPa 

metric case.  

The ROC Curve Area and CASA metrics for the Hist_object are each above chance.  

Again, weighting by the duration of each fixation produces an increase in both the CPa and F/M 

Ratio metrics.   None of the metrics for either map show a significant difference between the two 

target preview conditions, indicating that the strategy used by the visual system during these 

search tasks is not significantly influenced, on average, by the color of the target preview.  

However, there are many sets of targets in which the Cartoon Icon contains colors similar to the 

Extracted Object.  Eight images were selected in which the color of the Cartoon Icon is grayscale, 

while the Extracted Object is color.  The average performance values for the Hist_object map are 

listed in Table X 

For the Hist_icon map, the average F/M Ratio for the Extracted Object condition is 17.2, 

and 14.2 for the Cartoon Icon condition.  These values are very large due to the fact that in some 

cases, if the Cartoon Icon contains colors that are not found in the image, the Hist_icon map has a 

mean very close to zero and a distribution similar to the one shown in Figure 84.   For the 

Hist_icon map, all of the metrics show values near or below chance.  Again, none of the metrics 

for either map show a significant difference between the two target preview conditions.  When 

using the average of each patch and not weighting by fixation duration, each metric shows that 
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there is a significant difference in performance between the two conditions indicating that when 

shown a colored target preview, the visual system is more likely to fixate on regions of similar 

colors than in the condition when the target is grayscale.  

 

Table IX: Performance metrics for the Hist_object map, averaged across 60 images. 

 

 

Table X: Performance metrics for the Hist_object map, averaged across 8 images. 

 

 

Table XI: Performance metrics for the Hist_icon map, averaged across 60 images. 

 

 

 Using Average  Using Maximum 

 Object Icon 
Significant 
difference  Object Icon 

Significant 
difference 

CPa -0.13 -0.15 No  0.75 0.77 No 
F/M Ratio 2.18 1.98 No  9.47 9.12 No 

ROC Curve Area 0.62 0.59 No  0.63 0.62 No 
CASA 0.06 0.05 No  0.06 0.05 No 

CPa weighed 0.11 0.06 No  0.86 0.85 No 
F/M weighted 3.33 3.10 No  11.78 11.47 No 

 Using Average  Using Maximum 

 Object Icon 
Significant 
difference  Object Icon 

Significant 
difference 

CPa 0.13 0.02 Yes  0.89 0.87 Yes 
F/M Ratio 1.98 1.52 Yes  2.11 2.08 No 

ROC Curve Area 0.65 0.59 Yes  0.64 0.61 No 
CASA 0.04 0.03 Yes  0.06 0.06 No 

CPa weighed 0.30 0.18 No  0.91 0.88 No 
F/M weighted 3.01 2.53 No  2.15 2.11 No 

 Using Average  Using Maximum 

 Object Icon 
Significant 
difference  Object Icon 

Significant 
difference 

CPa -0.49 -0.54 No  0.63 0.63 No 
F/M Ratio 0.93 0.97 No  17.20 14.19 No 

ROC Curve Area 0.47 0.46 No  0.56 0.55 No 
CASA -0.01 -0.01 No  -0.01 0.02 No 

CPa weighed -0.47 -0.53 No  0.65 0.66 No 
F/M weighted 0.97 1.02 No  20.98 14.57 No 
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Figure 84: Example histogram of a map created using the histogram backprojection process. 

 

Figure 85: CPa values for any saliency value using the distribution in Figure 84 

 

Figure 86: F/M Ratio values for any possible saliency value using the distribution in Figure 84 
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Table XII and Table XIII show the results for the Ratio_object and Ratio_icon maps, 

respectively.  Again there are very high F/M Ratios resulting from the low mean value of the 

maps. For the Ratio_icon map, all metrics except the F/M Ratio indicate performance is at or 

below chance; they also show better performance by the Ratio_object map than by the Ratio_icon 

map.  For each map, there was no significant difference in the performance between search 

conditions.   

Table XII: Performance metrics for the Ratio_object map, averaged across 60 images. 

 

 

Table XIII: Performance metrics for the Ratio_icon map, averaged across 60 images. 

 

Next, the performance of the Ratio Histogram Backprojected maps method was 

compared to the normal Histogram Backprojected maps. Table XIV lists the differences in 

average performance of the Ratio_object and Hist_object maps for the Extracted Object condition.  

A positive value indicates that the performance of the Ratio_object map was greater than that of 

the Hist_object map. Similarly, Table XV lists the chance in performance between the Ratio_icon 

and Hist_icon maps.   For the maps weighted by the color of the Extracted Object target, the CPa 

and F/M Ratio metrics show that the Ratio_object maps performed better when using the average 

value around fixation locations. However, when using the maximum value around each fixation 

location, the CPa metric shows that the Hist_object map performed better (as shown by the 

negative values of -0.16 and -0.19).  This is also the case when the map is weighted by the color 

 Using Average  Using Maximum 

 Object Icon 
Significant 
difference  Object Icon 

Significant 
difference 

CPa 0.06 0.05 No  0.59 0.58 No 
F/M Ratio 5.37 4.80 No  104.62 81.93 No 

ROC Curve Area 0.61 0.61 No  0.63 0.62 No 
CASA 0.01 0.02 No  0.05 0.04 No 

CPa weighed 0.20 0.17 No  0.72 0.69 No 
F/M weighted 10.59 9.67 No  184.37 132.71 No 

 Using Average  Using Maximum 

 Object Icon 
Significant 
difference  Object Icon 

Significant 
difference 

CPa -0.20 -0.18 No  0.34 0.34 No 
F/M Ratio 2.59 2.50 No  546.00 425.86 No 

ROC Curve Area 0.41 0.39 No  0.50 0.52 No 
CASA 0.00 0.00 No  0.02 0.01 No 

CPa weighed -0.20 -0.19 No  0.37 0.38 No 
F/M weighted 3.32 4.15 No  671.57 719.09 No 
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of the Cartoon Icon; when taking the average value around the fixation location, the CPa metric 

shows better performance by the Ratio_icon map, but when the maximum value around the 

fixation location is used, the Hist_icon map shows better performance. The ROC Curve Area 

showed little difference between the maps, and the CASA values indicate better performance by 

the Hist_object map.    

 

 

Table XIV: Change in performance when using the Ratio Histogram Backprojection versus normal 
Histogram Backprojection using the Extracted Object target. 

 

 

Table XV: Change in performance when using the Ratio Histogram Backprojection versus normal 
Histogram Backprojection using the Cartoon Icon target. 

 Using Average  
 Object Significant  

CPa 0.36 No  
F/M Ratio 1.53 Yes  

ROC Curve Area 0.01 No  
CASA 0.01 No  

CPa weighed 0.33 No  
F/M weighted 3.13 No  

 Using Average  
 Object Significant  

CPa 0.19 No  
F/M Ratio 3.20 Yes  

ROC Curve Area -0.01 No  
CASA -0.05 Yes  

CPa weighed 0.09 No  
F/M weighted 7.26 Yes  
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5.5.7 Relationships between feature content and reaction time 

 In this section, the performance of 8 feature maps will be examined for three images.  In 

the first example, Image 51, the median reaction time in the Cartoon Icon condition was 3.62 

seconds, compared to 1.4 seconds in the extracted object condition.  For Image 25, the Cartoon 

Icon target preview was a different color than the true target.  For Image 53, nearly half of the 

subjects could not find the target, regardless of target preview and in some cases subjects took up 

to one minute to find the target.  For each example, a chart shows the performance of each map in 

both the Extracted Object and Cartoon Icon conditions.  The relative values of performance 

metrics were used to infer possible search strategies used in the different search conditions, which 

are listed in a table following each image.  Also listed is the map that best predicted fixation 

locations according to each metric.   

 

Figure 87: Image 51 
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Table XVI: Search strategies and map performance compared across metrics for Image 51 

 
Image 51: Sunburst     Object RT: 1.4 s     Icon RT: 3.62 s 

Metric Best performance Search strategy, according to metric 

CPa 
Object: Fixate on colors similar to target color, avoid 
similar shapes 

  

CIEP_cone Icon: Fixate on salient areas, no influence from target 
color or spatial similarity 

F/M Ratio 
Object: Fixate on colors similar to target color, avoid 
similar shapes 

  
Ratio_object 

Icon: Fixate on colors similar to cartoon icon 

ROC Curve Area 
Object: Fixate on colors similar to target color, avoid 
similar shapes 

  
CIEP_cone 

Icon: Fixate on salient areas with similar spatial content 

CASA 
Object: Fixate on salient areas with colors similar to 
target color, avoid similar shapes 

  
CIEP_cone  

Icon: Fixate on salient areas with similar spatial content 
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Figure 88: Performance of eight feature maps for Image 51. The last row shows the feature map histogram 
(shaded gray), the histogram of values at fixated locations during the Extracted Object search condition 

(red solid line) and Cartoon Icon condition (blue dotted line). 
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Figure 89: Image 25 

Table XVII: Search strategies and map performance compared across metrics for Image 25 

Image 25: Blue moon     Object RT: 2.17 s     Icon RT: 2.48 s 
Metric Best performance Search strategy, according to metric 

CPa 
Object: Fixate on salient areas that contain blue and are 
spatially similar to the target; avoid yellow 

  

CIEP_cone 
(conspicuity) Icon: Fixate on salient areas that are yellow, not blue, 

that are spatially similar to cartoon icon 

F/M Ratio 

Object: Fixate on the colors that are unique to the 
target; suppress target colors that are heavily present in 
the rest of the image; avoid yellow 

  

Ratio_object 

Icon: Fixate on salient regions that are yellow 

ROC Curve Area 
Object: Fixate on blue regions that are spatially similar 
to the target; avoid yellow 

  

Hist_object, 
Spatial_object 

Icon: Fixate on salient, yellow regions 

CASA 
Object: Fixate on salient, blue regions that are spatially 
similar to the target 

  

CIEP_cone 
(conspicuity) 

Icon: Fixate on salient, yellow regions 
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Figure 90: Performance of eight feature maps for Image 25. The last row shows the feature map histogram 
(shaded gray), the histogram of values at fixated locations during the Extracted Object search condition 

(red solid line) and Cartoon Icon condition (blue dotted line). 
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 Figure 91: Image 53 

 

Table XVIII: Search strategies and map performance compared across metrics for Image 53 

Image  53:  Teapot   Object RT: 22 s   Icon RT: 22 s ;  (not found by some subjects) 
Metric Best performance Search strategy, according to metric 

Object: Fixate on salient regions that are possible 
objects that are also gray or gold, avoid spatially similar 
objects CPa CIEP_cone, Hist_icon 
Icon:  Fixate on salient regions that are possibly objects  
that are gray or gold 
Object: None – search randomly or in a serial pattern 
throughout the image F/M Ratio CIEP_cone Icon: None – search randomly or in a serial pattern 
throughout the image 
Object: None – search randomly or in a serial pattern 
throughout the image ROC Curve Area 

CIEP_cone, 
Spatial_icon and 

object Icon: Fixate on salient regions that are possibly objects  
that are similar in spatial structure to the icon 
Object: None – search randomly or in a serial pattern 
throughout the image CASA 

  CIEP_cone 
Icon: Fixate on salient regions that are possibly objects 
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Figure 92: Performance of eight feature maps for Image 53. The last row shows the feature map histogram 
(shaded gray), the histogram of values at fixated locations during the Extracted Object search condition 

(red solid line) and Cartoon Icon condition (blue dotted line). 
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5.5.8 Relative performance of maps in each condition 

Table XIX shows the performance of each of the maps side-by-side, for the condition in 

which the average of each patch was used. The top section lists the results from the Extracted 

Object target preview condition, and the bottom lists results from the Cartoon Icon condition.  

Values that are at or below chance level are shaded.  The highest value for each metric is shown 

in bold.  For the Extracted Object condition, the Hist_icon and Ratio_icon performed below 

chance according to almost all metrics.  This is expected since subjects in this condition did not 

see the Cartoon Icon target preview.  According to the CPa metric, the Spatial_object map 

performed best, indicating that the content selected by the visual system during this task was 

more similar to the target in shape than in color.  The F/M Ratio, on the other hand, showed better 

performance of the maps weighted by the target’s color, rather than its spatial structure.  The 

ROC Curve Area and CASA metrics both show that the Hist_object map performed best, 

although the ROC Curve Area was nearly equal for the Hist_object, Ratio_object, and 

Spatial_object maps.   

For the Cartoon Icon condition, most of the metrics show the performance of the maps 

weighed by the icon’s colors to be below chance, suggesting that subjects did not consistently use 

the Cartoon Icon’s color in a search strategy as was seen in the Extracted Object condition.  This 

strategy would not be efficient given that the subject could not trust that the Cartoon Icon would 

be the same color as the true target.  Again the CPa metric showed best performance by the 

Spatial_object map, followed by the Ratio_object map.  The F/M Ratio metric value was very 

high for the Ratio_object map, which is also the map that produced the highest ROC Curve Area.  

Again the ROC Curve Area was nearly equal for the Hist_object, Ratio_object, and 

Spatial_object maps.   Unlike the other metrics, the CASA value was highest for the Hist_object 

map.  These results show that subjects’ fixations, on average, correlate to regions with colors that 

are similar to the true target, even though they had been shown a Cartoon Icon before the trial.  

Although Table X, Figure 88 and Figure 90 show that there are differences in map 

performance between the two search conditions for some images, averaging across all images 

shows no overall difference.   
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Table XIX: Relative performance of maps for the two target preview conditions.  Shading indicates values 
at or below chance level.  

 

 

 

 

Extracted Object Condition 
 Hist_object Hist_icon Ratio_object Ratio_icon Spatial_object Spatial_icon 

CPa -0.13 -0.49 0.06 -0.20 0.08 0.01 
F/M Ratio 2.18 0.93 5.37 2.59 1.25 1.14 

ROC Curve Area 0.62 0.47 0.61 0.41 0.60 0.56 
CASA 0.06 -0.01 0.01 0.00 0.02 0.01 

CPa weighted 0.11 -0.47 0.20 -0.20 0.14 0.02 
F/M Ratio weighted 3.33 0.97 10.59 3.32 1.32 1.13 

Cartoon Icon Condition      
 Hist_object Hist_icon Ratio_object Ratio_icon Spatial_object Spatial_icon 

CPa -0.15 -0.54 0.05 -0.18 0.08 0.02 
F/M Ratio 1.98 0.97 4.80 2.50 1.24 1.16 

ROC Curve Area 0.59 0.46 0.61 0.39 0.59 0.56 
CASA 0.05 -0.01 0.02 0.00 0.02 0.01 

CPa weighted 0.06 -0.53 0.17 -0.19 0.14 0.04 
F/M Ratio weighted 3.10 1.02 9.67 4.15 1.33 1.16 
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5.5.9 Relative performance of all maps 

Figure 93 compares the average performance of each map collapsed across the two 

search conditions. Each of the four metrics is shown for the condition in which the average of 

each patch was used.  The CPa value shows the best performance by the P_object and CIEP_cone 

maps.  This indicates that during the search task, subjects fixated on areas that were perceptually 

salient and also in regions that are likely to be objects or parts of objects.  Performance was above 

chance for the Ratio_object and Spatial_object maps, suggesting that areas of similar color or 

spatial structure to the target were fixated.  

The F/M Ratio metric shows very high performance for the two Ratio Histogram 

Backprojected maps.  These values may be an overestimation resulting from the very low mean 

of these types of maps.  The P_object, CIEP_cone and Hist_object were also above chance, 

suggesting that salience, texture, and colors similar to the target guided saccadic eye movements 

in this search task.  

The ROC Curve Area metric shows that the Edge, P_object, Hist_object, Ratio_object, 

Spatial_object performed nearly equally, and better than the other maps.  This suggests that areas 

of colors and spatial structure that were similar to the target were fixated more than areas of high 

intensity or bright colors. The maps weighted by the color of the Cartoon Icon showed a 

performance below chance.   

The CASA metric shows the best performance by the P_object map.  The CIEP_cone and 

Hist_object maps show better performance than the rest of the maps, suggesting that areas of 

color similar to the target, or that are likely to be objects, received more fixations than areas of 

bright colors or many edges.  
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Figure 93: Performance metric value (averaged across all images and both search conditions) for each map: 
3.) I_rgb, 4.) I_lab, 5.) I_cone, 6.) C_rgb, 7.) C_lab, 8.) C_cone, 9.) Edges, 10.) P_object, 11.) CIE_rgb, 12.) 

CIE_lab, 13.) CIE_cone, 14.) CIEP_cone, 15.) Hist_object, 16.) Hist_icon, 17.) Ratio_object, 18.) 
Ratio_icon, 19.) Spatial_object, 20.) Spatial_icon 
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5.6 Discrimination images 

Research by Rajashekar [2002, 2004] has shown evidence that the visual system uses a 

form of spatial matched filtering when searching Gaussian noise.  Using the eyetracking data 

from this experiment, patches of an intensity image (defined as the L* channel) at fixated 

locations during visual search in real-world scenes were extracted to determine if an underlying 

spatial structure may attract attention.  Also, if subjects did use a spatial structure to guide 

fixations, are there any differences between the two search conditions?  

 

Figure 94: Image 24 and corresponding Extracted Object and Cartoon Icon target previews 

 

 

Figure 95: Example discrimination images for Image 24 
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Figure 94 shows Image 24 used in the experiment, along with its Extracted Object (a blue 

moon with a face) and Cartoon Icon (yellow crescent shape) target previews.  Figure 95 shows 

the resulting average patches for each condition, and for random locations.  The final image in 

Figure 95 includes patches at fixations on or near the target.  The averaging process took into 

account the duration of the fixation at that location.  For both the Object and Icon conditions, a 

horizontal striped pattern emerges.   

Distinct spatial structures that resemble the target, such as those shown by Rajashekar, et 

al. [2002] were not found in this analysis for several reasons.  For each image, there could be as 

few as 30 fixation locations.  This number of samples is not large enough, and some subjects’ 

locations may overlap.  In natural images, the ‘noise’ may not average out as in Rajashekar’s 

experiments.   When searching images with large uniform regions, such as a sky, any region with 

objects may receive more fixations.  In that case, the discrimination image may resemble those 

objects, since there was a high probability that they would be fixated.  The horizontal striped 

patterns in Figure 95 do not indicate that when searching for a moon, subjects’ search strategy is 

to look for horizontal stripes; rather, they are present in the average patches because the image 

contains many horizontal lines in the neon signs, bricks, and building structure.  

Even if more samples were available, it is possible that a structure would not be present 

in the discrimination image because the visual system is altering its search ‘kernel’ while 

acquiring high-level information as time progresses.  For example, when searching a kitchen 

scene for a water faucet, high-level information about the context of the scene will guide eye 

movements toward likely locations for that object. 

Additionally, as mentioned by Rajashekar, et al. [2002], these structures may be “washed 

out” if the image patches do not overlap perfectly.  For example, fixations may occur on different 

areas of the same target.  When patches around those fixations are averaged, the surrounding 

structure is replicated and may form ‘ghost’ images, as shown in the last image in Figure 95.  

Both subject variability and inaccuracy of the eyetracker used will facilitate this problem. 
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5.7 Conclusions and Discussion 

This chapter presented a visual search experiment in which subjects searched for an 

object in a real-world scene.  There were two search conditions: the subject was either shown the 

exact, pixel-for-pixel target before beginning the trial (Extracted Object condition), or a cartoon 

icon representation of the target (Cartoon Icon condition).  Results showed an increase in reaction 

time for the Cartoon Icon condition; this was found to be due to both an increase in the amount of 

time between the presentation of the image and the first fixation on the target and a slight increase 

in time between fixating on the target and pressing the spacebar to end the trial.  This indicates 

that knowing the exact target features expedites the visual search task. 

A series of topographical feature maps were generated in order to investigate what 

features in the scene were used to guide saccadic eye movements in the visual search task.  These 

maps were also used to compare differences between the content selected by the visual system 

between the Extracted Object and Cartoon Icon search conditions.  Four performance metrics 

used in current literature were used to measure how well high values of the feature maps 

correspond to locations of fixations.  The performance values of each map can then be used to 

compare the relative amounts of each feature that was selected by the visual system.  

Circular patches of a radius of ~1 degree were extracted from each map at each fixation 

location.  In one condition, the average value of the patch was used to compute performance 

metrics, in another, the maximum value within each patch was used.  Two of the metrics, CPa 

and F/M Ratio, are very sensitive to which condition was used in the calculation.  The ROC 

Curve was less sensitive since it compares fixated values to values of random locations, and not 

just to the mean of the entire map.  

Intensity, Colorfulness and Saliency (a combination of intensity, colorfulness, and 

oriented edge content) maps were computed using three different color spaces: RGB, 1976 CIE 

L*a*b*, and a color space that mimics the rod and cone responses of the visual system.  After 

comparison, it is unclear which color space may be the most effective for building saliency maps 

since the results from the four performance metrics were not consistent.  For the Intensity maps, 

the CPa metric showed increased performance for the I_lab map, whereas the F/M Ratio and 

ROC Curve Area metrics showed better performance by the I_cone map.  The CASA metric 

showed no difference between the three.  For the Colorfulness maps, three of the four metrics 

showed no difference between the C_rgb and C_lab maps, but all four showed lower performance 
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for the C_cone map.  For the Saliency maps, the CPa value showed better performance by the 

CIE_lab map, whereas the F/M Ratio metric showed better performance by the CIE_rgb map.  

The ROC Curve Area metric showed no difference between the three.  

The CPa and F/M Ratio metrics were also computed in a way that takes into account the 

duration of each fixation.  That way, if a subject spends a long time fixating on high feature 

values, and fixates a shorter time on areas of low values, then the weighting by the duration will 

show an increase in performance.  A paired t-test between 2160 trials showed that there is a 

positive increase in both the CPa and F/M Ratio metrics (when using the average of each patch) 

as a result of weighting by duration.   This increase was also found when the maximum of each 

patch was used for the CPa metric.  For the F/M Ratio in this condition, there were over 200 trials 

in which the ratio increased by more than 1.5 units.  

Although an increase in map performance may be gained by weighting by fixation 

duration, it is unclear as to whether this is an appropriate way to gain insight into the extent to 

which stimulus features guide visual attention.  Given that the decision to move the eyes to a 

particular location is made during previous fixations, it is unclear whether the duration of the 

fixation is correlated to the influence of those features when they are in the periphery.   

The influence of the target preview on the selection of features was investigated using 

feature maps that were weighed by the target’s color and spatial structure.  Although the metrics 

do not agree with regard to the relative performance of the six maps used, most agreed that maps 

weighed by the color of the Extracted Object target performed best.  The CPa metric showed best 

performance by the map weighted by the spatial structure of the Extracted object for both search 

conditions.  The ROC Curve Area was very similar between the maps weighted by color as well 

as the one weighted by the structure of the target, indicating these features, on average, had equal 

influence on search strategies.  Some metrics showed better performance by the Ratio_object map 

than for the Hist_object map, which would indicate that if the image contains a large amount of 

colors similar to the ones in the target, signals in the visual system from those features would be 

suppressed, and regions of colors that are unique to the target would be searched for instead.  This 

method of suppression when distracters are present was also shown in a simple visual search 

experiment by Navalpakkam [2004]; 

After averaging over all images, there was no significant difference between the 

performances of each map between the Extracted Object and Cartoon Icon search conditions, 

suggesting that the characteristics of the target did not, on average, influence the deployment of 

visual attention during the search task.  However, there were target pairs that did not differ much 
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in color or spatial structure.  As shown in Table X, Figure 88 and Figure 90, there exist some 

cases in which the target preview did influence the search strategy.  For example, in some cases 

subjects looked at regions similar to the target in a particular feature dimension; in others, they 

may have avoided regions of similar features.  When averaging across all images, these 

differences average to zero.  This shows that the behavior of the visual system cannot be 

generalized by any one model or weighting method; the behavior is highly dependent on the task 

and scene.     

The better performance of maps that are manipulated on a task-by-task basis again 

demonstrates the ability of the visual system to fine tune its routines actively.  As shown in Table 

X, more fixations fell on regions of colors that were similar to the target when the subjects had 

viewed the Extracted Object instead of a grayscale Cartoon Icon.  This indicates that when given 

that extra information about the color of the target the visual system used it to optimize its search 

strategy.  This means that prior knowledge about the target also affects the deployment of 

attention.  For the cases where the system performed in a manner opposite to what was predicted 

(e.g., avoiding features that were similar to the target), this indicates that other, high-level 

features (such as expected location within the context of the scene) are interacting with the low-

level stimulus features to more efficiently guide eye movements.  Additionally, the experiment in 

which ‘discrimination images’ were created showed that the visual system, during a search task in 

real-world scenes, does not simply use a spatial matched filter.     

When comparing the performance of 18 feature maps, collapsed across the two search 

conditions, it is difficult to determine the relative amounts of features selected by the visual 

system because the four metrics do not always agree.  The P_object and CIEP_cone maps were 

shown to perform above chance by each of the metrics.  Three of the four metrics show that the 

Hist_object and Ratio_object maps, which are weighted by the color of the Extracted Object 

target color, were also well above chance.  For the maps weighted by the color of the Cartoon 

Icon, all but the F/M Ratio are at or below chance.  The high value of the F/M Ratio is an 

overestimation as a result of the very low mean value of the Ratio_icon map, which in some cases 

is very close to zero if the image does not contain much of the color of the Cartoon Icon.  

The maps that are typically used to measure the influence of low-level features on 

selective attention include those that measure colorfulness, intensity, oriented edges.  They are 

also combined to make a general “CIE” saliency map.  Each of these maps, on average, 

performed very close to chance level.  Only the ROC Curve metric showed the color and edge 

maps to perform as well as some of the weighted maps.  
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The goal of the visual search experiment and extraction of features described in this 

chapter was to determine what types of features are used to guide selective attention during a 

search task.  A second goal was to determine how the target preview affected search strategies, as 

defined by the relative amounts of features at fixated locations.  While the selected features used 

to make topographical maps is not an exhaustive list, it was found that the locations of fixations 

correlate to areas of the image that are similar in color or spatial structure to the target, rather than 

areas with bright colors, high intensity, or strong edges.  Additionally, fixations correlate to 

regions that are possible objects or foreground areas, as defined by the P_object map.  The 

relationship between the features used to guide eye movements depend not only on which 

performance metric is used, but also the feature content of the target and the scene.   

The performance metrics used were shown to behave differently with respect to the 

distribution of the feature map, and the manner in which they are calculated.  Using the maximum 

value of a feature map within a one-degree radius of a fixation location is not appropriate for the 

CPa and F/M Ratio metrics.  Although the CPa and F/M Ratio metrics both in some way compare 

the map value at fixation to the mean map value, the shape of the distribution may cause the 

metrics to disagree.  In cases in which the map is mostly zero, with a few locations of high values, 

the CPa value may be very negative (below chance) for map values just below the mean, while 

the F/M Ratio gives a value only slightly below chance.   On the other hand, if the mean is close 

to zero, a high map value will give a very large F/M Ratio, whereas the CPa metric will converge 

to 1.    

The ROC Curve Area and CASA metrics are less sensitive to whether the maximum or 

average map value surrounding a fixation location is used, since they are designed to examine the 

difference between the distributions of map values selected by vision or selected by random.  The 

CASA value also has bounding values, but the number of bins used to create histograms will 

affect the weighting vector, which will affect the final CASA value.  Additionally, two different 

distributions of fixated map values may result in very similar CASA values.  The CPa has an 

upper limit, whereas the F/M Ratio has a lower limit.  The ROC Curve Area is also ideal because 

it is limited in range; however, the result may be dependent on the number of fixations used since 

the calculation requires a curve to be fit.   

The ideal metric depends upon how saliency maps are designed.  If they are designed to 

consist of mostly low values with a limited selection of high values, then the F/M Ratio and CPa 

values may not be appropriate.  The ROC Curve Area metric is the most conservative among the 

four metrics used and works well for distributions of different shapes.  
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Chapter 6 

6 Conclusions and Recommendations 

6.1 Overview 

The goals of this thesis project included utilizing eyetracking technology to gain insight 

into what scene content guides eye movements in specific tasks.  Chapter 2 gave an overview of 

the human visual system and its behavior as an active, flexible imaging system.  Also presented 

was an overview of current work on computational models that seek to explore the bottom-up 

influence of visual stimuli on attention, as well as metrics designed to measure that influence.  

Chapter 3 presented the tools used to perform the experiments performed during this research 

project.   

6.2 Influence of task on eye movements 

Chapter 4 introduced the work of Alfred Yarbus and his classical experiment that showed 

the influence of task on eye movement patterns [Yarbus, 1967].  Yarbus eyetracked only one 

subject. His experiment was replicated with 17 subjects under more natural conditions in this 

work.  Subjects viewed a copy of I.E. Repin’s “They did not expect him” only for as long as 

needed.  Additionally, subjects’ heads were not constrained. Unlike Yarbus’ experiment, 

temporal information was also collected.  

Results similar to Yarbus’ were found; the eye fixated on ‘informative’ regions for each 

task.  The amount of time spent viewing different regions of the image was compared between 

the tasks.  It was shown that for each of the tasks, the faces were fixated.  For some tasks, subjects 
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spent the majority of the time examining the people in the scene; in others, objects such as 

furniture or pictures on the wall were examined more. 

Subjects showed variability not only in the amount of time they spent performing each 

task, but also in the percentage of time spent on each region of the scene.  However, differences 

in behavior between tasks were greater than differences between subjects (within each task), 

indicating that the influence of the task was greater than any individual differences. 

Replication of this experiment verified Yarbus’ often-cited results showing that eye 

movement patterns are highly influenced by a person’s goal or task, even as the visual stimulus 

remains constant.  

Chapter 5 presented a visual search experiment in which subjects searched for an object 

in a real-world scene.  Two target preview conditions were used: the subject was either shown the 

exact, pixel-for-pixel target before beginning the trial (Extracted Object condition), or a cartoon 

icon representation of the target (Cartoon Icon condition).  Results showed an increase in reaction 

time for the Cartoon Icon condition; this was found to be primarily due to an increased amount of 

time between the presentation of the image and the first fixation on the target, and not an increase 

in time between fixating on the target and pressing the spacebar to end the trial.  

The difference in reaction time between the two conditions showed that the features of 

the target preview influenced the pattern of eye movements during the search, which resulted in a 

longer reaction time.  This also indicates that knowing the exact features of the target facilitated 

the performance of the visual system in this task.  

 

6.3 Image features at the point of gaze 

A series of topographical feature maps were generated in order to investigate what 

features in the scene were used to guide saccadic eye movements in the visual search task.  These 

maps were also used to compare differences between the content selected by the visual system 

between the Extracted Object and Cartoon Icon search conditions.  

It was found that areas of the scene that contained low-level image features such as bright 

colors, high intensity, and high-contrast oriented edges did not correlate well to the locations that 

were fixated by subjects during the experiment.  Rather, regions that are possible objects or 

foreground elements showed a better correlation.  Additionally, regions of the image that were 
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similar to the search target either in color or spatial content showed a strong correlation to where 

people looked.  

When comparing the features at the point of gaze between the two search conditions, 

little difference was found when results were averaged across the image set.  This indicates that 

on average, the target preview does not affect the content selected by the visual system (i.e., the 

search strategy) in the same manner across all trials.  However, in some cases it was found that 

the content at fixated locations closely matched features of the target only in the Extracted Object 

condition.  In other cases, features similar to the target were avoided because the image contained 

a great deal of those features.   

A few conclusions can be drawn from the results of this experiment.  First, the behavior 

of the visual system cannot be explained only by bottom-up responses to low-level information 

from the environment.  Secondly, the regions of the scene that are task-relevant or ‘informative’ 

areas are fixated and given more access to computational resources in the brain.  These 

informative regions may contain similar low-level features as those of the target, but they are also 

constrained by high-level information such as the context of the scene, recognized objects, 

segmented foreground, or semantics.  Third, the instruction, whether verbal or visual, can affect 

the deployment of attention and therefore patterns of eye movements.  However, the effect that a 

visual target preview has on search strategies is not consistent across targets or real-world scenes.  

Lastly, the visual system is not simply a mathematical pattern recognition system that uses color 

and spatial features of the target preview to operate in a visual search task.  In real-world scenes, 

more complex features are extracted and used to guide eye movements, such as expected location 

within the context of the scene.  

 

6.4 Recommendations and future work 

6.4.1 Temporal analysis 

A logical progression of this research is temporal analysis of eye movements and the 

deployment of visual attention.  In current literature, there is conflicting evidence regarding the 

influence of low-level features in guiding eye movements, and how that influence changes over 

time.  It would be interesting to know if in the Cartoon Icon condition, the features of the icon are 

initially used to target areas to be fixated before being disregarded or suppressed as new strategies 

evolve as higher-level information about the scene is accumulated.  
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It is possible that in some cases in which the target is not in an expected location, the 

system, upon getting the “gist” of the scene within a few hundred milliseconds [Biederman, 1981], 

first chooses areas where the object is likely to be found.  When it is not found, the search 

strategy may then evolve and become more influenced by low-level features such as target color 

or spatial structure. 

 

6.4.2 Comparison to Freeview 

Eyetracking data should be collected for subjects freely viewing the images used in the 

visual search experiment.  Comparison of the performance of the different types of feature maps 

may indicate differences in oculomotor behavior between visual search and freeview tasks.  

 

6.4.3 Feature sets and weightings 

In order to further explore the role of target color or spatial structure, new Cartoon Icon 

target previews should be designed.  This may include a set that are monochrome versions of the 

Extracted Object.  In the experiment presented above, there were sets of target previews that did 

not differ much in color or shape.  This may reduce the differences seen between conditions.  

When designing new targets or scenes, it is important to not control every variable to the extent 

that the search task becomes unlike what people do in the real world.  The types of scenes chosen 

for this experiment mimic what people may do on a daily basis: search for keys on a table, an 

item in the grocery store, or a face in a crowd.   

The features explored in this research project were very limited in scope.  Additional sets 

of features should be explored.  For example, the spatial correlation maps were computed at only 

one spatial resolution.  The spatial features of the target may also be influential at other spatial 

scales.   Also, this project did not investigate the relative weighting of combinations of features.  

For example, when creating the CIE saliency maps, should intensity, color and oriented edge 

maps be given equal weighting? 

The feature maps used in this project were not dynamically modified to take into account 

any change in feature detection as a result of the region’s location in the periphery during the 

fixation(s) prior.  More work could be done to model how these different types of features are 

represented in the periphery in order to make models of attention more biologically plausible. 
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6.4.4 Central biasing 

A topic that was only briefly mentioned is central biasing.  Some models of saliency 

incorporate an artificial weighting that inhibits regions that are not in the central portion of the 

visual field (or image).  It has been shown that both locations of fixation and locations of high 

salience gravitate toward the center of the field/image (see Figure 75).  What is not clear is 

whether the locations of fixations are a result of salient regions being in the center of the image or 

of a central bias of the oculomotor system.   An experiment to explore this question would 

involve one in which subjects viewed images of natural or real-world scenes that do not contain 

objects or focal points in the center, as they typically are in photographs used in eyetracking 

experiments.    

 

6.4.5 Performance metrics 

   The performance metrics used in this analysis each have a unique behavior that depends 

on the probability distributions of the feature maps.  Choosing the most appropriate performance 

metric begs the question of how predictive models of visual attention should be designed.  For 

example, feature maps could be designed so that they are mostly zero with selected locations of 

high values.  They may also be designed to follow a specific distribution that is tailored to work 

well with a specific metric.   When comparing one feature across conditions or to random, the 

ordinal value of the feature (such as contrast or the spatial correlation) should be used.  When 

comparing across features, a performance metrics that takes into account the shape of the 

distribution is more appropriate.  

Another consideration is the process of calculating each metric.  In this project, circular 

patches with a radius of approximately 1 degree of visual angle were extracted, and either the 

average or maximum of each patch was used.  The effect of different patch sizes and image 

resolution on each metric should be explored.  

Two metrics in this project took into account the duration of each fixation.  A slight 

increase in performance of feature maps was found, although it is not clear if the fixation duration 

is correlated with the influence of the feature when it is in the periphery.  An analysis which uses 

the duration of one or more fixations prior could be compared.   

 



125 

6.4.6 Improved models of visual attention 

The results of the experiments in this research project can be used as guidelines for the 

development of new models of visual attention.  At this point it is impossible to create a general 

predictive model which builds upon only bottom-up information while excluding any high-level 

information or influence from a person’s experience or interests.   However, research of what 

scene content is extracted by this active system may shed light onto what types of processes are 

being used by the brain.  In this project, it was verified that adding a mask that inhibits responses 

from salient regions in the background improves performance [Canosa, 2003].  During the visual 

search task, color and spatial information were shown to play a role in guiding eye movements 

for certain scenes.  For a search task in which target features are known a priori, incorporating 

both color and spatial information about the target, perhaps via a weighted mask, may improve 

the performance of the model.   
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