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Abstract

An automated approach to change detection analysis was developed for

use in multi-temporal image comparisons. An algorithm was developed

which enables the user to perform automatic image-to-image rectification.

Manual registration techniques are utilized to register a reference image to a

Universe Transverse Mercator map projection. Control points, or kernel

images, are extracted from the rectified reference image and located

automatically in the to-be-mapped images via mathematical correlation. A

two windowed approach is used that requires an estimation of the location of

the control point in the to-be-mapped image. This estimate is used to create a

search area which is correlated with the kernel image. The images were

rectified to within approximately two pixels.

The images were radiometrically normalized so that actual ground

changes can be distinguished from those that occur due to imaging

conditions. This was done through a simple histogram matching technique.

Next, the images were classified to illustrate the changes in land cover type.

An unsupervised classification was used to train the reference image. The rest

of the images in the set were classified using the spectral signature data

generated from this process. The classification accuracy was dependent on the

normalization procedure used.

The process was demonstrated using LANDSAT MSS imagery to show

the extent to which the logging technique of clearcutting has devastated the

forest stands in the North Cascades ofWashington state.
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1.0 Introduction

Geographic information systems (GIS) were designed to help land

managers combine information about land ownership with other spatial

information such as topographic maps. The role of GIS is to provide a means

by which diverse data types can be efficiently stored and retrieved,

manipulated, analyzed, and displayed. Remotely sensed information such as

multispectral imagery may be combined with map coordinates or other

information in correct geographical and geometrical relation [Richards, 1986].

Prior to computer-based GIS systems, data was combined by using a map

overlay method [Lillesand, 1987]. A transparent map was created to represent

the information desired. This was then superimposed with other transparent

data sheets and the imagery of the corresponding area. However, the creation

of sheets to the desired scale and format is very time consuming and not very

flexible i&. it is difficult to apply different weighting factors to the data.

The integration of GIS with remotely sensed data was a natural step due

to the potential that GIS offers as a tool for managing and analyzing such data

[Ehlers et ah, 1989].

Georeferencing, or geocoding, of data relates the land data to a specific

location. This ties the reflective information from the satellite to GIS

information such as a topographic map, thus allowing the user ready access to

various planes of information.

Multispectral images obtained on different dates can be useful for

mapping the changes
over time of an effect which manifests itself visually

and can be detected using satellite images. The changes of interest may be

naturally occurring,
such as changes in forest cover due to a fire, or they may

be human made, as in the case of monitoring urban growth in a metropolitan



area. The process of mapping these changes is referred to as "change

detection". The steps necessary to implement change detection are:

1) Spatial registration of images to each other and/or to GIS

information such as topographic data. If images are registered to

the same type of topographic data, they will be registered to each

other.

2) Atmospheric normalization of the images (so it appears as though

each has been imaged through the same atmosphere).

3) Classification of the images into various land cover types so that

the changes over time can be viewed or measured.

Image registration must be performed before comparing two or more

multispectral images to allow pixel-to-pixel comparisons. If these images are

registered to a map coordinate system, the pixels in each image can be

addressed by map coordinates which may be more convenient. For example,

latitude and longitude may be used rather than pixel locations [Richards,

1986].

The process of manual registration is time consuming and its success

depends on the user's ability to locate control points accurately. This means

that a particular control point must be located precisely in all images as well

as on a map if the images are to be
geocoded. Accuracy also depends on

whether or not the control points chosen are unchanged over time. In an

application such as change detection, a user may have several images of the

same area to study. Manual registration becomes quite inefficient as the



number of images increases. Due to the problems associated with

conventional registration techniques, it has become necessary to automate the

process of image registration.

The primary focus of this thesis is to develop a usable method of

automated image registration. The subsequent steps of image normalization

and image classification will be discussed and performed to demonstrate the

overall process of change detection.

The change in forest cover due to excessive clearcutting in western

Washington state will be analyzed and mapped. An estimated 25 million

acres of ancient forest once stood on what is now westernWashington,

Oregon, and northern California. Much of the forest has been removed in the

last century by various logging practices, including clear cutting which is a

technique that has been employed extensively in the Douglas-fir region of the

Cascade mountains. As the name implies, all vegetation in a given localized

area is cut away to remove the desired trees very rapidly as opposed to

removing selected trees only and leaving the rest of the vegetation

undisturbed. The process of clear cutting severely fragments the remaining

ancient forest stands and has detrimental effects on the local ecology

[Morrison, 1991].

To bring attention to this excessive logging with the hope of protecting

the biological diversity of national forests in the Pacific Northwest, the extent

to which these forests have been cut from 1972 to 1988 has been mapped.

2.0 Background

2.1 Image Registration

Image registration (or rectification) is necessary whenever two or more

images of the same scene are to be compared. The intent of image registration



is to correct for spatial distortions which occur during image acquisition

[Lillesand, 1987]. The distortion may be due to differences in the sensors used

to obtain the images, or as a result of being imaged with the same sensor but

at different times. The sources of distortion can be systematic or random.

They can result from variations in sensor altitude, attitude, and velocity, as

well as other factors such as relief displacement, nonlinearities in sensor

sweep, etc. The process of image registration is typically composed of four

steps:

1) Selection of control points.

2) Matching of points in the images to be registered.

3) Estimation of a mapping function based on the control point pairs

chosen between the two images.

4) Application of the mapping function to spatially register the

images.

Steps three and four can be automated by using available commercial

software [Ton and Jain, 1989]. However, in most current methods, the first

two steps are performed manually .

2.1.1 Manual Registration

The registration process remaps the coordinates of pixels in one image to

corresponding coordinates in the second image [Schowengerdt, 1983].

Traditionally, this process is performed manually by precisely locating well

distributed and matched ground control points throughout the images. Ideal

control points must be stable, meaning their position should not change

between acquisition dates [Ton and Jain, 1989]. The map coordinates of the



control points (e.g. UTM, latitude/longitude) must also be known if the user

wishes to establish coordinates throughout the image. Features such as

crossroads and corners of buildings are good choices for control points. The

spatial relationships among control points in the image are matched to the

reference image by performing a coordinate transformation that preserves

pixel continuity in the output image. The coordinate transformation may be

expressed as a power series of the input coordinates:

x =XEfl~(x^
)m

=

a00 + a10x + a0ly+ a,xxy+
a^x2

+
a^y2

+ a22x2y2+... (La)
n=0m=O

oo oo

y
=X
M*'

)*(?
)"

= 6oo + b10* +Ky + biiW +
^2

+
b^y2

+ b22x2y2+... (2.a)
n=0m=0

where:

x,y (unprimed) correspond to the original image pixel locations

(primed) correspond to the reference image pixel locations

aij,bij
are the coefficients generated as a function of a least

squares solution, the i and j suffixes indicate the

power in x and y, respectively.

This series can be approximated by truncating to fewer coefficients:
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The terms in these equations can account for simple geometric distortions

including linear shift, scale change, perspective, and rotation. Figure 2.1

illustrates these effects.

Scale Change

Linear Shift

Perspective

%

i

i

Rotation
*

<

r \

Figure 2.1 Sources of geometric distortion

(dashed lines are distorted image)

2.1.2 Automated Methods

2.1.2.1 Image Correlation Techniques

Correlation techniques were proposed as an automated approach to image

registration [Pratt, 1974]. A correlation measure is formed between two

functions and the location of the maximum correlation is used to locate

control points automatically.

Salvaggio and Schott (1987) proposed a method that employs correlation

to select the control points necessary to derive the geometric transformation

equations. The technique was demonstrated to be successful but was not

developed sufficiently to be usable. The correlation process for each point



involves the selection of two windows: the first is the correlation kernel and

the second is the search window. The correlation kernel is smaller and

windows a section of the reference image which contains a feature that can be

used as a control point. The search area is then segmented from the to-be-

registered image by locating approximately the area that is thought to contain

the same feature as that in the correlation kernel. This method is not fully

automated as it requires the user to either choose control points in one of the

images to create the kernel windows or to register an image manually if the

data is to be referenced to a map.



To locate the control point more exactly, the kernel image is correlated

with the search area according to the following equations:

N S

r(i,j)
= *=Ue1

where:

r(i,j)

(3)

is the value of the correlation at coordinates (i,j) in the

search area.

fl(m,n) is the search area data at point (m,n) in the coordinate

system defined by the current position of the

correlation kernel.

f2(i+m,j+n) is the value of the kernel at the position (m,n), as

described above, when the kernel is located at position

(i,j) in the search area coordinate system.

Ai and A2

A-

are the weights of the search area lying beneath the

kernel at any time and the weight of the kernel

respectively.

N N V2

2X/iW)
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The usefulness of this method was demonstrated by registering SPOT

images to U.S.G.S. topographic data. Since the correlation depends on the

reflective data between the images, an immediate problem exists when the

brightnesses of a SPOT image and a digitized image of a map are not identical.

To circumvent this problem, an aerial photograph was manually registered to

the U.S.G.S. data. This was subsequently correlated with the SPOT imagery to

generate the appropriate transformations. Therefore, when the SPOT image is

registered to the photo data, it will also be registered to the map.

Another problem with the correlation procedure is its sensitivity to scale

changes or rotations of the images. An approximate registration must be

performed using ephemeris data to account for some of these changes, e.g.

latitude and longitude and the pixel coordinates of the four corners and the

center of the full SPOT scene. These can be converted to the Universal

Transverse Mercator (UTM) projection which is the same map projection

used for U.S.G.S. topographic maps. The latitude and longitude values must

be converted to UTM coordinates, and the SPOT scene can be registered to the

corresponding area of the topographic map. This will give a first-order

registration so that the correlation process will be more effective.

High-contrast objects with a great deal of high-frequency structure are

desirable as control points because the correlation operation is most effective

with this type of object. The point in the search window at which the

correlation value is largest is chosen as a control point for this image. After

the control points have been automatically located in the new image, the

geometric transformations can be determined as described in the manual

registration method.

Salvaggio and Schott (1987) suggested this as a potential automated

method and tested it to prove the concept. They did not develop the



technique to full application. Errors on the order of 2.5 meters on the ground

were obtained.

2.122 Sequential Similarity Detection Algorithm

Other methods similar to the above correlation procedure were used

previously. One such method is known as a Sequential Similarity Detection

Algorithm (SSDA) [Bernstein, 1976] and also uses two windows. A ground

control point (GCP) window from the reference image is compared to a search

area in the image to be matched. The window area is superimposed over the

search area and the sum of the absolute values of the differences between

pixel gray values is calculated. The error measure is:

e(i,j,lKmH) = ISfcUwJ - W(lHmH)\ (6)

For windowW of size MxM, the index n runs from 1 to M2. The position

where the two areas are most similar is selected by thresholding. When the

sum exceeds the threshold , the window and search areas are assumed to be

dissimilar. If the sum of absolute errors does exceed the threshold, the

number of pixel comparisons is recorded for that search point. The window

area is then translated over the search area and another comparison is made.

This process is repeated until the number of comparisons required before the

threshold is exceeded is large, i.e. the images are near registration. The pixel

located at the center of the window at this location defines the control point.

This method was first described using a constant threshold [Barnea and

Silverman, 1972] in which the pairs of points to be compared were selected in

random order. This is done to ensure that new information is used at each

comparison. If there is reason to think that a control point is bad, the

10



sequential comparison can be terminated before each of the M2
windowing

pairs has been examined. In this manner, the procedure becomes more

computationally efficient.

One problem with the SSDA is that it is highly sensitive to brightness

differences between the two images. There must not be "major changes of an

uncorrelated nature between the scenes in the vicinity of the control point

being
tested,"

[Richards, 1986]. This method also will not account for rotations

or scale differences.

2.1.23 A Two-Stage Registration Method using SSDA

At the University of Texas at Austin, an improvement to the SSDA

procedure was developed [Kastak and Crawford, 1989]. This method is said to

be computationally efficient for translational registration. A two-stage

automated algorithm was developed which uses a mean-deviation threshold

sequence so that points in the two images that are very dissimilar can be

detected without evaluating the similarity function for all points in the

image. This reduces the total number of windowing pairs which must be

compared [Barnea and Silverman, 1972]. The two-stage algorithm presented

here was modified to account for rotational differences as well.

This approach uses the similarity detection method described in section

2.1.2.2 (refer to equation 6 for error measure). If there is adequate evidence

that a control point is bad, further comparisons need not be made.

The following adaptive threshold was used as it significantly reduced the

11



number of necessary windowing pairs. The threshold is defined as:

T(k) =nk+crJk (7)

where

H is the mean of the absolute value of the uncorrelated

noise at registration,

o is chosen to account for the region of safety [Kastak,

Crawford, 1989].

The uncorrelated noise refers to the error between the reference and the

search images. However, it can be difficult to determine the mean and

standard deviation of the noise within the window without manually
pre-

registering the images.

Consequently, a two-stage algorithm is implemented to diminate

manual pre-registration. By approximating the registration, the noise statistics

can be generated which define a threshold sequence. In the first stage, a

sampling procedure is used to determine a point in the immediate

neighborhood of the best registration point. The similarity assessment is

performed on every fifth pixel and the maximum is used as the center of a

new 10x10 pixel search area. This is repeated on every pixel within the new

search area which gives an approximate point of registration. A new search

area is centered at the approximate point to find the optimal point of

registration. Also, areas that might appear homogeneous are ehminated

within a window as these tend to increase registration errors. The two-stage

algorithm reduces the computation time required to locate the control points.

Rotational effects are compensated by rotating the registrant

incrementally over some range of angles. The images are co-registered to

12



determine the best translational shift at each angle. The rotation angle that

yields the lowest error is used. Small angular increments will yield more

accurate results but will be more computationally intensive.

2.1.2.4 ObjectDetection Via Clustering

Another approach to automated image registration uses a clustering

method to locate the same objects in different images. The method derives

what has been labeled an RST transformation, which is an abbreviation for

rotation, scale, and translation [Stockman et al., 1982]. In this method, possible

pairs of image features and model features are matched locally. The
"model"

features are those of the reference image, and the
"image"

features are those

of the image to be registered. The orientation, position and size of the features

must be distinguishable. Edge elements or point features are extracted and

vectors are found between suitable pairs.

For each pair of features, the rotation angle (), scale (s), and translation

(Ax,Ay) are found and are mapped into a cluster space where each point

represents the matching of one image element to one model element based

on local features only. The premise is that a cluster of these points in the

feature space will identify a good global transformation as it matches several

image elements to corresponding model elements.

2.123 Automated Multisensor Registration

A method that addresses the problem of developing a robust automated

multisensor registration technique that accommodates a wide variety of data

types was proposed by Rignot and Kwok [1991]. The input data setwas

corrected for geometric distortions by sampling the data on an earth-fixed grid

such as the UTM coordinate system, and then resampling to the same pixel

13



spacing. Sub-images are automatically selected which define local areas of

coincident coverage where precise registration is possible. These are selected

by locating temporally invariant features in each image. One possible

technique mentioned uses binary edge maps to compute a figure of merit for

candidate control points [Davis and Kenue, 1978]. These control points would

be correlated to retain valid candidates. This method yielded a registration

error of approximately 80 meters. For a ground resolution of 25 meters, this

corresponds to a misregistration error of about 3 pixels.

Next, a method of registration was chosen. If ancillary data were available

as simulated imagery (e.g. digital elevation maps, DEM), the images were

registered to this simulated imagery, thereby inducing coregistration of the

multisensor data on the common grid provided by the DEM. A simulated

image was generated for a scene using the elevation data, viewing geometry,

and a model of the scene reflectance taking into account the appearance of the

scene for any given sun angle and viewing angle [Horn and Bachman, 1978;

Woodham, 1980; Little, 1980; Frew, 1984].

In the absence of ancillary data, amethod was employed that extracted

invariant features across the different images. These were "feature
matched"

at multiple locations to establish correspondence between the images. Several

techniques presented may be used in feature matching. These include binary

cross-correlation, distance transform and Chamfer matching [Barrow et ah,

1977], dynamic programming [Maitre andWu, 1989], and structural or

symbolic matching. Constraint filtering was performed to eliminate false

matches. The authors recommend using a combination of techniques to

achieve better results due to the complexity of multisensor registration.

14



2.1.2.6 Recognition of Corresponding Structures usingMultivalue Logic

Another method is based on similarity assessment of corresponding

structures in the images [Ventura et ah, 1990]. This method is said to be

insensitive to changes in scale, rotation, and intensity. Corresponding

structures in different images provide sets of control points to derive

geometric mapping functions. The input images are first segmented into sets

of pixels which should correspond to meaningful structures for subsequent

analysis. These structures are usually represented in a compact form such as

contour points or skeletons. An assessment of similarity is performed which

uses linguistic variables and multivalue logic. Pairs of similar structures are

used to locate "corresponding
pairs"

of pixels which become a set of control

points. These are points with the same physical structure that have been

identified in each image.

2.1.2.7 Using Feature-BasedMapping

A method was developed at the Technical Research Centre of Finland

which used feature-based mapping and robust estimation to search for

ground control points [Holm, 1991]. In this method, appropriate features are

selected from each image. Next, a preliminary set of candidate pairs of

corresponding features is built. The third step is to create a list of feature pairs

that is consistent with an object model.

The extracted features may be points, lines, regions, or shapes. The

extraction can be done in a number of ways depending on the type of feature.

The features are then assigned descriptions which may help in matching

corresponding features. Such information as the texture in the neighborhood

of a point feature, the orientation of a line feature, or the perimeter of a

15



region might be used as descriptors. The centers of gravity of the features may

be included in the description as well. Features should be (1) invariant over

time, (2) stable (i.e. contained in both images), (3) unique to the image, and (4)

they should be different from neighboring features.

The next step is that of preliminary matching. Here, a list of candidate

corresponding features is built based on the similarity of the descriptions of

the features extracted from each image.

The final step, termed consistency matching, has three parts. First, an

object model is chosen to reduce the number of good feature combinations.

Second, a consistency measure is chosen to determine the closeness of fit of

the data with the model. Third, an algorithm is chosen to find the optimal

solution. The methods listed as possibilities are probabilistic relaxation,

dynamic programming, relational matching, stochastic grammars, clustering,

and robust estimation. The authors assumed that the transformation between

images is affine i.e. that only linear terms in x and y are allowed,

x = a00+a,oX'+%?

y
= boo + b10x+b01y

The process is iterative until the final result is found.

1. The values of the similarity measure are used as preliminary

weights of the feature pairs.

2. Using weights and least-squares techniques, residuals are

computed for all feature pairs.

3. Outliers are removed.

4. New weights for the feature pairs are computed.
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5. If a change in transformation parameters from previous iterations

was detected, there are enough combinations left, and the iteration

count is not too large, goto step 2.

Images could reportedly be registered to less than one pixel using only

water (region-based) features.

22 Normalization

Most of the methods of registration described assume that the two images

have been corrected (normalized) for atmospheric and illumination effects.

Several techniques can be used to do this.

Satellite sensors measure the total radiance reflected from the many

objects contained in a scene. The measurements are quantized to allow easy

analysis and manipulation. However, many factors can degrade or distort the

data. Teillet [1986] defines the major categories of radiometric effects or

degradations as sensor related, (such as calibration and de-striping), and scene

related, (such as atmospheric effects, topographic effects, and illumination

and view angle). Scattering and absorption from gases and aerosols in the

atmosphere will affect the measurement. The principal gases contained in air

include nitrogen, oxygen, argon, carbon dioxide, and water vapor. Suspended

particles of both solid and liquid matter make up the aerosol content of the

atmosphere. Typical atmospheric aerosols are smoke and dust particles and

products of vapor condensation [Francis, 1989]. The amount of scattering and

absorption depends on the atmospheric conditions at the time the image was

taken. Therefore, image normalization is necessary when analyzing and

comparing images taken on different dates. Variations in atmospheric

conditions, view angles, and sensor parameters occur between images that
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have different acquisition dates. This will cause invariant regions to look

different. The normalization process makes them appear as though imaged

under the same conditions by removing the effects of sun angle, observer

angle, sensor response, and atmospheric variations. This ensures that

measured changes in reflectance correspond to real changes on the ground.

Several techniques have been developed to compensate for these effects,

thereby allowing the user to compare the images and obtain useful

information from them.

2.2.1 Radiative Transfer Models

As stated, the radiance reaching the sensor is changed as it passes through

a turbid medium (atmosphere) by absorption and scattering. Absorption is

defined as a permanent loss of radiant energy from the radiation field and

scattering as a loss of radiant energy that will reappear in the radiation field

from some other direction. The sum of these losses is referred to as

atmospheric extinction [Van de hulst, 1957].

An expression that defines the radiative transfer of energy from a ground

object to the sensor is [Schott and Henderson-Sellers, 1984]:

L(X,e,e',(t>)=Lra,e,e',(i))e-x'w'a:W+Lua,d,e',(i>) (8)

Where L is the radiance field at the sensor,

Lr is the radiance reflected from the ground element,

Lu is the path radiance along the line of sight between the ground

object and the sensor,

T is the vertical optical depth, i.e. the product of the extinction

coefficient and the vertical distance traversed by the radiation,

6 is the angle between the sensor and the normal to the surface,
6'

is the source elevation angle relative to the normal to the

surface, and

0 is the azimuthal angle defined between the source and sensor

projected onto the surface.
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The reflected radiance Lr can further be broken down into the

components of direct solar radiance and downwelled sky radiance. A

simplified version that represents the radiance field at the sensor is:

La,0^^)=T(A,0,0',0)[Lauia,6>,a^) +L^]ra,^0^)+4a,6>,0',0) (9)

where

Lsun is the direct solar radiance reflected from a scene

element, and

L-sky is the integrated radiance falling on the same scene

element from the sky dome which is reflected toward

the sensor by the reflectivity r.

Therefore, "the radiance reaching the sensor from a particular scene element

is a linear function of the reflected radiance with the coefficients representing

atmospheric transmittance and upwelled radiance [Francis,
1989]."

These atmospheric inhomogeneities can be compensated on a pixel-by-

pixel basis as long as the atmospheric parameters can be determined for each

pixel. If t(AA,

0,6'

,^>)i}
and

LU(AX,0,6'

,0)u
are the atmospheric transmittance

and upwelled radiance in the passband AA for pixel (i,j), the corrected

radiance , L,, is

UU.to,e,vtJ-

T(AA,0,0>),;
(10)

19



A method was developed to compensate for atmospheric effects which

utilized the systematic changes in LANDSAT radiance measured over water

[Scarpace, 1979]. The change in radiance for imagery from several different

dates was attributed to a change in atmospheric haze. The technique used a

simple linear atmospheric radiative transfer model with clear lake water as a

standard with reflectance r=0 in the near-IR Therefore, any reflectance in this

region of the spectrum allows the user to estimate atmospheric path radiance.

Several methods are available to model radiative transfer. The most

common is the LOWTRAN method developed by the Air Force Geophysics

Laboratory (AFGL) [Kneizys et ah, 1983]. The LOWTRAN method uses a band

model and empirical data to develop an integrated absorption that is

representative of the passband of interest. This is in turn used to compute the

average transmittance from each of the four LOWTRAN atmospheric

molecular absorption constituents, i.e. water vapor, ozone, nitric acid and the

uniformly mixed gases. Molecular scattering (Rayleigh scattering), also

contributes to atmospheric transmission loss [Francis, 1989]. The assumption

that water reflects no infrared (IR) radiation is used to empirically determine

the transmission and upwelled radiance terms. A histogram of clear lake

water is generated and a radiance value calculated for each digital count.

using the following equation:

mij

The Lmax and Lmm are sensor specific values and can be obtained from EOSAT

(Earth Observation Satellite data). The values should have the units of

(W/cm2sr) when used in the calculation but may be published in

(mW/cm2sr). The format for input data can be found in the LOWTRAN
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manual. Radiosonde data is used along with a constant Henyey-Greenstein

scattering phase function of 0.15 while the visibility is altered by trial and

error until the calculated radiance value is matched. This gives the

transmission and upwelled radiance value for the atmosphere above the

lakes for a pixel with that particular digital count. These are used in equation

12 to calculate sensor radiance:

T sensor ^u MO\
Aground

~

UaJ

Another method also uses clear lakes to account for atmospheric effects

was developed by Gordon (1978). It "assumes an atmosphere composed of

spectrally selective Rayleigh scattering and spectrally independent aerosol

scattering". The radiance component from the water body that is due solely to

the atmosphere is computed from knowledge of the wavelength and the

aerosol component by finding the IR radiance from the water body and

subtracting the part due to Rayleigh scattering [Francis, 1989].

This method was improved in 1985 by combining the technique of

Gordon with measurements made by Ahern [Verdin, 1985]. An atmospheric

propagation model is used similar to that of Scarpace. The lake surface

radiance is calculated from
Aherns'

data. This is combined with the lake

surface radiance measured from a LANDSAT MSS image and entered into

the atmospheric propagation model. Other inputs to the atmospheric

propagation model are varied to compute a set of atmospheric parameters

that can be used to calibrate the image radiance values.

Other methods used to perform image normalization use ground truth to

remove atmospheric and sensor effects from individual images. The images

are reduced to a surface-information base which assumes identical sensors.
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Such an approach may rely on the use of clear water bodies present in the

scenes to extract path radiance information [Ahern et ah, 1979] and allow a

spatially variant atmospheric correction.

The main difficulty in using these models is the need for atmospheric

input data which is not always available. Some of these models require

radiosonde data to compute the scattering due to air molecules and aerosols

and the absorption due to gaseous components [Caselles, 1989]. At the Canada

Centre for Remote Sensing, a dynamic regression algorithm was developed

for incorporating atmospheric models into image correction procedures

[Teillet et ah 1987]. The method uses a discrete ordinate method (DOM) as a

model to simplify the radiative transfer equation. To decrease the processing

time, the radiative transfer code is run at a limited number of points on a

grid. The resulting parameters are combined algebraically in accordance with

the radiometric correction equation [Teillet, 1986], fitted with a surface

function, and sampled at each pixel location. A simpler model, the so called

5S model, can be run instead.

The dynamic regression algorithm is used so that the atmospheric

parameters can be computed without repeatedly running the DOM. The input

values for the model are wavelength, solar zenith angle, observer zenith

angle, relative azimuth between solar and observer directions, aerosol optical

depth through the total atmosphere, and average ground surface reflectance.

222 Histogram Modification

A major problem in each of the above methods is that processing must be

performed on all of the images in the temporal set to obtain absolute data

normalization. It is desirable to use a normalization technique which

operates on a single image, causing it to look like the reference image. In this
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manner, image normalization can be performed in a relative way. Less error

is expected due to the simplicity of such an approach and there is no need for

information other than that contained in the scene. The following are some

methods using this type of approach.

222.1 Histogram Equalization and Specification

Histogram equalization is a standard image processing technique for

contrast enhancement [Gonzalez and Woods, 1992]. Here, a histogram is

altered such that it approximates the uniform or flat histogram where the

gray levels are equally populated (Figure 2.2). The cumulative distribution

function (CDF) is computed and scaled to be used as a look-up table to move

histogram bars to new brightness value locations.

The result is a
"flattened"

normalized output histogram [Richards, 1986].

23



A. Histogram
5r-

1 "
S. 3 -

I 1

N=24

L=16

1 J 11 I I L 1 J

B. Cumulative

Histogram

0 1 2 3 t 5 6 7 8 9 10 11 12 13 V. 15

Brightness Value

3 25
x

<*. 20
o

6 15
3
e

a> 10
>

I
3

u

1

1

1

1

1

0 123*5678910 11 E13U 15

BrightnessValue

C. Resulting
Uniform

Histogram

L J L J L Jl
0 1234 567B910 111213H15

Brightness Value

Figure 2.2 Histogram equalization [Salvaggio, 1987]

This hypothetical image has 24 pixels quantized (4 bits), or 16 gray levels

(Figure 2.2 A). The corresponding cumulative histogram is shown in figure

2.2.B and is scaled to 4 bits to use as a lookup table. The gray level after

equalization is the value of the scaled ordinate at that abscissa [Richards, 1986].

The calculated value is scaled and the closest discrete brightness value is

assigned to that pixel. The scale factor for the cumulative histogram is:

S.F.=
L-\

N
(13)

where: L is the number of available brightness values, and

N is the number of pixels.
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Histogram specification is a generalization of this technique to transform

the histogram of an image to match that of a reference image. Rather than

normalize all images in a set to the uniform distribution, it may be desirable

to transform the images to match the histogram of a reference image. The

CDF's associated with each image can be used in combination as a single

mapping function. The CDF of the to-be-mapped image is used in the forward

direction and the CDF of the reference image is used in the reversed direction.

By mapping each pixel through both, the first histogram would be

transformed to have the same distribution as the second (Figure 2.3).

255

255 255

Figure 2.3 Histogram specification, matching Day 1 histogram to

Day 2 histogram [Salvaggio, 1987]
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2.2.2.2 Linear Histogram Transformation

Linear transformation of a histogram is another technique which

modifies the brightness distribution function under certain conditions.

[Salvaggio, 1987]. Two assumptions must be met for this method to be valid.

The first is that the radiance at the sensor is linearly related to the reflectivity

of the scene elements on the ground. The second is that the brightness (or

digital count) is a linear function of the radiance reaching the sensor. The

measured radiance can be expressed as a linear function of reflectivity:

L = K,r + K2 (14)

where:

L is the radiance reaching the sensor (W/m^sr),

r is reflectivity,

Ki is a constant that includes solar irradiance,

downwelled sky radiance, and atmospheric

transmission, and

K2 is the path radiance.

Since the digital count in each band is a simple linear function of the

radiance reaching the sensor, we can say that

DC = K3L +K4 (15)
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where:

DC is the digital count recorded by the sensor,

K3 is a constant which takes into account optical

throughput, detector responsivity, and system gain,

and

K4 includes optical flare of the sensor system and

electronic bias.

Objects with the same ground reflectivity on both dates are simple linear

functions of the same variables and therefore, are linear functions of each

other. One image is the reference image (ref) and one is the mapped image

(map).

T'lmap map
'

"map

nr - t +h
(16'17)

DCrtf-mTtfLrtf+brtS

where DCrifand DCmap refer to digital count values for each image, and the
'm'

terms are linear coefficients that take into account the sensor response

characteristics, and the 'V terms are the sensor offset values. By combining the

equations, we obtain:

DC^, = mmanamaRnuu, + mmaD + Bman + bmm
map map map map map

~

map map

DCref
=

m^a^ +m^ +fi^ + bre{ (18,19)

Two linearly related histograms can be transformed to look like each other as

follows. The relative width of the histograms are related by the ratio of their

standard deviations [Salvaggio. 1987]. The histogram means are recomputed
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and their difference is added to the adjusted mean xTef . The histograms now

have equivalent spreads and equal mean values (see figure 2.4). The

transformations are :

DC,=mtDC2 + bt (20)

mt
=
_~2

(21)

b, = xz
-

m,;^ (22)
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Figure 2.4 Transformation of linearly related histograms

[Salvaggio, 1987]
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As long as the assumptions are correct, the linear histogram

transformation process will give a better result than histogram specification.

However, when simply computing the mean and standard deviation across

the entire image rather than using only invariant features, the method may

not give acceptable results.

223 Pseudoinvariant Feature Normalization

One method which does address the issue of automated temporal scene

normalization uses so-called pseudoinvariant features. This process is a

linear histogram transformation of the invariant features of the image. The

features used are typically non-natural, e.g. roads, urban areas, asphalt, etc.

and are assumed to have statistically invariant spectral signatures over time

[Piech and Schott, 1974]. These invariant features are located in each image

and their gray level distributions are determined within each band. To derive

the necessary set of linear transformations, two assumptions must be met

[Volchok, 1985]. First, that the radiance at the sensor is linearly related to the

reflectivity of the scene elements
on the ground. Second, that the brightness

of the image must be linearly related to the radiance reaching the sensor. A

set of transformations can be derived to modify the histograms of the second

image to look like the histograms from the first. These transformations can

then be applied to the entire second digital image.

The process can use automated image segmentation to isolate the

pseudoinvariant features from the two images [Salvaggio, 1987] using

equations as 20-22:

DCx=mpCr + bt (20)

= i*L (21)

1

b, =
x2-

m,x\ (22)
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Other researchers have independently developed techniques similar to

PIF . Eckhardt and Verdin [1990] describe an "empirical scene normalization

approach"

which was used in an attempt to match the detector calibration and

astronomic, atmospheric, and phase angle conditions present in the reference

scene. To do this, one image was chosen as a reference scene to which the

others would be normalized. The normalization was performed by applying

regression equations to the gray levels which would predict the digital count

had it been acquired under the same conditions. These equations were

derived by matching the digital counts of targets present in both the scene to

be normalized and the reference scene. The reflectance of the targets was

assumed to be invariant so that any changes could be associated with

atmospheric effects. This is basically the same assumption used to select PIF

features as described above.

Caselles [1989] offers "an alternative solution for atmospheric correction.

This is achieved by using the apparent reflectance values of ground surfaces

which are assumed to have constant ground reflectance with time so that

atmospheric input data is not
required."

Again, this approach is very similar

to the PIF approach.

A problem arises when using PIF techniques on MSS images. Because the

pixel size (IFOV) of an MSS image is 79 x 79 m, it is difficult to identify pixels

that cover only an invariant feature,
he. few man-made features are at least

160 x 160 meters in size. When histogram normalization cannot be used for

radiometric correction, a similar technique to PIF was proposed by Yokota and

Matsumoto [1988]. Two small areas in the Landsat MSS images were selected

which are thought to be radiometrically invariant over
time. These were a
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bright concrete runway and the dark surface of the Pacific Ocean. The wide

variation in digital counts allows for development of PIF transformations.

23 Classification of Images

The intent of image classification is to specify a particular land type (such

as soil, water, vegetation, etc.) for each pixel [Lillesand, 1987]. The number of

classes will vary with the particular scene and application. Classes may be

coded by color or symbol for visual interpretation [Schowengerdt, 1983].

Spectral classification uses the radiance values in each spectral band of the

image to identify the class to which each pixel belongs. Different surface

materials will have different spectral reflectances over the spectrum. Spatial

pattern recognition techniques may also be employed which account for the

shapes and sizes of objects in the image. However, classification based on

spectral criteria is currently more advanced.

A multispectral sensor yields a digital count for each band; this discrete set

is the spectral signature of an object. It can also be thought of as a

multidimensional vector of the brightness values [Richards, 1986]:

x =

*i

*2

*J

(23)

where jc,. are the brightnesses of the pixel in bands i . Different land cover

types will exhibit different combinations of digital counts based on their

spectral reflectance and emittance properties [Lillesand, 1987]. The pixels are

classified by using the available spectral data,. The process is illustrated in

Figure 2.5.
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Figure 2.5 Basic steps in supervised classification [Lillesand, 1987]

Generally speaking, classification of images can be performed in a

supervised or unsupervised manner. In supervised classification, the

categories or classes are defined by the user. These are subsequently analyzed

to determine the spectral separability of the categories. In unsupervised

classification the spectral separability of the raw data is determined to create

the classes which must be interpreted by the user. Often, a combination of

these methodologies is used.

An automated approach to the problem of image classification which

excludes the use of a supervised approach is desired to eliminate user

interactions. Ideally, an unsupervised classification would be performed on

the first image and the categories would be identified. All subsequent imagery

would be classified by using the information generated from the first image.

23.1 Supervised Classification

The essential steps in supervised classification described by Richards are:

1. Determine the set of ground cover types in the image, e.g. water,

vegetation, soil, urban, etc..
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2. Choose pixels in the image from each class that are representative

of that class. This is called training stage of the data. A priori

information from other sources, e.g. maps, ground truth, and air

photographs may also be used to aid in the training process.

3. The training data set is used to estimate the parameters of the

classifier. These parameters are the properties of the probability

model used or may be equations that define the partitions in

multispectral space.

4. Each image pixel is classified into one of the ground cover classes.

5. Tabular summaries or thematic class maps are created to

summarize the results of the classification.

2-3.1.1 Maximum Likelihood Classifier

Maximum likelihood is the most common method of supervised

classification. This classifier evaluates the variance and the covariance of the

category spectral response patterns [Lillesand,
1987]. First, it is assumed that

the pixels in the training set are normally distributed. Under this assumption,

the spectral response pattern can be described completely by the mean vector

and the covariance matrix. Then, the statistical probability that a given pixel

belongs to a land cover class is calculated. The following diagram simulates

the probability density functions for a maximum likelihood classifier.
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Figure 2.6

Probability

Water

Probability density functions defined by a maximum
likelihood [Lillesand, 1987]

The probability density functions are used to classify each pixel by

computing the probability that a pixel belongs to each class. The pixel would

ultimately be assigned to that class with the highest probability. A pixel can

also be labeled as unknown if the probability values are below some

threshold.

The following example illustrates maximum likelihood classification as

well as other common methods of assigning pixels to classes. The training

data from an image is plotted on a scatter diagram that is representative of the

different classes (Figure 2.7).
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Figure 2.7 Pixel observations from selected training sites plotted

on a scatter diagram [Lillesand, 1987]
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These pixels are used to generate "equiprobability
contours"

used to classify

all other pixels. The decision regions are show in Figure 2.8.
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Figure 2.8 Equiprobability contours defined by a maximum

likelihood classifier [Lillesand, 1987]

In an extension of the this method, weighting factors might be applied to

the different classes to create a better classifier. If
"sand"

is expected to occur

rarely, it would be weighted lightly compared to more likely features.

23.12 Minimum-Distance-to-Mean Classifier

In this method, the mean spectral value of each spectral band is computed

for each class chosen in the tiaining step. These values are the components of

the mean vector for each class. A pixel in the image can be identified as

belonging to one of the classes by calculating a Euclidean distance between the

values of each band for that pixel and those for the class means. After making
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the necessary computations, the pixel is assigned to the class that is closest to

its vector (Figure 2.9).
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Figure 2.9 Minimum distance to mean classification strategy
[Lillesand and Kiefer, 1987]

This method is computationally simple, but it does not account for the

variance of any of the classes. A pixel lying on the outskirts of a class with

greater variance may be closer to the mean of another class. However, it is

entirely possible that the pixel in question belongs to the former group. This

could result in misclassified pixels.

23.13 Parallelepiped Classifier

This is a technique which accounts for the variance of the classes by

determining the range of values in each band. Boundaries are defined around

each class according to the highest and lowest digital counts in each band. A

pixel is classified based on this range. A pixel that lies outside all regions is
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classified as unknown. In two dimensions, these boundaries can be pictured

as rectangles (Figure 2.10). For multidimensional data, the boundaries are

parallelepipeds.
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Figure 2.10 Parallelepiped classification strategy [Lillesand, 1987]

This classifier is also fast and computationally simple, but has limitations.

Two regions that are close together may have overlapping boundaries. The

classifier will randomly assign the pixel to one class or the other under these

conditions. This overlap of boundaries is a result of the bands being highly

correlated so they are not well described by the rectangular areas. This

correlation manifests itself in the scatter diagram as elongated or stretched

classes with a positive or negative slope (Figure 2.11). The classes that show

high correlation are far too large when a rectangular boundary solution is

used as illustrated by the dashed rectangle.
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Figure 2.11 Weakness of a parallelepiped classifier for highly
correlated data [Salvaggio, 1987]

Because spectral response patterns are often highly correlated, this

problem is significant. It can be alleviated somewhat by using stepped

boundaries (Figure 2.12), but this method is probably not sufficiently accurate.

Figure 2.12

BwxM digital i

Parallelepiped classification strategy employing

stepped decision region boundaries [Lillesand and

Kiefer, 1987]
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23.2 Unsupervised Classification

In unsupervised classification, the classes or categories are determined by

measuring the distance between pixel clusters The algorithms are used to

examine unknown pixels and group them with other pixels having similar

spectral characteristics [Lillesand, 1987]. Basically, pixels that belong to a

particular spectral class should have spectral characteristics that are close

together. After specifying the classes, they must be identified by the user to

associate each group with a particular land cover type. Again, maps may be

useful in helping the analyst identify each group. An advantage to

unsupervised classification is that the spectral classes are found automatically

rather then through training. This is advantageous since the user may have

trouble distinguishing between certain classes or there may be so many that it

is difficult to train the image.

There are many ways that the required clustering can be
done. One

common clustering algorithm is called the
"k-means"

approach. The analyst

must decide the number of classes. Initial cluster means, called "seeds", are

positioned randomly throughout the image and
used to start the clustering

process. Each seed value is the center of a cluster. Every pixel in the image is

assigned to the cluster with the closest mean. After each pixel is assigned to a

cluster, the mean vectors are recalculated
for each and a new iteration is

performed. This procedure continues until the class mean vectors do not

change with iteration [Lillesand, 1987]. This approach is computationally

intensive due to its iterative nature. This is only one of many possible

clustering algorithms
that can be used, however, it does not seem pertinent to

describe others. The k-means, or ISODATA approach is illustrated in Figure

2.13.
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Figure 2.13 An illustration of clustering by iterative optimization
(ISODATA method) [Richards, 1986]

To reduce computation time, unsupervised training areas are often

chosen so that the clustering algorithm can be applied to a smaller area. The

chosen areas must contain all land types that are found in the scene, that is,

they must be heterogeneous. It is important to make sure that all spectral

classes in the scene are included in these training areas.
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233 Hybrid classification

A combination of supervised and unsupervised methods (i.e. a hybrid

scheme) may be the best means to classify an image.

After clustering is completed, the population of each category can be

examined to see if some clusters are underpopulated. Such classes may be

eliminated or combined with another class. When complete, training

statistics are calculated that are representative of the scene. Next, available

ground truth or reference data can be used specify the class types. Richards

describes a third step to determine if all features (he. spectral bands) need to be

retained to classify the image reliably. The entire image is then classified into

the set of spectral classes. A minimum-distance-to-mean algorithm is often

used. Each pixel is then labeled by ground-cover type.

Unsupervised classification is desirable because it reduces the demands

on the user. Ideally, training statistics would be created on the reference image

and applied to the other images as well. This way, the time needed to perform

the classification will be minimized and the process will limit user

interaction as well.
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3.0 Experimental Procedure

The primary objective of this thesis is to develop a method for automated

image registration, normalization, and classification in the overall process of

change detection. The automated registration is based primarily on the

method described by Salvaggio and Schott [1987]. Though they showed that

correlation had significant potential, they did not fully develop the method.

Recall that this method is not fully automated, but requires an initial manual

registration of a reference image so that all subsequent images can be

registered to it. Also, some pre-processing of the images to be registered must

be performed to make the correlation more efficient and effective. As a result

of the degree of user interaction required, the method is most valuable when

several images of the same area are to be compared. In the current study, the

process of image normalization proved to be difficult. Several methods were

tried; the best was a histogram modification technique. The user must match

the histograms of each band in the to be registered images to those of a

reference image using ERDAS software. This requires minimal processing,

but is not automated. Finally, the images were classified which is also a

difficult task to automate. It was desired that one image be classified and the

spectral signatures generated in this classification be used to classify all

subsequent images.

A basic flowchart of the project is shown in Figure 3.1.
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Figure 3.1 Howchart of Work

3.1 Selection of Imagery

The choice of imagery to show changes in forest cover due to clearcutting

in the northwest was limited primarily by cost. Because the Landsat MSS

(multispectral scanner) scenes used were two years old or older at the time of
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purchase, they were available at a discounted rate. The center coordinate of

the area of interest is given to Earth Resource Observation Satellite Data

Center (EROS) in Sioux Falls, SD to obtain a list of images that contain the

coordinate. Care must be taken to select imagery that covers roughly the same

area. It was desired that the images have zero percent cloud cover to ensure

that areas of interest not be obscured. The final criterion for choosing the

images was that the acquisition dates be as close together as possible in their

respective year so that snow cover and water levels would be roughly the

same and to ensure that they were imaged under similar illumination

conditions. The best compromise was found in images that were obtained

over a three-week interval. The following images were chosen:

Table 1 Images used in study

Reference Image 1 Image 2

Date 7-29-72 8-23-81 7-30-88

Scene ID 81006183135 83126718175 85161218262

Spacecraft Landsat-1 Landsat-3 Landsat-5

Resolution 79 x79 meters 57 x 57meters 57 x 57 meters

The earliest image was chosen as the reference image and the others as

the images to be registered. These will be referred to as images 1 and 2

respectively. The scenes from 1981 and 1988 both had 2983 x 3596 pixels, while

the image from 1972 had 2340 x 3240 pixels. Sections of the original Landsat

scenes were chosen as the study area to conserve disc
space.
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32 Manual Registration

A reference image (typically the oldest image) was manually registered to

the U.S.G.S topographic map ofWenatchee, Washington (1:250,000 scale,

Zone 10), using conventional registration techniques. A digitizing table was

used to locate the coordinates on the map that corresponded to known points

on the image. These ground control points must be chosen carefully to obtain

satisfactory registration. It is important to calibrate the map on the digitizing

table so that the UTM coordinates are accurate. To set up the digitizing table,

the map is affixed to the table and known grid marks are digitized. The user

must not begin choosing control points until a satisfactory map set-up has

been completed. Due to the poor spatial resolution and rural nature of the

images, it was difficult to locate
"ideal"

control points; he. features that are

unlikely to have changed over time. For example, water features were used

despite the potential for error due to fluctuation in water levels. The control

points were distributed throughout the image to improve the results. The

ground control point file (GCP) contained 24 points and used to compute the

appropriate transformations in the ERDAS software package (use of all

ERDAS programs used are briefly described in Appendix F). A second-order

transformation was computed with an arbitrary RMS error tolerance of 2.0

pixels. When performing a least squares
regression to determine the

transformation, a general rule of thumb is that at least 3 control points per

coefficient should be used. In this case, a second-order transformation was

used to find six transformation coefficients. Of the 24 points chosen, one was

discarded due to its large error to reduce the total error. Once this image is

registered to the map, all subsequent images were automatically
registered to

it.
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33 Automated Registration

The program MAKE_GCP_FILE.C (Appendix B) was created

which carries out the steps detailed in the following sections.

33.1. Creating the Correlation Kernels

The same control points used in the manual registration were located for

automated registration by image correlation. Simply stated, the section of the

image that contains each control point was extracted from the registered

(reference) image. This is the correlation kernel. In the images to be

registered, search areas were created based on estimates of the location of that

control point in the image.

The geometric transformation obtained by manual registration should

warp the image to the same projection as the U.S.G.S. map/Therefore, though

the control points in the reference image are located at different positions

than in the original image, map coordinates are now associated with them.

To create a correlation kernel, the UTM coordinates of the control point from

the reference image are supplied to the computer program

MAKE_KERNEL_UTM (Appendix A), which locates the input coordinate

and builds the kernel by extracting the surrounding pixel pattern and storing

it in a file. The control point is always located in the center of the kernel. The

size of the kernels can be varied by the user to ensure that the structure of the

control point is apparent. The only restriction was that the kernels must have

an odd number of rows and columns so that the control point was located

precisely in the center. Each kernel was
stored in a separate file and contained

all four bands from the Landsat scene. Though all bands were extracted, the

actual correlation is performed using only the band with the greatest contrast.
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332 Approximate Registration

As stated earlier, correlation is highly sensitive to rotation and scale

differences. Although all images used were Landsat MSS images, there are

still noticeable rotation and scale differences due to the different platforms of

each.

MSS scenes have an instantaneous field of view (EFOV) of 79 meters on a

side. The sampling rate used in data acquisition resulted in a nominal ground

spacing of 56 meters between readings so the pixels are averages over cells of

56 x 79 meters. Digital MSS data is supplied in computer-compatible tape

(CCT) format after 1979, and was resampled into pixels having a nominal

dimension of 57 x 57 meters. This was verified by empirical testing as it is not

well outlined in the data supplied with each tape. To test the pixel size in

meters, two points were chosen on each image and their UTM coordinates

found using the digitizing table. Since UTM coordinates have units of meters,

the distance between the points could be determined. By using the pixel

location data, the number of pixels between the two points was also

determined. The ratio of the distance in meters to the number of pixels is the

scale of the image in meters per pixel. The 1981 and 1988 images were verified

to have resolution of 57 meters per pixel , while the resolution of the 1972

image was 79 meters per pixel.

The images with the 57 x 57 meter spatial resolution, were resampled to

79 x 79 meters per pixel to match the resolution of the 1972 image by reducing

the scale by a factor of 57/79 = 0.7215 in both the x and y directions.

To compensate for rotations, the angle of rotation between the reference

image and the images to be registered was estimated. Again, two points were

chosen which could be located in all images and have the same UTM

coordinates (identical points) but different pixel locations. The locations of
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these points must be translated to the origin (0,0) in order for the equations to

work. The following equations used:

A =

fi]
; b =

ft]

|a| = VA A =
^x2

+
y2

(magnitude of vector A)

AB = (x1xx2)+ (y1xy2)

( - -'n

0 = cos
-1
AB

W

(24,25)

(26)

(27)

(28)

To determine the angle between the two vectors, the coordinates defining the

vectors are supplied to the program VEC_ANGLE (Appendix C). A positive

angle is a counterclockwise rotation relative to the reference image. The

image should be examined visually to determine which way the

to-be-mapped image needs to be rotated and ensure that it is rotated correctly,

he. clockwise vs. counterclockwise. For example, given two points in images

A and B with the following coordinates:

Al:

A2:

(2223,1344)

(2347, 773)

Bl: (667,1251)

B2: (678, 666)

Recall that these points must be translated so that one point is located at 0,0.

This is done by subtracting the coordinates of one point from both.

x values

2223-2223 = 0

2347 = 2223 = 124

y values

1344-1344 = 0

773 - 1344 = -571
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Such that the new points are:

Al: (0,0) Bl: (0,0)

A2: (124,-571) B2: (11,-585)

The result is an angle of rotation of -11.175 degrees (clockwise). To increase

accuracy, three points were chosen in each image and the average angle of

rotation used. The angles were -13.09 and -11.46 for the 1981 and 1988 images,

respectively.

Once the angle of rotation and the relative scale were found, the images

were approximately registered by the ERDAS program LRECT1FY which

allows the user to perform both the rotation angle and the scaling at one time,

thus minimizing the resampling of the data.

333 Locating the Search Windows

To perform the correlation, a search window must be created within the

images to be registered. These are areas in the to-be-registered images that are

thought to contain the same feature as the corresponding kernel. They are

located using the ephemeris
data supplied with each image (Appendix E). The

search windows are large enough to ensure that the structure of interest is

contained within the area, without being so large that the processing time

would be prohibitive. They are designed to be three times larger than the

kernel dimensions resulting in a search area nine times as large. This was

determined to be large enough by empirically exarruning the images to be

registered. The true and estimated locations of the control points were found

in each image so that the required size of the search areas could be
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determined. In the worst case, it was found that the desired control point

would lie within this window

The correlation is performed only where the kernel fits entirely within

the search area. The resultant correlation window will be smaller than the

search area by an amount equal to half of the kernel dimensions on all four

sides. Therefore, if the search area is 75 x 75 pixels and the kernel is 25 x 25

pixels, the correlation result will be 51 x 51 pixels because it will lose 12 pixels

per side, per dimension. This must be remembered when creating the search

windows. If they are not large enough to take this into account, the control

point may be located in that outer perimeter of the search window and would

not be located with the correlation operator. The diminishing of the search

area is illustrated in Figure 3.2. The first point where the kernel fits within

the search area is shown. The center of this kernel is where the correlation

result is placed. Therefore, the area shaded and labeled
"correlation"

contains

all of the values as the kernel is translated through the search area.

Kernel \

correlation

result

search window

Figure 3.2 Correlation result

The area that is expected to contain the control point is often not easy to

locate. It is necessary to know the location on the map of three corners of the

image. Three noncolinear points are needed to find a transformation

equation with three coefficients. The latitude and longitude coordinates of the
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corners are available for every Landsat
Scene. These can be easily transformed

to UTM map coordinates using the ERDAS CCVRT program. The pixel

locations of each corner must be found empirically since the scene has since

been rotated and scaled. However, the UTM coordinates associated with each

corner remain the same.

Stored with each kernel are the UTM coordinates of the control point

(kernel center) that must be located in the to-be-registered images. The three

control points can be thought of as two maps: one with pixel coordinates and

one with UTM coordinates. Based on this information, an equation can be

found which takes UTM coordinates to pixel coordinates. Once this is found,

it can be used to transform the known UTM coordinates of the control point

of interest to the pixel location of that point. A larger window is built around

this estimated point. The sequence of calculations to locate the UTM

coordinate in the images to be registered are:

a,00 010 ai01

.^00 ^10 ^01

1 1 r

*1 *2 *3
=

?1 ^2 ?3_

X-, x2 x3

?! y2 y3_

AX =X (29)

Matrix A contains the coefficients needed for the transformation, matrix X

contains the UTM coordinates of the corner points, and X_ contains the pixel

locations of those corner points. We want to find X'1, he. the inverse of the

matrix X
,
which can be found since the matrix is square and the chosen three

control points are not collinear. Therefore, the coefficients for the matrix A

can be found:

AXX~l=A =
XX~l (30)

In the following equation, the unprimed values
represent the UTM

coordinates and the primed values are the pixel coordinates. Now that the
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coefficients are known, the UTM coordinates of the control point of interest

are used to calculate the approximate location of the point as follows:

l00 ILAi^ lU' II %

A *>io bQl\\y
floilp
boll

(31)

or:

x =a00 + a10x + a01y (32)

y =b00 + b10x+b01y (33)

33.4 Correlation

According to equations 3-5 in section 2.1.2.1, the correlation is performed

between the kernel window and corresponding area in the search window.

The correlation is performed each time the kernel is translated across the

search area and the result stored at the location of the kernel center. The

values in the resultant image are examined to locate the maximum. The

position of the maximum correlation should correspond to the control point

in the new image. The pixel locations and UTM coordinates are stored in a

ground control point file (GCP). New transformation equations are generated

and the registration is performed.

The program is designed to read each kernel individually from a file

containing all of the kernel
names. The output is the set of ground control

point coordinates. The program automatically reads in the second kernel and

proceeds.

3.4 Normalization

Three methods to optimize the normalization procedure were tried. A

preferred method would use one image as a reference image and alter the

others to make them appear as if taken on the same day. This minimizes the
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amount of processing required compared to absolute methods that must alter

all images in the set. The methods are:

(1) Histogram Matching

(2) Linear Mapping Using Invariant Features

(3) Linear Mapping Using entire image statistics

3.4.1 HistogramMatching (Specification)

This was the method that was ultimately used and is a nonlinear

histogram matching technique. ERDAS software contains a program called

HSTMATCH which allows the user to match the histogram of one image to

that of another image. The histogram matching must be performed

individually on each band and are then recombined after processing to form

the final histogram-matched image. A statistics file was used to provide the

input data for the program. Ninety-seven percent of each histogram was used

to avoid using outlying data that might skew the results. After running

HSTMATCH the user must use the program STRETCH which actually

processes the image. This must be done directly after running HSTMATCH as

the data is not actually stored in any file.

3.4.2 Use of Invariant Features to
Perform LinearMapping

Objects on the ground that were assumed to be statistically invariant were

located and used to estimate any changes in digital value
between images as

due to changes in the atmosphere. Several features were identified in all

images and their digital counts recorded. A look-up table was created for each

band by placing the desired output digital count
on the y-axis and the input

digital count on the x-axis. The desired output value is that of the reference

image and the input value is that of the image to be changed. The digital
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counts of the selected urban features are plotted and a simple linear

regression performed. The input value of the images to be altered were

simply plugged into the equation to determine the output digital value. This

process is very simple and quick. The selected features should be well

distributed throughout the scene to average any spatial variations in

atmospheric conditions. It is assumed that the features that may have

changed between the image acquisition dates, such as vegetation, will have

been affected by the atmosphere in the same manner as the urban features.

The steps of the process are:

1) Selection of urban features:

This proved to be difficult given the poor resolution of the MSS imagery.

It was very difficult to locate pixels which contain only one urban feature. For

example, a major interstate that runs through Seattle consisted of mixed

pixels and could not be used in the calculation. Another problem with the

imagery used was that the scene was primarily composed of rural areas with

few invariant features.

Seven pixels were chosen and located in the three images. An attempt

was made to choose points that covered the dynamic range of each band.

2) Creation of look-up tables:

An example will be used which uses only 2 points to illustrate the

method. Suppose the following data for one band.

REFERENCE IMAGE: DAY 2D

POINT 1 10 23

POINT 2 55 42
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This data is plotted and a linear regression performed to determine the

equation of the line created.

EXAMPLE OF NORMALIZATION

a

O)

co

E

o

c

o
w

CD
^

<D

y = -44.4737 + 2.3684

R=1.00

Figure

day 2 image

3.3 Example of linear transformation using invariant features

A simple linear regression was performed to detenrtine the equation of the

line. In the above example, the equation

DCnew= - 44.47 + 2.37 DCoid (34)

would be used to transform the day 2 image where DCnew and DCold are the

digital count values for the new and old images respectively. This can be

performed quite easily using ERDAS software with the routine ALGEBRA.

Again, due to the poor resolution of MSS imagery, it was very difficult to

locate appropriate urban features. The pixels may be
"mixed"

pixels, he. they

may contain more than
one class. Even if the look-up table is successful in

"normalizing"

those pixels, it may not necessarily
compensate for the

atmospheric properties over the entire image.

56



3.43 LinearMapping Using Entire Image Statistics

This method is typically used on the image statistics of the invariant

features. However, due to the poor resolution of this imagery and the fact that

it contains very few urban features, this was not possible. Instead, the statistics

generated from the entire area of interest were used. In this method the mean

and standard deviation of each band was used to calculate a linear

transformation as described in section 2.2.2.2, equations 18-20. The following

example will help to illustrate the method.

Raw Data:

Reference Image To be mapped image

Mean 23.1 38.9

Standard Deviation 16.6 15.1

The slope of the line is calculated using equation 19 which is then plugged

into equation 20 to determine the y-intercept of the line:

_ o> _16.6_

m. = = i.i

cr
m

15.1
to

map

fc, = ^-mf*IO_^=23.1-l.lx38.9
= -19.7

The linear transformation is obtained using equation 18 as follows:

DCm =
mtDCoU + bt = UDCM + (-19.7)

In this manner the histogram of one image can be made to look like the

histogram of another image. Once the appropriate transformations are
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determined for each band, they can be entered into the ERDAS program

ALGEBRA to process the image. This is a linear histogram matching

technique as compared to the non-linear histogram specification method.

35 Classification

The classification process was fairly straightforward, yet the degree of

success depends greatly on the quality of the normalization.

The reference image was classified using both supervised and

unsupervised methods to compare the results. It was found that the latter did

a better job of spectrally separating the classes so it was pursued as a means of

"training"

the data. The ERDAS program ISODATA was used to perform the

unsupervised classification. The user must estimate the number of classes in

the image. It is safer to overestimate the number of classes contained in the

image as they can always be recombined at a later time. The success of the

method is determined by examining the results relative to ground truth. The

ERDAS program COLORMOD was used to examine and identify each class.

This program can also be used to merge or delete spectral signatures. These

signatures are used to classify the other images using MAXCLAS as in

supervised classification. In MAXCLAS, a minimum distance classification

was found to give better results than a maximum likelihood classifier. Figure

3.4 illustrates this.
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Figure 3.4 Minimum-distance-to-mean vs. Maximum

Likelihood classification

Figure 3.4 shows the one-dimensional probability curves for two

spectrally similar classes
contained in two images that are to be compared.

The top section is the reference image and the third section represents the

result of the normalization process of histogram matching on the Day 2

image. The dashed lines represent the class means of the two classes in the
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reference image. In maximum-likelihood classification a pixel is assigned to

the class that it has a higher probability of belonging. In the illustration,

digital count 60 is marked by a black dot. The probability of a pixel belonging

to a class can be determined by imagining a straight line extending from the x-

axis and crossing the class boundaries. In this example, the pixel belongs to

class 1 because it has a higher probability as shown in the diagram. In a

mimmum-distance-to-mean classification, the pixel shown in the reference

image would also be classified as a class 1 pixel because its value is closer to

the class 1 mean.

A problem can arise in spectral classes that are close together in that they

may not be made to match the reference image exactly. As seen in section

three of Figure 3.4, the transformed classes are not perfectly centered around

the class means. Recall that the reference image statistics are used to classify

all images in a set. In this case, as a result of the shift and the closeness of the

classes, it is seen that a maximum likelihood classifier will assign the pixel as

a class 2 pixel in the Day 2 image. However, the rninimum distance to mean

classification still accurately classifies this pixel as class
1.

The result of using a maximum
likelihood classifier on an image used in

this study is shown in
Plate 20. This problem is more likely to occur when

using LANDSAT MSS imagery since there are only 128 gray levels available

in each band.
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4.0 Results

4.1 Manual Registration of Reference Image

As stated previously, the reference image was manually registered to a

map. The user can determine the success of the registration in pixels. This is

done by dividing the UTM difference between actual control points and those

associated with a pixel after registration by the resolution of the images (in

meters for UTM coordinates). That is, if the difference in UTM coordinates is

200 meters, the error would be 2.53 pixels using the information that MSS

imagery has a spatial resolution of 79 meters per pixel. For some applications,

it is necessary to have sub-pixel accuracy. To set up the map, it is important to

test several known points to ensure that minimal error is being introduced in

this step. Table 2 lists the control points used in the manual registration.
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Table 2 Control points used in manual registration

x Pixel UTM y Pixel UTM x Pixel y Pixel

Coordinate Coordinate Location Location

1 592324 5263436 2354 798

2 593596 5257544 2404 867

3 598055 5256323 2482 871

4 596498 5282152 2337 556

5 606502 5296234 2436 357

6 600352 5312486 2256 173

7 604517 5314819 2315 133

8 587360 5304404 2075 311

9 580574 5286484 2046 549

10 624711 5286340 2791 426

11 616392 5263449 2762 728

12 583881 5246069 2293 1036

13 580678 5242794 2256 1086

14 579900 5221448 2344 1349

15 578321 5220669 2321 1363

16 604747 5219883 2772 1295

17 633392 5236586 3182 1011

18 616825 5305188 2569 214

19 649302 5292815 3191 275

20 621244 5250117 2911 879

21 606942 5193946 2929 1606

22 610294 5266797 2643 704

23 | 623767 5226690 3060 1157

These coordinates were used to derive the appropriate transformations.

Several points were chosen to test the accuracy of the registration on both

dependent data (points used to generate the transformations) and

independent data (points not used in the registration). The points were

located in the image using the CURSES program in ERDAS, and on the map

using the digitizing table. The UTM coordinates now associated with each
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pixel can be compared to those obtained from the digitizing table and the

error may be calculated in meters and in pixels. Table 3 contains the errors for

these test points for both the x and y directions for the dependent data set;

Table 4 lists them for the independent data set.

Table 3 Registration error for dependent points

A UTM x AUTM y A Pixel x A Pixel x

78 110 0.99 1.40

-16 -34 0.20 0.43

54 -87 0.68 1.10

80 -35 1.01 0.44

-122 68 1.54 0.86

-55 37 0.69 0.46

168 141 2.12 1.78

RMS pixel error in x direction

RMS pixel error in y direction

1.28

1.12

Table 4 Registration error for independent data points

AUTM x AUTM y A Pixel x A Pixel x

34 11 0.43 0.14

137 89 1.73 1.12

-270 66 3.40 0.83

80 19 1.01 0.24

127 -29 1.60 0.37

19 -166 0.24 2.10

75 67 0.94 0.85

129 485 1.63 6.10

135 114 1.71 1.44

184 181 2.32 2.29

RMS pixel error in y direction:

RMS pixel error in y direction:

1.83 pixels

2.40 pixels
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Upon completion of manual registration, the kernels were extracted from

the newly registered image. The control points are distributed over the area

that was used to register the images. The distribution of control points chosen

in the 1972 image is shown in Plate 1. The inner rectangle corresponds to the

outlined area in Plate 4 to show the relationship between the area used in

image registration (Plate 1) and that used in the normalization and

classification stages (Plate 4). Plate 4 is the 1972 image (reference) that the 1981

and 1988 images were made to match. Since the correlation procedure is

highly sensitive to differences in image scale and rotation, the to-be-mapped

images had to be approximately registered to the reference image prior to

performing the correlation operation. The 1988 image is shown in Plate 2

before and after approximate registration, thus illustrating the effect of

rotational variation between the images. Plate 3 shows the result of

correlating a kernel with its corresponding search area. The point in the

correlation with the highest gray value is recorded as the located control

point. Tables 5 and 6 list the final ground control points that were located in

the 1981 and 1988 images, respectively. The first column contains the actual

control points which were located manually for comparison purposes. The

second column contains the points that were found in the intermediary step

used to create the search windows. The errors of the approximations ranged

from 0 pixels to as large as 17 pixels in one dimension for the 1981 image and

between 1 pixel and 25 pixels for the 1988 image. This was adequate for

creating search areas of a reasonable size (75 x 75
pixels). The third column

lists the ground control points that were used in the final registration. The

last is the error between the final ground control points chosen and the actual

points in each image.
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Table 5 1981 ground control points

Actual Approximate Correlation Difference

x y x y x y Ax Ay

2412 1307 2416 1306 2412 1306 0 -1

2538 734 2542 722 2538 734 0 0

2251 1368 2253 1369 2252 1368 1 0

2210 1411 2210 1412 2211 1411 1 0

2197 1670 2198 1677 2197 1670 0 0

2515 1702 2523 1711 2515 1701 0 -1

2375 1479 2378 1483 2375 1479 0 0

2358 1148 2360 1144 2359 1148 1 0

2429 1240 2433 1239 2429 1240 0 0

2290 1107 2290 1102 2290 1107 0 0

Bad Point 2739 1324 2731 1344 * *

2876 1492 2887 1497 2876 1492 0 0

2502 884 2509 873 2504 883 2 -1

2308 671 2308 657 2308 672 0 1

2296 629 2296 613 2296 629 0 0

2298 555 2298 538 2297 555 -1 0

2768 860 2775 851 2768 860 0 0

Off of this Image 2435 492 2410 467 * *

2375 1224 2377 1222 2375 1224 0 0
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Table 6 1988 ground control points

Actual Approximate Correlation Difference

x
y x y x y Ax Ay

1933 1552 1932 1550 1933 1553 0 -1

2060 981 2043 961 2060 981 0 0

1773 1614 1770 1616 1772 1614 1 0

1731 1656 1728 1660 1731 1656 0 0

1718 1916 1723 1927 1718 1916 0 0

2036 1947 2051 1953 2035 1948 1 -1

1895 1726 1899 1728 1895 1726 0 0

1880 1394 1872 1388 1879 1394 1 0

1950 1486 1948 1482 1950 1486 0 0

1811 1353 1800 1347 1811 1353 0 0

2250 1581 2257 1561 2254 1576 -4 5

2395 1740 2411 1731 2395 1740 0 0

2026 1130 2015 1113 2027 1131 -1 -1

1830 918 1807 901 1830 917 0 1

1818 875 1793 857 1818 876 0 -1

1818 799 1793 782 1821 801 -3 -2

2289 1108 2280 1085 2289 1108 0 0

1955 755 1931 732 1954 754 1 1

1896 1471 1891 1466 1896 1471 0 0

Some of the points were not well chosen due to poor structure of the

control point, because the control point was not contained in the second

image, or because the control point was not located within the search area

chosen.

After selecting the control points, the transformations are generated. A set

of constraints is entered into the COORDN program to ensure that the best fit

is found. If these constraints are not met, the program prompts the user for

action to be taken. One choice is to remove the control point with the largest

error. This is done until the constraints are met. Points are removed from the
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registration in this manner. Therefore, providing that a sufficient number of

points are found accurately, it is not problem if a control point cannot be

located as it will be removed. Appendix (D) contains the results of the

COORDN program. The registered images are shown in Plates 5 and 6 and

have been cropped to cover identical areas. Sections of each image were subset

and used to create one image to show the continuity after registration (Plate

18).

42 Normalization

42.1 HistogramMatching (Specification)

This method yielded the best results of the three used. Image statistics

from the ERDAS program BSTATS were examined after processing for

comparison to the reference image (Plate 4). Each image was visually

examined after transformation through the reference-image look-up table.

This allowed the user to see any differences present between images. Plate 7

and 8 are the images that were normalized using the histogram matching

method. These images most closely resemble the reference image when

compared to the other normalization methods. Table 7 and 8 list the statistics

of the three images prior to and after normalization, respectively.

Table 7 Original image statistics

BAND1 BAND 2 BAND 3 BAND 4

Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

1972 20.79 8.40 14.52 13.03 38.69 17.31 23.10 16.57

1981 17.40 8.99 14.09 10.24 37.57 13.96 38.86 15.07

1988 16.88 4.40 13.38 6.74 42.78 13.73 47.6 15.81

67



Table 8 Histogram matched statistics

BAND1 BAND 2 BAND 3 BAND 4

Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

1972 20.79 8.40 14.52 13.03 38.69 17.31 23.10 16.57

1981 19.80 10.00 13.66 11.04 37.50 15.29 22.50 12.17

1988 20.44 4.91 14.25 6.33 37.04 13.86 21.02 9.14

When the statistics are compared, the means of each band are closely

matched but the standard deviations have considerable differences. It is

believed that this is due to the differences in snow cover between the three

images.

422 Use of Invariant Features to Perform
LinearMapping

Seven pixels distributed throughout the scene were chosen that were

thought to be urban features that are invariant over time. Ideally, these pixels

would have been well distributed in reflectance he. they would cover the full

dynamic range of each band. Unfortunately, it was difficult to locate such

points in this imagery. The data points in Table 9 were
located in each image

and their digital count values recorded. Each is the
value of an individual

pixel only, not the average
of an area. This is because the urban features are

too small to obtain an average digital count
value.
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Table 9 Dijrital count of invariant pixels in each band

PDCELS 1972 BAND 4 BAND 3 BAND 2 BAND1

1 16 36 40 39

2 18 44 41 41

3 21 53 53 50

4 14 34 37 38

5 10 26 25 27

6 17 43 37 38

7 19 41 31 31

PDCELS 1981

1 30 36 32 32

2 36 47 41 36

3 45 63 63 50

4 24 33 34 31

5 19 28 29 27

6 28 37 32 32

7 33 42 33 29

PIXELS 1988

1 26 38 32 34

2 34 37 37 26

3 53 65 72 52

4 25 33 35 30

5 27 30 29 26

6 31 40 30 31

7 30 37 28 27
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From these data, look-up tables were created as described in the

experimental procedure. Each band must have its own look-up table.

However, after performing the regression, all four equations can be input into

ALGEBRA (ERDAS) to process the image without further user interaction.

An example of the look-up tables created is shown for the 1981 image.

1981 Image

Normalization Band 4

e

CO

y
= 4.2229 + 0.3974x

R = 0.93

G

co

1981 Band 4

Figure 4.1a 1981 band 4 look-up table, linear transformation using
invariant features

1981 Image

Normalization Band 3

y
= 11.3738 + 0.6902x

R = 0.93

-

r

30

"T"

40

T-

60 70

1981 Band 3

Figure 4.1b 1981 band 3 look-up table, linear
transformation usmg

invariant features
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s

ca

60-1

1981 Image

Normalization Band 2

y
= 13.4006 + 0.6447x

R = 0.87

-"
r-

30 40 50

1981 Band 2

Figure 4.1c 1981 band 2 look-up table, linear transformation using
invariant features
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CO

N
t>

60-

50-

40-

30-

20-

10-

10

Figure 4.1d

1981 Image

Normalization Band 1

i-

20 30

r-

40

y
= 8.0204 + 0.877x

R = 0.91

50 60 70

1981 Band 1

1981 band 1 look-up table, linear
transformation using

invariant features
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The linear equations used to transform the 1988 image are:

Bandl

Band 2

Band 3

Band 4

DC new = 16.9175 +0.6441 * DCoid

DC new = 19.7268 +0.4788 * DCold

DC new = 14.4458 +0.6281 * DCold

DC new = 8.0521 + 0.2584 * DCold

The digital count values in the original 1988 image are inserted into the

above equations to obtain values that resembled those of the 1972 reference

image. This is only valid if the objects used did not change over time. For

pixels that have changed due either to environmental or manmade changes,

the effect compensates for atmospheric differences between acquisition dates.

The following tables are the converted digital count values for each band

in each image. Recall that the 1972 image is the reference image and remains

unchanged. The 1981 image and the 1988 image are altered to match the

spectral characteristics of the reference image.

Table li)a Output digital counts of invariant objects for band 4

BAND 4 1972 1981 1988

FTXEL1 16 16 14

PIXEL 2 18 18 15

PDCEL3 21 22 21

PDCEL4 14 13 14

PIXEL 5 10 11 15

PIXEL 6 17 15 16

PIXEL 7 19 17 15
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Table 10b Output digital counts of invariant objects for band 3

1972

FTXEL1 36

PIXEL 2 44

PIXEL 3 53

PDCEL4 34

PIXEL 5 26

PIXEL 6 43

PIXEL 7 41

1981 1988

36 38

43 37

54 55

34 35

30 33

36 39

40 37

Table 10c Output digital counts of invariant objects for band 2

BAND 2 1972 1981 1988

PIXEL 1 40 34 35

PIXEL 2 41 39 36

PIXEL 3 53 54 54

FTXEL4 37 35 36

FTXEL5 25 32 33

PIXEL 6 37 34 34

PDCEL 7 31 34 33

Table lOd Output digital counts of invariant objects for band 1

BAND1 1972 1981 1988

PIXEL 1 39 36 38

PIXEL 2 41 39 35

PDCEL3 50 51 50

PIXEL 4 38 35 36

PIXEL 5 27 31 33

PDCEL6 38 36 36

PIXEL 7 31 33 34
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The RMS (root-mean-square) error was calculated to estimate the accuracy of

the above method. The error must be calculated individually for each band.

V n-l
(35)

where:

xi is the data from the reference image

X2 is the data from the images to be matched

n the number of pixels

Table 11 Digital count RMS error for each band

Band 4 Band 3 Band 2 Bandl

RMS 1981 1.35 3.37 4.32 2.79

RMS 1988 3.02 4.81 4.64 3.87

The overall image statistics are found in Table 12 and the images are shown

in Plates 9 and 10.

Table 12 Statistics from linear transformation of invariant features

BAND1 BAND 2 BAND 3 BAND 4

Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

1972 20.79 8.40 14.52 13.03 38.69 17.31 23.10 16.57

1981 22.73 7.93 21.95 6.65 36.65 9.83 19.04 6.12

1988 27.25 2.89 25.64 3.20 40.78 8.66 19.87 4.14

The overall results from this method were very poor, although they may

have been acceptable if just the invariant features are examined.
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423 LinearMapping Using Entire Image Statistics

The results of this method are shown in Plates 11 and 12. The

transformations were calculated using the statistics given in Table 7 by the

method described in Section 3.4.3. The equations used were:

1981 mapped to 1972 image:

DCbMdl = 934DCold + 4A5

DCbtud2 = 1.27DCOId-3Al

DChama = 1.24DCM-7.90

DCbaKM =U0DCM-19.65

1988 mapped to 1972 image:

DC^=1.9WC- 11.53
old

DC^ = 1.93DC- 11.30
old

DC^ = 1.26DC -15.21
'band!

DC
bandA

old

= 1.05>CoU- 26.88

The image statistics were again calculated to compare to the original 1972

image and can be found in Table 13.

Table 13 LinearMapping Using Entire Image Statistics

BAND1 BAND 2 BAND 3 BAND 4

Mean St. dev. Mean St. dev. Mean St. dev. Mean St. dev.

1972 20.79 8.40 14.52 13.03 38.69 17.31 23.10 16.57

1981 20.13 8.50 14.02 12.96 38.68 16.83 24.51 15.15

1988 20.30 8.31 14.35 12.93 39.08 16.15 25.33 | 14.18
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The results of this method were better than those of method 3.4.2;

however, they were poorer than those from the histogram specification

technique. This method may be useful using other imagery.

The images all covered identical areas since they had previously been

registered. However, it is possible that the results were altered due to the

differences in snow cover between the image acquisition dates. The reference

image had considerably more snow than the others and the 1981 image had

even slightly less than the 1988 image.

43 Classification

Fifteen classes were identified using ISODATA; however, these were

modified to include only 11 classes in the final result after examining them

using COLORMOD (ERDAS). Plates 13-15 are the classified images. The

classifier was able to distinguish between areas in the image that had been

clearcut, those that had some degree of regrowth, and those that remain

healthy and mature trees. However, it was not possible to determine whether

these forest stands were old growth or the result of replanting. Three enlarged

areas of clearcuts are shown in Plate 16 to illustrate the changes more

effectively. These can be compared to Plate 17, which is a copy of an aerial

photograph that dates to 1971. In Plate 17, Lake Keechelus is located in the

upper right corner, and is easily identified in Plates 13-15 to give
a point of

reference. The smaller lake to the left is located in the upper right corner of

the Plate 16-Section 2 image. Just to the left of this smaller lake in the aerial

photograph is a
"puzzle-piece"

freshly clearcut area (he. not rectangular) with

a bottle neck that extends to another clearcut. This extended area is split

between fresh clearcut (upper) and brush or grassy regrowth (lower). These

two areas are identifiable in the Plate 16- Section 2 image and are classified
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accurately.When looking at this same area in the 1981 and 1988 images, it can

be seen that there has been some regrowth. However, it must also be noted

that areas directly adjacent to those have since been cut, thus changing the

shape of the original clearcut. This can also be seen on the aerial photograph

in the red cross-hatched areas which represent those that have been cut

between 1971 and 1989 (Dave Leversee, Wilderness Society, Seattle,

Washington).

In the Plate 16-Section 3 image, the line that cuts through the upper left

corner is the power line that crosses the lower right corner of the aerial

photograph. Again, areas can be identified that had been cut in the 1972

image, experienced regrowth and extended cutting in the
later images. To the

right of the power lines, in the 1972 images, there are several small, newly

clearcut areas as well as some larger rectangular areas. It can be easily seen that

these have become grass and brush in the later images and
that a large

amount of the surrounding forest has
been cut since 1972. The area outlined

in green was set aside for 1 pair of the endangered (and controversial) spotted

owls. Although a quantitative analysis of clearcutting
was not performed, it

has devastated this area and continues to do so. Two photographic examples

of clearcuts can be found in Plates 19A,B.
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Plate 7: Histogram specification

(1981 image)

Plate 8: Histogram specification

(1988 image)
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5.0 Conclusions and Recommendations

A technique has been developed to perform automated image-to-image

rectification. The method automatically selects control points in an image to-

be-registered using mathematical correlation of the scene in two windows.

The kernel window is a section of an image that has been manually registered

to a map image with the control point located at its center. Each control point

used in the manual registration is extracted and stored in a kernel file along

with data such as the map coordinates associated with each pixel. The search

window is found by locating the control point approximately and extracting

the area of the to-be-mapped image that surrounds it. The map coordinates

and the pixel locations of three points must be known in the image to be

registered. From this information, a transformation can be determined which

transforms UTM map coordinates to pixel coordinates. The UTM coordinates

associated with the control point in the center of the kernel window are used

to locate the search area. The transformation is applied to these UTM

coordinates and their approximate location is found. These two windows are

correlated and the maximum value is the new control point.

Using LANDSAT MSS images, the process was shown to have a

registration error of approximately 1-2 pixels. The poor resolution of MSS

imagery as well, as the rural nature of the images may have contributed to the

error. Ideal invariant control points were lacking in the imagery as they are

more frequently found in urban areas (e.g. cross-roads, corners of buildings).

The program was designed to be compatible with other types of imagery and

is expected to perform better under more ideal conditions.

Image-to-image rectification is useful in the application of temporal

change detection. The images were of a section of the Cascade Mountains in

Washington State where the process of clearcutting has been employed
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excessively. The changes in forest cover due to clearcutting from 1972 to 1988

were examined.

Change detection also involves the steps of image normalization and

image classification. Ideally, these steps need to be automated as well. The

techniques used were somewhat automated. However, since the focus of this

study was automated registration, such methods were not explored

thoroughly.

The image normalization process was performed using the technique of

histogram specification. This method alters the histogram of one image to

resemble that of another. In this case, each of the four MSS bands must be

matched to the corresponding band in the reference image. To make the

classification process more automated, the data were trained on a reference

image and the signatures generated were applied to the entire image set.

Training was done in an unsupervised manner which also minimized user

interaction. Unsupervised techniques require that the user identify the

spectral classes after the classification is complete. Spectral classes can be

merged in this step as well.

A qualitative analysis of the normalization and classification stages was

performed. Each was adequate for the purposes of detecting the changes in

clearcut deforestation. The normalization was affected by differences in snow

content between the three images.

One limitation of the technique is that several steps must be taken to
pre-

process the to-be-registered images prior to correlation. Although all images

were from the same sensor, there are still noticeable differences in scale and

rotation between them. The correlation is highly sensitive to these changes,

so an approximate
registration must be performed. In this study, this was
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done by empirically detennining the angle of rotation needed and the

difference in scale. An alternative method would be to locate several control

points approximately and use these to register the images. This could be done

via the same method for creating the search areas and would result in a

rough registration of the images. This method was not implemented but may

be more efficient.

Another limitation is that the method was tested using only LANDSAT

MSS images. It may be necessary to register two images from different sensors

This is a more difficult task as the resolution may be different if the images

were acquired using different sensors. Therefore, a more significant difference

in scale must be compensated. Also, the method was only used on an MSS

image set and must be made compatible for other types of image sets, such as

from SPOT or LANDSAT TM.

Finally, the steps of radiometric normalization and image classification

must be made fully automated if an automated approach to the entire process

of change detection is desirable.
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Appendix A

Appendix A-Program MAKE_KERNEL_UTM

Program creates kernels windows from a rectified image:

MAKE_KERNEL_UTM

User must specify the UTM coordinates of the control point; from this

the kernel is created with the control point at kernel center.

These kernels are used in the program: MAKE_GCP_FILE.C

NOTE: If the user wishes to create kernels using the pixel locations, use the

program MAKE_KERNEL
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Appendix A

#include <stdlib.h>

?include <stdlo.h>

?define MX_BANDS 256

finelude "

image. h"

Z*****************************************************************,^**,,^
*******

Program Make_kernel_utm . c

description This program extracts sections from an image that are to

be used as kernel images in make_gcp_file . c

These sections contain the control points from manually
referenced image

of

must

The actual control point is located in the exact center

the kernel. Therefore, to make it simple, the kernels

have an odd number of rows and cols so there is an exact

center.

The user is prompted for:

the name of the input file

the name of the file in which to store the kernel

the map coordinates of the center of the control

points

row_utm_center (y)

-these are col utm center (x) and

the number of pixels in a row to extract (cols, or

number of elements)

the number of rows to extract (rows)
************************************************************************

*****/

main()

{

long row_ctr, col_ctr;

float row_utm_ctr, col_utm_ctr;

long row_start, eol_start;

long number_of_elements;

long num_rows;

long band;

long row, col ;

long displace_utm_y, displace_utm_x;

long row_ctr_for_getpixel, col_ctr_for_getpixel;

long temp_xstart, temp_ystart;

char in_file[80];

char out_file[80];

struct PICTURE_OPTIONS picops_in;

struct PICTURE_OPTIONS picops_out;

struct ERDAS_HEADER header_in;

struct ERDAS_HEADER header_out;

unsigned char *image_data_location;

unsigned char band_mask[MX_BANDS] ;

/* GETTING INPUT FILENAME, OUTPUT FILE NAME, # OF ELEMENTS TO GRAB */

prlntf("\n Enter input filename (*.lan file) >") ;

scanf( "%s", in_file ) ;

/* OPENS THE INPUT FILE */

if ( ( open_erdas_file(theader_in, Spicops_in, in_file, nr", q-j
0) ) = (int) NULL ) {
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exit( 1 );

>

printf (n\n Enter output filename (*.lan file) >n);

scanf( "%s", out_file );

printf ("\n Enter center col utm coordinate of kernel (x value) >");
scanf ("%f", col_utm_ctr) ;

printf ("\n Enter center row utm coordinate of kernel (y value) >");
scanf ("%f", srow_utm_ctr) ;

do {

printf ("\n Enter # of pixels in a row to grab (odd #) >") ;
scanf ("%ld", Snumber_of_elements) ;

} while (! (number_of_elements%2)) ;

do {

printf (n\n Enter number of rows to be grabbed (odd #) >") ;
scanf ("%ld", Snum_rows) ;

} while ( ! (num_rows%2) ) ;

row_ctr header_in . ystart +

((-row_utm_ctr + header_in . ymap) /header_in . ycell) ;

col_ctr header_in . xstart +

( (col_utm_ctr -

header_in.xmap)/header_in.xcell) ;

/* GETPIXEL NEEDS POINTS TO BE REFERENCED RELATIVE TO 0,0 */

row_ctr_for_getpixel = row_ctr - header_in.ystart;

col_ctr_for_getpixel = col_ctr - header_in.xstart ;

/* GETTING ROOM TO STORE DATA */

image_data_location (unsigned char *) calloc

((slze_t) (num_rows*number_of_elements*

picops_in.number_of_bands) , (size_t)

sizeof (unsigned char) ) ;

/* FILLING BAND MASK */

for (band 0; band < MX_BANDS; band++) band_mask [band] 0;

for (band 0; band < picops_in.number_of_bands;band++)

band_mask [band] - 1;

/* DETERMINING UPPER LEFT CORNER, STARTING POSITION TO READ IN KERNELS*/

row_start * (row_ctr_for_getpixel - (num_rows/2) ) ;

col_start * (col_ctr_for_getpixel - (number_of_elements/2) ) ;

col=col_start ;

/* OPENING FILE TO PUT KERNEL */

header_out - header_in;

header out.xstart col_ctr
-

number_of_elements/2;

header out.ystart row_ctr - num_rows/2;

header_out . irows num_rows;

header out.lcols number_of_elements;

header out .ymap
= header_in . ymap

- ( (header_out.ystart -

header_in . ystart ) *header_in . ycell) ;

header_out.xmap header_in . xmap + ( (header_out.xstart -

header_in.xstart) *header_in.xcell) ;

open_erdas_file(fiheader_out, Spicops_out,out_file, V, -1) ;

/* CREATING KERNEL DATA */

for (row row_start; row < row_start+num_rows; row++J {

getpixel (picops_in, row, col, band_mask,

number_of_elements ,

image data_location) ;

putpixel (picops_out, row-row_start, col-col_start, band_mask,

number_of_elements, image_data_location) ;
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Appendix B-Program MAKE_GCP_FTLE

Program to run image-to-image rectification:

make_gcp_file

-find_point

- allocate_double_image

-rnake_correlation_image

-allocate_unsigned_image

-convert_byte_image_to_double

-convert_to_unsigned

-write_gcp

-get_data

-

correlate_image

-put_data

To use program
"make_gcp_file.c"

Kernel windows (images) must be created and supplied to make_gcp_file

(created using
"make_kernel_utm.c"

(Appendix A))

"make_gcp_file.c"

expects a filename that contains a list of kernel

images he.
"kernels_names.nam"

be sure to include full path.

k_thesis.h is on the last page, just after put_data.c

This symbolizes the start of a new function
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?include <stdio.h>

?include <stdlib.h>

?include <math.h>

?include "image.
h"

?include nk_thesis.hn

/*t**********t***********t**t**j,*t**t**************rt****(rt*t*tM***t***

MAIN : make_gcp_file . c

description: This program reads in a kernel image from a namefile and

creates a search area in an image to be registered. It

correlates these two images and returns the maximum value.

The kernel image contains a control point extracted from a

registered image. It has map coordinates associated with it.

The max. value is the newly found control point in the

registered image. Both the map coordinates associated with the

control point and the location of the new control point are

written to a ground control point file (gcp) to be used in

image registration using ERDAS software.

functions: f1nd_po<nfc

uses the map coordinates associated with the center point

of the kernel image (ie. the control point to be found

automatically) and locates that point approximately in the

to be registered images. This is done so that a search area

can be created.

maTr<_corrglation_lnia(TQ

this takes the search area that was created based on find_point

and the kernel image and correlates them. The correlation

value at each location is stored in a new image called "result"
.

convert_byte_image_to_double

takes an image and converts data to double

converttonns ioned

converts a double image back to unsigned.

al 1 Qf.att>_rlmih1 e_tmaoe

allocates appropriate amount of space for an image with

data that is double

allocate unsigned image

allocates space for an image of data type unsigned

vrrlte,ggp

writes new ground control points to gcp file with

associated UTM (Universe Transverse Mercator, meters)

coordinates. This is used to register the images with

ERDAS software.

getpixel and putpixel are also used (Carl Salvaggio) and

are included in image. h

k_thesis.h

contains structures created for Kaleen 's thesis
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To use this program:

Must enter:

the name of the image to be registered

the name of the gcp file to write data to

the file name that contains the list of kernels (created

using make_kernel)

the name of the output search window (enable user to view

a search area, if there is more than one kernel name

in the namefile, the final output search area will

be from the last kernel as this is continually
written over as the program runs) .

the name of the output correlation image (also gets written

over)

REFERENCE POINTS: these are used to find the approximate

locations of the control points . They are three

corners of an image that was manually registered.

Both the pixel locations and the UTM coordinates

are required and are obtained from the ephemeris

data associated with each Landsat image.

USAGE: (should be entered in one line, each separated by one space)

make_gcp_file image_to_register gcp_filename kernel_filename

output_search_window correlation_image x_upper_lft y_upper_lft

UTM_x_upper_lft UTM_y_upper_lft x_upper_rgt y_upper_rgt UTM_x_upper_rgt

UTM_y_upper_rgt x_lower_rgt y_lower_rgt UTM_x_lower_rgt UTM_y_lower_rgt

author: Kaleen Moriarty

*******************************************************************************/

struct FILECOORD find_point ( struct ERDAS_HEADER header_kernel,

struct REFERENCE_POINTS ref_pts) ;

struct IMAGE DOUBLE make_correlation_image ( struct IMAGE_DO0BLE kernel,

struct IMAGE_DOUBLE search_window ) ;

struct IMAGE DOUBLE convert_byte_image_to_double ( unsigned char *byte_image,

long number_of_rows,

long number_of_columns ) ;

struct IMAGE UNSIGNED convert_to_unsigned ( double *double_image
,

long number_of_rows ,

long number_of_columns ) ;

struct IMAGE DOUBLE allocate_double_image ( long num_rows, long num_cols );

struct IMAGE_UNSIGNED allocate_unsigned_image ( long num_rows, long num_cols ) ;

void write_gcp ( struct IMAGE_DOUBLE result_image,

struct ERDAS_HEADER header_result
,

struct ERDAS_HEADER header_kernel,

FILE *fp_gcpfile ) ;

void print_usage (void) ;
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main (int argc, char *argv[])

{

struct ERDAS_HEADER header_image_to_reg;
struct ERDAS_HEADER header_kernel ;

struct ERDAS_HEADER header_image_out ;

struct ERDAS_HEADER header_kernel_out ;

struct ERDAS_HEADER header_result ;

struct PICTURE_OPTIONS picops_image_to_reg;

struct PICTURE_OPTIONS picops_kernel;

struct PICTURE_OPTIONS picops_image_out;

struct PICTURE_OPTIONS picops_kernel_out ;

struct PICTURE_OPTIONS picops_result;

struct FILECOORD pts_found;

struct REFERENCE_POINTS ref_pts;

struct IMAGE_DOUBLE kernel_converted;

struct IMAGE_DOUBLE search_area_converted;

struct IMAGE_DOUBLE result_image ;

struct IMAGE_UNSIGNED result_unsigned_image;

long row, col;

long SEARCH_WINDOW_SIZE;

long search_area_num_rows , search_area_num_of_elements;

long row_ctr_image_getpixel, col_ctr_image_getpixel;

long row_start_image, col_start_image;

long band;

long pixel;

long num_control_pts;

char k_filename[80] ; /* filename that contains names of kernel images,

reads in each kernel one at a time */

char individual k filename [80] ;

char gcp_filename[80] ;

char lmage_file [80];

char out_kernel [80];

r*\j>T out_search[80] ;

char view_result [ 80 ] ;

int status ;

/* filename that contains gcp coordinates */

/* filename containing image to be registered */

/* temporary file to check data input */

/* temporary check of search window data input*/
/* temporary check of correlation result */

FILE *fp_kernelnames;

FILE *fp_gcpflle;

unsigned char *kernel_for_getpixel;

unsigned char *search_area_for_getpixel;

unsigned char band_mask_kernel[MX_BANDS] ;

unsigned char band_mask_out_kernel[MX_BANDS]

unsigned char band_mask_image [MX_BANDS] ;

unsigned char band_mask_out_image[MX_BANDS] ;

if (argc !* 18 ) {

print_usage ( ) ;

}

strcpy (image_file, argv[l]);

strcpy (gcp_filename, argv[2]);

strcpy (k_filename, argv[3]);

strcpy (out_search, argv[4]);

strcpy (view_result , argv [5 ] ) ;

sscanf (argv[6], "%lf", tref_pts
.x_ref) ;

sscanf (argv[7], "%lf". firef_pts.y_ref ) ;

sscanf (argv[8], "%lf". firef_pts .utm_x_ref) ;
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sscanf (argv[9], "%lf", tref_pts.utm_y_ref) ;

sscanf (argv[10], "%lf", sref_pts.x_one) ;

sscanf (argv[ll], "%lf", Sref_pts.y_one) ;

sscanf (argv[12], "%lf", Sref_pts.utm_x_one) ;

sscanf (argv[13], "%lf", tref_pts.utm_y_one) ;

sscanf (argv[14], "%lf", Sref_pts.x_two) ;

sscanf (argv [15] , "%lf
"

, firef_pts .y_two) ;

sscanf (argv [16] , "%lf
"

, tref_pts .utm_x_two) ;

sscanf (argv [17], "%lf", firef_pts.utm_y_two) ;

if ((fp_gcpfile fopen (gcp_filename, "w"))=NULL){

printf ( "ERROR OPENING GCP FILE ") ;

exit (0) ;

}

/***** OPENING IMAGE TO BE REGISTERED *****/

if ( ( open_erdas_flle(Sheader_image_to_reg, Spicops_image_to_reg,image_file, "r",

0)) = NULL ) {

printf ( "ERROR OPENING FILE: IMAGE-TO-REGISTER
"

) ;

exit ( 0 ) ;

}

/**** OPENS FILE THAT CONTAINS KERNEL NAMES AND READS IN EACH KERNEL****/

fp_kernelnames - fopen (k_filename, "r") ;

if ( fp_kernelnames = NULL ) {

fprintf( stderr, Mmake_gcp_file : Error opening kernel name
file\n"

);

exit ( 1 ) ;

}

num_control_pts = 0;

while (fscanf (fp_kernelnames, "%s", individual_k_filename) !=EOF) {

num_control_pts++ ;

}

fclose ( fp_kernelnames ) ;

fprintf( fp_gcpfile, "%7d\n", num_control_pts );

fp_kernelnames *> fopen (k_filename, "r") ;

if ( fp_kernelnames
= NULL ) {

fprintf ( stderr, "make_gcp_file : Error Opening kernel name
flle\n"

) ;

exit( 1 );

)

/*** OPENS FIRST KERNEL, PROCESSES, THEN SECOND ETC ****/

while (fscanf (fp_kernelnames,"%s", individual_k_filename) !=EOF) (

status -open erdas_file ( header_kernel,picops_kernel,

individual_k_filename, "r
"

, 0) ;

/*********************************************************

FILLING BAND MASK:

Each Landsat MSS image has 4 bands for BAND MASK, these are numbered 0,1,2,3

The 4th band was used to correlate the images because it had high contrast

To use this band, band_mask [3] is set equal to 1

***********************************************************/

for (band - 0; band< MX_BANDS; band++) {

band_mask_kernel [band] = 0;

band_mask_out_kernel [band] = 0;

}
bandjnaskjcernel [3 ] =1 ;

band mask out kernel [0]=1;

97



Appendix B

for (band = 0; band< MX_BANDS; band++) {

band_mask_image [band] '0;

band_mask_out_image [band] = 0 ;

}

band_mask_image [3 ] =1 ;

band_mask_out_image [0 ] =1 ;

/*** DEFINE VARIABLES FOR GETPIXEL,

***this section allows user to write kernel data out to make sure

that it was read in properly. Must remove comment marks to do this in

the future as it is not necessary normally
******

header_kernel_out = header_kernel;

header_kernel_out . nbands 1;

picops_kernel_out = plcops_kernel;

picops_kernel_out . number_of = 1;

open_erdas_file ( header_kernel_out , pieops_kernel_out , out_kernel ,
"w"

,
-1 ) ;

***/

/*** ALLOCATING SPACE FOR UNSIGNED CHAR KERNEL DATA ****/

kernel_for_getpixel = (unsigned char *)

calloc ( (size_t)

(picops_kernel . number_of
ows*

picop8_kernel.number_of_columns) ,

(size_t) sizeof (unsigned char));

kernel converted = allocate_double_image

( picops_kernel .
number_of_rows

,

picops_kernel.number_of_columns );

pixel 0;

for (row - header_kernel.ystart;

row<header_kernel . ystart+picops_kernel . number_of ;

row++) {

for (col * header_kernel.xstart ;

col<header_kernel . xstart+picops_kernel . number_of_columns ;

col++) {

status getpixel( picops_kernel,

row-header_kernel . ystart ,

col-header_kernel .xstart,

band_mask_kernel ,

1,

(kernel_for_getpixel+pixel) ) ;

/******* FOR CHECKING KERNEL DATA, REMOVE TO INCLUDE ***

status - putpixeK picops_kernel_out,

row-header_kernel . ystart ,

col-header_kemel . xstart ,

band_mask_out_kernel ,

1,

(kernel_for_getpixel+pixel) ) ; ****/

pixel = pixel + 1;

}

kernel converted
-
convert_byte_image_to_double

~

( kernel_for_getpixel,

picops_kernel .
number_of_rows

,

picops_kernel.number_of_columns );
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pts_found = find_point (header_kernel,ref_pts) ;
/**** GETS SEARCH WINDOW DATA*****/

SEARCH_WINDOW_SIZE = picops_kernel . number_of_rows * 3;
header_image_out = header_image_to_reg;

header_image_out . xstart = pts_found.x_out-SEARCH_WINDOW SIZE/2 ;

header_image_out.ystart - pts_found.y_out -

SEARCH_WINDOW_SIZE/2;
header_image_out.irows SEARCH_WINDOW_SIZE;

header_image_out . icols - SEARCH_WINDOW SIZE;

header_image_out . nbands 1;

header_image_out.ymap header_image to reg.ymap
-

( (header_image_out . ystart -

header_image_to_reg . ystart )

*header_image_to_reg . ycell) ;

header_image_out . xmap header_image_to_reg.xmap +

( (header_image_out .xstart -

header_image_to_reg . xstart )

*header_image_to_reg.xcell) ;

picops_image_out = picops_image_to_reg;

picops_image_out.number_of_band8 1;

plcop8_image_out.number_of_rows = SEARCH_WINDOW_SIZE;

picops_image_out.number_of_columns SEARCH_WINDOW_SIZE;

open_erdas_file (header_image_out, Spicops_image_out, out_search,
"w"

, -1) ;

row_ctr_image_getpixel = pts_found.y_out - header_image_to_reg.ystart;

col_ctr_lmage_getplxel = pts_found.x_out - header_image_to_reg.xstart;

search_area_for_getpixel = ( unsigned char *) calloc

(( size_t)

( SEARCH_WINDOW_SIZE*SEARCH_BINDOW_SIZE ) ,

( size_t) sizeof (unsigned char) );

search area_converted = allocate_double_image ( SEARCH_WINDOW_SIZE,

SEARCH_WINDOW_SIZE ) ;

row start_image (row_ctr_image_getpixel - (SEARCH_WINDOW_SIZE/2) ) ;

col start_image (col_ctr_image_getpixel - (SEARCH_WINDOW_SIZE/2) ) ;

pixel ' 0;

for (row row_start_image;

row < row start_image+SEARCH_WINDOW_SIZE;

row++) {

for (col = col_start_image;

col < col_start_image+SEARCH_WINDOW_SIZE;

col++) {

getpixeK picops_image_to_reg,

row,

col,

band_mask_image ,

1,

{ search_area_for_getpixel+pixel) ) ;

putpixeK picops_image_out,

row-row_start_image ,

col-col_start_image
,

band_mask_out_image ,

1,

( search_area_for_getpixel+pixel) ) ;

pixel * pixel + 1;
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}

}

search_area_eonverted -
convert_byte_image_to_double

( SQarch_area_for_getpixel,
SEARCH_WINDOW_SIZE ,

SEARCH_WINDOW_SIZE );

header_result * header_image_out;
picops_result =

picops_image_out ;

open_erdas_fileheader_result, picops_result,view_result, "w", -1) ;

result_image - make_correlation_image ( kernel_converted,
seareh_area_converted ) ;

write_gcp(
result_image,header_result,header_kernel,fp_gcpfile );

result_unsigned_image - allocate_unsigned_image

(picope_result . number_of rows
,

picops_result.number_of"columns );

result_unsigned_image - convert_to_unsigned

( result_image . data,

picops_result . number_of_columns
,

picops_result.number_of rows );

status =
putpixel( picops_result,

0,

0,

band_mask_out image,
( picops_result . number_of_columns*

picops_result.number_of_rows) ,

result_unsigned_image.data );

cfree ( kernel_for_getpixel ) ;
cfree ( search_area_for_getpixel ) ;
cfree ( kernel_converted ) ;

cfree ( search_area_converted ) ;

fclose ( picops_kernel . file_pointer ) ;
/*** fclose ( picops_kernel_out . file_pointer ) ; ****/

fclose ( picops_image_out . flle_pointer ) ;
fclose ( picops_result . file_pointer ) ;

}

}

fclose ( fp_gcpfile ) ;

void print_usage (void)

{

printf ("\n") ;

printf ("USAGE: make_gcp_file image_to_reglster gcp filename

kernel_filename\noutput_search_window correlation_image x_upper 1ft y upper 1ft
_x_upper_lft\nUTM_y_upper_lft x_upper_rgt y_upper_rgt UTM_x_upper_rgt

~

UTM_y_upper_rgt\nx_lower_rgt y_lower_rgt UTM_x_lower_rgt UTM_y_lower rgt ")

printf ("\n");r

exit(0);

}
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?include <stdio.h>

?include <math.h>

?include "k_thesis.h"

?include " image.h"

/******************************************************************************

function find_point . c

description Using three points of reference (three corner points in the

image to be registered) , an estimate of control point location

is made. The UTM coordinates and the pixel locations of those

three points must be known. Be sure to double check the

corner points . If an approximate registration has already

been performed, these are no longer the same as those supplied

with the original scene.

author Kaleen Moriarty
******************************************************************************/

struct FILECOORD find_point( struct ERDAS_HEADER header_kernel,

struct REFERENCE_POINTS ref_pts)

{

long double alpha,beta, gamma, delta;

long double utm_x_desired, utm_jy_desired;

long double xmap_center,ymap_center;

struct FILECOORD pts_found;

/***

By subtracting the ._ref value from the other 2 points, the calculation

is made simpler as it is referenced to the origin

***/

ref_pts.x_one ref_pts.x_one
- ref_pts.x_ref ;

ref_pts.y_one ref_pts.y_one
- ref_pts.y_ref ;

ref_pts.utm_x_one
= ref_pts.utm_x_one

- ref_pts.utm_x_ref ;

ref_pts.utm_y_one = ref_pts.utm_y_one
- ref_pts.utm_y_ref ;

ref_pts.x_two = ref_pts.x_two
- ref ;

ref_pts.y_two - ref_pts.y_two
- ref_pts.y_ref;

ref_pts.utm_x_two
= ref_pts.utm_x_two

- refjpts.utm_x_ref ;

ref_pts.utm_y_two
= ref_pts.utm_y_two

- ref_pts.utm_y_ref ;

/***
xmap center

and ymap_center are the map coordinates of the

kernel center (the control point to find in new image) .

utm_x_desired,
utm_y_desired is that point translated relative to

the origin.

***/

xmap
center - headerjcernel.xmap

+ (headerjcernel.xcell *

((headerjcernel.icols -l)/2));

ymap center
- headerjternel . ymap

- (header_kernel.ycell
*

( (headerjcernel .
irows -1) /2) ) ;

utm x desired
- xmap_center

- refj>ts.utm_x_ref ;

utmjrldesired
- ymap_center

- ref_pts.utm_y_ref ;

aloha - (l/(ref Pts.x
one*ref_pts.y_two

- ref_pts.x_two*ref_pts.y_one) ) *

(ref_pts\utm_x_one*ref_pts.y_two + ref_pts.utm_x_two*(-ref_pts.y_one) ) ;
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beta = (l/(ref_pts.x_one*ref_pts.y_two -

ref_pts.x_two*ref_pts.y_one) ) *

(ref_pts .
utm_x_one* (-ref_pts . x_two) + ref_pts .

utm_x_two* (ref_pts . x_one) ) ;

gamma - (1/ (ref_pts.x_one*ref_pts.y_two -

ref_pts.x_two*ref_pts.y_one) ) *
(ref_pts . utm_y_one*ref_pts . y_two + ref_pts .

utm_y_two* (-ref_pts . y_one) ) ;

delta *<l/(ref_pts.x_one*ref_pts.y_two -

ref_pts.x_two*ref_pts.y_one) ) *
(ref_pts.utm_y_one*(-ref_pts

.x_two) + ref_pts .utm_y_two*(ref_pts
.x_one) ) ;

pts_found.x_out - ((l/(alpha*delta -

beta*gamma) ) *

( (delta*utm_x_desired) + (-beta*utm_y_desired) ) ) +

ref_pts . x_ref ;

pts_found.y_out = ( (l/(alpha*delta -

beta*gamma) ) *

( (-gamma*utm_x_desired) + (alpha*utm_y_desired) ) ) +

ref s . y_ref ;

printf ("\n The x pixel value found is %lf", pts_found.x_out) ;

printf ("\n The y pixel value found is %lf", pts_found.y out) ;
/****

printf ("\n alpha %lf", alpha);

printf ("\n beta %lf", beta);

printf ( "\n gamma %lf"
, gamma) ;

printf ( "\n delta %lf
"

, delta) ;

*****/

return (pts_found) ;

?include <stdlib.h>

?include
"k_thesis.h"

/******************************************************************************

function allocate_double_image

description this simple allocates space of data type double in which to

store an image

******************************************************************************/

struct IMAGE DOUBLE allocate_double_image (long row, long col)

{

struct IMAGE_DOUBLE image;

image. num of_cols col;

image. num of rows = row;

image.data = (double *) calloc (row *
col, sizeof (double) ) ;

return (image) ;

)
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?include "k_thesis.h"

?include "
image.h"

/A*****************************************************************************

function make_correlation_image . c

uses allocate_double_image . c

correlate_image . c

put_data.c

description this routine makes an image that is the result of correlating
the kernel image and the search window.

The kernel is tranlated across the search area. At each

location, the correlation is performed (correlate_image.c)
and the value returned and stored in that location in a

new image.

a******************************************************************************/

extern struct XMAGE_DOOBLE allocate_double_image (long row, long col) ;

extern double correlate_image ( struct IMAGE_DOUBLE kernel, struct IMAGE_DOUBLE

8earch_window, long row, long col) ;

extern void put_data ( double value, long row_lmage_index, long col_image_index,

struct IMAGE_DOUBLE result_image) ;

struct IMAGE_DOUBLE make_correlation_image ( struct IMAGE_DOOBLE kernel,

struct IMACE_DOUBLE search_window.

Struct PICTORE_OPTIONS

picops_kernel_out , struct

PICTURE_OPTIONS picops_image_out)

{

struct IMAGE DOUBLE result_image= allocate_double_image ( search_window.num_of_rows,

search_window.num_of_cols) ,

long row_image_start;

long col_image_start ;

long row_image_end;

long col_image_end;

double
valuer-

long row image_index, col_image_index;

long row_kernel_index, col_kernel_index;

/* result_image = allocate_double_image ( search_window.num_of_rowB,

8earch_window . num_of ) ; */

/*** THE CORRELATION IS ONLY PERFORMED WHERE THE KERNEL FITS ENTIRELY

WITHIN THE SEARCH AREA, THE FOLLOWING DETERMINES THE LIMITS

***/

row image start kernel.num_of_rows/2;

image_start - kernel.num_of_cols/2;

row image_end search_window.num_of_rows
- row_image_start ;

image_end search_window.num_of_cols
-

col_image_start;

for ("row image_index row_image_start ;

row image_index < row_image_end;

row image_index++) {

for ( col image_index
- col_image_start;

col image index < col_image_end;

col image_index++) {

value = correlate_image ( kernel, search_window, row_image_index,

col_image_index) ;

put_data (value, row_image_index, col_image_index, rosult_image)
;

T
}

return (result_image) ;

}

103



Appendix B

?include <stdlib.h>

?include "k_thesis.h"

/*****************************************************************.************

function allocate_unsigned_image . c

description allocates space for an image of data type unsigned char

?a**************************************************************************/

struct IMAGE_UNSIGNED allocate_unslgned_image(long row, long col)

{

struct IMAGE_UNSIGNED image ;

image . num_of_cols = col;

image . num_of_rows = row;

image. data > (unsigned char *) calloc (row *
col, sizeof (unsigned char));

return (image) ;

)

?include
"k_thesis.h"

/*******************************************************************************

function convert_byte_image_to_double

descritplton converts image (unsigned char) to data type double

******************************************************************************/

struct IMAGE_DOUBLE allocate_double_image(long row, long col);

struct IMAGE DOUBLE convert_byte_image_to_double ( unsigned char *byte_image,
~~

long number_of ,

long number_of_rows )

<

int index;

struct IMAGE_DOUBLE
double_image= allocate_double_image

( number_of ,

number_of_columns ) ;

for (index- 0; index<number_of_rows*number_of_columns;index++) {

double_image.data [index] = (double) byte_image [index] ;

)

return (double_image) ;
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?include
"k_thesis.h"

/A******************************************************************************

function convert_to_unsigned

description converts image (double) to unsigned char

*******************************************************************************/

struct IMAGE_UNSIGNED allocate_unsigned_image(long row, long col);

struct IMAGE_UNSIGNED convert_to_unsigned ( double *double_image ,

long number_of_columns
,

long number_of_rows )

{

int index;

struct IMAGE_UNSIGNED unsigned_image= allocate_unsigned_image

( number_of ,

number_of_columns ) ;

for (index - 0; index<number_of_rows*number_of_columns;index++) (

double image [index] = double_image [index] *255;

unsigned_image . data [index] = (unsigned char) double_image [index] ;

if (unsigned_image . data [index] > 255) unsigned_image.data[index]=255;

if (unsigned_image.data [index] < 0) unsigned_image.data [index] = 0;

}

return (unsigned_image) ;
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?include <math.h>

?include "image.
h"

?include
"k_thesis.h"

/******************************************************************************

function write_gcp.c

description this program steps through the resultant correlation image

and finds the location of the inavlimMn value. This is then

written to a
.gcp

file in the format necessary to be

used for the ERDAS routine NRECTIFY

******************************************************************************/

write_gcp ( struct IMAGE_DOUBLE result_image,

struct ERDAS_HEADER header_result,

struct EBDAS_HEADER header_kernel,

FILE *fp_gcpfile )

{

double max_value;

double control_pt_x, control_pt_y;

double utm_val_x, utm_val_y;

long row, col;

max_value = -HUGE_VAL;

for ( row = 0;

row < result_image.num_of_rows;

row++ ) {

for ( col = 0;

col < result_image.num_of_cols;

col++ ) {

if (( result image.data [row*result_imago.num_of_cols + col]) >

( max_value) ) {

max
value=result_lmage.data[row*result_image.num_of_cols+col] ;

control_pt_x -
header_result .xstart + col;

control_pt_y
- header_result.ystart + row;

}

}

/***UTM value associated with control point is obtained from the kernel data***/

utm val x headerjcernel.xmap +

~

(header_kernel.icols/2) *header_kernel.xcell;

utm val_y
headerjcernel . ymap

-

~

(headerjcernel. irows/2) *header_kernel.ycell;

printf ("\n Contol_pt_x %lf", control_pt_x) ;

printf ("\n Contol_pt_y %lf", control_pt_y) ;

printf ("\n max_value %lf", max_value) ;

printf ("\n Utm x value %lf", utm_val_x) ;

printf ("\n Utm y value %lf", utm_val_y) ;

fprintf ( fp
gcpfile,"%15.41f %14.41f %14.41f %14.41f\n",

utm_val_x,utm_val_y, control_pt_x, control_pt_y) ;

/****

****/

106



Appendix B

?include "k_thesis.h"

?include <math.h>

?include "image.
h"

/******************************************************************************

function correlate_image

description This performs the correlation for one data point.

The correlation must be performed as the kernel is

stepped through the search area. In one position, the

kernel corresponds to a certain area in the search area (which

is larger) . Every kernel pixel corresponds to a search

area pixel. The value of each is multiplied with its

corresponding pixel, summed, and scaled.

The ouput correlation value is returned to make_correlation_image

and stored in result_image at same location in the resultant

image as the corresponding kernel center

*******************************************************************************/

extern double get_data (long row_kernel_index, long col_kernel_index, struct

IMAGE_DOUBLE kernel) ;

double correlate_image ( struct IMAGE_DOOBLE kernel, struct IMAGE_DOUBLE

search_window, long row_image_center,

long col_image_center)

{

long row_kernel_index, col_kernel_index;

long half_kernel_row, half_kernel_col;

long row_image_index, col_image_index;

double sum - 0;

double kernel_weight 0;

double search_weight - 0; ,

double kernel_value;

double search_value;

half_kernel_row kernel.num_of_rows/2;

half_kernel_col = kernel.num_of_cols/2 ;

for ( row_kernel_index
= 0,

row image_index = row_image_center
- half_kernel_row;

row kernel_index < kernel .
num_of_rows ;

row_kernel_index++ ,

row_lmage_index++) {

for ( col_kernel_index
- 0,

col image_index
col_image_center

- half_kernel_col;

col_kernel_index < kernel.num_of_cols;

col_kernel_index++,

col image_index++) {

kernel value - get_data
(row_kernel_index,col_kernel_index,kernel) ;

search-value -
get_data(row_image_index, col_image_index, search_window)

kernel weight
+- kernelvalue

* kernel_value;

search_weight
+- searchvalue

* search_value;

sum +- kernel_value
* search_value;

)

kernel_weight - sqrt (kernel_weight) ;

seaxch_weight
- sqrt (search_weight) ;

sum - sum/
(kernel_weight*search_weight) ;

printf ("\a kernel_weight %lf",kernel_weight) ;

printf ("\a search_weight %lf",search_weight) ; */

return (sum) ;
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?include "k_thesis.h"

/***************** function get_data.e **********************/

double get_data(long row, long col, struct IMAGE_DOUBLE image)
{

return (image . data [row* image . num_of cols+col] ) ;

}

?include "k_thesis.h"

void put_data (double value, long row, long col, struct IMAGE_DOUBLE image)

{

long index;

index = row*image . num_of_cols + col;

image.data [index] value;

}

struct REFERENCE_POINTS {

/** these reference points are from the image to be registered

refers to the upper left hand corner

one to the upper right hand corner

two to the lower left hand corner

*/

};

double x_ref, y_ref, utm_x_ref, utm_y_ref;

double x_one, y_one, utm_x_one, utm_y_one;

double x_two, y_two, utm_x_two, utm_y_two;

struct FILECOORD {

double x_out, y_out;

In

struct UTMCOORD {

double northing, easting;

};

struct IMAGE_DOUBLE {

int num_of_rows ;

int num_of_cols ;

double *data;

};

struct IMAGE_UNSIGNED {

int num_of_rows ;

int num_of_cols ;

unsigned char *data;

};
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/*** ?define SEARCH_WINDOW_SIZE 100 ***/

?define
_maxval(x,y)( (x) ) > ( (y) ) ? (x) : (y)
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Appendix C-Program VEC_ANGLE

Program to calculate the amount of rotation needed to approximately
register images: VEC_ANGLE.C

User: Prompted to enter to points from each image.

Image 1 is the reference image

Image 2 is the image to be altered

Must define a vector in each image, he. choose any 2 points in

the reference image that can also be identified in the
"to-be-altered"

image. The angle between the 2 is calculated.

When entering value into ERDAS routine LRECTIFY, must

pay attention to desired direction of rotation as this is not

taken into account here. A negative anlge refers to a clockwise

rotation

110



Appendix C

?include <math.h>

?include <stdio.h>

?include "k_thesis.h"

/*****************************************************************************

program vec_angle . c

description This program calculates the approximate rotation of the to-

be registered image based on two points chosen in the image. The

points must be referenced to the origin for the calculation to

work correctly

The user must simply pick any two points in an image

that define a vector. These two points must be found in

all of the images to-be-registered.

Input: First point in Image 1 (x,y) [defines first vector]

Second point in Image 1 (x,y)

First point in Image 2 (x,y) [defines second vector]

Second point in Image 2 (x,y)

*****************************************************************************/

main()

{

double imagel_xl , imagel_yl , imagel_x2 ,
imagel_y2 ;

double image2_xl, image2_yl, image2_x2, Image2_y2;

double xl,yl,x2,y2;

double dot, mag_l, mag_2;

double cos_angle, angle_rad, angle_deg, denominator;

/***
entering data for first vector ***/

printf ("\n Enter value for image 1 xl >") ;

scanf ("%lf",simagel_xl) ;

printf ("\n Enter value for image 1 yl >") ;

scanf ( "%lf
"

, *imagel_yl) ;

printf ("\n Enter value for image 1 x2 >") ;

scanf ("%lf", timagel_x2) ;

printf ("\n Enter value for image 1 y2 >") ;

scanf ("%lf", Simagel_y2) ;

/***
entering data for second vector ***/

printf ("\n Enter value for image 2 xl >") ;

scanf ("%lf", image2_xl) ;

printf ("\n Enter value for image 2 yl >") ;

scanf ("%lf",timage2_yl) ;

printf ("\n Enter value for image 2 x2 >") ;

scanf ("%lf",simage2_x2) ;

printf ("\n Enter value for image 2 y2 >") ;

scanf ("%lf",image2_y2) ;

/*** translates vectors so that the origin is 0,0 ***/

xl=imagel_x2
- imagel_xl;

yl=imagel_y2
- imagel_yl;

x2=image2_x2
- image2_xl;

y2=image2_y2
- image2_yl;

dot - xl*x2 + yl*y2;

mag_l - sqrt(xl*xl
+ yl*yl) !

mag_2 = sqrt(x2*x2 + y2*y2) ;

denominator = mag_l*mag_2;

cos_angle = dot / (mag_l*mag_2) ;
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angle_rad - acos (cos_angle) ;

angle_deg = (angle_rad*180) /3. 14159;

printf ("\n dot product = %lf",dot) ;

printf ("\n length vector A = %lf",mag_l);

printf ("\n length vector B = %lf",mag_2);

printf ("\n denominator %lf", denominator) ;

printf ("\n cosine angle - %lf",cos_angle) ;

printf ("\n angle (radians) - %lf",angle_rad) ;

printf ("\n angle (degrees) - %lf",angle_deg) ;
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Appendix D-Coordinate transformation data

Output from ERDAS routine COORDN

Coordinate transformations to register images
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*******************

Appendix D

COORDN OUTPUT FOR 1972 IMAGE**************

Coefficient Filename : SNOQ

Here are the points you are using:

Point Point

Count Number X

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

592324

593596

598055

596498

606502

600351

604517

587360

580573

624710

616392

583880

580678

579899

578321

604747

633392

616824

649301

621243

606942

610294

623767

.3120

.4370

.2500

.0000

.0000

.9370

.2500

.0000

.8120

.6870

.1870

.9370

.6250

.9370

.0000

.3750

.4370

.5620

.6870

.9370

.2500

.3120

.6870

5263435.

5257543.

5256323.

5282152.

5296234.

5312486.

5314818.

5304403.

5286483.

5286339.

5263449.

5246068.

5242794.

5221448.

5220668.

5219883.

5236585.

5305187.

5292815.

5250116.

5193946.

5266797.

5226690.

5000

5000

0000

0000

0000

0000

5000

5000

5000

5000

0000

5000

0000

0000

5000

0000

5000

5000

0000

5000

0000

0000

0000

Image Pixel s

X Y

2354 .00 798 .00

2404 .00 867 .00

2482 .00 871 .00

2337 .00 556 .00

2436 .00 357 .00

2256 .00 173 .00

2315 .00 133 .00

2075 .00 311 .00

2046 .00 549 .00

2791 .00 426 .00

2762 .00 728,.00

2293..00 1036..00

2256..00 1086..00

2344..00 1349.,00

2321.,00 1363.,00

2772.,00 1295,,00

3182.,00 1011.,00

2569.,00 214.,00

3191. 00 275.,00

2911. 00 879. 00

2 929. 00 1606. 00

2643. 00 704. 00

3060. 00 1157. 00

Order of transformation is 2

0.7188542E+01 0 .5605988E+02

0. 1254 099E-01-0. 37867 90E-02

-0.3 930801E-03-0.7 9888 92E-02

0.5448395E-05 0 . 9695411E-06

-0.4111700E-06-0

-0.3907054E-06-0

5134207E-07

4024488E-06
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These are the computed results of the matrix above:

Point Point Image X Pixel

Count Number X Pixel Residual

========

1 1 2353.59 -0 .4097E+00

2 2 2402.98 -0 .1016E+01

3 3 2484.01 0 .2006E+01

4 4 2334.87 -0 .2130E+01

5 5 2436.92 0 .9248E+00

6 6 2254.99 -0 .1012E+01

7 7 2314.29 -0 .7115E+00

8 8 2075.02 0 .1799E-01

9 9 2047.00 0..1003E+01

10 10 2795.12 0.4115E+01

11 11 2761.77 -0..2253E+00

12 12 2294.17 0..1173E+01

13 13 2256.09 0..8974E-01

14 14 2343.83 -0..1689E+00

15 15 2321.13 0..1276E+00

16 16 2769.86 -0..2138E+01

17 17 3181.70 -0..2956E+00

18 18 2569.83 0..8267E+00

19 19 3189.71 -0..1285E+01

20 20 2908.25 -0 2751E+01

21 21 2929.37 0..3664E+00

22 22 2641.81 -0 .1187E+01

23 23 3062.68 0..2680E+01

Image

Y Pixel

798.61

867.11

869.13

556.96

355.14

173.18

132.46

310.31

550.25

424.48

729.01

1035.96

1085.41

1348.75

1362.91

1295.67

1009.64

215.48

275.54

878.50

1606.06

705.46

1157.98

Y Pixel

Residual

-0.

-0.

0.

.6128E+00

.1122E+00

.1872E+01

.9595E+00

-0.1857E+01

0.1842E+00

.5417E+00

.6866E+00

.1250E+01

-0.1521E+01

0.1009E+01

-0.4276E-01

-0.5898E+00

-0.2464E+00

-0.9075E-01

0.6669E+00

-0.1361E+01

0.1477E+01

.5405E+00

.5041E+00

.6459E-01

0.1455E+01

0.9821E+00

0.

-0.

0.

X RMS error= 1.54439 Y RMS error= 0.98883

Total RMS error= 1.83383

Point Count Point Number Error Error Contribution by Point

1 1 0.7372

2 2 1.0219

3 3 2.7440

4 4 2.3361

5 5 2.0747

6 6 1.0290

7 7 0.8943

8 8 0.6869

9 9 1.6032

10 10 4.3875

11 11 1.0334

12 12 1.1738

13 13 0.5966

14 14 0.2987

15 15 0.1566

16 16 2.2394

17 17 1.3932

18 18 1.6929

19 19 1.3944

20 20 2.7970

21 21 0.3720

22 22 1.8782

23 23 2.8543

0.4020

0.5572

1.4963

1.2739

1.1313

0.5611

4877

3745

8742

3925

5635

6401

3253

1629

0854

1.2211

0.7597

9232

7604

5252

2029

0242

5565
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Here are the points that were used:

Appendix D

Point Point

Count Number

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

Number of Control Points

Image Pixels

X * X Y

592324. 3120 5263435. 5000 2354. 00 798. 00

593596. 4370 5257543. 5000 2404. 00 867. 00

598055. 2500 5256323. 0000 2482..00 871..00

596498. 0000 5282152. 0000 2337..00 556..00

606502. 0000 5296234. 0000 2436. 00 357..00

600351. 9370 5312486..0000 2256..00 173..00

604517.,2500 5314818..5000 2315.,00 133.,00

587360.,0000 5304403.,5000 2075,,00 311.,00

580573.,8120 5286483.,5000 2046,,00 549.,00

624710.,6870 5286339,,5000 2791..00 426.,00

616392.,1870 5263449,,0000 2762,.00 728,,00

583880,,9370 5246068,.5000 2293..00 1036,,00

580678,.6250 5242794,.0000 2256..00 1086,,00

579899,.9370 5221448,.0000 2344 .00 1349,.00

578321..0000 5220668..5000 2321 .00 1363,.00

604747 .3750 5219883 .0000 2772 .00 12 95,.00

633392 .4370 5236585 .5000 3182 .00 1011,.00

616824 .5620 5305187 .5000 2569 .00 214,.00

649301 .6870 5292815 .0000 3191 .00 275 .00

621243 .9370 5250116 .5000 2911 .00 879 .00

606942 .2500 5193946 .0000 2929 .00 1606 .00

610294 .3120 5266797 .0000 2643 .00 704 .00

623767 .6870 5226690 .0000 3060 .00 1157 .00

Points

RMS er:

23

ror specified by iuser 2.00000
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*******************C00RDN 0UTPUT F0R 1981 IMAGE**************

Coefficient Filename 81

Here are the points you are using:

Point Point

Count Number

Order of transformation is 2

-0.1116851E+03-0,

0.1278396E-01 0,

0.4048165E-01 0.

0.5951224E-05 0,

-0.1391608E-05-0,

1312834E+03

2089699E-01

6071567E-01

6885570E-05

554 6356E-05

-0.3766617E-05-0. 6664744E-05

Image Pixels

X Y

1 1 596623,.3750 5251061..0000 2412 .00 1306 .00
2 2 606419,.3750 5296170..0000 2538 .00 734 .00
3 3 583983..3750 5246163.,0000 2252 .00 1368 .00
4 4 580665..3750 5242845,,0000 2211,.00 1411..00

5 5 579717..3750 5222384,.0000 2197..00 1670..00

6 6 604918,.3750 5219935,,0000 2515..00 1701..00
7 7 593700..3750 5237394,.0000 2375..00 1479..00
8 8 592357..3750 5263543,,0000 2359,,00 1148,.00

9 9 597966..3750 5256275,.0000 2429,.00 1240,.00

10 10 586906 .3750 5266782..0000 2290,.00 1107,.00

11 11 621666..3750 5249797,,0000 2731..00 1344,,00

12 12 633121..3750 5236525.,0000 2876,.00 1492,,00

13 13 603891..3750 5284478.,0000 2504,,00 883..00

14 14 588328..3750 5301068.,0000 2308,,00 672.,00

15 15 587380.,3750 5304465.,0000 2296,,00 62 9,,00

16 16 587538..3750 5310232.,0000 2297.,00 555.,00

17 17 624431,.3750 5286295.,0000 2768.,00 860,,00

18 18 598203,.3750 5313866..0000 2410.,00 467..00

19 19 593621,.3750 5257539.,0000 2375,,00 1224.,00

These are the computed results of the matrix above:

Point Point Image

Count Number X Pixel

2412.96

2532.70

2254.29

2212.55

2195.56

2511.49

2374.20

2360.07

2430.24

2292.06

2731.60

2878.53

2503.29

2304.89

2292.17

22 92.30

2764.60

2423.75

2375.73

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

X Pixel

Residual

0.9614E+00

-0.5298E+01

0.2292E+01

0.1552E+01

-0.1444E+01

-0.3509E+01

-0.7953E+00

0.1072E+01

0.1242E+01

0.2063E+01

0.5995E+00

0.2532E+01

-0.7146E+00

-0.3108E+01

-0.3827E+01

-0.4700E+01

-0.3403E+01

0.1375E+02

0.7338E+00

Image Y Pixel

Y Pi)tel

,36

Residual

1309, 0..3363E+01

726,,10 -0..7901E+01

1371,,75 0.3753E+01

1413,,53 0..2535E+01

1664,,32 -0.5683E+01

1696,,52 -0,.4485E+01

1480,.02 0..1020E+01

1151.,68 0..3677E+01

1243,,51 0..3510E+01

1111.,44 0..4435E+01

1329.,48 -0..1452E+02

1502,,64 0,1064E+02

880.,22 -0..2775E+01

666..11 -0,.5894E+01

621..57 -0,, 7432E+01

544..87 -0..1013E+02

857..17 -0..2832E+01

491. 97 0,2497E+02

1227..75 0..3746E+01
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X RMS error= 4.06229 Y RMS error= 8.47028

Total RMS error= 9.39403

Appendix D

Point Count Point Number Error Error Contribution by Point

1 1 3.4 982 0.3724

2 2 9.5127 1.0126
3 3 4.3978 0.4682
4 4 2.9718 0.3164

5 5 5.8634 0.6242
6 6 5.6945 0.6062

7 7 1.2934 0.1377

8 8 3.8305 0.4078

9 9 3.7236 0.3964

10 10 4.8914 0.5207

11 11 14.5326 1.5470

12 12 10.9331 1.1638

13 13 2.8657 0.3051

14 14 6.6629 0.7093

15 15 8.3597 0.8899

16 16 11.1656 1.1886

17 17 4.4272 0.4713

18 18 28.5097 3.0349

19 19 3.8171 0.4063

Point number 18 has been deleted.

Here are the points you are using:

Point Point

Count Number X Y

1 1 596623 .3750 5251061..0000

2 2 606419,.3750 5296170,,0000

3 3 583983 .3750 5246163,.0000

4 4 580665,.3750 5242845,,0000

5 5 579717,.3750 5222384,,0000

6 6 604918,,3750 5219935,,0000

7 7 593700..3750 5237394,,0000

8 8 592357 .3750 5263543..0000

9 9 597966..3750 5256275,,0000

10 10 586906.,3750 5266,782..0000

11 11 621666.,3750 5249797,,0000

12 12 633121..3750 5236525,.0000

13 13 603891..3750 5284478.,0000

14 14 588328..3750 5301068,,0000

15 15 587380.,3750 5304465,.0000

16 16 587538..3750 5310232,.0000

17 17 624431..3750 5286295.,0000

18 19 593621 ,3750 5257539,,0000

Image Pixels

X Y

2412,,00 1306,.00

2538,,00 734,.00

2252,,00 1368,,00

2211,,00 1411,,00

2197,.00 1670,,00

2515,.00 1701,,00

2375.,00 1479,,00

2359.,00 1148,,00

2429.,00 1240.,00

2290.,00 1107,.00

2731,,00 1344,.00

2876,,00 1492,,00

2504.,00 883,.00

2308.,00 672 .00

2296..00 629..00

2297 .00 555..00

2768..00 860..00

2375,.00 1224 .00
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Order of transformation is 2

-0.2244941E+02 0.3077072E+02

0.5402286E-02 0. 7491699E-02

0.7367618E-02 0 .5798030E-03

0.2610988E-05 0. 8196226E-06

0 . 7877 981E-06-0 . 1588503E-05

-0.7415349E-06-0.1171123E-05

These are the computed results of the matrix above:

Point Point Image X Pixel Image Y Pixel
Count Number

1

X Pixel

2412.21 0

Residual

.2143E+00

Y Pixel

1308.01

Residual

1
0.2007E+01

2 2 2537.52 -0 .4782E+00 734.85 0.8526E+00
3 3 2252.46 0 .4 635E+00 1368.43 0.4325E+00
4 4 2210.58 -0 .4202E+00 1409.95 -0.1047E+01

5 5 2197.36 0 .3615E+00 1667.60 -0.2405E+01

6 6 2514.89 -0 .1124E+00 1702.68 0.1683E+01
7 7 2374.46 -0 .5425E+00 1480.48 0.1479E+01

8 8 2358.74 -0 .2568E+00 1149.26 0.1264E+01
9 9 2429.46 0., 4 600E+00 1242.09 0.2091E+01

10 10 2289.98 -0,2244E-01 1107.65 0.6486E+00

11 11 2730.67 -0,.3279E+00 1327.80 -0.1620E+02

12 12 2876.26 0,.2599E+00 1498.51 0.6510E+01

13 13 2505.36 0,.1358E+01 883.99 0.9892E+00

14 14 2307.74 -0,.2595E+00 671.28 -0.7210E+00

15 15 22 95.63 -0,.3656E+00 627.85 -0.1146E+01

16 16 2297.40 0..3983E+00 554.13 -0.8702E+00

17 17 2767.74 -0..2560E+00 862.88 0.2884E+01

18 19 2374.53 -0. 4742E+00 1225.55 0.1552E+01

X RMS error= 0.47445 Y RMS error= 4.36202

Total RMS error= 4.38774

Point Count Point Number Error Error Contribution by Point

1 1 2.0182 0.4600

2 2 0.9776 0.2228

3 3 0.6340 0.1445

4 4 1.1279 0.2571

5 5 2.4319 0.5543

6 6 1.6871 0.3845

7 7 1.5755 0.3591

8 8 1.2897 0.2939

9 9 2.1408 0.4879

10 10 0.6489 0.1479

11 11 16.2077 3.6939

12 12 6.5154 1.4849

13 13 1.6803 0.3830

14 14 0.7662 0.1746

15 15 1.2027 0.2741

16 16 0.9570 0.2181

17 17 2.8950 0.6598

18 19 1.6231 0.3699
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Point number 11 has been deleted.

Appendix D

Here are the points you are using:

Point Point

Count Number X Y

1 1 596623.,3750 5251061,,0000

2 2 606419.,3750 5296170,.0000

3 3 583983.,3750 5246163,,0000

4 4 580665.,3750 5242845,,0000

5 5 579717.,3750 5222384,,0000

6 6 604918..3750 5219935,,0000

7 7 593700,,3750 5237394,,0000

8 8 592357,,3750 5263543,,0000

9 9 597966,,3750 5256275,.0000

10 10 586906,,3750 5266782,.0000

11 19 593621,,3750 5257539,.0000

12 12 633121,,3750 5236525,.0000

13 13 603891.,3750 5284478..0000

14 14 588328 .3750 5301068,.0000

15 15 587380.,3750 5304465,.0000

16 16 587538 .3750 5310232..0000

17 17 624431 .3750 5286295..0000

Image Pixels

X Y

2412..00 1306,.00

2538 .00 734,.00

2252 .00 1368,,00

2211..00 1411..00

2197.,00 1670..00

2515..00 1701,,00

2375..00 1479.,00

2359..00 1148,,00

2429.,00 1240,.00

2290..00 1107,,00

2375..00 1224.,00

2876.,00 1492,.00

2504..00 883,.00

2308 .00 672,.00

2296 .00 629,.00

2297 .00 555,.00

2768 .00 860,,00

Order of transformation is 2

2178053E+02 0.

5226336E-02-0,

7133356E-02-0,

2616249E-05 0,

8196241E-06-0,

-0.7210587E-06-0

6382182E+02

1202823E-02

1099566E-01

1079611E-05

1583728E-07

1593468E-06

These are the computed results of the matrix above:

Point Point Image X Pixel

Count Number X Pixel Residual

,

1 1 2412.18 0..1776E+00

2 2 2537.51 -0..4941E+00

3 3 2252.46 0,.4 635E+00

4 4 2210.59 -0..4074E+00

5 5 2197.41 0 .4083E+00

6 6 2514.85 -0.1512E+00

7 7 2374.44 -0 .5634E+00

8 8 2358.72 -0 .2839E+00

9 9 2429.42 0..4194E+00

10 10 2289.96 -0 .3728E-01

11 19 2374.50 -0 .5044E+00

12 12 2876.13 0 .1278E+00

13 13 2505.33 0 .1326E+01

14 14 2307.75 -0 .2482E+00

15 15 2295.65 -0 .3479E+00

16 16 2297.43 0 .4261E+00

17 17 2767.69 -0 .3111E+00

X RMS error= 0.4 7971 Y RMS error=

Total RMS error= 0.55997

Image Y Pixel

Y Pixel Residual

1306.19 0,.1923E+00

734.07 0,, 6817E-01

1368.43 0,.4312E+00

1410.59 -0,, 4143E+00

1669.91 -0,. 9200E-01

1700.77 -0..2311E+00

1479.44 0,.4429E+00

1147.92 -0,.7583E-01

1240.09 0,.8668E-01

1106.92 -0,, 8479E-01

1224.06 0,.5697E-01

1491.98 -0., 1639E-01

882.40 -0..5966E+00

671.84 -0..1624E+00

628.73 -0 .2705E+00

555.51 0 .5065E+00

860.16 0 .1591E+00

0.28886
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Point Count Point Number Error

1 1 0.2618

2 2 0.4988

3 3 0.6331

4 4 0.5811

5 5 0.4185

6 6 0.2762

7 7 0.7167

8 8 0.2939

9 9 0.4283

10 10 0.0926

11 19 0.5076

12 12 0.1289

13 13 1.4542

14 14 0.2966

15 15 0.4407

16 16 0.6620

17 17 0.3494

Error Contribution by Point

0.4675

0.8908

1.1305

1.0377

0.7474

0.4932

.2798

.5248

.7648

.1654

.9066

.2301

2.5970

0.5297

0.7869

1.1821

0.6240

Here are the points that were used:

Point Point

Count Number

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 19

12 12

13 13

14 14

15 15

16 16

17 17

Number of Control Points

Image Pixels

X Y X Y

596623,,3750 5251061.,0000 2412.,00 1306.,00

606419,,3750 5296170,.0000 2538.,00 734.,00

583983,,3750 5246163.,0000 2252,,00 1368.,00

580665,,3750 5242845,,0000 2211,,00 1411.,00

579717.,3750 5222384..0000 2197,,00 1670.,00

604918,.3750 5219935,.0000 2515,,00 1701.,00

593700,,3750 5237394 .0000 2375..00 1479.,00

592357,.3750 5263543,.0000 2359,.00 1148..00

597966,,3750 5256275,.0000 2429,.00 1240.,00

586906..3750 5266782..0000 2290,.00 1107,,00

593621..3750 5257539..0000 2375.,00 1224,,00

633121..3750
*

5236525..0000 2876,.00 1492,,00

603891 .3750 5284478..0000 2504..00 883,,00

588328 .3750 5301068..0000 2308,.00 672.,00

587380 .3750 5304465..0000 2296 .00 62 9,.00

587538 .3750 5310232 .0000 2297 .00 555,,00

624431 .3750 5286295 .0000 2768 .00 860,.00

'oints 17

RMS er:ror spec;ified by user 2.00000

Here are the points that were NOT used :

Point Point

Count Number

Image Pixels

X Y

18

11

598203.3750

621666.3750

5313866.0000

5249797.0000

2410.00

2731.00

467.00

1344.00
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*******************COORDN OUTPUT FOR 1988 IMAGE**************

Coefficient Filename: 88

Here are the points you are using:

Point Point

Count Number X Y

1 1 596623,.3750 5251061,,0000

2 2 606419.,3750 5296170.,0000

3 3 583983.,3750 5246163.,0000

4 4 580665.,3750 5242845.,0000

5 5 579717,,3750 5222384.,0000

6 6 604918.,3750 5219935.,0000

7 7 593700..3750 5237394.,0000

8 8 592357.,3750 5263543,,0000

9 9 597966,,3750 5256275,,0000

10 10 586906,,3750 5266782,,0000

11 11 621666,,3750 5249797,,0000

12 12 633121.,3750 5236525.,0000

13 13 603891 .3750 5284478..0000

14 14 588328 .3750 5301068..0000

15 15 587380 .3750 5304465..0000

16 16 587538 .3750 5310232 .0000

17 17 624431 .3750 5286295 .0000

18 18 598203 .3750 5313866 .0000

19 19 593621 .3750 5257539 .0000

Image Pixels

X Y

1933.,00 1552.00

2060,,00 981.00

1773,,00 1614.00

1731,,00 1656.00

1718,,00 1916.00

2036,,00 1947.00

1895,,00 1726.00

1880,,00 1394.00

1951,,00 1487.00

1811.,00 1353.00

2251.,00 1571.00

2395.,00 1740.00

2027.,00 1130.00

1830..00 918.00

1818..00 875.00

1768 .00 769.00

2289 .00 1108.00

1907 .00 742.00

1896 .00 1471.00

Order of transformation is 2

-0.2719421E+03-0.3419980E+02

-0.1273514E-01-0.1915097E-01

0.1042022E+00 0 .2845036E-01

0.1726564E-05-0.8004962E-06

0.4447227E-05 0 .3850458E-05

-0.1016340E-04-0.4134108E-05

These are the computed results of the matrix above:

Point Point Image X Pixel Image Y Pixel

Count Number X Pixel Residual Y Pixel Residual

1 1 1937.24 0.4241E+01 1554.62 0.2624E+01

2 2 2048.22 -0.1178E+02 977.44 -0.3556E+01

3 3 1776.72 0.3722E+01 1615.26 0.12 63E+01

4 4 1734.29 0.3295E+01 1656.94 0.9362E+00

5 5 1713.81 -0.4188E+01
1914.27 -0.1729E+01

6 6 2027.85 -0.8154E+01
1944.85 -0.2151E+01

7 7 1896.86 0.1862E+01 1726.82 0.8200E+00

8 8 1882.84 0.2845E+01 1395.14 0.1141E+01

9 9 1954.64 0.3641E+01 1488.63 0.1631E+01

10 10 1812.88 0.1882E+01 1352.67 -0.3315E+00

11 11 2255.51 0.4506E+01 1572.83 0.1833E+01

12 12 2396.03 0.1027E+01 1738.92 -0.1080E+01

13 13 2023.16 -0.3844E+01
1128.35 -0.1649E+01

14 14 1810.85 -0.1915E+02
908.15 -0.9855E+01

15 15 1795.34 -0.2266E+02
863.23 -0.1177E+02

16 16 1791.23 0.2323E+02 787.34 0.1834E+02

17 17 2287.02 -0.1975E+01
1109.39 0.1394E+01

18 18 1925.05 0.1805E+02 743.18 0.1182E+01

19 19 1899.45 0.3451E+01 1471.96 0.9582E+00
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X RMS error= 10.4 9183 Y RMS error= 5.70155

Total RMS error= 11.94095

Point Count Point Number

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

Error

4.9870

12.3091

3.9310

3.4252

4.5310

8.4327

2.0344

3.0650

.9901

.9109

.8643

.4902

.1828

21.5365

25.5322

29.5924

2.4176

18.0930

3.5814

Error Contribution by Point

0.4176

0308

3292

2868

3795

7062

1704

2567

3342

1600

4074

1248

0.3503

,8036

,1382

,4782

.2025

,5152

,2999

Point number 16 has been deleted.

Here are the points you are using:

Point Point

Count Number X Y

1 1 596623, 3750 5251061. 0000

2 2 606419..3750 5296170. 0000

3 3 583983..3750 5246163. 0000

4 4 580665..3750 5242845..0000

5 5 579717,,3750 5222384..0000

6 6 604918.,3750 5219935.,0000

7 7 593700.,3750 5237394,,0000

8 8 592357,,3750 5263543,,0000

9 9 597966,,3750 5256275.,0000

10 10 586906,,3750 5266782,,0000

11 11 621666,,3750 5249797,.0000

12 12 633121 .3750 5236525,.0000

13 13 603891 .3750 5284478.,0000

14 14 588328 .3750 5301068..0000

15 15 587380 .3750 5304465..0000

16 19 593621 .3750 5257539.,0000

17 17 624431 .3750 5286295..0000

18 18 598203 .3750 5313866 .0000

Image Pixels

X Y

1933.00 1552.00

2060.00 981.00

1773.00 1614.00

1731.00 1656.00

1718.00 1916.00

2036.00 1947.00

1895.00 1726.00

1880.00 1394.00

1951.00 1487.00

1811.00 1353.00

2251.00 1571.00

2395.00 1740.00

2027.00 1130.00

1830.00 918.00

1818.00 875.00

1896.00 1471.00

2289.00 1108.00

1907.00 742.00

Order of transformation
is 2

-0.2271363E+03 0 .
1167926E+01

0.1065780E-01-0.
6855886E-03

0.8446600E-01 0 .
1287149E-01

0.6018678E-05 0.2587512E-05

-0/7971865E-05-0.2404207E-05
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These are the computed results of the matrix above:

Point Point Image X Pixel Image Y Pixel

Count Number X Pixel Residual Y Pixel Reiidual

1 1 1935.67 0. 2671E+01 1553.38 0. 1385E+01

2 2 2049.09 -0. 1091E+02 978.14 -0. 2863E+01

3 3 1776.96 0. 3956E+01 1615.45 0. 1448E+01

4 4 1734.97 0..3969E+01 1657.47 0.. 1469E+01

5 5 1713.93 -0..4072E+01 1914.36 -0..1637E+01

6 6 2028.29 -0,.7712E+01 1945.20 -0..1802E+01

7 7 1895.52 0..5182E+00 1725.76 -0,.2405E+00

8 8 1882.83 0,.2826E+01 1395.13 0,.1126E+01

9 9 1953.07 0..2073E+01 1487.39 0,.3935E+00

10 10 1814.68 0 .3677E+01 1354.09 0,.1086E+01

11 11 2253.74 0 .2738E+01 1571.44 0 .4381E+00

12 12 2398.73 0 .3733E+01 1741.06 0 .1056E+01

13 13 2022.92 -0 .4076E+01 1128.17 -0 .1831E+01

14 14 1819.62 -0 .1038E+02 915.07 -0 .2930E+01

15 15 1805.59 -0 .1241E+02 871.32 -0 .3680E+01

16 19 1898.65 0 .2649E+01 1471.33 0 .3256E+00

17 17 2283.70 -0 .5299E+01 1106.77 -0 .1230E+01

18 18 1933.04 0 .2604E+02 749.49 0 . 7486E+01

X RMS error= 8.40824 Y RMS error= 2.44258

Total RMS error= 8 .75584

Point Count Po.Lnt Numbe:r Error

3.0083

Error Contributi

.

1 1
0.3436

2 2 11. 2749 1.2877

3 3 4. 2127 0.4811

4 4 4,,2321 0.4833

5 5 4,.3889 0.5013

6 6 7.,9192 0.9045

7 7 0,,5713 0.0652

8 8 3,.0419 0.3474

9 9 2,.1105 0.2410

10 10 3..8343 0.4379

11 11 2 .7730 0.3167

12

13

14

15

16

17

18

12

13

14

15

19

17

18

3

4

10

12

2

5

27

.8796

.4680

.7822

.9453

.6693

.4403

.0954

0.4431

0.5103

1.2314

1.4785

0.3049

0.6213

3.0945

Point number 18 has been deleted.
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Here are the points you are using:

Appendix D

Point Point Image Pixels

Count Number

1

X Y X Y

1 596623..3750 5251061..0000 1933..00 1552,.00

2 2 606419..3750 5296170.,0000 2060..00 981..00

3 3 583983.,3750 5246163,,0000 1773,.00 1614.,00

4 4 580665,,3750 5242845..0000 1731, 00 1656.,00

5 5 579717,,3750 5222384,,0000 1718.,00 1916,,00

6 6 604918,,3750 5219935,,0000 2036.,00 1947,,00

7 7 593700,,3750 5237394..0000 1895.,00 1726,,00

8 8 592357,,3750 5263543,,0000 1880.,00 1394.,00

9 9 597966,,3750 5256275..0000 1951,,00 1487,,00

10 10 586906,,3750 5266782,,0000 1811,,00 1353,.00

11 11 621666 .3750 5249797,.0000 2251,,00 1571,,00

12 12 633121 .3750 5236525.,0000 2395,.00 1740,,00

13 13 603891 .3750 5284478..0000 2027..00 1130,.00

14 14 588328 .3750 5301068 .0000 1830..00 918..00

15 15 587380 .3750 5304465 .0000 1818 .00 875 .00

16 19 593621 .3750 5257539 .0000 1896 .00 1471 .00

17 17 624431 .3750 5286295 .0000 2289 .00 1108 .00

Order of transformation is 2

-0.1213194E+02 0. 6297542E+02

0.5780400E-02-0. 20877 03E-02

0 .3200037E-02-0 . 104 9011E-01

0.8140073E-06 0 . 1091321E-05

0.1126233E-05 0. 1588384E-06

-0.3
628539E-06-0.2168381E-06

These are the computed results of the matrix above:

Point Point Image X Pixel Image Y Pixel

Count Number

1

X Pixel

1933.30

Residual Y Pixel Residual

1
0.3014E+00 1552.70 0.7036E+00

2 2 2059.97 -0.2627E-01
981.26 0.264 6E+00

3 3 1773.10 0.9899E-01 1614.34 0.3389E+00

4 4 1731.01 0.1063E-01 1656.33 0.3305E+00

5 5 1717.90 -0.9957E-01
1915.51 -0.4948E+00

6 6 2035.87 -0.1296E+00
1947.38 0.3781E+00

7 7 1895.43 0.4270E+00 1725.73 -0.2667E+00

8 8 1879.93 -0.6748E-01
1394.29 0.2945E+00

9 9 1950.63 -0.3699E+00
1486.69 -0.3089E+00

10 10 1811.01 0.7348E-02 1353.03 0.3068E-01

11 11 2250.88 -0.1164E+00
1570.62 -0.3825E+00

12 12 2395.09 0.9154E-01 1740.01 0.9405E-02

13 13 2027.31 0.3129E+00 1129.43 -0.5697E+00

14

15

16

14 1829.98 -0.1621E-01
918.05 0.4859E-01

15 1817.98 -0.1789E-01
874.88 -0.1168E+00

19 1895.65 -0.3539E+00
1470.46 -0.5377E+00

17 17 2288.95

n -5 0 9 07

-0.5266E-01

Y RMS error

1108.28

0.36661

0.2783E+00

Total RMS
error= 0.41905
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Appendix D

Point Count Point Number Error Error Contribution by Point

1 1 0.7654 1.8266
2 2 0.2 659 0.6346

3 3 0.3531 0.8426

4 4 0.3307 0.7892

5 5 0.5048 1.2045

6 6 0.3997 0.9538

7 7 0.5035 1.2015

8 8 0.3021 0.7210

9 9 0.4819 1.1500

10 10 0.0315 0.0753

11 11 0.3998 0.9542

12 12 0.0920 0.2196

13 13 0.6500 1.5510

14 14 0.0512 0.1222

15 15 0.1182 0.2821

16 19 0.6437 1.5362

17 17 0.2833 0.6760

Here are the points that were used:

Point Point

Count Number X

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 19

17 17

596623.

606419,

583983.

580665,

579717,

604918,

593700,

592357,

597966,

586906,

621666,

633121,

603891,

588328,

587380,

593621.

624431.

3750

3750

3750

3750

3750

3750

3750

3750

3750

3750

3750

3750

3750

3750

3750

3750

3750

5251061.

5296170.

5246163.

5242845.

5222384.

5219935.

5237394.

5263543.

5256275.

5266782.

5249797.

5236525.

5284478.

5301068.

5304465.

5257539.

5286295.

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

Image Pixels

X Y

1933.00

2060.00

1773.00

1731.00

1718.00

2036.00

1895.00

1880.00

1951.00

1811.00

2251.

2395.

2027.

1830.

1818.

1896.00

2289.00

.00

.00

.00

.00

.00

1552.00

981.00

1614.00

1656.00

1916.00

1947.00

1726.00

1394.00

1487.00

1353.00

1571.00

1740.00

1130.00

918.00

875.00

1471.00

1108.00

Number of Control Points 17

Maximum acceptable RMS error specified by user 2.00000

Here are the points that were NOT used

Point Point

Count Number X

Image Pixels

X Y

16

18

587538.3750

598203.3750

5310232.0000

5313866.0000

1768.00

1907.00

769.00

742.00
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Appendix E

Appendix E-Image set ephemeris data

Corner point latitude and longitude data (obtained from list of scenes)

UTM coordinates obtained using ERDAS routine CCVRT

N= positive latitude (relative to Greenwich, England)
W= negative longitude (relative to Greenwich, England)

Lat. 2 Lat. 1

Lon. 1

Lon. 4
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REFERENCE IMAGE (1972)

LANDSAT-1

Date: 7-29-72

1981 IMAGE

LANDSAT-3

Date: 8-23-81

Appendix E

Latitude Longitude UTMX UTM Y

Center Point N 4701
8'53"

W
122O23'02"

not needed not needed

Corner 1 N 4752
19"

W
1205l'll"

not needed not needed

Corner 2 N
48015'18"

W12313'33"

not needed not needed

Corner 3 N
4644'17"

W
12353'00"

not needed not needed

Corner 4 N
46O22'04"

W
12134'24"

not needed not needed

Latitude Longitude UTM X UTM Y

Center Point N 4701
7'00"

W
122022*00"

547871.15 5236589.40

Corner 1 N
4748'25"

W
120525l"

658658.26 5296804.66

Corner 2 N
482l'04"W12313'46"

482978.20 5336557.61

Corner 3 N
4645'35"

W
12349'2l"

437149.33 5178571.52

Corner 4 N W 612735.18 5137317.76

1988 IMAGE

LANDSAT-5

Date: 7-30-88

Center Point

Corner 1

Corner 2

Corner 3

Corner 4

Latitude

N

N

N

N

N

Longitude

W
12152'00"

W

W

W

UTMX

585435.96

695690.72

519707.58

475257.53

651054.69

UTM Y

5255576.83

5316407.61

5355240.13

5196884.49

5156604.55
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Appendix F

Appendix F-ERDAS routines outlined

ERDAS routines used

ALGEBRA: Data in a LAN image can be enhanced or changed by
performing algebraic operations. A different operation can

be applied to each band.

Make a new expression (can add your own library of
expressions as well.)

Be sure to choose the NO-SCALE option when processing
an image in the manner described in this thesis.

BSTATS: Allows user to generate image statistics. Mean, standard

deviation, and histogram information.

CALC: Used to convert latitude/longitude data to UTM

coordinates, they must be in decimal form. Within the

CALC program DD does this conversion.

CALC> -dd (degrees, min, sec)

CCVRT: Allows conversion from lat/ lon to UTM coordinates.

User must specify input and output coordinate types

(lat/lon ,
UTM). Can input coordinate pairs from a

terminal. When choosing UTM coordinates, user will be

prompted for information such as the UTM zone number

(see ERDAS manual to determine appropriate zone, or

look on a USGS map of the area).

All input pairs: x,y / lon,lat / / eastings/northing All

pairs entered relative to Greenwich prime meridian and

equator.

In this study: Latitude is positive

Longitude is negative
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COLORMOD: After running ISODATA, the spectral classes
examined and identified using COLORMOD.

Appendix F

can be

Select color palette (C)

[S-Single] to examine one class.
B= Blinks color on and off (he. one class)

You can alter the color scheme using this routine or you

can just look at it and be sure to return the original color.

COORDN:

CPYSCRN:

CURSES:

DIGSCRN:

Used to generate the transformation to be input into

NRECTTFY. User specifies the order of the transformation.

User can copy .LAN or .GIS from the display. When using

CPYSCR, user is asked to save screen values or function

memory values. If it is a .LAN file, choose F (function

memory). Then, the values copied will be processed

through the look-up tables before being written to the file.

Can choose entire screen or section of screen.

Used to look at data values.

Digitizes data on the screen which can be used to train an

images. Asks if you want to digitize polygon, vector, or

grid-cell mode.

Choose Polygon. Choose point carefully with the mouse

and follow instructions.

IMPORTANT: if there is to be more than a single polygon

defining a particular class, choose the polygon and then

enter the SAME class number for the next polygon.

DISPLAY:

DISPOL:

Displays a GIS file

Displays the vector or polygon data stored in a DIG file.

FTXHED: Adds or modifies information contained in the header

records of a LAN or GIS file
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GCP:

Appendix F

Creates a ground control point (GCP) file to be used for

image rectification. A control point consists of two sets of

coordinates for the same location, one being map
coordinates and the other pixel locations.

Choose points that are easily identifiable on both the map
and the image. Be careful in the map set-up as well as this

could introduce error.

HSTMATCH: Used to match one histogram to another.

HISTOGRAM ONE is the image being changed
HISTOGRAM TWO is the source or reference histogram.

Use statistics of an image file to perform histogram

matching.

Must enter the number of the band for each image. Be

very careful because it is easy to make a mistake and

ERDAS will not notice. For example, make sure you

choose band 3 in both images.

Enter function memory plane to use as a histogram (RGB)

choose as appropriate. In this study, red was chosen each

time for consistency. Only one band was run at a time

although you can recycle through to alter 3 bands at a

time. This can be confusing and mistakes can be made

easily

Use 97% of the histogram to remove extremes.

Use STRETCH immediately following as the data is now

stored in function memory and will be replaced.

ISODATA: (Iterative Self-Organizing Data Analysis Technique)

Unsupervised classification. User chooses number of

classes and program separates data accordingly. ISODATA

creates an SBD file but use SIGMAN to manipulate it and

name the output signatures.
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LDDATA:

Appendix F

Used to load images from tape if Band Interleaved by Line
(BIL)

Run MTcount to determine number of rows and columns

in image.

Record #=num. of rows; Num. Bytes = num. of columns

Note: may be given for all 4 bands so if Record #=5964,
there are only 5964/4 lines (1491).

Can be confusing so examine images after reading them in

to ensure they have been read in correctly.

LISTTT:

LOADX:

Lists statistics of a file.

Was used to read in the 1972 image from tape because it

was Band Sequential (BSQ).

LRECITFY Used to transform a coordinate system using only
1st-

order transformation.

In this study, LRECITFY was used to rotate and scale the

images. Its important to scale and rotate at once so the data

is only resampled once.

MAXCLAS:

NRECTIFY

Multi-spectral classification program. Classifies an input

LAN file using : Minimum distance, Mahalanobis

distance, or maximum likelihood.

In this study, minimum distance to mean was found to

give the best results.

The user must choose no for parallelepiped optimization

for best results.

MAXCLAS requires a signature file (SBD). Use SIGMAN

(signature manipulation) to do this.

Allows user to transform a LAN file to a new coordinate

system).Must run COORDN first to generate the

appropriate transformations. Need a ground control

point file generated using GCP
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READ: Used to read in a LAN file. If the file is not visible after

reading it in, run BSTATS to scale the output data.

SIGEXT: Generates training samples from a LAN file according to

polygons in an input DIG file (from DIGSCRN). SIGEXT

calculates signature statistics from these training samples

and creates a new signature file with accompanying name

file. MAXCLAS needs a NAM file to run as well as an SBD

file.

SIGMAN: Allows you to manipulate signatures. You can merge,

delete, and rename signatures.

STRETCH: Use directly after HSTMATCH to actually process the

images. Read all questions carefully when using

STRETCH as it is easy to make a mistake as to which band

you want to manipulate etc.

SUBSET: Allows user to remove a section of the image or subset

out a band of data.

WRTIFF: Writes an LAN or GIS file to a .tif file so that it is

compatible with other software.

Choose INTEL if working with a PC

Choose MOTOROLA if using a Macintosh.
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