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Abstract

The ability to detect and identify effluent gases is a problem that has been pursued

with limited success. An algorithm to do this would not only aid in the regulation

of pollutants but also in treaty enforcement. Considering these applications, finding

a way to remotely investigate a gaseous emission is highly desirable. This research

utilizes hyperspectral imagery in the infrared region of the electromagnetic spectrum

to evaluate invariant methods of detecting and identifying gases within a scene. The

image is evaluated on a pixel-by-pixel basis and is also studied at the subpixel level. A

library of target gas spectra is generated using a simple radiance model. This results in

a more robust representation of the gas spectra which are representative of real-world

observations. This library is the subspace utilized by the detection and identification

algorithm. An evaluation was carried out to determine the subset of basis vectors that

best span the subspace. Two basis vector selection methods are used to determine

the subset of basis vectors; Singular Value Decomposition (SVD) and the Maximum

Distance Method (MaxD). The Generalized Likelihood Ratio Test (GLRT) was used to

determine whether the pixel is more like the target or the background. The target can

be either a single species or a combination of gases, however, this study only looks for
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one gas at a time. Synthetically generated hyperspectral scenes in the longwave infrared

(LWIR) region of the electromagnetic spectrum are used for this research. The test

scenarios used in this study represented strong and weak plumes with single or multiple

gas releases. In this work, strong and weak plumes refer to the release, which is on the

order of tens of grams per second and tenths of grams per second, respectively. This

work demonstrates the effectiveness of these invariant algorithms for the gas detection

and identification problem.



Acknowledgements

I would not have been able to accomplish this work without the love and support

of my family, especially; my parents, Susan and Joseph Smith, and my grandfather,

Thomas Linnan.

I was lucky to have had the privilege to work with the best committee. They have

been the most supportive people of my research and career; without the combined ef-

forts of these advisors this work would not be what it is. Specifically thanks to:

Dr. John Schott for taking me under your wing and guiding me from the onset when

I was just a confused undergraduate. I am grateful for all the knowledge and opportu-

nities you have given me.

Dr. David Messinger for always being there for me; you were the best “go” to guy

whether you wanted to be or not. Thanks for being able to cut through my nonsense,

keep me focused, and teach me a tremendous amount in the meantime. There is some-

thing to be said about getting “stuck” with the new guy.

Dr. Carl Salvaggio for always having my best interest in mind even when it meant

more work for me. I am ultimately grateful you had me do it. I only wish I had the

opportunity to take classes with you. I am very appreciative to have had the opportu-

nity to work with you and have you as my advisor.

vi



Contents

List of Figures xiii

1 Introduction 1

1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Invariant Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Literature Review 6

2.1 SVD Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . 7

2.2 Detection and Quantification . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Invariant Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Algorithm Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Approach 18

3.1 Radiance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Beer’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Description of the Invariant Target Space . . . . . . . . . . . . . . . . . 21

3.3 Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Plume Emission and Absorption Implementation . . . . . . . . . 26

3.4 Basis Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



CONTENTS viii

4 Results 34

4.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Library Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 SVD vs. MaxD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Atmospheric Mismatch . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Case 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Conclusion 70

6 Future Work 73



List of Figures

1.1 On the left side of the SF6 feature the spectrum at 5oC has the high-

est magnitude and on the right the spectrum at 50oC has the highest

magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 This graph of NH3 target spectra shows the differences in the absorption

spectrum when the concentration varies from 1-1000 ppm-m. . . . . . . 4

2.1 These photon paths were neglected by Young; a) reflected atmospheric

downwelled off the surface, b) reflected atmospheric downwelled off the

plume, c) plume downwelled off the surface . . . . . . . . . . . . . . . . 10

2.2 a) The vectors are showing the points furthest from the origin and clos-

est to the origin. b) The dotted vector represents the difference vector.

c) A plane is found perpendicular to the difference vector. d) The data

can then be projected onto the new plane. e) This n-dimensional rep-

resentation of the data shows the basis vectors at the corners of the

simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 The self-emitted energy paths are: f) self-emitted, g) background self-

emitted, h) self-emitted reflected by background, i) downwelled, j) up-

welled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ix



LIST OF FIGURES x

3.2 This represents the radiance model that will be used to describe this

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Atmospheric transmission used in this study . . . . . . . . . . . . . . . . 23

3.4 Atmospheric radiance used in this study . . . . . . . . . . . . . . . . . . 23

3.5 This represents the column effects, where the different layers represent

the varying parameters of the plume. . . . . . . . . . . . . . . . . . . . . 24

3.6 Simplification of the Gaussian plume model (smooth curve); for the sin-

gle slab (single rect) and multi-slab (multiple rects) cases. . . . . . . . . 25

3.7 A band at 10.73 µm from the test scene that was used. . . . . . . . . . 27

3.8 Spatially Enhanced Broadband Array Spectrograph System (SEBASS)

noise covariance image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.9 The temperature of the plume can be represented by the surface tem-

perature plus some offset. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.10 The extremes of the Freon-114 target spectral library. The top spectrum

shows the target gas in emission, while the bottom is in absorption. . . 29

3.11 The top 10 target basis vectors, which were used in this study, for Freon-

114 as defined by singular value decomposition (SVD) and determined

from a target library of nine temperatures and eight concentrations.

(Note: The structure in the first basis vector is not seen; it was com-

pressed due to the other offset plots.) . . . . . . . . . . . . . . . . . . . . 30

3.12 The top 10 target basis vectors, which were used in this study, for Freon-

114 as defined by maximum distance method (MaxD) and determined

from a target library of nine temperatures and eight concentrations. . . 31

3.13 The top 15 background basis vectors, which were used in this study, for

the background as defined by SVD. (Note: The structure in the first

basis vector is not seen; it was compressed due to the other offset plots.) 32



LIST OF FIGURES xi

3.14 The top 15 background basis vectors, which were used in this study, for

the background as defined by MaxD. . . . . . . . . . . . . . . . . . . . . 33

4.1 Case 4, Freon-114 band results using SVD for each of the libraries, where

the indices correspond to the libraries as listed in Table 4.2. The points

represent the standard deviation. . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Case 4, Freon-114 band results using MaxD for each of the libraries,

where the points represent the standard deviation. . . . . . . . . . . . . 39

4.3 Case 4, ammonia band results using SVD for each of the libraries, where

the points represent the standard deviation. . . . . . . . . . . . . . . . . 40

4.4 Case 4, ammonia band results using MaxD for each of the libraries, where

the points represent the standard deviation. . . . . . . . . . . . . . . . . 41

4.5 Case 5, ammonia band results using SVD for each of the libraries, where

the points represent the standard deviation. . . . . . . . . . . . . . . . . 42

4.6 Case 5, ammonia band results using MaxD for each of the libraries, where

the points represent the standard deviation. . . . . . . . . . . . . . . . . 43

4.7 Normalized GLRT results for the Freon-114 band, which used SVD for

basis vector selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.8 Normalized GLRT results for the Freon-114 band, which used MaxD for

basis vector selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.9 Detection profile for the Freon-114 plume region, which used SVD for

basis vector selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.10 Detection profile for the Freon-114 plume region, which used MaxD for

basis vector selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11 Normalized GLRT results for the ammonia band of Case 2, which used

SVD for basis vector selection. . . . . . . . . . . . . . . . . . . . . . . . 48

4.12 Normalized GLRT results for the ammonia band of Case 2, which used

MaxD for basis vector selection. . . . . . . . . . . . . . . . . . . . . . . . 49



LIST OF FIGURES xii

4.13 Detection profile for the ammonia plume region of Case 2, which used

SVD for basis vector selection. . . . . . . . . . . . . . . . . . . . . . . . 50

4.14 Detection profile for the ammonia plume region of Case 2, which used

MaxD for basis vector selection. . . . . . . . . . . . . . . . . . . . . . . . 50

4.15 Normalized GLRT results for the Freon-114 band of Case 4, a weak release. 51

4.16 Detection profile for the Freon-114 plume region of Case 4, a weak release. 52

4.17 Detection profile for the ammonia plume region of Case 4, a weak release. 52

4.18 Normalized GLRT results for the ammonia band of Case 4, a weak release. 53

4.19 Normalized GLRT results for the SF6 band of Case 4, a weak release. . 53

4.20 Detection profile for the Freon-114 plume region of Case 4, a weak release,

using target spectra with an atmosphere that does not match that of the

scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.21 Detection profile for the ammonia plume region of Case 4, a weak release,

using target spectra with an atmosphere that does not match that of the

scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.22 Normalized GLRT results for the Freon-114 band of Case 4, a weak

release, using target spectra with an atmosphere that does not match

that of the scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.23 Normalized GLRT results for the ammonia band of Case 4, a weak re-

lease, using target spectra with an atmosphere that does not match that

of the scene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.24 Detection profile for the ammonia plume region of Case 4, a weak release,

using target spectra which do not incorporate atmospheric parameters. . 59

4.25 Detection profile for the ammonia plume region of Case 4, a weak release,

using target spectra which do not incorporate atmospheric parameters. . 60

4.26 Detection profile for fluorobenzene the plume region of Case 7, a weak

release. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



LIST OF FIGURES xiii

4.27 Normalized GLRT results for the fluorobenzene band of Case 7, a weak

release. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.28 Detection profile for the phosgene plume region of Case 7, a weak release. 62

4.29 Normalized GLRT results for the phosgene band of Case 7, a weak release. 63

4.30 Detection profile for the plume region of Case 5, a weak release. . . . . . 63

4.31 Normalized GLRT results for the ammonia band of Case 5, a weak release. 64

4.32 Normalized GLRT results for the 1,1,2,2-tetrachloroethane band of Case

5, a weak release. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.33 Raw absorption spectrum of 1,1,2,2-tetrachloroethane . . . . . . . . . . 66

4.34 Target spectrum for 1,1,2,2-tetrachloroethane at 51oC and 1000 ppm-m 66

4.35 Detection profile for the 1,2-dichloropropane plume region of Case 6, a

weak release. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.36 Normalized GLRT results for the 1,2-dichloropropane band of Case 6, a

weak release. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.37 Detection profile for the methane plume region of Case 6, a weak release. 68

4.38 Normalized GLRT results for the methane band of Case 6, a weak release. 69

4.39 Raw absorption spectrum for methane. . . . . . . . . . . . . . . . . . . . 69

5.1 Raw absorption spectra for ammonia and sulfur hexafluoride. . . . . . . 71

5.2 Target spectra for ammonia and sulfur hexafluoride. . . . . . . . . . . . 71



Acronyms

Throughout this paper there will be a number of acronyms used. The following list can

be a quick reference to deciphering these acronyms.

ARES Airborne Remote Earth Sensing. The program which ran the testing at the

Navajo Generating Station.

CIS Center for Imaging Science

DIRSIG Digital Imaging and Remote sensing Synthetic Image Generator. The Digital

Imaging and Remote sensing Synthetic Image Generator (DIRSIG) ray tracing

environment was developed by Center for Imaging Science (CIS) at Rochester

Institute of Technology (RIT).

EPA Environmental Protection Agency

GLRT generalized likelihood ratio test

ISAC In-Scene Atmospheric Compensation

xiv



LIST OF FIGURES xv

JPL Jet Propulsion Laboratory

LWIR longwave infrared

MaxD maximum distance method

MODTRAN Moderate Resolution Transmittance: atmospheric model

MWIR midwave infrared

RIT Rochester Institute of Technology

ROI region of interest

SEBASS Spatially Enhanced Broadband Array Spectrograph System

SVD singular value decomposition

SWIR shortwave infrared



Chapter 1

Introduction

Effluent gases are the end product of many chemical processes. These processes could

be simple combustion used to heat a building or generate power, or a more complex pro-

cess reminiscent of chemical production. The Environmental Protection Agency (EPA)

regulates air emissions, but monitoring this can be difficult. Taking an air sample would

be ideal; however, this is not always possible. Various state and local agencies would

like to know what a facility is making just by looking at the emissions from a stack

or vent. It would be useful to be able to assist these types of organizations with an

algorithm that would extract the desired information from imagery.

Algorithm utility for the effluent gas problem involves detecting and locating the gas

cloud, identifying the gas species, quantifying the mixing ratio, and ultimately, concen-

tration prediction. The focus of this research was on the detection and identification

components of the algorithm development process.

1.1 Objective

The intention for this work was to evaluate an algorithm for this gas detection and

identification problem using hyperspectral image data. The algorithm of interest, the

1



CHAPTER 1. INTRODUCTION 2

Invariant Algorithm, was developed to be unaffected by changes in atmospheric and

illumination conditions[5],[16]. This work utilizes the invariant nature of this algorithm

to neglect temperature and concentration variations within a gas cloud. The algorithm

utilized is implemented in two ways. The first utilizes singular value decomposition

(SVD) to select basis vectors and the second utilizes the maximum distance method

(MaxD)[8] to select basis vectors.

Basis vectors are determined from a data set, which in this case is derived from im-

agery or target gases. The basis vectors “span” the space the data set represents.

These algorithms reorganize the data such that the resulting basis vectors are statisti-

cally independent and ordered such that the important information is brought to the

front. This allows for a reduced set to be taken, which still encapsulates most of the

variability in the data and reduces processing time. A weighted linear combination of

basis vectors can recreate the original data set. Since the number of basis vectors are

being reduced some error will be introduced when recreating the original data space.

The Healey-Invariant Algorithm[5] has two implementations for basis vector selection;

the fully-resolved and the sub-pixel implementation. The fully-resolved implementa-

tion looks for the target while the sub-pixel implementation looks for target with-in

the background. The Lee Algorithm[8] is intrinsically a sub-pixel algorithm. Plumes

are inherently transmissive, so, the sub-pixel version of the Healey and the Lee Algo-

rithm were used to see which would provide a better solution for the gas detection and

identification problem.

The problem that is faced in gas detection and identification is that the spectrum of

the gas to be detected will look different with varying temperatures, concentrations,

and backgrounds. Figure 1.1 illustrates that when the temperature of a gas increases,

the spectral features do not simply scale in magnitude, the overall shape of the feature

may change. This complexity is also seen in Figure 1.2 when the concentrations are
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Figure 1.1: On the left side of the SF6 feature the spectrum at 5oC has the highest
magnitude and on the right the spectrum at 50oC has the highest magnitude.

varied. These features are further altered when they are sensed over a terrestrial back-

ground, whose temperature and spectrum will affect the appearance of the resultant

gas spectrum.

The remainder of this document will discuss; first, the methodology of the Invariant

Algorithm, second, previous work done on this problem and in what way that work sup-

ported this research, third, the process followed in this work along with the supporting

theory, and finally the results and conclusions will be presented.
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..

Figure 1.2: This graph of NH3 target spectra shows the differences in the absorption
spectrum when the concentration varies from 1-1000 ppm-m.
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1.2 Invariant Methodology

Target detection is usually accomplished by converting a scene into an alternative vector

space where the individual pixel radiance vectors look most like the targets of interest.

For example, in the reflective spectral region the atmosphere is often compensated for

and the radiance data converted to reflectance because this new space most closely

resembles the conditions where the target spectrum was observed. This would allow

for target detection since the vector more closely resembles the known target spectrum.

However, in gas detection, the target is transparent and compensation for the atmo-

sphere results in a chance that the target signature will be altered. The traditional

method, as a result, may not be optimal for gases because the target gases can be

transparent and influenced by its surroundings. Most notably the target can be seen

in absorption or emission where the gas is either absorbing energy from the surround

or releasing energy to the surround. Both the Lee and the Healey invariant methods

model the target in the various ways that it would be seen in the sensed image space.

For example in this study, the atmosphere is added to the target and the gas concen-

trations and temperatures are varied creating a library of possible radiance vectors.

All target variations in a dataset can be represented by defining a reduced set of basis

vectors, linear combinations of which will recreate the original dataset. The reduced

set of vectors are used solely for limiting time consumption. A dataset can be reduced

by several means; SVD, MaxD, principal components, etc. Target basis vectors are

generated from the library of modeled target spectra. Background basis vectors are

generated from a region of the test image where no targets are assumed to be present.

The test scene is evaluated using the Generalized Likelihood Ratio Test (GLRT) that

will determine whether each pixel is more like the background or the target gas. A test

pixel is evaluated using the basis vectors and the GLRT.



Chapter 2

Background and Literature

Review

2.1 SVD Detection

In 1996, Lisowski and Cook [9] assessed the use of shortwave infrared (SWIR) and mid-

wave infrared (MWIR) hyperspectral imagery collected under the Airborne Remote

Earth Sensing (ARES) program, to identify SO2 being emitted from a coal burning

power plant. Their study evaluated three algorithms for determining the presence of

this chemical: SVD, linearly-normalized band differencing, and Planckian-normalized

band differencing. Linearly-normalized and Planckian-normalized band differencing is

carried out by subtracting the spectrum of a background and plume pixel spectrum

yielding a residual spectrum. The linearly-normalized method removes a background

pixel that does not contain the gas while Planckian-normalization subtracts a Planck

curve that has been fit to the data. Both of these methods result in a spectrum that

would allow the features of the gas, if present, to be more evident. The results of this

study showed that SVD can be used to determine the extent or area of the chemical

plume from ground collected imagery. The differencing techniques were useful for identi-

6
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fication of SO2. The Planckian-normalization technique provided an enhanced contrast

in the emission feature over the linearly-normalized method because the background

pixel used in the linear-normalized technique had to be selected in close proximity to

the stack. However, the background pixel selected may not have been the same as the

background under the plume and since it was a background pixel close to the stack it

may have been a mixed pixel with the gas, resulting in a less distinct spectrum.

2.1.1 Singular Value Decomposition

“Given a set of observations, one often wants to condense and summarize the data

by fitting it to a ‘model’ that depends on adjustable parameters.”[13] Singular value

decomposition does just that by means of eigenvector decomposition.

The data is rotated into a space where most of the important information is brought

to the front. To understand the mathematics of SVD some background is necessary.

Consider square matrix Asq, that can be rewritten, or spectrally decomposed as,

Asq = UΛUT, (2.1)

where U has the property,

UTΛU = I; (2.2)

I is the identity matrix and Λ is the diagonalized eigenvalue matrix. For a non-square

matrix, A, another means of decomposing is necessary, hence SVD is used.

The equation for SVD is as follows:

A = UW(VT ), (2.3)
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where A is the original image matrix with physical dimensions M pixels x N bands,

U is as described previously in Equation 2.2 and V is also,

VTV = I. (2.4)

Matrices U and V are orthogonal with dimensions M x N and N x N respectively.

Matrix W , similar to Λ, is a diagonal matrix comprised of N singular values, wi (i=

1,2,...,N), which are the square root of eigenvalues, as seen in Equation 2.5.

W =



w1 0 · · · 0

0 w2

...
. . .

0 wN


(2.5)

Here U contains the uncorrelated basis vectors from which a subset can be selected

in order to work with a reduced dataset. This new reduced data set, while smaller,

contains most of the important information from the original.[13][10][15]

2.2 Detection and Quantification

In 2002, Young [17] reviewed processes for gas detection and quantification. That re-

search utilized SEBASS data collected over a commercial refinery’s stacks to study

point source emissions of carbon dioxide. The SEBASS instrument is a hyperspectral

spectrometer that images in the MWIR (3–5 µm) and longwave infrared (LWIR) (7.5–

13.6 µm) regions of the electromagnetic spectrum. It has a resolution of about 0.025

µm in the MWIR and about 0.05 µm in the LWIR. Young’s study utilized the LWIR

spectrometer data. The last four channels were not operable, restricting the spectral
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coverage to wavelengths shorter than 13.42 µm. The resultant images were radiomet-

rically calibrated.

Young’s study expected to find ammonia, carbon dioxide, ethylene, methane, nitrogen

dioxide, nitrous oxide, sulfur dioxide, and water vapor. They were all determined to be

present. The radiance expression used for the target data was a linear model expressed

in terms of the background spectra and the gas absorption spectra. The background

spectra were determined from three methods, in-scene spectra, image cluster spectra

and eigenvectors from spectral clutter covariances. The gas absorption spectra were

taken from a commercially available library of laboratory spectra measured at a refer-

ence temperature of 20o C.

In Young’s implementation of the radiance model, atmospheric downwelling radiance

reflected off of the surface and the plume were neglected as well as downwelling plume

radiance off the surface, as shown in Figure 2.1. The background was approximated

as a blackbody, with a high emissivity. The plumes are modeled as optically thin, and

therefore can utilize Beer’s Law; which defines the transmission of the plume. The

reason for this will be discussed in a later section. Young’s model does not, however,

leave room for native gases (atmospheric gases). It does attempt to compensate for

them but the article states the model is not sufficient for strong atmospheric absorbers.

Atmospheric compensation was done on the SEBASS data using the In-Scene Atmo-

spheric Compensation (ISAC) algorithm[17].

The detection analysis done on the imagery used principal components. The principal

components algorithm results in orthogonal component images that sort the informa-

tion from highest to lowest radiance variability. The principal components algorithm,

driven by image covariance, was able to find significant plumes in imagery that had

yet to be atmospherically corrected. Significant plumes are those which have a high

temperature contrast or a wide spatial distribution that would provide enough signal
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Figure 2.1: These photon paths were neglected by Young; a) reflected atmospheric
downwelled off the surface, b) reflected atmospheric downwelled off the plume, c) plume
downwelled off the surface

variation to be spotted in the component images. The article does not specify which is

the case. While the algorithm did find plumes, they were not the only things that were

returned in the component image. It was still necessary for a supervised inspection to

determine what was a plume and what was background clutter. A visual search was

done to find plumes in the output component image set. However, once appropriate

components were found, simply thresholding the component image was not sufficient

to segment out only the plumes. Also, regions of energy being emitted or absorbed by

the plume cannot directly be determined using this technique.

Spectral matched filtering was done for detection using atmospherically uncompen-

sated imagery. An image mask was created from thresholded principal component

output images, where all that was left was the extent or area of the plume. The mask

was overlaid onto the scene to determine the section of the image used for the analy-

sis. From this, on-and-off plume spectra were selected and were subtracted to create a
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contrast spectrum. The contrast spectrum enhances the gas feature by removing the

background influence. The atmosphere spectrum was merged with the target spectrum

by multiplying the atmospheric transmission by the target spectrum on a wavelength-

by-wavelength basis so that the data and the target spectrum appear to have been

measured under the same conditions. The spectral matched filter application was done

iteratively and resulted in a higher detection rate than SVD, including weak signal

plumes and plumes that cover a small area.

Linear least-squares regression methods, unconstrained and constrained, were used to

detect and quantify the plumes. Some methods used to generate basis sets for the

regressions were: region of interest selection from the imagery, unsupervised classifica-

tion, clustering techniques, and eigenvectors from the covariance matrix of the imagery.

In the discussion of endmember extraction, Young mentioned that thermal variation

within the background is important. Specifically, when discussing extracted back-

ground spectra, Young wrote, “the signal is a direct thermal emission from the surface,”

and that, “temperature variation over the scene becomes an important consideration.”

Earlier it was mentioned that the thermal variation in the target would be neglected

because, “the shapes of spectra are relatively insensitive to temperature,” and that,

“detection analysis can be carried out with spectra for a fixed temperature.” It is be-

cause of this issue, that extraction methods do not explicitly accommodate for thermal

variation, that endmember extraction was not used in the study[17].

The regression results showed that the constrained regression worked as well as the off-

plume subtraction method, which had a high probability of detection. Unconstrained

regression was not as successful and resulted in poor and incorrect results. Young de-

termined this part of study was invalid because the result showed there was a negative

contrast coefficient for water vapor. Unconstrained regression was unsuccessful because
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the target gases were always found no matter if they were in the plume or not. Also,

if a plume gas was not in the target set then there is no indication of this signature

in the residual spectrum although it was in the plume. Essentially, if the algorithm

looked for a specific gas it could find it even if the gas really was not present. If it

did not specifically look for a gas, even if it was in the plume image, there would be

no detection. In the constrained regression, the determination of whether a target gas

should be included or excluded from the plume was done using the significance test, t-

Test. This test evaluated the significance of change between regressions. The detection

and quantification analysis was also done after pixels were grouped together to form a

stronger signal. This procedure averaged out the absorption or emission characteristic

of the signal.

The results of Young’s study were that the spectral matched filter worked best for

detection when the gases of interest were known and that constrained regression was

optimal for detection and quantification.

Although Young did a robust study, there is still room for further research. Young had

a priori knowledge of the gases that were in the scene. This work assumes nothing

about the scene, not even if there is a plume present. Young mentioned that most of

the gases in his study have spectral absorption coefficients that do not vary with tem-

perature over the temperature range of interest (15 – 80oC). This research, in contrast

to the Young study, utilized spectra measured at multiple temperatures for the target

gases. These variations were shown previously in Figure 1.2. This work also utilizes

the fact that the plume can be found in both emission and absorption.

2.3 Invariant Algorithms

Traditional matched filter detection converts a scene into reflectance by doing atmo-

spheric compensation to look for a target which has a known reflectance. This assumes
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that within the scene the surface is flat and there is a uniform atmosphere. This

method is too generic for some scenes. The Healey-Invariant Algorithm was developed

for material detection of a specific target spectrum within an image sensed under any

illumination or atmospheric conditions[5]. It is used on non-atmospherically corrected

hyperspectral data. The Healey-Invariant Algorithm converts the target into image

space rather than the traditional detection method of converting the scene into target

space. The target is converted into image space by incorporating the effects of the

atmosphere and changing illumination conditions. These changes or variations, which

are incorporated into the target spectra, are acquired by running a model with possible

environmental parameter combinations that would potentially be present during the

capture of an image, creating a target library. A set of basis vectors are then deter-

mined from this library which best represent the space filled by the spectral variations.

An image pixel can then be tested by projecting it onto the basis vectors and if the

error between the basis vector and the image pixel is below some threshold, then it can

be classified as a target.

In Healey and Slater’s (1999) implementation of the Invariant Algorithm, the variations

in the known target spectra were modeled using various MODTRAN runs. The basis

vector dimensionality was evaluated using SVD while the maximum likelihood classi-

fication determined how similar the image pixel was to the target[5]. When compared

with an industry standard detection algorithm, Spectral Angle Mapper, the Invariant

Algorithm had significantly fewer false detections.

Thai and Healey (2002) implemented a sub-pixel version of this algorithm for use on

mixed-pixel situations. Due to spatial resolution constraints of most imaging systems,

most pixel spectra represent a mixed-pixel. This implementation incorporated a target

and a background subspace that were combined and compared to an image pixel. This

algorithm was able to detect obscured targets with few false alarms. It also returned
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better results than the widely used spectral matched filter[16].

Lee (2003)[8] developed an Invariant Algorithm that addressed the same problem as

Thai and Healey for subpixel material identification without atmospheric compensa-

tion. This implementation, however, utilized a new method of generating basis vectors

incorporating the maximum distance method (MaxD)[8] that results in orthogonal,

linearly independent, basis vectors. This new method resulted in improved target de-

tection. The maximum distance method assumes that the spectral library of interest

is a subspace. By viewing the subspace in an n-dimensional form, the corners of the

generated simplex that encloses the data are the points that are the maximum Eu-

clidean distance from any point within the simplex as described in Figure 2.2. These

points are found by first determining the vector at the most extreme point from the

origin and that closest to the origin, as shown in Figure 2.2a, these points are now

considered corners of the simplex. The difference vector is found between these two

vectors, as shown in Figure 2.2b. Then a hyperplane perpendicular to the difference

vector is determined, as shown in Figure 2.2c. The data points can then be projected

onto this plane, as shown in Figure 2.2d. This process is repeated, until all the data

points are collapsed onto one point. As the process is repeated each extrema are then

considered to be the basis vectors, as shown in Figure 2.2e. The linear combinations of

those basis vectors will recreate all the data contained within the simplex[8]. A subset

of these basis vectors will be used for the target basis vectors; again this is done to save

time otherwise all basis vectors could be used for testing.

The implementations of the invariant algorithm presented above were applied to the

gas detection and identification problem and the effectiveness was evaluated as part of

this research.
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a) b)

d)

c)

e)

Figure 2.2: a) The vectors are showing the points furthest from the origin and closest
to the origin. b) The dotted vector represents the difference vector. c) A plane is found
perpendicular to the difference vector. d) The data can then be projected onto the new
plane. e) This n-dimensional representation of the data shows the basis vectors at the
corners of the simplex
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2.4 Algorithm Applicability

The invariant algorithm was developed to do target detection in scenes having varying

atmospheric and illumination conditions. The original application of these invariant

algorithms solved for a target under various atmospheric and illumination conditions

in the visible, near-infrared and short-wave infrared regions of the electromagnetic

spectrum. Gases have properties such as transparency and emission or absorption that

cannot be removed from an image which is why traditional matched filter is not ideal for

this application. The invariant algorithm is applicable to the gas problem because the

signatures need to be detectable no matter what the conditions are, i.e., concentration,

temperature, mixture ratios, etc. Specifically, as stated by Clausen and Bak (1998),

the gas concentration can be determined if the following parameters are known or

measured: the background temperature or spectrum, gas temperature, path length,

and the absorption spectrum at the gas temperature [2]. These are all the parameters

that were considered when describing the invariant space for gas identification and

detection.

The invariant algorithm as applied in this work was quite different from Healey and

Lee’s application because the effluent gas targets have features in the LWIR and are

optically thin causing them to be transparent and, at times, even invisible. The problem

was further complicated because the plume can be in emission and absorption. An

example of a situation where this would arise is near to the stack where the plume

is hot and downwind the plume has had a chance to cool. The plume could cool

to a temperature less than the background temperature which may be solar heated,

so photons emitted from the background are then absorbed by the plume before they

reach the sensor. Another problem is that the plume temperature and concentration are

unevenly distributed along a given vertical slice or column within the plume. The target

spectrum looks different at different temperatures as well as different concentrations.
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The background characteristics will significantly influence the resultant pixel spectrum

and may be more prominent than the gas targets. This causes the pixel spectrum to

always be mixed regardless of the sensor’s ground resolution.



Chapter 3

Approach

3.1 Radiance Model

This research concentrated on the self-emitted photons from a gaseous plume target,

path f , as shown in Figure 3.1. This radiant energy is referred to as Lplume. The self-

emitted background photons, forming path g, are all the surface photons that are not

the target, referred to as Lground. The paths h and i represent the self-emitted target

radiance reflected off the background and the downwelled radiance respectively; these

paths are neglected because of the near-unit emissivity assumed for the background.

Finally, the upwelled radiance path, j, gives the self-emission of the atmosphere between

the target and the sensor or Latm. The total sensor reaching radiance is

Ltotal = τatm(Lground · τplume + Lplume) + Latm, (3.1)

where

Ltotal ≡ total radiance [ W
cm2srµm

]

Lground ≡ Planckian radiance at the temperature of the ground

18
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Figure 3.1: The self-emitted energy paths are: f) self-emitted, g) background self-
emitted, h) self-emitted reflected by background, i) downwelled, j) upwelled.

τplume ≡ transmission through the plume

Lplume ≡ Planckian radiance at the temperature of the plume

τatm ≡ transmission through the atmosphere

Latm ≡ upwelled radiance of the atmosphere.

The Planckian blackbody radiance of an object at a specific temperature is given by

Lplanck =
2hc2

λ5(e
hc

λκT − 1)
, (3.2)

where

h ≡ Planck’s constant = 6.6256 · 10−34[J · s]

c ≡ speed of light = 2.9979 · 108
[
m

s

]
λ ≡ wavelength [m]
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κ ≡ Boltzmann gas constant = 1.38 · 1023
[
J

s

]
T ≡ temperature [K].

The transmission of the plume τ can further be described as

τplume = 1− ck(λ), (3.3)

where c is the concentration path length [ppm-m] or the number density of the gas

multiplied by the path length, and k [ 1
ppm−m ] is the absorption spectrum of the gas.

The equation is derived from Beer’s Law and is described in the next section.

3.1.1 Beer’s Law

Beer’s law defines the transmission, τ , as

τ = e−ck (3.4)

where the concentration path length is c, and the absorption spectrum is k. In condi-

tions where there is a small optical depth or an optically thin plume, i.e. where ck � 1

a Taylor-series expansion can be done that reduces the equation to

τ = 1− ck. (3.5)

Ultimately, one would like to work in terms of emissivity rather than transmission.

Transmission and emissivity are related in Kirchhoff’s Law as

τ + ε + r = 1, (3.6)
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where r, the reflectance. The reflectance, or in this case the scattering, can be ignored

because the plume is assumed to be non-scattering in the LWIR. The particles in the

plume are small compared to the wavelength of interest, therefore, Rayleigh scattering

applies. Rayleigh scattering is modeled as

βr(λ, θ) =
2π2

mλ4
(n(λ)− 1)2(1 + cos2θ), (3.7)

where βr(λ) is the angular scattering coefficient, m is the number density, θ is the

angular direction of scattering relative to direction of propagation, and n(λ) is the index

of refraction of the medium. This equation shows that the scattering is dominated by
1
λ4 . Since this work concentrates on the LWIR region of the spectrum, the scattering

contribution is negligible.

Rearranging Equation 3.6 gives

ε = 1− τ. (3.8)

Substituting Equation 3.5 into Equation 3.8 gives

ε = ck, (3.9)

confirming the description of τ in Equation 3.3.

3.2 Description of the Invariant Target Space

The target space for the plume was described in terms of the radiance model as shown

in Figure 3.2. This representation is called the single slab model. In this discussion

the term slab refers to a homogenous mass that has a consistent temperature and

concentration throughout. The mathematical representation for this is described in

Equation 3.1. The atmospheric terms, τatm and Latm, implemented were estimated
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Lground * τplume

Lground 

Lplume Latm

Figure 3.2: This represents the radiance model that will be used to describe this prob-
lem.

using a mid-latitude summer atmosphere MODTRAN[14] simulation. For the purpose

of this research the τatm and the Latm terms will be held constant, and are shown

in Figures 3.3 and 3.4 respectively. In the traditional implementation of the invariant

algorithm these terms are varied. A more appropriate description of the plume radiance

would be in terms of the multiple slab model, as represented in Figure 3.5, because the

plume itself is a varying body. The plume can be described by a normally distributed

temperature and concentration profile across the plume (Figure 3.6) and following

an exponential decay in the quantities downwind. The multiple slab model better

represents this variation. The primary advantage of the multiple slab model over the

single slab model is that it can represent whether the plume is in emission or absorption

in its entirety. When tracing a line between the ground and the sky or the ground and

the sensor, the plume constituents are not constant along this path. The differences

in the radiance equation between the two slab models are the Lm,plume and τm,plume
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Figure 3.3: Atmospheric transmission used in this study
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Figure 3.4: Atmospheric radiance used in this study
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Lground * τplume

Lground 

Lm plume Latm

Figure 3.5: This represents the column effects, where the different layers represent the
varying parameters of the plume.

terms, which are:

Lm,total = τatm(Lgroundτm,plume + Lm,plume) + Latm (3.10)

τm,plume =
N∏
i

τi (3.11)

τi = 1− cik (3.12)

Lm,plume = cNkLplanck(λ, TN ) +
N−1∑
i=1

[
N−1∏

j=i+1

τjcikLplanck(λ, Ti)]. (3.13)

The Lm,plume term becomes the summation of the concentration in the ith layer times

the absorption spectrum multiplied by the Planckian radiance at the temperature of
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Figure 3.6: Simplification of the Gaussian plume model (smooth curve); for the single
slab (single rect) and multi-slab (multiple rects) cases.

the plume in that layer. The transmission through the plume, τm,plume, becomes the

product of the transmission, τi, in the N constituent layers where the transmission

of the ith layer is one minus the concentration of the gas in the ith layer times the

absorption spectrum. The multiple slab model is not used in this work and is presented

only for completeness. The plume itself is generated by varying the species of gas,

concentration, and gas temperature. These permutations describe the target space

used in this research.

3.3 Test Data

All test scenes used in this research were generated using a physics-based synthetic

image generation environment, DIRSIG[7], which uses first-principles physics to model

a scene. This simulation environment allows scenes to be generated along with corre-

sponding truth maps. Some examples of the truth maps are: temperature of each pixel

in the image (plume, background, etc.) as well as concentration of the gas species.
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These scenes have highly varying, complex backgrounds composed of trees, buildings,

grass and asphalt parking lots as shown in Figure 3.7. The sensor model that was used

to generate these simulated scenes was similar to the SEBASS[3] instrument. The noise

added to the modeled system mimics that of the SEBASS sensor and is spectrally cor-

related; meaning that from band to band the noise is dependent. The noise covariance

image is shown in Figure 3.8 and was created from the SEBASS spectrally correlated

noise cube[12]. The plume simulation model used in DIRSIG is the Jet Propulsion

Lab (JPL) plume model[4], which implements a Gaussian concentration and tempera-

ture distribution orthogonal to the downwind direction and an exponential decrease of

these quantities downwind. This simulation results in a full three-dimensional model of

a plume. The DIRSIG rendering of the plume generated by the JPL model is considered

to be spectrally accurate, however, the spatial fidelity is considered weak. This is not

an issue for this work because the algorithm works on a pixel-by-pixel or spectral basis.

3.3.1 Plume Emission and Absorption Implementation

This work exploited the difference between the plume temperature and the background

temperature, ∆T . The plume temperature was described in terms of the surface tem-

perature, Tsurface, and an offset of the surface temperature, ∆T , as shown in Figure 3.9.

This offset term is both positive and negative, which represented the plume in emission

and absorption, respectively. A surface temperature of 36oC was used for this research.

This is the mean scene derived brightness temperature for the test scene, not including

the plume. The concentration and temperature ranges for gas spectra for the target

subspace were generated between 1-1000 ppm-m and ±15oC from the derived surface

temperature. The gas absorption spectra that this study utilized were chosen from the

list of the top hazardous gases according to the EPA’s Clean Air Act. The laboratory

absorption spectra for each gas, taken from a commercially available database, were
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Figure 3.7: A band at 10.73 µm from the test scene that was used.

measured at three temperatures. The laboratory spectrum used varied with the plume

temperature. The laboratory spectrum that was selected was that which was measured

at the temperature that was closest to the temperature of the plume.

3.4 Basis Vectors

There are various means to determine basis vectors from a set of n-dimensional data.

This research looked at two methods; SVD and MaxD from the Healey and Lee algo-

rithms, respectively. The most rigorous part of this work was the generation of the

spectral libraries used to select target basis vectors using the previously stated radio-

metric model. The spectral libraries were generated for each gas at each temperature
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Figure 3.8: SEBASS noise covariance image.

Tsurface

Tsurface + ∆T

Figure 3.9: The temperature of the plume can be represented by the surface tempera-
ture plus some offset.
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.

Figure 3.10: The extremes of the Freon-114 target spectral library. The top spectrum
shows the target gas in emission, while the bottom is in absorption.

and concentration combination. The library is built having spectra in absorption and

emission. The extremes for Freon-114 are shown in Figure 3.10. A set of ten target

basis vectors were selected for each gas, an example of these are shown in Figures 3.11

and 3.12. The basis vectors from SVD shown here have more structure than the MaxD.

SVD basis vectors have been rotated into a new space where as MaxD are actual spec-

tra and when plotted offset much of the structure is compressed. Background basis

vectors were derived from a synthetically generated test scene without the plumes in-

cluded. An example of these are shown in Figures 3.13 and 3.14. When using real

imagery, a region of interest in an area within the scene, where there was no plume

present as to not include the target as part of the background, should be used in order

to obtain background basis vectors. There were 15 basis vectors selected to describe

the background.



CHAPTER 3. APPROACH 30

..

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 7  8  9  10  11  12  13  14

(
O
f
f
s
e
t
 
f
o
r
 
c
l
a
r
i
t
y
)

Wavelength [um]

Freon114 Target Basis Vectors

Figure 3.11: The top 10 target basis vectors, which were used in this study, for Freon-
114 as defined by SVD and determined from a target library of nine temperatures and
eight concentrations. (Note: The structure in the first basis vector is not seen; it was
compressed due to the other offset plots.)
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Figure 3.12: The top 10 target basis vectors, which were used in this study, for Freon-
114 as defined by MaxD and determined from a target library of nine temperatures
and eight concentrations.
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Figure 3.13: The top 15 background basis vectors, which were used in this study, for
the background as defined by SVD. (Note: The structure in the first basis vector is
not seen; it was compressed due to the other offset plots.)
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Figure 3.14: The top 15 background basis vectors, which were used in this study, for
the background as defined by MaxD.
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Results

4.1 Analysis

The effectiveness of the algorithms employed by this research were tested against

DIRSIG scenes having the same background scene elements but different plume config-

urations. The scenarios tested were as follows in Table 4.1. Each scene was exploited

using a reduced set of target and basis vectors using two methods; SVD and MaxD.

Seven uniquely constructed target signature libraries were reduced by each method

and then used to process the images. These spectral libraries were built using different

Table 4.1: This shows test scenarios that were used in this work.

Scene Reference Plume # Gases Release Rate (g/s)
Case 2 2 Ammonia, Freon-114 50
Case 4 2 Ammonia, Freon-114 0.25
Case 5 1 Ammonia, 1,1,2,2-Tetrachloroethane 0.25
Case 6 2 Methane, 1,2-Dichloropropane 0.25
Case 7 2 Fluorobenzene, Phosgene 0.25, 0.50

34
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Table 4.2: Varying temperatures and concentrations used to build the test signature
libraries.

Name # Temperatures # Concentrations Combinations
T5C5 5 5 25
T6C8 6 8 48
T7C9 7 9 63
T8C8 8 8 64
T9C8 9 8 72
T10C8 10 8 80
T14C8 14 8 112

combinations of gas temperatures and concentrations. These different combinations

are shown in Table 4.2.

The generalized likelihood ratio test (GLRT) was applied to each scenario to determine

the likelihood of finding the test gas in each pixel. The algorithm was run so that a

result map was output for each gas as a third-dimension or “band” of a detection map

cube. Table 4.3 describes the structure of the detection cube.

Each pixel’s GLRT response was normalized by the process followed by equations 4.1–

4.3.

G = [g1, g2, ...gN ] (4.1)

d =

√√√√ N∑
i

g2
i (4.2)

G′ =
G

d
(4.3)

A pixel here is described as vector G comprised of gi GLRT responses for the N gases

and the normalized pixel is G′. This forces the algorithm, in a sense, to choose which

gas it is claiming is most likely in the pixel. These normalized GLRT detection maps
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Table 4.3: Index of gases as they correspond to the third dimension or “bands” of the
output GLRT detection map cube.

Band Index Gas Band Index Gas

1 Acrolien 15 Freon-125

2 Fluorobenzene 16 Freon-12

3 Benzene 17 Freon-134a

4 Carbon tetrachloride 18 Freon-218

5 Methyl chloride 19 Formaldehyde

6 Methane 20 Hydrogen chloride

7 Carbon dioxide 21 Ammonia

8 Carbon monoxide 22 Phosgene

9 Dichloromethane 23 Sulfur hexafluoride

10 1,2-Dichloropropane 24 Sulfur dioxide

11 1,3-Dichloropropane 25 1,1,2,2-Tetrachloroethane

12 1,2-Dibromomethane 26 Trichloroethylene

13 1,2-Dichloromethane 27 Vinyl chloride

14 Freon-114
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are evaluated in two ways. For each scene a region of interest (ROI) was determined

over a small portion of the plume near the stack. The mean value for each gas over the

ROI was determined. These mean values are then plotted as a detection profile where

the band index on the horizontal axis corresponds to a unique gas in the library. The

detection map corresponding to the gas in each release was visually inspected to be

sure that the detected pixels “looked” spatially like a plume. The normalized GLRT

detection map as well as the mean ROI detection profile are the two figures that will

be presented to demonstrate the utility of the algorithms.

4.2 Library Size

This research evaluated the best size for the target spectral library. These libraries, as

described in Table 4.2, were reduced taking 10 target basis vectors and 15 background

basis vectors using both SVD and MaxD for basis vector selection. It should be noted

that the range of temperatures and concentrations were also the same for all libraries.

The temperatures and concentrations used to generate the library are uniformly spaced

over the range of each of these parameters. The results shown in this section are from

Case 4, which had two single gas plumes of ammonia and Freon-114, and the ammonia

results from Case 5. These scenarios were selected for this study because they were

neither the worst nor the best detections of all the cases; they provided a moderate

challenge. Cases 4 and 5 have a gas in common (ammonia), which is released at the

same rate. Case 5 is a multiple gas release (one plume) in contrast to the two single

gas plumes in Case 4.

The mean detection metric over the ROI for each gas of interest was plotted in order of

increasing size of the library to determine which returned the highest detection. Figure

4.1 shows that for the Case 4 Freon-114 plume, using SVD, the smallest spectral library,

T5C5, gave the best results. The worst results were produced from using T14C8, the
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Figure 4.1: Case 4, Freon-114 band results using SVD for each of the libraries, where
the indices correspond to the libraries as listed in Table 4.2. The points represent the
standard deviation.
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Figure 4.2: Case 4, Freon-114 band results using MaxD for each of the libraries, where
the points represent the standard deviation.
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Figure 4.3: Case 4, ammonia band results using SVD for each of the libraries, where
the points represent the standard deviation.

largest target spectral library. The MaxD Case 4 Freon-114 plume results, shown in

Figure 4.2, are different although the worst detection again was returned by T14C8.

The best detection was returned from T7C9. More remarkable is how the the libraries

differentiate one from the next more so than was seen in the SVD results for this

plume. This could be driven by how the basis vectors were selected. For example,

looking at T8C8 and T9C8 for both SVD and MaxD respectively, there is a much

more distinguished difference for the MaxD results while the libraries only differ by

one spectrum. One spectrum would influence MaxD more than SVD because it is a

geometric method for generating basis vectors rather than statistical (SVD).

Figures 4.3 and 4.4 show the results for the ammonia plume for Case 4, and have

different results than the Freon-114 plume. Here for the SVD case the largest spectral

library, T14C8, showed the best results, while T8C8 showed the worst results. The
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Figure 4.4: Case 4, ammonia band results using MaxD for each of the libraries, where
the points represent the standard deviation.



CHAPTER 4. RESULTS 42

..

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

T14C8T10C8T9C8T8C8T7C9T6C8T5C5

N
o
r
m
a
l
i
z
e
d
 
G
L
R
T

SVD Case 5 Ammonia

Figure 4.5: Case 5, ammonia band results using SVD for each of the libraries, where
the points represent the standard deviation.

MaxD results are again very different from the SVD case and have the best results

with the T9C8 library and worst with the T7C9 library.

The Case 5 ammonia results were examined in Figures 4.5 and 4.6. The smallest

library, using SVD, returned the worst results. The top detection for this case using

SVD was the largest library, T14C8. While this is the same as the SVD Case 4 ammonia

detection it was only slightly larger than the T9C8 library and the trend does not follow

for all the libraries. The MaxD results for the ammonia in Case 5 show the worst

detection from T7C9. There are equal detections between T9C8, T10C8, and T14C8

which is the highest return value. Taking a closer look at the data the three sets are the

same to the third significant digit where T10C8 returns the lowest of the three values

and then the other two are the same to the fourth significant digit where T14C8 shows
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Figure 4.6: Case 5, ammonia band results using MaxD for each of the libraries, where
the points represent the standard deviation.
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a slightly higher value than T9C8.

Ultimately, there does not seem to be an optimum size for the library for either basis

vector selection method. There were libraries which were better than others, however,

it could be said that they all work equally well. Two statistical tests were implemented

on the data to try and show that the means of the data shown here were the same.

The first was the two tailed t-Test[11]; this failed because this test assumes that the

data is normally distributed, which it is not. The Mann-Whitney test[1] was also

implemented. However, this also failed because it assumes that each data set has the

same distribution, which they do not. Considering no library distinguished itself as

giving the best detections and the fact that T9C8 is a library that was shown to be

one of the best detectors in each case, the remainder of this analysis will look only at

the results from the library T9C8.

4.3 SVD vs. MaxD

Another objective of this work was to determine which basis vector selection method,

SVD or MaxD, provided better results. This study was done using Case two, which

showed two strong single plume releases of Freon-114 and ammonia. Figures 4.7 and

4.8 show the detection maps for both SVD and MaxD for the Freon-114 band. From

both of these scenes it is evident that both methods, SVD and MaxD, detect the Freon-

114 . While SVD appears to do better job at suppressing the background, MaxD has

more/stronger detections in the Freon-114 plume region. Also, looking at the detection

profile for the Freon-114 plume for both SVD and MaxD, in Figures 4.9 and 4.10

respectively, they both show Freon-114 as the most likely gas in the plume region with

very high probability.

The second release in Case 2 is the ammonia plume which was also detected by both

of these methods as shown in Figures 4.11 and 4.12. The results for the ammonia
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Figure 4.7: Normalized GLRT results for the Freon-114 band, which used SVD for
basis vector selection.

plume using both basis vector selection methods are shown quite dramatically and

more thoroughly than the Freon-114 plume. Again, SVD looks to a better job with

background suppression. However, for the MaxD ammonia map the background is

suppressed more than it was in the MaxD Freon-114 map. This indicates that for

ammonia using the MaxD basis vectors the GLRT was more “convinced” that the

background was not ammonia than Freon-114. This is promising since ammonia is an

atmospheric gas and it could be found in the atmosphere above the background. The

SVD and MaxD detection profiles for the ammonia plume region are shown in Figures

4.13 and 4.14, respectively. These show that SVD has a slightly higher detection for

the ammonia than MaxD. The MaxD results also show higher detection values than

SVD for gases that are not in the plume region. The gas sulfur hexafluoride (index 23)

also stands out in both the SVD and MaxD case; this will be discussed later in this
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Figure 4.8: Normalized GLRT results for the Freon-114 band, which used MaxD for
basis vector selection.

document.

These results show that SVD does a slightly better job overall. This being said, as

before, the scale at which the basis vector selection methods are being evaluated at are

on par with each other and either are appropriate for gas detection and identification.

Due to this, and for conciseness, the rest of this document will present only those results

from the SVD implementation.

4.4 Case 4

The rest of the document will discuss the results from specific cases as listed in Table

4.1, beginning with Case 4. This case is a weak release of only 0.25 g/s. This scene is

the same as Case 2, which was discussed in the previous section except for the release



CHAPTER 4. RESULTS 47

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

N
o
r
m
a
l
i
z
e
d
 
G
L
R
T

Gas Index

SVD case2 t9c8
freon114

Figure 4.9: Detection profile for the Freon-114 plume region, which used SVD for basis
vector selection.
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Figure 4.10: Detection profile for the Freon-114 plume region, which used MaxD for
basis vector selection.
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Figure 4.11: Normalized GLRT results for the ammonia band of Case 2, which used
SVD for basis vector selection.

rate. Case 4 has a release rate that is significantly less than Case 2, which is considered

a strong release.

The Freon-114 plume again was detected well as is shown by the detection map in

Figure 4.15. This illustrates that the algorithm is detecting the plume at downwind

positions but that there are background materials beneath the plume that seem to

suppress detection more than others. The algorithm detects to a concentration of

about 1 ppm-m. In this scene the algorithm seems to do well matching against the

trees and not as well with the rest of the background materials. This demonstrates

that the background basis vectors are doing a “good job” matching target pixel. This

is not completely unexpected since in a weak release the signature from the gas is going

to be weaker and less differentiable from the background. This should not overshadow

the fact that it is detecting against all background materials, just that it is doing better
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Figure 4.12: Normalized GLRT results for the ammonia band of Case 2, which used
MaxD for basis vector selection.

against the trees. The detection profile for this plume region, as seen in Figure 4.16,

shows a very high probability for the Freon-114 band (band 14).

The utility of the detection profile is that the user should not have to look at all of the

gas detection maps of the image to determine which gas is in the plume. The detection

probability spectrum allows the user to simply look at the detection maps displaying a

high value in the detection profile. Once the user looks at those detection maps which

gave high probabilities, the next thing to do, to determine if there is a plume in the

scene, is to evaluate whether there is “plume structure” in the map. Following this

process for the second plume of Case 4, the detection profile shown in Figure 4.17 is

examined.

The highest probabilities in the profile are for ammonia (band 21) and SF6 (band 23).
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Figure 4.13: Detection profile for the ammonia plume region of Case 2, which used
SVD for basis vector selection.
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Figure 4.14: Detection profile for the ammonia plume region of Case 2, which used
MaxD for basis vector selection.
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Figure 4.15: Normalized GLRT results for the Freon-114 band of Case 4, a weak release.

The ammonia detection map, Figure 4.18, shows a high (bright) return close to the

stack and weaker detections downwind, about 4 ppm-m, but ultimately it is important

to see that there is plume structure exhibited. In the SF6 detection map, Figure 4.19,

there are not bright returns that show plume structure.

4.4.1 Atmospheric Mismatch

A question that arises when doing gas identification and detection is how well does the

atmosphere in the radiance model have to match that of the test scene. For this study

the percent of the gas in the total atmospheric column, which is below the sensor for a

particular atmospheric gas is on average 38.4%, as shown in Table 4.4.

This study showed if there is a different atmosphere in the test scene than was imple-

mented in the radiance model, the algorithm still proves applicable for gas detection
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Figure 4.16: Detection profile for the Freon-114 plume region of Case 4, a weak release.
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Figure 4.17: Detection profile for the ammonia plume region of Case 4, a weak release.
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Figure 4.18: Normalized GLRT results for the ammonia band of Case 4, a weak release.

..

Figure 4.19: Normalized GLRT results for the SF6 band of Case 4, a weak release.
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Table 4.4: The percent of the primary atmospheric gases in the total atmospheric
column below the sensor, which is at 1000 feet.

Atmospheric constituent % Captured in test scene
Water 73
Ozone 16

Carbon dioxide 31
Carbon monoxide 35

Methane 32
Nitrous oxide 32

Oxygen 31
Ammonia 57

Nitrogen monoxide 31
Nitrogen dioxide 31
Sulfur dioxide 53

and identification. Figures 4.20 and 4.21 show the detection probability spectra for the

Freon-114 and ammonia plumes, but in this implementation of the target model, the

atmospheric properties were changed. This target model used atmospheric parameters

from a Moderate Resolution Transmittance: atmospheric model (MODTRAN) mid-

latitude winter (rather than mid-latitude summer which was the atmosphere used in

the scene). The results are quite similar to those with atmospheric properties which

match the scene presented in the previous section. In fact, they appear to have the

same probability of detection for both of the gases which are in each plume. The simi-

larity is also seen in the detection maps as shown in Figures 4.22 and 4.23.

To further emphasize this point the algorithm was run using a target library including

no atmospheric contributions at all. These results, seen in Figures 4.24 and 4.25, are

again very similar to those already presented. Of the detection profiles shown here, the

ammonia case is the most important. Ammonia is an atmospheric gas and of the total

ammonia in the atmospheric column 57% of it is below the sensor and captured in the
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Figure 4.20: Detection profile for the Freon-114 plume region of Case 4, a weak release,
using target spectra with an atmosphere that does not match that of the scene.

test scene. This study shows that including atmosphere in the target model does not

significantly effect target detectability for the cases studied here.

4.5 Case 7

Case 7 is similar to the previous Case 4 except that in this scene there are two new gases

to be detected, which are released at different rates. The first gas, fluorobenzene, was

released at the same rate as those in Case 4, 0.25 g/s. The probability profile is shown in

Figure 4.26. This figure shows that band 2, fluorobenzene, has the highest probability

with no other gases worth investigating. This is further supported by the fluorobenzene

detection map showing very strong detections in the region of this release, Figure 4.27.

It has the same background issues as the other case, however, the algorithm is still

detecting the plume; near the stack as well as downwind.
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Figure 4.21: Detection profile for the ammonia plume region of Case 4, a weak release,
using target spectra with an atmosphere that does not match that of the scene.

The next plume releases phosgene at a rate of 0.5 g/s, twice as much as was released in

Case 4. The detection profile, Figure 4.28, again shows a strong detection for the gas

being released, phosgene (band 22), with no other gases having a strong probability

of being in the plume. The detection map for this gas, Figure 4.29, shows that it is a

much larger plume than the other in the scene. It still has the same background issues

but is detecting throughout the spatial extent of the plume.

4.6 Case 5

There are two gases released in the same plume in Case 5. These gases, ammonia

and 1,1,2,2-tetrachloroethane, are being released at the same rate of 0.25 g/s. In the

detection profile, Figure 4.30, the top two returns are from bands 21 and 25. The

band with the highest probability of being a plume gas is ammonia, band 21, which
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Figure 4.22: Normalized GLRT results for the Freon-114 band of Case 4, a weak release,
using target spectra with an atmosphere that does not match that of the scene.
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Figure 4.23: Normalized GLRT results for the ammonia band of Case 4, a weak release,
using target spectra with an atmosphere that does not match that of the scene.
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Figure 4.24: Detection profile for the ammonia plume region of Case 4, a weak release,
using target spectra which do not incorporate atmospheric parameters.

is supported by the distribution of pixels shown in Figure 4.31. The detection map

for 1,1,2,2-tetrachloroethane, band 25, is shown in Figure 4.32. The plume structure,

although subtle, is evident which demonstrates a positive detection. The raw absorption

spectrum for 1,1,2,2-tetrachloroethane, Figure 4.33, shows strong features to detect off

of. However, once put through the radiance model which converts it into target spectra,

1,1,2,2-tetrachloroethane has lost much of its discerning features as seen in Figure 4.34.

This is because the features are on the edge of the atmospheric transmission window,

which explains lesser plume structure in the detection map.

4.7 Case 6

The last scene for evaluation is Case 6. This scene has two single gas weak releases of 1,2-

dichloropropane and methane at 0.25 g/s. The results for 1,2-dichloropropane are shown
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Figure 4.25: Detection profile for the ammonia plume region of Case 4, a weak release,
using target spectra which do not incorporate atmospheric parameters.

in Figures 4.35 and 4.36. Although the detection band does not exhibit as large of a

plume structure as previously seen, it is very evident that band 10, 1,2-dichloropropane,

stands out from any other gases in the detection profile. The other plume does not

return as promising of a result, as seen by the detection profile, Figure 4.37. Band 6

methane has the highest probability, although, it is only slightly higher than the rest.

More importantly the detection map, Figure 4.38 does not show the plume structure;

although there is a bright pixel at the location of the release. Again, the atmosphere

is the culprit for these poor results. The spectrum for methane, Figure 4.39, shows it

to only have features on the edge of the atmospheric transmission window where the

transmission is quickly falling in value. Investigating the image very closely, there is a

bright pixel by the stack which is a detection. The results are not as pronounced as

shown before, however, the algorithm is still detecting accurately.
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Figure 4.26: Detection profile for fluorobenzene the plume region of Case 7, a weak
release.



CHAPTER 4. RESULTS 62

..

Figure 4.27: Normalized GLRT results for the fluorobenzene band of Case 7, a weak
release.
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Figure 4.28: Detection profile for the phosgene plume region of Case 7, a weak release.
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Figure 4.29: Normalized GLRT results for the phosgene band of Case 7, a weak release.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

N
o
r
m
a
l
i
z
e
d
 
G
L
R
T

Gas Index

SVD case5 t9c8
2gases

Figure 4.30: Detection profile for the plume region of Case 5, a weak release.
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Figure 4.31: Normalized GLRT results for the ammonia band of Case 5, a weak release.
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Figure 4.32: Normalized GLRT results for the 1,1,2,2-tetrachloroethane band of Case
5, a weak release.
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Figure 4.33: Raw absorption spectrum of 1,1,2,2-tetrachloroethane

.

Figure 4.34: Target spectrum for 1,1,2,2-tetrachloroethane at 51oC and 1000 ppm-m
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Figure 4.35: Detection profile for the 1,2-dichloropropane plume region of Case 6, a
weak release.
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Figure 4.36: Normalized GLRT results for the 1,2-dichloropropane band of Case 6, a
weak release.
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Figure 4.37: Detection profile for the methane plume region of Case 6, a weak release.
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Figure 4.38: Normalized GLRT results for the methane band of Case 6, a weak release.

.

Figure 4.39: Raw absorption spectrum for methane.



Chapter 5

Conclusion

The atmosphere as would be expected is one of the largest problems in the detection

and identification process. Many of the spectra once put through the target model lost

much of their features, as was seen in the case of methane, 1,1,2,2-tetrachloroethane

and trichlorethylene.

Spectral mismatch was also an issue. In every case where ammonia was a plume gas,

sulfur hexafluoride returned a lesser detection. This lesser detection is positive since

none of the scenes had sulfur hexafluoride, however, it is worth looking at to see why

it is showing up when ammonia is detected. They have overlapping features as seen

in the laboratory absorption spectra in Figure 5.1 and even more evident in the target

spectra shown in Figure 5.2. While it did not produce a higher detection value than

ammonia, it still proved to be more prominent than the other gases. One would be

inclined to say it was in the plume.

There are some strange detection issues when trees are in the background of the plume.

These issues are caused by DIRSIG which has problems modeling the thermodynamic

and geometeric interaction between the trees and the plume. On the other hand,

70
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Figure 5.1: Raw absorption spectra for ammonia and sulfur hexafluoride.

.

Figure 5.2: Target spectra for ammonia and sulfur hexafluoride.
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while the intention of this work was to be able to detect optically thin plumes, the

algorithm proved to work on optically thick plumes as well. This is evident in Case 2,

specifically in regions close to the stack. All the gas releases tested here were detected,

although in some cases weakly. The invariant algorithm has shown to be applicable to

the gas detection and identification problem. Both implementations, SVD and MaxD,

are equally appropriate target basis vector selection methods. However, it seems as

though SVD may be a better basis vector selection method for selecting background

basis vectors. This may be because the scene is not as spectrally diverse and is better

described by the statistical model, SVD, than the geometric MaxD model.



Chapter 6

Future Work

There is still room for further work on the gas detection and identification problem.

Most specifically this work looked at gases individually; an implementation should be

done using a target model which uses multiple gases. This is a large undertaking and

therefore was not investigated in this initial work. The application of a different sensor

model into the target model may change the results and should be further investigated.

The multiple slab model discussed previously should be evaluated for generating the

target space. The range of concentrations and temperatures should be extended for

implementation in both single slab and multiple slab models. Lowering these values

may improve detections downwind. Further research should also should be done to look

at which method of basis vector selection methods is ideal for the background, which

proved to be an issue here. Also, other than selecting the top 10 basis vectors for the

target and 15 for the background there was no other investigation of the basis vectors.

Taking a harder look at exactly what basis vectors are being selected may improve the

applicability of the algorithm. Applying the algorithm solely to the spectral region

where the target gas features are found may improve the results.

Finally, due to sensitivity and availability issues this study did not test against real

73
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image data. To fully validate these algorithms they should be applied to real data.



Bibliography

[1] Conover, W. J., 1980, Practical Nonparametric Statistics, John Wiley and Sons,

2nd edition, NY, NY 4.2

[2] Clausen, S., Bak, J., 1998, Infrared low resolution emission spectroscopy of hot

gases. Part of the SPIE Conference on Electro-Optical Technology for Remote

Chemical Detection and Identification III, v.3383 2.4

[3] Hackwell, J., Warren, D., Bongiovi, R., S. J., H., Hayhurst, T., Mabry, D., Sivjee,

M., Skinner, J., 1998, Lwir/mwir imaging hyperspectral sensor for airborne and

ground-based remote sensing, Part of SPIE Imaging Spectrometry II, Proceedings

of SPIE, v. 2819, M. Descour and J. Mooney, eds., pp. 102-107 3.3

[4] Halitsky, J., 1989, A jet plume model for short stacks, JAPCA Note-Book 39(6),

pp. 856-858 3.3

[5] Healey, G., Slater, D., 1999, Models and Methods for Automated Material Iden-

tification in Hyperspectral Imagery Acquired under Unknown Illumination and

Atmospheric Conditions, IEEE Transactions on Geoscience and Remote Sensing,

v.37, n.6 1.1, 2.3

[6] Hernandez-Baquero, E., 1999, Inscene Atmospheric Compensation Algorithm: A

Graphical User Interface Built with ENVI, Programming for Imaging Science -

Class Paper

75



BIBLIOGRAPHY 76

[7] Ientilucci, E., Brown, S., 2003, Advances in wide area hyperspectral image simu-

lation, Part of the SPIE Conference on Targets and Backgrounds IX: Characteri-

zation and Representation, v. 5065, pp. 110-121 3.3

[8] Lee, K., 2003, A subpixel scale target detection algorithm for hyperspectral im-

agery. Ph.D. Dissertation, Rochester Institute of Technology, Center for Imaging

Science 1.1, 2.3

[9] Lisowski, J. J., Cook, C. A., 1996, A SVD Method for Spectral Decomposition

and Classification of ARES Data, Proc. SPIE, v.2821, n.15, p.14-29 2.1

[10] Madsen, R. E., Hansen, L. K., and Winther, O., Singular Value Decomposi-

tion and Principal Component Analysis. ISP Technical Report 2004-02-01 (online:

http://www2.imm.dtu.dk/ rem/reports/IMM2003-02803.pdf) 2.1.1

[11] Neter, J., Kutner, M. H., Nachtsheim, C. J., Wasserman, W., 1996,

Applied Linear Statistical Models, Times Mirror Higher Education Group, 4th

edition, Chicago, IL 4.2

[12] Peterson, E., 2004, A Synthetic Landmine Scene Development and Validation in

DIRSIG. M.S. Dissertation, Rochester Institute of Technology, Center for Imaging

Science 3.3

[13] Press, W. H., Flannery, B. P., Teukolsky, S. A., 1993,

Numerical Recipes in C: The Art of Scientific Computing, Cambridge University

Press, 2nd edition 2.1.1, 2.1.1

[14] Schott, J. R., 1997, Remote Sensing: The Image Chain Approach, Oxford Univer-

sity Press, NY, NY 3.2



BIBLIOGRAPHY 77

[15] Shlens, J., 2003, A Tutorial on Principal Component Analysis: Deriva-

tion, Discussion, and Singular Value Decomposition. Online Note:

http://www.snl.salk.edu/ shlens/pub/notes/pca.pdf 2.1.1

[16] Thai, B., Healey, G., 2002, Invariant Subpixel Material Detection in Hyperspectral

Imagery. IEEE Transaction on Geoscience and Remote Sensing. v.40, n.3, p.599-

608 1.1, 2.3

[17] Young, S., 2002, Aerospace Corporation, RAND Communication 2.2, 2.2


	List of Figures
	Introduction
	Objective
	Invariant Methodology

	Background and Literature Review
	SVD Detection
	Singular Value Decomposition

	Detection and Quantification
	Invariant Algorithms
	Algorithm Applicability

	Approach
	Radiance Model
	Beer's Law

	Description of the Invariant Target Space
	Test Data
	Plume Emission and Absorption Implementation

	Basis Vectors

	Results
	Analysis
	Library Size
	SVD vs. MaxD
	Case 4
	Atmospheric Mismatch

	Case 7
	Case 5
	Case 6

	Conclusion
	Future Work

