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Abstract  

 

Sustainable forest management practices are receiving renewed attention in the growing 

effort to make efficient long-term use of natural resources. Sustainable management approaches 

require accurate and timely measurement of the world’s forests to monitor volume, biomass, and 

changes in sequestered carbon. It is in this context that remote sensing technologies, which 

possess the capability to rapidly capture structural data of entire forests, have become a key 

research area. Laser scanning systems, also known as lidar (light detection and ranging), have 

reached a maturity level where they may be considered a standard data source for structural 

measurements of forests; however, airborne lidar mounted on manned aircraft can be cost-

prohibitive. The increasing performance capabilities and reduction of cost associated with small 

unmanned aerial systems (sUAS), coupled with the decreasing size and mass of lidar sensors, 

provide the potential for a cost-effective alternative. Our objectives for this study were to assess 

the extensibility of established airborne lidar algorithms to sUAS data and to evaluate the use of 

more cost-effective structure-from-motion (SfM) point cloud generation techniques from 

imagery obtained by the sUAS. A data collection was completed by both manned and sUAS lidar 

and imaging systems in Lebanon, VA and Asheville, NC. Both systems produced adequately 

dense point clouds with the manned system exceeding 30 pts/m2 and the sUAS exceeding 400 

pts/m2. A cost analysis, two carbon models and a harvest detection algorithm were explored to 

test performance. It was found that the sUAS performed similarly on one of the two biomass 

models, while being competitive at a cost of $8.12/acre, compared to the manned aircraft’s cost 
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of $8.09/acre, excluding mobilization costs of the manned system. On the biomass modeling 

front, the sUAS effort did not include enough data for training the second model or classifier, 

due to a lack of samples from data corruption. However, a proxy data set was generated from the 

manned aircraft, with similar results to the full resolution data, which then was compared to the 

sUAS data from four overlapping plots. This comparison showed good agreement between the 

systems when ingested into the trained airborne platform’s data model (RMSE = 1.77 Mg/ha).  

Producer’s accuracy, User’s accuracy, and the Kappa statistic for detection of harvested plots 

were 94.1%, 92.2% and 89.8%, respectively. A leave-one-out and holdout cross validation 

scheme was used to train and test the classifier, using 1000 iterations, with the mean values over 

all trials presented in this study. In the context of an investigative study, this classifier showed 

that the detection of harvested and non-harvested forest is possible with simple metrics derived 

from the vertical structure of the forest. Due to the closed nature of the forest canopy, the SfM 

data did not contain many ground returns, and thus, was not able to match the airborne lidar’s 

performance. It did, however, provide fine detail of the forest canopy from the sUAS platform. 

Overall, we concluded that sUAS is a viable alternative to airborne manned sensing platforms for 

fine-scale, local forest assessments, but there is a level of system maturity that needs to be 

attained for larger area applications.  
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Chapter 1  

 

Introduction 
 

1.1   CONTEXT 

Timber products have supported civilizations for thousands of years, from firewood for 

heat and cooking, to building materials for shelter and transportation, down to simple paper 

products for communication in the modern age. A majority of the population rely on products 

derived from forests, along with the ecosystems and associated services that these forests 

support. With this in mind, an effort to conserve natural resources is paramount in order to 

continue associated ecosystem services. However, quantifiable information on forest structure 

and condition must be collected in order to achieve this goal. Production information, and the 

communication flow of said information to stakeholders, is a key product within forestry 

management [1]. This concept was noted over 25 years ago and has become increasingly 

important today, leading to the need for robust forest measurement techniques. These 

measurements serve as input to standardized decision-making metrics used by foresters when 

applying sustainable forest management (SFM) principles.  

 Historically, measurements have been completed exclusively by ground crews, who 

manually measure individual stems in representative plots located throughout the entire forest 
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[2]. From these representative plots, the descriptive forest area measurements can be estimated 

through the process of imputation [3], which implies a process of filling in data points that were 

not directly measured. This can be done through various methods, with regression modeling 

being commonly used in the context of forestry [4]. As expected, it can be tedious and time 

consuming to deploy a field crew to measure individual trees in forests covering large areas. This 

does not support rapid acquisition of information, since field inventories can take months to 

complete. It becomes increasingly difficult, time consuming, and expensive in rugged, 

mountainous terrain that is difficult to traverse.  

Remote sensing technology possesses the capability to execute these measurements in 

rugged, hard to navigate terrain, while also allowing for large area coverage. Forestry mapping 

and measurement utilizing remote sensing techniques therefore has become a key research area. 

Initial studies focused on multi- and hyper-spectral imaging, as well as synthetic aperture radar 

(SAR) [5]–[8]. The optical imagers suffered insensitivity to above ground biomass (AGB) values 

of secondary forests beyond 10-15 years of age [9], [10]. Models generated from SAR 

backscatter returns in turn suffered from similar saturation issues, causing insensitivity to dense 

forests with AGB values about 60 Mg/ha [5], [6]. These issues made it challenging to rely on 

remote sensing methods for forestry use, as information for all types of forests are required to 

inform decision making in the context of sustainable forest management. However, lidar (light 

detection and ranging) is a relatively novel technology that has shown much promise for forest 

structural assessment. 

Lidar is an active imaging technology that can directly measure structural information of the 

forests, including forest canopy structure. With the advancement of laser pulse rates and 

scanning rates, as well as the capability to measure multiple returns per pulse, lidar sensors are 

capable of generating dense point cloud measurements of the dominant and underlying canopy in 

mixed aged forests. Many of the parameters that foresters are interested in, such as volume, 

biomass, and carbon, are modeled through allometric equations that are functions of structural 

measurements, e.g., diameter at breast height (DBH), core stem height, total height, crown area 

etc. Airborne lidar scanner (ALS) systems provide a capability to directly measure many of these 

independent variables used for modeling forestry parameters and for coverage of large areas in 

relatively short time periods. A variety of studies at plot- and individual tree level successfully 

have been completed using ALS systems in a variety of forest types and locations, measuring 
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important SFM metrics, such as volume, biomass, and stems-per-hectare (SPHA) [11]–[14]. This 

work recently has been extended to the assessment of forest sustainability. 

Multiple organizations have been established to develop best practices and methods in 

regards to sustainable forestry. The UN Framework Convention on Climate Change (UNFCCC) 

developed an initiative called “Reducing Emissions from Deforestation and Degradation” 

(REDD+). The initiative requires large-area biomass and carbon inventories to be measured, and 

incentivizes the concept of carbon credits to offset less environmentally friendly industries, such 

as power plants [15]. In another international example, the 12 host nations that manage 49% of 

the world’s forest by area, which contain 90% of the world’s temperate and boreal forests, follow 

the Montreal Process for SFM [16]. This process establishes seven criteria as guiding principles, 

each containing measurable indicators to determine success or failure in maintaining the 

guidelines at the regional and national scales. These commitments to conservation and SFM 

principles appear to be effective, as recent trends show total forest area loss has been slowing. 

For example, forest area loss during the time period from 2010 to 2015 exhibited half the loss 

rate as seen between 1990 to 2000 [17]. Both of these SFM frameworks require accurate, 

recurring measurements of forests for monitoring changes in biomass, carbon, and forest 

structure. These SFM principles drive a need to accurately capture inventory metrics across large 

areas and to do so in an efficient manner [4], as change detection requires repeated measurement. 

The current standard for obtaining ALS data for an area of interest is to contract a company 

specializing in deploying ALS systems on fixed wing aircraft. Maintaining and operating these 

systems is an expensive endeavor, and as such, the cost is passed along to the end-user. Studies 

comparing costs between ground crews manually measuring plot inventories and these airborne 

scanning systems found that the ALS collections typically cost tens of thousands of US dollars 

more than a standard ground crew-based collection [2], [3]. The tradeoff, however, is that ALS 

systems can cover a much larger land area and directly measure entire forests, while the ground 

crews will measure representative plots and use models to develop estimates for entire forests. 

Once area is considered, at small area sizes, the ground crew option is more cost effective as 

mobilization costs outweigh the operation costs of the ALS small area collections. Therefore, as 

the study area increases, the ALS option becomes more competitive and surpasses the ground 

crew method in cost [3]. 
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In recent years the reduction in sensor size and mass, coupled with increasing payload 

capability and flight times of small unmanned aerial systems (sUAS), have provided the 

opportunity for a third option. This option allows for high operational flexibility at a potentially 

reduced cost from the typical ALS system deployment. The sUAS is lightweight with a small 

logistical footprint; there are no recurring fuel costs, and such systems only require a Federal 

Aviation Administration (FAA) part 107 certified pilot. It is with these benefits in mind that we 

executed a study to assess sUAS capabilities for forest structural assessment. We hypothesize 

that with a sUAS, an organization can obtain the same level of accuracy of the legacy ALS 

systems and can procure higher density point clouds for use in SFM metric analysis, while 

simultaneously generating adequate imagery (ground sample distance < 10 cm) for fine scale 

structure-from-motion 

 The research conducted in this thesis aimed to support these goals of rapid, accurate 

acquisition of data for use with sustainable forest management practices. Methodologies 

employed for data collection were manned and sUAS airborne lidar scanning systems, as well as 

imagery collections completed coincidentally with the lidar collections.  The specific objectives 

of the research conducted are listed in the next section.  

 

1.2   OBJECTIVES 

 

 Objective 1: Assess the extensibility of light detection and ranging (lidar) algorithms for 

forest height, volume, and carbon assessment to sUAS platforms and data. 

 Objective 2: Evaluate the use of more cost-effective imagery-based (stereoscopic 

structure-from-motion) vs. lidar-based algorithms for forest structure assessment. 

 Objective   3: Develop and evaluate a framework for disturbance detection within forest 

canopy structures. 

 Objective 4: Publish and present research findings to achieve broad industry 

dissemination, especially among forest management entities such as the Forest 

Stewardship Council (FSC) and Rainforest Alliance. 
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1.3   THESIS LAYOUT 

1.3.1   Chapter 2: Background 

This chapter provides a more in depth background of the history of remote sensing in the 

forestry domain. Basic terms and methods are identified in more detail than what would be found 

in subsequent chapters. 

 

1.3.2   Chapter 3: Cost Analysis Between Sensor Platforms 

This chapter contains a paper that was presented and published in the SPIE Commercial 

and Scientific Sensing and Imaging conference, April 2018 [18]. A simple linear regression 

model, based on point cloud distributions, is introduced to show that the sUAS and commercial 

lidar system perform similarly. A cost analysis is presented to compare economic implications of 

deploying either system for a typical user. Objectives 1 and 4 are addressed by this paper.  

 

1.3.3   Chapter 4: Functional Carbon Models in Broad Leaf Deciduous Forests and 

Harvested Plot Detection 

This chapter introduces a functional carbon model based on canopy height distributions, 

derived from canopy height models. A comparison is completed between a commercial lidar 

system and sUAS lidar system, with an additional comparison of data generated utilizing 

structure-from-motion methods on imagery collected by each platform to generate alternate point 

clouds. Lastly, a classifier is developed to detect disturbed plots and flag potential harvesting. 

This chapter is written with the intent to submit the study to a peer-reviewed journal within the 

2018 – 2019 timeframe and addresses Objectives 1-3. 

 

1.3.3   Chapter 5: Summary 

This chapter summarizes the work done at the time of writing, presents the current 

conclusions and describes future work and improvements to be considered for continuation of 

the research topics. 
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1.4   SCIENTIFIC CONTRIBUTIONS 

 Demonstrated higher point density capability of sUAS systems, capturing greater 

structural detail of dominant canopies. 

 Demonstrated greater capability of sUAS structure-from-motion point clouds to 

overcome perspective issues encountered with the fixed wing aircraft data. 

 Demonstrated the ability of sUAS lidar to detect harvested forest using structural metrics 

derived from voxels. 

 Analyzed economics and compared the quality of products between commercially 

generated lidar and sUAS platform lidar. 

 Application of a functional carbon model in a deciduous forest environment, differing 

from the original synthetic and coniferous forest training sets (from literature). 

 

These contributions have been presented at as SPIE Commercial + Scientific Sensing and 

Imaging Conference proceedings, April 2018 (Chapter 3), while Chapter 4 is written with the 

intent to submit for publication in an applicable remote sensing or forestry focused journal. 
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Chapter 2  

 

Background 
 

 

2.1   FOREWORD 

This thesis is organized in the modern format, meaning that each of the primary chapters 

(Chapter 3 and Chapter 4) is a stand-alone paper, including the standard background section. 

This additional background chapter is provided as a more in-depth review of lidar basics and 

sUAS applications within sustainable forest management. This chapter concludes with the RIT 

sUAS platform specifications and with an in-depth review of the preprocessing steps required to 

complete analysis that were not appropriate for the formal papers presented in later chapters.  

 

2.2   LIDAR BASICS 

Lidar is an active sensing technology, meaning that the sensor itself generates the energy 

used for measurement, as opposed to passive platforms such as electro-optical telescopes, which 

measure energy emanating for the target scene, regardless of the source of the scene radiation. 

Lidar emits a laser beam and measures the time delta between detected backscatter pulses. This 

allows for a distance measurement to be made, since the speed of light is known. This distance 

measurement can be leveraged to generate a point cloud in three-dimensional space if the 
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location of the sensor is known and the line of sight from the sensor is known. The general 

governing equation for lidar range measurements in the airborne laser-scanning environment can 

be seen in Equation 2.1, as described by Baltsavias [19].   

𝑅 = 𝑐 ∙  
Δ𝑡

2
(2.1) 

where, 𝑅 is the measured distance or range from the sensor to the imaged target, c is the 

speed of light in the atmosphere, and Δ𝑡 is the change in time from pulse emission to measured 

return pulse.  The energy covers the distance to the target twice, once to the target from the 

emitter and once back to the receiver from the target, thus, this time is halved for the range 

measurement.  

If the sensor platform’s position and attitude geometry (roll, pitch, and yaw) is known in 

three-dimensional space, coordinate information can be attributed to each range measurement. 

This coordinate information can be used to generate a point cloud in local coordinate space or in 

a known coordinate reference system. Typically, a GPS sensor for global position is used to 

place the location of the sensor in latitude, longitude and altitude space, while and inertial 

measurement unit (IMU) is used to measure the attitude of the sensor in the roll, pitch and yaw 

space. These varying coordinates and look angles are depicted by McCaughey in his manual for 

the FUSION lidar processing software suite [20] and can been seen in Figure 2.1. This method of 

generating lidar point clouds requires precise and accurate timing to properly place points in their 

correct location in three-dimensional space; otherwise, the structural measurements will not 

accurately represent the scene. The clock from the GPS sensor is the most reliable and is 

generally used to synchronize the timestamps or clock systems of the other two devices, the lidar 

sensors and IMU. 
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2.3   sUAS APPLICATIONS 

The utility of lidar in the forestry domain has been demonstrated going back over 50 

years [21]. The structural measurements made by lidar systems can be used for measurement of 

many forest characteristics, including biodiversity information, stems per hectare, canopy 

statistics, biomass estimates, and carbon estimates [11], [12], [14], [22], [23]. The multi-return 

nature of the lidar system allows for the capture of structural information of heterogeneous and 

older forest growth that the early remote sensing methods struggled to measure. A hindrance to 

using airborne laser scanning (ALS), versus the ground crew direct measurement method, is cost 

Figure 2.1. An illustration of the varying geometrical properties that influence point cloud 

generation from airborne laser scanners [20].  
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[24], [25]. ALS collections on fixed wing aircraft typically cost tens of thousands of US dollars 

more than a standard ground crew-based collection, causing difficulty in generating widespread 

use of the technology [2], [3]. A growing alternative to the commercial fixed wing aircraft 

approach is the small, unmanned aerial system (sUAS), defined by the Federal Aviation 

Association as an unmanned aircraft weighing less than 55 lbs at time of takeoff [26].   

In recent years, there has been an increase in the use of sUAS for remote sensing of 

forests [18], [24], [25], [27]–[29]. Jaakkola et al. produced one of the earliest sUAS ALS 

systems for forest management in 2010, after which sUAS use has become more common [24]. 

This increase in use can be attributed to a few advancements: the increased payload and flight 

time capability seen with the modern sUAS, a reduction in sensor mass of cameras, lidar 

systems, and GPS/IMU systems, and an increase in GPS/IMU accuracy in placement of the 

airframe and characterization of the airframe’s attitude during flight (roll, pitch, and yaw). All of 

these factors allow for larger areas to be imaged, while enabling high quality data products to be 

generated from these platforms with an ability to fly daily at a low cost of operation [18]. It has 

been shown that with the higher density point clouds generated from the sUAS, several metrics 

of interest can be measured with higher precision than larger footprint ALS systems on manned 

aircraft [24], [30].  

There are two common approaches to generating the three-dimensional point cloud 

products with the sUAS. The first and lower cost solution is the structure-from-motion (SfM) 

method [31]–[33]. This can be done using a common high spatial resolution RGB camera and 

acquiring overlapping imagery from multiple viewpoints. Modern software packages have been 

developed using computer vision algorithms to detect matching points in overlapping images and 

then use standard photogrammetric methods for height extraction of such a matching point [34], 

[35].  sUAS systems are well suited to SfM missions, especially rotor type sUAS air frames with 

vertical takeoff and landing capabilities, as they are capable of capturing hundreds to thousands 

of images of the target scene with large overlap, 360° coverage, and minimal motion blur. A 

disadvantage of the SfM methods is that in order to gather a height measurement of a target, it 

must be in the unobstructed view of the camera from multiple perspectives. A dense, closed 

canopy presents a significant challenge to this type of measurement as it is difficult to detect 

enough ground points for height normalization, often leading to a need for an externally sourced 

digital elevation model (DEM) [24], [25], [34], [36], [37].  
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The second method is to use a lidar system mounted on the sUAS, with multiple sUAS 

lidar systems having been explored; in fact, this technology is maturing to be a standard method 

of forest measurement [24], [25], [27], [30]. This method has an advantage given its ability to 

measure multiple returns - it can gather much more information about the underlying canopy and 

terrain than the SfM methods. It has been shown that with the sUAS there is a capability to 

gather high resolution lidar data (>50 pts/m2), allowing for a more accurate representation of the 

forest structure to be obtained than a typical manned ALS systems [25], [27]. Generally, the 

terrain models generated from ALS also are more accurate than those generated from SfM 

methods [36]. These advantages do come at a higher equipment cost and there is not a standard 

software for managing lidar point clouds, as there is when generating SfM point clouds.  These 

disadvantages, however, do not outweigh the gains made in data quality provided by the lidar.   

 

2.5   CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE sUAS 

The airframe used for the sUAS during data collections conducted in Lebanon, VA and 

Asheville, NC was a DJI Matrice M-600 Pro. This sUAS weighs 10 kg, including batteries, and 

has a payload capability of 5.5 kg (~ 12.13 lbs). The system is capable of a maximum range from 

the pilot’s location of 5.5 km, before loss of communication with the controller. This range 

would be difficult to exceed due to the line of sight requirement imposed by the FAA on 

operations of sUAS, which are defined as systems having a mass less than 55 lbs at time of 

takeoff [26]. A custom payload support system was designed for integrating a modular sensor 

platform, allowing for various sensor types and combinations to be flown with the system. This 

sUAS is capable of hovering at full weight for approximately 18 minutes before the flight 

batteries require recharging. The longest flight duration completed in this study was 

approximately 16 minutes (20% battery charge remaining) and covered three plot locations in 

one flight. This implies slightly better than advertised performance of the system as the sUAS 

was not hovering in place at any point during the collection. For these collections, a Velodyne 

VLP-16 lidar was utilized on the sUAS in combination with a differential GPS/INU system for 

precise tracking. This system integration was designed and completed within the Chester F. 

Carlson Center for Imaging Science (CIS) at Rochester Institute of Technology (RIT).  The 

sUAS can be viewed, as flown, in Figure 2.2.  
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The VLP-16 lidar has a pulse rate of 300 KHz and a scan rate of up to 20 Hz. The lidar 

system has a maximum range of 100 m (~ 328 ft), while the maximum swath width, assuming a -

10° to 10° scanning geometry, is 35 m (~ 115 ft). The VLP-16 is capable of 360° scanning, but it 

is not recommended to use scans at oblique angles for structural mapping [38]–[40]. The VLP-16 

is a two return system, recording the first and last return for every pulse, along with reflectance 

values of targets intercepted by each pulse, also referred to as the intensity value. Point densities 

achieved were 497.04 - 2,393.93 pts/m2, with a mean point density of 1,504.2 pts/m2. This 

variance in point density was attributed the flight altitude, changes in flight overlap from plot-to-

plot, and degradation in GPS signal, which resulted in a significant number of returns to be 

removed from the final point cloud. A summary of the lidar system specifications can be found 

in Table 2.1.  

For the GPS and IMU, an Applanix APX-15 UAV is integrated onto the platform. This is 

a combined GPS and IMU in a single hardware solution developed specifically for use on sUAS 

platforms, thereby addressing low mass goals and low elevation tracking requirements. The 

APX-15 features the capability to employ real-time kinematic (RTK) correction to the GPS 

positioning data, achieving position error bounds of 2 – 5 cm. This RTK correction is applied to 

Figure 2.2. MX-1 sUAS remote sensing platform developed by the CIS department at RIT. This configuration 

included a Velodyne VLP-16 lidar, Mako G-419 RGB camera, and ballast weight in place of the hyper-spectral 

camera to reduce cost impacts of any mishaps as the hyper-spectral camera was not required for this research. 
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the IMU data as well, achieving errors of 0.03° for roll and pitch, and 0.18° for yaw. A detailed 

description of the data collection activities and study sites can be found in the method sections of 

Chapters 3 and 4.  

 

Table 2.1. Velodyne Lidar Sensor Specifications. 

Velodyne VLP-16 

Laser Altitude (ft) 200-300 Returns ≤ 2 (first and last) 

Swath Width (ft) 35-52 

Average Resolvable 

Horizontal Distance 

Between Points (ft) 

1.18 

Scan Rate (Hz) 10 Footprint (ft) 1.57 

Pulse Rate (KHz) 300 Wavelength (nm) 903 

 

 

2.6   PRE-PROCESSING METHODS 

Prior to processing metrics and models in support of sustainable forest initiatives, a 

number of pre-processing and conditioning steps of the data are required.  In order to generate 

meaningful structural information, the point cloud elevation values must be normalized to the 

underlying surface terrain.  A few open source tools are available that will ingest lidar data in the 

“.las” file format and classify ground returns. These ground returns are then used for generation 

of a digital elevation model (DEM), also known as the digital terrain model (DTM) in some 

studies. LAStools implements a variation of the ground filtering algorithm based on the 

triangular-irregular network (TIN) method introduced by Axxelson, with low misclassification 

rates [41], [42]. FUSION/LDV uses a method first introduced by Kraus and Pfeifer, based on 

linear predictions and weighting functions [20], [43]. While this approach has been a suitable 

method for other studies, the four parameters proved to be difficult to optimize for the data set in 

this research. The FUSION tool often falsely classified returns from tree stems near the ground 

as ground, resulting in large spikes within the DEM. The LAStools implementation generated 

adequate ground classifications for DEM generation, with a single adjustment to the step size of 

the window used for initial classification.  

Once the ground return classification is complete, a DEM can be generated on a raster 
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grid, using the lowest return in each cell as the elevation. Interpolation is required for grid cells 

that contain no returns. Common interpolation methods used are Delaunay triangulation with 

linear interpolation, inverse distance weighting and kriging [44].  LAStools pursues an 

alternative strategy by generating a TIN from the ground points and then rasterizes the TIN, thus 

all cells have values within the area enclosed by the ground returns. The high point density 

nature of the data collected in this study generally did not require any interpolation. If grid cells 

smaller than 0.5 m were used, then interpolation methods would need to be employed. Once an 

adequate DEM has been created, all points within the point cloud can be normalized to the DEM. 

These normalized point clouds, i.e., height-above-ground, are analyzed to generate models and 

evaluate forest metrics. A depiction of this workflow, from raw to normalized point cloud, can be 

seen in Figure 2.3.  

Figure 2.3. Depiction of point cloud normalization processing steps. (a.) Raw point cloud with elevation values 

referencing mean seal level, (b.) DEM generated from ground-classified points, (c.) Raw point cloud plotted above 

DEM for visual reference, (d.) Normalized point cloud after DEM subtraction with normalized DEM for visual 

reference. Elevation values are now expressed as above ground level.  
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Chapter 3  

 

Cost Analysis Between Manned Airborne 

and sUAS Sensor Platforms 
 

 

3.1   FOREWORD 

This chapter represents a paper that was presented and published in the SPIE Commercial 

+ Scientific Sensing and Imaging Conference proceedings, April 2018 [18]. It explores a simple 

linear regression model for predicting plot level aboveground carbon levels to demonstrate the 

similar performance of commercial lidar systems and the sUAS systems deployed by RIT. It 

further analyzed the cost comparison of the two systems. This paper addresses Objectives 1 and 

4. 

 

3.2   ABSTRACT  

Sustainable forest management practices support the growing effort to make efficient use 

of natural resources without a reduction in future yield potential. These efforts require accurate 

and timely measurement of the world’s forests to monitor volume, biomass, and stored carbon 

level changes. Historically, these measurements have been effected through manual 
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measurements of individual trees in representative plots, spaced throughout the forest region. 

Through the process of imputation, the missing values are interpolated, often through a 

regression model based on the collected reference data. Remote sensing technologies, 

specifically lidar (light detection and ranging), possess the capability to rapidly capture structural 

data of entire forests; however, airborne lidar mounted on manned aircraft can be cost 

prohibitive. The increasing capabilities and reduction of cost associated with small unmanned 

aerial systems (sUAS), coupled with the decreasing size and mass of lidar sensors, have opened 

the possibility for these platforms to provide a cost effective method with comparable 

performance. This study completes a cost comparison of the two platforms using a regression 

model of above ground live carbon as a method of comparing performance in context of 

sustainable forestry. The sUAS performed comparably based on our two data sets. The sUAS 

achieved a R2 of 0.74, and the manned aircraft lidar system achieved an R2 of 0.61, with both 

models producing RSE(%) within one percent of each other. The sUAS has the capability to be 

competitive with the manned aircraft at a cost of $8.12/acre for the study area, compared to the 

manned aircraft’s cost of $8.09/acre. The added benefits of sUAS include rapid deployment and 

low mobilization costs, while disadvantages include operational considerations, such as the need 

for line-of-sight operations. However, we concluded that sUAS is a viable alternative to airborne 

manned sensing platforms for fine-scale, local forest assessments. 

 

3.3   INTRODUCTION 

In the past few decades, more organizations have embraced the importance of efficient, 

sustainable usage of natural resources on earth and have taken an active role to embrace 

sustainable forest management (SFM) policies. The majority of the planet’s inhabitants rely on 

products derived from forestry, along with the ecosystems that these forests support.  Recent 

trends show total forest area loss has been slowing, with the period from 2010 to 2015 showing a 

forest coverage loss at half the rate as the period of 1990 to 2000 [17]. It has become clear that 

these resources must be carefully used; otherwise, future generations may not have what is 

needed to meet the requirements to sustain or increase the current forest product and ecosystem 

service benefits.  

Multiple organizations that have been formed to develop best practices and methods in 
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regards to sustainable forestry. One example is the UN Framework Convention on Climate 

Change (UNFCCC), which has the initiative “Reducing Emissions from Deforestation and 

Degradation” (REDD+). This initiative drives the need for large-area biomass and carbon 

inventories, and incentivizing the concept of carbon credits [15]. Additionally, 12 host nations 

that manage 49% of the world’s forests, which contain 90% of the world’s temperate and boreal 

forests, follow the Montreal Process for SFM [16]. This process establishes seven criteria as 

guiding principles, each containing measurable indicators to determine success or failure in 

maintaining the guidelines as nations. These SFM principles drive a need to accurately capture 

inventory metrics across large areas and to do so in an expeditious manner [4], as change 

detection requires repeated measurement.  

In the past, these forest measurements have been done exclusively by ground crews, 

manually measuring each individual tree in representative plots of the entire forest [2]. From 

these representative plots, the rest of the forest area measurements can be estimated through the 

process of imputation [3]. Imputation is a process of filling in data points that were not directly 

measured. This can be done through various methods, with regression modeling being commonly 

used in the context of forestry [4]. As expected, it can be tedious and time consuming to employ 

a field crew to measure individual trees in forests covering large areas. It becomes increasingly 

difficult in rugged, mountainous terrain. Remote sensing technology possesses the capability to 

execute these measurements in challenging terrain, specifically by using airborne lidar scanner 

(ALS) systems. A variety of studies at plot and individual tree level have been completed using 

ALS systems in a variety of forest types and locations, measuring important SFM metrics such as 

volume, biomass, and stems-per-hectare (SPHA) [11]–[14]. 

The Rainforest Alliance, an international non-profit organization who describe 

themselves as “a growing network of farmers, foresters, communities, scientists, governments, 

environmentalists, and businesses dedicated to conserving biodiversity and ensuring sustainable 

livelihoods” [45], has developed a partnership with organizations who do business in the 

southeastern United States (USA) to actively pursue increasing sustainable usage of forests in 

this region [46]. This section of the USA has a large contingent of small landowners by area, 

representing a large forested land base, and presenting a unique challenge for gathering required 

metrics critical to sustainable forestry. Additionally, much of this region is in the Appalachian 

mountain range and is difficult to access with ground-based vehicles or by foot.  Being that these 
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land holdings are small in size and contain generally difficult-to-navigate terrain, airborne 

measurements provide the most accessible method for measurement and mapping to support the 

SFM initiatives.  

The current standard for obtaining ALS data for an area of interest is to contract a 

company specializing in using ALS systems on fixed wing aircraft. Maintaining and operating 

these systems is an expensive endeavor, and as such, the cost is passed along to the end-users. 

Studies comparing costs between ground crews manually measuring plot inventory and these 

airborne scanning systems found that the ALS collections typically cost tens of thousands of US 

dollars more than a standard ground crew-based collection [2], [3]. The tradeoff, however, is that 

ALS systems can cover a much larger land area and directly measure entire forests, while the 

ground crews will measure representative plots and use models to develops estimates for entire 

forests. Once area is considered, at small area sizes, the ground crew option is more cost 

effective, but as the area increases the ALS option becomes more competitive [3]. 

In recent years, reduction in sensor size and mass, coupled with increasing payload 

capability and flight times of small unmanned aerial systems (sUAS), have provided the 

opportunity for a third option. This option allows for high operational flexibility at a potentially 

reduced cost from the typical ALS system deployment. The sUAS is lightweight with a small 

logistical footprint; there are no recurring fuel costs, and such systems only require a Federal 

Aviation Administration (FAA) part 107 certified pilot. We hypothesize, that with a sUAS, an 

organization can obtain the same level of accuracy of the legacy ALS systems and can procure 

higher density point clouds for use in SFM metric analysis. To test the hypothesis, a data 

collection was conducted using a commercial ALS system, and a sUAS ALS system, developed 

by the Chester F. Carlson Center for Imaging Science at Rochester Institute of Technology, both 

flown in similar and overlapping regions. An above ground live carbon (AGLC) model was 

developed as a test to compare model performance using both collections, and a cost analysis of 

the two collections was completed. 
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3.4   METHODS 

3.4.1   Study Area 

Two study areas were flown: The first, of which the majority of the data were collected 

from, is located on Clinch Mountain in Russell County, VA. This forest covers approximately 

4,000 acres and is dominated by steep ridges and narrow valleys. The forests here are of the 

temperate deciduous type, being mostly composed of eastern USA broadleaf trees. A carbon 

audit measurement was completed by ground crews in October 2016. The plots measured 

consisted of 151, 0.1 acre (~0.04 ha), fixed-radius plots, measured in slope-feet, spaced on a 

regular grid of 1,000 ft (~305 m) apart. In these surveyed plots, 1,949 individual trees were 

measured. Diameter at breast height (DBH) of vegetation larger than 5” (~12.7 cm) DBH and 

total height were measured, along with models produced of volume, above ground biomass 

(AGB), total carbon, and AGLC.  

Both the manned ALS system and sUAS were flown in this location. Of the 151 

representative plots, 49 plots were covered by the manned ALS system, and 17 by the sUAS. 

Five plots overlapped, for a total of 54 plots covered. These 54 plots contained 804 individually 

measured trees. These focus plots were chosen as they contained variability in AGB, harvesting 

levels, and trees blown over by storms and other natural events. This would allow for a diverse 

sample set to aid in algorithm development. In these focus plots, vegetation species were 

predominantly deciduous types. Maple species (Acer negundo, A. rubrum, A. saccharum), 

Yellow Poplar (Liriodendron tulipifera), and Oak species (Quercus alba, Q. coccinea, Q. 

muehlenbergii, Q. prinus, Q. rubra, Q. stellata, Q. velutina) dominate the majority of the 

inventory, comprising 23.63%, 22.76%, 18.66% (65.05% total) of the vegetation present, 

respectively. This area served as an ideal location to highlight the use of ALS systems for 

gathering forestry information quickly in difficult to traverse terrain. A map of this location can 

be seen in Figure 3.1. 
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Figure 3.1. Two study areas were used in this project. The first was located in Russell County, VA in the Clinch 

Mountain Range. Both manned and unmanned ALS systems were flown here. The second study site was located at 

the Om Sanctuary in Asheville, NC. Only the unmanned ALS system was flown here. 

 

The second location flown was the Om Sanctuary, located in Asheville, NC. A map of 

this location can be seen in Figure 3.1. This location also proved challenging as it was on the side 

of a steep slope, where the land area dropped to the river below; it also was dense and difficult to 

traverse.  Similar to the Russell County (VA) location, these forests are of the temperate 

deciduous type, being mostly composed of eastern USA broadleaf trees. An audit was completed 

at this location in March 2017. The areas measured consisted of 20, 0.1 acre (~0.04 ha) fixed-

radius plots, measuring 345 individual trees. Diameter at breast height (DBH) of vegetation 

larger than 5” (~12.7 cm) DBH and total height were measured, along with models produced of 

volume, above ground biomass (AGB), total carbon, and AGLC. Only nine plots had tree height 

values reported, all other measures and models were produced for all 20 plots. These nine plots 

contained 149 individual samples.  

Only the sUAS was flown at the Asheville location due to budget constraints. Of the 20 

representative plots, nine were covered by the sUAS, as these were the only plots with height 

reference data. This location presented a more diverse species mixture among the focus plots: 

Yellow Poplar (Liriodendron tulipifera), Sourwood (Oxydendrum arboreum), Chestnut Oak (Q. 

prinus) and Red Maple (A. rubrum) were the three largest contributors, comprising 26.17%, 

15.44%, 11.41%, 11.41% (64.43% total) of the vegetation present, respectively. A notable 

difference of these plots is the presence of conifers. Two species (Pinus strobus and P. rigidia) 

were present, totaling 11.41% of the vegetation. This area served as an adequate supplement to 

continue development of the sUAS models.  
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3.4.2   Data Collection  

The manned ASL data collection was completed on 20 July, 2017 over the Russell 

County, VA site. For the manned ALS system, the work was completed by a commercial vendor 

who flew a Leica ALS80 discrete return lidar on a fixed wing aircraft at approximately 7,850 ft 

(~2,400 m) AMSL. This sensor has a pulse rate of 1 MHz and a scanning rate of up to 200 Hz 

and is capable of recording 8 km swaths from high altitude flights. This flight was a mid-altitude 

flight, as we had requested a higher density point cloud with flight path overlap. The point clouds 

we received were five return-per-pulse, with the first three returns inclusive of associated 

intensity values. Point densities over the focus plots achieved using this configuration were in the 

range of 30.44-99.16 pts/m2, with an average point density of 71.19 pts/m2. The inconsistency 

between point density can be traced back to an inconsistent flight overlap in the vicinity of the 

actual plot locations. 

The sUAS ALS data collections were completed on 11 and 

13 August 2017 at the Russell County, VA location and on 12 

August 2017 at the Asheville, NC location. An example point 

cloud generated from this collection with the maximum point 

density can be seen in Figure 3.2. The platform used for the sUAS 

was a DJI Matrice M-600 Pro, with a custom payload rig capable 

of lifting a modular sensor platform. This setup is capable of 

flying for approximately 18 minutes. The longest flight completed 

in this study was approximately 16 minutes and covered three plot 

locations. For these collects, a Velodyne VLP-16 lidar was utilized 

on the sUAS in combination with a differential GPS/INU system 

for precise tracking. This system integration was designed and 

completed in the Chester F. Carlson Center for Imaging Science at 

Rochester Institute of Technology. The flight altitude varied from 

200 – 300 ft (~60-90 m) AGL, since the flight software for flight planning was not precise while 

in terrain following mode. In-flight variation was less than 10 ft (~3.3 m), but the manner by 

which the flight software set the target height was variable at each location.  The VLP-16 lidar 

Figure 3.2. Example point cloud 

at 2,000+ pts/m2. This point 

cloud was generated with RIT’s 

sUAS remote sensing platform.  
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has a pulse rate of 300 KHz and a scan rate of up to 20 Hz. The lidar system has a maximum 

range of 328 ft (100 m), the maximum swath width, assuming using -10° to 10° sight lines like 

that of the ALS80, is 113 ft (~35 m). The VLP-16 is capable of 360° scanning, but it is not 

recommended to use scans at oblique angles for structural mapping, as it introduces error and 

occlusions [38]–[40]. The VLP-16 is a two return system, recording the first and last return for 

every pulse, along with associated intensities. With this system, point densities achieved were 

497.04-2,393.93 pts/m2 with a mean point density of 1,504.2 pts/m2. This variance in point 

density was attributed the flight altitude, changes in flight overlap from plot to plot, and 

degradation to GPS signal, which resulted in a significant number of returns to be removed from 

the final point cloud. A summary of both lidar system specifications can be found in Table 3.1. 

 

Table 3.1. Lidar sensor specifications as flown. 

 

Leica ALS80 Velodyne VLP-16 

Laser Altitude (ft) 7,850 200-300 

Swath Width (ft) 1,800 35-52 

Scan Rate (Hz) 120 10 

Pulse Rate (KHz) 1000 300 

Returns ≤ 5 ≤ 2 (first and last) 

Average Resolvable 

Distance 

Between Points (ft) 

4.72 1.18 

Footprint (ft) 4.02 1.57 

Wavelength (nm) 1064 903 

 

 

3.4.3   Cost Analysis 

The main hypothesis of this paper was that sUAS ALS systems provide a cost-effective 

alternative to current manned aircraft systems, without sacrificing model accuracy and 

generating higher density point clouds. It has already been shown that the sUAS is capable of 

generating higher density point clouds. This section will outline how we approached the cost 

analysis. Two studies were referenced for cost comparison; however, one was more recent and 

provided a thorough cost breakdown of tasks associated with gathering timber measurements [2], 
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[3]. The main logic for determining cost was modeled after the study that Hummel et al. 

completed when comparing ground measurements costs to that of ALS systems at the time [3]. 

Their study included a breakdown of cost by work hour, using the US Federal General Schedule 

wage tables as a stable pay standard for task-by-task costs. This methodology was continued, 

utilizing the 2018 General Schedule [47], and adjusted to match the tasks required in this study. 

Table 3.2 shows the breakdown of additional cost that is in addition to procuring the fly over by 

the manned flight. 

Table 3.2. Planning and processing cost breakdown for each ALS system. 

Processing 

task 

No. of 

days 

manned 

aircraft 

No. of 

hours 

manned 

aircraft 

No. of 

days 

sUAS 

No. of 

hours 

sUAS 

Worker 

grade 

level 

Average 

rate ($/hr) 

Average cost 

manned 

aircraft ($) 

Average 

cost 

sUAS 

($) 

Project 

Management 
20 160 10 80 12 34.54 5526.40 2763.20 

Data 

Preprocessing 
3 24 2 16 9 23.82 571.68 381.12 

Remote 

Sensing Data 
1 

Fixed 

Price 
3 48 9 23.82 7200.00 1143.36 

Geospatial 

Join 
2 16 2 16 9 23.82 381.12 381.12 

Feature Space 5 40 5 40 12 34.54 1381.60 1381.60 

Modeling 5 40 5 40 12 34.54 1381.60 1381.60 

Validation 3 24 3 24 12 34.54 828.96 828.96 

Product 

Deliverables 
10 80 10 80 9 23.82 1905.60 1905.60 

Total   224   264     19176.96 10166.56 

 

There are major differences from what Hummel et al. completed in their analysis [3]. 

They encompassed the ground collection cost and the processing of the lidar data. Our analysis 

simply covers the cost of procuring the lidar from both systems and processing it. The ideal 

concept of operations would be to cover all plots with both systems, thus rendering the effect of 

the cost of procuring reference data to be null. In our study, however, the data were utilized 

without cost to the user. If one wishes to add the ground reference procurement, Hummel et al. 
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provide a general cost/acre that could be used, and an adjustment for inflation would be required 

[3]. 

3.4.4   Modeling Methods 

Both lidar data sets were delivered in an unclassified point format, and in differing 

coordinate systems, neither of which were in the coordinate system of the supplied plot locations 

for the ground reference plots. This required that each data set be processed through a ground 

classification algorithm. This is necessary so that each lidar return could be normalized to height 

above ground. Both of these steps were completed using the software suite LAStools [42].  The 

ground classification was completed using the function lasground_new with a step size selection 

of nine meters, and the coordinate transformations were completed using the function las2las. 

Buffers matching the fixed plot radius (37.5 ft; ~11.4 m), as used in ground reference 

data collections, and square buffers measuring 115 m x 115 m were developed in the QGIS 

software suite [48], prior to clipping the full point clouds to the specific plot locations,. The 

square buffers were used to reduce the point clouds to manageable sizes for ground classification 

and normalization using LAStools, as most files contained >10 million points. Such large buffers 

avoid interpolation edge artifacts on the digital elevation model (DEM) produced. The clipping 

of the point clouds was completed using polyclipdata from the FUSION software suite [20]. This 

software allows for lidar file clipping using a shapefile that contains multiple polygons, and 

outputs individual lidar point cloud files for each plot location. 

A regression analysis was run on the final point clouds, similar to that used by Means et 

al., with the major difference that this regression was applied to the point clouds themselves, 

rather than rasterized grids of the point clouds [2]. Statistical (distribution) values of each point 

cloud was calculated, such as maximum height, mean height, minimum height, kurtosis, 

skewness, and percentiles, ranging from the 5th to 95th percentiles in 5 percent increments. The 

same treatment was applied to the intensity values. In order to be included in the final models, 

the predictor variables were required to have an F statistic with significance level of 0.05 or less. 

Variables were removed in subsequent steps if their significance level rose above 0.1. Even 

though the removal criteria were larger than the entrance criteria, no model run resulted in a 

predictor variable with a significance above 0.05. 

A challenge for this study was that the two data sets cover similar, but not identical areas. 
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A review by Zolkos et al. of 70 publications on AGB models found that expressing the Residual 

Standard Error (RSE) of a model in terms of the mean AGB (RSE(%) = RSE/µAGB) value, 

constitutes a satisfactory means of comparing studies in different regions [49]. The authors 

furthermore noted that studies in temperate deciduous forests had an average RSE(%) of 31% 

[49]. Finally, in the Means et al. study, it was found that heteroscedasticity existed in their 

models of basal area and volume [2]. Their solution was to model the natural logarithm of these 

dependent variables, resulting in improved performance. A similar condition was noted with the 

AGLC models in this study, thus an alternate model of the natural logarithm of the measurement 

data was implemented as well. Similar improvements to the error values was seen, but not in the 

R2 values. 

 

3.5   RESULTS AND DISCUSSION 

3.5.1   Above Ground Carbon 

Results of the models derived from the two data sets can be seen in Figure 3.3, and the 

predictive equations produced can be seen in  

Table 3.3. While the sUAS appears to outperform the manned aircraft approach, such an 

observation should be cautiously evaluated. This is due to the data sets not containing the exact 

same reference data from their different flight area extents. There is an overlap of five similar 

plots, which is a minority for each data set. This discrepancy is a result of extremely difficult 

terrain to launch the sUAS in and the FAA requirement of maintaining a line-of-sight (LOS) on 

the sUAS during flight, which can be difficult in mountainous forests. We noted that increases in 

power supply, to allow for longer duration flights from the established landing zones, would 

enable more plot coverage by the sUAS. 

However, the two data sets do cover similar forest types, so it is valid to state that they 

performed similarly in this study. It was concluded, based on the RSE(%) metric, that both 

platform types had comparable performance, as in both model forms the two data sets produced 

an error within one percent of each other. For both scenarios, manned vs sUAS lidar platforms, 

modeling the natural logarithm of the reference data resulted in a marginally better fit (increased 

R2 values). The RSE(%) is misleading in the logarithmic space due to the reduced magnitude of 

the values being modeled, the important take away is that they are similar across platforms.    
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Table 3.3. Regression models of AGLC and ln(AGLC) using the two data sets. MedHt is the median height. Ht25ile 

is the 25th percentile of the height. MaxInt is the maximum intensity. Int5ile, Int55ile, and Int70ile are the 5th, 55th 

and 70th percentile of the intensity. All of these measures come directly from the point cloud. 

Sensor Platform Regression Equation  R2 RSE(%) 

Manned Aircraft AGLC = -156.4 + 5.989*MedHt + 0.0035*MaxInt - 0.027*Int5ile 0.6 26.48 

Manned Aircraft ln(AGLC) = 3.58 + 0.0638*MedHt - 0.000236*Int5il 0.61 7.18 

sUAS AGLC = -112.15 + 4.87*Ht25ile + 0.0087*Int70ile 0.72 27.12 

sUAS 

ln(AGLC) = -0.93+ 0.19 Ht25ile + 0.000317*Int55il + -9.28E-

6*Ht25ile*Int55ile 0.74 6.72 

Figure 3.3. Predicted vs measured plots, depicting the performance of the linear regression models developed from the 

two available data sets. The top row shows results from the manned aircraft data collections and the bottom row 

contains the results from the sUAS data collection. The left column depicts the models based on the raw measured 

AGLC values, while the right column depicts the models derived from the natural logarithm of the measured AGLC 

values. 
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3.5.2   Costs 

The cost analysis continued to be a valid interest, given that both data sets produced valid 

results for modeling a timber metric important to SFM. A breakdown of collection activity 

planning and data processing costs can be seen in Table 3.2. A major discrepancy between the 

two types of collection is that there is more program management involved with establishing a 

contract with a commercial vendor and coordinating data sharing, when compared to a solution 

within the organization. At a minimum, a two-person team typically deploys to complete the 

collection with the sUAS, so the hourly rate for this task is effectively doubled. The cost of 

procuring the manned aircraft lidar collection was $7,200, this does not include the typical 

mobilization cost as it was completed on an already scheduled flight. The final cost of the 

manned system was ~$19,180, while the sUAS lidar does encompass all of the processing and 

procurement of data, thus the total cost is ~$10,167. 

At first glance, the sUAS is cheaper in total cost; however, the sUAS only covered 19 

plots. The average cost per plot was then ~$535, which would imply a final cost of ~$26,219 for 

the total 49 plots. This is significantly more expensive than the manned aircraft collection. To 

gain insight as to why this is, we can break down the cost by area covered, as done by Hummel 

et al. [3]; we will report results in US$/acre, for clarity sake. In their study they found that they 

achieved an average cost of $3.03/acre, and adjusting for inflation that translates to $3.60 in 2018 

dollars [50]. The manned aircraft lidar covers an area of 2,372 acres, for a cost per acre of $8.09. 

The sUAS lidar covers an area of 417 acres, which leads to a cost per acre of $24.36, just over 

three times as expensive as the manned aircraft collection. Both of these rates are higher than 

what was found in the referenced study, but the coverage area for our study was less than half of 

theirs, and the cost per acre increases as your study area decreases, since the overhead associated 

with collecting does not change significantly.  

This insight may lead to one drawing the conclusion that the sUAS currently cannot 

compete with the legacy methods. However, a small detail should be considered in this cost 

analysis. For this particular collection, a study for structure-from-motion was being conducted on 

the same flights. This reduced the maximum flight speed to avoid motion blur in the imagery, 

requiring a flight speed three times slower than that required to match the point density generated 
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by the manned aircraft. With a fixed flight time, due to battery life on the sUAS, this limited the 

number of plots and in turn the area that can be covered per flight. Not only did this reduce the 

coverage area, it also increased the number of hours the flight crew had to work to cover the 

study area, further driving up cost. Factoring this in and tripling the area that the sUAS can 

cover, i.e., up to 1251 acres, the per acre cost drops to $8.12, which is competitive with the 

manned aircraft system. It is noted that manned aircraft costs do not linearly drop with coverage 

reduction, since much of the cost is associated with the system itself and not with the flying time. 

At small acreage levels, as is the case with the small landowners in southeastern USA, the sUAS 

thus is a viable option. 

 

3.6   CONCLUSIONS 

The need for efficient and sustainable societal use of natural resources available has 

become more pronounced in recent times. Sustainable forest management (SFM) policies 

standardize forest resource usage in such a manner that theoretically will result in perpetual 

growth and yield potentials. In recent years, a positive change has been observed due to these 

policies, with deforestation rates dropping, although much work has yet to be done to ensure that 

such approaches become common practice [17], e.g., via SFM initiatives such as REDD+ or the 

Montreal Process [15], [16]. However, we need accurate and precise approaches to forest 

inventory and mapping. 

Forest timber measurements in the past have been completed by ground crews who 

manually measure each individual tree in representative plots of the entire forest [2], after which 

the forest inventory for the rest of the forest area is modeled (estimated), based on such sampled 

plots [3]. This is commonly done through volume of biomass regression models [4]. However, it 

can be tedious and near impossible to complete the measurements on the ground in rugged, 

mountainous terrain. Remote sensing technology, such as ALS systems, therefore presents an 

opportunity to more efficiently measure forests and access areas that cannot be reached by 

conventional methods. Many studies have been evaluated the assessment of timber metrics, such 

as volume, biomass, and stems-per-hectare using ALS systems [11]–[14]. The southeastern US is 

an especially ideal candidate area for employing this technology, since this region has high 

volumes of manageable timber, and consists many small land owners scattered amongst difficult 
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terrain in the Appalachian Mountains.  

Currently, it is standard practice to contract a company to fly an ALS system, mounted on 

a manned fixed wing aircraft, to generate lidar data of the interest areas. These systems are 

expensive to field and maintain, with studies showing that they are not economically 

advantageous to deploy for small land coverage/areas [3].  However, ALS systems are capable of 

covering the entire interest area and not just the measured reference plots, providing an 

opportunity to directly model the entire forest. It is in this context that sUAS systems are poised 

to compete with the manned aircraft option, since flight times and payload handling capabilities 

have increased in the past few years, while sensor mass, volume, and cost have been decreasing. 

We therefore contrasted an airborne vs. sUAS ALS approach for forest carbon modeling. 

To validate our comparison, both types of systems were flown over areas with AGLC 

data available. Two sites were used, one in Russell County, VA and another in Asheville, NC. 49 

plots were covered by the manned system and 19 plots were covered by the sUAS. There was an 

overlap of five plots between the two data sets. A linear regression of the AGLC and natural 

logarithm of the AGLC were completed, based on independent variables extracted from lidar 

return distributions for the resulting point clouds. The sUAS approached produced a larger R2 

value of 0.74 vs. the 0.61 produced by the manned aircraft data set. This was not considered to 

be a definitive result, however, since the sample sets did not cover the same area. The RSE(%) 

therefore was used for comparison, as defined by Zolkos et al. [49]. In reference to RSE(%), the 

models from each data set were within one percent of each other, i.e., we concluded that they 

performed similarly.  

With regards to absolute cost, the sUAS was the more cost-effective option at $10,166.56 

vs. the $19,179.96 for the manned ALS system. This was largely due to covering a smaller area, 

namely 417 acres vs. 2,372 acres. Once cost per acre is considered, the relationship was reversed. 

The manned aircraft came in at $8.09/acre, while the sUAS was just over three times that, i.e., 

$24.36/acre. It was noted, however, that the sUAS collection was at a reduced flight speed to 

account for a 3D, structure-from-motion imagery project on the same flight. If the flight speed 

were optimized for a lidar-only data collection, the cost then would have been $8.12/acre for the 

sUAS. This would result in lower density point clouds, but they would still exceed the point 

density of the manned aircraft system. In reference to our hypothesis, we have shown that the 
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sUAS data i) were of higher density and ii) produced comparable models. However, we did not 

conclude that it was more cost effective; at best, sUAS was deemed as roughly the same cost as 

the manned ALS system.  

Improvements that could be made to reduce the cost of sUAS deployments would be to 

increase flight time capabilities, in other words, higher capacity power sources. The 18-minute 

battery limit reduced the flight time and increased the amount of time that the aircraft needed to 

be serviced by the ground crew. Additionally, the LOS requirement proved to be a major 

hindrance during the collection operations. If organizations wish to utilize sUAS ALS systems 

regularly, they should consider permanent or mobile observation structures for maintaining better 

sight lines. The pilot is not required to maintain sight of the vehicle, only the safety spotter, and 

the majority of sUAS employ an onboard camera for maintaining situational awareness. sUAS 

ALS forest applications have significant potential, and we expect the cost to continue to decrease 

for these systems, thereby allowing for easier procurement and fielding of systems. 
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Chapter 4  

 

Carbon Modeling and Plot Disturbance 

Detection  
 

 

4.1   FOREWORD  

This chapter introduces a functional carbon model based on canopy height distributions, 

derived from lidar canopy height models. A comparison is completed between a commercial 

lidar system and sUAS lidar system, with an additional comparison between lidar and structure-

from-motion (SfM) methods from each platform. Additionally, a classifier is developed to detect 

disturbed plots and flag potential harvesting. This chapter is written with the intent to publish in 

a journal within the 2018 – 2019 timeframe and addresses Objectives 1, 2 and 3. 

 

4.2   ABSTRACT 

Sustainable forest management relies on the acquisition of timely (change detection) and 

accurate structural information of the forest landscape. Light detection and ranging (lidar) remote 

sensing platforms provide the capability of rapid 3D, structural data collection with high spatial 

resolution. In this study, we explore a functional biomass model that was initially developed on 
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synthetic reference data, and here for application in a dense, closed deciduous forest in the 

southeastern United States. Data were collected by both manned airborne and sUAS lidar 

systems, with the manned system producing a more comprehensive data set due to a larger 

coverage area. Both systems produced high-density lidar point clouds, with the manned system 

exceeding 30 pts/m2 and the sUAS exceeding 400 pts/m2. A hybrid approach of combining cost-

effective structure-from-motion generated point clouds with lidar-derived DEMs was also 

explored. The functional carbon model uses a dot product of the canopy height distribution, 

defined as the percentage of ground covered by vegetation at various heights, and a trained 

weighting function to predict biomass, or carbon at the plot level. For our study, results were 

comparable to those achieved by the initial developers (r2 = .64 vs r2 = 0.72), even given the 

deciduous species of our study sites. Their application, in contrast, was on a coniferous forest 

plantation with a more homogenous canopy than what is found in this study’s natural 

heterogeneous forest. With this in mind, our application showed potential for expanded use and 

performed better than the standard linear regression models applied previously to this data set. 

Additionally, through examining vertical profiles mapped by generating per-grid cell point 

density through a voxel method, a binary classifier was trained to successfully detect potentially 

harvested sites. The Producer’s accuracy, User’s accuracy, and Kappa statistic for this disturbed 

plot detection were 94.1%, 92.2% and 89.8%, respectively, showing a high likelihood of 

detecting disturbed (harvested) plots. These results should be used with caution, however, as 

there were only seven examples of harvested sites to train and test on. A robust leave-one-out 

and holdout cross validation methods were used to train and test the classifier, using 1000 trials, 

with the results presented in this study being the mean values over all trials. The results 

demonstrated that this method has the potential to be a valuable tool for organizations interfacing 

with small landowners, such as those found in the southeastern United States, and for assessing 

compliance with sustainable for management principles.  

 

4.3   INTRODUCTION 

Forests traditionally have supplied resources used by the majority of civilizations, while 

also storing carbon, sheltering wildlife, and aiding in climate regulation [51], [52]. Managing 

these forests in a sustainable manner require timely and accurate measurement methods, for 

change detection and quantification needs, respectively [27]. It is in this context that remote 
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sensing utilizing laser scanning systems, known as lidar (light detection and ranging), have come 

to the fore. Lidar systems have reached a maturity level to where they may be considered a 

standard data source for structural measurements of forests [28], [53], [54], where the forest 

structural elements refer to the spatial arrangement in three dimensional space, the distribution 

of, and abundance of vegetation in a scene [55].  Lidar systems generate three-dimensional point 

clouds, depicting scene structure by emitting a laser pulse and measuring the time delay of the 

return pulse to directly measure a distance from the sensor [19].  If the initial pulse location and 

direction of the pulse is known, a three dimensional point cloud of measurements can be 

generated to describe the scene that is being assessed. 

Initial remote sensing approaches to forest measurements focused on passive electro 

optical sensing or synthetic aperture radar, but both methods struggled to produce adequate 

results (accurate and precise) for older or heterogeneous forests [5]–[8].  The utility of lidar in 

this domain has be demonstrated going back over 50 years [21]. The structural measurements 

made by lidar systems can be used for measurement of many forest characteristics, including 

biodiversity information, stems per hectare, canopy statistics, biomass estimates, and carbon 

estimates [11], [12], [14], [22], [23]. The multi-return nature of the lidar system allows for the 

capture of structural information of heterogeneous and older forest growth that the early methods 

failed to characterize. Furthermore, these types of 3D structural measurements support the 

sustainable forest principles identified by the Montreal Process and REDD+ initiatives [16]. Both 

methods drive a need for temporally recurring measurements of forests to monitor carbon, 

biomass, and biodiversity changes [15]. 

A well-known hindrance to using airborne laser scanning (ALS) versus a traditional 

ground crew, direct measurement method, is cost [24], [25]. ALS collections on fixed wing 

aircraft typically cost tens of thousands of US dollars more than a standard ground crew-based 

collection for a typical forest extent [2], [3]. A growing alternative to the commercial fixed wing 

aircraft approach is the small unmanned aerial system (sUAS), which is defined by the Federal 

Aviation Association as an unmanned aircraft weighing less than 55 lbs at time of takeoff [26].  

In recent years, there has an be an increase in the use of sUAS platforms for remote sensing of 

forests, with Jaakkola et al. producing one of the earliest sUAS ALS systems for forest 

management in 2010 [18], [24], [25], [27]–[29], [56]. This increase in use can be attributed to a 

few advancements: the increased payload and flight time capability seen with the modern sUAS, 
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a reduction in sensor mass of cameras, lidar systems, and GPS/INU (inertial navigation unit), and 

an increase in GPS/INU accuracy in placement of the airframe and characterization of the 

airframe’s attitude during flight (roll, pitch, and yaw). All of these factors allow for larger areas 

to be imaged, while enabling high quality data products to be generated from these platforms 

with an ability to fly daily at a low cost of operation [18].  

In the earliest example, the flexibility of utilizing a sUAS allowed for the generation of  

high-density point clouds(100-1500 pts/m2), leading to accurate structural measurement not 

typically seen with lower density measurements (height bias = -1.6 cm) [24]. These data were 

then used to validate the application of sUAS data for biomass change and defoliation, resulting 

in a fit of r2 = 0.92, and demonstrating the utility of sUAS lidar system for forest metric 

generation and analysis. Early examples of sUAS lidar systems, generating relatively low point 

densities of 8 pts/m2, demonstrated adequate accuracy levels in tree location with an uncertainty 

of 53 cm, which is on the order of ground crew accuracies [25].  This high density measurement 

capability, and the flexibility of flight duration/scheduling that the sUAS provides, lends itself to 

application within change detection, demonstrating an ability to achieve point accuracies within 

specified requirements of governmental surveying and mapping standards [40], [57]. Wallace et 

al. found that with only 50 pts/m2, compared to the higher density values of 100-1500 pts/m2, the 

sUAS platform is able to reliable repeat forestry measurements over 10 flights of the same scene 

(mean height error of individual crowns = 35 cm), noting the applicability of the sUAS data 

product to be used for plot level studies, as well as tree-level measurement [28]. This tree-level 

measurement capability is highlighted in a later study, which achieved a 98% detection rate of 

individual crowns by utilizing a high density point cloud generated from the same sUAS lidar 

system [27]. With this level of capability to measure fine structural detail, at the tree- and plot-

level, we expect the sUAS system to perform well in this plot-level study.    

There are two common approaches to generating three dimensional point cloud products 

with a sUAS. The first and lower cost solution is structure-from-motion (SfM). This method has 

been more prevalent in sUAS studies due to the reduced cost to procure adequate cameras and 

recent increase in computing power, which enabled the processing of large image quantities 

required for typical forest extents [35], [56]. SfM products can be derived using a common RGB 

camera, by acquiring overlapping imagery from multiple viewpoints. Modern software packages 

have been developed, using computer vision algorithms, to detect matching points in overlapping 
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images and then use standard photogrammetric methods for height extraction of each 

stereo/overlapping point [34], [35].  sUAS systems are well suited to SfM missions, especially 

rotor type sUAS air frames, as they are capable of capturing hundreds to thousands of images of 

the target scene with large overlap, 360° coverage, and minimal motion blur. A disadvantage of 

the SfM methods is that in order to gather a height measurement of a target, it must be in the 

unobstructed view of the camera from multiple perspectives. A dense, closed canopy forest 

presents a significant challenge to this type of measurement, since it typically is difficult to 

detect enough ground points for height normalization, resulting in a need for an externally-

sourced digital elevation model (DEM) [24], [25], [34], [36], [37]. The second method for forest 

structural characterization is to use a lidar system mounted on the sUAS. This method has the 

advantage of measuring multiple returns, which enables the analyst to gather much more 

information about the underlying canopy and terrain. Generally, the terrain models generated 

from ALS are more accurate than those generated from SfM methods [36].  

The typical method of generating models for estimation of plot-level forest metrics is to 

use a form of regression analysis on a group of selected statistics, generated from the lidar/SfM 

point clouds themselves or digital surface models, often referred to as canopy height models 

(CHM), to predict ground measured values for the imaged plots [58]. Once these models have 

been validated, they can be applied to entire forests, assuming the whole forest has been imaged 

[59].  This type of analysis has been proven and generally performs well on the study sites that 

the models are developed on [60]–[62]; however, many models lack common predictors and they 

do not perform well when applied to other types of forests [58]. Zhao et al. proposed a functional 

model that derived biomass predictions from canopy height distributions, in turn extracted from 

the CHM of each study plot. This approach showed an ability to maintain performance across 

scale changes and over a temporal period of four years [58], [63]. The first examples were 

trained and tested on synthetic field data, aggregated from individual tree estimations [58]. 

During this study, it was found that the model performed well (r2 = .823 - .938, RMSE = 14.6 – 

33.7 Mg/ha) across varying plot sizes (0.01 – 1 ha). A more recent follow-up study explored the 

application of this model to real reference data, while simultaneously investigating the temporal 

utility of the model for biomass predictions at future dates in the same region [63]. The training 

and testing data were sourced from a coniferous plantation in Scotland, comprised of smooth 

terrain and dominated by Sitka spruce (Picea sitchensis), with additional contributions from 
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European larch (Larix decidua), Norway spruce (Picea abies), and Lodgepole pine (Pinus 

contorta). In this context, the model performed well in predicting initial data (𝑟2 =

0.72, 𝑅𝑀𝑆𝐸 = 21.5 Mg/ha), and predicting biomass at later dates for the same region (𝑟2 =

0.90, 𝑅𝑀𝑆𝐸 = 15.7 Mg/ha). The ability to train the model on one set of dates from a previous 

data collection and predict biomass on the same region at a later date has direct applicability to 

the carbon monitoring portion of sustainable forest management principles.  

The primary objectives of this paper are to i) implement a comparison of carbon models 

derived from sUAS vs. manned airborne lidar/RGB cameras for a dense, heterogeneous 

deciduous forest located in the southeastern United States (USA) and ii) assess the efficacy of a 

structural detection algorithm, based on sUAS vs. manned airborne systems, to differentiate 

between disturbed (harvested) an intact forest plots, all toward mapping potentially harvested 

sites as a means to ensure compliance with sustainable forest management principles. Both ALS 

and SfM data products were produced for both platforms. The comparison was done by using a 

functional model, described by Zhao et al., to generate a carbon model of each plot measured by 

both platforms [58], [63]. In support of the second objective, a detector is implemented as a 

binary classifier using descriptions of the vertical distributions of each plot from voxels obtained 

by the ALS systems. The detection of harvested sites is of use to larger forest product 

organizations who interface with smaller landowners, which are abundant in the southeastern 

USA, to monitor compliance with sustainable forest management principles.  

 

4.4   METHODS 

4.4.1   Study Area  

This study covered two different locations. The majority (84%) of the data collected were on 

Clinch Mountain in Russell County, Virginia, USA. The Clinch Mountain study area covers 

approximately 4,000 acres (~1,646 ha) and is rugged terrain comprised of steep ridges and 

narrow valleys. Temperate deciduous species dominate the forests here, comprised mostly of 

eastern USA broadleaf species. Reference data were collected in the form of a carbon audit by 

ground surveyors in October 2016. The audit measured 151, 0.1 acre (~0.04 ha), fixed-radius 

plots, measured in slope-feet, spaced on a regular grid of 1,000 ft (~305 m) apart across the 

mountain’s face, and inventorying a total of 1,949 individual stems. Diameter at breast height 
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(DBH) of vegetation larger than 5” (~12.7 cm) and total height were measured, along with 

models produced of volume, above ground biomass (AGB), total carbon, and above ground live 

carbon (AGLC). 

Both the manned and sUAS ALS systems were flown in this location. Of the 151 

representative plots, 49 plots were covered by the manned ALS system and 17 by the sUAS. Five 

plots overlapped between the two sensor platforms, for a total of 54 plots covered. These 54 plots 

contained 804 individually measured trees. These focus plots were chosen, since they contained 

variability in AGB, harvesting levels, and trees blown over by storms and other natural events. 

This would allow for a diverse sample set to aid in algorithm development. The vegetation 

species in these focus plots were predominantly deciduous types, comprised mostly of the 

following species: Maple species (Acer negundo, A. rubrum, A. saccharum), Yellow Poplar 

(Liriodendron tulipifera), and Oak species (Quercus alba, Q. coccinea, Q. muehlenbergii, Q. 

prinus, Q. rubra, Q. stellata, Q. velutina) comprising 23.63%, 22.76%, 18.66% (65.05% total) of 

the vegetation present, respectively. There were only three (0.37%) examples of Eastern Red 

Cedar (Juniperus virginiana), the lone coniferous species, at this study site. This area served as 

an ideal location to highlight the use of ALS systems for gathering forestry information rapidly 

in difficult-to-traverse terrain. A map of this location can be seen in Figure 4.1. 

Figure 4.1. Clinch Mountain study site located near Lebanon, VA. The green points are the locations of 

the measured inventory plots. The majority of data used in this study came from this conservation site.  
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The second study area was the Om Sanctuary, in Asheville, North Carolina, USA. A map 

of this location can be seen in Figure 4.2. This site was much smaller than the Clinch Mountain 

study area, covering only 42 acres (~17.2 ha). Only the sUAS was flown at the Asheville 

location due to budget constraints, thereby highlighting an advantage to having access to a 

capable sUAS platform. Nine of the 20 available plots were imaged by the sUAS, as these nine 

were the only plots with adequate reference data compiled. This location was comprised of a 

more diverse species mixture among the focus plots with the largest contributors being: Yellow 

Poplar (L. tulipifera), Sourwood (Oxydendrum arboreum), Chestnut Oak (Q. prinus) and Red 

Maple (A. rubrum) comprising 26.17%, 15.44%, 11.41%, 11.41% (64.43% total) of the 

vegetation present, respectively. A notable difference of these plots from the Clinch Mountain 

site is the presence of conifers. Two species (Pinus strobus and P. rigidia) were present, totaling 

11.41% of the vegetation. This is much larger than the 0.37% coniferous contribution at the other 

study site. This area served as a supplement to continue development of the sUAS models after 

data corruption reduced the sample size of imaged plots in the Clinch Mountain location.  

 

Figure 4.2. Om Sanctuary study site located just outside of Asheville, NC. This was a small site, only 

covering 42 acres. The green points are the locations of the measured inventory plots. 
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This location also proved as challenging as the Clinch Mountain site, since it was located 

on a steep slope, where the land area dropped to the river below, preventing the sUAS from 

being staged near the study site at the base of the slope. It was preferred to be at the base to 

maintain proper line of sight (LOS) to the sUAS as it imaged the forest. As with the previous 

site, these forests were also of the temperate deciduous type, being mostly composed of eastern 

USA broadleaf trees. A carbon audit was completed at this location in March 2017, measuring 

all vegetation with DBH larger than 5” (~12.7 cm). Total height was measured, along with 

models produced of volume, above ground biomass (AGB), total carbon, and AGLC. The areas 

measured consisted of 20, 0.1 acre (~0.04 ha) fixed-radius plots, measuring 345 individual trees. 

Only nine plots had tree height values reported, while all other measures and models were 

produced for all 20 plots. These nine plots contained 149 individual samples.  

 

4.4.2   Data Collection 

The manned ALS data collection was completed on July 20, 2017 over the Clinch 

Mountain study site. A commercial vendor was contracted to image the study site with a manned 

ALS system and Vexcel color (RGB) camera system. A Leica ALS80 small-footprint discrete 

return lidar, mounted on a fixed wing aircraft, was flown at a constant altitude approximately 

7,850 ft (~2,400 m) above mean sea level, and 4,849 – 5,951 ft  (~1,478 – 1,814 m) above 

ground level. This sensor has a scanning rate of up to 200 Hz and a pulse rate of 1 MHz. The 

point clouds from the vendor included intensity values for the first three returns of each pulse 

and a return number up to five for each pulse, but point clouds were not classified (ground vs. 

non-ground). Point densities achieved using this sensor’s configuration ranged from 30.44 pts/m2 

to 99.16 pts/m2, with an average point density of 71.19 pts/m2. The inconsistency between point 

density was attributed to the inconsistent overlap of flight paths at the actual plot locations, with 

the plots towards of the center of the study area receiving the most coverage.  

The sUAS ALS data collections were completed on August 11 and 13, 2017 at the Clinch 

Mountain site and on August 12, 2017 at the Om Sanctuary. The platform used for the sUAS was 

a DJI Matrice M-600 Pro, with a custom payload rig capable of lifting a modular sensor platform 

which houses various imagers. For this collection, a weight ballast, lidar sensor and an RGB 

camera for the SfM section were flown. In this configuration, the sUAS is capable of flying for 
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approximately 18 minutes. The longest flight completed in this study was approximately 16 

minutes and covered three plot locations. For these collects, a Velodyne VLP-16 small footprint 

discrete lidar was utilized on the sUAS, in combination with a differential GPS/INU system for 

precise tracking and three-dimensional point cloud generation. This system integration was 

designed and completed by the UAS Research Lab in the Chester F. Carlson Center for Imaging 

Science at Rochester Institute of Technology and has been named the MX-1. A depiction of the 

platform as flown can be seen in Figure 4.3. 

 

 

Figure 4.3. MX-1 platform developed by RIT. The Velodyne VLP-16 lidar is visible on the forward end of the 

peripheral mount at the bottom of the airframe. 

 

The flight altitudes above the plots varied from 200 – 300 ft (~60-90 m) above ground 

level. This was due to the lack of precision in the DEM that the flight software used in terrain 

following mode. In-flight variations were less than 10 ft (~3.3 m), but the manner by which the 

flight software set the target height was variable at each location.  The VLP-16 lidar has a pulse 

rate of 300 KHz and a scan rate of up to 20 Hz. The lidar system has a maximum range of 328 ft 

(100 m), the maximum swath width, assuming -10° to 10° sight lines like that of the ALS80, is 

113 ft (~35 m). The VLP-16 is capable of 360° scanning, but it is not recommended to use scans 

at oblique angles for foliage mapping, as large scan angles may introduce error and occlusions 

[38]–[40]. The VLP-16 is a two return system, recording the first and last return for every pulse, 

along with associated intensities. With this system, point densities achieved were 497.04-

2,393.93 pts/m2 with a mean point density of 1,504.2 pts/m2. This variance in point density was 
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attributed the flight altitude, changes in flight overlap from plot-to-plot, and degradation in GPS 

signal, which resulted in a significant number of returns being removed from the final point 

cloud. A summary of both lidar system specifications, as flown for both sites, can be found in 

Table 4.1. 

Table 4.1. Lidar sensor specifications as flown for both sites. 

 

Leica ALS80 Velodyne VLP-16 

Laser Altitude (ft) 7,850 200-300 

Swath Width (ft) 1,800 35-52 

Scan Rate (Hz) 120 10 

Pulse Rate (KHz) 1000 300 

Returns ≤ 5 ≤ 2 (first and last) 

Average Horizontal 

Resolvable Distance 

Between Points (ft) 

4.72 1.18 

Footprint (ft) 4.02 1.57 

Wavelength (nm) 1064 903 

 

 Imagery for the SfM portion of the study was collected simultaneously with the lidar 

data by both platforms. The manned aircraft deployed a four channel, visible and near infrared, 

Vexcel UltraCam Eagle with a capture scheme of 60% stereo forward overlap between 

exposures and 30% side overlap between flight lines. The delivered imagery measured a mean 

size of 24,267 x 21,274 pixels, with a mean GSD of 9 cm at the ground level. The sUAS system 

deployed an Allied Vision Mako G-419 RGB camera with a capture scheme of 80% forward 

overlap between exposures and 80% side overlap between flight lines. The delivered imagery 

measured 2,048 x 2,048, with a mean GSD of 2.5 cm at the ground level. The sUAS utilized a 

checkerboard fight pattern and image sample rates of 1 Hz to generate high overlap of stereo 

imagery for generation of high-density lidar point clouds. The manned aircraft used a more 

traditional flight strip pattern of collection, ensuring that the swaths of each strip overlapped to 

increase lidar point densities, but did not include specific flight patterns to support SfM efforts. 

A simple depiction of these two flight paths over a circular target can be seen in Figure 4.4.  

Agisoft Photoscan Professional v1.2.6 was used to implement the SfM algorithms for 
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these two imagery data sets in order to generate three dimensional point clouds from stereo 

imagery [64].  In depth details of the processing steps of Photoscan can be found in [31], [32], 

[65]. A brief overview of the processing flow, is that Photoscan initially detects key point feature 

matches between the images using a process based on the Scale Invariant Feature Transform 

(SIFT) [32], [65]. Three dimensional positions of the key points and camera positions are then 

estimated through an iterative bundle adjustment, and this information is used to generate a 

dense point cloud from the imagery [36]. In our scenes, ground control points (GCP) were not 

available for georeferencing the generated point cloud coordinates, thus the direct georeferencing 

was completed using the GPS information from the system at the time of each image capture. 

This is the same method used by Wallace et al. and Turner et al. [32], [36]. An advantage of 

using this method for georeferencing was that the SfM closely matched the accuracy of the lidar 

point clouds, since both data sets drew their georeferencing processing from the same source. 

Throughout the processing workflow of Photoscan, high accuracy settings were used for the 

alignment of photos, alignment of camera positions, and the generation of the dense point clouds. 

The final point clouds were exported to the American Society for Photogrammetry and Remote 

Sensing (ASPRS) “.las” file format to match the lidar data products and for ingestion into the 

lidar software tools used for processing.  

 

 

Figure 4.4. Checkerboard flight pattern (left) vs. traditional flight strips (right) over a circular forestry plot outline 
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4.4.3   Point Cloud Pre-processing 

Each lidar data set was delivered in an unclassified format with height values reported in 

reference to altitude above mean sea level. This required that each data set be processed through 

a ground classification algorithm for generation of a DEM. The DEM is used to normalize the 

point cloud to height above ground, rather than altitude above mean sea level. Additionally, a 

coordinate transformation was completed so that both data sets were represented in the UTM 

17N coordinate system. These pre-processing steps were completed using the software suite 

LAStools, utilizing the function lasground_new with a step size of six meters for the ground 

classification of the point clouds, and the coordinate transformations were completed using the 

function las2las [42]. 

Square buffers measuring 200 ft. x  200 ft. (60.96 m x 60.96 m), centered on the same 

locations as the ground reference plots, were developed first to reduce point clouds to the points 

in the immediate area of interest. This strategy conserved memory and facilitated increased 

processing speeds by reducing point clouds to manageable sizes for ground classification and 

normalization, as most files contained >10 million points, for both the lidar and SfM point 

clouds. Such large buffers avoid edge artifacts on the digital elevation model (DEM) produced, 

as the ground point classification routine typically contained false positives along the edges of 

the point cloud. Circular buffers, matching the fixed radius of the reference plots of 37.5 ft 

(11.43 m), were used for the final reduction of the point clouds. The buffers were generated 

using the QGIS software package [48]. The clipping, or intersection, of the point clouds with the 

shape files were completed using polyclipdata from the FUSION software suite [20].  A 

depiction of the processing flow can be seen in Figure 4.5. 

The normalization of point clouds was completed using the lasground_new or lasheight 

functions from LAStools, depending on whether the DEM was being applied to the lidar point 

clouds (lasground_new) or the SfM point clouds (lasheight). The SfM for both data sets failed to 

generate enough ground returns to generate any sort of reliable terrain map, so a hybrid approach 

using the DEM generated from the corresponding lidar data sets was required for normalizing the 

SfM point clouds; this will later be discussed as a distinct disadvantage of the more cost-

effective SfM approach.  
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Figure 4.5. Depiction of point cloud processing steps. (a.) Raw point cloud with elevation values referencing mean 

seal level, (b.) DEM generated from ground-classified points, (c.) Raw point cloud plotted above DEM for visual 

reference, (d.) Normalized point cloud after DEM subtraction with normalized DEM for visual reference. (e.) CHM 

generated from normalize point cloud. (f.) CHD generated from the CHM.  



CHAPTER 4.   CARBON MODELING AND PLOT DISTURBANCE DETECTION  45 

 

 

 

4.4.4   Functional Carbon Model 

A primary metric of concern for sustainable forest management is the measure of carbon 

stored in the forest, and any changes to that sequestered carbon over time. It therefore is 

imperative to model these data, as it cannot be measured directly from the remote sensing data. It 

has been shown that the carbon and AGB relationship can be approximated as a linear function, 

whereby carbon is approximated as 50% of the biomass value [66]–[69]. This method is 

common as biomass and carbon can only be directly measured through destructive methods [68].  

Assuming this relationship holds true, then a linear AGB model can be trained to create a linear 

carbon model.  

Zhao et al. introduced a linear, scale- and shape-invariant, temporally stable model for 

relating the canopy height distribution (CHD) to biomass density. It is mathematically derived 

from the allometric relationships of canopy height and diameter at breast height, used by ground 

crews to generate biomass estimates from field data [58], [63]. Our carbon model is derived from 

this same framework, since it is a linear model. The model references a data product referred to 

the authors as the Canopy Height Distribution (CHD), denoted as 𝑝(ℎ). This can be thought of 

as the percentage of ground, within the plot being measured, that is obscured by the top canopy 

at a given height. Effectively the CHD is a histogram of the CHM height values measured at 

discrete height bins. Since the model is a function of a function itself, it is referred to as a 

functional model, i.e., the predictor 𝑝(ℎ) is function or curve and not a group of predictors [63], 

[70]. The relationship between the CHD and biomass, or carbon density, can be described by 

Equation 4.1, with the full derivation from allometric assumptions summarized by Zhao et al 

[58].  

𝐶𝑝𝑙𝑜𝑡 = 𝑓(𝑝𝑖=1,…𝑛) =  ∫𝑘(ℎ)𝑝(ℎ)𝑑ℎ 
𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒𝑑 𝑏𝑦 Δℎ
→              Δℎ∑𝑘(ℎ𝑖)𝑝(ℎ𝑖)

𝑛

𝑖=1

(4.1) 

where 𝑘(ℎ) or 𝑘𝑖=1,…𝑛is a non-negative, non-decreasing function whose value at ℎ = 0, 

is zero. These constraints are derived from the assumption that no forest biomass or carbon is 

present if there is no canopy, and that forest biomass or carbon increases with increasing height 

values [58]. For our model, the discrete version of Equation 4.1 is used, setting Δℎ = 1 m; this 

generated 𝑛 = 40 height bins for our data, as the maximum tree height observed was 41.62 m. 

The fitting of the weighting function 𝑘𝑖=1,…𝑛 was accomplished using the Matlab (ver. R2016b) 
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function lsqlin and applying the constraints detailed previously [71]. 

A challenge with validating biomass and carbon models from other studies is that each 

data set covers a different distribution of biomass and carbon, and potentially different forest 

types. Zolkos et al. addressed this issue in their review of 70 published AGB studies and found 

that expressing the Residual Standard Error (RSE) of a model relative to the mean AGB or 

carbon value, provides a satisfactory means of comparing studies between different regions with 

different forest CHM (or height) distributions [49].  The RSE is defined in Equation 4.2 below. 

𝑅𝑆𝐸 =∑
|𝑥𝑖𝑝 − 𝑥𝑖𝑓|

𝑛

𝑛

𝑖=1

(4.2) 

where 𝑛 represents the number of observations, 𝑥𝑖𝑝 represents the predicted value from 

the model, and 𝑥𝑖𝑓 represents the field measured values of each observation. From this definition 

RSE(%) is defined as  

𝑅𝑆𝐸(%) =
𝑅𝑆𝐸

𝜇𝐶𝑎𝑟𝑏𝑜𝑛
(4.3) 

In their review of these studies it was noted that models assessed on temperate coniferous 

forest exhibited the lowest error rates (mean RSE(%) = 28.7%), when compared to temperate 

deciduous forest ( mean RSE(%) =  31%) [49]. In the study by Means et al., it furthermore was 

found that heteroscedasticity existed in their models of basal area and volume, which also affect 

carbon and biomass models [2]. Their improvement was to model the natural logarithm of these 

dependent variables, resulting in improved performance, which was also seen with this data set 

in an earlier study [18].  

In addition to the RSE(%) metric, the 𝑟2 and RMSE metrics are reported for each model and 

are defined in Equation 4.3 and Equation 4.4, respectively, where 𝑛, 𝑥𝑖𝑝, and 𝑥𝑖𝑓 are defined as 

they were in Equation 4.2.  

 𝑅𝑀𝑆𝐸 = √∑
(𝑥𝑖𝑝 − 𝑥𝑖𝑓)

2

𝑛
 

𝑛

𝑖=1

(4.4) 

𝑟2 = 𝑐𝑜𝑟(𝑥𝑖𝑝, 𝑥𝑖𝑓)
2

(4.5) 
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All CHMs generated in this study used a 0.5 m raster grid for sampling, and assigned the 

maximum height return as the value for each cell. Each modality produced dense enough point 

clouds that no interpolation was required for empty cells.  

 

4.4.4   Plot Disturbance Detection 

The ability to accurately detect harvesting or disturbance of plots would be beneficial 

when managing multiple forest landowners, thereby facilitating compliance with sustainable 

forest management principles. Detection of individual harvested trees has been shown in boreal 

forests with a success rate of 73.4%, utilizing simple differencing of two CHMs taken two years 

apart [72]. Individual tree detection in closed-canopy, heavily overlapping deciduous forests, 

such as the sites in this study, is difficult and generally inaccurate. This led us to complete our 

analysis at the plot level. Rather than examining differences in structural metrics over a period of 

time, we investigated the ability to detect disturbed forests in a snapshot of time using one data 

collection. This is effectively a binary classification problem, i.e., the forest is disturbed or not, 

underscored by an analysis of how well the classifier can differentiate between the two cases 

using simple structural metrics, at the plot level, for the study sites in question.  These structural 

metrics were derived from the normalized point cloud and from point density values at discrete 

heights throughout the canopy. The point density values are different from the CHD in that it 

considers all point values to derive structural information, rather than just the height values of the 

top canopy. The density values were calculated as the percentage of point returns that fell within 

each voxel, with each voxel being defined as a 0.5 m x 0.5 m 0.5 m cubed volume.  The voxels 

can be imagined as placing the point cloud onto 0.5 m raster grid, and then proceeding to 

partition each resulting column of points at standard heights, in this case at every 0.5 m, until the 

height bins have reached a value larger than the maximum height return in the point cloud. These 

density values are then aggregated in the 𝑥 and 𝑦 directions, to generate a vertical structure 

profile for the plot as a whole, in terms of the percentage of returns occurring within the 

associated height bin.  

These vertical profiles are analogous to the return type seen in a waveform lidar system 

and have been used to classify forest change temporally [58]. Considering this, a few metrics 

were chosen as predication variables: 
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 The height of the maximum energy, ℎ𝑚𝑎𝑥, an indicator of the height at which the 

dominant canopy resides, this value is expected to be reduced in heavily disturbed or 

harvested plots. The calculation of ℎ𝑚𝑎𝑥 excludes ground returns, as it is intended to 

be a measure of dominant canopy height.  

 Height of median energy (HOME), as defined by Drake et al., being the height at 

which the 50th percentile of returns occurs, was chosen based on its ability to not only 

consider the dominant canopy as ℎ𝑚𝑎𝑥 does, but it is also affected by the understory 

[68]. A key difference in the HOME metric in this study when compared to the 

version that Drake et al. implemented, is that values below 1.5 m were ignored for 

our study to reduce the influence of ground returns on the HOME metric. I.e., we 

intended for the HOME metric to be indicative of vegetative canopy values. It is 

noted that the original definition of HOME can be influenced by the ground returns, 

and indirectly provide insight into gap percentages of plots [69].  

 Gap percentage is calculated directly in this study, thus we chose to remove that 

influence from the HOME metric. The gap percentage was calculated as the ratio of 

ground returns to total number of returns in a point cloud that contained only the first 

return value for each pulse [73].  

For the binary classification operation, a linear support vector machine was trained using 

the fticsvm function in Matlab (ver. R2016b) [71]. To validate the classifier, two methods were 

chosen for comparison: holdout cross-validation, where 50% of the observations were used for 

training and 50% used for validation, and leave-one-out cross validation, where all but one 

observation was used for training and the remaining observation used for testing [74]. Using 

these methods, 1000 trials were conducted and the mean value of the Producer’s accuracy, 

User’s accuracy, and the Kappa statistic were reported. These two methods of validation were 

chosen as there were only seven harvested plots in the 49 plot data set, thus fold numbers were 

limited to seven for leave-one-out cross validation. It was determined that a comparison of the 

two validation methods would be the most informative of the performance of the classifier in 

differentiating between disturbed and undisturbed plots, given the small sample size of harvested 

plots. Although the sample size arguably is of concern for such a complex classifier, the cross-

validation approach used here should at least provide a robust indication of performance.  
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4.5   RESULTS AND DISCUSSION 

4.5.1   Carbon Models 

The functional carbon model is derived directly from the CHM, generating the CHD 

function from the CHM. It was imperative that the generated CHMs are accurate and precise 

measurements of the forest structure. However, coordinate alignment of the point clouds was one 

challenge encountered with generating these models. The geographic information system (GIS) 

shape files, manned lidar data, and sUAS lidar data were all delivered in differing coordinate 

reference systems (CRS), all of which referenced differing geoids. This introduced alignment 

errors in initial trials, until the most accurate method of processing was identified as processing 

point clouds in local coordinates, convert the shape files to the local CRS of each lidar point 

cloud, and generate CHMs in that reference frame. The shape files should have no altitude 

component and suffer less error in transformation. Final alignments showed less than 1 m in 

alignment disagreement between the two data sources, i.e., manned to sUAS ALS. This issue, 

however, does highlight the advantage of including GCPs in the target scene whenever possible, 

as there would be reference points to correct for these types of errors. A depiction of example 

CHMs for each data source can be seen in Figure 4.6. 

The manned lidar was the only data set able to cover enough sample plots to generate a 

truly usable model. The sUAS covered two different study sites, and the differences in species 

were enough to reduce performance. It was noted by the original authors of this modeling 

method that the 𝑘(ℎ) function in Equation 4.1 is affected by tree allometry and crown 

geometries, thus, retraining (model calibration) for each new forest type is required [58]. The 

model performance improved when applied individually to each study site separately; however, 

sample sizes were small (9-13 samples, depending on sensor) for each site due to loss of data 

from sUAS timing signal corruption issues during flight. The SfM performance of the manned 

aircraft collection also was deemed unsatisfactory. Shadowing affects, due to the wide flight 

lines used to collect the lidar data, precluded many plots from generating full coverage of the 

study site, thus rendering it unusable for any type of modeling of forest structure or carbon 

metrics. An example plot showing heavy shadowing is shown in Figure 4.6, panel (b.). The 

sUAS SfM performance was visibly and quantitatively superior, generating point clouds 
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densities in the range of 1648.14 – 8826.46 pts/m2, and a mean density of 3,971.71 pts/m2. This 

was attributed to the checkboard flight path used to generate imagery from multiple view angles 

of the study site and thereby avoiding shadowing affects. However, neither SfM data set 

produced adequate terrain measurements and required normalization by the DEMs generated 

from the lidar point clouds, for their associated sensor platform.  The mean difference between 

the CHM generated by the sUAS lidar and sUAS SfM methods was 1.96 m. The majority of this 

error was attributed to the boundary “sharpness” with which the SfM methods were capable of 

generating three-dimensional data, compared to blurring of the sharp edges due to the relatively 

Figure 4.6. Sample CHMs derived from the different sensor modalities of Plot 113, this plot is one of the disturbed 

plots with high variation in canopy structure. (a.) CHM derived from lidar data set generated by the manned aircraft 

system, (b.) CHM derived from SfM data set generated by the manned aircraft system, (c.) CHM derived from lidar 

data set generated by the sUAS, (d.) CHM derived from SfM data set generated by the sUAS. 
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large footprint of the laser systems. This can be seen in Figure 4.6, panel (c.) and (d.); plot 113 

contains large magnitude, high frequency changes in canopy height, the lidar-generated CHM 

has a blurring of these edges when compared to the SfM-generated CHM. All CHMs in this 

study were generated on the same 0.5 m raster grid.  

The manned airborne system’s lidar data performed well when modeling the logarithm of 

the carbon data (𝑟2 = 0.64, 𝑅𝑀𝑆𝐸 = 17.14 Mg C/ha 𝑅𝑆𝐸(%) = 27.83%), falling just short of 

the performance of the model when applied to a coniferous forest by the original authors (𝑟2 =

0.72, 𝑅𝑀𝑆𝐸 = 10.75 Mg C/ha) [63]. This is a positive result, as it is common for biomass and 

carbon models to exhibit worse performance in deciduous forests, achieving lower R2 values and 

larger RMSE values than for coniferous sites [75]. Additionally, the RSE(%) attained is below 

the average RSE(%) reported by Zolkos et al. for models applied to this forest type [49]. The full 

lidar data set for the sUAS resulted in poor results (𝑟2 = 0.12, 𝑅𝑀𝑆𝐸 = 21.72 Mg C/ha 

𝑅𝑆𝐸(%) = 49.73%), stemming from the species and forest structures differences between the 

two study sites. The results of each model application can be found in Table 4.2.  

 In order to complete a comparison of the manned to unmanned platforms, two methods 

were chosen. It should be noted that when the modeling was applied separately to the VA data or 

the NC data, performance improved dramatically to 𝑟2 = 0.70, 𝑅𝑀𝑆𝐸 = 10.02 Mg C/ha, 

𝑅𝑆𝐸(%) = 19.35%, and 𝑟2 = 0.82, 𝑅𝑀𝑆𝐸 = 3.01 Mg C/ha 𝑅𝑆𝐸(%) = 11.33%, respectively.  

The first method explored was to reduce the manned lidar data set to only first and last returns, 

simulating the sampling scheme that the sUAS lidar employs. This method resulted in identical 

results, as expected, considering the CHM is generated by a majority of first returns, since the 

first returns typically contain the maximum value for each grid cell. The second method was to 

apply the sUAS CHD functions, generated from the four plots that overlap between the manned 

aircraft and sUAS data, to the manned aircraft trained model. The predictions for these plots 

closely agreed between the two data sets, with 𝑟2 = 0.99, 𝑅𝑀𝑆𝐸 = 1.77 Mg C/ha. This 

demonstrates that both systems are capable of producing similar predictions when imaging the 

same study sites and not suffering from component failure.  
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Table 4.2. Carbon model results. All models were fit to the ln(Cf), where Cf is the field measured carbon data by the 

ground crew during the audit.  

 

The SfM data from the sUAS underwent a similar testing procedure of applying the SfM 

CHD to the trained manned carbon model, as the sUAS SfM model suffered from the same 

issues between the two study sites as the lidar data. When investigating the four overlapping 

plots, similar performance was found to those from the lidar comparison, namely 𝑟2 =

0.98, 𝑅𝑀𝑆𝐸 = 2.13 Mg C/ha, indicating that a hybrid approach of lidar-derived DEMs and SfM-

generated CHDs is a viable option. The manned SfM failed to produce usable data; a proxy data 

set was generated in lieu of this to simulate low-density SfM point clouds from the manned lidar 

data. The manned lidar data were reduced to first returns only, as it was noted that no ground 

measurements were made by the SfM methods due to the dense canopy obscuring views of the 

underlying terrain. Again, as with the previous proxy data set, the results were identical to the 

manned lidar model for the same reasons, given that the highest elevation returns have the 

strongest influence on the CHDs. This presents an opportunity for a large cost savings, as 

obtaining and operating a RGB camera is significantly more affordable than lidar sensor 

packages. Considering that the underlying terrain does not shift often in these areas, a concept of 

Sensor 
Platform 

Data Source 
Number 

of 
Samples 

Returns r2 RMSE (Mg C/ha) RSE (Mg C/ha) RSE(%) 

Manned 
Aircraft 

Manned Lidar  49 All 0.64 17.14 13.08 27.83 

Proxy sUAS Lidar 49 
First 

and last 
0.64 17.14 13.08 27.83 

Proxy manned 
aircraft SfM 

49 
First 
Only 

0.64 17.14 13.08 27.83 

sUAS 

sUAS lidar, All 
plots 

19 All 0.12 17.86 21.72 49.73 

sUAS lidar, VA only 10 All 0.70 11.31 10.02 19.35 

sUAS SfM, VA only 13 All 0.68 12.55 10.51 21.90 

sUAS lidar, NC only 9 All 0.82 3.01 2.10 11.48 

sUAS SfM, NC only 9 All 0.84 2.83 2.07 11.33 
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operations would be to source a lidar collection for creation of high quality DEMs and use SfM 

at later dates to collect canopy structure measurements, even for temporal (change detection) 

analyses.   

 

4.5.2   Detecting Plot Disturbance 

Plot disturbance, to include natural events such as wind and storm damage, or harvesting, 

was considered a proxy for assessment of “forest sustainability”, i.e., to identify exploitative 

harvesting practices. This would enable an approach to gather information related to compliance 

with sustainable harvesting principles. The Montreal Process has identified seven indicators that 

are directly or indirectly related to change detection of carbon levels in forests, such as total 

forest ecosystem carbon pools and fluxes, total growing stock, annual increment in species 

available for wood production, fragmentation levels of forests etc. [16]. To support this type of 

effort, we proposed to classify vertical distribution data at the plot level, derived from lidar 

voxels, as the lidar systems are the only modality that generated returns for the underlying or 

sub-canopy vegetation structure. The sUAS lidar did not cover enough examples of disturbed 

forest to be used for training and testing of a classifier, thus the data from the manned lidar 

system was used exclusively for this purpose.  The structural data generated from the voxels 

have been shown to be capable of discriminating between varying stand types over time [63]. 

Rather than look at change detection over time, we explored the ability of the structural data to 

discriminate between potential harvested forest plots.  A plot of the generated vertical profiles 

for all stands, disturbed and undisturbed, and a depiction of only the disturbed stands can be seen 

in Figure 4.7. A graph illustrating the mean vertical profile of each class of plot can be 

referenced in Figure 4.8.  

We explored the use of binary classification to label plots as disturbed or undisturbed. 

Three structural metrics were chosen for use as feature descriptors. The features chosen from the 

previously mentioned seven viable indicators were: height of maximum energy, ℎ𝑚𝑎𝑥, an 

indicator of dominant canopy height, height of median energy, HOME, and the gap percentage 

of each observation. Height of maximum energy, corresponding the dominant canopy height, is a 

logical choice for this classifier, since a more heavily harvested forest, i.e., a forest that is in non-

compliance with sustainable forest management principles, will have a significantly shorter 
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canopy than an undisturbed forest, and has been noted to show variation based on treatment 

methods of plots during growth [76]. HOME has been shown to be sensitive to underlying 

vegetation cover, and has provided high levels of predictive power in the variability of between 

plots [68], [69]. Visualization of ℎ𝑚𝑎𝑥 and HOME for the mean vertical structure of the 

disturbed and undisturbed forest can be seen in Figure 4.8. Note the clear differences in the 

vertical profiles and the inverted relationship between HOME and ℎ𝑚𝑎𝑥 in the disturbed 

observations. As larger sections of vegetation is harvested or damaged by natural events, an 

increase in canopy gaps is expected, thus this variable was also included.  

A linear SVM generates a linear decision boundary between two groups of data points. 

This is achieved by attempting to maximize the margin between the decision boundaries and the 

Figure 4.7. Vertical profiles of each forest plot generated from voxel point-density measurements. The left pane 

shows the disturbed and undisturbed vertical structure profiles, the right pane shows only the disturbed plots, to 

enable direct inspection of the structural details of these disturbed plots. 
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neighboring data points [77]. We chose three feature descriptors of our data set, thus, the 

decision boundary is a two-dimensional plane, and it would be a simple line for a two-

dimensional feature set. An example of one of many generated decision boundaries in this study 

can be seen in Error! Reference source not found.. The SVM will generate a different decision 

boundary for each set of inputs, requiring multiple repeated trials to gain insight into the average 

performance of the classifier. In this study, the data set is clearly linearly separable, with many of 

the training sets yielding similarly oriented hyperplanes.  These properties allowed for the 

development of a high performing classifier. 

Figure 4.8. Mean vertical profiles for undisturbed observations (left) and disturbed observations (right). HOME 

and ℎ𝑚𝑎𝑥  for each are depicted by the blue line and black dashed line respectively. 
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Two validation methods were used to test the classifier’s performance on the data set. 

This data set is highly unbalanced with seven samples for the disturbed class and 42 samples for 

the undisturbed class. The first validation method chosen was leave-one-out cross validation. We 

use the leave-out phrase in reference to the disturbed training class, meaning that the data set as a 

whole is split into seven stratified folds, utilizing six folds for training and one fold for testing. 

This method yielded training sample sizes of six disturbed samples and 36 undisturbed samples, 

while the test fold contained the one remaining disturbed observation and six remaining 

undisturbed samples. This type of validation scheme resulted in highly accurate classification 

rates over 1000 iterations. The Producer’s, User’s accuracy and the Kappa statistic for the 

disturbed class with this validation method were 100%, 99.1%, and 99.2%, respectively. The 

classifier performed very well on average, however, there were large variances in the User’s 

accuracy, with the Kappa statistic noting a lack in preciseness of the detector. The large 

variances was attributed to the small sample size of the disturbed class, with every false positive 

Figure 4.9. (a) A depiction of the feature descriptors and decision plane in three-dimensional space. (b – d) Two-

dimensional depictions of feature descriptors and possible decision boundaries, for the HOME vs. gap (b), 

maximum height vs. HOME (c), and maximum height vs. gap (d) variable sets. 
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and false negative resulting in a large change in measured accuracy. This is illustrated by the fact 

that the performance metrics for the undisturbed class were much less affected by these errors, as 

seen in Table 4.3.   

The second validation method chosen was a stratified random holdout cross validation, 

where the sample distributions were split in half by class, disturbed or undisturbed. This resulted 

in 21 samples for the undisturbed plots in the training and test folds, while the disturbed plots 

alternated between three and four samples for the training and test folds. This method resulted in 

a reduction of performance across all metrics, from a reduction in mean accuracies to an increase 

in variances, but performance was still high. The Producer’s, User’s accuracies, and the Kappa 

statistic for this validation method were 94.1%, 92.2%, and 89.8%, respectively. These 

reductions in performance were attributed to the reduced training instances to train the classifier, 

however, we feel that this validation method presents a more rigorous test environment 

considering the unbalanced data set at hand. This method also suffered from the large variance 

issue that plagues the first method, due to the small sample size of the disturbed class.  

We expanded the disturbance or non-sustainability detection to also include plots with 

moderate harvest conditions, 10 years prior to the collection date. These moderate disturbances 

proved to be difficult for the classifier to identify and were not clearly separable via the structural 

features we had chosen to use for our methods. This can be seen in an example of the hyperplane 

Table 4.3. Results of disturbance detector method. The detector performed best when applied to the aggressively 

harvested plots, but performed poorly when applied to all disturbed plots. 

Data Set 
Validation 

Scheme 
Class Prod. Acc. User Acc. Kappa 

Aggressive 
Harvesting 

Leave-one-out 
Undisturbed 99.5% (66.7% - 100%) 100% 99.2% (36.4% - 

100%) Disturbed 100% 99.1% (33.3% - 100%) 

Hold-out 50% 
Undisturbed 98.0% (81.0% - 100%) 99.1% (91.3% - 100%) 89.8% (46.7% - 

100%) Disturbed 94.1% (33.3% - 100%) 92.2% (42.9% - 100%) 

All 
Harvesting 

Leave-one-out 
Undisturbed 84.2% (56.3% - 100%) 75.0% (57.1% - 100%) 

38.0% (0% - 73.3%) 
Disturbed 46.0% (0% - 88.8%) 63.0% (0% - 100%) 

Hold-out 50% 
Undisturbed 84.4% (50% - 100%) 75.5% (60% - 100%) 

38.5% (0% - 80%) 
Disturbed 47.5% (0% - 100%) 63.5% (0% - 100%) 
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generated by the detector while operating on the entire data set, depicted in Figure 4.10, as well 

as noting the similarities in mean feature values between the undisturbed and moderately 

disturbed plots in Table 4.4. Many of the moderately disturbed observations are not separable 

utilizing these structural metrics, as they cluster within much of the undisturbed data points. This 

is due to the lack of aggressive harvesting which in turn reduced the canopy variation, while also 

not introducing any large gaps in the canopy. It is worth noting that, in general, the gap feature 

did not provide as much insight into disturbance classification as HOME and ℎ𝑚𝑎𝑥. This is likely 

due to the mixed nature of the forest as a whole: When larger vegetation is removed, the 

understory remains and prevents the first return of the laser pulse from reaching the ground and 

registering as a gap location.   

We conclude, based on these results, that i) given the set of disturbance indicators, the 

disturbance detector/classifier was capable of reliably detecting heavily disturbed plots and could 

provide utility in locating interest points for inspection and ii) when the moderately harvested 

plots were included in the algorithm, the detector performance dropped significantly. This 

implies that the simple structural features derived from the forest structure, while they have a 

history of providing insight to other predictive models, were not separable for all harvest 

instances and severities. Exploration of more intricate structural features or non-linear 

classification methods may improve results. However, in the context of sustainable forest 

management, the detector was successful is detecting those plots with the most severe loss, as 

can be seen by the decision boundary shown in Figure 4.10. Such severe disturbance arguably is 

representative of top-cutting or even aggressive timber removal practices, both of which could 

indicate a reduction in forest sustainability. 

 

Table 4.4. Mean feature values for each class of observation. 

Plot Category Mean 𝒉𝒎𝒂𝒙 (m) Mean HOME (m) Mean Gap Fraction (%)  

Heavily Disturbed 8.68 10.32 12.5% 

Moderately Disturbed 22.45 19.80 4.4% 

Undisturbed 25.5 22.55 4.6% 



CHAPTER 4.   CARBON MODELING AND PLOT DISTURBANCE DETECTION  59 

 

 

 

 

4.6   CONCLUSIONS 

This paper had two primary objectives: i) implement a comparison of carbon modeling, 

derived from sUAS and manned airborne structural data products, utilizing data of a dense 

heterogeneous deciduous forest located in the southeastern portion of the United States (USA), 

and ii) evaluate a disturbed, or harvested, plot support vector machine detection method to aid in 

mapping potentially harvested sites as means for ensuring compliance with sustainable forest 

management principles. Both lidar and SfM data products were produced for both platforms over 

deciduous forests in the southeastern USA, including a unique lidar and unique SfM data set for 

each platform for use in the functional carbon model.  The disturbance detector was implemented 

Figure 4.10. Example decision plane generated by the linear SVM when applied to full extent of disturbed 

observations, including both severe and moderate harvest situations. The large number of support vectors is an 

indication of a poorly conditioned data set with high rates of confusion. The gray plane is the decision boundary 

generated by the linear SVM, and the points circled in green are the support vectors.  
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as a binary classifier using descriptions of the vertical distributions of each plot from voxels 

obtained by the ALS systems as features.  

The comparison of data sources was completed by implementing a functional model 

described by Zhao et al. to generate a carbon model of each plot measured by both platforms 

[58], [63]. Initial indications were that both data sets were of high quality, exhibiting high point 

densities over the study sites. The manned lidar system produced point cloud densities ranging 

from 30.44 - 99.16 pts/m2, with an average point density of 71.19 pts/m2. However, the SfM 

method applied to the manned system failed to generate adequate point clouds, suffering from 

significant shadowing, which in turn obscured tie points needed to generate of 3D coordinates 

over the measured canopies. The sUAS lidar and SfM methods produced the most dense point 

clouds, ranging from 497.04-2,393.93 pts/m2, with a mean point density of 1,504.2 pts/m2, and 

1648.14 pts/m2 – 8826.46 pts/m2, and a mean density of 3,971.71 pts/m2, respectively.  

The manned lidar produced an acceptable performing model, similar to other models 

developed for deciduous forests (𝑟2 = 0.64, 𝑅𝑀𝑆𝐸 = 17.14 Mg C/ha 𝑅𝑆𝐸(%) = 27.83%). 

Only four measured plots overlapped between the manned data collection and the sUAS data 

collection, due to a data corruption issue (a timing mismatch between the various sUAS data 

streams).  Two proxy data sets therefore were generated from the manned lidar, a set containing 

first returns only, and another containing both first and last returns; these proxy data sets 

simulated the manned SfM and sUAS lidar, respectively. The data from the sUAS lidar and SfM 

methods were ingested into the trained model generated by the manned model.  Both inputs 

produced carbon predictions that closely agreed with the manned lidar data, at  𝑟2 =

0.99, 𝑅𝑀𝑆𝐸 = 1.77 Mg C/ha and 𝑟2 = 0.98, 𝑅𝑀𝑆𝐸 = 2.13 Mg C/ha, respectively. Even though 

four samples constitutes a small sample size, we concluded this was an indication that the data 

products generated by each platform, manned and sUAS, were similar and that for small area 

usage the sUAS is a viable alternative to the manned system, as it also has been shown to be 

economically competitive [18]. More importantly, this showed for models that rely on CHM, the 

more affordable method of using SfM methods to generate point clouds is a viable option, if a 

quality DEM is available for the study site. 

The disturbance detector was envisioned as a tool to help land managers flag areas of 

interest, defined as areas that have been disturbed, whether by natural or man-made means. The 



CHAPTER 4.   CARBON MODELING AND PLOT DISTURBANCE DETECTION  61 

 

 

 

manned lidar was used for this effort, as this data set contained up to five returns per pulse and 

covered the largest sample sizes of each class type. A linear SVM was used as the binary 

classifier, operating on features derived from the vertical structure of each plot, calculated from 

point densities of 0.5 m voxels and aggregating those voxels at each height level. The three 

features generated from each plot were the height of maximum energy, height of median energy, 

and gap fraction. All three have been shown to have predictive power in biomass and basal area 

modeling, and are sensitive to canopy changes [68], [78].  Detection of the heavily disturbed 

plots generated the following performances for Producer’s, User’s accuracy, and Kappa statistic: 

100%, 99.1%, and 99.2%, respectively, for leave-one-out cross validation; and 94.1%, 92.2%, 

and 89.8%, respectively, for hold-out cross validation using a 50% ratio between training and 

test sets. When moderately disturbed plots were introduced in the classifier, detector 

performance fell drastically, since these plots exhibited similar features to undisturbed plots. It 

was concluded that features of higher complexity or non-linearity need to be explored for 

detection of these types of forest, and perhaps the investigation of a multiclass detector. 

Overall, this paper met both objectives, albeit with caveats. The sUAS data that did 

overlap with the manned lidar system performed well in the context of carbon modeling, 

however, a loss of 50% of the overlapping data (four of eight plots) due to data corruption 

highlight a strong need to develop system maturity. This system maturity must be attained to 

develop the sUAS as a viable and reliable alternative to the manned system. Additional 

challenges to sUAS collections were the FAA line of sight requirements. Navigating dense 

forests on steep mountainsides creates difficulty in maintaining a visual on the flight operations. 

Future considerations could include the construction of temporary or permanent towers to raise 

the vantage point or having multiple safety spotters available for assistance.  In the context of the 

second objective, the detector worked well in detecting heavily disturbed plots, but struggled 

with moderately disturbed plots. Recommended future improvements would be to generate more 

intricate descriptions beyond the three structural indicators used in this study. Metrics such has 

height to living crown, or inspection of the width of the dominant canopy peaks within the 

vertical structure, could provide insight into the variation of canopy heights within the dominant 

lobe. This would tie back to harvests completed with sustainable forest management in mind, 

where clear cuts tend to be avoided.  
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Chapter 5  

 

Summary 
 

 

5.1   SUMMARY 

Chapter 1 of this thesis introduces a basic background of sustainable forest management 

and the role remote sensing has played in increasing our measurement capability for forests. 

Sustainable forest metrics are introduced, such as stable volume, biomass, carbon and stems-per-

hectare (SPHA). The objectives of the thesis also are presented: i) Assess the extensibility of 

light detection and ranging (lidar) algorithms for forest height, volume, and carbon assessment to 

UAS platforms and data, ii) Evaluate the use of more cost-effective imagery-based (stereoscopic 

structure-from-motion) vs. lidar-based algorithms for forest structure assessment, iii) Develop 

and evaluate a framework for disturbance detection within forest canopy structures, and iv) 

Publish and present research findings to achieve broad industry dissemination, especially among 

forest management entities such as the Forest Stewardship Council (FSC) and Rainforest 

Alliance. 

Chapter 2 continues the background of lidar applications, specifically pertaining to sUAS 

applications within sustainable forest management. This thesis was written in a modern format, 

where Chapter 3 and Chapter 4 are stand-alone research papers. The background in Chapter 2 
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thus contains pertinent information that was beyond the scope of the later chapters. This chapter 

also includes a background on lidar basics for point cloud generation, an overview of the CIS 

research sUAS, and an overview of the required preprocessing of the data to complete analysis. 

Chapter 3 introduces the first comparisons completed using the manned lidar data and 

sUAS data. This chapter is a slightly modified version of the paper presented at the SPIE 

Commercial + Scientific Sensing and Imaging, April 2018. A linear regression carbon model is 

developed for each data set to compare performance and it is determined that each system 

performed similarly. A cost analysis is presented for context of the economic impact of 

generating a lidar product for each system. It was found that the sUAS was competitive in cost 

per area of coverage, but was most suited for small land-area collections.  

Chapter 4 introduces a more robust carbon model, the structure-from-motion data sets 

generated in this study, and the concept of a disturbance detection algorithm. This chapter has 

not been published at the time this thesis was written, but is written with the intent to submit for 

publication in a peer-reviewed journal. Similar to the findings in Chapter 3, the carbon model 

developed here shows agreement between the manned lidar and sUAS lidar data sets. There is 

also good agreement between the manned lidar and sUAS SfM data set, indicating potentially 

significant cost savings on sensor acquisition when developing a sUAS for sustainable forest 

management purposes. The disturbed plot detection methods performed well on heavily 

disturbed plots, but struggled on moderately disturbed plots. This indicates a potential for 

detection, but improvements in robustness must be explored.  

 

5.2   CONCLUSIONS 

Sustainable forest management practices are receiving renewed attention in the growing 

effort to make continued, efficient use of natural resources. Sustainable management approaches 

require accurate and timely measurement of the world’s forests to monitor volume and biomass 

levels, as well as changes in sequestered carbon. It is in this context that remote sensing 

technologies, which possess the capability to rapidly capture structural data of entire forests, 

have become a key research area. Sustainable forest management relies on the acquisition of 

timely and accurate information of the forest. Lidar remote sensing platforms provide the 

capability of rapid collection with high spatial resolution. The increasing performance 
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capabilities and reduction of cost associated with small, unmanned aerial systems (sUAS), 

coupled with the decreasing size and mass of lidar sensors, provide the potential for a cost 

effective alternative. This drove our research objectives to compare the utility of these sUAS 

platforms and sensors to that of the standard manned aircraft collections 

 The evaluated data sets were collected by both types of sensors in the deciduous, mixed-

age forests of southeast USA. A simple carbon model was developed for these data sets as a 

means to compare performance in the sustainable forest management context.  Both systems 

produced adequately dense point clouds, with the manned system exceeding 30 pts/m2 and the 

sUAS exceeding 400 pts/m2. Both sensors performed similarly in the carbon model with their 

RSE(%) being within one percent of one another. Having established that the sUAS can produce 

similar quality models of sustainable forest metrics, a cost analysis was completed of the two 

data collections. This led to the conclusion that the sUAS is competitive with the manned aircraft 

at a cost of $8.12/acre, compared to the manned aircraft’s cost of $8.09/acre, the latter which 

excluded mobilization costs of the manned system.  

A functional carbon model then was developed with the intent to train with lidar data 

from the manned aircraft and test on the sUAS data. The trained manned aircraft model 

performed well, and in line with other models developed for heterogeneous deciduous forest 

(𝑟2 = 0.64, 𝑅𝑀𝑆𝐸 = 17.14 Mg C/ha 𝑅𝑆𝐸(%) = 27.83%).  A proxy data set, simulating SfM 

data with first returns, and sUAS lidar data with first and last returns, yielded identical results.  

The functional model used for the carbon prediction was derived from CHMs, which are highly 

influenced by the first returns in a 3D point cloud. The four overlapping plots between the sUAS 

and manned aircraft were used for a direct comparison. The sUAS lidar and SfM both were 

normalized by a DEM generated from the sUAS lidar, and were ingested into the trained manned 

aircraft model. This resulted in a high agreement in their predictions, compared to that of the 

manned data. The error for the sUAS lidar and SfM data were 𝑅𝑀𝑆𝐸 = 1.77 Mg C/ha and 

𝑅𝑀𝑆𝐸 = 2.13 Mg C/ha, respectively.  

These results, coupled with the results of the first carbon model, led us to the conclusion 

that the sUAS is capable of generating model performance similar to the manned system.  

Additionally, we concluded that the SfM data, in a hybrid approach using an externally generated 

DEM, is a viable alternative solution to a solely lidar-based collection. The SfM point cloud 
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provide significantly higher point densities and finer detail of the canopy structure. Both of these 

conclusions directly support our first and second objectives. The publication that Chapter 3 is 

based on directly supports our fourth objective, along with the publication of this thesis and the 

intent to publish the research presented in Chapter 4.  

We completed another study to further explore relationships of structural canopy data and 

sustainable forestry applications to support our third objective. A disturbance detector was 

developed with the intent to draw attention to potentially harvested plots or plots damaged by 

natural events, e.g., wind or fire damage. The detector was built on a binary classification 

scheme using a linear SVM and input features of height of maximum energy, height of mean 

energy, and gap fraction. The first two metrics were based on aggregated point density values 

derived from 0.5 voxels. This detector performed remarkably well on heavily disturbed plots, 

generating the following performance measures for detection of disturbances using leave-one-out 

and holdout cross validation: Producer’s, User’s accuracy, and Kappa statistic values of 100%, 

99.1%, and 99.2%, and 94.1%, 92.2%, and 89.8%, respectively for the leave-one-out and holdout 

cross validation approaches.  However, when incorporating more moderately harvested sites, the 

detector suffered a drastic decrease in performance. The performance values fell to below 50% 

for Producer’s accuracy and below 65% for User’s accuracy, while the Kappa statistics dipped 

below 40%.  

We concluded that the heavily disturbed plots, i.e., the plots that are managed in a 

potentially unsustainable manner, were successfully detected and the tool would be useful for 

indicating the presence of these types of sites, as they were still accurately classified, even with 

the poorer performing version of the tool. As this is the first iteration of the detector, there is 

always room for improvement. Future implementations should consider metrics that are closer 

aligned to the variation in the canopy structure. A possible improvement could be to analyze the 

vertical width of the dominant canopy as a potential description for the selectively harvested 

plots. These plots would allow more returns from the canopies just below the dominant, thus 

widening the Guassian-like curve located at the height of maximum energy. Overall, this portion 

of the thesis was successful in detecting the original, seven heavily disturbed plots given in the 

reference data.  
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5.2   FUTURE WORK AND IMPROVEMENTS 

A few potential future research studies to improve on what was presented in this thesis 

have been identified, with a focus on potential improvements to flight planning to allow for 

greater area coverage per flight. These potential studies are contained in the list that follows: 

 Our primary driver for the low flight speeds was to limit motion blur in the RGB 

imagery during data collection. This was a concern due to the low flight altitudes 

required to accommodate the lidar system. The mean GSD at the terrain level for 

the collections in this study was 2.5 cm, and the mean GSD at the canopy level, 

assuming an average canopy height of 30 m, was 1.5 cm. The mean exposure time 

for the collections was 4.56 ms, resulting in blur levels of 0.36 pixels and 0.59 

pixels at the terrain and canopy levels, respectively, which imply relatively low 

levels of blur. A future study could evaluate the effects of GSD and blur levels on 

the resulting SfM point clouds and derivative products, e.g., DEMs and CHMs. 

The objective of such a study would be to investigate potential flight speed 

increases and the resulting increase in blur levels, and to investigate higher 

altitude flights, thereby allowing larger areas to be imaged and a potential 

decrease in blur levels, while increasing GSD.  The expectation is that the fine 

detail generated in this thesis research is not required to generate the DEMs and 

CHMs, as 0.5 m raster models produced adequate results. Increases in flight 

altitude and flight speed would allow for larger area coverage per flight, reducing 

the cost of deployment for the sUAS.  

 SfM considerations required for significant overlap in flight lines and low flight 

speeds. This resulted in extremely high density lidar point clouds. A potential 

future study could investigate higher flight speeds, while utilizing lower overlap 

between flight lines, with the intent to generate point densities in the range of 

which were generated by the manned lidar system. These point density levels 

were adequate for DEM and CHM generation, which were the key data products 

utilized for carbon modeling and disturbance detection. By increasing flight 

speeds and reducing overlap, the point densities would be reduced, but the 
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coverage area capabilities would increase. This would further reduce the cost of 

deployment of the sUAS system to levels below the manned system.  

 The functional carbon model utilized CHDs generated from CHMs. The CHMs 

only provide information on the top canopy surface, as they only retain the 

maximum height value within each raster grid cell and do not utilize structural 

information of the underlying vegetation. A potential improvement could focus on 

leveraging the structural information found in the plot point-density waveforms, 

generated for the disturbance detector through the voxel method. These 

waveforms capture information about the underlying vegetation structure, 

potentially providing additional descriptive inputs to the functional carbon model.  

In addition, a few improvements in the research approach were identified during the 

course of this study. These improvements are contained in the list that follows: 

 When imaging a scene, whether it is with an electro-optical sensor or a lidar sensor, 

the inclusion of ground control points can dramatically increase coordinate accuracy 

in both data products. A significant amount of time was devoted to adjusting data 

products and their coordinate reference systems in an attempt to reconcile a 6.5 m 

disagreement in the x-y plane. The presence of ground control points within the scene 

would have rapidly corrected this issue.  

 The preferred coordinate reference system for data product deliveries needs to be 

specified in advance. The RIT sUAS lab, the commercial lidar vendor, and the 

surveying team used three different coordinate reference systems, referencing 

different geoids for altitude values. In the steps to convert these data products to a 

common reference system, there is a potential to introduce unnecessary error to the 

data. This is no fault of the various data sources, as no specific direction was given 

for preferred coordinate reference system.  

 sUAS systems have increased dramatically in their capabilities and use. However, we 

should remain cognizant of the fact that we are integrating complex sensing and 

positioning systems on a compact platform. We therefore recommend that adequate 

system testing and debugging be completed before large research deployments, 

thereby reducing the risk of data loss or even inaccurate data products.
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Appendix A 

 

Additional Pre-processing of sUAS Lidar 
 

 

A.1   RAW LIDAR FILE REPAIR 

A.1.1   The Issue 

It became apparent that a corruption of the time stamps associated with the point returns 

had occurred during initial alignment of the raw lidar point returns.  The misalignment between 

the lidar time stamps and GPS timestamps was not a standard offset, nor did it form a cyclical 

pattern. A plot of the of timing stamps, contained within the raw packet capture files generated 

by the Velodyne VLP-15 lidar sensor, and the correct GPS time for these collections, can be seen 

in Figure A.1. This sensor supports integration with a 1 Hz synchronization signal accompanied 

with a NMEA date and time packet, sourced from an external GPS receiver. The lack of correct 

timing information rendered the task of generating three dimensional point clouds impossible for 

select sites, as there was no way to synchronize GPS positions, IMU data and lidar return data.  
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Figure A.1. A depiction of the timing signals seen in the lidar data packets and the correct time stamps, as reported 

by the GPS receiver log file. The blue lines are the timestamp for each data packet; the red line is the correct time as 

reported by the GPS receiver. Times are measured from the top of each hour.   

A.2.2   The Repair 

A repair was implemented in Matlab, initially developed my Mr. Blair Simon (Headwall 

Photonics, Bolton, Massachusetts).  Mr. Simon’s repair code leverages the propagation of 

internal timing signals of the Nano FPGA, which distributes Unix timestamps to the various 

peripherals. These time stamps are stored in a GPS log file and a lidar packet index file. The 

structure of communication between this FPGA and the log files can be seen in Figure A.2; this 

figure is sourced from a status update given by Mr. Simon during development of the repair 

code.  The information contained within the lidar index file provides Unix timestamps at a coarse 

sampling rate, with a time stamp write-out sequence approximately once every 100 packets of 

lidar data. These Unix timestamps can be matched with GPS time stamps entries occurring at the 

same Unix timestamp to find the true GPS time associated with the specified lidar packet. A 

linear interpolation of GPS time values are then computed between each time value found for 

packets in the index file, in order to associate a GPS time with every lidar data packet. If the 

sampling rate was not constant between index points, an error will be induced by the linear 

interpolation. These errors were seen as noise in the generated point clouds.  
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Figure A.2. Flow diagram of timing controls within the MX-1 sUAS. 

 

A.2.3   Root Cause & Impacts 

A mistake in the wiring of the communication signals between the GPS receiver and 

VLP-16 was determined to be the root cause of this issue. During installation of the 

communications lines, the technician wired transmitter-to-transmitter and receiver-to-receiver, 

rather than transmitter-to-receiver.  This mistake, coupled with a failure by the UAS Research 

Lab to conduct any operational tests that included data quality checks, led to a corruption of lidar 

data for six months of research and up to three separate research projects. In the context of the 

research presented in this thesis, these mistakes resulted in a seven month delay in delivery of 

sUAS lidar data and led to a loss of seven flights’ worth of data, or 27% of the total data 

collected. 
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