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Abstract

Statistical estimation problems of atmospheric correction techniques

for thermal infrared imagery have been studied. A revised
multiple-

view-angle atmospheric correction technique has been developed and

tested using the LOWTRAN radiative transfer model as truth. Its

average absolute temperature prediction accuracy for an independent

data set is 0.8 K for long-wave infrared imagery and 1.0 K for mid-wave

infrared imagery, when error-free data are assumed. The benefit of

robust, resistant regression estimators was studied using Monte Carlo

simulations having real-world measurement errors and data outliers.

An error propagation analysis showed that 1.0-3.3 K of rms error is

likely given reasonable data set sizes and robust estimators.
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1. INTRODUCTION AND SUMMARY

1.1 Introduction

Thermal infrared imagery from aircraft and satellites has been used

extensively in hydrologic, land use, and heat loss studies. In many of

these remote sensing applications, the quantitative assessment of surface

(and internal) temperatures is desired. In these cases, atmospheric

correction techniques must be employed.

1.2 Summary

The statistical estimation problems of atmospheric correction techniques

have been studied, and an enhanced multiple-view-angle atmospheric

correction technique has been developed and tested. Its average absolute

temperature prediction error for an independent data set is 0.8 K for

long-wave infrared (LWIR) and 1.0 K for mid-wave infrared (MWIR)

imagery acquired at night. The effect of data outliers on the estimates of

atmospheric transmittance and upwelled radiance are significant,

especially for sample sizes smaller
than 20. A positive bias of 0.24-0.80

K, relative to an object at 295 K, was found. The use of a robust and

resistant regression algorithm, Tukey's biweight, reduced the effect; the

positive bias was reduced to 0.13-0.53 K. An end-to-end error

propagation computer program was developed. Given real-world error

component values, the regression coefficients, and consequently the

atmospheric transmittance and upwelled radiance estimators, were the

most significant components, accounting for greater than 86% of the

total rms error.



2. BACKGROUND

2.1 Historical Background

The influence of the atmosphere in attenuating signals has been

recognized since 1942 when Elassen studied carbon dioxide and water

absorption band theory [Chedin et al. (1982)]. Further work, in that time

period, was done by Chapman et al. (1949), but little more was published

until the late 1960s [Haynes andWhipple (1971)].

One of the first to publish an empirical technique for determining

atmospheric correction was Saunders (1967). He used a non-scanning

radiometer, flown at a 300 m altitude, to observe a thermally stable sea

surface. He found that, at a
60

view angle, the attenuation was twice the

value at nadir. Saunders (1970) established that the influence of haze

was insignificant when using this technique. Simple extensions of his

technique were suggested by Tien (1974). Chedin et al. (1982) used a

dual-view-angle technique for the determination of sea surface

temperature from two satellites, one in geostationary orbit and the other

in polar orbit.

Lorenz (1968), in an article describing the use of radiometers to

measure the temperature of natural surfaces, stated that the most

significant sources of error were the target reflectivity, as a function of

view angle, and the intervening air layer. From an analysis of low altitude

aircraft flight experiments, he produced a set of atmospheric correction

curves based on the difference between the surface and air temperatures

at constant relative humidity and altitude. Recently, Cogan (1985 and

1988) has also developed an atmospheric correction technique based on



the air temperature at flight altitude.

Scarpace and Green (1973), and Scarpace et al. (1975), in studies of

thermal plumes in water, were among the first to use extensive
ground-

truth measurements in an atmospheric correction technique. They used

the maximum and minimum temperatures recorded by a boat-mounted

portable radiometric thermometer to calibrate a thermal imaging scanner

flown in an aircraft. For their 1975 calibration work, they used both

water temperature measurements from three-meter diameter pools of

thermally stable water located at a target site and lake measurements

routinely gathered by the power company.

Prabhakara et al. (1974) devised an atmospheric correction

technique for sea-surface temperature estimation based on a model of

the differential absorption properties ofwater vapor. Using data from 106

different geographic locations acquired by a Nimbus infrared

interferometer spectrometer, they simulated measurements to optimize

the selection of two wavelength bands. McMillan (1975) used a similar

approach, but he added the partial pressure of water to his own
water-

absorption model. Techniques using multiple spectral bands have

continued to be a subject of study [Price (1984), Singh (1984), Dalu

(1986), andWan and Dozier (1989)].

Schott and Tourin (1975) devised an atmospheric calibration

method which relied on establishing an atmospheric absorption profile,

which was then extrapolated to zero altitude. This "profile
method"

has

been employed in numerous studies, with reported accuracies of better

than 0.5 K [e.g., Schott (1979)]. Macleod (1984), building on this work,

demonstrated the applicability of a dual-view-angle technique for objects



other than just sea water [Cf. Chedin et al. (1982)]. Byrnes (1983) and

Byrnes and Schott (1986) compared the profile and dual-view-angle

techniques to the then current version of the radiative-transfer model

LOWTRAN [Kneizys et al. (1980)]. Within the past decade, multiple-view

techniques (either with respect to altitude or angle) have been developed

by Maul (1981), Price (1983), Holyer (1984), Diner and Martonchik

(1985), Steven and Rollin (1986), Wilson and Anderson (1986), and

Djavadi and Anderson (1987). These last two papers are interesting in

that they document an aerial thermographic survey, used to determine

building heat loss, where the variation in surface temperature with time

was the dominant source of error.

The following paragraphs concentrate on the multiple-view-angle

techniques. Given an airborne imaging sensor, multiple-view-angle

acquisitions are generally cheaper than multiple-altitude ones. Given a

satellite imaging sensor, multiple-view-angle acquisitions are generally

the only option. Many airborne and satellite sensor systems are designed

to provide either side-to-side or front-to-back views of the same

geographic area. A special effort will be made throughout this thesis to

characterize the effects of the error components on the statistical

parameter estimation process.

2.2 Calculation ofDirect Effective Radiance

The direct effective radiance L{H,6) onto a thermal infrared imaging

sensor at nadir distance H and view angle from nadir 6 is given by the

equation,

l{H,d)= SxA(H,6)RxdX, (1)



where SA is the spectral radiance of the source, AX(H,6) is the spectral

attenuation, and Rx is the relative spectral sensitivity of the sensor. One

of the complexities of earth remote sensing in the thermal infrared is that

multiple sources are involved. This is usually not the case in either

visible or microwave remote sensing. A model that considers an object,

the downwelling of the sky and object background, and the upwelling of

the atmospheric path as three additive thermal sources has been studied

by Schott (1979), Byrnes (1983), and Macleod (1984). It can be written as

where Ljx A is the graybody-equivalent spectral radiance of an object, Lqx

{[LTA ex(d,$) + LDA pl0,$[ tx(h,6) + Lua(h,0)) Ra dA, (2)

is the downwelled spectral radiance, Lux is the upwelled spectral

radiance, pArA is the spectral attenuation of the downwelled radiance,

Ltx Is the blackbody-equivalent spectral radiance, eA is the spectral

emissivity of an object, pA is its spectral reflectivity, is its tilt angle

from nadir, (j> is its azimuth angle, rA is the atmospheric spectral

transmittance, and K1 and A2 define the spectral bandpass of the

sensor. Equation (2) can be approximated by

L(H,6] = t( H,e) L(0,e) + Lu{H,0), (3)

where

io,e)= I [LTxex(e,<t>) + LDxPx(e,C<p)]RxC&, (4)

r
Lu[H,e)= LVx(H,e)Rxdx, (5)

Ai

and, using the
mean-value theorem for an integral,

:(h,o)
= i I Tx(H,6)dX

A2 - Ai A
(6)



Note that the mean -value theorem for an integral is valid only for

continuous functions. Consequently, the applicability of Equation (3)

holds strictly only for spectral regions of the atmosphere where neither

absortion nor emission lines exist.

The following subsections will essentially follow Schott (1989) in the

development of three special cases of Equation (3), but with more

emphasis on the statistical assumptions and error components in the

models.

2.2.1 Given Ground-truth Data

If high-precision ground-truth measurements of I objects at different

graybody-equivalent radiances are available (i.e., {L,(O,0)}, 1=1,2,..., I)

and if the measurement error e{ on each dependent variable's

observation L^H,B) is additive, then Equation (3) can be written as a

first-order linear equation

Li(H,e) = r(H,d) UO,0) + Lj(H,d) + et. (7)

Assuming the atmospheric effects are spatially and temporally consistent

over the imagery set and that both H and 6 are fixed constants, then

the minimum-variance linear unbiased estimates of t and L
u
can be

determined by a least-squares regression of {L(.(H,0)} onto {L((O,0)}.

Figure 1 shows the effect of altitude, temperature and view angle on

direct effective radiance (excluding the downwelled radiance component)

for a long-wave infrared sensor and a
midlatitude-summer atmosphere.



Figure 1: Effect of temperature and view angle on radiance at
1000'
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Figure 2 demonstrates the reasonability of the least-squares regression

solution using Equation 7 and data from four objects. Since the data

comes from computer runs of the LOWTRAN 7 model [Kneizys et al.

(1988)], there is no measurement error. Therefore, the regression is

perfect, i.e., the estimator x = r and the estimator Lu = Ly.

Figure 2: Least-squares fit to
1000'

data
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2.2.2 GivenMultiple-altitude Data

In the absence of ground truth, but with J objects at different graybody-

equivalent radiances imaged at J different altitudes (i.e., {L^Hj.ty},

i=l,2,...,J, j = l,2,...,J) and all at the same view angle 6, Equation (3)

can be written as

l(hj , e) = x(hj , o) lIo, e) + lv(h} , e) + elJt (8)

where Li\0,d) is a high-precision calculated radiance of object i at ground

level and view angle 0, etj
is the additive error on the dependent

variable's observation, Li(Hj,e). One constraint, that is often useful as a

calculation check, is

0 ^
t(hj+1,0)

s
ryHpd) <; 1 =

t(o,0) (9)

where H,< H,+J.

The profile technique (Schott and Tourin 1975) considers the case

for Equation 8 where 0=0, and assumes L.(0,0) can be estimated with

high precision as the intercept of a previous regression of (L^H.,0)} onto

{H}. The function used in the first regression is established by

comparison of the observed radiances to a series of curves predicted

using the LOWTRAN atmospheric model for a range of apparent

temperatures. Figure 3 shows an example of this first step. Although not

necessary, the availability of radiosonde and ground-truth data

substantially aids in selecting the best LOWTRAN cases to be run.

Analogous to the solution for Equation 7, estimates of t(H,0) and

Lv{Hj,0) in Equation 8 are then calculated by a least-squares regression

ofTLjf.Hj.O)} onto the estimates of {Lt(0,0)}.

8



Figure 3: Profile technique used to estimate L(0,0)
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2.2.3 Given Multiple-view-angle Data

Again in the absence of ground truth, consider the case of I objects at

different graybody-equivalent radiances, but imaged at K different view

angles (i.e., {L.{H,6k)}, i = 1,2,...,/, k = 1,2,...,K) and all at the same

altitude H. Assuming that these objects are Lambertian (i.e., L^O, 6k) =

LjfO.O)), Equation 3 can be written as

LiiH,^) = t(ha) L((0,0) + LuiH.dk) + eik (10)

where L.(0,0) is the radiance of the
Vth

object at ground level and eik is

the additive measurement error in the dependent variable's observation

LjiH.dfJ. Assuming that at one constant view angle, say 6V L,(H,0fc) is

known with high precision (i.e., ea s 0), then Equation 10 can be written

as

L1(H.0i) = T(Hf0i)Li(O.O)+Lu(H,0i). (11)

Using Equation 11 to solve for L(0,0) and substituting back into

Equation 10 gives another first-order linear equation



LlH,^ pp l{h,0x) + p0 + eik, (12)

where

pp=4^4 <i3>

t(H,0i)

and

/S0 =Lu(H,6k)-^^-Lu(H,el). (14)

rlH,!)

Assuming that the atmospheric effects are spatially and temporally

consistent, the minimum-variance linear unbiased estimates of pY and

/30 in Equation 12 can be found by a least-squares regression of

{L^H.^IontolL.tH,^)}.

Consider the case where 0, = 0 and the Bouguer-Lambert Law

models well the effective atmospheric transmittance, i.e.,

v[H,dk)
= TfH,O)sec0fc. (15)

Substituting Equation 15 into Equation 13 gives as an estimator of x(H,0)

- l/(sec0fc- l)

4H,0) = /3i . (16)

In addition, if the upwelled radiance is simplistically considered as

coming from a finite number of sources where, as the path length

increases, the effective number of sources increases by the reciprocal of

the view angle, then

Lu(h
,0k)

= Lu(H,0) sec0fc. (17)

Substituting Equations 17 and 13 into Equation 14 gives as an estimator

ofLufH.e)

*K

Lu{H,0) = ^___. (18)

sec0fc
-

pp

Schott et al. (1983) have proposed a modification to Equation 17,

for modeling L^H^), based on a layered-atmosphere model. Their

10



modified equation is

LxiH^) = LdH,0) secOk
r{H,0)secek

~

l. (19)

Using the same approach as in the previous paragraph, gives

LdH,0) = - ^
. (20)

pplsecflfc-l]

2.3 Calculation ofApparent Temperature

Using Equations 3, 16, and either 18 or 20, L(0,0) can be estimated by

L(0,0) = L(H'Q)-^H'0). (21)

t(H,0)

For a non-transparent, Lambertian object, A(0,t,0j
= 1 -

pl0,<p) = e^.

Using Equation 4, and estimates of e and LD, LT can be estimated by

p _L(0,0)-LD(l-) (22)
e

where

r
LT= LTXRxdX, (23)

Ai

r>0.

LD= j LDARAdA, (24)

Ai

and, using the
mean-value theorem for an integral,

- ^1 L
e = Ex dA. (25)

^2 - M A,

The mean-value theorem for an integral applies only if ex is a continuous

function; it is a reasonable assumption for real-world objects.

Since the sensor operates as an integrator of Planck's Law over its

spectral sensitivity range, i.e.,

11



r*2

Lt=

5r CL \
iRxdX' (26)

J/ Hi-1]
where cx

= 1.1911 x
lO"16

W m2 sr-1
and c2

= 1.4388 x
10~2

m K, a

look-up table can be made to estimate T from LT.

Summarizing what has been accomplished in Section 2, after giving

a literature review of atmospheric-correction techniques for thermal

imagery, the step-by-step equations were developed to derive the

apparent blackbody temperatures of objects from their measured direct

effective radiances at the sensor. Three cases were detailed: 1) given

ground truth, i.e., radiance measurements of the objects at zero altitude;

2) given multiple images at various altitudes and constant view angle;

and 3) given multiple images at various view angles and constant

altitude. The next section describes potential enhancements, with

particular emphasis on multiple-view-angle imagery.

12



3. APPROACH

A review of the literature on this topic suggested a number of potential

enhancements. They can be grouped as enhancements to either the

multiple-view-angle technique (Equation 15 and either Equation 17 or

19) or for statistical estimation (Equation 12). Proposed enhancements

will be discussed in Sections 3.2 and 3.3. Prior to that, however, Section

3.1 will discuss the generation of the database upon which the

enhancements were made. Finally, Section 3.4 discusses the derivation

of the error propagation equations through the entire multiple-view-angle

atmospheric correction procedure.

3.1 Simulations and LOWTRAN 7

Generation of the data for developing and testing improvements to the

multiple-view-angle technique was via the Center for Imaging Science's

user-friendly version of LOWTRAN 7 [Kneizys et al. (1988)], termed

DIRTRAN. LOWTRAN is an atmospheric radiation propagation model,

written in FORTRAN, that has been undergoing field measurement

validation and refinement for over twenty years at the Air Force

Geophysics Lab. It is a low spectral resolution band model originally

used only to calculate transmission (hence the name LOWTRAN) for a

specified path through the atmosphere. Since version 4, LOWTRAN also

calculates radiance. LOWTRAN 7 covers the spectral range from 0.2 fxm

to 20 jnn. It includes all the important physical mechanisms (except for

turbulence): molecular, aerosol, fog, rain, and cloud absorption and

scattering.

13



The data for developing the enhancements (the dependent data set)

came from simulations run for a variety of atmospheric, acquisition

geometry, blackbody temperature, and sensor spectral response

conditions. Three LOWTRAN standard atmospheres, tropical, midlatitude

summer and subartic winter, were chosen to span the range of

geographic and seasonal conditions. A total of 480 computer runs were

made. They include all combinations of four altitudes (1000 ft, 2000 ft,

4000 ft and 8000 ft) by five view angles (0, 20, 40,
60

and 80) by four

temperatures. For the tropical and midlatitude summer atmospheres, the

blackbody temperatures were 284 K, 290 K, 295 K and 315 K. For the

subartic winter atmosphere, the blackbody temperatures were 250 K,

265 K, 270 K and 280 K. Two spectral sensitivity distributions were

used, one for a long-wave infrared (LWIR) sensor and the other for a mid-

wave infrared (MWIR) sensor. They are shown in Figures 4 and 5.

Figure 4: LWIR sensor's spectral response
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Figure 5: MWIR sensor's spectral response
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The LWIR sensor is a mercury-cadmium-telluride (HgCdTe) detector

(serial number G-2370), used on the RIT aircraft. The MWIR sensor is an

indium-antimonide (InSb) photovoltaic detector, representative of one

planned for future flights. The object emissivity was fixed at 0.90 for the

LWIR cases and 0.85 for the MWIR cases.

The standard DIRTRAN run produces 14 pages of output. The code

was modified to eliminate most of the print statements. Tables Al and A2

in Appendix A summarize the dependent data set.

The data for validating the enhancements (the independent data

set) were from a similar set of LOWTRAN 7 runs (same altitudes, view

angles and temperatures), but varying either the atmospheric condition,

the object emissivity, or both the atmosphere and emissivity. Five cases

were run for both a LWIR and MWIR sensor, giving a total of 800

validation runs. Case 1 uses the LOWTRAN standard midlatitude

summer atmosphere with an object emissivity of 0.986, typical ofwater.
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Cases 2-5 use radiosonde measurements instead of the LOWTRAN

standard atmospheres: 20 June 1984 data for Case 2; 22 June 1984

data for Case 3; 6 October 1984 data for Case 4; and 24 February 1987

data for Case 5. For the LWIR runs, cases 2-5 use e = 0.90. For the MWIR

runs, cases 2 and 3 use e = 0.85, and cases 4 and 5 use e = 0.90. Tables

A3 and A4 in Appendix A summarize the independent data set.

3.2 Multiple-view-angle Technique

Both Equations 1 5 and 1 7 are simplistic models of reality, especially for

dense atmospheres and for view angles beyond 60. This is demonstrated

in Figures 6 and 7. Figure 6 shows the predicted and actual atmospheric

transmittance as a function of view angle; Figure 7 shows a similar plot

for upwelled radiance. Using the data from Tables Al and A2, a number

of alternative models were investigated; they are summarized in Tables 1

and 2.

Figure 6: Simple secant correction for atmospheric transmittance

(LWIR data, midlatftude summer, 8000 ft)
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Table 1 : Alternative models for atmospheric transmittance

Model 1-Simple secant:

T(H,0)
=
r(H,O)sec0

Model 2-Optical depth:

x(H,0) =k0 + k1
log[-log{T(H,0)sec 6]\

Model 3-Altitude and secant:

t(h,0)
=
logl)**1 (sec e)*2]

Model 4-Linear correction of secant:

x(H,o)
=
x(H,0)Ko

+ KlSecd

Model 5-Multiplicative correction of secant:

r(H,e)
= T(HI0)'fl[sec6,]

Model 6-Secant-to-a-power correction:

T(H,0)
=

Kl

(27)

(28)

(29)

(30)

(31)

(32)

17



Table 2: Alternative models for upwelled radiance

Model 1-Simple secant:

Lu(H,e) = Lu(H,0) sec 0 (33)

Model 2-Schott's model:

Lu(H,0) = Lu{H,0) sec 0
x{H,0)sec

6~ l
(34)

Model
3-Byrnes'

model:

LdH. 9) =WH.O)
3 + 2 r(H.OFc

8- 1
-

r(H.O)
(35)

4 cos 0
Model 4-Secant-to-a-power correction:

Lu(h,0) = Lu(H,0) [sec of (36)

Model 5-Linear function of atmospheric transmittance:

Lu(h,o)=k[1-x(h,0)] (37)

Model 6-Linear function ofSchott's model:

Lu(H,0) = k0 + ki [LrXH.O) sec 0 -r(H,0)sec 6~ l] (38)

Model 7-Modified Schott's model:

z(H,0J
lu[h,o)=lu{h,o) sec 0

(H,0)
(39)

The optical depth model of atmospheric transmittance, Equation

28, is based on the LOWTRAN 5 development work of Kneizys et al.

(1980). Specifically, in their Section 5.1, they showed that, except for the

very high or very low values, transmittance is a first-order linear function

of the logarithm of the equivalent optical depth. Model 3, Equation 29, is

a simplification of the optical depth model and is an attempt to lessen the

adverse effect of taking a logarithm of a logarithm. Models 4-6 (Equations

30-32) are various attempts to reduce the effect of the secant power term

in Model 1 .

Byrnes (1983) developed Equation 35 (Model 3) for L^FfS) based on

a multi-layered atmosphere that appeared to model high view angles
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better than Equations 33 and 34. He, however, did not test out his

equation. Similar to the above attempts to reduce the effect of the secant

term, Models 4-7 (Equations 36-39) were developed and analyzed.

Many of the alternative models require empirical coefficients. They

were derived via regression analyses using the well-known statistical

package, SAS [SAS Institute (1985)], which was run on a DEC VAX 8650

computer at RIT. All data analysis software was originally written in

Fortran and run on the DEC VAX system at RIT. It was subsequently

rewritten to Think C, an ANSI-conformant version of C for the Apple

Macintosh computer.

3.3 Statistical Estimation

Good parameter estimators have the qualities of being unbiased, robust

and resistant. Bias relates to the deviation of the expected value of the

estimator from the true value. Robustness relates to the sensitivity of the

estimator to the assumed distribution of errors, e.g., Gaussian.

Resistance relates to the sensitivity of the estimator to changes in a small

part of the data (termed outliers or flyers).

Graybill (1961) calls a model, where error exists in both the

independent and dependent variables, a functional relationship. He

solved two special cases. The first case is termed the controlled

independent-variable model. It is the underlying model for solving

Equation 7. when the assumption of high-precision ground-truth data

being available is relaxed. The same least-squares estimator is used, but

with larger confidence intervals. The second case exists when the ratio of

the error variances are assumed to be constant. This case applies to
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Equation 8 (for multiple-altitude data) and Equation 12 (for multiple-

view-angle data). Standard least-squares estimates, calculated for this

case, are biased. Appendix C shows the derivation for unbiased

estimators of /S0 and /Sj . The Graybill's modified least-squares regression

method was implemented as a procedural change within SAS user

statements. A sample SAS input is given in Appendix B. Using Graybill's

regression method, a re-analysis was done of selected sets of aerial

thermal sensor data from theses by Byrnes (1983) and Macleod (1984).

The 1000 ft, 2000 ft, 4000 ft and 6000 ft altitude data from Byrnes and

the Stirling and Simpson sites from Macleod were studied.

The use of least-squares regression in estimating parameters has

much historical precedence. The errors in the dependent variable are

often assumed to be independent and identically Gaussian distributed.

Fortunately, least-squares regression is fairly robust. Unfortunately, it is

not resistant; applied statisticians spend much effort in identifying and

analyzing outliers. The magnitude of this problem can be seen with

reference to regressions on
Byrnes'

4000 ft altitude data set (total sample

size of 11). Eliminating a single data point results in a 20% increase in

the estimated nadir atmospheric transmittance [x\H,0) goes from 0.75 to

0.93] and an 85% decrease in the estimated nadir upwelled radiance

\Lu[H,0) goes from 15.07 to 2.24 W m-2 sr1]- Larger sample sizes do help

to minimize this problem however, as can be seen in a regression done on

his 1000 ft altitude data set (total sample size of 34). In this case,

elimination of two data points results in a 5% increase in the nadir

atmospheric transmittance [t(H,0) changes from 0.84 to 0.88] and a 29%

decrease in the nadir upwelled radiance (L^H.O) changes from 9.54 to

6.73 Wm-Zsr-1].
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Within the past two decades, a resistant regression procedure has

been developed (Mosteller and Tukey 1977). This procedure, termed

"biweight
regression"

(shortened form of "bisquare-weight regression"), is

essentially a weighted regression done iteratively, where low weight is

given to observations having high residual values. Appendix D defines

the equations for calculating the weights and the iteration procedure.

This code was also implemented in SAS; Appendix B contains a sample

input. The same data sets from Byrnes and Macleod were also analyzed

using biweight regression.

Although trends existed in the re-analysis of the aerial sensor data,

since there was no ground truth it could not be determined if they were

going in the right direction. LOWTRAN 7 was therefore used to simulate

data for analyzing the effects of different random noise levels, statistical

estimation methods and sample sizes on the estimators /30 and /3
{

.

LOWTRAN was run to simulate 80 objects acquired using a broadband

LWIR sensor through a midlatitude summer atmosphere at 4000 ft and

view angles of
0

and 40. Object temperatures were randomly selected

from a uniform distribution with a mean equal to that of the
Byrnes'

data

set (294.5 K) and a range ofMacleod's Stirling data set (19.6 K). Object

emissivities were randomly selected from a Gaussian distribution with a

mean of 0.9 and a standard deviation of 0.005. Three levels of random

noise were added to LOWTRAN produced radiances to analyze their

effects: the first was none; the second was Gaussian noise with a mean of

0 and a standard deviation of 0.5 W m~2 sr-1

(approximately 1.5% of the

average radiance); the third was 0 mean Gaussian noise with a standard

deviation of 1.0 W
m~2 si^1 (3% noise) for 95% of the samples and 3.0 W
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nr2 sr-1 (9% noise) for the remaining 5% of the samples. Estimates of p0

and /3; were computed using ordinary least squares, Graybill's method,

Tukey's biweight method, and a combination of the Graybill and Tukey

method (using the biweight approach to de-weighting outliers given a

functional model). The effect of sample size on the estimators was

analyzed using sub-samples of 10, 20 and 40 objects.

3.4 Error Propagation

To a first approximation, the error propagated through a given

atmospheric correction technique can be estimated using the method of

Beers (1957). For each step in an atmospheric correction technique, the

contribution of the assumed independent errors on the output variable of

that step can be written as

oy =V
N r

(40)
n=l dXn

Xn

where o is the estimated standard error, Y is the output variable of the

step, Xn is the
nth

input variable, and N is the total number of input

variables in the step.

An analysis of the relative magnitudes of the error components

points to areas where increased sample size, alternate procedures, or

alternate instrumentation may be used to improve the overall precision of

an atmospheric correction technique. Appendix E gives the error

propagation equations for the multiple
-view-angle atmospheric correction

technique. Analogous to Section 3.2, this computer code was originally

written in Fortran and subsequently rewritten in C. The commented C

source code is included in Appendix B.

22



4. RESULTS

The results of the enhancements to the multiple-view-angle technique are

presented and discussed in Section 4.1. Section 4.2 gives the results of

the new statistical estimators for both re-analyses of
Byrnes'

and

Macleod's aerial sensor data sets and Monte Carlo simulations using

known input data. Section 4.3 presents the results of an error

propagation analysis for a multiple-view-angle atmospheric correction

technique.

4. 1 Multiple-view-angle Technique

The results of the model fits to the dependent data set (the LOWTRAN 7

midlatitude summer, tropical and subartic winter data) are given in

Section 4.1.1. The results of selected model fits to the independent data

sets are given in Section 4.1.2.

4.1.1 Regression Analyses on LOWTRAN 7 Data

The dependent data set was used to derive the coefficients for the

atmospheric models given in Table 1. The results of regression analyses,

which included a detailed examination of the residuals, is summarized in

Table 3. The best model is Model 6, which can be re-written as

x(H, 0) = x(H,0)
fsec< (41)

where k:= 0.61 for a winter atmosphere (very clear conditions) and LWIR

sensor, k= 0.79 for all other conditions and LWIR sensor, or k= 0.34

for all atmospheric conditions and MWIR sensor. Note that the simple

secant atmospheric model, Equation 27 in Table 1, is a special case of
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Equation 41 where k= 1.00.

Table 3: Regression analyses of atmospheric transmittance models

Model Sensor

Average
R2

I error I Max error Comment

1. Simple secant

2. Optical depth

3. Altitude and

secant

4. Linear correction

of secant

5. Multiplicative

correction of secant

6. Secant to power

LWIR 0.04

MWIR 0.11

LWIR 91.0% 0.06

MWIR 82.3% 0.09

LWIR 99.3% 0.06

MWIR 99.9% 0.01

LWIR 98.2% 0.02

MWIR 97.6% 0.09

LWIR 99.4%

MWIR 99.2%

LWIR 99.8% 0.003

MWIR 99.7% 0.002

0.18

0.37

0.17

-0.15

0.17

0.04

0.07

0.19

0.02

0.03

0.02

0.02

Poor model as t(h,a)
< t(h,9)

Poor model as residuals are

quadratic function of t\H,Q)

Fair model, but largest errors

at clearest atmospheres

Fair model, but largest errors

at clearest atmospheres

Good model, but P0 term

allows t{h,b) > r{H.0)

Best model

A similar effort for the upwelled radiance models given in Table 2 is

summarized in Table 4. Model 4 is the best model for LWIR data and

Model 7 is best for MWIR data. They can be combined into the more

general equation

Lu(H,0) =Lv(H,0) [sec 0]K' t(H,0)
K2

(42)
[t(H,0)\

'

where Kj
= 0.64 and k2

= 0 for a LWIR sensor, k1
=

k2
= 0.47 for winter

atmosphere (very clear conditions) and MWIR sensor, or kx
=

k2
= 0.34

for all other atmospheres and MWIR sensor. Note that the simple secant

upwelled radiance model, Equation 33 in Table 2, is a special case of

Equation 42 where k1
= 1.00 and k2= 0.00. Also, note that Schott's

model, Equation 34 in Table 2, is a special case of Equation 42 where kj

= k2= 1.00.
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Table 4: Regression analyses of upwelled radiance models

Ave | error | Max error

Model Sensor
Rz

[W nr2 sr1

;I [W nr2 sr"11
] Comment

1. Simple secant LWIR 58.0 Poor model as

MWIR 6.8 Ljjti.dj^LiiH.e)

2. Schott's LWIR

MWIR

-25.0

-1.9

Poor model for high 9

3.
Byrnes'

LWIR 8.2 Poor model for high 6

MWIR 5.6

4. Secant to power LWIR 99.1% 0.12 14.4 Best model for LWIR

MWIR 96.8% 0.02 0.23

5. Linear function LWIR 99.9% 0.39 2.9 Good model, but

of-t(H,6) MWIR 98.4% 0.44 1.9 residuals H

6. Linear function LWIR 85.1% 3.40 -19.2 Poor model for LWIR as

ofSchott's MWIR 99.3% 0.14 0.25 residuals 6

7. Modified Schott's LWIR 34.3% 0.83 -16.5 Best for MWIR

MWIR 99.1% 0.004 -0.06

The real worth of an atmospheric correction technique is usually

measured with respect to its temperature prediction error. Given images

at two view angles, one being at nadir, then the calculations described hi

Section 2.3 can be used for predicting the temperatures of objects. Table

5 summarizes the temperature prediction errors calculated using three

atmospheric correction methods for a subset of the dependent data set.

The first method, termed the secant method, uses the simple secant

models (Equations 27 and 33). The second method, termed the Schott

method, uses Equations 27 and 34. The third method, termed the revised

method, uses Equations 41 and 42. Analogous to the derivation of

Equation 16, the revised method gives

- l/ffsecfl]'- l)

x(H,0) = fii (43)

25



^
~ i/([sece]K- 1)

x{H,0) = px . (43)

Analogous to the derivation of Equation 20, the revised method gives

/So
Lu(H,0) = - (44)

Pi [sec
0]Ki

- pi

The dependent data subset included all four altitudes (1000 ft, 2000 ft,

4000 ft and 8000 ft), and the 20, 40, and
60

view angle data. The
80

view angle data, although necessary in the development of the revised

atmospheric correction models, would not relate to large enough object

images and was not used in the temperature prediction error statistics.

No consistent trends in temperature prediction errors were found as a

function of view angle, altitude or object temperature.

Table 5: Temperature prediction errors for dependent data set

(average absolute value [K])

LWIR MWIR

Case Secant Schott Revised Secant Schott Revised

Midlatitude summer 1.7 2.3 0.8 6.8 6.9 1.1

Subartic winter 0.5 0.4 0.4 3.9 4.2 1.6

Tropical 3.8 5.4 2.1 7.9 7.4 1.2

Overall average 2.0 2.7 1.1 6.2 6.2 1.3

4.1.2 Analysis ofValidation Data Sets

Analogous to the previous section, subsets of the five independent data

sets (described in Section 3.1) were used to validate the atmospheric

correction models and their regression-derived coefficients. Table 6

summarizes the results. Again, no consistent trends in temperature

prediction errors were found as a function of view angle, altitude or
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object temperature. In comparison to Table 5, a closer temperature

prediction errors between the three methods for the LWIR data is evident;

it is due to the offsetting biases in the secant and Schott models for

estimating t(H,0) and Lr/H.O) at the specified temperatures. This is

illustrated in Figures 8 and 9 for the data set with the largest average

error.

Table 6: Temperature prediction errors for validation data set

(average absolute value [K])

LWIR MWIR

Case Secant Schott Revised Secant Schott Revised

Midlatitude ( 6=0.986) 1.2 2.5 0.9 6.4 7.4 1.0

20 Jun 84 radiosonde 1.1 1.9 1.7 6.4 6.3 1.2

22 Jun 84 radiosonde 0.8 0.8 0.9 5.7 6.1 1.3

6 Oct 84 radiosonde 1.1 1.3 0.3 >19.9 >19.9 0.6

24 Feb 87 radiosonde 1.3 1.3 0.4 10.2 10.6 0.9

Overall average 1.1 1.6 0.8 >9.7 >10.1 1.0

Of

u

ID

E
ui

E
ra

X3

c

Pi

Figure 8: Predicted vs actual LWIR transmittance

(20 June 1984 radiosonde data,
0/60
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Figure 9: Predicted vs actual upwelled LWIR radiance
(20 June 1984 radiosonde data,

0/60
view angles)
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4.2 Statistical Estimation

Although significant time was spent in re-analyzing the data sets of

Byrnes (1983) and Macleod (1984), as stated in Section 3.3 it is unclear

whether the trends are significant because there was no ground truth.

Therefore, only two illustrative examples will be given. Using
Byrnes'

4000 ft altitude data set, a functional relationship solution gives a 4%

increase in the predicted nadir atmospheric transmittance [the estimate

of t(H, 0) changes from 0.75 to 0.78] and an 18% decrease in the

predicted nadir upwelled radiance [the estimate of LjJH^) changes from

15.07 to 12.39 Wm~2
sr-1]. Applying biweight regression to the same

data set, gives an estimated nadir atmospheric transmittance of 0.88 [a

17% increase] and an estimated nadir upwelled radiance of 5.92 W nr2

sr-1 (a 61% decrease). The estimates from both the functional and

biweight regressions are closer to the values of
Byrnes'

"independent
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agent"

(Professor John Schott) than those given by a least-squares fit to

either the original data set or a data set with removal of a single outlier.

Analysis of the regressions done by ordinary least squares,

functional model, biweight, and biweighted functional model on the

simulation data showed no significant difference in the estimates for pj

and consequently for x(H,0). The range of Pi is 0.93-0.97 [p{ = 0.93).

The estimates for p0 are significantly different, as can be seen in Table 7.

Adding random noise to the raw data decreases p0, with both the

biweight and biweighted function estimators being better for the mixed

noise case; they are therefore more robust estimators. Both the ordinary-

least-squares and functional-model estimators show a significant trend

in lower values for smaller sample sizes. The biweight and biweighted

function estimators, on the other hand, are less affected and therefore

more resistant, down to a sample size of 20. Converting these regression

coefficient errors to temperature errors gives a positive bias of 0.24-0.80

K for ordinary least squares and 0.13-0.53 K for biweight regression,

given an object at 295 K.

Table 7: po from simulation ofmultiple-view-angle imagery

(4000 ft,
0*

and
40*

views, midlatitude summer, fa = 2.22)

Biweighted

Case Least squares Functional Biweight functional

1. o= 0.5
WnT2

sr"1,

80 samples

2.18 2.17 2.17 2.17

2. o= 1.0 for 95% of

data, a = 3.0 for 5%.

80 samples

1.72 1.71 1.97 1.96

3. Case 2, 40 samples 1.80 1.78 1.98 1.96

4. Case 2, 20 samples 1.54 1.52 1.90 1.89

5. Case 2, 10 samples 1.18 1.16 0.97 0.96
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4.3 Error Propagation

Using the error propagation approach discussed in Section 3.4 and

detailed in Appendix E, the effects of various factors were studied. Table

8 lists the input data used for the analysis, their associated
root-mean -

square (rms) errors (the standard errors), and a reference.

Table 8: Error propagation input data

Source Value rms error

Film density
[d]

Sensor voltage

IV!
^

Blackbody
voltage [VI

Sensor gain

Blackbody
Temperature [K]

Downwell

radiance

[Wm-2 sr"1

]

Object emissivity

Regression slope

Regression

intercept (/?)

0.35, 0.59, 0.86, 1.09,
1.24. 1.33, 1.44, 1.52

0.0, 1.0, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0

3.733

2.434

295.15

9.92

0.90

computed

computed

0.01, 0.01, 0.005, 0.005,

0.005, 0.005, 0.005, 0.01

derived via Equation E2

equivalent to rms

sensor voltage

0.097

0.112

0.99

0.005

0. 10 x computed value

0.008 x computed value

Reference

Macleod (p. 69)

Macleod (p. 69)

Macleod (p. 69)
with correction

Byrnes (p. 103) &

Schott (2Apr90)

Byrnes (p. 142 &

p. 115)

typical values

(Schott 2Apr90)

Schott (2Apr90)

typical value for 20

samples & biweight

typical value for 20

samples & biweight

One of the factors studied was regression estimators for the revised

multiple-view-angle technique. Table 9 summarizes the results. Use of

the biweight regression estimators result in significantly smaller overall

random error than least-squares. Any improvement due to increased

sample size is probably not realizable, e.g., consider the difficulty of

identifying 80 objects of different radiance levels in two different view

angle images.
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Table 9: Total random (rms) error for multiple-view-angle technique [K]
(0*

and
40*

views, midlatitude summer, 300 K object)

Case 1000 ft 2000 ft 4000 ft 8000 ft

1. 3% noise for 95% of 2.7 3.3 4.2 5.0
data, 9% noise for 5%
of data, 20 samples,
least squares estimators

2. Case 1, 20 samples, 2.0 2.3 2.8 3.3

biweight estimators

3. Case 1, 40 samples, 1.7 1.9 2.3 2.7

biweight estimators

4. Case 1, 80 samples, 1.0 1.2 1.4 1.6

biweight estimators

Table 1 0 presents an analysis of the total random error associated with

the major error sources. Note that, in all cases, the atmospheric

transmittance and upwelled radiance estimators account for most of

random temperature error. Also, note that the dominant component

between the two changes as a function ofview angle.

Table 10: Error components for multiple-view-angle technique [%]

(4000 ft, midlatitude summer, 300 K object, 20 samples, mixed noise model)

Error component
20 40 60

%H,0) 93.4 39.8 6.4

Lu(H,0) 5.5 49.5 79.9

Emissivity 0.4 4.1 6.2

Downwell radiance 0.1 1.3 2.2

Density 0.2 1.9 1.1

Sensor gain <0.1 0.1 0.9
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

1. Using the LOWTRAN radiative transfer model as truth, a revised

multiple-view-angle atmospheric correction technique has been

developed and tested for night-time thermal infrared imaging. Its average

absolute temperature prediction accuracy for an independent data set is

0.8 K for LWIR and 1.0 K for MWIR.

2. The effect of measurement errors on the estimates of atmospheric

transmittance and upwelled radiance are significant, especially for

sample sizes smaller than 20. For the cases analyzed, a positive bias of

0.24-0.80 K, relative to an object at 295 K, was found. The use of the

robust and resistant regression algorithm, Tukey's biweight, reduced the

effect; the positive bias was reduced to 0.13-0.53 K.

3. An end-to-end error propagation computer program was developed for

the revised multiple-view-angle atmospheric correction technique.

Running it with real-world values for the error components, resulted in a

total rms error of 1.0-3.3 K. The regression coefficients, and

consequently the atmospheric transmittance and upwelled radiance

estimators, are the most significant contributors; they account for greater

than 86% of the total rms error.

5.2 Recommendations

1. The foremost recommendation is to validate this revised multiple-view-
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angle atmospheric correction technique with real aerial remote sensing

data. Ground truth is mandatory for the collections.

2. Given multiple-view-angle images of the same objects, investigate the

benefit of pooling the estimates of t(H,0) and LJH.,0) from the various

pair-wise multiple regressions.

3. If the revised multiple-view-angle atmospheric correction technique is

validated, compare it to the multiple-altitude technique. The myriad

combinations of altitudes, view angles, time delays between flights and

LOWTRAN standard atmospheres suggest that this comparison be done

on a real-world case-by-case basis rather than via simulation.

4. Investigate a
"profile"

approach using multiple-view-angle data. Given

multiple-view-angle images of the same objects, regress {L[H,0^} on the

error-free [0^ for each
ith

object. With large enough sample sizes and a

simple (first-order or second-order) linear relationship, the resultant

intercepts may be good estimates of [L^H.O)). A subsequent regression

of {LfH.f?^} on {Li{H,0)} will then estimate fi0 and pv and consequently

estimate rand Ly.
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Appendix A - LOWTRAN Data Sets

Table Al: LWIR dependent data set [W/(m*2 sr)]

1 i

;

Altitude View Angle

Object Temperature

Atmosphere Z84 K 290 K 295 K 315 K

rnidlat summer 1000 ft
0

29.011 31.614 33.905 44.207

20"

29.051 31.639 33.917 44.156

40

29.199 31.729 33.958 43.975

60

29.576 31.961 34.061 43.502

80"

31.037 32.848 34.444 41.627

2000 ft
0

29.429 31.847 33.976 43.546

20

29.487 31.881 33.990 43.467

40

29.694 32.004 34.039 43.188

60

30.216 32.313 34.161 42.472

80

32.047 33.382 34.560 39.864

4000 ft
0

29.774 31.963 33.891 42.559

20

29.844 32.001 33.901 42.442

40

30.091 32.134 33.933 42.028

60

30.688 32.451 34.005 41.000

80

32.482 33.362 34.138 37.640

8000 ft
0

29.765 31.747 33.493 41.347

20

29.830 31.773 33.485 41.187

40

30.054 31.862 33.455 40.621

60

30.564 32.049 33.357 39.250

80

31.718 32.297 32.808 35.116

tropical 1000 ft
1 0

29.798 32.289 34.482 44.344

20

29.875 32.345 34.520 44.298

40

30.149 32.544 34.653 44.135

60

30.851 33.052 34.992 43.714

80

1 33.437 34.921 36.230 42.125

2000 ft
0

30.557 32.803 34.782 43.682

20

30.664 32.879 34.831 43.609

40

31.041 33.148 35.003 43.351

! 60

31.969 33.806 35.424 42.709

80

34.951 35.910 36.756 40.575

4000 ft
0

31.181 33.121 34.831 42.524

20

31.304 33.203 34.877 42.408

40

31.734 33.490 35.037 42.002

60

32.734 34.151 35.400 41.028

80

35.235 35.746 36.197 38.239

8000 ft
0

31.257 32.907 34.361 40.910

20

31.369 32.970 34.382 40.738

40

31.746 33.180 34.445 40.144

60

32.534 33.597 34.535 38.765

80

33.735 33.988 34.212 35.227

. -

250 K 265 K 270 K 280 K

artic winter 1000 ft 1
o

14.718 19.763 21.671 25.838

i
20

14.724 19.762 21.667 25.827

! 40

14.745 19.756 21.651 25.789

60

14.795 19.738 21.607 25.688

80

14.972 19.643 21.410 25.268

2000 ft
0

14.801 19.750 21.621 25.708

20

14.809 19.747 21.614 25.692

40

14.840 19.738 21.590 25.635

60 14.914 19.709 21.523 25.484

80

15.166 19.558 21.219 24.846

4000 ft
0

14.911 19.728 21.549 25.527

20

14.924 19.724 21.540 25.504

40

14.968 19.710 21.503 25.420

60

15.071 19.666 21.403 25.198

80

15.412 19.430 20.949 24.267

8000 ft
0

14.979 19.642 21.406 25.257

20

14.993 19.635 21.390 25.224

40

15.043 19.607 21.333 25.102

60

15.159 19.526 21.178 24.785

80 1 15.524 19.132 20.497 23.476
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Table A2: MWIR dependent data set [W/(mA2 sr)]

Atmosphere Altitude View Anqie

Object Temperature

284 K 290 K 295 K 315 K

midlat summer 1000 ft
0

1.725 1.896 2.066 3.058
20

1.732 1.900 2.067 3.045
40

1.753 1.913 2.071 3.001
60

1.798 1.939 2.079 2.905
80

1.908 2.003 2.098 2.662

2000 ft
0

1.762 1.907 2.050 2.893
20

1.769 1.910 2.051 2.879
40

1.789 1.922 2.053 2.831
60

1.831 1.945 2.059 2.731
80

1.931 1.999 2.069 2.483

4000 ft
0

1.705 1.82S 1.944 2.649
20

1.709 1.826 1.943 2.633
40

1.723 1.831 1.939 2.578
60

1.751 1.840 1.930 2.463
80

1.809 1.856 1.904 2.192

8000 ft
0

1.548 1.649 1.749 2.345
20

1.550 1.648 1.745 2.326
40

1.554 1.643 1.732 2.262
60

1.561 1.632 1.703 2.130
80

1.565 1.597 1.630 1.828

tropical 1000 ft
0

1.969 2.128 2.287 3.217
20

1.978 2.135 2.291 3.207
40

2.011 2.159 2.306 3.173
60

2.078 2.208 2.337 3.101
80

2.243 2.328 2.412 2.919

2000 ft
0

2.020 2.153 2.285 3.064
20

2.029 2.159 2.289 3.053
40

2.059 2.181 2.301 3.016
60

2.122 2.225 2.328 2.938
80

2.268 2.328 2.388 2.749

4000 ft
0

1.914 2.022 2.130 2.770
20

1.920 2.026 2.131 2.756
40

1.940 2.037 2.134 2.709
60

1.980 2.059 2.138 2.611
80

2.061 2.100 2.140 2.382

8000 ft
0

1.712 1.800 1.889 2.417
20

1.714 1.800 1.886 2.400
40

1.723 1.800 1.878 2.342
60

1.737 1.798 1.859 2.225
80

1.753 1.779 1.804 1.962

250 K 265 K 270 K 280 K

subartic winter 1000 ft
0

0.389 0.622 0.734 1.023
20

0.391 0.622 0.732 1.019
40

0.395 0.619 0.726 1.005
60

0.406 0.614 0.713 0.972
80

0.436 0.597 0.674 0.876

2000 ft
0

0.406 0.615 0.715 0.976
20

0.407 0.614 0.713 0.971
40

0.413 0.611 0.706 0.954
60

0.425 0.605 0.691 0.915
80

0.458 0.586 0.647 0.809

4000 ft
0

0.423 0.606 0.693 0.922
20

0.425 0.605 0.691 0.916
40

0.431 0.601 0.683 0.897
60

0.444 0.594 0.666 0.855
80

0.477 0.573 0.620 0.743

8000 ft
0

0.412 0.570 0.647 0.846
20

0.414 0.569 0.644 0.839
40

0.418 0.563 0.633 0.817
60

0.427 0.551 0.611 0.768
80

0.447 0.518 0.553 0.644
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Table A3: LWIR independent data set [W/(mA2 sr)]

Case Altitude View Anqle

Object Temperature
1

284 K 290 K 295 K 315 K
#1 -midlatitude 1000 ft 0

31.256 34.098 36.600 47.839
summer

emissivity=0.986

20

40

31.282

31.377

34.107

34.140

36.594

36.573

47.767

47.506
60

31.619 34.224 36.518 46.828
80

32.550 34.531 36.276 44.130
2000 ft 0

31.504 34.145 36.470 46.919
20

31.540 34.156 36.458 46.808
40

31.670 34.194 36.417 46.410
60

31.995 34.288 36.308 45.390
80

33.132 34.593 35.882 41.687

4000 ft
0

31.643 34.035 36.142 45.614
20

31.684 34.041 36.117 45.451
40

31.827 34.060 36.028 44.875
60

32.169 34.099 35.798 43.448
80

33.170 34.134 34.984 38.819

8000 ft
0

31.453 33.620 35.530 44.116
20

31.483 33.608 35.480 43.900
40

31.584 33.562 35.304 43.142
60

31.803 33.428 34.861 41.309
80

32.153 32.787 33.347 35.876

#2-radiosonde 1000 ft
0

28.564 31.217 33.552 44.036

data 20

28.602 31.244 33.569 44.009 j
20 June 1984 40

28.734 31.337 33.628 43.916 i
60

29.077 31.578 33.780 43.668 i
80

30.441 32.527 34.365 42.625 |
2000 ft

0

28.894 31.414 33.630 43.582
20

28.948 31.449 33.650 43.536 1
40

29.131 31.571 33.720 43.370 j
60

29.594 31.879 33.892 42.935 j
80

31.318 33.005 34.491 41.179

4000 ft
0

29.144 31.457 33.493 42.642
20

29.204 31.491 33.505 42.555
40

29.417 31.613 33.548 42.243
60

29.934 31.904 33.638 41.440
80

31.575 32.749 33.784 38.450

8000 ft
0

29.107 31.262 33.161 41.696
20

29.162 31.287 33.158 41.570 !
40

29.355 31.369 33.143 41.121 |
60

29.802 31.543 33.078 39.985 |
80

30.923 31.791 32.557 36.015 !

#3-radiosonde 1000 ft
0

28.514 31.249 33.657 44.480 1

data
20

28.532 31.257 33.657 44.443 !

22 June 1984
40

28.597 31.287 33.657 44.307
60

28.763 31.365 33.657 43.958
80

29.432 31.678 33.657 42.558

2000 ft
0

28.780 31.390 33.689 44.022

20

28.809 31.404 33.690 43.966

40

28.912 31.455 33.695 43.763

60

29.177 31.585 33.706 43.245
80

30.200 32.088 33.751 41.239

4000 ft
0

28.991 31.449 33.613 43.345
20

29.028 31.465 33.611 43.263
40

29.160 31.523 33.605 42.966
60

29.492 31.670 33.588 42.217

80

30.690 32.190 33.512 39.469

8000 ft
0

28.792 31.123 33.176 42.409
20

28.821 31.126 33.157 42.292

40

28.921 31.138 33.090 41.873
60

29.168 31.163 32.921 40.831
80

29.944 31.172 32.256 37.141
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Table A3 (con't): LWIR independent data set [W/(mA2 sr)]

Case Altitude View Anqle

Object Temperature

284 K 290 K 295 K 315 K

#4-radiosonde 1000 ft
0

27.697 30.462 32.895 43.817

data 20

27.697 30.456 32.884 43.784

6 October 1 984
40

27.697 30.435 32.845 43.665
60

27.692 30.378 32.741 43.354
80

27.642 30.112 32.286 42.052

2000 ft
0

27.654 30.347 32.718 43.361
20

27.652 30.337 32.699 43.309
40

27.644 30.297 32.633 43.120
60

27.616 30.189 32.454 42.627
80

27.453 29.701 31.681 40.577

4000 ft
0

27.627 30.275 32.606 43.073
20

27.623 30.260 32.582 43.009
40

27.606 30.206 32.495 42.777
60

27.551 30.056 32.262 42.172
80

27.235 29.358 31.228 39.632

8000 ft
0

27.533 30.121 32.399 42.633
20

27.525 30.100 32.367 42.553
40

27.494 30.025 32.253 42.263
60

27.403 29.820 31.948 41.511
80

26.935 28.899 30.630 38.408

#5-radiosonde 1000 ft
0

27.563 30.370 32.841 43.931

data
20

27.558 30.361 32.828 43.903

24 February 1 987
40

27.539 30.328 32.783 43.804
60

27.485 30.238 32.662 43.542

80

27.234 29.839 32.132 42.431

2000 ft
0

27.481 30.242 32.672 43.583
20

27.472 30.227 32.652 43-541

40

27.439 30.174 32.581 43.391

60

27.349 30.032 32.393 42.996

80

26.940 29.414 31.592 41.376

4000 ft
0

27.348 30.060 32.447 43.167

20

27.334 30.038 32.418 43.108
40

27.280 29.957 32.313 42.896

60

27.133 29.740 32.036 42.347

80

26.458 28.784 30.832 40.034

8000 ft
0

27.181 29.843 32.187 42.714

20

27.160 29.813 32.148 42.638

40

27.083 29.703 32.009 42.369

60

26.876 29.410 31.642 41.669

80

25.956 28.154 30.089 38.788
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Table A4: MWIR independent data set [W/(mA2 sr)]

Case Altitude View Anqle

Object Temperature

284 K 290 K 295 K 315 K

#1 -midlatitude 1000 ft
0

1.830 2.029 2.225 3.377

summer
20

1.835 2.030 2.224 3.359

emissivity=0.986
40

1.851 2.036 2.220 3.298
60

1.884 2.047 2.210 3.168
80

1.965 2.075 2.185 2.840

2000 ft
0

1.850 2.018 2.184 3.162
20

1.855 2.019 2.182 3.143
40

1.869 2.023 2.176 3.079
60

1.900 2.032 2.164 2.943
80

1.972 2.052 2.132 2.612

4000 ft
0

1.777 1.916 2.055 2.873
20

1.780 1.916 2.051 2.851
40

1.788 1.914 2.039 2.780
60

1.805 1.909 2.012 2.631
80

1.837 1.892 1.948 2.282

8000 ft
0

1.609 1.725 1.842 2.533
20

1.608 1.722 1.835 2.508
40

1.607 1.710 1.814 2.428
60

1.603 1.686 1.768 2.263
80

1.584 1.622 1.659 1.890

#2-radiosonde 1000 ft
0

1.830 2.014 2.197 3.263

data
20

1.838 2.020 2.200 3.253

20 June 1984
40

1.865 2.039 2.211 3.220
60

1.921 2.078 2.234 3.148
80

2.060 2.174 2.288 2.961

2000 ft
0

1.815 1.974 2.132 3.060
20

1.821 1.978 2.134 3.048
40

1.843 1.992 2.139 3.008
60

1.888 2.020 2.150 2.922

80

1.999 2.086 2.174 2.698

4000 ft
0

1.683 1.819 1.953 2.746

20

1.687 1.820 1.952 2.730

40

1.700 1.824 1.948 2.679
60

1.725 1.832 1.938 2.570

80

1.783 1.846 1.909 2.290

8000 ft
0

1.543 1.663 1.782 2.489
20

1.544 1.662 1.779 2.471

40

1.549 1.658 1.767 2.410

60

1.559 1.650 1.741 2.282

80

1.573 1.621 1.669 1.959

#3-radiosonde 1000 ft
0

1.554 1.746 1.937 3.046

data
20

1.558 1.748 1.936 3.032

22 June 1984
40

1.571 1.753 1.933 2.985

60

1.599 1.763 1.926 2.884

80

1.666 1.787 1.908 2.622

2000 ft
0

1.611 1.777 1.941 2.906

20

1.615 1.778 1.940 2.891

40

1.629 1.784 1.938 2.843

60

1.658 1.795 1.932 2.739

80

1.729 1.822 1.915 2.471

4000 ft
0

1.594 1.737 1.879 2.713

20

1.597 1.737 1.877 2.697

40

1.608 1.740 1.871 2.644

60

1.631 1.745 1.858 2.531

80

1.683 1.753 1.822 2.238

8000 ft
0

1.379 1.505 1.630 2.371

20

1.378 1.501 1.624 2.350

40

1.376 1.491 1.605 2.283

60

1.371 1.468 1.564 2.138
80

1.349 1.401 1.454 1.771
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Table A4 (con't): MWIR independent data set [W/(mA2 sr)

Case Altitude View Anqfe

Object Temperature

284 K 290 K 295 K 315 K

#4-radiosonde

data

6 October 1 984

1000 ft
0

20

40

60

80

1.282

1.280

1.271

1.250

1.189

1.535

1.531

1.515

1.478

1.371

1.784

1.778

1.755

1.704

1.551

3.225

3.208

3.147

3.009

2.601

2000 ft
0

20

40

60

80

1.237

1.233

1.222

1.196

1.122

1.469

1.463

1.443

1.399

1.276

1.698

1.689

1.662

1.600

1.429

3.024

3.002

2.931

2.770

2.323

4000 ft
0

1.175 1.392 1.605 2.845
20

40

1.171

1.155

1.384

1.360

1.595

1.563

2.821

2.740
60

1.121 1.306 1.490 2.560
80

1.021 1.152 1.282 2.049

8000 ft
0

1.105 1.306 1.505 2.662
20

1.099 1.297 1.494 2.635
40

60

1.079

1.034

1.268

1.202

1.455

1.369

2.544

2.341
80

0.907 1.018 1.128 1.776

#5-radiosonde 1000 ft
0

1.368 1.597 1.822 3.132

data

24 February 1987

20

40

60

1.368

1.365

1.359

1.594

1.583

1.560

1.817

1.798

1.758

3.114

3.051

2.915
80

1.342 1.496 1.649 2.548

2000 ft
0

1.317 1.520 1.721 2.893
20

1.315 1.516 1.714 2.871

40

1.310 1.501 1.691 2.800
60

1.296 1.470 1.641 2.647
80

1.259 1.384 1.507 2.239

4000 ft
0

20

1.311

1.309

1.503

1.499

1.694

1.686

2.805

2.783
40

1.303 1.483 1.662 2.708
60

1.289 1.450 1.610 2.546

80

1.249 1.357 1.466 2.107

8000 ft
0

20

1.245

1.242

1.423

1.417

1.599

1.591

2.629

2.605

40

60

80

1.232

1.209

1.144

1.397

1.354

1.234

1.561

1.498

1.324

2.522

2.342

1.857
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Appendix B - Annotated Computer Program

*
Calculates temperature prediction errors for a nadir image using

*

mu*tiple-view-angle atmospheric correction technique.
* Written by Robert Mericsko.
*

#include <stdio.h>

#include <math.h>

main() {
FILE *in;
FILE *radTempLUT;
FILE *radlnput;
FILE *out;

char caseName[20] ;

char radName[20] ;

char LUTname[20];
char outputName[20] ;

float TLtable[40][2];

/*** CASE DATA ***/

float voltage[8] ;

float density[8] ;

float se_density[8] ;

float emiss, se_emiss;

float winterFlag;

float IRflag;
float betal_tol

, beta0.

float gain, se_gain;

float voltageBB;

float TBB, se_TBB;

float Ld, se_Ld;

// INPUT CASE FILE

// RADIANCE-TO-TEMPERATURE LOOK-UP TABLE

// INPUT RADIANCE FILE (AT IMAGE PLANE)
// OUTPUT CASE FILE

// INPUT CASE FILENAME

// INPUT RADIANCE FILENAME

// RADIANCE-TO-TEMPERATURE LOOK-UP TABLE NAME

// OUTPUT CASE FILENAME

// TEMPERATURE-TO-RADIANCE LOOK-UP TABLE VALUES

// SENSOR'S VOLTAGE CALIBRATION (TO DENSITY) VALUES

// SENSOR'S DENSITY CALIBRATION (TO VOLTAGE) VALUES

// STANDARD ERROR (RMS ERROR) OF DENSITY VALUES

// EMISSIVITY AND ITS STANDARD ERROR

// FLAG FOR WINTER (VERY CLEAR) ATMOSPHERE (0=NO, 1-YES)
// FLAG FOR INRARED BAND (0=MWIR, 1-LWIR)

.tol;
// PROPORTIONAL ERRORS FOR REGRESSION ESTIMATORS

// SENSOR'S GAIN AND ITS STANDARD ERROR

// CALIBRATION BLACKBODY 'S VOLTAGE

// CALIBRATION BLACKBODY 'S TEMPERATURE AND STANDARD ERROR

// DOWNWELL RADIANCE AND ITS STANDARD ERROR

/*** RADIANCE FILE DATA ***/

float height, view; // SENSOR'S ALTITUDE AND VIEW ANGLE

float T[2]; // BLACKBODY TEMPERATURES OF 2 OBJECTS

float Lh0[2], LhTheta[2]; // RADIANCES AT SENSOR OF 2 OBJECTS

// (NADIR AND OFF-NADIR VIEWS)

/*** OUTPUT VARIABLES ***/

float Tout, se.Tout; // APPARENT OBJECT BLACKBODY TEMPERATURE AND ITS STANDARD

// ERROR ASSOCIATED WITH A SENSOR VOLTAGE CALIBRATION VALUE

float trans_cont; // PERCENTAGE OF TEMPERATURE ERROR ASSOCIATED WITH ATMOSPHERIC

// TRANSMITTANCE ESTIMATION

float Lu_cont; // SAME FOR UPWELLED RADIANCE ESTIMATION

float emiss_cont; // SAME FOR OBJECT EMISSIVITY STANDARD ERROR

float Ld_cont; // SAME FOR DOWNWELLED RADIANCE STANDARD ERROR

float D_cont; // SAME FOR DENSITY STANDARD ERROR

float G_cont; // SAME FOR SENSOR GAIN STANDARD ERROR

float Tbb_cont; // SAME FOR CALIBRATION BLACKBODY TEMPERATURE STANDARD ERROR

/*** ATMOSPHERIC CORRECTION MODEL COEFFICIENTS ***/

float kappa, kappal, kappa2;

/*** COUNTER VARIABLES ***/
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int i=0; // TEMPERATURE INDEX
mt m; // BREAKPOINTS IN CASE VOLTAGE AND DENSITY CASE DATA

/***

INTERMEDIATE VARIABLES ***/
int j=0, k, dummy;
float beta0, betal, D_term, emiss_term, gamma, G_term, L0, L00[2], L00est,

L0_cont, L0-term, Ld_term, Lsensor[8], Lsensor.cont, Lsensor_term,
Ll, Lt, LuH0, LuH0est, Lu_term, mess, p, se_beta0, se_betal, secView,
se_L0 se_Lsensor, se_LT, se_LuH0est, se_theta, se_transH0est, se_Tsensor,

se_voltage, se_voltageBB, sumCos=0, sumRevl=0, sumRev2=0, sumSchott=0,
sumX, sumX2, sumXY, sumY, Tbb_term, temp, tempEst, tError[4], Tsensor[8],
transH0, transH0est, trans_term, X, Vbb_term;

/***
ASSIGN FILENAMES ***/

printf("Enter input case filename (e.q., :lwir:caselV "V

scanf("%s",caseName);
if ( (in = fopen(caseName, "r") ) == NULL )

printf("\nERR0R Cannot open the designated file\n");

printf("Enter input radiance filename (e.g., : Iwirrmidlat) : ");
scanf

("3bs"

,radName);

if ( (radlnput = fopen(radName, "r") ) == NULL )
printf("\nERR0R - Cannot open the designated file\n");

printf("Enter filename for radiance-to-temperature look-up table");.
printf("\n (e.g., : Iwir: radTemp): ");
scanf("%s",LUTname);

if ( (radTempLUT = fopen(LUTname, "r") ) == NULL )
printf("\nERR0R - Cannot open the designated file\n");

printf("Enter output filename (e.g., :lwir:casel_out): ");
scanf

("%s"

, outputName) ;

out = fopen(outputName, "w");

/*** READ INPUT CASE DATA ***/

fscanf( in, "%f%f%f%f%f%f^f%f
"

, &voltage[0] ,&voltage[l] ,&voltage[2] ,

cWoltage[3] ,&voltage[4] ,&voltage[5] ,&voltage[6] ,&voltage[7]) ;

fscanf( in, "%f%f%f%f%f%f%f%f
"

, &density[0] ,&density[l] ,&density[2] ,

&density[3] ,&density[4] ,&density[5] ,&density[6] ,&density[7]) ;

fscanf( in, "%f%f%f%f%ff%f%f", cise.densityTO ,&se_density[l] ,&se_density[2] ,

&se_density[3] ,&se_density[4] ,&se_density[5] ,&se_density[6] ,&se_density[7]) ;

fscanf( in, "%f%f%f&f", &emiss, &se_emiss, &winterFlag, &IRflag);
fscanf( in, "%f%f", &beta0_tol

, &betal_tol);

fscanf( in, "%f%f", &gain, &se_gain);
fscanf( in, "%f%f%f", &voltageBB, 8JBB, &se_TBB);

fscanf( in, "%f%f", &Ld, &se_Ld);

/*** READ IN RADIANCE-TO-TEMPERATURE TABLE ***/

for (j=0; j<40; j++) {

fscanf( radTempLUT, "%f
%d"

, &TLtable[j] [0] , &dummy );

TLtable[j][l] = dummy;

}

/*** SET ATMOSPHERIC-CORRECTION MODEL CONSTANTS ***/

if ( IRflag
== 0 ) { // MWIR DATA

kappa = 0.34;

if ( winterFlag
== 0 ) kappal = kappa2 = 0.34;

if ( winterFlag
== 1 ) kappal = kappa2 = 0.47;

if ( IRflag
== 1 ) { // LWIR DATA

kappal = 0.64;
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kappa2 = 0;
if ( winterFlag == 0 ) kappa = 0.79;
if ( winterFlag == 1 ) kappa = 0.61;

/***
REPEAT FOR EACH ALTITUDE'S DATA SET ***/

do {
/***

READ IN NADIR DATA ***/
for (i=0; i<2; i++) {

/***ntCnwand,Ixnr-PUt;
"%f%f"> &height, &view, &T[i] , &Lh0[i]);/**

COMPUTE L(0,0) FOR TWO TEMPERATURES SPECIFIED IN RADIANCE FILE***/
for (1=0; j<40; j++) {

if (T[i] == TLtable[j][l]) {
L00[i] = TLtable[j][0]

*

emiss;

break;
}

}
}

/***
CALCULATE TRUE NADIR TRANSMITTANCE AND UPWELLED RADIANCE ***/

sumX = sumX2 = sumY = sumXY = 0;
for (i=0; i<2; i++) {

sumX = sumX + L00[i];
sumX2 = sumX2 + L00[i]

*

L00[i];
sumY = sumY + Lh0[i];
sumXY = sumXY + L00[i]

*

Lh0[i];
}

transH0 = (sumY/2 *
sumX -

sumXY) / (sumX/2 *
sumX sumX2);

LuH0 = (sumXY -

sumY/2*sumX) / (sumX sumX2/(sumX/2)) + sumY/2;

/*** REPEAT FOR EACH VIEW ANGLE'S DATA SET ***/

do {
sumX = sumX2 = sumY = sumXY = 0;
for (i=0; i<2; i+O {

fscanf(radlnput,
"%f%f%f%f"

, &height, &view, &temp, &LhTheta[i]);
sumX = sumX + Lh0[il;
sumX2 = sumX2 + Lh0[i]

*

Lh0[i];
sumY = sumY + LhTheta[i];
sumXY = sumXY + Lh0[i]

*

LhTheta[i];

}
/*** CALCULATE SLOPE AND INTERCEPT FOR MULTI-VIEW CORRECTION ***/

betal = (sumY/2 *
sumX -

sumXY) / (sumX/2 *
sumX -

sumX2);

beta0 = (sumXY -

sumY/2*sumX) / (sumX -

sumXZ/(sumX/2)) + sumY/2;

fprintf
(out,"

%g %g\n", height, view);

/*** CONVERT se_betal AND se_beta0 FROM RELATIVE TO ABSOLUTE VALUES ***/

se_betal = betal_tol
*

betal;
se_beta0 = beta0_tol *

beta0;

/*** CALCULATE RMS ERRORS FOR 8 TEMPERATURES ASSOCIATED

WITH THE 8 SENSOR VOLTAGES. ***/

for (m=0; m<8; m++) {

/***
CONVERT VOLTAGE TO T(H,VIEW) ***/

Tsensor[m] = (voltage[m] voltageBB)
*
gain + TBB;

/***
COMPUTE RMS VOLTAGE COMPONENT ***/

/***
CHECK IF BEYOND TABLE; IF SO, USE PREVIOUS GAMMA ***/

if Cm < 7)
gamma = (voltage[m+l] voltage[m])/ (density[m+l] density[m]);

se_voltage = gamma
*

se_density[m] ;
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/It**

C0MPUTE RMS TEMPERATURE-AT-SENSOR COMPONENT ***/
/***

SET RMS COMPONENT FOR BLACKBODY VOLTAGE = RMS FOR VOLTAGE ***/
se_voltageBB =

se_voltage;
D term = pow((gain *

se_voltage), 2.0);
Vbb_term = pow((gain *

se_voltageBB) , 2.0);
G term =

pow(((voltage[m] -

voltageBB)
*

se.gain), 2.0);
Tbb_term =

pow(se_TBB, 2.0);
se_Tsensor =

sqrt( D_term +'vbb_term + G_term + Tbb.term );

/III

C0MPUTE RMS RADIANCE-AT-SENSOR COMPONENT ***/
/***

USE LOOK-UP-TABLE ***/
for (i=0; i<40; i++) {

if ((TLtable[i][l] <= Tsensor[m]) && (Tsensor[m] < TLtable[i+l][l])) {
Lsensor[m] = TLtable[i][0] + (Tsensor[m] TLtable[i][l])

(TLtable[i+l][0] TLtable[i][0]) ;
se_Lsensor = (TLtable[i+l] [0] -

TLtable[i][0])
*

se_Tsensor;
break;
}

}

/***
COMPUTE RMS RADIANCE-AT-OBJECT COMPONENT ***/

/***

FIRST, COMPUTE RMS COMPONENT FOR TRANSMITTANCE ESTIMATOR ***/
secVxew = 1.0 / cos( view / 57.29578 );
p = 1.0 / ( pow(secView, kappa) 1.0);
se_transH0est = sqrt( pow( (p

*

pow(betal, (p-1.0))
*
se_betal ), 2.0) +

pow( (kappa *
p

*

p
*

pow(betal, p)
*

log(betal)
*

pow(secView, kappa)
*
tan(view/57. 29578)

*

se_theta), 2.0));

/***

NEXT, COMPUTE RMS COMPONENT FOR Lu ESTIMATOR ***/
mess = pow(betal, kappa2)

*

pow(secView, kappal);
se_LuH0est = sqrt( pow((se_beta0/(mess betal)), 2.0)

+ pow(((beta0*(mess-1.0)*se_betal)/pow((mess-betal),2.0)),2.0)
+ pow(((beta0*kappal*mess*tan(view/57. 29578)*se_theta)/

pow((mess-betal),2.0)),2.0) );

/***
THEN, COMPUTE ESTIMATORS ***/

transH0est = pow(betal, 1.0/(pow(secView, kappa) 1-0));
LuH0est = beta0 / (pow(betal,kappa2)*pow(secView, kappal) betal);

/***

FINALLY, COMBINE THE SUB-COMPONENTS ***/

Lsensor_term = pow((se_Lsensor/transH0est), 2.0);
Lu_term = pow((se_LuH0est/transH0est), 2.0);
trans_term = pow(((LuH0est-Lsensor[m])/(transH0est*transH0est)*se_transH0e

se_L0 = sqrt( Lsensor_term + Lu_term + trans_term );

/*** COMPUTE RMS BLACKBODY-EQUIVALENT COMPONENT ***/

L0 = (Lsensor[m] - LuH0est) / transH0est;
LT= (L0 - (1.0 emiss)

*
Ld) / emiss;

L0_term = pow((se_L0 / emiss), 2.0);
Ld_term = pow((1.0 se_Ld/emiss), 2.0);
emiss_term = pow(((Ld L0)/(emiss*emiss)*se_emiss), 2.0);
se_LT = sqrt(L0_term + Ld_term + emiss_term);

/***
COMPUTE RMS APPARENT OBJECT TEMPERATURE COMPONENT ***/

for (i=0; i<40; i++) {
if ((TLtable[i][0: <= LT) && (LT < TLtable[i+l] [0])) {

Tout = TLtable[i][l] + (LT TLtable[i][0])
/ (TLtable[i+l][0] - TLtable[i][0]) ;

se_Tout = se_LT / (TLtable[i+l] [0] TLtable[i][0]);
break;
}

43



ErrProp Page 5

Sunday, juiy 12> 1992 9:42 PM

}
/*** COMPUTE RMS ERROR CONTRIBUTIONS ***/

L0_cont = L0_term / Cse_LT *

se_LT);

Lsensor_cont = Lsensor_term / (se_L0 *
se_L0)

*
L0_cont;

D_cont = D_term / (se_Tsensor *
se_Tsensor)

* Lsensor_cont;

G_cont = G_term / (se_Tsensor *
se_Tsensor)

* Lsensor_cont;

Tbb_cont = Tbb_term / (se_Tsensor *
se_Tsensor)

* Lsensor_cont;

trans_cont = trans_term / (se_L0 *

se_L0)
*

L0_cont;
Lu_cont = Lu_term / (se_L0 *

se_L0)
*

L0_cont;
emiss_cont = emiss_term / (se_LT *

se_LT);

Ld_cont = Ld_term / (se_LT *
se_LT);

fprintf(out,"S&4.0f %6.1f %6,lf %6.1f %6.1f %6.1f %6.1f %6.1f %6.1f\n",

Tout
, se_Tout , trans_cont*100 , Lu_cont*100, emiss_cont*100 ,

Ld_cont*100
,
D_cont*100

,
G_cont*100 ,Tbb_cont*100) ;

} // END OF TEMPERATURE LOOP

} while ( view < 60 );

} while ( height < 8000 );

fclose( in );

fclose( radTempLUT );

fcloseC radlnput );

fcloseC out );

}
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Appendix C

Derivation ofUnbiased Estimators of the Parameters

of a Functional Relationship

Given the set of independent and dependent observations {x{,y{},

i=l>2 N, having measurement errors {alva2, then both Equations 8

and 12 can be written

yi = Pi {xi + au)+ p0 + a2l (CI)

where y. is LfH^O) in Equation 8 or LfH,0k) in Equation 12, p} is

x(H.,0) in Equation 8 or jSj in Equation 12, po is LJH^O) in Equation 8

or p0 in Equation 12, and xt+ an is Lt(O,0) in Equation 8 or LfH,0}) in

Equation 12. Assuming that the measurement errors are independent,

and distributed as bivariate Gaussian random variables with zero means

and equal variances o%, then the likelihood function F can be written

F =
[2xo%\-N

exp{-- | [al + ag]\
\2oai=l j

=
[2xo*\-N

expl^-t I [ Xi - X(f + | [ yt - p0 -

PiXtf ] (C2)

where a}i= x-X., X{ is the
fth

true value of the independent variable,

and a2i=
yf /80 jSjX{. The maximum-likelihood estimators p0 and Pi

of the parameters p0 and /3, are found by taking partial derivatives of

the logarithm of the likelihood function and setting them equal to zero.

Essentially following the derivation ofGraybill (1961)

d]nF=o-2f[yi-p0-piXi] = 0, (C3)

BPo i=l

d\nF
N

~a2l bi
~ Po~ PlXi]Xi = 0, (C4)

dPi i=i
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and

dlnF

dXt
aa2i[yi

~ Po~
PiX]pi + [xt-Xi]} = 0 V i=l,2,...,N. (C5)

Multiplying Equation C3 by -*/L, gives
N

6
N

AT

N
(C6)

i=l

where
y = Z "j\r" Multiplying Equation C5 by og , summing over all i, and

rearranging, gives

N

ft> +*,-
N

^1=^I[^-XJ.
N
i=i

Substituting Equation C6 into C7 gives

N

^ [xt-Xj = 0.

(C7)

(C8)
t=i

Substituting Equation C8 back into C7 gives the intercept estimator

Po=y-PiX. (C9)

Solving Equation C5 forX
ives

Xi=Xi+piyi-p0Pi

(C1()J

1 +i?r

Solving Equation C4 for px gives

Pi

N

I
i=l

Z [yi - ft]*

N
(Cll)

I A?

Substituting Equation C9 into CIO, and substituting both equations

into Cll, multiplying Cll by -1 ,
and simplifying gives

Pi

N

Z {yt-y)(xi-x)
-i=l

+Pl

N N

(xt-xf-Z (yt-yf
Li=l i=l

JV

-I (yt-y)(xi-x) = o. (C12)

_ i=l

Using the quadratic formula, the solution to Equation C12 is the slope
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estimator

where

Pi
=1u2

+ 1 + U,

w JV

Ilyt-yf-Iixi-xf
u=^ i=1

N

N

ly?
(=1 i

2^[x

(=1
N

1 x? + i

i
-

xjiji

'

N

I*.
J=l

-y]

"

AT "|2

j=l J

2

"

N

Z ** y^
-

N

(C13)

(C14)

and the sign of the first term is chosen which maximizes the likelihood

function.
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APPENDIX D

Biweight Regression Analysis

Given a first-order linear regression model

yi = P\xi + p0 + et, (DI)

where yt is the
ith

dependent variable observation, xi is the
ith

independent variable value, et is the
Vth

error component, and px and p0

are the unknown parameters. The biweight regression estimators

(Mosteller and Tukey 1977) of p} and p0 at the
mth iteration are given

ty

and

where

N N N N

J wlm)yij w^Xi-J w^Y w^x^i

"1 r w i2 N N

- Z
wim)

Z wim)x?
i=l i=l

(m)

-01

i=l

N

Z-!
m)

L i=l

UJ
'

P

IJ

-"f)2.

0,

r(m)

_ i

N>i

6s

(D2)

(D3)

(D5)

(D6)

m

and

,m*
"(m) Pm)

r;m) = yt-A> -/Si *i.

sm =median (|r<m)|).

(D7)

(D8)
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The initial estimates of /30 and pi are found by a three-point
median fit,

i.e., divide the data in the x-direction into three groups of approximately

equal sample sizes; calculate the x-median and y-median for each group;

and compute a least-squares regression on these three points.
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Appendix E

ErrorAnalysis for a Film-based Sensor

usingMultiple-view-angle Data

The starting point for an error analysis of a film-based thermal infrared

imaging scanner is often the optical density D of objects on the film.

Consider a six-step procedure: 1) density to voltage, using a step wedge

on the film; 2) voltage to temperature at the sensor, using a one-point

blackbody sensor calibration; 3) temperature at the sensor to radiance at

the sensor, using linear interpolation in a look-up table of the integral of

Planck's Law and the detector's sensitivity; 4) radiance at the sensor to

radiance at the object, using the multiple -view-angle atmospheric

correction technique; 5) radiance at the object to blackbody-equivalent

radiance, using Equation 22; and 6) blackbody-equivalent radiance to

apparent object temperature, using the inverse linear interpolation of

step 3.

Step 1: Density to voltage

The voltage V of the scanner is usually calibrated to a step wedge written

on the film, and assumes a piecewise-linear calibration

V = n(D) D + Vi0(D), (El)

where yfD) is the slope for the
ith

segment of the step wedge at D, and

Vi0(D) is the intercept for that
ith

segment. Using Equation 40, the

estimated standard error of the voltage is

-4
v

dV - dV~

<7D
dD

dV -

-OVio(D)

dVi0(D)
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dV ->

i /
m^

(E2)

Step 2: Voltage to temperature at the sensor

Given a one-point blackbody calibration for the imaging scanner, the

relationship between voltage and the temperature T at the sensor is

T\H,0) = (V-Vbb)G + Tbb, (E3)

where Vbh is the sensor's voltage reading given the blackbody as input,

G is the gain of the sensor, and Tbb is the temperature of the blackbody.

Therefore

ot{h,o)
=

y
dT-

Oy
dV

+
dT -

vbb
[dVbb

+

6T-

og
dG

+
dT ~

^rp Tbb
oTbb

= V[g +\-G OyJ
+\(V-

Vbb)0G]2
(E4)

Step 3: Temperature at the sensor to radiance at the sensor

Given Equation 26,

ol{h,b)
s

dL,{H,d)

di{H,e)

ot(h.b)- (E5)

Step 4: Radiance at the sensor to
radiance at the object

Given Equation 2 1 ,

L(0,0) V
dL(0.0) ~

OL(H,0)
dL{H,0)

+
3L(0,0) -

-0Lh(H,O)

dLj(H,0)

+

ar, o.o ^
x

dx\H,0)

L(H,0)

t(H,0)

Lu(H,0)

-t{H,0)

Lu{H,0)-L{H,0)

x2(H,0)

^r(H.O)
(E6)

Using Equation 43 as the estimator of atmospheric transmittance
leads

to
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Oil(H.O)
dr(H,0) -~

dp
~Pl

-4
-P Pi

o-jJJ
+[-k

p2

Pi In pY (sec
0jK

tan 0 o e\ (E7)

where

P =

(sec Of - 1

And, using Equation 44 as the estimator of upwelled radiance leads to

(E8)

CfLu{H.O)
dLjj(H,0) ^

~ r%

dPo

2 r , x

dLv(H,0) ^
o.

dPi

dLu(H,0) -

oe

d0

c&

ft (sec
6)Kl

-Pi
_

-po{pi2(seceyi-\}a$x

/* \2t AIC2 A \.

i/3i (sec d)Kl- ft!

2 r ys, *sK2

!%K\fl\
(sece)"1

tanfl ae

I ft (secef-ft/

(E9)

Step 5: Radiance at the object to blackbody-equivalent radiance

Using Equation 22,

0LT
3Lt -~

dLlb-^)L^

dLT

dLn
Old

dLj
-zOe

de

L(0,0)

-e

hb

e J

LD - L(0,0)
Oa (E10)

Step 6:
Blackbody-equivalent radiance to object temperature

And finally, analogous to Equation E5,

Or =
dT

dLT
ol,T-

(Ell)
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