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Abstract

The goal of this research was to develop an algorithm for identifying the constituent

gases in stack releases. At the heart of the algorithm is a stepwise linear regression

technique that only includes a basis vector in the model if it contributes significantly

to the fit. This significance is calculated by an F -statistic. Issues such as atmospheric

compensation, gas absorption and emission, background modeling, and fitting a linear

regression to a non-linear radiance model were addressed in order to generate the matrix

of basis vectors. Synthetic imagery generated by the DIRISG model were used as test

cases. Results show that the ability to correctly identify a gas diminishes as a function

of decreasing concentration path-length of the plume. Results drawn from pixels near

the stack are more likely to give an accurate identification of the gas present in the

plume.
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Chapter 1

Introduction

1.1 RIT Gas Research

The proposed thesis fits into a larger body of algorithm development research aimed at

learning more about gas plumes in hyperspectral imagery. This research is threefold.

Given a hyperspectral image: detect any and all gas plumes in the scene, identify the

constituent gases present in the plumes, and quantify in both relative and absolute

terms the amount of each gas. The ideal end product of this body of research would

be a fully-automated algorithm that performs all of the above tasks. As stated above,

this research will attempt to solve the identification problem by identifying each gas

present in a pre-detected plume.

1
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1.2 Motivation for the Gas Problem

Quantifying the amount of individual gases being released from factory stacks is of great

importance to two main special interest groups; environmental and defense agencies.

1.2.1 Environmental Monitoring and Regulation

Effective monitoring of air pollution, in particular from large production facilities with

numerous discharge locations, presents quite a challenge. These discharges are typi-

cally released from tall stacks where the gases quickly dissipate into the atmosphere.

These conditions make accurate and reliable independent measurement methods diffi-

cult. Airborne remote sensing is a convenient platform that allows a user to survey an

entire group of facilities at once. The development of algorithms that accurately iden-

tify and quantify the individual gases being released will greatly enhance the abilities

of regulatory agencies to enforce legislation.

1.2.2 National Security Issues

The enforcement of environmental legislation can be accomplished by simply monitoring

the release rates of specific chemicals and gases that have been flagged as hazardous.

However, given to the right expert, this information can also be used to draw conclusions

about the methods and materials involved in the manufacturing process within the

plant. Defense agencies are interested in the use of hyperspectral imagery to see what
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all the “bad guys” are making.

A second use for the gas problem is for tactical purposes. Given a real-time imager

and a fast-acting algorithm, a field commander would be able to detect the release of

a gaseous chemical weapon and mobilize their troops accordingly. In this, as well as

other applications, a solution to the gas problem would be a great asset.

1.3 Hyperspectral Imagery

Airborne-imaging spectrometers give rise to three-dimensional data cubes. Each pixel

can be considered as a spectrum sampled at J points, with J being the number of

bands in the specific instrument. When J numbers in the tens to hundreds, the image

is referred to as hyperspectral. In the 0.4–0.7 µm, the visible (VIS), 0.7–1.1 µm, the

near infrared (NIR) and 1.1–3 µm, the shortwave infrared (SWIR) bandpass regions,

reflected solar irradiance is the dominant source of radiance seen by the sensor. Col-

lectively these three regions are referred to as the reflective region. Beyond 5µm, the

longwave infrared (LWIR) region, solar irradiance is dominated by self-emitted radi-

ance, hence being referred to as the emissive region. Between 3–5µm, the midwave

infrared (MWIR) region, the reflective and emissive sources are present in approxi-

mately equal magnitude [Schott, 1997].

The altitude of the aircraft is the largest factor in determining the spatial resolving
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power of an airborne imager. The ground sample distance (GSD), or the size of the

pixel on the ground, is proportional to the altitude. Typical GSD’s for aircraft-mounted

imagers are 1 to 5m. At this resolution, individual materials do not always fill an entire

pixel. Namely, a single pixel may span the boundary between an asphalt parking lot

and a grassy field. When a target fills an entire pixel, it is said to be fully resolved.

Conversely, a mixed pixel is one that contains several material types. There are three

general types of mixed pixels. An areal mixture is when there is very little spatial

interaction between the materials within the pixel, such as the parking lot - grassy field

boundary. An aggregate mixture arises when the material types have many boundaries

between them. Given a pixel with a 50 m GSD, the random placement of automobiles

in a parking lot is an example of an aggregate mixture. The third class of mixtures

is intimate, where the two materials can not be spatially separated. An example of

this is an optically thin plume of gas passing in front of a background material. In

all mixture types, the pixel spectrum is a weighted combination of the spectrum from

each material. Unmixing is the process of identifying the materials within a mixed

pixel and determining the relative abundances of each. Interpreting the spectrum of a

mixed pixel as a J-dimensional vector is the basis of most unmixing and target detec-

tion algorithms. In both areal and aggregate mixtures, the unmixing process is linear.

Unmixing intimate mixtures is a nonlinear process [Gross, 1996].
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1.4 Gas Spectroscopy

Since hyperspectral imagery captures a visible/infrared spectrum of a target, it is im-

portant to understand where these spectra come from and what determines their shape.

A molecule at equilibrium contains several types of energy. Two examples include vi-

brational energy due to the stretching and shrinking of inter-atomic bonds, and the

electronic energy of electrons orbiting the nuclei. These energies are present in dis-

crete, quantized amounts. If the molecule were to emit this energy or absorb more

energy, it too would be quantized. Consider two adjacent energy levels to be E1 and

E2, where ∆ E = E2 − E1. Emission and absorption of energy by a molecule can be

translated into a spectral dimension by

∆ E =
hc

λ
, (1.1)

where h = 6.626 × 10−34 J · s is Planck’s constant, c = 3.0 × 108 m/s is the speed of

light, and λ is the wavelength associated with ∆E. Wavelength is typically expressed

in µm in the LWIR, but here it is given in meters to balance the equation. A positive

value for ∆ E indicates that energy is being emitted, while a negative value indicates

absorption.

The different molecular energy types described above each correspond to a different

region in the electromagnetic (EM) spectrum. High energies in the X-ray region cor-

respond to electrons in the inner shells of an atom changing energy levels. Microwave
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energies correspond to changes in rotational energies of the entire molecule. Features

in the infrared region, the region in which current hyperspectral imagery is being col-

lected for the gas problem, are the result of molecular vibration [Banwell, 1972]. In

these transitions the electric dipole of the molecule undergoes a change in direction.

This occurs for two reasons. First, the bond length between two atoms is not fixed, but

rather oscillates around a mean distance. As the bond length increases or decreases,

the dipole of the entire molecule can change as well. Second, the angle between multi-

ple bonds oscillates. These vibrations change the overall shape of the molecule, again

changing the direction of the dipole.

An example gas spectrum for NH3 is shown in Figure 1.1. This molecule exhibits several

significant absorption features, most notably the two at 10.4 and 10.75 µm. Using equa-

tion (1.1), we see that these features correspond to energy transitions of 1.911×10−20 J

and 1.849× 10−20 J, respectively.
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Figure 1.1: Absorption Spectrum of NH3



Chapter 2

Previous Work

2.1 Stepwise Regression in the Reflective Region

The reflective region of hyperspectral imagery is heavily exploited for the purposes of

material identification and target detection. Most algorithms designed for either pur-

pose work by unmixing each pixel in the image. Standard unmixing is performed using

the matrix-regression techniques discussed in Sec. 3.3.1. A stepwise approach is em-

ployed by Gross and Schott (1996). The theory and implementation of their algorithm

is described in detail in Sec. 3.3.2. and is therefore not discussed here. However, they

do investigate the event where the model produces unrealistic results for any given

pixel. Such results are defined as large positive or negative mixing ratios. When these

are detected, the most abundant material found by the model is removed from the

library, and the stepwise algorithm is re-run on the pixel. The output from this second

8
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Figure 2.1: Traditional vs. Stepwise (Per-Pixel) Unmixing [Gross and Schott, 1996]

regression is found to be significantly different from the first, and often produces sensi-

ble results. While this self-check could be implemented in gas identification, it is more

appropriate for gas quantification. Material quantification was the goal of the study in

Gross and Schott (1996). An unusually large abundance fraction was of more concern

to them. If their only goal was to identify the materials, as is the case here, the actual

value of the mixing ratios would have been of little importance.

Gross and Schott tested the stepwise approach against two standard-unmixing pro-

cesses. The results are recreated in Figure 2.1. The test image consisted of 10 end-

members, of which only 4 (grass, trees, dirt and water) were present in the majority

of the pixels. Both the first and second unmixing algorithms used a fixed number of
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endmembers in each pixel. The first used all 10 endmembers while the second incor-

porated only the 4 predominant materials. Both methods cause the model to “overfit”

the endmembers to the pixel, resulting in a high error term. The last method is the

stepwise approach that uses a different endmember set for each pixel. As seen in Figure

2.1, this approach produces the smallest error term.

2.2 Constituent Gas Identification

Much work has been done in the field of identifying gas releases via remotely sensed

data, however, most of these studies are either a sensor test-case or are performed

using a side-looking geometry. Marinelli, et al. (2000) test their Fabry-Perot spectro-

radiometer by identifying dimethyl methylphosphonate (DMMP) and SF6 both inside

a controlled chamber and from a small release in front of a warm building. Their de-

tection scheme (Spectral Matched Filter) requires the user to define the wavelengths

of interest based on features of the gas in question. In a sense they are detecting a

pre-identified gas. Lisowski and Cook (1996) use singular value decomposition (SVD)

and band differencing to detect SO2 in overhead imagery. Again, a user is required to

select a spectral subset of the image corresponding to the SO2 features. This is required

for the SVD method since the spectral subset is reduced to a set of eigenvectors upon

which the entire image is projected, and is required for the differencing technique since

the background is normalized to the gas absorption peak before subtraction.
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Harig, et al. (2002) tested a Fourier-transform infrared (FTIR) spectrometer by ana-

lyzing a gas cloud in a horizontal geometry. Although their geometry, and therefore

radiance model, does not apply to this problem, their identification algorithm is worth

investigation. They begin by converting the pixel radiance spectrum to a brightness

temperature spectrum using

Tbr(λ) =
h c

λ k ln
[

2 π h c2

λ5L(λ)
+ 1

] (2.1)

where k = 1.38 × 10−23 J/K is the Boltzmann gas constant. Equation 2.1 is derived

by inverting the standard Planck equation for a blackbody radiator. They scale a sin-

gle library absorption spectrum as well as atmospheric gas spectra to this brightness

temperature spectrum. The atmospheric gas spectra are subtracted from the pixel

spectrum to create a difference spectrum. The correlation coefficient is computed be-

tween this difference spectrum and the library absorption spectrum in specified spectral

windows. If this coefficient is above a threshold, then that particular species is said to

be present in the gas cloud. The threshold is different for each gas that is tested.

This notion of using a specific set of spectral windows for each material (i.e., gas species)

was established by Clark, et al. (1990). Clark demonstrated an algorithm that pro-

duced material maps of minerals by locating spectral features unique to each mineral

and measuring the band depth at these wavelengths. This is an attractive possibility

for the gas problem since absorption features of gases are more pronounced than those

of minerals. The work by Harig, et al. reinforces this idea.
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Perhaps the most complete investigation into the gas problem was done by Young

(2002). He performed gas detection using a spectral matched filter and gas identi-

fication using both constrained and unconstrained linear regression. His data set is

described in Section 3.1.1.

The radiance model used by Young to describe the gas problem is similar to that de-

rived here in Section 3.2. Neglecting atmospheric effects and utilizing Kirchoff’s Law

as described in Section 3.2, both models begin with the same preliminary expression

for the radiance from a plume pixel as,

L(λ) = εs(λ) Bs(λ, Ts)

[
1−

D∑
i=1

ci ki(λ)

]
+

D∑
i=1

ci ki(λ) B(λ, Tp), (2.2)

where

εs(λ) = surface emissivity spectrum,

Bs(λ, Ts) = Planck function evaluated at the surface temperature, Ts,

ci = column density of gas i [ppm-m],

ki(λ) = absorption spectrum of gas i [1/ppm-m], and

Bp(λ, Tp) = Planck function evaluated at the plume temperature, Tp.

At this point the two models begin to differ. The assumptions used in this study are

discussed in Section 3.4 while Young’s are discussed here.
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Young rearranges (2.2) and defines a thermal contrast spectrum for the ith gas as,

Ci(λ) = ci [Bp(λ, Tp) − εs(λ) Bs(λ, Ts)] , (2.3)

He then makes the assumption that Ci(λ) varies slowly compared to ki(λ), and conse-

quently can be approximated as a constant,

Ci(λ) ≈ Ci = ci
[
Bp(λ̄i, Tp) − εs(λ̄i) Bs(λ̄i, Ts)

]
, (2.4)

where λ̄i is calculated for each gas species. Incorporating the thermal contrast factor,

and assuming atmospheric compensation, Young writes his radiance model as,

L(λ) =
D∑

i=1

Ci ki(λ) + εs(λ) Bs(λ, Ts). (2.5)

The first term in (2.5) represents the plume radiance due to the temperature difference

between the plume and the background. He defines the second term in (2.5) as the

background term, L0(λ). In order to characterize the background, he expands L0(λ)

onto a set of basis vectors, Bj(λ),

L0(λ) =
C∑

j=1

βj Bj(λ), (2.6)

where βj are the coefficients for each basis vector. Substituting this into (2.5) he arrives

at

L(λ) =
D∑

i=1

Ci ki(λ) +
C∑

j=1

βj Bj(λ), (2.7)

as his final model.
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Young attempts three methods for defining the basis vectors, Bj(λ): direct extraction

of image pixels, clustering of the background pixels, and using the eigenvectors of the

scene covariance matrix. He determined that, for simple gas identification purposes,

each of the methods produced comparable results. It is only when he attempted to

quantify the gases that he discovered that directly-extracted pixels produce the best

results.

The regression model employed by Young is similar to that described in Section 3.3.1.

Rather than solving for the mixing ratios using (3.8), he incorporates a lower limit that

will prohibit the regression error, ε, from being smaller than the pixel noise covariance,

Cx. This turns the solution to the regression equation into,

f = (A′ Cx A)−1 A′ Cx x. (2.8)

This formulation is used to solve for Ci and βj in (2.7). In the unconstrained case, both

the Ci and βj coefficients are allowed to take on any sign. In the constrained case, the

βj coefficients are required to be positive and all of the Ci are required to be the same

sign, meaning that all gases are simultaneously in absorption or emission within the

same pixel.

The latter constraint has been shown by Foy, et al. (2002) to be invalid in some cases

where the temperature contrast between the plume and the background is near zero.

They describe the scenario in which Freon 113 is seen in both emission and absorption
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against a “common paint” within the same pixel. The relative intensities of the Freon

113 absorption spectrum and the paint emissivity spectrum are what dictate how the

gas is seen. If this case were to occur, any attempts at regression on the pixel would

fail. The likelihood of detecting this phenomenon in a typical hyperspectral scene is

low. Consider that most plumes in hyperspectral imagery span hundreds of pixels. The

zero-contrast region is seen in, at most, a few dozen pixels. Of these, very few, if any

pixels, will contain the correct combination of gases and background materials such

that their spectral features overlap to produce this effect. With this in mind, these

extreme cases can be ignored and we can assume, as does Young, that all gases will be

seen in either emission or absorption within a pixel.

In order to test the unconstrained and constrained methods, Young establishes a test

case against an off-plume subtraction. By hand-selecting a non-plume pixel, he is

confident in the accuracy of the solved-for coefficients. The candidate gas signatures

included in the model were N2O, H2O, CO2, NO2, and NH3. These gases were known

to be the effluents from the refining plant in the scene. In both regression cases,

the background basis set was selected by the background clustering method. The

unconstrained case yielded unrealistic results. Two of the gas coefficients were negative,

and none of the five were similar to those arrived at by the off-plume subtraction

method. The output from the constrained case was much more consistent with the

subtraction results. As per the regression constraints, all coefficients were the same
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sign (positive), and their magnitudes were similar to those of the off-plume method.

As mentioned above, Young used a spectral matched filter to detect the plume in

the scene. The formulation was similar to the regression solution of (2.8), with three

differences. First, rather than using the covariance of only the pixel of interest, the

matrix was computed for the entire scene. Second, the basis vector set, A, consisted of

only the single absorption spectrum of the gas being detected. Last, the pixel spectrum,

x, was mean-subtracted, x− x̄. As mentioned above, only a few gases were tested using

the matched filter as Young had prior knowledge of which species were likely to be in

the plume.

2.3 Differences from Previous Work

The works noted in the previous section provide a working knowledge of the gas prob-

lem, approaches to solving the problem, and techniques that are used in this thesis.

They do not, however, form a complete outline of the path of this research. It is im-

portant to illustrate the differences between the work done above and the manner in

which it was applied to this research.

The stepwise-regression technique employed by Gross and Schott (1996) was performed

on VIS/NIR image data, where the library of spectra were reflectance rather than ab-

sorption spectra. The regression is purely a statistical technique. Its success does not
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depend upon assumptions to the radiance model that are only valid in the VIS/NIR.

With this in mind, it is expected that stepwise regression will perform well using ab-

sorption spectra. One goal of this research was to determine if the stepwise technique

can be extended to LWIR image data.

Several comparisons can be made between the methods that are employed in this re-

search and those done by Young. The first issue is the thermal contrast spectrum

defined in (2.3). As shown above, Young assumes that the spectral dimension of this

term is not necessary and redefines it as a constant. For comparison purposes, it is

shown again,

Ci(λ) ≈ Ci = ci
[
Bp(λ̄i, Tp) − εs(λ̄i) Bs(λ̄i, Ts)

]
, (2.9)

along with his final radiance model,

L(λ) =
D∑

i=1

Ci ki(λ) + εs(λ) Bs(λ, Ts). (2.10)

This assumption is suspect because spectral information may be lost. The analogous

model in this study is shown to be,

L′(λ) =
D∑

i=1

ci ki(λ)
[
B(λ, T̂s ±∆ T ) − B̄(λ, Ts)

]
+ B̄(λ, Ts). (2.11)

The derivation leading to this equation is found in Chapter 3. Ignoring for the moment

the background terms in each model, two important differences can be noted here.

The first is that the equivalent contrast term in (2.11),
[
B(λ, T̂s ±∆ T ) − B̄(λ, Ts)

]
,

is still a function of wavelength. The spectral information contained in the background
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emissivity will still be present. The second difference lies in which terms are part of

the regression basis vectors and which are solved for as the coefficients of those vec-

tors. Young’s basis vectors are comprised of the absorption spectra, ki(λ). The plume

temperature, Tp, and more importantly the temperature contrast, ∆ T , are solved for

in the regression rather than influence it. In (2.11), the basis vector set is comprised of

the absorption spectra multiplied by the contrast term. By defining both positive and

negative values for ∆ T , the regression model will account for gases in either emission

or absorption. The only term that is solved for in the regression is ci.

Young does not account for the effect of the temperature of the gas on its absorption

spectrum. He states that, “With the exception of carbon dioxide, water vapor and

nitrogen dioxide, the spectral absorption coefficients are independent of temperature

in the range relevant to this study (∼15 to ∼ 80◦ C).” He claims that temperature

affects these gases in magnitude only. A preliminary study done here contradicts this

assumption. It has shown that temperature variations have a visible effect on both the

magnitude of spectral features and the overall shape of the spectrum. This phenomenon

is depicted in Figure 2.2. Here it can be seen that the absorption of SF6 at 10.53 µm

is larger when the gas is at 5◦, while at 10.60 µm the absorption is larger when the gas

is at 50◦. The result is that the overall shape of the absorption spectrum is different

for the two extreme temperatures. In addition, the height of the dominant peak at

10.55µm is scaled as a function of temperature. Effects such as this are not accounted
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Figure 2.2: Effect of Temperature Variability on SF6 Absorption Spectrum

for in a single-temperature model.

Finally, all of the gas studies mentioned above require prior knowledge of which gases

are present. The SVD method employed by Lisowki and Cook, the computation of a

correlation coefficient over spectral features, and the spectral matched filter used by

Marinelli and also by Young all perform a detection of gases that have been previously
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identified. The scope of this research is significantly different in that the user will have

no knowledge as to which gases are present in the scene. The algorithm developed here

requires no user interaction. This goal can not be met by any of the previously-discussed

works in this chapter.



Chapter 3

Methodology

3.1 Sources of Data

3.1.1 Real Imagery

The Spatially Enhanced Broadband Array Spectrograph System (SEBASS) has been

used in the detection and identification of gaseous effluents in previous works. In par-

ticular, this sensor provided the data used in Young’s work discussed in Section 2.2.

This data set is described in greater detail below. Unfortunately these images are not

available for use in published work, and are therefore not used in this study. The

merits of testing the identification algorithm derived in this thesis on this data set are

discussed in Chapter 6. However, since the synthetic imagery generated in the DIRSIG

environment is based on the SEBASS sensor, a brief discussion of the instrument is nec-

21
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essary. The SEBASS sensor is a hyperspectral imaging spectrometer created, owned

and operated by the Aerospace Corporation. SEBASS contains two spectrometers. The

first operates in the MWIR from 2.9–5.2 µm with a spectral resolution of ≈ 0.025 µm,

while the second senses in the LWIR from 7. 5–13.6 µm at ≈ 0.05 µm increments. The

detector in each spectrometer is 128 × 128 pixels. The pixel spread in the across-track

direction provides 128 samples while the along-track direction provides the 128-band

spectral dimension. The image of the ground is dispersed in the spectral dimension by a

prism. Young’s imagery utilized all but four of the channels in the LWIR spectrometer,

a span of 7. 67–13.42 µm in J = 124 spectral bands. [Young, 2002].

The sensor imaged a commercial refinery in southern California at an altitude of

6000 ft. This altitude, coupled with an angular resolution of 1.1 mrad per pixel, re-

sulted in a GSD of ≈ 2.0 m. The total across-track width of the scene was 128 pixels

× 2.0m/pixel = 256 m. Nothing was known about the manufacturing processes at the

site and no ground truth data was acquired at the time of the overflight. The only aux-

iliary data collected was the wind speed and direction at three-hour intervals. Using

a spectral matched filter, Young has shown that there is one SO2, one C2H4 and two

NH3 plumes in this scene [Young, 2002]. The procedures leading to these results were

described in Chapter 2.
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3.1.2 Synthetic Imagery

Synthetically-generated imagery was the main source of image data used in this project.

Data generated by the Digital Imaging and Remote Sensing Image Generation (DIRSIG)

model was used since the user has control over the types and quantities of gases being

released by plumes in the scene. This allows for images to be generated that are inher-

ently “ground-truthed”.

The accuracy of the model has been verified in a recent study [Hattenberger, et al., 2003].

Field data obtained from a ground-based spectrometer was recreated in DIRSIG. Stand-

ing on the ground, the operator took two measurements, one on the plume and one off.

The off-plume (background) spectrum was then subtracted from the on-plume (target)

spectrum. The goal of the DIRSIG study was to match this difference spectrum. The

result of the study, shown in Fig. 3.1, clearly shows the ability of the JPL model (de-

scribed below) to simulate real-life plume phenomenology. The measured gas features

seen between 800 and 1200 cm−1 are matched in location, shape and height by the

simulated plume. The negative radiance values in the real spectrum below 800 cm−1

and beyond 1300 cm−1 are not gas absorption features, but rather noise artifacts.

The plume model within DIRSIG is the Jet Propulsion Laboratory (JPL) plume model.

Spatially, the plume is constructed by modifying the gas concentration. In the down-

wind direction the concentration follows an exponential decay. In both the vertical and

across-track direction the concentration follows a Gaussian distribution. The width of
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Figure 3.1: DIRSIG Plume Model Verification

the distribution increases as the plume travels further downwind. The result is a plume

that is spatially continuous. There are no “clumps” or “gaps” but rather a gradual

decay. It is the spectral, not spatial, aspect of the plume model that is of greater im-

portance to this study.

Unlike other plume models that treat the gas as a single layer, the JPL model gives

depth to the plume by defining it as a cloud of points. When DIRSIG traces a ray from

the sensor down through the plume, it encounters one of these points at the top of the
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plume. This point carries with it information about the temperature and concentration

of each of the gases at that particular location. The ray is then traced down through

the plume until it encounters a second plume point. The JPL model then uses the

temperature and concentration of this point to integrate the radiative transfer along

the path. This stepwise transfer is carried out until the ray has passed through the

plume. The advantage of this approach is that it can reproduce phenomenology that

a single-slab model can not. One such example is the case when the radiance emitted

by the hot mid-section of the plume is absorbed by the cooler gases on the edges of the

plume. In such a scenario all of the emission can be absorbed, and the plume rendered

not visible.

The DIRSIG tool requires that the user specify a sensor model for each scene. This

necessity also provides the ability for a user to simulate a scene as it would look to

a particular sensor. This ability was utilized in this study in the generation of the

synthetic data sets. The sensor model used in these simulations was constructed to

model the SEBASS sensor. This sensor was chosen as a basis since it has been shown

in the work done by Young that supervised gas identification can be performed on

SEBASS data [Young, 2002]. The data sets, which are outlined in Section 4.1, were all

constructed to be identical except for the number of plumes in the scene and the gas

species they emit. The data generated by DIRSIG were image cubes of size (X, Y, J),

where X is the number of samples, Y is the number of lines, and J is the number of
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Figure 3.2: Single-band image of Case 2 synthetic DIRSIG data at 10.73µm. Both

plumes can be seen moving from the middle of the scene to the upper-right corner.

The NH3 plume is the left-most plume while the Freon-114 plume is on the right.

bands. For all data cases, the number of bands is fixed at J = 128, while the values for

X and Y vary across the data sets. A noise cube that emulates that of the SEBASS

sensor was added to each of the test cases. A single band at 10.73µm from Case 2 is

shown in Figure 3.2. The two plumes are clearly seen moving from the middle of the

scene to the lower-right corner.
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3.1.3 Gas Spectra

Spectra for thirty-one gases have been supplied, most of which have been measured at

three temperatures, 5, 25 and 50◦ C. This resulted in a total of 88 absorption spectra

for use in identification. All spectra were resampled to the wavelength scale in the

DIRSIG imagery.

As expected, the absorption coefficient of most gases change in magnitude as a function

of temperature. In addition, several gas species, such as SF6, exhibit not only a change

in height but also in shape due to temperature. This phenomenology has been discussed

in Chapter 2 and can be seen in Figure 2.2. Because of this it is felt that it is important

to include the absorption spectra from all three temperatures when populating the basis

vector set. This is discussed in greater detail in Sec. 3.4.

3.2 Radiance Model

The radiance equation used to model the plume problem is derived here. If we assume

that the mixing of gases in a plume can be described by a linear combination, then

the gas problem is similar to that of a mixed pixel in the reflective region. Without

compensating for the atmosphere and neglecting any reflected downwelled radiance,

Ld(λ), the model for a mixed pixel in the reflective region with C background materials
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and D target materials is shown to be

L(λ) =
E0(λ) cos θ

π

 D∑
i=1

αi Ai(λ) +
C∑

j=1

βj Bj(λ)

 τatm(λ) + Lu(λ), (3.1)

where

L(λ) = pixel radiance,

E0(λ) cos θ = exoatmospheric irradiance at incident angle θ,

αi = mixing coefficient for ith target material,

Ai(λ) = reflectance of target material i,

βj = mixing coefficient for jthbackground material,

Bj(λ) = reflectance of background material j,

τatm(λ) = atmospheric transmission, and

Lu(λ) = upwelled radiance.

Extending this model into the LWIR region changes the relevant parameters in (3.1).

As discussed in Sec. 1.3, the direct solar term, E0(λ) cos θ, is dominated by self-emitted

radiance and can thus be ignored. As a result, the temperature and emissivity of a

material become more important than its reflectivity. In addition (as will be discussed

in detail later in Sec. 3.4.3), many common materials have a high emissivity, and there-

fore a low reflectivity, in the LWIR. The result of this is that neither the downwelled

radiance nor the downward self-emitted plume radiance will, upon reflection off of the

background, contribute significantly to the total radiance seen by the sensor. Figure
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Figure 3.3: Comparison of self-emitted radiance with reflected downwelled radiance.

3.3 illustrates this claim. The black curve in this plot was generated by multiplying the

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) emis-

sivity spectrum, ε(λ), for “gravel roof” by the Planck function evaluated at 290K. The

red curve is the result of multiplying the MODTRAN-generated (mid-latitude summer)

Ld by 1− ε(λ). The green curve is the sum of the black and red. The magnitude of the

self-emitted radiance is changed little by the addition of the reflected downwelled term.

Any changes in spectral shape are small and do not greatly impact the identification

scheme. This allows us to express the radiance of pixels that do not contain a plume
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(i.e., a “background” pixel) as

Ls(λ) =

 C∑
j=1

βj εj(λ) B(λ, Ts)

 τatm(λ) + Lu(λ), (3.2)

where

βj = mixing coefficient for jthbackground material,

εj(λ) = emissivity spectrum for the jthbackground material, and

B(λ, Ts) = Planck function evaluated at the surface temperature, Ts.

When writing an expression for the radiance of a pixel containing a plume (i.e., a

“target” pixel) we can make several approximations. We assume that the plume’s self-

radiation does not significantly reflect off of the ground and to the sensor. Also, we

neglect any scattering by the plume and any entrainment of ambient air within the

plume. We also assume that all of the individual gases within the plume are at the

same temperature. These assumptions allow us to write the sensor-reaching radiance

for a plume pixel as

Lp(λ) =

 C∑
j=1

βj εj(λ) B(λ, Ts)

 τp(λ) + εp(λ) B(λ, Tp)

 τatm(λ) + Lu(λ), (3.3)

where

Tp = plume temperature,

τp(λ) = transmission of the plume, and

εp(λ) = plume emissivity.
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Equation (3.3) demonstrates that the self-emitted radiance from the background is

attenuated by the plume. Both this radiance and the self-emitted radiance from the

plume are attenuated by the atmosphere. Conservation of energy says that if the gas

is optically thin, we can set τ = 1− ε and arrive at

Lp(λ) =

 C∑
j=1

βj εj(λ) B(λ, Ts)

 [1− εp(λ)] + εp(λ) B(λ, Tp)

 τatm(λ) + Lu(λ).

(3.4)

Recalling Kirchoff’s Law, we can equate the absorption of a gas to its emission as

εp(λ) =
D∑

i=1

ci ki(λ) (3.5)

where

ci = column density of gas i [ppm-m], and

ki(λ) = absorption spectrum of gas i [1/ppm-m].

Substituting this into (3.4) results in the final model for a pixel containing multiple

background materials and multiple gases as

L(λ) =

 C∑
j=1

βj εj(λ) B(λ, Ts)

 [
1−

D∑
i=1

ci ki(λ)

]
+

[
D∑

i=1

ci ki(λ)

]
B(λ, Tp)

 τatm(λ) + Lu(λ).

(3.6)

Note that this model still accounts for the effects of the atmosphere. The question of

whether or not to compensate for these effects is addressed later in this thesis.
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3.3 Regression Techniques

As discussed in Chapter 2, stepwise regression has been shown to be able to unmix

hyperspectral pixels with a greater degree of accuracy than standard matrix regression.

This is because only those basis vectors that contribute to the fit are included in the

model. In this section, a thorough explanation of stepwise regression will be given.

However, before we discuss the stepwise technique, we must first discuss standard

matrix regression in order to illustrate the differences between the two methods.

3.3.1 Matrix Regression

The standard model for regression in matrix form is [Draper and Smith, 1981]

x = Af + ε, (3.7)

where

x = (J × 1) pixel vector,

A = (J ×N) matrix of N basis vectors,

f = (N × 1) vector of basis vector abundances, and

ε = (J × 1) error term.

The pixel vector x is modeled by a linear combination of the basis vectors present in

A. The aim of regression is to solve for the coefficients, fi, where i=0,1,..., N, that are
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present within the vector f. These coefficients are solved for as

f = A+ x,

where

A+ = (A′A)−1 A′

denotes the pseudo-inverse of A. Substituting this into (3.7) we arrive at

f = (A′A)−1 A′ x, (3.8)

as the final solution for the basis vector abundances. In (3.8) a prime denotes the

transpose of a matrix or vector. The error term, ε, is necessary since x is rarely

completely modeled by the vectors in A. Mathematically, these residuals are expressed

as

ε =
[
I−A(A′A)−1A′

]
x, (3.9)

where I is the identity matrix,

I =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1


. (3.10)

Matrix regression is efficient and is easy to implement; however, it does have its trade-

offs. The model will force a solution for each basis vector in A regardless of whether or
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not the corresponding gas is present in the plume. This causes the regression to place

too much emphasis on fitting the given basis vectors to the pixel, rather than determin-

ing which basis vectors are actually needed to model the pixel. This fact also means

that the algorithm will require user intervention rather than being fully automated.

An interactive step will likely be necessary in which the user reviews the abundances

of each basis vector. They then must establish a threshold that will keep only those

gases with significant abundances.

3.3.2 Stepwise Regression

Stepwise regression has been shown to be successful at selecting the appropriate basis

vectors (endmembers) in unmixing hyperspectral pixels [Gross and Schott, 1996]. The

process begins by populating the matrix A with each of the M candidate basis vectors

in turn. A statistical test (F -test) is used to determine which candidate vector best

fits the data. The M − 1 remaining vectors are then added one at a time to A in a

similar fashion. The significance of adding a second vector to the regression model is

determined using the analysis of variance (ANOVA) technique described below. Once

the model contains N = 2 vectors, the M − 2 remaining vectors are tested and, if

necessary, one is added. After a third vector is added, each of the N = 3 vectors in the

model are removed in turn to ensure that each are contributing to the fit of the model.

Candidate vectors are added and subtracted in this fashion until the fit of the model

to the pixel spectrum can not be improved.



CHAPTER 3. METHODOLOGY 35

The ANOVA technique mentioned above calculates how much of the total variation

about the mean (sum of squares (SS)), x′x, is due to the regression model (SSR), f ′A′x,

and how much is from random errors (SSE), x′x− f ′A′x [Draper and Smith, 1981].

The ANOVA structure is depicted in Table 3.1. The mean squared (MS) column is

defined by dividing the SS by the corresponding degrees of freedom (dof). In stepwise

regression, ANOVA is useful in breaking the SSR of the N -element model down into

the SSR due to the previous (N − 1)-element model and the SSR due to the addition

of the new term. If we define the (N − 1)-element model as

x = AN−1fN−1 + ε, (3.11)

where

x = (J × 1) pixel vector,

AN−1 = (J × [N − 1]) matrix of N − 1 basis vectors,

fN−1 = ([N − 1]× 1) vector of basis vector abundances, and

ε = (J × 1) error term,

then we can see how this fits into the ANOVA analysis in Table 3.1.

The MS terms from Table 3.1 can be used to create a statistic to test the quality of the

regression model. This statistic is based upon the distribution of the error term, ε. It
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Source dof SS MS

Total SS J x′x

SS Due to Regression (SSR) N f ′A′x

SS About Regression (SSE)
J −N x′x− f ′A′x MSE = s2

(residuals)

SSR Reduced Model N − 1 f ′N−1A
′
N−1x

SSR Extra Term 1 f ′A′x− f ′N−1A
′
N−1x MSextra

Table 3.1: Sum of Squares ANOVA Table

has been shown that if the model errors are independent and distributed as ε ∼ N(0, σ2),

then the sum of the squares of these errors will be Chi-squared distributed with J dof

abbreviated as χ2
J [Draper and Smith, 1981]. Thus we can conclude that if the model

is a good fit, then the sum-squared errors are Chi-squared distributed. If the model

is a poor fit, then the errors will not follow this distribution. We formulate this as a

hypothesis test, defining a null hypothesis that the abundance coefficient for the ith

basis vector, fi, is zero. The corresponding alternate hypothesis is that the coefficient

is non-zero.

H0 : fi = 0

H1 : fi 6= 0

As long as the null hypothesis is true, then the ratio of the mean-squared errors,

MSextra

MSE
(3.12)
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follows an F1,J−N distribution [Gross and Schott, 1996]. When attempting to add a

basis vector to the model, the ratio in (3.12) is computed. If the ratio is smaller than

the F-statistic then the null hypothesis is true and the vector is rejected. If the ratio

is larger than the threshold, then the vector is added to the model. Substituting the

equations from Table 3.1 into (3.12), we arrive at the final expression for the F-statistic,

F1,J−N =

[
f ′A′x− f ′N−1A

′
N−1x

1

] [
J −N

x′x− f ′A′x

]
(3.13)

where f = A†x.

Once the algorithm is complete the abundance coefficients are calculated for the final

regression model. The algorithm also includes a check that all coefficients are signifi-

cant, meaning that they must be larger than 1.0× 10−5.

The attractiveness of stepwise regression is that only those gases truly in the plume

should be present in the final regression model.

3.3.3 Constraints on the Regression

Within each iteration of the stepwise regression process, the vector of abundance coef-

fecients, f, is recalculated. This solution eventually leads to the basis vector in question

either being included in or excluded from the model. However we need to ensure that

the coeffecients do not allow the regression to “overfit” the pixel spectrum. Some de-

gree of error is expected when performing such a regression, but allowing the model to
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take on any coefficient necessary to minimize this error leads to unrealistic results. A

specific example lies in the case where the predominant spectral feature in a candidate

basis vector may occur at the same wavelength of the primary feature in the pixel spec-

trum, but at a much smaller magnitude. These differences can be as large as several

orders of magnitude. With no restraint on the values of f, this basis vector may be fit

to the pixel with an unrealistically large coefficient. With this in mind, we require a

new approach to solving for the fit coefficients.

In order achieve this safeguard, rather than using the unconstrained pseudo-inverse

solution of (3.8), we instead impose either a partial or full constraint on the coefficients

with each calculation of f. In partially-constrained regression, we force the solution

of all coefficients in f to be positive. In fully-constrained regression, not only are the

coefficients positive but they are also scaled such that they sum to 1.0. The value of

1.0 is chosen here not because it represents any realistic limit but rather for numeric

simplicity. To ensure that these constraints are necessary, results were generated using

unconstrained regression in which we do not enforce any constraints on the coefficients.

When solving for the coeffecients in a constrained fashion, we can no longer use the

standard pseudo-inverse solution, f = A†x. This equation does minimize the error

term, ε, but it allows the elements of f to take on any value necessary to arrive at the

best solution. Instead, a solution to f is found through a complex series of matrix equa-
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tions. An in-depth analysis into these equations can be found in the local presentation

given by Rhody, 2004.

Stepwise regression can be thought of as a two-step process. In step one, the matrix of

appropriate basis vectors is constructed based on their contribution to the fit. In step

two, the abundances of each basis vector is solved for to create the final model. This

interpretation of the stepwise method presents us with options as to how we implement

the regression constraints. In this research, two sets of results were generated. The

first involved using the partial constraint for the creation of the final basis vector model

while using the full constraint to solve for their abundances. This method is referred

to as Method A in all results. Since the solution for f is only forced to be positive

in each iteration of the stepwise code, the algorithm runtime for Method A is on the

order of 1–3 hours. The second method, Method B, involved using the full constraint

for both the creation of the final model and the solution of the coefficients. Since each

stepwise iteration requires a more complex solution for the basis vector abundances,

the runtime for Method B is on the order of 10–13 hours. In addition, the use of the

partial constraint for both steps was implemented for one data set, but the results were

inferior to the other two techniques and was therefore not continued.
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3.4 Definition of Basis Vectors

Both regression methods described above work by fitting basis vectors in A to the

pixel spectrum, x. The most daunting task in this research has been the definition

of these basis vectors. Several problems had to be addressed in order to populate

A with vectors that both accurately represent the plume phenomenology and lead

to meaningful results. The success of the algorithm was most dependent upon the

solutions to these problems and the extent of the approximations made in the process.

3.4.1 Variables

Analysis of (3.6) will show that there are, neglecting the atmospheric effects, 2C+2D+2

unknown terms to be solved for. They are

βj = mixing coefficient for background material j of C,

εj(λ) = emissivity spectrum for background material j of C,

ci = column density of gas i of D,

ki(λ) = absorption spectrum of gas i of D,

Ts = surface temperature, and

Tp = plume temperature.
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The goal of this study was to identify ki(λ) by solving for their relative coefficients, ci.

In a perfect situation, the absorption spectra would populate A while the coefficients

would be the fractions in f. This would, however, leave four other variables unaccounted

for. The question remains which variables can we safely assume a value for and which

we cannot.

The following sections detail how we avoid having to solve for βj , εj(λ), and Ts ex-

plicitly. Solving for the plume temperature is not necessary as it is the surface-plume

temperature contrast, rather than the plume temperature itself, that is of importance.

3.4.2 Atmospheric Compensation

Removing the atmosphere prior to gas identification would completely eliminate the

last two terms in (3.6), and would thus simplify the process; however, many of the

target gases we are looking for are also present in the atmosphere. Examples of such

gases are CO2, N2O, and NH3. Water vapor is not of concern here given that it

has no absorption features in the wavelength region in question. In addition, diatomic

molecules such as O2 and N2 do not exhibit features in the LWIR due to their molecular

structure. Overcompensating for the atmosphere would then diminish the likelihood of

detecting these atmospheric gases in the plumes. The standard method for atmospheric

compensation in the visible and SWIR region is to remove E0(λ) cos θ, τatm(λ), and

Lu(λ) in (3.1). Given a standard model for a non-plume pixel in the LWIR, neglecting
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downwelled radiance, as

L(λ) = ε(λ) B(λ, T ) τatm(λ) + Lu(λ),

we arrive at the standard model of a compensated pixel,

L′(λ) = ε(λ) B(λ, T ) =
[L(λ) − Lu(λ)]

τatm(λ)
(3.14)

where a prime denotes quantities that have been compensated for atmospheric distor-

tion. With these considerations, (3.6) becomes

L′(λ) =

 C∑
j=1

βj εj(λ) B(λ, Ts)

 [
1−

D∑
i=1

ci ki(λ)

]
+ B(λ, Tp)

[
D∑

i=1

ci ki(λ)

]
. (3.15)

Implementing (3.14) requires estimates of the parameters τatm(λ) and Lu(λ). Algo-

rithms such as Autonomous Atmospheric Compensation (AAC), Canonical Correlation

Analysis (CCA) and In-Scene Atmospheric Compensation () exist for the purpose of

estimating these parameters. AAC and CCA are both model-based approaches whereas

ISAC is scene-derived. Each technique provides an estimate of τatm(λ) and Lu(λ) to

a different spatial resolution. CCA does so on a pixel-by-pixel basis, AAC segments

the image into blocks of many pixels and solves for each block, and ISAC provides

a single estimate for the entire image. In addition, the image processing software

ENVI contains an atmospheric compensation algorithm that is very similar to ISAC

[Young, et al., 2002]. This technique was the lone method used in this research.
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3.4.3 Background Characterization

The at-sensor radiance, L′(λ), in (3.15) is a result of a product of several unknown

terms, βj , εj(λ), Ts and ci. This demonstrates the non-linearity of the radiance model,

which theoretically prohibits the identification of gases via linear regression.

If we can eliminate the need to solve for each βj and each εj(λ) by clustering the back-

ground terms into an effective self-emitted, surface-leaving radiance, B̄(λ, Ts), we can

transform the radiance model into a linear equation. Clustering the C background ma-

terials into B̄(λ, Ts) can be done in a number of ways. One method is to take the mean

of all non-plume pixels. A second technique would require the user to manually mask

out the regions surrounding the plume pixels and take their average. Both methods

have obvious detriments. The first has no way to take into account the variation of

surface materials across the entire extent of the plume. The second method, requiring

user interaction, means that the algorithm could no longer operate autonomously.

The solution to this problem used in this study was to model the background on a

per-pixel basis. The Maximum Distance Method (Max-D), an in-house endmember

extraction algorithm, was run on all non-plume pixels [Bajorski, et al., 2004]. Fifteen

endmembers were extracted using this algorithm. Since the endmembers were extracted

on non-plume pixels, any spectral features due to the effluent gases are not present.

After these endmembers are extracted, the algorithm addresses each plume pixel indi-

vidually. These endmembers are then fit to the plume pixel using stepwise regression,
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Method A. The goal here is not for the endmembers to model the pixel very accurately.

Significant residuals are not only expected but also desired in this case. Allowing the

coeffecients to take on any value eliminated the residuals too effectively, thus prompting

the use of constraints on the regression. These values of f were then multiplied by the

endmembers to arrive at the background estimate, B̄(x,y)(λ, Ts), where (x, y) indicates

the image coordinates of the pixel in question.

By deriving an estimate of the surface defining an effective surface-leaving radiance in

(3.15) we can rewrite the radiance model as

L′(λ) = B̄(x,y)(λ, Ts)

[
1−

D∑
i=1

ci ki(λ)

]
+ B(λ, Tp)

[
D∑

i=1

ci ki(λ)

]
. (3.16)

Close examination of (3.16) will show that it too is a non-linear problem. It attempts to

solve for both Tp within the Planck equation and ci ki(λ). This issue will be addressed in

the next section where a substitution for Tp, the plume temperature, will be developed.

3.4.4 Emission vs. Absorption

To this point we have been referring to ki(λ) as the absorption spectrum of the ith

gas, however, as displayed in (1.1), energy can be both absorbed and emitted. The

spectra discussed in Section 3.1.3 relate to the former case. If the plume were to be

seen in emission, the gas features would be inverted. In order to identify gases in these

conditions, the basis vector set must account for both absorption and emission features.
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The plume is seen by the sensor as being in absorption whenever the effective plume

temperature, Tp, eff , is less than the effective surface temperature, Ts, eff and in emis-

sion when Tp, eff > Ts, eff . Defining a temperature difference as ∆ T = Tp − Ts, we can

rewrite the plume temperature as Tp = Ts ± ∆ T . Using this formulation, the gas is

seen in emission when ∆ T is positive and in absorption when it is negative. Assuming,

for the moment, that there is only a single gas in the plume, we can rewrite (3.16) as

L′(λ) = B̄(x,y)(λ, Ts) − B̄(x,y)(λ, Ts) c k(λ) + B(λ, Tp) c k(λ). (3.17)

Grouping similar terms yields,

L′(λ) = c k(λ)
[
B(λ, Tp) − B̄(x,y)(λ, Ts)

]
+ B̄(x,y)(λ, Ts). (3.18)

Before substituting the new expression for Tp, we must first derive a method for deter-

mining Ts. We obtain this value by inverting the Planck function to solve for a bright-

ness temperature spectrum, Ts,br(λ) as shown in (2.1). The solution to the Planck

function in this case is the background estimate, B̄(x,y)(λ, Ts). This value is used to

allow for the estimation of Ts on a per-pixel basis. At this point, there are options

for extracting the surface temperature estimate, T̂s, from the brightness temperature

spectrum. The maximum, minimum or average of Ts,br(λ) are all viable options. For

this research, the maximum of Ts,br(λ) was chosen since the mean surface emissivity

is likely to be less than 1.0 and therefore decreases the effective surface temperature.

Now that we have arrived at a suitable estimate for T̂s, and once again taking the case
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of multiple gases into consideration, we can rewrite 3.18 as

L′(λ) =
D∑

i=1

ci ki(λ)
[
B(λ, T̂s ±∆ T ) − B̄(x,y)(λ, Ts)

]
+ B̄(x,y)(λ, Ts). (3.19)

By defining several positive and negative values for ∆ T , we account for both the

emission and absorption of the gas. This expression also circumvents the problem of

solving for Tp. For this research, ∆ T was fixed at 5 values: -10, -5, 0, 5, and 10◦ C.

Multiplying this by the 88 absorption spectra, we arrive at a total of M = 440 candidate

basis vectors to start with in the stepwise routine. This number of basis vectors would

be prohibitive using standard linear regression. Stepwise regression allows us to deal

with this amount of basis vectors and therefore formulate an answer from a more robust

set of possibilities.

3.5 Formulation of the Identification Algorithm

Through several assumptions and substitutions, we have transformed the complete

radiance model of (3.6),

L(λ) =

 C∑
j=1

βj εj(λ) B(λ, Ts)

 [
1−

D∑
i=1

ci ki(λ)

]
+

[
D∑

i=1

ci ki(λ)

]
B(λ, Tp)

 τatm(λ)

+ Lu(λ),

into the final model of (3.19),

L′(λ) =
D∑

i=1

ci ki(λ)
[
B(λ, T̂s ±∆ T ) − B̄(x,y)(λ, Ts)

]
+ B̄(x,y)(λ, Ts),
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a form that resembles the regression equation of (3.7),

x = Af + ε,

where

x ⇒ L′(λ) − B̄(x,y)(λ, Ts)

A ⇒ ki(λ)
[
B(λ, T̂s ±∆ T ) − B̄(x,y)(λ, Ts)

]
f ⇒ ci.

The steps involved in this constitute the bulk of the identification algorithm. Highlights

of the process include the fact that the background to the plume is modeled on a per-

pixel basis from image-derived endmembers, the fact that both emission and absorption

spectra were built into the basis vector library, and that no prior knowledge as to which

gases are present in the scene is necessary for identification. Figure 3.4 shows a pictorial

representation of the algorithm to provide an overview of the workflow.
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Figure 3.4: Workflow of the identification algorithm.



Chapter 4

Results

4.1 Test Cases

The algorithm derived in this research was not a fixed workflow. Rather, there are

several variables that were changed to generate different sets of results. Fully exploring

the effects of every variable in the algorithm would be beyond the scope of this research.

With this in mind, in every case the background was characterized with basis vectors

solved for using partially constrained stepwise regression and the probability for the F-

statistic was set at 99%. The only change in the algorithm that was fully explored was

the manner in which the regression was constrained throughout the stepwise routine.

As mentioned in Section 3.3.3, these different approaches have been named Method A

and Method B. The F-statistic variable was changed for one particular set of results to

gauge the impact it would have on the result.

49
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Data Set Number of Plumes Gas Species Release Rate

Case 2 2 NH3, F114 50 g/s

Case 3 1 F114, TCE-1122 50 g/s

Case 4 2 NH3, F114 2.5 g/s

Case 4b 2 NH3, F114 0.25 g/s

Case 5 1 NH3, TCE-1122 0.25 g/s

Case 6 2 CH4, DCLP12 0.25 g/s

Case 7 2 unknown gases 1 and 2
gas 1: 0.25 g/s

gas 2: 0.5 g/s

Table 4.1: DIRSIG Data Sets.

Aside from the variables mentioned above, the algorithm was run on several incar-

nations of the same DIRSIG scene. The number of plumes, number of gases within

a plume, gas species contained in a plume, and gas concentration within the plume

were all varied across several image sets. In addition, several of these images were

atmospherically compensated using the standard routine in ENVI, further adding to

the number of available data sets. Table 4.1 depicts the data sets used in the study

along with their plume configurations. In this table, in any instance in which there is

only one plume in the scene, it is assumed that all gases listed coexist within the single

plume. For data sets in which there are two separate plumes in the scene, each plume

contains one unique gas and the plumes do not interact spatially at any point in the

image.
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In all, there were seven data cases, each of which was tested using both Method A and

Method B of the algorithm. Three of these data sets, Case 2, Case 4b and Case 5, had

their atmosphere removed using the ENVI compensation routine. Each of these were

also tested on both algorithm methods. Finally, the Case 2 image with no atmospheric

compensation was run using Method A of the algorithm with a 95% significance level

in the calculation of the F-statistic. There were 21 sets of results generated that will

be discussed in this chapter. As mentioned in Section 3.3.3, the partial constraint was

enforced for both the creation of the final basis vector model as well as the solution of

the coefficients. Since these results were judged to be inferior to either Method A or B,

they are not included in this discussion. From these 21 results, the best combination

of variable settings can be determined and the best algorithm configuration is selected.

4.2 Algorithm Output

The raw output from the algorithm is an image cube of size (X, Y,M), corresponding

to the size of the input image. Each of the M “bands” in the output detection maps

correspond to one of the candidate basis vectors fed into the regression. For pixel (x, y),

the value for each band is set equal to the abundance coefficient solved for at the end

of the stepwise regression routine. For all bands not included in the final regression

model, their value is left at 0.0.
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This image cube is then refined in a secondary routine that “collapses” the output down

to 31 bands, one band per gas species used in this study. The value assigned to pixel

(x, y) in the “flattened cube” in, for example, the Freon-114 band, is the average of the

15 basis vector bands in the raw output image that correspond to Freon-114. The fact

that there are 15 basis vectors, and therefore 15 bands in the raw output, is the result

of there being three absorption spectra for Freon-114 in the gas library (one curve for

each gas temperature of 5, 25 and 50◦ C) multiplied by the five values used for ∆ T ,

[−10,−5, 0, 5, 10]. As mentioned in Section 3.1.3, not all gases have three absorption

spectra in the library. For these cases, fewer than 15 bands were averaged to arrive

at the final value in the “flattened” image. These averages were then normalized by

the per-pixel total abundance coefficient for all 440 bands for that location. This was

done to scale all results between 0.0 and 1.0 for ease of analysis. Once the output has

been reduced from 440 bands, the “spectral” dimension was changed to a gas index.

Each “band” now represents the returns from one particular gas. Table 4.2 summarizes

the gas-species/gas-index correspondence. The resulting detection maps for all cases

are shown in Appendix A. Only the bands corresponding to the gases actually in the

plume are shown for simplicity. All maps have been inverted such that a black pixel

indicates a strong return. An example detection map from Case 4 is shown in Figure

4.1.
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Gas Index Symbol Gas Name Gas Index Symbol Gas Name

1 acrol Acrolein 17 F125 Freon-125

2 bamine Butylamine 18 F12 Freon-12

3 C6H5F Fluorobenzene 19 F134a Freon-134a

4 C6H6 Benzene 20 F218 Freon-218

5 CCl4 Carbon Tetrachloride 21 H2O Water

6 CH3Cl Methyl chloride 22 HCHO Formaldehyde

7 CH3SH Methyl mercaptan 23 HCl Hydrogen chloride

8 CH4 Methane 24 HYD Hydrazine

9 CO2 Carbon dioxide 25 NH3 Ammonia

10 CO Carbon monoxide 26 PHG Phosgene

11 DCLM Dichloromethane 27 SF6 Sulfur hexafluoride

12 DCLP12 1,2-Dichloropropane 28 SO2 Sulfur dioxide

13 DCLP13 1,3-Dichloropropane 29 TCE-1122 Tetrachloroethane

14 EDB 1,–Dibromoethane 30 TCE Trichloroethylene

15 EDC 1,2-Dichloroethane 31 VCL Vinyl chloride

16 F114 Freon-114

Table 4.2: Table of gas indices, the gases they represent and their abbreviations. The

abbreviations used are drawn from the naming convention used by the gas absorption

spectral library.
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Figure 4.1: Example detection map showing the Method A results from the Freon-114

plume in Case 4.
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4.3 Analysis of Output

It is difficult to determine the overall effectiveness of a particular configuration of the

algorithm by simple visual inspection of the consolidated, 31-band output cube de-

scribed above. Looking at a single band of the output image gives no indication of how

the other bands look. In addition, if one were to simultaneously display several, or even

all 31 bands of the output image, it is difficult to come to a quantitative conclusion as

to which gas species is most likely present in the plume by simply analyzing the output

plume maps. Even the use of the “z-profile” tool in ENVI on a particular pixel is not

sufficient because it can not take into account the performance of the algorithm on the

entire spatial extent of plume pixels.

With this in mind, a system of analysis was developed in which regions of interest

(ROI’s) were defined in ENVI based on the DIRSIG truth maps. One of the truth

images generated when DIRSIG simulates a scene is a map of the plume column den-

sity for each gas species in the scene. This map is a greyscale image representing the

column density of that particular gas in units of ppm-m. Regions of interest were made

for logarithmic ranges of these column densities. Values from 0.0–0.9999 constituted

one region, 1.0–9.9999 a second, 10.0–99.9999 a third, 100.0–999.9999 a fourth, and

1000.0–9999.9999 a fifth. In referring to these ROI’s , the values defining the ranges

will be rounded for simplicity. Each column density range was not present in each test

case. Figure 4.2 depicts the ROI’s used in the analysis of results from Case 4 imagery.
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As expected, the column density is highest near the stack in the center of the image and

tapers off in all directions. The wind is blowing from the upper-left to the lower-right

of the scene, which extends the higher column densities downwind. These ROI’s were

applied to the 31-band output images. Using the ROI tool in ENVI, the mean value of

all pixels within each ROI was calculated on a per-band basis. This produced a series of

scatterplots that depicted the average abundance coefficient as a function of gas index.

An example of this series of scatterplots is shown in Figure 4.3, which was generated

using the ROI’s shown in Figure 4.2. Comparing the two figures shows that there is

one curve in the plot for each ROI. For any given test case, the number of curves is

dependent upon the range of column densities in the original DIRSIG image.
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Figure 4.2: Snapshot of the ROI’s used for Case 4 results. Red pixels indicate a

column density range of 0–1, green 1–10, blue 10–100, and orange 100–1000. All column

densities are reported in units of ppm-m. In addition, each plume had an ROI consisting

of the entire plume which is not shown.
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Figure 4.3: Example scatterplot of the average return for each ROI as a function of gas

index. This particular plot shows the Method A results from the Freon-114 plume in

Case 4.



Chapter 5

Analysis

Before we begin analyzing each result and its corresponding series of ROI plots, we

need to understand exactly what the plots indicate and what conclusions can be drawn

from them. To begin, we need to identify what the plot for a “perfect” identification

would look like. Keeping in mind that the fit coefficients were normalized during the

“flattening” stage, we can imagine that the ideal scatterplot for the Freon-114 plume

in a Case 2 result would have a value of 1.0 at gas index 16 and 0.0 for all other gas

indices. Ideally a response of 1.0 would occur for each ROI curve while all other gas

indices would have a value of 0.0.

This ideal case occurs. There are pixels in which the incorrect gas species has a larger

fit coefficient than the correct gas. If there are enough of these pixels within an ROI,

that plotline will indicate that the wrong gas is present in the plume. As expected,

59
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these false identifications are more likely to happen in ROI’s corresponding to smaller

concentration path-lengths. For example, if the return at gas index 4 was higher than

at gas index 16 for the 10–100 ROI, benzene (gas 4) would be falsely identified over

the actual species, Freon-114 (gas 16).

With this in mind, we must look at the results in each ROI and across the entire range

of the plume. False identifications at low concentrations downwind might be balanced

by a correct identification at higher concentrations upwind. Since false identifications

are more likely to occur at lower gas concentrations, the results from high-concentration

ROI’s are “weighted” more than the others. If the highest-concentration ROI deter-

mined that gas A was present, while two lower-concentration ROI’s indicated gas B, it

is more likely that gas A is in fact the correct answer. This scenario, which did arise

during the course of this study, is illustrated in Figure 4.3. In this result, from the

Case 4 imagery, Freon-114 is correctly identified in only the largest of the five ROI’s

(100–1000 ppm-m range), yet is the correct answer. Even the plotline representing the

entire plume indicates that either gas 18 (freon-12) or gas 28 (SO2) is present rather

than Freon-114 (gas 16).

This idea can also be seen in the detection maps in Appendix A. In the current example

from Case 4, we can see in Figure 4.1 that the strong detections are concentrated near

the origin of the plume, while downwind they are both weaker and more sparse. This

reinforces the notion that the results from higher concentrations give a better indica-
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tion of the correct gas species. This is the criteria that will be used in the analysis of

the results. A sucessful identification will be declared if both the largest-concentration

ROI indicates the correct gas and the detection map corresponding to that gas show

strong returns across the majority of the plume pixels.

5.1 Separate Plume Results

The ability to correctly identify gas species in single-gas plumes is directly related to

the concentration of the gas. Case 2 results (Figures B.1 – B.10), which contained the

largest amounts of gas, were the most sucessful regardless of atmospheric compensation

or change in F-statistic. Case 4 results (Figures B.13 – B.16) show a slight drop-off

in lower-concentration ROI’s. In Case 4b results (Figures B.17 – B.24), only the ROI

with the largest concentration provided a correct identification (with the exception of

the NH3 plume using Method B). In some cases, such as the Freon-114 plume using

Method B, the Freon-114 returns for other ROI’s are nearly 0.0, well below the returns

from other gases.

It should be noted, however, that in both Methods A and B for the Freon-114 plume

(Figures B.18 and B.20), the returns for freon-12 are strong for all ROI’s. In addition,

they fall off in strength as one would expect. The 10–100 ROI has the strongest return

while the 0–1 ROI exhibits the smallest. This indicates that freon-12 is very likely

to be present in the plume. Since freon-12 is in the same family as Freon-114, it
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Figure 5.1: Absorption spectra from the database for Freon-114 and freon-12. The

spectra have been resampled to match the band centers of the SEBASS sensor.

has a similar molecular structure and therefore a similar absorption spectrum. The

absorption spectra for the two gases are shown in Figure 5.1. The other gas with large

returns across all ROI’s in Figure B.18 is gas 28, SO2. We would not conclude that

sulfur dioxide is likely to be in the plume because the largest return is in the 0–1 ROI.

The strength of the returns are actually the opposite of what we would expect according

to the correct identification criteria established. In addition SO2 has no strong returns

in the Method B results. In all, it is encouraging that at low gas concentrations, the

algorithm was able to generically identify freon in the Freon-114 plume.

Another important observation that can be drawn from the Case 4b results is that, as

the concentration of the gas decreases, the modeling of the background becomes more
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important. This is seen most clearly in Figure A.6. Here, strong detections of Freon-114

downwind from the stack are very dependent upon the underlying surface structure.

Specifically, the detections only occur over homes with asphalt-shingle roofing. This

makes sense for two reasons. First, the spectral emissivity of shingles is relatively

flat in the LWIR. Second, since there are many roofs in the scene, it is likely that

these pixels became their own endmember. This made it easier for the algorithm

to accurately model the background, which resulted in small residuals when it was

subtracted from the image pixel. When the background is not modeled well, these

residuals can have a significant impact on the shape of the difference spectrum and

therefore result in incorrect identifications. In order to maximize the effectiveness of

the background modeling, and therefore the effectiveness of the algorithm as a whole,

the proper endmembers must be selected.

The only separate-plume gas that was not identified was CH4 in Case 6. These results

can be seen in Figures B.29 and B.31. In neither method does CH4 have a strong return

in any ROI. The inability of the algorithm to detect this gas is primarily due to the

lack of strong features in the absorption spectrum of CH4. This is illustrated in Figure

5.2. The only features present in the CH4 curve are a series of weak absorptions near 8

microns. By the time these features are seen by the sensor, they have been mixed with

background features and propagated through the atmosphere. The resulting spectrum

then contains virtually no traces of CH4, making it difficult to identify this gas. In
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Figure 5.2: Absorption spectra from the database for Freon-114 and CH4. The spectra

have been resampled to match the band centers of the SEBASS sensor.

addition, because the sensor is essentially seeing only background and atmosphere, no

single gas is clearly identified by the algorithm.

5.2 Mixed Gas Results

In both cases containing mixed gases, Cases 3 and 5, the algorithm was not successful

at identifying both gases present in the plume. In Case 3, as can be seen in Figures

B.11 and B.12, Freon-114 was found convincingly using both methods. The detection

maps in Figure A.4 also hint at a strong detection of Freon-114. TCE-1122, however,

was not detected using both results. The ROI plots from Method A show two other

gases, freon-12 and SF6, with higher returns than TCE-1122. The plots from Method
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B do indicate TCE-1122, but not at the highest concentrations. When this was seen in

Case 4b results, it was concluded that the gas was unlikely to be in the plume. Here,

however, we can conclude it is present by analyzing its detection map in Figure A.4.

The fact that the strong detections lie at the perimeter of the plume explains why the

highest-concentration ROI’s have smaller returns.

The algorithm did not perform as well on Case 5. This, however, was expected since

the plume in Case 5 was being released at a much slower rate than in Case 3. The only

definitive success in Case 5 was identifying NH3 using Method B. Ammonia was found

using Method A, but with less confidence than freon-12. Without prior knowledge as

to which gas was in the plume, one would not be able to conclude that NH3 was the

correct gas over freon-12. TCE-1122 had the third-strongest return in the 10–100 ROI,

but performed poorly in the other regions. Both methods failed to correctly identify

either gas using either method in the atmospherically compensated image.

5.3 Blind Test Results

The purpose of the blind test case, Case 7, was twofold. First, is the algorithm able

to give a clear indication of which single gas was in the plume? This is important

because in all other cases, we were able to focus on a particular gas when analyzing the

output. This is likely to have skewed the analysis in favor of the correct gases. Second,

assuming that there is a clear solution, is that solution correct?
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As Figures B.33 through B.36 clearly show, the algorithm was sucessful on both ac-

counts. Regardless of which algorithm method was used, Gas 1 was identified as phos-

gene and Gas 2 was identified as C6H5F. Although Method A did perform better in

the C6H5F plume, correct identification was possible using either method.

5.4 Effects of Atmospheric Compensation

Results from atmospherically native gas plumes indicate that compensation hurts our

ability to correctly identify the gas. This effect is illustrated well in the differences

between Figures B.17 and B.21 and Figures B.19 and B.23. Here, it can be seen that

regardless of which algorithmic method was employed (Method A or B), the response

for NH3 was greatly diminished. In the non-compensated results, the NH3 returns are

strong enough to indicate that it is the only gas in the plume. In the compensated

results, other gases are identified in the plume while the NH3 returns resemble the

“background noise” in the ROI plots.

When dealing with gases that are not found natively in the atmosphere, the opposite

effect was found; compensation provided a slight improvement in the identification. As

was the case with the native gases discussed above, this effect is depicted quite well in

the results from Case 4b. The results from compensated imagery in Figures B.22 and

B.24 show a significant improvement in Freon-114 returns over the non-compensated

results of Figures B.18 and B.20. However, the increase in identification ability in
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non-native gases is not sufficient enough to offset the degradation in performance with

native gases. Freon-114 was identified adequately without compensation. Therefore,

we must reason that if we were to have no prior knowledge as to which gases might

be present in the plume, and therefore no indication whether the gas is native to the

atmosphere or not, then it is best to not remove the atmosphere.

5.5 Effects of the Change in the F -Statistic

The net effect of changing the significance parameter in the F -statistic from 0.99 to

0.95 is seen largely in the change in the false identifications. The results for the Freon-

114 and NH3 plumes using a probability of 0.99 are seen in Figures B.2 and B.1. In

these plots, several other gases have significant returns, creating a “background noise”

effect to the ROI plots. The results generated using the other probability are shown

in Figures B.6 and B.5. They clearly show that the returns for incorrect gases have

been “consolidated”. Rather than there being peaks at several gas indices, there are

only two or three other gases that have been identified. In the Freon-114 results, these

peaks are also very diminished, while in the NH3 results, they are merely consolidated.

In both plumes it can be said that these results are preferred to those at the regular

probability level.

The fact that a lower probability threshold improved the results can be explained.

During the stepwise regression routine, a high probability threshold forces the regression
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to take on extra basis vectors in order to minimize the residuals. A lower threshold

would permit the regression to finish with a larger residual. Since most of these residuals

stem from inconsistencies in the modeling of the background, we do not necessarily want

to minimize them. We can also explain this effect by analyzing the change in F -statistic

based on the change in probability. A high probability results in a lower F -statistic,

which makes it easier to add new basis vectors to the model that perhaps should not

be added. Assuming identical degrees of freedom, lowering the probability raises the

F -value making it more difficult to add new basis vectors. With this in mind, we can

conclude that in general, the basis vectors for the correct gases are among the first few

included in the model. Allowing the regression to come to a solution sooner via a lower

probability value prevents more vectors from being needlessly included in the model.



Chapter 6

Conclusions

6.1 Summary

Judging by the results analyzed in Chapter 5, we can conclude that the algorithm is

successful at identifying gas species in separate plumes in synthetic imagery. In scenes

in which the gas is being released at low rate (< 1.0 g/s), the ability to identify is

limited to the region in the immediate vicinity of the stack. If it is possible that the

gas being released is also native to the atmosphere, then the image should not undergo

atmospheric compensation using the implementation of the ISAC algorithm found in

ENVI. Spectral overlap, which was initially thought to be a major obstacle in this

process, was found to have a minimal effect once the constraints were placed on the

regression.

69
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6.1.1 Methods for Imposing Regression Constraints

The question as to which type of constraints to impose on the regression, Method A

or B, is still difficult to answer. This study provided us with 17 sets of results upon

which we can base this decision. Of the 17 sets, the results had no significant difference

between Methods A and B for eight of them. This leaves nine sets of results that did

show a preference for one method or the other. Of these nine, Method B had more sets

of superior results than Method A by a count of six to three. Based on this, we could

conclude that Method B is the preferred set of constraints.

However, a second look at these nine sets shows that the method with better results was

actually necessary for correct gas identification in only two cases. The first instance,

seen in Figure B.12 was in Case 3 where Method B was necessary to identify both

Freon-114 and TCE-1122 in the same plume. In this case, Method A was able to only

identify Freon-114 (Figure B.11). The second instance, seen in Figure B.26, was Case

5 in which Method B was needed to identify NH3. Method A was not able to identify

either NH3 or TCE-1122 in Case 5 (Figure B.25). Both instances in which one method

was necessary for correct identification involved plumes with two gases mixed together.

In addition, Method B was the algorithm able to identify the gases in both cases.

This data indicates that Method B, fully constraining the solution for f at each point

in the stepwise routine, should be the preferred implementation of the algorithm. How-

ever, recall that the run-time for Method B was approximately three times longer than
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for Method A. This extra time can be prohibitive, especially if this result was to then

be passed off to another algorithm for gas quantification. If the results from Method B

were shown to be necessary for correct gas identification across all test cases, then the

extra run-time would be warranted. Considering that this was the case for only two of

the 17 sets of results, we conclude that the manner in which constraints are imposed on

the regression is irrelevant. Results may improve slightly if the solution to the vector

of abundances is fully constrained within each iteration of the stepwise code, but said

improvement is too little to warrant the extra run-time.

6.1.2 Extending the Algorithm to Real Imagery

Despite any success the algorithm may have had on synthetic imagery, the issue still

remains that it is intended to be used on real imagery. Regardless of how accurate

the DIRSIG model may be, it still can not encompass all aspects of real imagery. For

instance there are sensor artifacts and noise that vary in time in real imagery. The

atmosphere may have attributes that can not be fully modeled as well. Finally, there is

the question of how well DIRSIG can emulate the image-wide statistics and background

clutter of real imagery. These are issues that arise with any use of synthetic imagery.

In addition to these, there are issues that are unique to this research.

One of these issues is the number of plume pixels available to run the algorithm on.

In real imagery, this number is much smaller. This is because these pixels are being



CHAPTER 6. CONCLUSIONS 72

found by algorithms that can not possibly detect every single pixel that a plume gas

is present in. Reducing the number of plume pixels in the image does not change how

the algorithm operates. The only effect is shorter run-times. When the algorithm

is complete and the output is condensed to a 31-band image, there are fewer pixels

to average for making the ROI plots depicted in Appendix B. This means that any

pixels containing incorrect identifications will have a greater influence on the final plots,

possibly preventing the correct gas index from being identified. However the pixels

found by the detection scheme are likely to contain plume gases at strong concentration

path-lengths, which would promote correct identifications. These two opposing factors

merit investigation.

The final issue in extending this work to real imagery is the fact that the analysis was

performed on ROI’s generated by thresholds in the concentration path-length of the gas.

This was possible because DIRSIG outputs truth maps that display the concentration

on a per-pixel basis. This is obviously not possible in real imagery. Worse, many of

the correct identifications were made in only the ROI’s corresponding to the largest

concentrations. Monitoring the relative magnitude of the returns between ROI’s was

an important ability in our analysis.

While we may not be able to define ROI’s based on the exact gas concentrations, we

are able to do so on an approximate level. Visual inspection of Figure 4.2 shows that

each ROI has an elliptical shape extending downwind. This feature can be simulated
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via the ROI tool in ENVI. If the user were to open the plume-mask image in ENVI,

they would be able to interactively draw several ROI’s. The highest-concentration ROI

can be drawn nearest the stack, with successive ROI’s growing larger. All ROI’s can

either be drawn by hand or generated using the “grow” function in ENVI. Three ROI’s

should be sufficient to assign all plume pixels to either a “high”, “medium”, or “low”

concentration ROI. This would then allow the user to analyze the algorithm output in

the same manner as shown in this work.

6.2 Recommendations for Future Work

The abilities and deficiencies of the algorithm constructed in this work can be better

understood by more investigations. Many of these analyses went beyond the scope of

this thesis and therefore were not carried out here. In this section we discuss what

these studies are, what they can teach us about the algorithm, and how they can be

used to solve the problem of gas quantification.

6.2.1 Effect of F -Statistic Probability

The first portion of the algorithm that deserves further study is the effects of changing

the probability at which we calculate the F -statistic. As discussed in Section 5.5,

changing this probability from 0.99 to 0.95 resulted in the “consolidation” of false

identifications and an overall improvement in the ability to identify the correct gas.
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This result, however, was only generated for the Case 2 image. It would be interesting

to see what effects this, along with other, changes in probability has on plumes with a

smaller release rate. Perhaps this would enhance our ability to identify gases at smaller

concentration path-lengths. In addition, it may help identify both gases in Cases 3 and

5.

6.2.2 Constraints On Concentration Path-Length

Another aspect that requires more investigation is the values we allow for the gas

concentration, ci. In both Methods A and B, the final solution for these values in the

vector f were constrained between 0.0 and 1.0. In reality, the gas concentration path-

length can take on values up to 1000 ppm-m. If we were to refine the basis vectors to

allow for such values, and if we were to analyze the algorithm output on a per-basis-

vector level, we could then get an indication of the temperature and concentration of

the gas on a per-pixel basis. These real-world estimates of concentration path-length

could then be used as initial estimates in gas quantification algorithms.

6.2.3 Atmospheric Compensation

In Section 5.4 we concluded that using the standard atmospheric compensation algo-

rithm found in ENVI hinders our ability to identify atmospherically-native gases. The

question remains, however, if all atmospheric compensation algorithms have this effect

as well. As mentioned in Section 3.4.2, there exist at least three other atmospheric
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compensation techniques that are suited to imagery in the LWIR. Two of these tech-

niques are model-based while the other is completely scene-derived. Since the ENVI

technique is scene-derived, it stands to reason that at least one of the model-based

approaches should be tested to determine what effects that may have.

6.2.4 Spectral Overlap

As discussed briefly in Section 2.2, the notion of performing gas identification across

species-specific spectral windows has been shown to be successful. This technique

was to be used in dealing with overlapping spectral features between two or more gas

species. This problem was minimized once constraints were placed on the regression,

but some instances can still be found. Figures B.18 and B.20 show that rather than

finding Freon-114 in Case 4b, the algorithm identified Freon-12. Figure 5.1 shows the

absorption spectra for both of these gases as well. Since both gases are considered

freon, they have similar molecular structures and therefore similar absorption features.

The fact that this result occurred indicates that spectral overlap may still be a problem

in discerning between two similar gas species that are not in the same family.

The problem with spectral overlap is that developing an automated method to deal

with it is difficult. On a per-pixel basis, the initial output from the stepwise regres-

sion must be analyzed, two or more gases with similar absorption features must be

identified, the wavelengths at which this overlap occurs must be masked out, and the
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regression must be run again. However this entire problem may also be alleviated if

the spectral resolution of both the imagery and the spectral library were higher. Two

gas spectra that appear to be similar when sampled at an interval of 0.05µm may have

a distinguishing features when sampled at 0.01µm. Since this algorithm was tested on

synthetic data, the possibility is there to create a dataset at a much higher spectral

resolution.

6.2.5 Effects of a Scene-Derived Background Estimate

Another aspect of the algorithm that should be investigated further is the effect of

subtracting the background estimate, B̄(x,y)(λ, Ts), from both sides of the final radiance

model, which is reproduced in Equation 6.1,

L′(λ) − B̄(x,y)(λ, Ts) = ci ki(λ)
[
B(λ, T̂s ±∆ T ) − B̄(x,y)(λ, Ts)

]
. (6.1)

This estimate is constructed using image-derived basis vectors which include effects

from the atmosphere. By subtracting the estimate from the pixel spectrum, L′(λ), on

the left-hand side of the equation, the algorithm may be performing a crude version of

atmospheric compensation. If so, then when the algorithm is run on atmospherically

compensated imagery, the vector being modeled by the stepwise routine may have been

twice-compensated. This would help explain the poor performance of the algorithm on

the NH3 plume in atmospherically compensated data sets.

In addition, by subtracting the background estimate from Planck curves on the right-
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hand side of the equation, we may be generating a basis vector set with “negative”

atmospheric effects. This would create basis vectors that are not physically realistic.

One possible solution to this would be to model the background estimate with a Planck

curve and use this in the creation of basis vectors. Further studies into this issue could

provide a marked improvement to the algorithm.

6.2.6 Effect of Sensor Noise

The impact of sensor noise on the ability of the algorithm to identify gases should also

be investigated. A single test case, Case 4b with a 5x increase in sensor noise, was

tested using Method A of the algorithm. The added noise produced results that were

dramatically different. Freon-114, which was overshadowed in Case 4b by Freon-12,

was undoubtedly identified in this case. Ammonia, which was solidly identified in Case

4b, is identified as the eighth most likely gas to be in the NH3 plume.

These results demonstrate that the relative amount of sensor noise can have a significant

impact on the ability to identify gases. This impact is completely dependent upon the

nature of the spectral signature for each gas. The identification of a gas such as Freon-

114, which has strong, broad absorption features, can be aided by added sensor noise.

while gases with a weak, high-frequency signature such as NH3, can be hindered. An

in-depth study should be performed to determine both which gases are impacted the

most, and at what noise level does the shit hit the fan, so to speak.
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6.2.7 Real Imagery

Finally, the algorithm should be tested on real imagery. Specifically, the SEBASS

imagery discussed in Section 3.1.1 is appropriate for testing since it would allow the

results from this algorithm to be compared to the results from Young’s identification

scheme. This would allow for a direct comparison of this work with an established

identification algorithm. In addition, testing the algorithm on real imagery would

allow us to address the issues discussed in Section 6.1.2. The steps proposed there for

extending this work to real imagery should be effective, but this assumption should be

verified.
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Figure A.1: Results from Case 2. The upper row contains the results from Method

A for the Freon-114 (left) and NH3 (right) plumes. The lower row shows the same

results using Method B. In the original image, the NH3 plume is on the left while the

Freon-114 plume is on the right.
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Figure A.2: Results from the atmospherically compensated Case 2 image. The upper

row contains the results from Method A for the Freon-114 (left) and NH3 (right) plumes.

The lower row shows the same results using Method B. In the original image, the NH3

plume is on the left while the Freon-114 plume is on the right.
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Figure A.3: Results from Case 2 using the 95% F-test values for the Freon-114 (left)

and NH3 (right) plumes. Method A was the only technique used. In the original image,

the NH3 plume is on the left while the Freon-114 plume is on the right.
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Figure A.4: Results from Case 3. The upper row contains the results from Method A

for Freon-114 (left) and tce1122 (right). The lower row shows the same results using

Method B. In the original image, both gases are contained in the same plume.
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Figure A.5: Results from Case 4. The upper row contains the results from Method

A for the Freon-114 (left) and NH3 (right) plumes. The lower row shows the same

results using Method B. In the original image, the NH3 plume is on the left while the

Freon-114 plume is on the right.
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Figure A.6: Results from Case 4b. The upper row contains the results from Method

A for the Freon-114 (left) and NH3 (right) plumes. The lower row shows the same

results using Method B. In the original image, the NH3 plume is on the left while the

Freon-114 plume is on the right.
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Figure A.7: Results from the atmospherically compensated Case 4b image. The upper

row contains the results from Method A for the Freon-114 (left) and NH3 (right) plumes.

The lower row shows the same results using Method B. In the original image, the NH3

plume is on the left while the Freon-114 plume is on the right.
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Figure A.8: Results from Case 5. The upper row contains the results from Method A

for NH3 (left) and tce1122 (right). The lower row shows the same results using Method

B. In the original image, both gases are contained in the same plume.
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Figure A.9: Results from the atmospherically compensated Case 5 image. The upper

row contains the results from Method A for NH3 (left) and tce1122 (right). The lower

row shows the same results using Method B. In the original image, both gases are

contained in the same plume.
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Figure A.10: Results from Case 6. The upper row contains the results from Method A

for CH4 (left) and dclp12 (right). The lower row shows the same results using Method

B. In the original image, the CH4 plume is on the left while the dclp12 plume is on the

right.
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Figure A.11: Results from Case 7. The upper row contains the results from Method

A for C6H5F (left) and phosgene (right). The lower row shows the same results using

Method B. In the original image, the phosgene plume (Unknown Gas 1) is on the left

while the C6H5F plume (Unknown Gas 2) is on the right.
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Figure B.1: Method A results for the NH3 plume in Case 2.

Figure B.2: Method A results for the Freon-114 plume in Case 2.
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Figure B.3: Method B results for the NH3 plume in Case 2.

Figure B.4: Method B results for the Freon-114 plume in Case 2.
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Figure B.5: Method A results for the NH3 plume in Case 2. For this set of results, the

F-test was calculated at a probability of 95%.

Figure B.6: Method A results for the Freon-114 plume in Case 2. For this set of results,

the F-test was calculated at a probability of 95%.
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Figure B.7: Method A results for the NH3 plume in the atmospherically compensated

Case 2 image.

Figure B.8: Method A results for the freon–114 plume in the atmospherically compen-

sated Case 2 image.
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Figure B.9: Method B results for the NH3 plume in the atmospherically compensated

Case 2 image.

Figure B.10: Method B results for the freon–114 plume in the atmospherically com-

pensated Case 2 image.
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Figure B.11: Method A results for the single plume in Case 3.

Figure B.12: Method B results for the single plume in Case 3.
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Figure B.13: Method A results for the NH3 plume in Case 4.

Figure B.14: Method A results for the Freon-114 plume in Case 4.
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Figure B.15: Method B results for the NH3 plume in Case 4.

Figure B.16: Method B results for the Freon-114 plume in Case 4.
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Figure B.17: Method A results for the NH3 plume in Case 4b.

Figure B.18: Method A results for the Freon-114 plume in Case 4b.
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Figure B.19: Method B results for the NH3 plume in Case 4b.

Figure B.20: Method B results for the Freon-114 plume in Case 4b.
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Figure B.21: Method A results for the NH3 plume in the atmospherically compensated

Case 4b image.

Figure B.22: Method A results for the Freon-114 plume in the atmospherically com-

pensated Case 4b image.
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Figure B.23: Method B results for the NH3 plume in the atmospherically compensated

Case 4b image.

Figure B.24: Method B results for the Freon-114 plume in the atmospherically com-

pensated Case 4b image.
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Figure B.25: Method A results for the single plume in Case 5.

Figure B.26: Method B results for the single plume in Case 5.
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Figure B.27: Method A results for the single plume in the atmospherically compensated

Case 5 image.

Figure B.28: Method B results for the single plume in the atmospherically compensated

Case 5 image.
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Figure B.29: Method A results for the CH4 plume in Case 6.

Figure B.30: Method A results for the dclp12 plume in Case 6.
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Figure B.31: Method B results for the CH4 plume in Case 6.

Figure B.32: Method B results for the dclp12 plume in Case 6.
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Figure B.33: Method A results for the Unknown Gas 1 plume in Case 7.

Figure B.34: Method A results for the Unknown Gas 2 plume in Case 7.
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Figure B.35: Method B results for the Unknown Gas 1 plume in Case 7.

Figure B.36: Method B results for the Unknown Gas 2 plume in Case 7.


