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ABSTRACT

This study evaluates several methods that enhance the spatial resolution of multispectral

images using a finer resolution panchromatic image. The resultant hybrid, high resolution,

multispectral data set has increased visible interpretation and improved classification

accuracy, while preserving the radiometry of the original multispectral images. These

methods can therefore be applied to create simulated high resolution multispectral data, as

well as to enhance image analysis.
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1.0 INTRODUCTION

Spatial resolution is an important parameter in image interpretation. However, to

capture multispectral images or images within a narrower spectral bandpass, spatial

resolution is often diminished. In general, if a sensing system has fine spectral

discrimination, then it is physically difficult to also have fine spatial resolution.

The emphasis of this study is to enhance the spatial resolution of multispectral

images using data from another sensor. In particular, this study evaluates several

techniques to merge the medium resolution Thematic Mapper (TM) multispectral images

with a high resolution panchromatic image captured from the SPOT satellite. The

performance of each merging technique is measured by classification accuracy on the

hybrid images, as well as on how well the hybrid images maintain the radiometric and

spectral information of the TM data.

The results of this study show that these merging techniques can produce high

resolution multispectral images for enhanced image analysis. Not only is visible

interpretation clearly improved, but classification accuracy is also increased. In addition,

the resultant hybrid images adequately maintain the TM radiometry.

For the remainder of this introductory chapter, section 1.1 discusses some concepts

on resolution in the remote sensing arena. It covers the effects that different types of

resolution have on classification accuracy, as well as the design trade-offs between these

types of resolution. Section 1.2 looks at previous work done on merging remotely sensed

data.



1.1 Spatial, Spectral, and Radiometric Resolution

In general terms, resolution can be thought of as the ability of a system to distinguish

fine detail. Most often, we think of resolution in terms of "spatial resolution", or how

well we can resolve the spatial detail in an image. As such, there are many ways to

measure or quantify the spatial resolution of an imaging system (i.e. by the modulation

transfer function, ground resolvable distance, etc).

For simplicity, the ground instantaneous field-of-view (GIFOV) is used in this

study. The GIFOV is the projection of the limiting detector aperture onto the ground. It is

similar to the ground sample distance and has units of length. Thus the smaller the

GIFOV, the smaller the sampling distance on the ground, and the finer the spatial

resolution of the system.

However, in the field of remote sensing, and especially with multispectral data,

there are other forms of resolution that are equally as important.

"Radiometric
resolution"

is determined by the number of effective grey levels that

are available to the system to represent the scene brightness. For example, an 8-bit system

would be able to record an image in 256 levels of brightness. Its radiometric resolution

would be finer and more precise than a 6-bit system which can only work with 64 levels.

"Spectral
resolution"

can be thought of as the width of the bandpass over which

radiance is measured. The more narrow this wavelength interval, the finer the spectral

resolution. Intuitively, the finer your spectral resolution, the more spectral bands we could

obtain over a given spectral range. The more spectral bands available for analysis, the



more spectral information will be available.

1.1.1 Resolution and Classification Accuracy

The effect of these three types of resolution on classifying images has been studied,

particularly since the introduction of the Thematic Mapper.

The Thematic Mapper (TM) was launched aboard Landsat-4 on July 16, 1982. In

comparison with the older Multispectral Scanners (MSS), TM provided finer spatial

resolution, narrower and more optimally placed spectral bands, and finer radiometric

precision. A comparison chart is shown below.

Table 1-1

A Comparison ofMultispectral Scanners (MSS) and Thematic Mappej (TM)

MSS TM

GIFOV

(m) 80

30 (bands 1-5,7)

120 (band 6)

Spectral

Bandpass

(micron)

0.5 - 0.6

0.6 - 0.7

0.7-0.8

0.8-1.1

0.45 - 0.52

0.52 - 0.60

0.63 - 0.69

0.76 - 0.90

1 .55 - 1 .75

10.40 - 12.50

2.08 - 2.35

Quantization

Levels

64

(6Ms)

256

(8 bits)

With these improvements in resolution, numerous studies were conducted to



determine their effect on classification accuracy. Even before the TM was launched,

Sadowski et al [77] used simulated data to find that classification accuracy would be

significantly enhanced with the additional TM spectral bands and the increased number of

quantization levels. However, they also discovered that classification accuracy actually

decreased as spatial resolution became finer. These results were corroborated by

Morgenstern et al [77], Latty and Hoffer [81], Markham and Townshend [81], and

Williams et al [84].

The reason behind the apparent lack of effect that finer spatial resolution has on

classification is because of two offsetting effects. Improving spatial resolution will sharpen

boundaries and reduce the amount ofmixed pixels in an image. This reduction in mixed

pixels contributes to an increase in classification accuracy. However, improving spatial

resolution also increases the within-class spectral variance causing a decrease in

classification accuracy [Landgrebe 77, and Irons et al 85]. Thus depending on the input

image, increasing spatial resolution may or may not aid in computer classification - even

though the advantages of increased spatial resolution appear obvious when conducting

manual photointerpretation.

Many of these studies concluded that the commonly-used per-pixel Gaussian

maximum likelihood (GML) classifier did not effectively use the additional information that

increased spatial resolution provides. However, in these cases, only spectral bands were

used as input to the GML classifier.

To better use this information in high spatial resolution images, current classifiers

have been following either of two paths, one using the textural features found in the image

and the other using context to support classification. For two of the more well-known

papers on using texture and context for classification, refer to Haralick [79] and Gurney

and Townshend [81] respectively.



Using these types of classifiers which apply spatial information, classification

accuracies have increased with more spatial detail [Di Zenzo et al 87, Hjort and Mohn 84,

Warnick et al 89]. Rosenblum [90] found that the optimal set of input features for

classification of high resolution air photos contain both spectral and textural information.

Generally, if a classifier can effectively use all spatial, spectral, and radiometric

information, classification accuracies can be improved with finer spatial, spectral, and

radiometric resolution.

1.1.2 Resolution Trade-offs

Unfortunately, as in many relationships, there are trade-offs between the different types

of resolution. For example, if we wished to have a system with fine spatial resolution, it

would be very difficult for this system to additionally have fine spectral resolution. To

improve the spatial resolution of our scanning system, we would require a smaller GIFOV.

A smaller GIFOV means the energy reaching the sensor has originated from a smaller

ground area and if other parameters remain constant -- this means less energy reaching

the sensor. Lower levels of energy means a lower signal level available to the sensor,

resulting in a lower signal-to-noise ratio (SNR). To produce useful output, the sensor

must be at or above a threshold SNR to distinguish a signal from the noise. To compensate

this lower SNR due to a smaller GIFOV we could broaden the spectral bandpass to allow

more energy through
- i.e., spectral resolution is sacrificed to compensate for the gain in

spatial resolution.

Conversely, if we wished our data to be captured within a narrower spectral band,

again less energy would be incident on the detector. Increasing the GIFOV (losing spatial

resolution) would increase the number of incident photons on the detector so that an

5



acceptable SNR is maintained.

Another trade-off mentioned by Green [88] is a simple data handling problem.

Suppose we had 8 Mbits of digital storage. We could approximately store either a:

1000 x 1000 pixel image, 8 bits/pixel, 1 spectral band;

or

380 x 380 pixel images, 8 bits/pixel, 7 spectral bands;

or

1000 x 1000 pixel images, 4 bits/pixel, 2 spectral bands.

The first system provides high spatial resolution but limited spectral information. The

second example provides a significant amount of spectral data, but at a low spatial

resolution. The third system provides some spectral resolution at high spatial resolution,

but at much lower radiometric precision than the first two systems. Other similar data

handling constraints that could drive information trade-offs are limitations in transmission

and acquisition time.

All these system trade-offs are dependent on the current state of technology. With

time and technological advances, information trade-offs will become less severe. But given

existing data and existing remote sensing systems, we can overcome these current trade

offs by combining data from two complementary systems. The resultant hybrid data set

would contain the
"best"

characteristics of the individual systems.



1.2 Historical Overview on Merging Images

To improve the relatively coarse spatial resolution ofmultispectral images, the idea

of merging data from different sensors has been attempted. Early studies reported

successful merging with the Landsat MSS images (80 m GEFOV). Radar images from

airborne systems and the Shuttle Imaging Radar (SIR-A) have been merged with MSS

images to enhance geological interpretation [Daily 79; Chavez 83]. Lauer and Todd [81]

combined MSS and RBV images to obtain a hybrid product, while Schowengerdt [82]

mergedMSS with the Heat Capacity MappingMission (HCCM) data.

With the introduction of the TM and SPOT sensor systems which have finer spatial

and spectral resolutions, further studies on merging were reported. All of these merging

techniques, as well as those done with.MSS images, could basically be classified into 3

categories.

1.2.1 Merging for Display

Price [87] coined the first category of merging techniques as the "ad
hoc"

approaches. Since the primary concern of these methods was to optimize image display,

some unusual operations were done on the data. However, the resultant hybrid images

appeared to have increased spatial resolution. Welsh et al [87] summarized these ad hoc

methods into two equations:

M'i = aj x
(m-

x
p)1/2

+ b; (1-1)

or

M'i = a; x (coiM; 9 co2P) + b; (1-2)



where:

M|'

= the digital count (DC) for a pixel in the i-th band of the merged image;

M-
= DC for the corresponding pixel in the i-th multispectral image;

P = DC for the corresponding panchromatic reference image pixel;

(>l , a>2
=

weighting factors;

a
i , bj =

scaling factors to optimize the dynamic range; and

= operator which could be addition, subtraction, multiplication, ratio, etc.

Using these methods and simulated SPOT data, Cliche [85] integrated the

panchromatic channel into the multispectral channels to significantly improve visible

interpretation. Chavez [84] added edge enhanced (simulated) SPOT data to TM images.

Chavez [86] also merged TM data with a digitized panchromatic photograph. Hashim [88]

simply
"overlaid"

registered TM andMSS images to obtain a hybrid product.

Currently, many Geographical Information Systems (GIS) which contain layers of

information in their database, implement some sort of data combination for display to the

user [Welsh 85; Walsh et al 87]. Since a high priority of a GIS is to optimize image

display, "ad
hoc"

approaches to merging are frequently used. One of the more simpler

methods for an enhanced RGB display is to place the high resolution panchromatic image

into the green channel, and two low resolution multispectral bands into the red and blue

channels. Since the green channel contributes the most to the intensity component, the

overall display looks sharper.



1.2.2 Merging by separate manipulation of spatial information

A multispectral image can be thought of as having a spectral component and a spatial

component. The second type ofmerging algorithm first tries to separate these components,

then manipulates the spatial component to obtain spatially enhanced images without

touching the spectral information.

One way to separate spatial/spectral information is by looking at the spatial

frequencies of the image. An image, according to Schowengerdt, can also be considered to

be the sum of a low spatial frequency component and a high spatial frequency component

[Schowengerdt 80].

image = lowpass ( image ) + highpass ( image ) (1-3)

The primary assumption in this technique is that the spectral information is contained

in the lowpass component and that the spatial information is in the highpass component. If

the edges, or the high spatial frequencies of the images to be merged are correlated, then the

highpass component of the finer spatial resolution image could be substituted for the

highpass component of the lower spatial resolution image. Assuming that the majority of

the spectral information is contained in the low frequency component, then the resultant

hybrid image would maintain its spectral content while gaining improved spatial resolution.

Schowengerdt used this technique to reconstruct compressed MSS images by

extrapolating the edge information from the high resolution bands to the low resolution

(compressed) bands. Tom et al [85] used a variation of this technique to sharpen TM band

6 (120 m GIFOV) by using the TM bands that have a 30 m GIFOV.



Another way to separate spatial and spectral information is based on the intensity-

hue-saturation (IHS) color transformation [Hayden et al 82]. The IHS transformation

allows spatial information, contained in the intensity component, to be treated separately

from the spectral information which is embedded in the hue and saturation components.

The user can then manipulate the spatial information via the intensity component while

maintaining overall color balance of the original scene.

With the IHS method, three carefully selected multispectral bands are transformed

into the IHS domain. The digital counts (DC) of the intensity component can then be

modified using the high resolution (panchromatic) reference image DCs. The modified data

is then transformed back into the red-green-blue (RGB) color domain and displayed.

Using IHS methods, Carper et al [87] and Welsh and Ehlers [87] obtained visually

superior results than those obtained using Cliche's (ad hoc) methods. Care has to be taken

though, to ensure that the high spatial resolution reference image is highly correlated to the

other input images. Having high correlation between two images means that the linear

relationship between the images is very strong.

1.2.3 Merging and Maintaining Radiometry

All of these methods up to now produced visually enhanced images. Spatial

resolution appeared to take on the reference (panchromatic) image resolution while retaining

most of the spectral information. However, in all cases, the specific radiometric values of

the multispectral images were lost. The third type ofmerging algorithm is similar to the ad

hoc approach, but is more statistically-based and attempts to maintain radiometric integrity.

One method suggested by Pradines [86] to keep radiometric quality of the

multispectral images is illustrated on the next page:

10



P1 P2

P3 P4

XP1 XP2

XP3 XP4

where XP(J) = X x
P(J)

PI +P2 + P3+P4
,
J = 1..4

Figure 1-1. Pradine's Merging Method

3y using this method, the aggregate of the four hybrid pixels will return the

radiometry of the original multispectral image. However, the high spatial resolution image

(panchromatic channel) must be correlated with the individual multispectral images. For

those bands not correlated with the reference image, this merging algorithm cannot be used.

Two other merging techniques which try to maintain the radiometry of the

multispectral images are the Price [87] and the DIRS methods [Warnick 89]. These

methods are described in more detail in the following section.

11



2.0 MERGING METHODS AND MODIFICATIONS

This study evaluates the third type ofmerging techniques
- those techniques which

attempt to preserve the integrity of the multispectral data. The two primary techniques

under test are the DIRS and the Price methods. In addition, several modifications and

enhancements have been incorporated to address some of the known short-comings of

these techniques. These modified versions are also included for comparison.

2.1 The DIRS Method

The Digital Imaging and Remote Sensing Laboratory (DIRS) conducted a proof-of-

concept study on merging multi-date-multi-sensor-multi-resolution images for enhanced

image analysis [Warnick, et al, 1989]. Specifically they merged a high resolution

panchromatic image (SPOT-1 panchromatic channel, 10m GIFOV) with medium resolution

multispectral images (Landsat-5, TM bands 1-5, 7, 30m GIFOV).

The DIRS method can be summarized in the following steps:

(1) The SPOT image is geometrically registered to the TM images.

(2) A medium resolution panchromatic image is created from a weighted

average of TM bands 1 through 4. This synthetic image approximates the same spectral

characteristics as the high resolution SPOT panchromatic channel.

(3) The histogram of the SPOT panchromatic image is then linearly

adjusted to the histogram of the synthetic TM panchromatic image. This transformation

will, to the first order, account for the differing atmospheric and sensor effects between the

SPOT and the Landsat TM images.

12



(4) The images are then merged to create a high resolution, multiband

hybrid image. The merging algorithm is:

DCHybrid MultibandO)
= DCSPOT Pan L^C(l) 1 (2-1)

\UL.SynTMPan/

where:

DCHybridMultiband (-) is the digital count of the i-th band in the hybrid

multiband image;

DCSPOT Pan
is the digital count in the adjusted panchromatic SPOT image;

DCjj^O) is the DC in the i-th band of the original multispectral image; and

---'CsynTM Pan
-s ^ie digital count in the synthetic TM panchromatic image.

The DIRS method is applied on a pixel-by-pixel basis, and therefore each of the

above terms also has a pixel location. These locations are left off for easier reading.

2.1.1 Results Using the DIRS Merging Method

In addition to the visible improvement of the images, the overall classification

accuracy was approximately 10 percentage points higher for the hybrid data set than for the

original TM images.

2.1.2 Concerns on the DIRS Merging Method

Because the DIRS method was developed only as a
proof-of- concept study, the

authors identified several areas for further study.

(1) Concerns on creating the synthetic TM panchromatic image:
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The synthetic, medium resolution panchromatic image was produced as a weighted

average of TM bands 1 through 4. The weighting factor for each band is determined by

finding the common area of the TM spectral response curve and the SPOT panchromatic

spectral response curve. The common area under the two curves is then divided by the

total area under the TM curve considered. The resultant quotient is the weighting factor for

that TM band. By using integration to determine areas, the weighting factor can be

represented as:

I min(TMRSR,i(?i), SPOTRSR(X.)) d(X)

w;'

=

^
(2-2)

TMRSR,i(X) dX1

where:

i refers to the TM band number, i = 1
..4;

w-'

is the weighting factor for the i-th band;

TMRSR yk) is the relative spectral response curve of the i-th band of the TM

scene; and

SPOTRSR(X) is the relative spectral response curve of the SPOT panchromatic

channel.

Once the weighting factors are determined for the 4 TM bands, the factors are

normalized as:
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w

W;'

1
"

4

X
Wi'

i = l

The synthetic TM panchromatic image can now be created as:

(2-3)

TMsynPan =

W; X i (2'4)
i = l

However, it was found that the synthetic TM panchromatic image was not sensitive

in the 700 to 750 nm range, while the SPOT panchromatic sensor is still relatively

responsive. Since the reflectivity of vegetation is active in this region, the SPOT

panchromatic image responds to this vegetation reflectance information while the synthetic

TM panchromatic did not.

To correct this discrepancy, the spectral response curve for TM band 4 was
"shifted"

from a bandpass of (760, 900) nm down to (710, 850) nm. This shift increased the

weighting factor for TM band 4, thereby increasing the responsivity in this region and

providing a
"truer"

approximation of the SPOT panchromatic image. However, the authors

suggested that another method of producing a synthetic TM panchromatic image should be

explored.

(2) Concerns on the weak correlation between the SPOT panchromatic channel and TM

bands 4, 5, and 7:

The merging algorithm used in the DIRS method as previously shown in equation

(2-1) is:
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DCHybrid Multiband(i)
= DCSpOT Pan

' L.^
\U<~SynTMPan

where i represents the TM bands 1 through 5 and 7. The concern is when the images for

TM bands 4, 5, and 7 are merged with the SPOT panchromatic image. These bands are

only weakly correlated with the SPOT panchromatic channel and should probably be

merged in a different fashion.

(3) Concerns on Radiometry:

The high resolution, multiband hybrid images can be thought of as TM multiband

images that have been spatially enhanced. The enhancement is the result of the integration

of the SPOT panchromatic image, but the resultant mean radiances should still be the same

as the original TM data. As illustrated below, the original TM images have one pixel to

describe a 30m by 30m area, while the hybrid image has 9 pixels to describe the same area.

For consistent nomenclature, the 30m by 30m area will be referred to as a "superpixel";

and a 10m by 10m pixel as a "subpixel".

30 m

TM pixel

"superpixel"

(a)

1 2 3

4 5 6

7 8 9

Nine high resolution

"subpixels"

(b)

Figure 2-1 Superpixel and subpixels

10 m
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Assuming linearmodeling, the following condition must hold to maintain radiometric

integrity.

9

DC = t E DCHybrid(j) (2-5)
j = i

However, no such check was made or enforced in the DIRS method.

2.2 General Modifications to the DIRS Method

This section describes three general modifications to the DIRS method which address

some of the concerns raised in the previous section. These modifications are grouped

together because they do not alter the merging algorithm. Instead, they affect either the

input images to the merging algorithm, or the hybrid output images.

2.2.1 Creating a TM panchromatic image

In the DIRS study, the weighting factors for each TM band were obtained by

computing the overlapping areas of the SPOT panchromatic and the TM bands spectral

response curves. However, the synthetic TM panchromatic image had a lack of sensitivity

in the 700-750 nm region. Consequently the TM band 4 spectral response curve was

"shifted"

to provide a stronger weighting factor and more responsivity in that bandpass.

Another method to obtain the weighting factors has been used by Suits [Suits et al

88] to substitute signals from one sensor for the signals of another. By slightly modifying
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Suit's approach, new TM weighting factors were computed using a multivariate regression

on estimated sensor signals.

Estimating Sensor Signals

Given the reflectance spectrum of a target, some atmospheric parameters, and an

atmospheric model (such as LOWTRAN) we can estimate the radiance that reaches the

sensor in a bandpass of interest. This radiance parameter is designated L^ ,
and is a

function of wavelength, X. With L^ we can cascade the sensor's spectral response

function, $(X), to get the effective radiance seen by the sensor. This effective radiance, Ls

is computed as:

( Lx p(?0 d^

Ls = ^ (2-6)

P(X) dX

Jo

The output signal (in DCs) can now be estimated using Ls and the known gain and

offset of each sensor.

DCs =
Ls-i -

offseti
(2-7)

garni

where: DQ = estimatedDC ofTM band i ;

L = effective radiance seen by the i-th band; and
S-l

gainj , offset;
= the gain and offset of the i-th band.
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These simulated signals are then regressed to determine the weighting factors. This

regression can be represented as:

DCspot-1

DCspot-2

DCspoT-3

DCspQT-n _

DCxMl-1 DC-TM2-1 DCTM3-1 DCtM4-1

DCtmI-2 DCtM2-2 DCjM3-2 DCTM4-2

DCtmI-3 DCtM2-3 DCTM3-3 DCTM4-3

_ DCTMl-n DCTM2-n DCTM3-n DCTM4-n

CO!

co2

(03

C04.

El

2

3

-n J

(2-8)

where: DC is the estimated signal of the subscripted sensor;

com ,
m = 1..4 is the weighting factors for TM1, TM2, TM3, and TM4

respectively;

n is the number of samples in the regression; and

e is the error vector which is minimized when solving for co.

To compute the simulated signals from TM1, TM2, TM3, TM4 and SPOT,

LOWTRAN 7 (an atmospheric propagation model) was modified. The first modification to

LOWTRAN 7 was to allow the program to access a target reflectance spectrum.

LOWTRAN 7 in its original form uses only one reflectance value (called the surface albedo

or 'SALB') for all wavelengths. This limitation implies that all target reflectance spectra are

uniform and flat. The modified version now allows LOWTRAN 7 to access a file

containing reflectance information. A reflectance value is then accessed (or computed via

interpolation) for each wavelength run by LOWTRAN.

The second modification was available from previous work by Carl Salvaggio. His

modification integrated the sensor's spectral response curves with the radiance values

computed by LOWTRAN 7. The output signal (in DC) was then computed following
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equation (2-7).

Having modified LOWTRAN 7 to produce simulated sensor DCs, 25 target

reflectance spectra were chosen. These 25 targets were comprised of 5 major classes -

urban, soil, water, trees, and grass with 5 samples each. These spectra are plotted in

figures 2-2 through 2-6 on the following pages.

^

40

30 -

20 -

10 -

1 1 1 1 1 1 '
r~

0.3 0.5 0.7 0.9 1.1

wavelength (um)

asphalt ave

concrete ave

slate ave

gravel

roof asphalt

Figure 2-2 Reflectance Spectra for Selected Urban Targets
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Figure 2-3 Reflectance Spectra of Selected Soil Targets

0.2

waterl

water2

water3

water4

water ave

0.4 0.6

wavelength (um)

Figure 2-4 Reflectance Spectra of SelectedWater Targets
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Figure 2-5 Reflectance Spectra of Selected Tree Targets

clover

coarse grass

grass ave

orchard grass

swamp grass

0.7

wavelength

Figure 2-6 Reflectance Spectra of Selected Grass Targets
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The modified LOWTRAN 7 was then run with these 25 reflectance spectra at 3

different atmospheres of varying haze. These 75 samples were then regressed via equation

(2-8) and new weighting factors for TM1, TM2, TM3 and TM4 were obtained. These

results are described in section 4. 1 . For further information on the LOWTRAN input

parameters, the spectral targets, and the sensor parameters please see Appendix H.
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2.2.2 Interpolated Input Images

In the original DIRS method, each TM 30m superpixel was replicated into nine

smaller 10m pixels to match the SPOT'S pixel resolution (see figure 2-7).

512

pixels

512

pixels

-> K
30 m pixels

->

3 9

15 21

1536

pixels

Y

1536

pixels

h-

(a)

10 m pixels

(b)

->

3 3 3 9 9

3 3 3 9 9

3 3 3 9 9

15 15 15 21 21

15 15 15 21 21

Figure 2-7 Pixel Replication

(a) 512 by 512 original TM image with 30m pixels.

(b) After replication, the image is now 1536 by 1536 with

10m pixels. The covered ground area is the same.

These replicated TM images were then used as input to the merging algorithm. In

hopes of reducing the subsequent
"blocky"

appearance in the hybrid images (caused in part

by the blocky input images), a 3 by 3 averaging filter was
convolved with the replicated
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input images. This simple filtering technique has been used to reduce the blocky

appearance when enlarging images [Bernstein 79], and when merging multi-resolution

images [Chavez 84, 86]. Thus, given a replicated image as in Figure 2-7, the resultant

input image is shown in Figure 2-8 below.

1 1 1

1 1 1

1 1 1

3 3 5 7 9

3 3 5 7 9

7 7 9 11 13

11 11 13 15 17

15 15 17 19 21

(a) 3 by 3 averaging kernel (b) resultant interpolated input

Figure 2-8 Interpolated Input

By using these averaged TM inputs, the merging algorithm does not change,

although the term DCj^ri) no longer has the same value over the entire superpixel.

For this study, these replicated images that were smoothed by the averaging filter are

referred to as the
"interpolated"

input images. This term is used to distinguish these images

from other images that will be "blurred", "smoothed", or "averaged".

2.2.3 A Technique for Radiometric Post-correction

Although the interpolation of the input data reduces the blocky appearance, the

average of the 9 pixels within the superpixel of the filtered input image may no longer equal
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the original data radiometric integrity is lost. In addition, the DIRS method does not

check or enforce whether the average DC within the SPOT panchromatic superpixel equals

the corresponding superpixel in the synthetic TM panchromatic image. Again, the precise

radiometric value is lost.

Rather than alter the basic merging algorithm of the DIRS method (or any method),

radiometric integrity can be restored at the superpixel level by multiplying each hybrid

superpixel (a block of 9 10m pixels) by a correction factor. This correction factor is

defined as:

fjp
_ TMj . 30m

(2-9)

(i) Hybrid(j)i-iOm

j = i

where:

TM; .30m = DC from one original 30 m pixel from TM band i

Hybrid(j)i . 10m
= DC from the j-th 10 m pixel (out of 9) from the hybrid

superpixel that corresponds to TMi .

This post-fix operation corrects for differences in the SPOT panchromatic and the synthetic

TM panchromatic images, as well as the radiometric change to the interpolated TM input

images. This correction, however, re-introduces some of the block appearances since the

correction factor is constant over a superpixel.
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2.3 The DIRS Enhancement 1 Merging Method

In a simple effort to reduce the
"blocky"

appearance of the hybrid data, the DIRS

report suggested implementing a nearest neighbor-type of correction scheme. In this

correction routine, each subpixel was compared to its own superpixel's center value and to

its neighbors center value (see Figure 2-9).

::::^

\
\

-y -O-

^::::

>::^..^7. \J
~

comer subpixel

side subpixel

center subpixel

Figure 2-9 DIRS nearest neighbor correction routine.

Comer subpixels compared values with the diagonal neighbor, and side subpixels

compared to the adjacent neighbor superpixel's center value. If the subpixel's DC was

closer to its own center pixel's value, then the merging algorithm remained the same as in

equation (2-1):

DCHybrid MultibandO)
= DCsPOT Pan

DCtmG) |
DCsynTMPanj
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If the subpixel's DC was closer to the neighbor's DC, than the neighbor's ratio was

used in the merging algorithm:

T\r Ji\ - T\r I DCNeighborTM(i) \
^T-Hybrid Multiband(l)

= ^SPOT Pan
-

f-7;
s

\UL,Neighbor Syn TM Pan I
(2-10)

The DIRS Enhancement 1 merging method follows this same correction scheme,

except that the comer pixels also compare their values against its adjacent superpixel's

center values (not just the diagonal superpixel). The comparison scheme for one corner

subpixel looks as below:

::::^ m

\
1 /
/

K
::::>
^ *>;;;!

Figure 2-10 DIRS Enhancement 1 Correction Routine

The superpixel whose center pixel value was closest to the subpixel value contributed

the ratio in the merging algorithm.

The reason why the adjacent pixels were included
in the comparison for the comer
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subpixels is because the correlation between adjacent pixels is much higher than between

diagonal pixels [Ahem 86]. This better correlation means there is an increased chance that

a comer subpixel will find a better, more accurate match for substituting ratios. Correcting

the comer subpixels obviously reduces the overall block appearance.

Despite these changes, the DIRS Enhancement 1 method still has several limitations.

These include:

- The center subpixel of a superpixel is never changed and will always use its own

ratio.

- Each and every non-center subpixel is checked, regardless if it resides in a non-

varying superpixel, or if the neighboring superpixels have a high variance.

- TM bands 4,5, and 7 are still handled as though they are correlated to the SPOT

panchromatic image.

-

Radiometry is still not precisely preserved.

2.4 DIRS Enhancement 2 Merging Method

DIRS Enhancement 2 is an attempt to correct some of the deficiencies in previous

DIRS methods. This method is described below and can be followed in the flow chart

diagram in Figure 2- 12 at the end of this section.

The basic premise of this method is that the high resolution SPOT panchromatic

image provides the spatial information on which segmentation and computational decisions

are made. The inputs to the method are the replicated TM and the SPOT panchromatic
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images. The SPOT panchromatic image is handled in 3 by 3 blocks which correspond to

the replicated TM input image superpixels.

The steps for each 3 by 3 panchromatic block are outlined as follows:

1. Check to see if the SPOT block is
"mixed"

or "pure". A block is considered

mixed if the variance among its nine pixels is higher than an established threshold. A

"pure"

block would be one with a variance lower than this threshold.

a) If the superpixel block is pure, then the DIRS original merging

algorithm (section 2.1) with a post-fix correction routine (section 2.2.3) is run to create the

corresponding hybrid block. This merging operation will be referred to as the "pure

merge"

in this algorithm.

b) If the block has a high variance, then the algorithm continues

processing the mixed block.

2. Check if all the neighboring blocks are also mixed. If all are mixed, then the

algorithm defaults to do the pure merge (the original DIRS method) over the superpixel

block of interest. If some of the neighboring superpixel blocks are "pure", then the

algorithm continues.

3. Connect the panchromatic superpixel. Each subpixel within the pan superpixel is

compared to its adjacent subpixels. If the difference between the 2 subpixels is lower than

a set threshold, then they are considered "connected". If two
subpixels are connected, then

each subpixel is allowed to compare to the others adjacent subpixels for further

connections. Thus a network of the superpixel can be constructed. An exploded view of

the potential connections for a center subpixel is shown in Figure 2-11.
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Figure 2-11. Connections between the center subpixel

4. Find the subpixels within the mixed SPOT block that can be matched to a pure

neighboring superpixel. A match can occur when the subpixel DC and the neighboring

superpixel's mean value are within a set threshold. Rather than limit the subpixels to

compare only with those neighboring superpixels they can touch (as in DIRS Enhancement

1), this method also allows the subpixels to compare to any of the eight neighboring

superpixels provided that: (a) the neighboring superpixel is pure; and (b) the subpixel can

be
"connected"

to the superpixel. If the subpixel has more than one superpixel to which it

could be matched, then the superpixel whose mean value is the closest to the subpixel value

is chosen. These matched subpixels are then referenced as
"pure"

subpixels.

5. Create the corresponding TM hybrid subpixels by merging these pure subpixels

using the matching superpixel's ratio and correction factor. This merge is similar to the

DIRS Enhancement 1 method by substituting ratios of neighboring superpixels.
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6. Derive a new TM value for the remaining (mixed) subpixels by removing the

hybrid values computed in the step before. This can be described as:

9-(TM0 -

hybridiO)

NewTMi = -J^.

(2.U)

where: NewTM; = New DC for the remaining (mixed) subpixels within

the superpixel of interest in TM band i;

TMj = Original DC of the superpixel of interest in TM band i;

n = number of pure subpixels;

hybrid;(j) = those hybrid subpixels computed from the pure sub-

pixels;

If all the subpixels were found to be pure, (n = 9), then this step is skipped to step

10.

7. Check to see if the new TM values are valid. The new TM values cannot be less

than 0 or greater than 255.

a) If the values are invalid, then the least pure hybrid subpixel is removed

and reclassified as a mixed subpixel. The least pure hybrid subpixel is the subpixel which

has the largest difference between itself and its matching superpixel mean. The least pure

hybrid subpixel will continue to be removed until there are no pure hybrid subpixels left, or

new valid values for TM are computed. If there are no pure hybrid subpixels left, then the

algorithm defaults to do a pure merge on the superpixel.

8. Compute a new synthetic TM value for the remaining subpixels using the new
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TM DCs. Using the new valid TM DCs and the weighting factors developed in section

2.1.1, the new synthetic TM panchromatic can be described as:

NewTMSynPan = j wi x NewTM; (2-12)
i = l

9. The remaining subpixels are now merged using the new TM DC and the new

synthetic TM^ DC using the same basic DIRS algorithm:

DCHybrid(i) =
DCspOTPan-L^^^ I (2-13)

\!JUNewTMSynPan/

10. Radiometrically correct these mixed hybrid subpixels generated in step 9 using

the post-fix operation.

11. Check to see if this final hybrid block (pure and mixed subpixels) is

"reasonable". Some checks for being reasonable are: (a) if the hybrid band is correlated

with the SPOT panchromatic image, the order of the 9 hybrid subpixels should be the same

as the order of the original SPOT subpixels; (b) the standard deviation among the

subpixels of the hybrid superpixel should be within a threshold factor of the standard

deviation of the original SPOT superpixel.

12. If the hybrid superpixel is found to be unreasonable, then the least pure subpixel

is removed and the algorithm returns to step 6. If the hybrid superpixel is found to be

reasonable, then the algorithm is done and a new superpixel is started.
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Note that with this new method, the following improvements to DIRS Enhancement

1 were made:

(1) The center subpixel is not constrained to only use its superpixel ratio and

correction factor. If it can match to a connecting superpixel, then the center subpixel can

use the matching superpixel's parameters. In addition, the other subpixels can also match

with any of the eight neighboring superpixels provided that a connection exists between the

two and the superpixel is pure.

(2) Rather than running comparisons for all subpixels, only those SPOT pan

superpixel blocks that are identified as
"mixed"

(have a large variance) will be processed.

In addition, only those neighboring superpixels that are pure will be able to contribute their

ratio and correction factor. These changes should help in speed and in avoiding improper

substitutions for superpixel parameters.

(3) Radiometry is preserved. Those subpixels that are identified as
'pure'

(are

matched to a pure neighboring superpixel) produce the pure hybrid subpixels. The

remaining subpixels are then computed to maintain the radiometric
value of the original TM

value. In simplistic terms, it can be described as:

known_answer =

pure_valuessubpix
+ mixed_valuessubpix

Given a known answer (original TM value) and the pure subpixel component (determined),

the mixed component is simply what's left.

However, DIRS Enhancement 2 still does not handle the weakly correlated TM

bands 4, 5, and 7 any differently.
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Figure 2- 1 2 Row Diagram ofDIRS Enhancement 2 MergingMethod
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2.4.1 A Modification to the DIRS Enhancement 2 Method

This small modification is a quick fix to handle the TM bands that are weakly

correlated to the panchromatic image. For this modification, the only change to the DIRS

Enhancement 2 method is to the "pure
merge"

operation for the weakly correlated bands.

Instead of pure merging these bands using the DIRS method:

DCHybrid MultibandO)
= DCsPOT Pan

'

\DCsynTMPan)

the hybrid value now simply takes the value of the original TM superpixel:

DGHybrid UncorrelatedBandW = DCTM(i)

Thus if a subpixel is matched to a neighboring pure superpixel, the hybrid subpixel for

these weakly correlated bands would contain the TM value for that matching superpixel.

All other (correlated) bands are manipulated in the identical fashion as before.

These methods described so far in section 2 are variations of the basic DIRS merging

algorithm. The remainder of this section describes Price's merging method and some of its

variations. The results of all these methods will be presented in section 4.
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2.5 Price's Merging Technique

Price's technique formerging multispectral and panchromatic images is split into two

cases. The first case is for multispectral bands that are correlated with the panchromatic

image. The second case is for weakly correlated bands.

2.5.1 Case 1 -- Correlated Input Images

Because the images are correlated, the relationship can be described as linear. On an

individual band basis, the linear coefficients can be determined using a simple linear

regression. This is illustrated in Figure 2-13, where the DCs of an averaged SPOT

panchromatic image are plotted against the DCs of a Thematic Mapper (TM) band.

TM TM = ( a x Pan ) + b
i i ave i

Pan
ave

Figure 2-13. Linear Regression ofTM bands and the Panchromatic Image

where:
TM- = DC of a superpixel in the TM i-th band;

Panave
= the average of the DCs in the corresponding superpixel

of the SPOT panchromatic image;

a-

,

b- = linear coefficients for the i-th TM band.
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After solving for aj and
b-
we can compute a high resolution estimate of the i-th band

using the original high resolution panchromatic channel:

fMj = ^ Paniom + b; (2-14)

The merging algorithm then uses the high resolution estimate to create the hybrid image:

Hybrid, -
LLi

(2-15)
1Mi_ave

where:
Hybrid-

= DC of the hybrid i-th band;

TMj = DC from the original TM i-th band;

TMi = DC from the high resolution estimate ofTM i-th band;

TMi.ave = average of the DCs in the corresponding TM; image

corresponding to the TM^ pixel.

For example, the merging of TM multispectral images (30 m GIFOV) with a SPOT

panchromatic image (10 m GIFOV), is illustrated below in Figure 2-14:
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Figure 2-14 Price'sMerging Method - Case 1

where:

H(J); =

TM, T(J)j

TMj.ave

,
J = 1...9

and TMi.ave = i T(J)-

y
j = i

Note the similarity to
Pradines'

method, except that Price is using an estimate of a

multispectral band instead of the panchromatic data directly for the merging operation. In

addition, Price's resulting hybrid image has an average DC the same as the original
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multispectral band, while Pradine has the sum of the hybrid DCs equal the original

multispectral value. Finally, Price suggests a method to handle multispectral bands that are

weakly correlated with the panchromatic channel.

2.5.2 Case 2 - Weakly Correlated Bands

Because some bands are not linearly related (ie visible and near infrared channels), a

more general relationship was used by Price. After registering the images, Price again

averaged the panchromatic channel to the same spatial resolution as the multispectral

images. Price then computed the expected (mean) value for the weakly correlated band for

each given value in the 30m panchromatic image.

For example, Price would find all the pixels in the 30m panchromatic image that had

a DC of X (0 to 255). He would then find the average of the DCs of the corresponding

pixels in the weakly correlated band. Thus a simple look-up-table (LUT) can be generated.

This process is depicted in Figure 2-15 on the following page. Using this LUT, a high

resolution estimate of the multispectral band can be computed from the original high

resolution panchromatic image. This high resolution estimate is now used as in the

correlated case, and is merged with the original multispectral data.

2.5.3 Price's Results

Price tested his procedure using SPOT simulation data with a 10 m panchromatic and

three 20m multispectral channels. He then averaged the channels to obtain 20m

panchromatic and 40m multispectral channels. Applying the above procedures to the

averaged data, Price produced hybrid 20m values which were then compared to the original

(true) values at 20m resolution.
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Figure 2- 1 5 Creation of a Look-up Table (LUT)
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Multispectral channels 1 and 2 were highly correlated with the panchromatic channel,

and produced residual errors of around two digital counts. This is quite accurate since the

standard deviation of the original data was around 20 DCs.

For the third channel which is not correlated, the procedure was only "moderately

successful". The predicted values accounted only for about 75% of the variance in the

original data, as compared to 99% in the correlated case.

Price did not test the effect his technique had on classification accuracy.

2.6 Price Modification -- A Method of Handling Weakly Correlated Input

Images

One of the biggest concerns in all of the merging techniques to date has been the

merging of multispectral images that are weakly correlated with the reference panchromatic

channel. In our case, TM bands 4, 5, and 7 are not strongly correlated with the

panchromatic channel.

This modification to Price's technique implements a method by Tom et al [85]. In

his paper, Tom improved the spatial resolution of the TM band 6 from 120 m to 30 m using

the other TM bands. His technique is based on an adaptive multiband least squares method

which computes an optimal image estimate. His approach relies on the assumption that

registered TM data are correlated across the bands in small local areas. By using the local

correlation property, Tom used visible and IR bands to predict the thermal IR image data

(band 6) in 30 m resolution. The thermal image estimate was formed by a weighted linear

combination of reference images in which the weights changed adaptively over the entire
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image.

By modifying Tom's technique, we could obtain high resolution estimates of TM

bands 4,5, and 7. To compute the high resolution TM band 7 estimate, the adaptive

multiband enhancement procedure would take these general steps:

(1) Average filter the panchromatic channel to obtain 30 m resolution.

(2) Using the averaged 30 m panchromatic image and the original TM 1
, 2, and 3

images as input, we can implement the adaptive least squares method to generate the linear

prediction coefficients for band 7 at each pixel location. For a given location of the sliding

3 by 3 window, we can represent this as:

TM7i

TM72

TM73

TM79 _

1 TMh TM2] TM3i Pan-

1 TM12 TM22 TM32 Pan2
1 TM13 TM23 TM33 Pan3

1 TM19 TM2g TM39 Pan9

~b0"
"ei"

bi e2

b2 + e_3

b3

-b4_ _e9_

(2-16)

The least square solution is computed by solving for the set of coefficients (the vector b)

that minimizes the error vector (e). Note that each pixel location will have its own set of

coefficients. One way to handle this data is to have matching coefficient
"images"

for each

input/reference image.

(3) Obtain 10 m resolution estimates of TM bands 1, 2, and 3 by previous methods.

(i.e., Price or DIRS methods)

(4) Generate an optimal estimate of TM band 7 using the prediction coefficients and

the high resolution input images (panchromatic, Hybrid bands 1, 2, 3). For each 10m

pixel this can be represented as:
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TM7 = (br Hybi) +
(b2-

Hyb2) +
(b3-

Hyb3) + (b4-Pan,om) + b0 (2-17)

where Hybj , Hyb2 and Hyb3 are the 10m hybrid pixels derived from using

Price's technique for correlated bands.

(5) Merge this high resolution estimate of TM band 7 with the original band 7 using

Price's method with correlated images (section 2.5.1) to obtain a 10m Hyb7 image.

After obtaining Hyb7, we can use this band as another input reference to compute

Hyb5. As before, a vector b is determined, this time with one more dimension for the

additional input reference image.

TM5i

TM52

TM53

TM5g

1 TMh TM2i TM3i

1 TM12 TM22 TM32

1 TM13 TM23 TM33

TM7i Pam

TM72 Pan2

TM73 Pan3

1 TM19 TM2g TM3g TM79 Pan9

"bo"

-,

bi
ei

e2
b,

+ e3
b3

b4

Lbs. .e9_

(2-18)

With this vector b, the high resolution estimate for TM5 can be computed similar to

equation (2-17):

TM5 = (by Hybi) +
(b2-

Hyb2) +
(b3-

Hyb3) +

(b4-
Hyb7) + (b5Paniom) + b0

(2-19)

The hybrid image for TM5 is then obtained by merging this high resolution estimate of

TM5 with the original TM5 image using Price's method
with correlated images. Once the

hybrid for TM5 (Hyb5)is found, this band as well as Hyb7 are used to compute the high

resolution hybrid for TM band 4.
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The order of computing band 7, 5, and then 4 is chosen because this is the order of

decreasing band correlation with the panchromatic image. Tom et al [85] additionally

showed that increasing the number of input reference bands decreased the high resolution

estimate error. Therefore, band 4 the weakest correlated band ~ is computed last to use

the 2 additional reference bands.

Section 2 described the two primary methods ofmerging that are investigated in this

study the DIRS and the Price methods. In addition, several modifications and

enhancements have also been introduced. The following section describes how these

methods were tested and compared.
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3.0 EXPERIMENTAL APPROACH

In comparing these merging methods, several variations of the input images were

used. These variations are described in section 3.1. The two primary tests for evaluation
-

- classification accuracy and radiometric error - are described in sections 3.2 and 3.3

respectively. Finally, the procedure for this study is presented in section 3.4.

3.1 Selection and Preparation of Test Imagery

The SPOT and TM images selected for this study are the identical images used in the

DIRS proof-of-concept study [Warnick 89]. The images were selected from a scene of

greater Rochester, NY, acquired in June of 1987. The acquisition and ephemeris data for

these scenes are presented below:

Table 3-1

Scene Acquisition and Ephemeris Data [from Warnick 89]

Scene

Parameter SPOT Pan Landsat-5 TM

Date 10 June 87 15 June 87

Time ofDay 16:06:21 GMT 15:26:01 GMT

Sensor View Angle
9.7

-

Sun Elevation
65.9 59.0

Scene ID 1618263870610160621 IP Y5120115221X0
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Some of the image statistics are listed in Table 3-2 :

Table 3-2

Scene Statistics

Band mean (DC) Std Dev

TM1 98.14 13.55

TM2 39.94 7.49

TM3 41.40 12.73

TM4 97.82 21.85

TM5 81.36 17.08

TM7 31.64 11.23

SPOT 47.74 11.98

3.1.1 Registration of Images

The SPOT panchromatic image was registered to the TM data set on two separate

occasions using two different transformation coefficients. This provided
two variations of

the SPOT image to use in comparing the merging techniques. With their differences in

registration, some of the effects ofmis-registration can be addressed.

The SPOT panchromatic image is registered to the lower resolution TM data set to

preserve the multispectral information. Registration is conducted by first selecting ground

control points in both the panchromatic and TM images. The geometric transformation

coefficients are then computed using multiple
regression techniques on the selected control

points. With these coefficients, the panchromatic image is geometrically
resampled using

cubic convolution. For more information on standard registration techniques, refer to
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Schowengerdt [83] or the ERDAS Users Guide.

For the DIRS proof-of-concept study, the SPOT panchromatic image was registered

to the TM data set using a first order transformation matrix. Eighteen ground control points

were used to determine the coefficients. Using these control points and the coefficients, a

residual analysis determined that a maximum error of 0.916 SPOT pixels (or 9.16 meters

of error) remained after the transformation of these control points. These transformation

coefficients are shown in table 3-3.

Table 3-3

Transformation Coefficients used for the Resampling of the SPOT Image

for the Original DIRS Study

Coefficient x y

Intercept 474.6330 275.7023

X 0.01939835 0.9500315

Y 0.9497908 -0.0191019

Another set of transformation coefficients were computed in an effort to reduce the

registration error. Sixteen ground control points were used to solve a second order

transformation. The resultant residual analysis showed that the maximum error dropped to

0.459 SPOT pixels, or less than 5 meters of error. These coefficients are shown in Table

3-4 below.
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Table 3-4

New (second order) Transformation Coefficients

used for the Resampling of the SPOT Image

Coefficient

Intercept

X2

XY

Y2

X

Y

0.3064387

0.9446802

0.0195416

0.0032847

0.0012493

0.1723889

0.2884292

0.0203343

0.9464509

0.197969

0.825885

0.196619

3.1.2 Blurred Image Sets

The original SPOT and TM images were blurred to 30m and 90m GIFOV

respectively. By using these lower spatial resolution images as input for the merging

techniques, each algorithm can be compared and evaluated as to how well it
"recovers"

the

original (30m) TM images.

Since the ground instantaneous field-of-view (GIFOV) is used as the measure of

spatial resolution, the method of blurring these image sets should be consistent with its use.

The definition ofGIFOV is simply the projection of the limiting detector aperture onto the

ground. Optical blur and electronics are not taken into account. Thus to simulate an image

acquired with a lower resolution system, the pixels that extend over the new, lower

resolution projection (or footprint) are averaged to get a mean signal over the area. This

mean value is then replaced into all the pixels under the area, or the block is subsampled to
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get one pixel that represents a larger area (a superpixel) that contains the mean value. This

averaging over the
"superpixel"

of interest assumes a linear radiance mixing model which

has been found to be a reasonable approximation [Merickel 83, Chhikara 84].

Thus to blur a SPOT 10m GIFOV image into a 30m image, nonoverlappping, 3 by 3

blocks of 9 pixels are averaged to get one 30m superpixel.

3.1.3 Figures of Images

The following figures show the original TM data set at 30m GIFOV, the blurred TM

data set at 90m GIFOV, and the original SPOT image after registration to 0.459 pixel error.
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Figure 3-1 Original TM (30m GIFOV) bands 5, 3,

displayed in RGB

51



Figure 3-2 Blurred TM (90m GIFOV) bands 5, 3, 2

displayed in RGB
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Figure 3-3 Original SPOT panchromatic image (10m GIFOV)
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3.2 Classification of Test Imagery

All the data sets are classified using the standard Gaussian Maximum Likelihood

(GML) classifier with eight bands of input. These eight bands are comprised of the TM

bands (or hybrid equivalent) 1, 2, 3, 4, 5, and 7, as well as a 5/3 ratio band, and a texture

band. The texture band is a statistical feature band computed from the equivalent TM band

4. Each pixel in the texture band is the standard deviation of the DCs in a 3 by 3 window

around the corresponding pixel in the equivalent band 4.

3.2.1 Training Samples for Classification

All the data sets are classified using the same training sites. The training sites were

carefully chosen to get the best classification of the original TM data set, while permitting

the blurred TM data set (90m GIFOV) to also classify well. The majority of the training

samples were selected from the original 30m data set with special considerations to ensure

that the sample remains
"pure"

when blurred to a lower resolution. However, it was found

that a few training samples taken in highly busy areas were required for adequate

classification accuracy of the original TM data set..

In all, there were 17 classes to which the GML classifier could segment - 4 classes

of urban, 1 class of soil, 2 classes ofwater, 5 classes of trees, and 5 classes of grass.
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3.2.2 Measuring Classification Accuracy

After classification, the classified image is recoded from 17 separate classes into the

5 primary classes: urban, soil, water, trees, and grass. These classified images are then

subjected to one ormore of the following accuracy tests.

(1) Classification Accuracy using a Random Data Set. In this interactive

test, random pixel locations for each class are chosen from the classified image. These

pixels locations are then presented to the user who is viewing the original (or a registered,

higher resolution) data set. The user classifies the pixel at that location. If the user is

unsure of the class to which the pixel belongs, then the user can opt to discard that pixel.

The program will then randomly select another pixel location. A confusion matrix is then

constructed plotting these user inputs as ground truth, against the results of the classified

image.

(2) Classification Accuracy using Independent Data Set 1. This data set

has user selected sample areas (rather than random pixels) against which classification is

checked. It is an independent data set in that none of the samples comes from the training

set. The advantage to this test is that the same pixel classifications can be quickly compared

against all techniques. The disadvantage to this technique is that the selected data set may

not be a fair representation of the classification.

(3) Classification Accuracy using Independent Data Set 2. This

independent data set was specifically designed to test the spatial resolution of the classifier.
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Rather than using selected sample areas as in Independent Data Set 1
,
each sample was

selected one pixel at a time. Fifty samples per class were chosen. All samples were

selected in areas where finer spatial resolution would help - examples include urban pixels

taken from minor side streets, trees within suburban areas, and pixels near boundaries or

edges. As an independent data set, the same advantages and disadvantages apply.

3.2.3 Testing the Significance of Overall Classification Accuracies

Using the confusion matrix obtained from any of the three accuracy tests above, an

overall classification accuracy value can be computed for a classified image. For this

study, the overall classification accuracy is defined as the average of the percent correctly

classified for each class (i.e. the average of the diagonal of the confusion matrix).

For those accuracy tests with an equal number of samples per class (Random and

Independent Data Set 2), two statistical tests of significance can be conducted.

The first test is a check whether the overall classification accuracies from each of the

methods are statistically (significantly) different from one another. Using an r x c table

analysis as presented by Freund [88], a chi-square (x2) value is obtained. If y} is larger

than a threshold
%2

(based on degrees of freedom and significance level), then the methods

can be considered different from one another. An example is presented in Appendix G.

The second test determines if a merging method produces
an overall classification

accuracy that is statistically better than the
classification accuracy obtained from the input

(un-merged) TM data set. This test calculates a threshold classification accuracy value,
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above which is considered significantly different from the classification accuracy obtained

from an un-merged TM data set. The threshold value is computed using standard test

statistics concerning the difference between two proportions [Freund 88]. An example is

presented in Appendix G.

3.3 Radiometric Error Analysis

Radiometric error analysis is conducted on the hybrid data sets when the input

images are the blurred SPOT panchromatic (30m GIFOV) and the blurred TM data set

(90m GIFOV). These hybrid data sets (at approximately 30m GIFOV) can now be

compared to the original TM 30m data to see how well they
"recovered"

the true TM

values. For each band, error is measured as:

(HybridG) -

TM0)2

--DC

= V ~ = &'

where: E^ is the RMS error in digital counts (DC);

Hybrid(j) is the hybrid DC at pixel j;

TM(j) is the original TMDC at pixel j; and

n is the number of pixels used in the error calculation

(generally all the pixels in the image).

Because each band has different DC distribution characteristics (i.e., mean value,

standard deviation, etc), comparing the RMS error in DCs among the various bands is not
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appropriate. A better means of interband comparison (as well as inter-image comparison)

is to express the error in reflectance units rather than in digital counts.

Computing the Error in Reflectance Units

The error can be computed in reflectance units if reflectance data is available. For

this study, the error in reflectance units is computed for bands 1, 2, 3,and 4. The method

is as follows:

(1) Several control points on the original TM data set (bands 1..4) are identified and

their digital counts (DC) are recorded.

(2) A reflectance unit is then estimated for that particular point at the bandpass of the

sensor based on standard reflectance curves, (see figures 2-2 to 2-6)

(3) The DCs for each band and their respective (estimated) reflectance values are

then linearly regressed to determine the best fit line. The line can be
described as:

DC; =
mi-r-

+ bi (3-2)

where:

DC- is the digital count in band i;

m-
, b; is the slope and offset of the best-fit line for band i; and

r- is the estimated reflectance for the digital count.

(4) Using the slope m found above, along with eDC ,
the error in reflectance units

can now be computed as:

P =
dc (3-3)

**
m
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3.4 Running Methods and Modifications

This section describes the parameters (such as threshold limits) that were used for

this study.

3.4.1 Running DIRS Enhancement 2

In this method, the panchromatic image is grouped into 3 by 3 blocks that

correspond to the TM superpixels. The standard deviation of each 9 pixel block is

computed. The average of all these block standard deviations (x0), as well as the standard

deviation of these block standard deviations (c0) are then computed and presented to the

user. The user is prompted to enter a standard deviation threshold value to differentiate the

pure from the mixed 3 by 3 blocks. Those blocks that have a standard deviation greater

than the threshold are considered to be mixed. Those panchromatic blocks that have a

standard deviation less than the threshold are considered pure.

For the SPOT panchromatic image, the following are the block standard deviation

statistics and the threshold standard deviation used:
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Xo c0 aT

SPOT registration error of 0.916 pixels

Original SPOT image (10m GIFOV): 5.311 4.335 8.235

Blurred SPOT image (30m GIFOV): 5.788 3.793 8.347

SPOT registration error of 0.459 pixels

Original SPOT image (10m GIFOV): 4.891 3.952 7.559

Blurred SPOT image (30m GIFOV): 5.575 3.682 8.060

The thresholds were chosen so that approximately 25% of the blocks would be classified as

'mixed'. These thresholds can be calculated by assuming that the standard deviation of the

blocks follow a normal distribution. Thus, by providing a z-score, the threshold can be

computed using the standard (z-score) equation and tables

z = (oT
-

Xo)/o0 (3-4)

For a mixed block rate of 25%, z
25

= 0.675 ; and the threshold, oT can now be

computed.

This oT is also used to determine if a subpixel is connected to another subpixel, or if

it can be matched to a neighboring superpixel. It can be shown that the standard deviation

between two values is equal to the absolute value of their difference divided by the square

root of two (Appendix I):

_

|xi-
xj (35)

'2

V2
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If Oj 2 is smaller than cT ,
then the two samples are considered connected.

3.5 Experimental Procedure

The experimental procedure is broken down into three parts. In the first part, the

merging methods were run on blurred resolution image sets the SPOT panchromatic

image and the TM bands were blurred to 30m and 90m GIFOV respectively. The hybrids

were evaluated on radiometric error and classification accuracy.

In the second part, the methods were again tested using blurred image sets, but the

input SPOT image was the image that had a registration error of less than 5 meters. In this

manner, the differences in results from Part 1 and Part 2 can be attributed to registration

differences.

In the third part, the methods are run on original resolution images and the hybrids

are evaluated on classification accuracy alone. In all three parts, the classification

accuracies of the hybrids were compared to the classification accuracy of the un-merged

(input) TM data set. Whenever possible, the hybrid classification accuracies were

evaluated to see if they were significantly different than the un-merged TM data set

classification accuracy.

3.5.1 Part 1 -- Merging with Coarser Resolution Input Data Sets

In the first part, 10 of the merging methods were run on the
blurred image sets. The
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TM data set was blurred to 90m and the SPOT panchromatic image (0.916 pixel

registration error) was blurred to 30m. These 10 methods were the:

(1) DIRS original method;

(2) DIRS method with the new synthetic panchromatic image;

(3) DIRS method with the interpolated input *;

(4) DIRS method with the interpolated input and post-fixing *;

(5) DIRS Enhancement 1 method *;

(6) DIRS Enhancement 1 method with post-fixing *;

(7) DIRS Enhancement 2 method *;

(8) DIRS Enhancement 2 method with TM4 modification *;

(9) Price's method (with a look-up table for TM4, TM5, TM7); and

(10) Price's modified method (with adaptive weighting).

- uses the new synthetic panchromatic image.

For a quick review, Table 3-5 contains a brief summary of each of these methods.

The hybrid data sets, as well as the blurred and original TM data sets, were then

checked for radiometric errors, and classified. Classification accuracy was determined

using independent data set 1. Those methods that provided the most encouraging and

interesting results were then selected for further testing.
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Table 3-5

Summary Table ofMergingMethods

Method Comments

1 - DIRS Original Method DCHybrid (i) = DCspOT Pan
-

(section 2.1)

DCtm(J)

DCsyn TM Pan

2 - DIRS with new

synthetic pan image

Replace DCSynTMPan withDCNewSynTMPan
(section 2.2.1)

3 - DIRS with

Interpolated Input

Rather than pixel replicate, the coarser resolution

input images are interpolated, (section 2.2.2)

4 - DIRS with Interpolated

Input and Post-fixing

Takes output from (3) and post-fixes ensures that

the average of the hybrid superpixel area equals the

original TM DC. (section 2.2.2 and 2.2.3)

5 - DIRS Enhancement 1 Same as (1) but substitutes the superpixel ratio with

a neighbor superpixel ratio if the subpixel is closer

to the neighbor's center sabpixel value, (section 2.3)

6 - DIRS Enhancement 1

with Post-fixing

Takes output from (5) and post-fixes.

(section 2.3 and 2.2.3)

7 - DIRS Enhancement 2 Segments the superpixel based on the pan image

and on user input thresholds, (section 2.4)

8 - DIRS Enhancement 2

with TM4 mod

Only weakly correlated bands are handled differently.

The hybrid subpixel takes the value of the original

TM DC (or a neighboring TM DC) (section 2.4.1)

9 - Price's Method Creates a hi-res estimate of the band, then post-fixes.

Correlated Bands estimate created by linear
transform of pan image.

Weakly Correlated Bands
- estimate created by LUT.

(section 2.5)

10 - Price's Modified Method

(adaptive weights)

Same as (9) except when obtaining estimate for

weakly correlated
bands. Instead of LUT, uses

adaptive weights, (section 2.6)
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3.5.2 Part 2 -- Merging with Coarser Resolution Data Sets with a

Lower Registration Error

In this phase of the study, six of the methods were again tested at the blurred

resolutions, but the input SPOT image was the image that had a registration error of less

than 5 meters. The resultant hybrid data sets were then radiometrically checked and the

classification accuracies were determined using both independent data set 1 and a random

data set.

3.5.3 Part 3 Merging with Original Resolution Data Sets

This last phase used the original resolution data sets to create hybrid data sets with

approximately 10m GIFOV. The classification accuracies of these hybrid data sets were

then determined using the independent data sets 1 and 2, as well as a random data set.
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4.0 RESULTS

4.1 Creating the New Synthetic Panchromatic Image

The weights for TM bands 1 through 4 using the technique described in section

2.2.1 are:

(aTm
=

-0.0134;

(0TM2
= 0.6417

(ATm
= 0.3175

firM4
= -0311 with an

r2

value of 0.9999

Because TM bands 1, 2, and 3 are highly correlated to one another, there is

redundant information between them. Because of this, TM1 only provides a weak

contribution to the overall weighting. Since TM1 contributes a relatively small, and

negative amount, the regression was run again this time without TM1 as an input. These

weightings are now:

iaTM2
= 0.5931;

aTm
= 0.3310;

u^
= 0.0345; also with an

r2

value of 0.9999

A summary chart is shown below:
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Table 4-1

Summary ofWeighting Factors used to Generate the TM Panchromatic Image

DIRS weighting LOWTRAN Set 1 LOWTRAN Set 2

TM1 0.0617

TM2 0.4550

TM3 0.3818

TM4 0.1015

0.0134 --

0.6417 0.5931

0.3175 0.3310

0.0311 0.0345

The resultant TM panchromatic images have the following characteristics:

Table 4-2

Summary of the Histogram Statistics for the Panchromatic Images

Mean Std Dev

Original SPOT pan image

SPOT pan image blurred to 30m

TM pan image (DIRS weighting)

TM pan image (LOWTRAN 1 weighting)

TM pan image (LOWTRAN 2 weighting)

47.71 11.97635

47.71 10.08628

49.96 8.35087

40.50 8.37877

40.77 8.33082

Since the the differences between the two LOWTRAN-derived weights are minimal,

the second set ofweights (without TM1) was used to create the synthetic TM panchromatic

image.
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The SPOT pan image is then linearly adjusted to the TM synthetic pan image to

account for the atmospheric differences between the acquisition times. The coefficients for

the linear adjustment are determined as:

0"2 .
- -

m = ^

; b =
x2

- mxi

Oi

where: o~2 , x2 are the standard deviation and the mean of the TM pan image;

Oj , xi are the standard deviation and the mean of the SPOT pan

image to be adjusted.

The SPOT image can now be adjusted as:

SPOTadjusted = m SPOTorig + b

A quick check was done to see if there was a difference between using the blurred SPOT

pan image statistics or the original pan image statistics (to provide 0"j and 5q) to derive the

linear coefficients for atmospheric adjustment. These results are summarized below:
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Table 4-3

Summary of the Linear Coefficients used for Adjustment

m b

Original SPOT input:

LOWTRAN syn TM pan 0.6956 7.5826

DIRS syn TM pan 0.6973 16.6928

Averaged SPOT input:

LOWTRAN syn TM pan 0.8260 1.3637

DIRS syn TM pan 0.8279 10.4588

These adjusted SPOT images were then blurred to 30m and compared to the synthetic TM

pan image. To obtain hybrid images that are radiometrically precise, there should be no

difference between the blurred, adjusted SPOT pan image and the synthetic TM pan image.

However, there were some RMS error differences as shown in Table 4-4:

Table 4-4

Summary of the Error Differences

error normalized

RMS error (DC) to input image

Original SPOT input:

LOWTRAN syn TM pan 3.77

DIRS syn TM pan 3.97

Averaged SPOT input:

LOWTRAN syn TM pan 3.80

DIRS syn TM pan 4.04

5.42

5.69

4.60

4.87
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These results indicate that the synthetic TM pan image created from the LOWTRAN-

derived weights will provide a better radiometric hybrid than from the TM pan image using

the DIRS weights. In addition, it initially appears that using the original SPOT image to

derive the adjustment coefficients gives slightly better radiometric results.

However, these results may be due simply to the standard deviation of the images

used to obtain the coefficient m. The larger m is, the more variation in the adjusted SPOT

image, and the larger the difference is between the adjusted SPOT image and the synthetic

TM pan image. Thus, if either o2 gets larger, or if 0"j gets smaller, m becomes larger and

so does the error. These errors in DC can be converted to DC error in the SPOT input by

dividing by their respective m's (similar to computing the reflectance error in section 3.3).

With these normalized errors shown in the second column in Table 4-4, the linear

coefficients derived from an averaged SPOT pan image now results in lower errors.

Despite which synthetic TM pan image is used, however, it is apparent that

radiometry will not be exactly preserved if the DIRS merging method(s) are unchanged.
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4.2 Computing the Error in Reflectance

Over 30 control points were taken over the original TM data set (bands 1..4). These

points are listed below.

Table 4-5

Selected Control Points

Screen Location TM1 DC TM2 DC TM3 DC TM4 DC

Roadl 102,71 100 38

168,48 101 37

75,80 96 35

59,82 105 42

Road2 297,167 119 49

304,178 116 49

309,185 115 47

Concrete 417,41 174 77

502,333 187 79

422,6 182 81

Soil 221,402 125 62

225,385 125 59

222,395 123 58

258,439 126 60

Water 142,327 81 31

37,449 84 31

261,84 98 32

267,78 95 31

220,44 81 30

(Table 4-5 continued on the next page)
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43 41

41 41

38 44

46 48

60 53

60 55

58 57

101 77

110 86

100 81

88 85

86 91

85 80

89 86

27 6

27 8

23 11

20 13

26 9



Table 4-5 (continued)

Selected Control Points

Screen Location TM1DC TM2DC TM3DC TM4DC

Trees 83,428 82 29 26 139

295,55 81 29 24 132

129,144 80 28 22 120

94,232 81 32 25 142

110,157 82 29 24 131

Grass 1 285,374 92 39 36 116

247,387 88 35 32 127

180,404 92 41 40 117

287,368 90 39 35 128

143,480 91 39 35 124

Grass2 150,406 95 43 40 155

215,381 , 93 39 36 148

233,468 89 39 32 148

The subgroups under Table 4-5 were then averaged and their reflectances were

estimated for each band. The reflectance estimates were based on the spectral curves

shown in Figures 2-2 through 2-6. These results are listed in Table 4-6 below.
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Table 4-6

Averaged DC and Estimated Reflectance

Ave

TM1

DC %r

Ave

TM2

DC %r

Ave
TM3

DC %r

Ave
TM4

DC %r

Roadl 101 8 38 10 42 11 43 13

Road2 117 10 48 12 59 15 55 17

Concrete 181 19 79 24 104 25 81 28

Soil 125 12 60 17 87 20 86 35

Water 88 6 31 5 25 6 9 2

Trees 81 5 29 6 24 11 133 55

Grass 1 91 7 39 9 36 9 122 44

Grass2 92 7 40 9 36 9 150 62

The four separate plots and regressions for Table 4-6 are shown in the figures on the

following pages.
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Thus, to transform the error from DC to reflective units:

Er-i = ^
^'

mj

where: i is the TM band 1..4; and

mj
= 7.1638

m2
= 2.6496

m3
= 4.4720

m4
= 2.2844

4.3 Results for Part 1 -- Merging with Coarser Resolution Input Sets

In this part of the study, 10 of the merging methods were run on the blurred image

sets. The TM data set was blurred to 90m and the SPOT panchromatic image was blurred

to 30m. The summary of these results are shown in Tables 4-7a through 4-7c on the

following pages. For the further details on these results, refer to Appendices B and C.
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Table 4-7a

Summary of Classification Breakdown by Percentage (30m hybrid)

urban soil water trees grass

Original TM (30m) 42.34 3.32 0.53 34.17 19.64

Blurred TM (90m) 66.48 1.30 0.49 8.23 23.49

DIRS Method

- Orig Syn Pan 55.38 4.64 1.26 15.87 22.86

- New Syn Pan 56.25 3.38 1.03 12.80 26.56

- Interpolated Input 47.06 1.66 0.69 25.65 24.94

- Interpolated and

post-fixed 50.53 1.71 0.66 14.50 32.60

DIRS Enhancement 1

- No post-fix 41.99 0.35 0.61 12.50 44.58

- With post-fix 47.84 0.68 0.63 15.58 35.27

DIRS Enhancement 2

- No modification 54.27 1.93 0.73 14.70 28.37

- modified for TM4, 5 50.21 3.61 0.77 12.00 33.42

Price Method

-LUT 39.51 4.19 1.12 16.07 39.11

- Adaptive Weights 45.23 2.51 1.34 12.97 39.98
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Table 4-7b

Summary of Classification Accuracy with

Independent Data Set 1 (30m hybrid)

urban soil water trees grass overall ave

Original TM (30m) 92.5 100.0 62.3 61.9 99.1 83.2

Blurred TM (90m) 73.6 0 30.2 37.7 90.9 46.5

DIRS Method

- Orig Syn Pan 63.2 100.0 88.7 14.9 94.2 72.2

- New Syn Pan 96.2 96.7 100.0 27.2 93.6 82.7

- Interpolated Input 95.2 100.0 100.0 51.0 99.1 88.5

- Interpolated and

post-fixed 96.2 100.0 88.7 22.3 99.7 81.4

DIRS Enhancement 1

- No post-fix 76.4 85.2 90.6 9.9 97.9 72.0

- With post-fix 96.2 93.4 98.1 19.3 99.7 81.3

DIRS Enhancement 2

- No modification 98.1 95.1 77.3 29.7 93.6 78.8

- modified for TM4, 5 90.6 96.7 88.7 39.6 99.4 83.0

Price Method

-LUT 71.7 96.7 98.1 48.0 99.1 82.7

- Adaptive Weights 76.4 93.4 88.7 29.2 99.1 77.4

where: overall ave =

urban + soil + water + trees + grass
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Table 4-7

Summary Table for 30 m Hybrid Results

Classification

Accuracy using
Independent Data Set 1 Total RMS Error (DC)

Original TM (30m)

Blurred TM (90m)

DIRS Method

- Orig Syn Pan

- New Syn Pan

- Interpolated Input

- Interpolated then

post-fixed

DIRS Enhancement 1

- No post-fix

- With post-fix

DIRS Enhancement 2

- modified for TM4,
TM5

Price Method

- LUT for TM4, 5, 7

- Adaptive weights

for TM4, 5, 7

83.2% reference

46.5% 45.8

72.2% 47.8

82.7% 51.2

88.5% 50.8

81.4% 43.6

72.0% 49.7

81.3% 43.5

78.8% 44.6

83.0% 43.6

82.7% 43.1

77.4% 38.4

where:

Classification Accuracy = overall ave =

urban + soil + water + trees + grass

Total RMS Error =

ebandl + band2 + eband3 + eband4 + eband5 + eband7
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4.3.1 Observations from Part 1 - Merging with Coarser Resolution Input

Sets

Visible interpretation markedly improved as did classification accuracy (using

independent data set 1). In every case classification accuracy increased from 46.5% to at

least 72.0%. In several cases, the classification accuracy approached, or even exceeded the

classification accuracy of the original TM (30 m) data set. This significant improvement is

primarily due to the improved classification ofwater and soil.

As for radiometric errors, the goal was to improve (or at least not significantly

degrade) the difference associated between the blurred TM data set and the original TM data

set. A successful method would lower the 45.8 DC total error while sharpening the image.

The two methods that best recovered the original TM radiometry were the Price

techniques. For the DIRS techniques, unless they included the post-fixing operation, the

errors were higher than the blurred TM data set. The primary band that contributes these

errors is TM (or hybrid equivalent) band 4. Even in the blurred TM data set, the error in

reflectance units for TM4 are over 3 times greater than for the other reflective bands (see

Appendix C).

The primary reason for this high error in band 4 is its high standard deviation (or

high contrast) within the image. (Refer to section 3.1 on the selection of the imagery). For

this reason, plus the fact that TM4 is not highly correlated with the panchromatic image, it

is not surprising that the DIRS methods have high radiometric errors in band 4.
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4.4 Results for Part 2 - Merging with Coarser Resolution Data Sets

with a Lower Registration Error

In this phase of the study, six of the methods were again tested at the blurred

resolutions, but the input SPOT image that was used had a registration error of less than 5

meters. The summary of these results are shown in Tables 4-8a through 4-8d below. For

further details on these results, please refer to Appendices D and E.

Table 4-8a

Summary of Classification Breakdown by Percentage (Re-registered 30m hybrid)

urban soil water trees grass

Original TM (30m) 42.34 3.32 0.53 34.17 19.64

Blurred TM (90m) 66.48 1.30 0.49 8.23 23.49

DIRS Method

- Interpolated Input 47.37 1.20 0.66 20.32 30.45

- Interpolated and

post-fixed 49.65 1.98 0.67 11.96 35.74

DIRS Enhancement 1

- With post-fix 55.94 1.10 0.66 17.01 25.30

DIRS Enhancement 2

- modified for TM4, 5 57.91 4.24 0.63 12.36 24.87

Price Method

-LUT 41.94 5.11 0.79 30.06 22.10

- AdaptiveWeights 46.32 2.98 0.87 17.79 32.06
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Table 4-8b

Summary ofClassification Accuracy with

Independent Data Set 1 (Re-registered 30m hybrid)

urban soil water trees grass Overall ave

Original TM (30m) 92.5 100 62.3 61.9 99.1 83.2

Blurred TM (90m) 73.6 0 30.2 37.6 90.9 46.5

DIRS Method

- Interpolated Input 95.3 100 100 44.1 97.9 87.5

- Interpolated and

post-fixed 89.6 100 88.7 19.3 99.7 79.5

DIRS Enhancement 1

- With post-fix 97.2 88.5 100 43.6 95.8 85.0

DIRS Enhancement 2

- modified for TM4, 5 83.0 95.1 77.4 45.0 93.9 78.9

Price Method

-LUT 56.6 96.7 92.5 75.2 97.3 83.7

- Adaptive Weights 80.2 98.4 88.7 28.2 95.2 78.1

urban + soil + water + trees + grass

where: overall ave =
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Table 4-8c

Summary of Classification Accuracy with

Random Data Set (Re-registered 30m hybrid)

urban soil water trees grass Overall ave

Original TM (30m)

Blurred TM (90m)

76.0

62.0

35.0

22.0

100

82.0

68.0

54.0

92.0

72.0

74.2

58.4

DIRS Method

- Interpolated Input

- Interpolated and

post-fixed

64.0

62.0

48.0

38.0

100

100

74.0

82.0

52.0

58.0

67.6

68.0

DIRS Enhancement 1

- With post-fix 62.0 34.0 92.0 66.0 70.0 64.8

DIRS Enhancement 2

- modified for TM4, 5 64.0 10.0 96.0 86.0 60.0 63.2

Price Method

-LUT 72.0 14.0 88.0 70.0 76.0 64.0

- Adaptive Weights 66.0 35.0 76.0 83.0 58.0 63.6

u/hprfv overall a\

urban + soil + water + trees + grass
re. =

Statistical Test 1: y}
= 4-795 (< 11.070) No significant differences among the

methods (a = 0.05)

Statistical Test 2: Those methods with overall classification accuracies > 63.5%

are significantly better than 58.4%. (a
= 0.05)
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Table 4-8d

Summary Table for Selected 30m Hybrid Sets

using a Re-registered SPOT image as input

Classification Classification

Accuracy using Accuracy using
Independent a Random Data Total RMS Error

Data Set 1 Set (DC)

Original TM (30m)

Blurred TM (90m)

DIRS Method

- Interpolated Input

- Interpolated then

post-fixed

DIRS Enhancement 1

- With post-fix

DIRS Enhancement 2

- modified for TM4,
TM5

PriceMethod

- LUT for TM4, 5, 7

- Adaptive weights

for TM4, 5, 7

83.2% 74.2% reference

46.5% 58.4% 45.8

87.5% 67.6% 48.8

79.5% 68.0% 41.1

85.0% 64.8% 40.7

78.9% 63.2% 41.8

83.7% 64.0% 38.4

78.1% 63.6% 36.2

where:

Classification Accuracy = overall ave =

urban + soil + water + trees + grass

Total RMS Error =

ebandl + e^^ + eband3 +^4 + e^^ + eband7
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4.4.1 Observations in Part 2 -- Merging with Coarser Resolution Data

Sets with a Lower Registration Error

The improved registration resulted in better radiometry for every method in every

band, except for the DIRS Enhancement 2 band 4. However in this case, the radiometric

error is only slightly higher.

For classification accuracy using independent data set 1, three methods slightly

improved, while the other three methods showed slighdy poorer results. At this resolution,

it does not appear that registration differences between 1 pixel error and 0.5 pixel error

have any significant effect on classification.

Using the classification accuracies derived from random data sets, we can now see

that no method was able to surpass the accuracy of the original TM data set. The primary

difference between independent data set 1 and a random data set are the results for soil.

The classifiers for all these hybrids basically overclassified on the soil. Thus the soil

sample chosen for the independent data set was always correctly classified (near 100%

accuracies); but with a random set, the overclassification was detected.

Although none of these methods were able to outperform the overall classification

accuracy (using a random data set) of the original TM data set, they all were able to

improve the classification accuracy of the blurred TM data set. In addition, several

methods were able to outperform the original TM data set in classifying trees and soil.
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4.5 Results for Part 3 -- Merging with Original Resolution Data Sets

This last phase used the original resolution data sets to create hybrid data sets with

approximately 10m GIFOV. The summary of these results are shown in Tables 4-9a

through 4-9e below. For the further details on these results, please refer to Appendix F.

Table 4-9a

Summary of Classification Breakdown by Percentage (10m hybrid)

urban soil water trees grass

Original TM (30m) 42.34 3.32 0.53 34.17 19.64

DIRS Method

- Interpolated Input 51.08 1.50 0.56 23.83 23.03

- Interpolated and

post-fixed 48.86 1.86 0.55 28.36 20.39

DIRS Enhancement 1

- With post-fix 49.74 1.24 0.59 27.86 20.59

DIRS Enhancement 2

- modified for TM4, 5 47.76 2.28 0.54 29.98 19.43

Price Method

-LUT 47.32 1.76 0.58 30.52 19.82

-AdaptiveWeights 47.62 1.62 0.59 29.35 20.83
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Table 4-9b

Summary ofClassification Accuracy with

RandomData Set (10m hybrid)

urban soil water trees grass overall ave

Original TM (30m) 76.0 35.0 100 68.0 92.0 74.2

DIRS Method

- Interpolated Input

- Interpolated and

post-fixed

72.0 66.0 100 89.0 77.0

71.0 47.0 100 62.0 88.0

Price Method

-LUT 76.0

- AdaptiveWeights 71.0

80.8

73.8

DIRS Enhancement 1

- With post-fix 74.0 66.0 100 82.0 82.0 80.8

DIRS Enhancement 2

- modified for TM4, 5 64.0 37.0 100 81.0 81.0 72.6

56.0 100 77.0 89.0 79.6

57.0 100 88.0 89.0 81.0

where: overall ave =

urban + soil + water + trees + grass

Statistical Test 1 :
X2

= 22.112 (> 11.070) The differences among the

classification accuracies are significant. The methods are not

equal, (a = 0.05)

Statistical Test 2: Those methods with overall classification accuracies > 76.5%

are significantly better than 74.2%. (a
= 0.05). For

a = 0.01, the threshold for significance is 80.4%
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Table 4-9c

Summary of Classification Accuracy with

IndependentData Set 1 (10m hybrid)

urban soil water trees grass overall ave

Original TM (30m) 92.5 100 62.3 61.9 99.1 83.2

DIRS Method

- Interpolated Input

- Interpolated and

post-fixed

98.1

97.2

100

100

100

62.3

81.2

77.7

99.4

99.1

95.7

87.3

DIRS Enhancement 1

- With post-fix 99.1 100 88.7 76.7 97.6 92.4

DIRS Enhancement 2

- modified for TM4, 5 97.2 100 81.1 76.2 99.1 90.7

Price Method

-LUT 99.1 100 88.7 88.6 99.1 95.1

- AdaptiveWeights 99.1 100 79.2 71.8 98.8 89.8

where: overall ave =

urban + soil + water + trees + grass
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Table 4-9d

Summary ofClassification Accuracy with

Independent Data Set 2 (10m hybrid)

urban soil water trees grass overall ave

Original TM (30m) 50.0 100 60.0 70.0 78.0 71.6

DIRS Method

- Interpolated Input 82.0

- Interpolated and

post-fixed 76.0

100 74.0 94.0 92.0 88.4

98.0 62.0 78.0 88.0 80.4

DIRS Enhancement 1

- With post-fix 86.0 100 72.0 80.0 76.0 82.8

DIRS Enhancement 2

- modified for TM4, 5 76.0 96.0 60.0 80.0 74.0 77.2

Price Method

-LUT 94.0 98.0 74.0 80.0 82.0 85.6

- Adaptive Weights 90.0 100 66.0 86.0 82.0 84.8

where: overall ave =

urban + soil + water + trees + grass

Statistical Test 1: %
= 14194 (> 11.070) The differences among the

classification accuracies are significant. The methods are not

equal, (a = 0.05)

Statistical Test 2: Those methods with overall classification accuracies > 78.0%

are significantly better than 71.6%. (a
= 0.05). For

a = 0.01, the threshold for significance is 80.5%
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Table 4-9

Summary Table of Classification Accuracies for Selected 10 m Hybrid Sets

using a Re-registered SPOT image as input

Random Data Set

Independent

Data Set 1

Independent

Data Set 2

Original TM (30m)

DIRS Method

- Interpolated Input

- Interpolated then

post-fixed

DIRS Enhancement 1

- With post-fix

DIRS Enhancement 2

- modified for TM4,
TM5

Price Method

- LUT for TM4, 5, 7

- Adaptive weights

forTM4, 5,7

74.2% 83.2% 71.6%

80.8% 95.7% 88.4%

73.8% 87.3% 80.4%

80.8% 92.4% 82.8%

72.6% 90.7% 77.2%

79.6% 95.1% 85.6%

81.0% 89.8% 84.8%

where:

Classification Accuracy = overall ave =

urban + soil + water + trees + grass
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4.5.1 Observations for Part 3 -- Merging with Original Resolution Data

Sets

Using independent data set 2, it becomes quite clear that the hybrid data classifies

better in the high frequency areas - especially in the cases of urban and trees. The samples

for these two classes were taken from small side roads and from suburban areas. For the

other classes (water, soil, and grass) it was much more difficult to find isolated incidences,

and thus these samples were taken near boundaries and edges. With these samples the

original TM data set performed nearly as well.

Visually, the classification maps also confirm these results the roads have more

definition and the soil regions are more defined (see Appendix F).

4.6 Other Comparisons Between the Merging Methods

4.6.1 Visual Comparisons

All the methods visually improved the blurred images. However, under higher

magnification, the blocky appearance is readily apparent in some of the methods (see

figures 4-9 through 4-14).

The most blocky hybrid set was that of the DIRS Enhancement 2 method
(with TM4

and TM5 modification). This result is not surprising since the algorithm was run with a

threshold that considered only 25% of the superpixel blocks as mixed. Thus at best, only

one-fourth of the blocks could be further segmented into subpixels without using the pure
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merging method. In addition, the algorithm's method of handling TM4 and TM5 is to

insert the original TM values into the hybrid subpixels. This simple technique may not

decrease the blocking, and in some cases may accentuate the blocking efffect within these

bands.

Another noticed artifact was some high frequency noise in the hybrid bands created

by both Price techniques. For the Price technique that uses the look up table (LUT), the

high frequency noise is generated when the SPOT panchromatic transformation LUT has

no value associated with a SPOT DC. This can happen since the LUT is generated with an

averaged SPOT image and the TM band. In those cases, the value placed in the output

image is the closest lower value on the table.

In Figure 4-13 we can see this anomaly in a grove of trees. Band 5 is placed in the

red channel, and is sensitive to the vegetation so the grove is a deep red color. The

panchromatic channel is only marginally sensitive to the vegetation and so its DC is much

lower. In those cases where there is no match for the panchromatic DC, the nearest (and

lower) value on the table corresponding to the DC is output. Thus these dark spots are

noticed in the grove of red trees.

The modified Price technique also produces high frequency noise in the output

images. In these instances, the multiband regression derives the (best fit) weights for a

superpixel area (section 2.6). These weights however, occasionally produce an outlier (an

extreme value) when applied to the individual subpixels within that superpixel. These

outliers appear as speckle, or high frequency noise in the image. To reduce the speckled

appearance, a simple median filter was applied
to these hybrid images. A median filter

maintains the edges of an image, but eliminates individual pixel noise.
The resultant hybrid

images after median filtering has no speckle, however, some fine structure (such as
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housetops) are also lost.

Overall, the method which produces the most appealing visual hybrid is the DIRS

method with an interpolated TM data set as input.
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Figure 4-5. Comparison of Coarser Resolution Images

(a) Blurred TM Bands 5,3,2 (90m GIFOV)

(b) Hybrid Bands 5,3,2 produced by DIRS Method

with Interpolated Input (30m GIFOV)

(c) Original TM Bands 5,3,2 (30m GIFOV)
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Figure 4-6. Comparison of Original Resolution Images

(a) Original TM Bands 5,3,2 (30m GIFOV)

(b) Hybrid Bands 5,3,2 produced by DIRS Method

with Interpolated Input ( 10m GIFOV )
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Figure 4-7. Replicated TM Bands 5,3,2

(30m GIFOV) (magnification = 4x)

Figure 4-8. Interpolated TM Bands 5,3,2

(30m GIFOV) (magnification = 4x)

95



Figure 4-9. DIRS Method with Interpolated Input

(10m GIFOV) (magnification = 4x)

Figure 4-10. DIRS Method with Interpolated Input and Post-fixing

(10m GIFOV) (magnification - 4x)
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Figure 4-11. DIRS Enhancement 1 with post-fixing

(10m GIFOV) (magnification = 4x)

Figure 4-12. DIRS Enhancement 2 Method with mod to TM4 and TM5

(10m GIFOV) (magnification = 4x)
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Figure 4-13. Price's Method (LUT)

(10m GIFOV) (magnification = 4x)

Figure 4-14. Modified Price's Method with Adaptive Weights

(10m GIFOV) (magnification = 4x)
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4.6.2 Implementation Comparisons

Price's methods require the most time-consuming preparation. His methods first

compute high resolution estimates of the TM bands, then merge these estimates to the

original resolution TM images. For those bands that are correlated to the panchromatic

image (TM bands 1, 2, and 3), each band must derive the linear coefficients to transform

the panchromatic image into a high resolution estimate of the TM band.

While running the modified Price technique for the weakly correlated bands, the

coefficients to obtain the high resolution estimates are computed for each superpixel area

(hence the term adaptive weighting). For each band, this results in close to 300,000

multivariate regressions. In addition, the modified Price technique must also run serially,

in that the high resolution estimate of TM7 must be computed first, since it is used as an

input to compute the estimates for TM5 and TM4. All these coefficients are image

dependent and must be computed for every scene.

The DIRS methods require some preparation before merging, but they are not as

extensive as in the Price methods. First, a synthetic panchromatic image must be

computed. For this study, the weights used to compute this synthetic image are general

purpose weights that are not image dependent (section 2.2.1). Once the synthetic image

has been created, the SPOT panchromatic histogram is linearly adjusted to this synthetic

image, and the merging operation can begin.

Except for the modified Price technique, the run times for these merging methods are

approximately equal, taking less than 5 minutes to run on a VAX 1170. Because the

99



modified Price technique is run serially and computes numerous regressions, obtaining a

full hybrid data set (bands 1-5,7) takes approximately 45 minutes. However, the code for

the modified Price technique, as well as the other methods, can be optimized for faster run

times.
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5.0 CONCLUSIONS

This study set out to determine if we could enhance our multispectral analysis by

merging a higher resolution panchromatic image to a lower resolution multispectral data set

while preserving the multispectral information. The results in section 4.0 clearly show that

merging can enhance analysis. Visual interpretablity, as well as computer interpretability

(measured via classification) is improved.

Several merging methods were compared, and each were found to have their own

advantages and disadvantages. No method was found to be overwhelmingly the best in all

phases of the evaluation. Listed below are the evaluation criteria and those techniques

which performed well.

(1) Best method to improve classification: DIRS method with interpolated

input. This method consistently provided the highest classification accuracy regardless of

the input classification set. Other methods which performed well are the Price techniques

and the DIRS Enhancement 1 with post-fixing.

(2) Best methods to maintain radiometry: Price and the modified Price with

adaptive weights. The modified Price method was the only method to improve the

radiometric error between the blurred TM4 image and the original TM4 image. The Price

method using the LUT also performed well with TM4. However for bands that are

strongly correlated, the DIRS methods perform slightly better. In all cases, if the

registration error between the panchromatic image and the TM data set is lower, so is the

radiometric error.
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(3) Best method to improve visual interpretation: DIRS with interpolated

input. Because this method does not force the radiometry to be correct over the superpixel

area, there is no blocking effect observed in the hybrid images. All other methods produce

images with some degree of blocking.

If the primary goal in merging panchromatic and multispectral images is improved

interpretablity, then the method to merge should be the DIRS method with interpolated

input. If preserving radiometry is equally important (as in situations where the hybrid data

set is used as a simulated product, or as input for further processing) then the modified

Price's technique with adaptive weights, or the DIRS Enhancement 1 method with post-

fixing is recommended.

This study has developed and demonstrated several merging techniques which can

enhance image analysis. However, there are still some short-comings among these

techniques. Better methods to handle uncorrelated bands, as well as
"smarter"

segmentation routines to reduce block appearances are two areas which require more

attention. These issues and recommendations for further studies are explored in the next

section.
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6.0 RECOMMENDATIONS

This section is broken down into two main parts. The first part explores some

possible changes and improvements to the merging methods that were evaluated in this

study. The second part is a more generalized view of the direction that future merging

methods should consider.

6.1 Improvements to the Price Methods

The modified Price method with the adaptive weights for TM bands 4, 5, and 7

provided the best overall results among the methods evaluated. However, information was

lost when a median filter was applied over bands 4, 5 and 7 to eliminate the speckled

appearance. One improvement to this method would be to selectively (rather than

comprehensively) filter the image.

The selection criteria to filter the subpixel could be based on the standard deviation of

the input high resolution image(s). For example, this can be represented as:

Threshold (k, 1) = Factor oni-res inPut(k,l)
0"TM(i)

Oave hi_res input
(6-1)

Where: hi-res inpuA'1)

-TM(i)

ave hi-res input

Factor

= the standard deviation of the high resolution image

at the area surrounding pixel location k,l;

= the standard deviation of the TM band i image;

= the standard deviation of the averaged high

resolution image (30m GIFOV);

= weighting factor;
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Threshold(k,l) = the threshold value for pixel location k,l

Thus, if the standard deviation of the 3 by 3 pixel block centered at k, 1 is greater

than Threshold(k,l), then that pixel location should be median filtered.

6.2 Improvements to the DIRS Methods

For certain applications, the DIRS methods show considerable promise. However,

when merging bands that are weakly correlated with the panchromatic image, the algorithm

falls short in maintaining radiometry. Therefore, as Price concluded, the correlated and the

weakly correlated bands must be handled differently if radiometry is to be preserved.

Further recommendations for each of these cases are presented below.

6.2.1 Recommendations in Processing Correlated Bands

The first recommendation is in the generation and the use of the TM-based synthetic

panchromatic image. In this study, image independent weights were computed and used.

These weights were created by taking a best fit of 25 target samples over 3 different

atmospheres (section 2.2.1). Thus, these weights were intended to approximate a SPOT

panchromatic image for a general Landsat TM image set. However, for a more accurate

estimate of the panchromatic image, the weights can be calculated on an image to image

basis with a priori knowledge of the scene.

For example, in the scene used in this study, the original TM data set classified the
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five major classes in the following breakdown:

urban 42.34 %

soil 3.32 %

water 0.53 %

trees 34.17%; and

grass 19.64 %.

Before any merging, the scene clearly has limited soil and water. So rather than

having each of the 25 targets weighted equally in the regression to compute the synthetic

panchromatic weights, the regression can weight the samples based on their percentage of

scene composition. In addition, if the atmospheric parameters are known, these too can be

used to generate more accurate samples for the regression. In this manner, an image

dependent weighting set can be developed to produce a more accurate panchromatic image.

With this synthetic panchromatic image, the atmospheric differences between the

acquisition of the SPOT and TM images can be removed. As suggested in section 4. 1
,
the

blurred SPOT panchromatic image should be linearly adjusted to the synthetic panchromatic

image. These same coefficients are then applied to the original resolution SPOT

panchromatic image to transform the SPOT image into the TM aquisition domain.

After this transformation, the synthetic panchromatic image should be replaced in the

DIRS merging algorithm with the blurred or averaged SPOT image. Thus instead of the

DIRS merging algorithm of:

DCHybrid MultibandO)
= DCsPOT Pan

' hr""" (6-2)
\DLsynTMPan/

the algorithm should appear as:
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DCHybridMultiband(i)
= DCsPOT Pan \^^

^^
(6-3)

U-^Ave SPOT Pan/

In this manner, the radiometry is correct within the superpixel for all pure merges.

The synthetic panchromatic image is used only to atmospherically adjust the original SPOT

panchromatic image to the TM data set.

6.2.2 Recommendation for Handling Bands that are Weakly Correlated to

the Panchromatic Band

Perhaps one of the more exciting results of this study is how well the DIRS methods

can sharpen and recover the TM bands that are correlated to the finer resolution input

(panchromatic) band. Even the DIRS Enhancement 2 method returns a lower radiometric

error in bands 2 and 3 than the Price methods (Appendix C and E). These results suggest

that the high resolution input band that is used in merging with a TM multispectral band

should be correlated for a more accurate and radiometrically correct hybrid.

For those multispectral bands which are weakly correlated to the high resolution

panchromatic image, a recommendation is to replace the panchromatic input with a high

resolution estimate of the weakly correlated band in the merging algorithm. The primary

DIRS merging algorithm for these bands would look identical to the Price method. Instead

of the DIRS merging algorithm shown in equation (6-2), the algorithm would be:

DCHybridMukibandW
= DCHi-reS(i)

'

L^^
) (6-4)

\u -AveHi-res/
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where: DCffi.res(i) .

= Digital count (DC) of the high resolution estimate

ofTMbandi;

As in the modified Price technique (section 2.6), the high resolution estimate can be

computed using the Tom et al [85] technique.

The advantage of implementing this recommendation is that the DIRS methods are

not limited to this primary merging algorithm. With themodifications and enhancements to

the DIRS method (section 2.2 through 2.4), the merging algorithm may replace the

superpixel ratio with a neighboring superpixel's ratio (see equation 2-10). By not being

limited to a "pure
merge"

at every superpixel, the DIRS methods should provide an

improvement to the Price methods.

6.2.3 Improvements to the Interpolated Input

The DIRS method using interpolated TM inputs created hybrid data sets that

significantly improved interpretability. For this reason,
further work in the interpolation

routine can be explored.

For this study, a simple averaging kemal was used in the interpolation routine

(section 2.2.2). Other standard kernals may provide a more accurate, and realistic

interpolation. Two suggested kernals for future investigation are the Gaussian-weighted

kemal, and a cubic convolution kemal.
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6.2.4 Improvements to the DIRS Enhancement 2 Method

Although successful in only a limited sense, the concepts behind the DIRS

Enhancement 2 method warrant further investigation. This method is the only method

which does not employ a radiometric post-fix operation. Instead, the method works by

first determining the subpixel values that most likely belong to pure surrounding areas.

Those subpixels that are
"left-over"

are then assigned values such that radiometry is

preserved over the superpixel. Conceptually, this approach should alleviate the superpixel

blocking effect more so than a hard post-fix operation while maintaining radiometry.

However, the implementation of this algorithm was not robust. Further work needs to be

accomplished in many areas. Three suggestions are presented below.

The first recommendation is to run the DIRS Enhancement 2 method using

interpolated TM input (rather than replicated input). If the threshold is set such that 25% of

the superpixel areas are considered mixed, then a minimum of 75% of the image set will

appear as the DIRS method with interpolated input and post-fixing. The other 25% of the

image set will be sharpened with the enhanced segmentation routine. The resultant hybrid

images should more radiometrically precise than the DIRS method with interpolated input

and post-fixing; and should appear less blocky than the original DIRS Enhancement 2

method.

The second improvement would be modifying the thresholds used in decision

making. Currently there is only one threshold value that is of prime interest to the

algorithm. This is the user defined threshold that determines whether a superpixel is mixed
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or is pure. The second threshold determines if a subpixel is connected to a neighboring

subpixel (or superpixel), but its value is computed from the mixed threshold (section 3.4).

Further work should untie these two thresholds to allow more flexibility. Then the

algorithm should be excercised with varying threshold settings. Some preliminary work

was done in varying the thresholds, but the two thresholds were tied together and only

minor differences were noted.

The last suggestion for the improvement of the DIRS Enhancement 2 method is

much more involved. The algorithm needs to become "smarter", and must use other

information to segment and sharpen the images. Currendy, all the decisions are based on

the standard deviation threshold of the panchromatic (or high resolution) image.

Other information that could be used are edge information, or other textural and

statistical features. The additional information does not have to be limited to spatial

information. A classification map of the low resolution TM data set would be a useful

input, especially when dealing with weakly correlated bands.

In essense, this third suggestion is pointing to an artificial
intelligence system, and is

by no means a trivial problem. However, this is the long-term and general direction that

data fusion algorithms will follow.
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6.3 General Considerations

This study investigated several methods that enhanced the spatial resolution of

multispectral data using a higher resolution panchromatic image. The study concentrated

on methods that operate in the spatial domain and work with simple linear relationships.

Other methods that work in other domains should also be studied. Work in the

spatial frequency domain seems to be a natural area for concentration, but care must still be

taken to separate the spatial and spectral information ifmaintaining radiometry is important.

Neural networks can provide an alternative to the simple linear relationships

prescribed by these methods. Neural networks are inherently non-linear in describing an

optimal relationship, and may be a method in handling bands that are weakly correlated to

the panchromatic image.

These methods that were evaluated are relatively simple, fast, and effective. There is

still some room for improvement, but the level of effort to attain further gain will be much

more extensive and complex. Future methods will have to incorporate and manipulate

more layers of information, including spectral, spatial, and statistical data, as well as

information on context. This influx of information may lead to a multi-stage

segmentation/classification scheme, or to a scheme that is iterative in nature.

Lastly, this study looked at only one image set and at one sensor pairing. The

methods are expected to be applicable to other sensor sets, as well as to
hyperspectral data,

but further testing with varying image sets should be
accomplished to ensure the robustness

of these techniques.
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Appendix A

Classification Results for Original TM Data (30 m)

Figure Al. Classification Map for the Original TM Data Set.

Red represents urban; yellow -

soil; blue -

water;

dark green -

trees; light green - grass.

A-l



Confusion Matrices on the Original TM Data Set:

Table A 1. Using a Random Data Set (100 samples /
i
class)

urban soil water trees grass

urban 76.0% 0.0% 0.0% 18.0% 6.0%

soil 28.0% 35.0% 0.0% 10.0% 27.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 15.0% 0.0% 0.0% 68.0% 17.0%

grass 1.0% 0.0% 0.0% 7.0% 92.0%

overall classification accuracy: 74.2%

Table A2. Using Independent Data Set 1

urban soil water trees grass

urban 92.5% 6.6% 0.0% 0.9% 0.0%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 0.0% 0.0% 62.3% 37.3% 0.0%

trees 0.5% 0.0% 0.0% 61.9% 37.6%

grass 0.9% 0.0% 0.0% 0.0% 99.1%

overall classification accuracy: 83.2%

Table A3. Using Independent Data Set 2 (50 samples/class)

urban soil water trees grass

urban 50.0% 6.0% 0.0% 44.0% 0.0%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 18.0% 0.0% 60.0% 22.0% 0.0%

trees 24.0% 0.0% 0.0% 70.0% 6.0%

grass 16.0% 6.0% 0.0% 0.0% 78.0%

overall classification accuracy:
71.6%
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Appendix B

Classification Results for Hybrid Data (30 m)

using Blurred TM Data (90 m)

and Blurred SPOT Data (30 m)

Figure B 1 . Classification Map for Blurred TM (90 m)

Red represents urban; yellow
-

soil; blue
-

water;

dark green - trees; light green
- grass.
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Confusion Matrices on the Blnrrpd TM Data Set (90 m):

Table B 1 a. Using Random (50 samples/class)

urban soil water trees grass

urban 62.0% 2.0% 4.0% 26.0% 6.0%

soil 22.0% 22.0% 0.0% 32.0% 24.0%

water 0.0% 0.0% 82.0% 0.0% 18.0%

trees 28.0% 2.0% 0.0% 54.0% 16.0%

grass 10.0% 0.0% 0.0% 18.0% 72.0%.

overall classification accuracy: 58.4%

Table Bib. Using Independent Data Set 1

urban soil water trees grass

urban 73.6% 0.0% 0.0% 5.7% 20.8%

soil 100.0% 0.0% 0.0% 0.0% 0.0%

water 69.8% 0.0% 30.2% 0.0% 0.0%

trees 24.8% 0.0% 0.0% 37.6% 37.6%

grass 9.1% 0.0% 0.0% 0.0% 90.9%

overall classification accuracy: 46.5%
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Classification Results for the Original DIRS Method f30m hvhrirn

Figure B2. Classification Map for the Original DIRS Method (30 m hybrid).

Red represents urban; yellow -

soil; blue -

water;

dark green -

trees; light green - grass.

Table B2. Confusion Matrix for the original DIRS Method (30 m hybrid)

using Independent Data Set 1

urban soil water trees grass

urban 63.2% 34.0% 0.0% 0.9% 1.9%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 0.0% 0.0% 88.7% 0.0% 11.3%

trees 15.3% 0.0% 0.3% 14.9% 66.8%

grass 5.5% 0.3% 0.0% 0.0% 94.2%

overall classification accuracy: 72.2%
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Classification Results for the DTRS Method using newWeighting for

Synthetic Panchromatic Image (30m hvhrid^

Figure B3. ClassificationMap for the DIRS Method with

NewWeighting for Synthetic Pan Image(30 m hybrid).

Red represents urban; yellow -

soil; blue -

water;

dark green -

trees; light green - grass.

Table B3. Confusion Matrix for DIRS Method with

NewWeighting for Synthetic Pan Image (30 m hybrid)

using Independent Data Set 1

urban soil water trees grass

urban 96.2% 1.9% 0.0% 0.0% 1.9%

soil 3.3% 96.7% 0.0% 0.0% 0.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 2.0% 0.0% 0.0% 27.2% 70.8%

grass 6.4% 0.0% 0.0% 0.0% 93.6%

overall classification accuracy: 82.7%
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Classification Results for the DTRS Method with Interpolated TM Input

(30m hvhrid^

Figure B4. Classification Map for the DIRS Method

with Interpolated Input (30 m hybrid)

Red represents urban; yellow
-

soil; blue -

water;

dark green -

trees; light green - grass.

Table B4. Confusion Matrix for the DIRS Method

with Interpolated Input (30 m hybrid)

using IndependentData Set 1

urban soil water trees grass

urban 95.2% 7.5% 0.0% 0.0% 0.0%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 3.5% 3.5% 0.0% 51.0% 42.1%

grass 0.9% 0.0% 0.0% 0.0% 99.1%

overall classification accuracy: 88.5%
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Classification Results for the DIRS Method with Interpolated TM Tnpnf

and Post-flying t30m hybrid)

Figure B5. ClassificationMap for the DIRS Method with

Interpolated Input and Post-fixing (30 m hybrid)

Red represents urban; yellow -

soil; blue
-

water;

dark green -

trees; light green - grass.

Table B5. Confusion Matrix for the DIRS Method with

Interpolated Input and Post-fixing (30 m hybrid)

using Independent Data Set 1

urban soil water trees grass

urban 96.2% 0.9% 0.0% 0.9% 1.9%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 0.0% 0.0% 88.7% 0.0% 11.3%

trees 4.0% 0.0% 0.0% 22.3% 73.8%

grass 0.3% 0.0% 0.0% 0.0% 99.7%

overall classification accuracy: 81.4%
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Classification Results for the DIRS Enhancement 1 Method

Figure B6. Classification Map forDIRS Enhancement 1 (30 m hybrid)

Red represents urban; yellow -

soil; blue -

water;

dark green -

trees; light green - grass.

Table B6. Confusion Matrix for DIRS Enhancement 1 (30 m hybrid)

using Independent Data Set 1

urban soil water trees grass

urban 76.4% 0.0% 0.0% 1.9% 21.7%

soil 14.8% 85.2% 0.0% 0.0% 0.0%

water 1.9% 0.0% 90.6% 0.0% 7.5%

trees 1.5% 0.0% 0.0% 9.9% 88.6%

grass 2.1% 0.0% 0.0% 0.0% 97.9%

overall classification accuracy: 72.0%
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Classification Results for the DIRS Enhancement 1 Method

with Post-fixing f30m hvhrid)

Figure B7. Confusion Matrix forDIRS Enhancement 1

with Post-fixing (30 m hybrid)

Red represents urban; yellow -

soil; blue -

water;

dark green -

trees; light green - grass.

Table B7. Confusion Matrix for DIRS Enhancement 1

with Post-fixing (30 m hybrid)

using Independent Data Set 1

urban soil water trees grass

urban 96.2% 0.0% 0.0% 0.0% 3.8%

soil 6.6% 93.4% 0.0% 0.0% 0.0%

water 1.9% 0.0% 98.1% 0.0% 0.0%

trees 0.5% 0.0% 0.0% 19.3% 80.2%

grass 0.3% 0.0% 0.0% 0.0% 99.7%

overall classification accuracy: 81.3%
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Classification Results for the DIRS Enhancement 2 Method HOm hyhrid)

Figure B8. Classification Map for DIRS Enhancement 2 (30 m hybrid)

Red represents urban; yellow -

soil; blue -

water;

dark green -

trees; light green - grass.

Table B8. Confusion Matrix for DIRS Enhancement 2 (30 m hybrid)

using Independent Data Set 1

urban soil water trees grass

urban 98.1% 0.0% 0.0% 0.0% 1.9%

soil 4.9% 95.1% 0.0% 0.0% 0.0%

water 11.3% 0.0% 77.3% 0.0% 11.3%

trees 8.9% 0.0% 0.0% 29.7% 61.4%

grass 6.4% 0.0% 0.0% 0.0% 93.6%

overall classification accuracy: 78.8%
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Classification Results for the DIRS Enhancement 2 Method

with Adinsrmpnt for TM4 and TM5 f30m hvhrid)

Figure B9. Classification Map for DIRS Enhancement 2

with adjustment for TM4 and TM5 (30 m hybrid)

Red represents urban; yellow -

soil; blue
-

water;

dark green -

trees; light green - grass.

Table B9. Confusion Matrix for DIRS Enhancement 2

with adjustment for TM4 and TM5 (30 m hybrid)

using Independent Data Set 1

urban soil water trees grass

urban 90.6% 6.6% 0.0% 0.9% 1.9%

soil 3.3% 96.7% 0.0% 0.0% 0.0%

water 11.3% 0.0% 88.7% 0.0% 0.0%

trees 0.5% 0.0% 0.0% 39.6% 59.9%

grass 0.6% 0.0% 0.0% 0.0% 99.4%

overall classification accuracy: 83.0%
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Classification Results for Price's Mpfhod

Figure BIO. Classification Map for Prices Method

Red represents urban; yellow -

soil; blue -

water;

dark green -

trees; light green - grass.

Table BIO. Confusion Matrix for Prices Method using

Independent Data Set 1

urban soil water trees grass

urban 71.7% 19.8% 0.0% 0.0% 8.5%

soil 3.3% 96.7% 0.0% 0.0% 0.0%

water 0.0% 0.0% 98.1% 0.0% 1.9%

trees 4.5% 0.5% 0.0% 48.0% 47.0%

grass 0.0% 0.9% 0.0% 0.0% 99.1%

overall classification accuracy: 82.7%
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Classification R^-jlts for Price's Method

With Adanfive Wpights Modification (30m hvhrid)

Figure B 1 1 . Classification Map for Prices Method

with adaptive weights modification

Red represents urban; yellow -

soil; blue -

water;

dark green -

trees; light green - grass.

Table BI 1 Confusion Matrix for Prices Method

with adaptive weights modification

using Independent Data Set 1

urban soil water trees grass

urban 76.4% 23.6% 0.0% 0.0% 0.0%

soil 6.6% 93.4% 0.0% 0.0% 0.0%

water 11.3% 0.0% 88.7% 0.0% 0.0%

trees 4.5% 0.5% 14.9% 29.2% 51.0%

grass 0.0% 0.9% 0.0% 0.0% 99.1%

overall classification accuracy: 77.4%
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Appendix C

Radiometric Results for the Hybrid Data (30m )

using Blurred TM Data (90m) and

Blurred SPOT Data (30m)

Table C 1 . Error Table for blurred TM (90 m)

error (DC) error (reflectance)

TM1 7.78 1.09

TM2 4.31 1.63

TM3 7.08 1.58

TM4 11.71 5.12

TM5 8.97 -

TM7 5.95 -

Table C2. Error Table for original DIRS Method (30 m hybrid)

error (DC) error (reflectance)

TM1 Estimate 7.81 1.09

TM2 Estimate 3.56 1.34

TM3 Estimate 5.39 1.21

TM4 Estimate 16.21 7.09

TM5 Estimate 9.73 -

TM7 Estimate 5.10 -
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Table C3. Error Table for DIRS Method using the new

weighting for the Synthetic Pan Image

error (DC) error (reflectance)

TM1 Estimate 9.02 1.26

TM2 Estimate 3.78 1.43

TM3 Estimate 5.42 1.21

TM4 Estimate 17.40 7.62

TM5 Estimate 10.45 -

TM7 Estimate 5.16 -

Table C4. Error Table for the DIRS Method

with Interpolated Input (30 m hybrid)

error (DC) error (reflectance)

TM1 Estimate 8.84 1.23

TM2 Estimate 3.88 1.46

TM3 Estimate 5.53 1.24

TM4 Estimate 16.93 7.41

TM5 Estimate 10.37 -

TM7 Estimate 5.28 -

Table C5. Error Table for the DIRS Method with

Interpolated Input and Post-fixing (30 m hybrid)

error (DC) error (reflectance)

TM1 Estimate 7.21 1.01

TM2 Estimate 2.98 1.12

TM3 Estimate 4.39 0.98

TM4 Estimate 15.41 6.75

TM5 Estimate 8.79 -

TM7 Estimate 4.31 -
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Table C6. Error Table for DIRS Enhancement 1 (30 m hybrid)

error (DC) error (reflectance)

TM1 Estimate 8.29 1.16

TM2 Estimate 3.58 1.35

TM3 Estimate 5.36 1.20

TM4 Estimate 16.80 7.35

TM5 Estimate 10.46 -

TM7 Estimate 5.25 -

Table C7. Error Table for DIRS Enhancement 1

with Post-fixing (30 m hybrid)

error (DC) error (reflectance)

TM1 Estimate 6.82 0.95

TM2 Estimate 2.89 1.09

TM3 Estimate 4.44 0.99

TM4 Estimate 15.09 6.60

TM5 Estimate 9.04 -

TM7 Estimate 5.19 -

Table C8. Error Table for DIRS Enhancement 2 (30 m hybrid)

error (DC) error (reflectance)

TM1 Estimate 6.98 0.97

TM2 Estimate 2.94 1.11

TM3 Estimate 4.67 1.04

TM4 Estimate 16.31 7.14

TM5 Estimate 9.11 -

TM7 Estimate 4.64 -
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Table C9. Error Table for DIRS Enhancement 2

with adjustment for TM4 and TM5 (30 m hybrid)

error (DC) error (reflectance)

TM1 Estimate 6.98 0.97

TM2 Estimate 2.93 1.11

TM3 Estimate 4.67 1.04

TM4 Estimate 15.07 6.60

TM5 Estimate 9.32 -

TM7 Estimate 4.64 -

Table CIO. Error Table for Price Method (30 m hybrid)

error (DC) error (reflectance)

TM1 Estimate 5.82 0.81

TM2 Estimate 3.11 1.18

TM3 Estimate 6.00 1.34

TM4 Estimate 12.64 5.53

TM5 Estimate 8.61 -

TM7 Estimate 6.88 -

Table C 1 1 . Error Table for Price Method with

AdaptiveWeights Modification (30 m hybrid)

error (DC) error (reflectance)

TM1 Estimate 5.82 0.81

TM2 Estimate 3.11 1.18

TM3 Estimate 6.00 1.34

TM4 Estimate 11.11 4.86

TM5 Estimate 7.80
-

TM7 Estimate 4.59
-
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Appendix D

Classification Results for Hybrid Data (30 m)

using Blurred TM Data (90 m)

and Re-registered Blurred SPOT Data (30 m)

Figure D 1 . Classification Map for the DIRS Method with Interpolated Input

Red represents urban; yellow -

soil; blue -

water;

dark green - trees; light green - grass.

D-l



Table Dla. Confusion Matrix using Independent Data Set 1

for the DIRS Method with Interpolated Input and

Re-registered SPOT image

urban soil water trees grass

urban 95.3% 0.0% 0.0% 2.8% 1.9%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 3.5% 2.5% 0.0% 44.1% 50.0%

grass 2.1% 0.0% 0.0% 0.0% 97.9%

overall classification accuracy: 87.5%

Table Dl b. Confusion Matrix using a Random Data Set

for the DIRS Method with Interpolated Input and

Re-registered SPOT image (50 samples/class)

urban soil water trees grass

urban 64.0% 2.0% 0.0% 22.0% 12.0%

soil 10.0% 48.0% 0.0% 16.0% 26.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 18.0% 0.0% 0.0% 74.0% 8.0%

grass 2.0% 0.0% 0.0% 46.0% 52.0%

overall classification accuracy: 67.6%
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Classification Results for the DIRS Method with Interpolated Input,

Post-fixing, and a Re-registered SPOT image

Table D2a. Confusion Matrix using Independent Data Set 1

urban soil water trees grass

urban 89.6% 4.7% 0.0% 0.9% 4.7%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 0.0% 0.0% 88.7% 0.0% 11.3%

trees 4.0% 0.0% 0.0% 19.3% 76.7%

grass 0.3% 0.0% 0.0% 0.0% 99.7%

overall classification accuracy: 79.5%

Table D2b. Confusion Matrix using a Random Data Set (50 samples/class)

urban soil water trees grass

urban 62.0% 0.0% 2.0% 32.0% 4.0%

soil 24.0% 38.0% 0.0% 14.0% 24.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 14.0% 0.0% 0.0% 82.0% 4.0%

grass 2.0% 0.0% 0.0% 40.0% 58.0%

overall classification accuracy: 68.0%
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Classification Results for the DIRS Enhancement 1 Method

with Post-fixing and a Re-registered SPOT image

Table D3a. Confusion Matrix using Independent Data Set 1

urban soil water trees grass

urban 97.2% 0.0% 0.0% 0.0% 2.8%

soil 11.5% 88.5% 0.0% 0.0% 0.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 15.8% 0.0% 0.0% 43.6% 40.6%

grass 4.2% 0.0% 0.0% 0.0% 95.8%

overall classification accuracy: 85.0%

Table D3b. Confusion Matrix using a RandomData Set (50 samples/class)

urban soil water trees grass

urban 62.0% 0.0% 2.0% 32.0% 4.0%

soil 38.0% 34.0% 2.0% 6.0% 20.0%

water 0.0% 0.0% 92.0% 8.0% 0.0%

trees 22.0% 0.0% 0.0% 66.0% 12.0%

grass 4.0% 0.0% 0.0% 26.0% 70.0%

overall classification accuracy: 64.8%

D-4



Classification Results for the DIRS Enhancement 2 Method

with TM4, TM5 Modification and Re-registered SPOT image

Table D4a. Confusion Matrix using IndependentData Set 1

urban soil water trees grass

urban 83.0% 15.1% 0.0% 0.0% 1.9%

soil 4.9% 95.1% 0.0% 0.0% 0.0%

water 22.6% 0.0% 77.4% 0.0% 0.0%

trees 0.5% 0.0% 4.5% 45.0% 50.0%

grass 6.1% 0.0% 0.0% 0.0% 93.9%

overall classification accuracy: 78.9%

Table D4b. Confusion Matrix using a RandomData Set (50 samples/class)

urban soil water trees grass

urban 64.0% 0.0% 0.0% 34.0% 2.0%

soil 68.0% 10.0% 0.0% 8.0% 14.0%

water 0.0% 0.0% 96.0% 0.0% 4.0%

trees 6.0% 0.0% 0.0% 86.0% 8.0%

grass 0.0% 0.0% 0.0% 40.0% 60.0%

overall classification accuracy: 63.2%
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Classification Results for the Price Method and a Re-registered SPOT

image

Table D5a. ConfusionMatrix using Independent Data Set 1

urban soil water trees grass

urban 56.6% 42.5% 0.0% 0.9% 0.0%

soil 3.3% 96.7% 0.0% 0.0% 0.0%

water 0.0% 0.0% 92.5% 0.0% 7.5%

trees 0.5% 4.5% 0.0% 75.2% 19.8%

grass 0.0% 0.9% 0.0% 1.8% 97.3%

overall classification accuracy: 83.7%

Table D5b. ConfusionMatrix using a RandomData Set (50 samples/class)

urban soil water trees grass

urban 72.0% 0.0% 0.0% 26.0% 2.0%

soil 48.0% 14.0% 0.0% 2.0% 36.0%

water 0.0% 0.0% 88.0% 10.0% 2.0%

trees 14.0% 0.0% 0.0% 70.0% 16.0%

grass 6.0% 0.0% 0.0% 18.0% 76.0%

overall classification accuracy: 64.0%
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Classification Results for the Price Method

with the AdaptiveWeights Modification and a Re-registered SPOT image

Table D6a. Confusion Matrix using Independent Data Set 1

urban soil water trees grass

urban 80.2% 17.9% 0.0% 0.0% 1.9%

soil 1.6% 98.4% 0.0% 0.0% 0.0%

water 11.3% 0.0% 88.7% 0.0% 0.0%

trees 5.0% 0.0% 3.5% 28.2% 63.4%

grass 2.7% 2.1% 0.0% 0.0% 95.2%

overall classification accuracy: 78.1%

Table D6b. ConfusionMatrix using a Random Data Set (100 samples/class)

urban soil water trees grass

urban 66.0% 1.0% 0.0% 28.0% 5.0%

soil 46.0% 35.0% 0.0% 6.0% 13.0%

water 0.0% 0.0% 76.0% 16.0% 8.0%

trees 14.0% 0.0% 0.0% 83.0% 3.0%

grass 3.0% 0.0% 1.0% 38.0% 58.0%

overall classification accuracy: 63.6%
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Appendix E

Radiometric Results for Hybrid Data (30 m)

using Blurred TM Data (90 m)

and Blurred, Re-registered SPOT Data (30 m)

Table El - Error Table for the DIRS Method with Interpolated Input

and Re-registered SPOT image

error (DC) error (reflectance)

TM1 Estimate 8.26 1.15

TM2 Estimate 3.65 1.38

TM3 Estimate 5.24 1.17

TM4 Estimate 16.73 7.32

TM5 Estimate 9.93 -

TM7 Estimate 4.98 -

Table E2 - Error Table for the DIRS Method with Interpolated Input,

Post-fixing, and a Re-registered SPOT image

error (DC) error (reflectance)

TM1 Estimate 6.51 0.91

TM2 Estimate 2.70 1.02

TM3 Estimate 4.09 0.92

TM4 Estimate 15.37 6.73

TM5 Estimate 8.37 -

TM7 Estimate 4.02 -
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Table E3 - Error Table for the DIRS Enhancement 1 Method with Post-fixing

and a Re-registered SPOT image

error (DC) error (reflectance)

TM1 Estimate 6.14 0.86

TM2 Estimate 2.61 0.98

TM3 Estimate 4.11 0.92

TM4 Estimate 14.92 6.53

TM5 Estimate 8.71 -

TM7 Estimate 4.20 -

Table E4 - Error Table for the DIRS Enhancement 2 Method

with TM4, TM5 Modification

and Re-registered SPOT image

error (DC) error (reflectance)

TM1 Estimate 6.26 0.87

TM2 Estimate 2.62 0.99

TM3 Estimate 4.29 0.96

TM4 Estimate 15.13 6.63

TM5 Estimate 9.14 -

TM7 Estimate 4.31 -
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Table E5 - Error Table for the Price Method and a Re-registered SPOT image

error (DC) error (reflectance)

TM1 Estimate 5.22 0.73

TM2 Estimate 2.78 1.05

TM3 Estimate 4.95 1.11

TM4 Estimate 12.24 5.36

TM5 Estimate 8.22 -

TM7 Estimate 5.04 -

Table E6 - Error Table for the Price Method with the adaptive weights modification

and a Re-registered SPOT image

error (DC) error (reflectance)

TM1 Estimate 5.22 0.73

TM2 Estimate 2.78 1.05

TM3 Estimate 4.95 1.11

TM4 Estimate 10.97 4.80

TM5 Estimate 7.83 -

TM7 Estimate 4.43 -
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Appendix F

Classification Results for Hybrid Data (10 m)

using TM Data (30 m)

and Re-registered SPOT Data (10 m)

Figure Fl . Classification Map for the DIRS Method with Interpolated Input

Red represents urban; yellow ~

soil; blue water;

dark green trees; light green grass.

Table Fla. Confusion Matrix using a Random Set (100 samples/class)

urban soil water trees grass

urban 72.0% 0.0% 0.0% 23.0% 5.0%

soil 26.0% 66.0% 0.0% 2.0% 6.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 6.0% 0.0% 0.0% 89.0% 5.0%

grass 1.0% 0.0% 0.0% 22.0% 77.0%

overall classification accuracy: 80.8%

F-l



Table Fib. Confusion Matrix using Independent Data Set 1

for the DIRS Method with Interpolated Input and

Re-registered SPOT image

urban soil water trees grass

urban 98.1% 0.9% 0.0% 0.9% 0.0%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 0.0% 0.0% 0.0% 81.2% 18.8%

grass 0.6% 0.0% 0.0% 0.0% 99.4%

overall classification accuracy: 95.7%

Table Flc. Confusion Matrix using Independent Data Set 2

for the DIRS Method with Interpolated Input and

Re-registered SPOT image (50 samples/class)

urban soil water trees grass

urban 82.0% 4.0% 0.0% 12.0% 2.0%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 24.0% 0.0% 74.0% 2.0% 0.0%

trees 6.0% 0.0% 0.0% 94.0% 0.0%

grass 8.0% 0.0% 0.0% 0.0% 92.0%

overall classification accuracy: 88.4%
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Classification Results for the DIRS Method with Interpolated Input,

Post-fixing, and a Re-registered SPOT image

Figure Fl . Classification Map for the DIRS Method with Interpolated Input,

Post-fixing, and a Re-registered SPOT image

Red represents urban; yellow
~

soil; blue -

water;

dark green trees; light green
- grass.

Table F2a. ConfusionMatrix using a Random Set (100 samples/class)

urban soil water trees grass

urban 71.0% 0.0% 2.0% 20.0% 7.0%

soil 33.0% 47.0% 0.0% 8.0% 12.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 15.0% 0.0% 1.0% 62.0% 22.0%

grass 1.0% 0.0% 0.0% 11.0% 88.0%

overall classification
accuracy: 73.6%
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Table F2b. Confusion Matrix using Independent Data Set 1

for the DIRS Method with Interpolated Input,

Post-fixing, and a Re-registered SPOT image

urban soil water trees grass

urban 97.2% 1.9% 0.0% 0.9% 0.0%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 0.0% 0.0% 62.3% 37.7% 0.0%

trees 0.0% 0.0% 0.0% 77.7% 22.3%

grass 0.9% 0.0% 0.0% 0.0% 99.1%

overall classification accuracy: 87.3%

Table F2c. Confusion Matrix using Independent Data Set 2 (50 samples/class)

for the DIRS Method with Interpolated Input,

Post-fixing, and a Re-registered SPOT image

urban soil water trees grass

urban 76.0% 6.0% 0.0% 18.0% 0.0%

soil 2.0% 98.0% 0.0% 0.0% 0.0%

water 32.0% 0.0% 62.0% 6.0% 0.0%

trees 20.0% 0.0% 0.0% 78.0% 2.0%

grass 12.0% 0.0% 0.0% 0.0% 88.0%

overall classification accuracy: 80.4%
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Classification Results for the DIRS Enhancement 1 Method

with Post-fixing and a Re-registered SPOT image

Figure F3. Classification Map for the DIRS Enhancement 1 Method

with Post-fixing and a Re-registered SPOT image

Table F3a. Confusion Matrix using a Random Data Set (100 samples/class)

for the DIRS Enhancement 1 Method with Post-fixing

and a Re-registered SPOT image

urban soil water trees grass

urban 74.0% 0.0% 0.0% 18.0% 8.0%

soil 29.0% 66.0% 0.0% 2.0% 3.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 8.0% 0.0% 0.0% 82.0% 10.0%

grass 1.0% 1.0% 0.0% 16.0% 82.0%

overall classification accuracy: 80.8%
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Table F3b. Confusion Matrix using Independent Data Set 1

for the DIRS Enhancement 1 Method with Post-fixing
and a Re-registered SPOT image

urban soil water trees grass

urban 99.1% 0.0% 0.0% 0.9% 0.0%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 0.0% 0.0% 88.7% 11.3% 0.0%

trees 0.0% 0.0% 0.0% 76.7% 23.3%

grass 2.4% 0.0% 0.0% 0.0% 97.6%

overall classification accuracy: 92.4%

Table F3c. Confusion Matrix using Independent Data Set 2

for the DIRS Enhancement 1 Method with Post-fixing

and a Re-registered SPOT image

urban soil water trees grass

urban 86.0% 2.0% 0.0% 10.0% 2.0%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 20.0% 0.0% 72.0% 8.0% 0.0%

trees 18.0% 0.0% 0.0% 80.0% 2.0%

grass 24.0% 0.0% 0.0% 0.0% 76.0%

overall classification accuracy: 82.8%
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Classification Results for the DIRS Enhancement 2 Method

with TM4, TM5 Modification and Re-registered SPOT image

Figure F4. Classification Map for the DIRS Enhancement 2 Method

with TM4, TM5 Modification and Re-registered SPOT image

Table F4a. Confusion Matrix using a Random Data Set (100 samples/class)

for the DIRS Enhancement 2 Method with TM4, TM5 Modification

and Re-registered SPOT image

urban soil water trees grass

urban 64.0% 0.0% 0.0% 28.0% 8.0%

soil 47.0% 37.0% 1.0% 3.0% 12.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 11.0% 0.0% 0.0% 81.0% 8.0%

grass 2.0% 0.0% 0.0% 17.0% 81.0%

overall classification accuracy: 72.6%
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Table F4b. Confusion Matrix using Independent Data Set 1

for the DIRS Enhancement 2Method with TM4, TM5 Modification

and Re-registered SPOT image

urban soil water trees grass

urban 97.2% 1.9% 0.0% 0.9% 0.0%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 1.9% 0.0% 81.1% 17.0% 0.0%

trees 0.0% 0.0% 0.0% 76.2% 23.8%

grass 0.9% 0.0% 0.0% 0.0% 99.1%

overall classification accuracy: 90.7%

Table F4c. Confusion Matrix using Independent Data Set 2

for the DIRS Enhancement 2Method with TM4, TM5 Modification

and Re-registered SPOT image

urban soil water trees grass

urban 76.0% 6.0% 0.0% 18.0% 0.0%

soil 4.0% 96.0% 0.0% 0.0% 0.0%

water 32.0% 0.0% 60.0% 6.0% 2.0%

trees 18.0% 0.0% 0.0% 80.0% 2.0%

grass 22.0% 2.0% 0.0% 2.0% 74.0%

overall classification accuracy: 77.2%
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Classification Results for the Price Method and a Re-registered SPOT

image

Figure F5. Classification Results for the Price Method and a Re-registered SPOT image

Table F5a. Confusion Matrix using a Random Data Set (100 samples/class)

for the Price Method and a Re-registered SPOT image

urban soil water trees grass

urban 76.0% 3.0% 1.0% 16.0% 4.0%

soil 26.0% 56.0% 0.0% 1.0% 17.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 3.0% 0.0% 0.0% 77.0% 20.0%

grass 1.0% 0.0% 0.0% 10.0% 89.0%

overall classification accuracy: 79.6%
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Table F5b. Confusion Matrix using Independent Data Set 1

for the Price Method and a Re-registered SPOT image

urban soil water trees grass

urban 99.1% 0.0% 0.0% 0.9% 0.0%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 9.4% 0.0% 88.7% 1.9% 0.0%

trees 0.0% 0.0% 0.0% 88.6% 11.4%

grass 0.9% 0.0% 0.0% 0.0% 99.1%

overall classification accuracy: 95.1%

Table F5c. Confusion Matrix using Independent Data Set 2

for the Price Method and a Re-registered SPOT image

urban soil water trees grass

urban 94.0% 2.0% 0.0% 4.0% 0.0%

soil 2.0% 98.0% 0.0% 0.0% 0.0%

water 26.0% 0.0% 74.0% 0.0% 0.0%

trees 14.0% 0.0% 0.0% 80.0% 6.0%

grass 16.0% 2.0% 0.0% 0.0% 82.0%

overall classification accuracy: 85.6%
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Classification Results for the Price Method

with the AdaptiveWeights Modification and a Re-registered SPOT image

Figure F6. Classification Results for the Price Method with the

AdaptiveWeights Modification and a Re-registered SPOT image

Table F6a. Confusion Matrix using a Random Data Set (100 samples/class)

for the Price Method with the Adaptive Weights Modification

and a Re-registered SPOT image

urban soil water trees grass

urban 71.0% 0.0% 0.0% 21.0% 8.0%

soil 25.0% 57.0% 0.0% 1.0% 17.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 4.0% 0.0% 1.0% 88.0% 7.0%

grass 2.0% 1.0% 0.0% 8.0% 89.0%

overall classification accuracy: 81.0%
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Table F6b. Confusion Matrix using Independent Data Set 1

for the Price Method with the AdaptiveWeights Modification

and a Re-registered SPOT image

urban soil water trees grass

urban 99.1% 0.0% 0.0% 0.9% 0.0%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 0.0% 0.0% 79.2% 20.8% 0.0%

trees 0.0% 0.0% 0.0% 71.8% 28.2%

grass 0.3% 0.9% 0.0% 0.0% 98.8%

overall classification accuracy: 89.8%

Table F6c. Confusion Matrix using Independent Data Set 2

for the Price Method with the AdaptiveWeights Modification

and a Re-registered SPOT image

urban soil water trees grass

urban 90.0% 2.0% 0.0% 8.0% 0.0%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 30.0% 0.0% 66.0% 4.0% 0.0%

trees 10.0% 0.0% 0.0% 86.0% 4.0%

grass 16.0% 2.0% 0.0% 0.0% 82.0%

overall classification accuracy: 84.8%
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Appendix G

Statistical Tests

I . Determining if the Overall Classification Accuracies from VariousMethods

are Significantly Different

II. Determining the Threshold Value above which Classification Accuracies are

Considered to be Significantly Different than the Input TM Classification

Accuracy
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I. Determining if the Overall Classification Accuracies from Various

Methods are Significantly Different

This statistical test is a check whether the overall classification accuracies from each

of the methods are significantly different from one another. It uses an r x c table analysis

as presented by Freund [88]. An example is presented for the data in Table 4-8c

reproduced below:

Table 4-8c

Summary ofClassification Accuracy with

Random Data Set (Re-registered 30m hybrid)

urban soil water trees grass Overall ave

Original TM (30m)

Blurred TM (90m)

76.0

62.0

35.0

22.0

100

82.0

68.0

54.0

92.0

72.0

74.2

58.4

DIRS Method

- Interpolated Input

- Interpolated and

post-fixed

64.0

62.0

48.0

38.0

100

100

74.0

82.0

52.0

58.0

67.6

68.0

DIRS Enhancement 1

- With post-fix 62.0 34.0 92.0 66.0 70.0 64.8

DIRS Enhancement 2

- modified for TM4, 5 64.0 10.0 96.0 86.0 60.0 63.2

Price Method

.LUT 72.0 14.0 88.0 70.0 76.0 64.0

- Adaptive Weights 66.0 35.0 76.0 83.0 58.0 63.6
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The steps are as follows:

(A) Reformat the overall classification data into an r x c table format:

Let Method 1 = DIRS Method with Interpolated Input;

Method 2 = DIRS Method with Interpolated Input and Post-fixing;

Method 3 = DIRS Enhancement 1 with Post-fixing;

Method 4 = DIRS Enhancement 2 with TM4 TM5 modification;

Method 5 = Price Method with LUT;

Method 6 = Price Method with AdaptiveWeights.

1 2

METHODS

3 4 5 6

classified correctly 67.6 68.0 64.8 63.2 64.0 63.6

classified incorrectly 32.4 32.0 35.2 36.8 36.0 36.4

Since we know the Random data set has 500 total samples, and the Independent Data

Set 2 has 250 total samples, the table can be converted from percentages to samples:

METHODS

3 4

classified correctly 338 340 324 316 320 318

classified incorrectly 162 160 176 184 180 182
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(B) Compute the expected frequency for each cell in the table. The expected frequency is

calculated by multiplying the total of the row to which the cell belongs by the total of the

column to which it belongs and then dividing by the grand total of the entire table. Since

each column adds up to the same total of 500, the expected frequency is the same for every

cell in a row. Therefore, the expected frequencies are:

500 0956)
6tow1

=

3000
= 326

500 (1044)
6row2

"

3000

"
~

(C) Conduct a hypothesis test at the 0.05 level of significance whether the differences

among the sample proportions (classification accuracies) are significant.

1. H0 : pj
=

p2
= ...=

p6 (the sample proportions are the same)

HA : pj , p2 , ..., p6 are not all equal

2. a = 0.05

3. Reject the null hypothesis if
%2

> 11.070 where

X2
= 1

(o-e)2

e

,2

and 11.070 is the value ofXo.os for (2-l)(6-l) = 5 degrees of freedom;

otherwise the differences among the sample proportions
are not significant.
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4. Since erowl
- 326, and erow2

= 174, we can substitute these values into the

formula for y} :

X2
= I

(o-e)2

(338 -
326)2

(340 -
326)2

,

(324 -
326)2

326 326
+

326
+

(316 (320 -

326)2
(318 -

326)2

326

"

326
+

326
+

(162 -

174)2 (160- 174)2 (176- 174)2

174 174
+

174
+

(184- 174)2 (180- 174)2 (182- 174)2

174
+

174
+

174

4.795

5. Since y}
= 4.795 does not exceed 11.070, the null hypothesis cannot be

rejected. The differences among the 6 classification accuracies are not significant.
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II. Determining the Threshold Value above which Classification

Accuracies are Considered to be Significantly Different than the Input

TM Classification Accuracy.

This test determines if a merging method produces an overall classification accuracy

that is statistically better than the classification accuracy obtained from the input (un-

merged) TM data set. It calculates a threshold classification accuracy value using standard

test statistics regarding the difference between two proportions [Freund 88]. If the

classification accuracy obtained from a mergingmethod is greater than this threshold value,

then the classification accuracy is considered significantly different.

From Freund [88], the test statistic concerning the difference between two

proportions is defined to be:

Xj_ X2

z =
n- "2

with p
= Jl-J-S- (G-l)

^T7H TT
r

ni + no

^yyvW7~3

where: xi is the number of successes in type i;

n; is the number of trials in type i.

Ifwe use Table 4-8c as an example again, then:

nj
=

n2
= 500;

^ = 0.584; and x, = 292.

ni
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If we test at the 0.05 level of significance, then znns
= 1.645.

Solving for x2 now becomes an exercise in algebra, and x2 divided by 500 is the

classification accuracy threshold. Substituting these values into equation (G-l) we obtain:

0.584 - -^

1.645 =
^QQ

VFw1) i1 - tol
1000 l ^500'

1.645 (500)
_

292 -

x2
"

y(292 +
x2)(708-x2)(^[

(0.6765) (292 + x2) (708
-

x2) (^_) = (292 -

x2f

Multiplying and combining the terms we get:

x22
- 583.5466x2 + 84,475.9731 = 0

Solving with the quadratic equation, x2
= 266.17 and 317.38;

converting to percentages they
are: 53.2% and 63.5%.

and the threshold for significance is 63.5%
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Appendix H

Tnntit Parameters to Compute theWeighting Factors for a Synthetic

Panchromatic Image

I. LOWTRAN 7 Input Parameters

II. Sensor Paramters

TM1

TM2

TM3

TM4

SPOT Panchromatic

HI. Computed Effective Radiance

IV. Computed Digital Counts

V. Reflectance Spectra
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L LOWTRAN Innut ParatnPtPrs

7 2 2 10 0

MAZE 1 0 0

33 0 0BUFFALO

0.218 0.985E+03

0.256 0.981E+03

0.967 0.903E+03

1.072 0.892E+03

1.485 0.850E+03

2.001 0.800E+03

2.246 0.777E+03

2.880 0.720E+03

3.111 0.700E+03

3.300 0.684E+03

3.409 0.675E+03

3.949 0.632E+03

4.185 0.614E+03

4.374 O.60OE+03

5.081 0.550E+03

5.839 0.500E+03

6.659 0.450E+03

7.552 0.400E+03

8.539 0.350E+03

9.634 0.300E+03

10.880 0.250E+03

12.331 0.200E+03

13.168 0.175E+03

14.602 0.139E+03

15.258 0.125E+03

15.933 0.112E+O3

16.632 0.100E+03

18.834 0.700E+02

20.949 0.5O0E+02

22.380 0.400E+02

24.244 0.300E+02

26.939 0.200E+02

0 0 0 0

0 0 0.000

6/15/87

0.211E+02 0

0.197E+02 0

0.180E+02 0.

0.182E+02 0

0.176E+02 0

0.143E+02 0.

0.126E+02 0.

0.660E+01 0.

0.500E+01 0.

0.590E+01 -0.

0.760E+01 -0.

0.530E+01 -0.

0.600E+01 -0.

0.630E+01 -0.

0.110E+01 -0.

-0.450E+01 -0

-0.107E+02 -0

-0.178E+02 -0

-0.255E+02 -0

-0.344E+02 -0

-0.452E+02 -0

-0.572E+02 -0

-0.593E+02 -0

-0.640E+02 -0

-0.619E+02 -0

-0.650E+02 -0

-0.621E+02 -0

-0.627E+02 -0

-0.544E+02 -0

-0.542E+02 -0

-0.492E+02 -0,

-0.434E+02 -0.

1 1 1

0.000

131E+02

113E+02

990E+01

500E+01

290E+01

500E+01

610E+01

490E+01

150E+01

760E+01

224E+02

134E+02

240E+02

236E+02

238E+02

241E+02

.352E+02

.478E+02

.482E+02

.488E+02

584E+02

704E+02

725E+02

772E+02

751E+02

782E+02

753E+02

759E+02

676E+02

674E+02

624E+02

566E+02

0.000 1.00

0.000 0.000 0.218

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

O.0OOE+00

0.000E+00

0.000E+00

0.OOOE+00

O.OOOE+00

0.000E+00

O.OOOE+00

0.000E+00

O.OOOE+00

0.000E+00

O.OOOE+00

O.OOOE+00

O.OOOE+00

0.000E+00

0.000E+00

O.OOOE+00

0.000E+00

O.OOOE+00

0.000E+00

O.OOOE+00

O.OOOE+00

O.OOOE+00

0.000E+00

0.0O0E+00

O.OOOE+00

O.OOOE+00

0.000E+00ABG

0.0O0E+00ABG

0.000E+00ABG

0.000E+00ABG

0.000E+00ABG

0.000E+00ABG

0.000E+00ABG

0.000E+00ABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG

O.OOOE+OOABG
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28.886 0.150E+02 -0.409E+02 -0.541E+02 O.OOOE+00 O.OOOE+OOABG

ALTITUDE 0.218 180.000 0.000 0.000 0.000 0

1 2 166 0

42.500 79.000 0.000 0.000 15.433 0.000 0.000 0.000

5000.000 40000.000 350.000

1

Where: IHAZE = 1, (visibility of 23 km)

5, (visibility of 5 km)

6, (visibility of 50 km);

ALTITUDE = 705, (altitude in km for the Landsat TM sensor)

832, (altitude in km for the SPOT HRV sensor).
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II. Sensor Parameters

Spectral Response for TM hand T

X (microns) P(\)

0.410 0.0000

0.420 0.0007

0.430 0.0027

0.440 0.0370

0.450 0.3391

0.460 0.7200

0.470 0.8206

0.480 0.9026

0.490 0.9472

0.500 0.9891

0.510 0.8293

0.520 0.3187

0.530 0.0465

0.540 0.0162

0.550 0.0052

0.560 0.0031

0.570 0.0000

TM1 gain = 0.0602436

TM1 offset = -0.15

TM1 Bandwidth = 0.07

(note: should have used TM1 Bandwidth = 0.06)
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X (microns1)

-""
" "

VH"V ifr

0.500 0.0000

0.510 0.0233

0.520 0.1635

0.530 0.5718

0.540 0.7312

0.550 0.8367

0.560 0.8890

0.570 0.9074

0.580 0.9124

0.590 0.9871

0.600 0.9428

0.610 0.4616

0.620 0.0969

0.630 0.0357

0.640 0.0115

0.650 0.0000

TM2gain = 0.1175036

TM2 offset =
-0.2804878

TM2 Bandwidth = 0.08
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X (microns') mi
0.570 0.0000

0.580 0.0018

0.590 0.0023

0.600 0.0079

0.610 0.0375

0.620 0.2958

0.630 0.5774

0.640 0.8184

0.650 0.9008

0.660 0.9064

0.670 0.9699

0.680 0.9983

0.690 0.7874

0.700 0.1186

0.710 0.0464

0.720 0.0200

0.730 0.0062

0.740 0.0031

0.750 0.0000

TM3 gain = 0.080597

TM3 offset = -0.119403

TM3 Bandwidth = 0.06
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X (microns1) em
0.720 0.0000

0.730 0.0023

0.740 0.0070

0.750 0.0186

0.760 0.0706

0.770 0.2752

0.780 0.6534

0.790 0.9300

0.800 1.0000

0.810 0.9804

0.820 0.9359

0.830 0.9173

0.840 0.9196

0.850 0.9254

0.860 0.8856

0.870 0.8844

0.880 0.8599

0.890 0.7835

0.900 0.7152

0.910 0.2114

0.920 0.0314

0.930 0.0075

0.940 0.0035

0.950 0.0000

TM4gain = 0.0814399

TM4 offset = -0.15

TM4 Bandwidth = 0.14

(note: should have used TM4 Bandwidth = 0.12)
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Spectral Response for SPOT nanchromatic

X (microns1) m
0.470 0.000

0.480 0.005

0.490 0.114

0.500 0.347

0.510 0.458

0.520 0.526

0.530 0.637

0.540 0.719

0.550 0.734

0.560 0.746

0.570 0.800

0.580 0.865

0.590 0.912

0.600 0.919

0.610 0.941

0.620 0.932

0.630 0.953

0.640 0.971

0.650 1.000

0.660 0.959

0.670 0.903

0.680 0.803

0.690 0.699

0.700 0.631

0.710 0.601

0.720 0.411

0.730 0.215

0.740 0.085

0.750 0.033

0.760 0.014

0.770 0.006

0.780 0.004

0.790 0.002

0.800 0.000

SPOT gain = 0.99203

SPOT offset = 0

SPOT Bandwidth = 0.17945 W/m2
sr pm
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III. Computed Radiance from LOWTRAN 7 with Integrated Sensor

Response
(W/cm2

sr pm)

Atmosphere 1 (THAZE = 1)

SPOT TM1 TM2 TM3 TM4

urban 1.228E-03 4.956E-04 5.604E-04 4.245E-04 4.973E-04

2.105E-03 7.551E-04 9.536E-04 7.418E-04 8.560E-04

1.044E-03 4.844E-04 4.917E-04 3.431E-04 3.950E-04

1.942E-03 7.368E-04 8.805E-04 6.777E-04 7.243E-04

1.321E-03 5.874E-04 6.164E-04 4.403E-04 4.887E-04

soil 1.392E-03 4.328E-04 5.843E-04 5.309E-04 7.505E-04

1.731E-03 5.757E-04 7.475E-04 6.410E-04 9.005E-04

2.139E-03 5.632E-04 8.351E-04 8.720E-04 1.143E-03

1.941E-03 4.778E-04 7.845E-04 7.766E-04 1.013E-03

1.209E-03 3.611E-04 4.940E-04 4.747E-04 5.826E-04

water4.186E-04 5.665E-04 2.251E-04 1.006E-04 7.273E-05

4.292E-04 3.875E-04 2.318E-04 1.025E-04 7.437E-05

4.350E-04 3.817E-04 2.361E-04 1.032E-04 7.364E-05

4.643E-04 3.724E-04 2.550E-04 1.094E-04 8.011E-05

5.568E-04 3.619E-04 3.065E-04 1.386E-04 1.191E-04

trees 1.068E-03 4.047E-04 4.846E-04 3.122E-04 1.555E-03

1.527E-03 4.297E-04 6.996E-04 4.703E-04 1.775E-03

1.181E-03 4.072E-04 5.396E-04 3.516E-04 1.566E-03

1.307E-03 4.070E-04 5.664E-04 4.303E-04 1.698E-03

1.045E-03 4.172E-04 5.139E-04 2.634E-04 1.778E-03

grass 9.336E-04 3.950E-04 4.660E-04 2.480E-04 1.287E-03

7.265E-04 3.246E-04 3.746E-04 1.709E-04 1.208E-03

1.218E-03 4.645E-04 5.770E-04 3.014E-04 2.085E-03

1 257E-03 4.756E-04 5.263E-04 4.261E-04 1.967E-03

1.226E-03 4.541E-04 5.475E-04 3.686E-04 1.949E-03
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Atmosphere 2 (DHAZE =5)

SPOT TM1 TM2 TM3 TM4

urban 8.890E-04 3.886E-04 4.106E-04 3.010E-04 3.502E-04

1.312E-03 4.925E-04 5.919E-04 . 4.627E-04 5.544E-04

7.982E-04 3.839E-04 3.787E-04 2.595E-04 2.921E-04

1.233E-03 4.848E-04 5.584E-04 4.301E-04 4.790E-04

9.316E-04 4.252E-04 4.362E-04 3.090E-04 3.453E-04

soil 9.732E-04 3.635E-04 4.222E-04 3.555E-04 4.944E-04

1.135E-03 4.208E-04 4.972E-04 4.116E-04 5.800E-04

1.341E-03 4.158E-04 5.389E-04 5.294E-04 7.177E-04

1.243E-03 3.822E-04 5.152E-04 4.808E-04 6.435E-04

8.858E-04 3.346E-04 3.807E-04 3.268E-04 3.985E-04

water 4.942E-04 4.110E-04 2.552E-04 1.358E-04 1.088E-04

4.992E-04 3.444E-04 2.583E-04 1.367E-04 1.097E-04

5.018E-04 3.422E-04 2.603E-04 1.371E-04 1.093E-04

5.156E-04 3.388E-04 2.690E-04 1.402E-04 1.130E-04

5.604E-04 3.347E-04 2.928E-04 1.550E-04 1.352E-04

trees 8.139E-04 3.523E-04 3.752E-04 2.441E-04 9.533E-04

1.037E-03 3.625E-04 4.748E-04 3.245E-04 1.079E-03

8.683E-04 3.534E-04 4.006E-04 2.642E-04 9.597E-04

9.318E-04 3.533E-04 4.132E-04 3.045E-04 1.035E-03

8.002E-04 3.573E-04 3.883E-04 2.191E-04 1.080E-03

grass 7.458E-04 3.482E-04 3.666E-04 2.111E-04 8.002E-04

6.458E-04 3.199E-04 3.244E-04 1.718E-04 7.551E-04

8.846E-04 3.763E-04 4.172E-04 2.384E-04 1.256E-03

9.080E-04 3.805E-04 3.941E-04 3.032E-04 1.188E-03

8.914E-04 3.722E-04 4.038E-04 2.737E-04 1.178E-03
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Atmosphere 3 (IHAZE = 6)

SPOT TM1 TM2 TM3 TM4

urban 1.200E-03 4.748E-04 5.445E-04 4.174E-04 4.982E-04

2.120E-03 7.500E-04 9.583E-04 7.492E-04 8.720E-04

1.006E-03 4.629E-04 4.722E-04 3.323E-04 3.915E-04

1.949E-03 7.307E-04 8.813E-04 6.822E-04 7.348E-04

1.298E-03 5.722E-04 6.035E-04 4.340E-04 4.892E-04

soil 1.372E-03 4.081E-04 5.696E-04 5.287E-04 7.620E-04

1.728E-03 5.596E-04 7.414E-04 6.438E-04 9.183E-04

2.154E-03 5.464E-04 8.334E-04 8.851E-04 1.171E-03

1.947E-03 4.569E-04 7.802E-04 7.855E-04 1.035E-03

1.180E-03 3.321E-04 4.745E-04 4.700E-04 5.871E-04

water 3.497E-04 5.512E-04 1.916E-04 7.845E-05 5.495E-05

3.608E-04 3.602E-04 1.986E-04 8.047E-05 5.666E-05

3.670E-04 3.541E-04 2.031E-04 8.118E-05 5.590E-05

3.978E-04 3.442E-04 2.230E-04 8.767E-05 6.266E-05

4.950E-04 3.330E-04 2.772E-04 1.182E-04 1.034E-04

trees 1.033E-03 3.784E-04 4.647E-04 3.000E-04 1.598E-03

1.515E-03 4.048E-04 6.910E-04 4.654E-04 1.827E-03

1.151E-03 3.810E-04 5.227E-04 3.413E-04 1.610E-03

1.283E-03 3.808E-04 5.508E-04 4.235E-04 1.747E-03

1.009E-03 3.915E-04 4.956E-04 2.489E-04 1.830E-03

grass 8.914E-04 3.681E-04 4.452E-04 2.328E-04 1.320E-03

6.737E-04 2.935E-04 3.489E-04 1.521E-04 1.238E-03

1.191E-03 4.417E-04 5.620E-04 2.887E-04 2.149E-03

1.230E-03 4.535E-04 5.086E-04 4.190E-04 2.026E-03

.199E-03
4.306E-04 5.310E-04 3.590E-04 2.007E-03
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IV. Computed Digital Counts

Atmosphere 1 (MAZE = 1)

SPOT TM1 TM2 JM3 TM4

urban

soil

water

trees

grass

68 120 62 89 45

116 182 104 155 77

58 117 55 72 36

107 177 96 142 65

73 142 68 93 45

77 105 65 111 68

96 139 82 134 81

118 136 91 182 102

107 116 86 162 91

67 88 55 100 53

23 137 26 22 8

24 94 27 23 8

24 93 28 23 8

26 91 30 24 9

31 88 35 30 12

59 98 54 66 138

84 104 77 99 158

65 99 60 74 139

72 99 63 90 151

58 101 57 56 158

52 96 52 53 115

40 79 42 37 108

67 113 64 64 185

69 115 58 90 174

68 110 61 78 173

H-12



Atmosphere 2 (MAZE = 5)

SPOT TMi TM2 TM2 IM4

urban 49 95 46 64 33

73 119 65 97 50

44 94 43 55 27

68 117 62 90 44

52 103 49 65 32

soil 54 89 47 75 45

63 102 55 87 53

74 101 60 111 65

69 93 57 101 58

49 82 43 69 37

water 27 100 30 30 11

28 84 30 30 11

28 84 30 30 11

29 83 31 30 12

31 82 34 34 14

trees 45 86 42 52 85

57 88 53 69 96

48 86 45 56 86

52 86 46 64 93

44 87 44 47 97

grass 41 85 41 45 72

36 78 37 37 68

49 92 47 51 112

50 93 44 64 106

49 91 45 58 105
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Atmosphere 3 (IHAZE =6)

urban

soil

water

trees

grass

oryji 1MJ TM2 TM3 TM4

66 115 60 88 46

117 180 104 156 78

56 112 53 70 36

108 176 96 143 66

72 138 67 91 45

76 99 63 111 69

96 135 81 135 82

119 132 91 185 105

108 111 85 164 93

65 81 53 99 53

19 133 23 18 7

20 88 24 18 7

20 86 24 18 7

22 84 26 20 7

27 81 32 26 11

57 92 52 64 142

84 98 76 98 162

64 93 58 72 143

71 93 61 89 155

56 95 55 53 162

49 90 50 50 118

37 72 40 33 110

66 107 62 61 190

68 110 56 88 180

66 105 59 76 178
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V. Reflectance Spectra
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V. Reflectance Spectra

The following tables contain the reflectance spectra for the 25 targets used in

computing the synthetic panchromatic weights. For those spectra which are
averages of

other signatures, the variance associated at each wavelength is also included. The 25

signatures are:

URBAN:

SOIL:

WATER:

TREES:

GRASS:

asphalt
ave*

concrete
ave*

gravel

roofing asphalt

slate

clay
ave*

loam dry
ave*

loam wet
ave*

sand
ave*

soil
ave*

waterl through water4

water
ave*

ash
ave*

beech
ave*

maple
ave*

oak
ave*

pine
ave*

clover

coarse grass

orchard grass

swamp grass

grass
ave*

*

denotes an averaged signature
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wavelength

(micron)

asphalt ave

(%r)

variance

(%r)

0.4000 7.2539 4.2078

0.4324 8.5758 4.7523

0.4647 9.5174 5.0668

0.4971 10.4912 5.4329

0.5294 11.3506 5.8412

0.5618 12.2835 6.2126

0.5941 13.0583 6.5111

0.6265 13.6551 6.6112

0.6588 14.2181 6.8261

0.6912 14.6264 6.9133

0.7235 15.0084 7.1620

0.7559 15.2762 7.3441

0.7882 15.5070 7.4223

0.8206 15.7433 7.4260

0.8529 15.9420 7.4292

0.8853 16.1183 7.4500

0.9176 16.3185 7.4710

0.9500 16.5668 7.4837

0.9824 16.8450 7.5006

1.0147 17.1273 7.5359

1.0471 17.3849 7.6019

1.0794 17.5790 7.6872

1.1118 17.6489 7.7207
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wavelength

(micron)

concrete

ave (%r)

variance

(%r)

0.4000 14.7078 6.0053

0.4324 17.6116 6.6171

0.4647 19.7129 6.8831

0.4971 21.2464 7.0876

0.5294 23.2163 7.5996

0.5618 25.0887 8.0533

0.5941 26.2880 8.2168

0.6265 27.0557 8.2593

0.6588 27.5655 8.2729

0.6912 27.8814 8.2884

0.7235 28.1160 8.3150

0.7559 28.3200 8.3466

0.7882 28.4864 8.3615

0.8206 28.6126 8.3318

0.8529 28.7264 8.2521

0.8853 28.8753 8.1423

0.9176 29.0510 7.9966

0.9500 29.2245 7.8188

0.9824 29.4779 7.6490

1.0147 29.8235 7.5170

1.0471 30.2322 7.4364

1.0794 30.6663 7.3760

1.1118 31.0389 7.3350

H-17



wavelength

(micron)

gravel

(%r)

0.400 18.000

0.450 20.000

0.500 20.000

0.525 20.000

0.550 22.000

0.600 24.500

0.650 24.500

0.670 24.500

0.700 26.500

0.715 27.000

0.750 25.000

0.800 25.000

0.815 25.000

0.850 22.500

0.865 22.500

0.900 24.000

0.950 25.000

1.000 26.500

1.050 28.000

1.100 29.500
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wavelength

(micron) roof asphalt (%r)

0.400 9.000

0.450 9.500

0.500 9.750

0.700 11.000

0.750 11.150

0.800 12.000

0.850 12.500

0.900 12.000

1.000 11.000

1.100 10.500
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wavelength

(micron)

slate ave

(%r)

variance

(%r)

0.4000 13.1667 3.2998

0.4292 13.3976 3.2968

0.4583 13.7525 3.3045

0.4875 13.9445 3.3307

0.5167 14.0698 3.3559

0.5458 14.1598 3.4457

0.5750 14.2063 3.6840

0.6042 14.4843 3.7597

0.6333 14.8553 3.6220

0.6625 14.8325 3.6667

0.6917 14.9481 3.5924

0.7208 15.1430 3.4748

0.7500 15.3315 3.3968

0.7792 15.4539 3.4206

0.8083 15.5103 3.5196

0.8375 15.5195 3.6342

0.8667 15.5071 3.7507

0.8958 15.4992 3.8752

0.9250 15.5184 4.0212

0.9542 15.5640 4.1903

0.9833 15.6268 4.3732

1.0125 15.6971 4.5547

1.0417 15.7640 4.7143

1.0708 15.8139 4.8278

1.1000 15.8336 4.8707
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wavelength

(micron)
clay ave

(%r)

variance

(%r)

0.4 9.475 6.4169

0.4324 10.3895 6.7527

0.4647 12.033 7.6052

0.4971 13.3854 8.5273

0.5294 14.7924 9.2407

0.5618 18.6361 10.4947

0.5941 26.6893 13.5757

0.6265 30.3166 15.7008

0.6588 32.8111 16.918

0.6912 35.5978 17.0522

0.7235 37.6873 16.8153

0.7559 38.9559 15.8306

0.7882 39.07 15.538

0.8206 39.1095 15.7183

0.8529 38.7008 15.4574

0.8853 38.6528 15.5417

0.9176 38.6716 15.4146

0.95 39.2862 15.8408

0.9824 40.1467 16.2454

1.0147 40.6325 15.6496

1.0471 41.4368 15.2551

1.0794 42.6397 15.5841

1.1118 43.4778 15.9322

1.1441 43.6774 16.1637

1.1765 43.1041 16.2399

1.2088 41.6337 16.2958
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wavelength

(micron)

loam dry
ave (%r)

variance

(%r)

0.4000 4.8250 2.6901

0.4324 6.0320 3.5878

0.4647 7.8972 4.979

0.4971 9.9596 6.2457

0.5294 13.5459 8.2032

0.5618 18.6381 11.227

0.5941 23.4690 13.3411

0.6265 26.7455 14.664

0.6588 28.9561 15.435

0.6912 31.0680 15.8183

0.7235 32.8521 16.0029

0.7559 34.0106 15.9468

0.7882 34.3662 15.4817

0.8206 34.3978 14.7332

0.8529 34.1023 13.9781

0.8853 34.1604 13.6261

0.9176 34.1348 13.5397

0.9500 34.2633 13.4116

0.9824 34.5742 13.2416

1.0147 35.1156 13.161

1.0471 35.9354 13.3093

1.0794 37.0586 13.8047

1.1118 38.4470 14.7299

1.1441 40.0378 16.1804

1.1765 41.5871 17.8806

1.2088 42.5748 18.8076
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wavelength

(micron)

loam wet

ave (%r)

variance

(%r)

0.4000 3.1167 1.2857

0.4324 3.3001 1.5313

0.4647 3.8405 2.0974

0.4971 4.7867 2.8985

0.5294 6.6116 4.3601

0.5618 9.4394 6.7946

0.5941 12.5652 9.2795

0.6265 14.7714 10.8467

0.6588 16.3326 12.0248

0.6912 17.7031 12.7291

0.7235 18.7446 12.9564

0.7559 19.3152 12.7056

0.7882 19.4697 11.8912

0.8206 19.0534 10.9520

0.8529 18.5257 10.2040

0.8853 18.3156 9.8384

0.9176 18.4599 9.8763

0.9500 18.8830 10.2211

0.9824 19.4982 10.7697

1.0147 20.2187 11.3783

1.0471 20.9563 11.8777

1.0794 21.6055 12.1278

1.1118 22.1714 12.2357

1.1441 22.8341 12.4335

1.1765 23.7957 12.9180

1.2088 25.2523 13.9713
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wavelength

(micron)

sand ave

(%r)

variance

(%r)

0.4000 9.7910 6.9012

0.4324 11.0945 6.9322

0.4647 12.4006 7.2508

0.4971 13.8032 7.5379

0.5294 16.0499 7.7878

0.5618 18.2708 7.6676

0.5941 19.8237 7.5009

0.6265 21.5510 7.7226

0.6588 23.3101 7.8350

0.6912 24.8459 7.4841

0.7235 26.2491 7.6764

0.7559 27.7084 8.1159

0.7882 28.9225 8.5884

0.8206 29.9130 8.9397

0.8529 30.7870 9.2115

0.8853 31.7761 9.4635

0.9176 32.5929 9.5225

0.9500 33.4390 9.5676

0.9824 34.3435 9.9087

1.0147 35.2869 10.7863

1.0471 35.8646 11.0431

1.0794 36.4346 10.8028

1.1118 37.0728 10.6271

1.1441 37.7160 10.5012

1.1765 38.0292 10.4641

1.2088 38.6012 10.1514
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wavelength

(micron) soil ave (%r) variance (%r)

0.4000 4.7951 3.3789

0.4324 5.5813 3.8050

0.4647 6.5829 4.5061

0.4971 7.9013 5.6142

0.5294 9.9614 7.1669

0.5618 12.6366 8.8267

0.5941 15.1746 10.5700

0.6265 16.9803 11.9755

0.6588 18.6543 12.9735

0.6912 20.2253 13.3712

0.7235 21.7086 13.7367

0.7559 23.1065 14.1498

0.7882 24.1747 14.3461

0.8206 24.8104 14.2925

0.8529 25.1980 14.1392

0.8853 25.6280 13.9194

0.9176 26.0587 13.8155

0.9500 26.7500 13.8079

0.9824 27.4794 13.8130

1.0147 28.3895 13.9910

1.0471 29.6291 14.3832

1.0794 30.7135 14.6852

1.1118 31.5308 14.7322

1.1441 32.1033 14.5755

1.1765 32.7071 14.5394

1.2088 33.7309 15.0002
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wavelength

(micron) waterl (%r)

0.4008 9.7015

0.4090 9.1188

0.4175 8.7248

0.4357 8.9543

0.4556 8.0026

0.4773 7.6746

0.4988 4.1640

0.5115 3.3056

0.5249 2.6529

0.5391 2.1187

0.5540 1.6514

0.5698 1.3312

0.5865 1.0090

0.6042 0.7584

0.6431 0.4790

0.6873 0.3871

0.7380 0.4110

0.7663 0.4344

0.8299 0.4869

0.8658 0.5166

0.9050 0.5489

0.9479 0.5844

0.9950 0.6233

1.0471 0.6664

1.1050 0.7142

1.1696 0.7675
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wavelength

(micron)

water2

(%r)

water3

(%r)

0.3500 9.5000 8.5000

0.4141 8.3520 7.3093

0.4320 7.4443 6.6690

0.4415 7.3446 6.6499

0.4515 7.5874 6.7585

0.4619 7.4994 6.7574

0.4728 7.1857 6.5176

0.4843 6.2669 5.8943

0.5089 3.7620 3.9381

0.5222 3.0897 3.3250

0.5540 1.9160 2.1596

0.5865 1.2063 1.2317

0.6042 0.9411 0.9832

0.6231 0.7134 0.7657

0.6431 0.5870 0.6346

0.6873 0.4426 0.4414

0.7117 0.4377 0.4167

0.7663 0.4877 0.4642

0.8299 0.5460 0.5197

0.8658 0.5790 0.5510

0.9050 0.6149 0.5851

0.9479 0.6542 0.6225

0.9950 0.6975 0.6636

1.0363 0.7353 0.6995

1.0929 0.7872 0.7489

1.1561 0.8452 0.8039
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wavelength

(micron)

water4

(%r)

0.3992 7.4657

0.4057 6.7603

0.4320 4.9371

0.4415 4.8927

0.4515 5.1718

0.4619 5.4126

0.4728 5.4186

0.4843 5.3286

0.5089 4.6148

0.5222 4.0431

0.5540 2.8143

0.5865 1.8684

0.6231 1.1221

0.6645 0.7816

0.6873 0.6334

0.7117 0.6040

0.7663 0.6725

0.7968 0.7109

0.8299 0.7524

0.8658 0.7975

0.9050 0.8467

0.9479 0.9005

0.9950 0.9597

1.0363 0.1012

1.0929 0.1083

1.1561 0.1162
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wavelength

(micron)

water ave

(%r)

variance

(%r)

0.4000 5.7672 2.4318

0.4324 4.5551 2.4561

0.4647 4.7533 2.3265

0.4971 4.4339 0.6491

0.5294 5.0181 1.9894

0.5618 4.4923 2.9046

0.5941 3.4049 2.7532

0.6265 2.7564 2.6319

0.6588 2.0105 1.9582

0.6912 1.5028 1.4185

0.7235 2.0454 2.4572

0.7559 2.0818 2.4303

0.7882 2.1182 2.4038

0.8206 2.1546 2.3776

0.8529 2.1909 2.3519

0.8853 2.2273 2.3266

0.9176 2.2637 2.3017

0.9500 2.3001 2.2774

0.9824 2.3365 2.2535

1.0147 2.3729 2.2308

1.0471 2.4093 2.2072

1.0794 2.4456 2.1849

1.1118 2.4820 2.1631

1.1441 2.5183 2.1418

1.1765 2.5548 2.1212
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wavelength

(micron)

ash ave

(%r)

variance

(%r)

0.4000 5.0125 0.3238

0.4234 4.9661 0.4247

0.4469 5.1264 0.8480

0.4703 5.5450 1.1364

0.4938 6.3108 1.5188

0.5172 8.4325 1.6261

0.5407 10.7217 1.5823

0.5641 10.7408 1.8448

0.5876 9.4564 2.7846

0.6110 9.0323 3.4688

0.6345 8.5204 4.2551

0.6579 8.0063 4.9861

0.6814 8.2313 5.7139

0.7048 21.8191 4.5883

0.7283 39.2243 6.7595

0.7517 46.2806 8.2610

0.7752 49.9668 8.2553

0.7986 51.7098 7.4394

0.8221 53.0270 6.5921

0.8455 54.3608 5.9239

0.8690 55.4814 5.3648

0.8924 56.4352 4.8749

0.9393 58.0869 4.3429

0.9862 58.8730 3.8533

1.0331 60.3809 3.7795

1.0800 61.3854 3.5782
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wavelength

(micron)

beech ave

(%r)

variance

(%r)

0.4000 4.8500 0.9394

0.4234 5.3658 1.4039

0.4469 5.7867 1.7304

0.4703 6.1550 1.9747

0.4938 6.7592 2.2864

0.5172 11.1213 4.3175

0.5407 16.6838 5.4089

0.5641 18.5977 4.8492

0.5876 17.0617 3.0501

0.6110 16.8021 2.7648

0.6345 16.3848 3.8047

0.6579 14.2365 5.6858

0.6814 13.0250 7.1986

0.7048 32.6949 1.7470

0.7283 48.6266 5.2838

0.7517 54.9735 6.6395

0.7752 57.5684 5.9558

0.7986 59.2999 4.7611

0.8221 60.8526 3.5106

0.8690 63.3283 1.5286

0.8924 64.2547 1.0458

0.9393 65.4749 0.8854

0.9628 65.4183 1.1004

0.9862 65.4514 1.0546

1.0331 66.3466 0.9209

1.0800 67.1000 1.2450
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wavelength

(micron)

maple ave

(%r)

variance

(%r)

0.4000 4.7867 0.4559

0.4234 5.0294 0.8322

0.4469 5.1253 1.2348

0.4703 5.3693 1.5295

0.4938 6.1976 1.5856

0.5172 9.3411 1.9537

0.5407 12.5070 2.9783

0.5641 12.8521 2.9924

0.5876 11.2525 3.5179

0.6110 10.6587 4.5478

0.6345 10.4587 5.6960

0.6579 9.5093 6.8845

0.6814 9.6588 8.0209

0.7048 24.3516 5.7392

0.7283 40.3821 8.5347

0.7517 47.1126 10.7630

0.7752 50.2860 10.6759

0.7986 52.1011 10.0600

0.8221 53.4951 9.4201

0.8690 55.8997 8.4940

0.8924 56.7429 8.1538

0.9159 57.5245 7.9329

0.9628 58.4657 7.4945

1.0097 59.3190 7.5105

1.0331 59.8287 7.6975

1.0800 60.3188 8.0890

H-32



wavelength

(micron)

oak ave

(%r)
variance

(%r)

0.4000 4.0429 0.5010

0.4234 4.8187 0.7119

0.4469 5.3397 0.7865

0.4703 5.5008 1.1908

0.4938 6.0075 1.2904

0.5172 9.2896 1.6779

0.5407 12.9003 3.4844

0.5641 13.2204 2.6626

0.5876 12.5584 2.0621

0.6110 12.7182 4.1991

0.6345 12.6137 7.5743

0.6579 12.5229 9.9150

0.6814 14.7312 10.0947

0.7048 27.3688 6.6030

0.7283 42.3325 7.4662

0.7517 50.9876 11.0869

0.7752 54.0828 10.4918

0.7986 55.9306 8.9539

0.8221 57.8067 7.5194

0.8690 61.2838 5.3045

0.9159 63.8494 3.7723

0.9628 65.0181 3.1835

0.9862 65.1896 3.0757

1.0097 65.1379 2.9793

1.0566 64.9464 2.8561

1.0800 64.8637 2.7847

H-33



wavelength

(micron)

pine ave

(%r)

variance

(%r)

0.4000 4.2192 0.7970

0.4234 5.1893 0.8867

0.4469 5.9020 0.9486

0.4703 6.0801 0.9306

0.4938 6.3519 0.9108

0.5172 9.5201 1.8357

0.5407 13.2585 2.5531

0.5641 12.4005 2.3609

0.5876 9.5369 1.9395

0.6110 8.0952 1.7418

0.6345 6.8038 1.9908

0.6579 5.6494 1.4920

0.6814 6.1304 1.2907

0.7048 18.7707 3.4072

0.7283 43.4731 7.2556

0.7517 56.8457 12.0020

0.7986 60.6639 12.9094

0.8221 61.5947 12.7374

0.8690 62.2015 12.9853

0.8924 62.0399 12.8182

0.9159 61.3843 12.4189

0.9393 60.3627 11.8626

0.9628 57.8612 10.5839

0.9862 57.1754 10.2476

1.0331 60.2705 11.6057

1.0800 61.8625 11.9252

H-34



wavelength

(micron) clover (%r)

coarse grass

(%r)

0.40 2.00 4.50

0.50 3.00 6.00

0.56 8.00 11.00

0.62 4.00 7.00

0.68 1.50 5.00

0.76 38.00 40.00

0.78 39.00 42.00

0.80 40.50 43.50

0.86 42.00 45.00

0.96 45.00 45.00

1.02 49.00 47.00

1.12 48.00 47.00

H-35



wavelength

(micron)
orchard grass

(%r)

0.40

0.50

0.54

0.64

0.70

0.73

0.75

0.78

0.90

0.95

1.08

9.00

9.00

13.30

7.50

25.00

45.00

60.00

67.00

69.50

69.30

72.80

H-36



wavelength

(micron)
swamp grass

(%r)

0.40 7.90

0.48 8.00

0.50 8.50

0.52 13.00

0.54 15.50

0.56 15.00

0.60 10.00

0.68 7.00

0.69 6.50

0.70 18.00

0.73 60.00

0.75 70.00

0.78 71.00

0.88 73.00

1.10 74.50

H-37



wavelength

(micron)
grass ave

(%r)
variance

(%r)

0.4000 8.6455 3.0086

0.4234 8.1555 2.9210

0.4469 7.3426 2.6931

0.4703 7.0755 2.5241

0.4938 8.2226 2.5462

0.5172 11.3208 3.1860

0.5407 13.9132 3.7150

0.5641 13.5884 3.3290

0.5876 11.2198 2.7514

0.6110 8.3764 2.3623

0.6345 6.7733 2.6845

0.6579 8.4793 4.1997

0.6814 15.5105 5.8306

0.7048 29.6291 7.9555

0.7283 48.3172 10.9784

0.7517 60.6736 11.5657

0.7752 64.8162 12.1918

0.7986 66.5935 12.2972

0.8221 67.7268 12.2363

0.8690 68.4342 12.3458

0.8924 68.2135 12.2043

0.9393 67.1161 11.3917

0.9628 67.0564 10.9687

1.0097 68.9507 10.6680

1.0566 70.8419 10.9669

1.0800 70.7134 10.9599

H-38



Appendix I

Computing the Standard Deviation Between Two Values

This appendix shows that the standard deviation between two samples is the absolute

value of their differences divided by the square root of two.

Given two samples, xl and x2 ,and their average, x =
Xl +Xl

, we can write the

definition of the standard deviation between them as:

0 = v (xj
-

xf + (x2 -

xf

since n = 2 samples, the equation can be rewritten as:

a = V[x^ - 2x!X + x2) + [xl - 2x2x + x2)

combining terms,

o = Vx^ + xl +
2x2- 2x(xi + x2)

substituting in x,

a = ^x? + x^2(5i^f.2(5l^)(x1 + x2)

and

o = yx2+x^ -l(x, +
X,)2

o Vi- 2xix2+ x22)

o

rv
|xi -

xj

X2)2

vT

l-l
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