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ABSTRACT 

Creating a model, instead of just making measurements, is a common task in photogrammetry today. Methods can vary 

depending on the requirements, data availability, and type of scenery. The amount of user input is one major 

differentiating factor. The methods discussed in this paper align closely with a typical workflow for urban mapping from 

aerial photographs. 

1. INTRODUCTION 

The concept of making measurements from photographs actually predates the advent of the chemical photographic 

process. Like with all sciences, photogrammetry benefitted from countless technological advances over the years. 

Heavier than air flight was one such advance that allowed for much wider survey collection. Aerial photography, and 

photogrammetry, became an increasingly important source of data for city planning, agriculture, and the military. Before 

the airplane, such photographs had to be taken from tall buildings, balloons, and pigeons. 

 
Figure 1 – World War One Aerial Reconnaissance Pigeons 

 

Until approximately 1900, there were mapping and military uses for single-image photogrammetry, with stereo 

photographs were mainly used for novelties. Dirigibles and, later, aircraft made aerial photogrammetry practical. Multi-

view imaging also became a reality with a stable imaging platform and the ability to plan and quickly execute flight lines 

over an area of interest. Cartographers no longer had to rely on completely manual surveys, and photographs could be 

taken from high altitudes without relying on mountains. 

 

The methods for image acquisition and analysis continue to improve, but the basic idea is still to extract the best spatial 

information possible from image sets. Improvements came along in optics, film, flight planning, and analysis 

methodologies. The technologies exploited in this paper belong to analysis. This paper explores the ability for a 

computer to run a large number of calculations and produce a 3-dimensional model of the scene without user input. This 

is done with imagery from an uncalibrated camera and a relatively complex urban scene. 
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2. BACKGROUND 

The data set used in this project comes from the Wildfire Airborne Sensor Program (WASP). The full data set was from 

a mapping mission over the city of Rochester with high overlap between images; about 70-90%. Seven of these images 

containing the Chester F. Carlson Center for Imaging Science building on the Rochester Institute of Technology campus 

were used. Each of these images comes with GPS/IMU data recorded with an Applanix system. A reduced resolution 

example of one of these images is shown below. The raw images are 4000x2762 pixels. 

 

Figure 2 – Sample image used in this paper. The circled area is shown at full resolution at the bottom. 

There are many uses for 3D models created from aerial imagery. Many techniques exist for creating these models 

requiring varying amounts of user input and metadata. As may be expected, the ultimate goal is a fully automated 

procedure that would produce high quality geoaccurate models. RIT CIS is one of many researchers on this topic and 

their efforts are documented here: http://www.cis.rit.edu/~drn2369/. 

While still an active area of research, there are many companies actively using some of these techniques. Two products 

with large user bases are Google and Bing Maps. The Bing maps utility grew out of Microsoft Live Lab’s Photosynth 

project which allows users to create virtual tours using photographs that are stitched together. As of 2008, Microsoft 

stated that an average sized city took two weeks to create using 5,000 CPUs. 

http://www.cis.rit.edu/~drn2369/
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Without metadata, the best model that can be produced will only be to scale. That is to say, the proportions will be 

correct, but it will be in an arbitrary coordinate space. In order to create a metric model from which measurements can be 

obtained, camera data such as the focal length and the pixel pitch of the sensor are required; or ground truth calibration. 

Using a process called bundle adjustment, camera positions can be calculated and the scale information provided by the 

camera parameters allows for accurate measurements. Adding in the camera position and orientation from a GPS/IMU 

unit will allow that metric model to reside in real-world latitude and longitude. 

3. METHODOLOGY 

A typical workflow for model creation, commonly called “Structure from Motion” is as follows: 

1) Find point matches between each of the images. This is commonly performed with David Lowe’s Scale 

Invariant Feature Detection (SIFT)[8]. 

2) Execute bundle adjustment to refine the relative position and orientation of each of the cameras. Commonly 

performed with Bundler. 

3) Run Clustering view for Muli-View Stereo and Patch-based Multi-View Stereo (CMVS/PMVS) to find and 

refine the 3-space location of as many points from the images as possible. 

Running this workflow will result in a point cloud such as can be seen in Figure 3, which can be interpolated into a 

surface as in Figure 4. 

 

Figure 3 – PMVS Generated Point Cloud 

 

Figure 4 – Point Cloud Interpolated to a Colored Surface via Meshlab 
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Many algorithms for creating the final model start at the point cloud and attempt to refine edges and planes. This 

algorithm proposes an alternative workflow in which the edges are found before the point correspondence of step 3 

above. This change ruled out using a pre-compiled CMVS/PMVS toolbox since that will look for all possible points and 

not just specified ones. The new workflow then looks like this: 

1) Use camera metadata to determine image corner coordinates. 

2) Use corner coordinates to determine which pairs overlap 

3) Run Edge detection and convert the resulting binary image to a set of vertices representing continuous line 

segments. 

4) Find point matches between each of the images using SIFTGPU. 

5) Calculate the fundamental matrices for each pair. 

6) Use the fundamental matrices to find transformation matrices that can be used to rectify each pair and save them 

to disk. There will now be a stereo pair for all combinations of overlapping images. 

7) Transform the coordinates for all of the line segments found in step 3 to the new rectified coordinate system 

shared by each pair. 

8) Go through the list of transformed points for each image and search for the corresponding point in its stereo pair. 

9) If the point is found, use the photogrammetric parallax equation to determine its elevation. 

10) Since the same point is likely to lie in multiple images, reduce errors by averaging the calculated elevations. 

11) Use the camera metadata, the now-known point elevations, and trigonometry to determine latitude and longitude 

for all the points. 

All of this is done in Matlab, except for SIFTGPU, which is a C++ plugin for Matlab called YASIFT. 

A more detailed explanation of each step follows. 

 

Step 1 – Determine Corner Coordinates 

The camera metadata was provided as: Latitude (degrees), Longitude (degrees), Elevation (meters HAE), Roll (degrees), 

Pitch (degrees), and Yaw (degrees). Roll, pitch, and yaw were relative to a flat northerly flight path. The camera focal 

length was given as 55 mm, and the sensor pixel pitch was given as 9 microns. 

From there, vectors were created that corresponded to the bore site (center) of the image, and all four of its corners. The 

area of interest was known to be relatively flat, so a single ground elevation was used, and the vectors were projected 

down until a point of intersection was found. 

 

Figure 5 – Illustration of Vector/Plane Intersection 
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Step 2 – Find Overlapping Pairs 

Step 2 was unnecessary for the 7-image dataset used since they all overlapped, but adding this step would allow for 

extending this code to much larger datasets where the majority of images won’t overlap. In that case the millions, 

possibly billions, of calculations performed in step 4 would be saved. 

Because the image footprints on the ground will most likely not be perfect rectangles, it is not a straightforward 

calculation, and is similar to the classic “point in polygon” problem. The simplest solution was to calculate the 

intersection of each possible pair’s edges and if an intersection was found, the two shapes were considered to overlap 

[5]. 

Figure 6 below shows the image footprints on the ground, calculated with the method described in step 1. The 

coordinates at the corners are what is used to calculate image overlap in this step. The red circles represent the bore sight 

of the camera at each location. 

 

Figure 6 – Image Footprints 

 

Step 3 – Find a List of Line Segments 

This is the most unique addition to the workflow. In this step the possible edges to search for are found before searching 

for point correspondences. There are three benefits to this. First, finding a list of vertices will drastically reduce the 

number of correspondence searches performed, and computation time required, in step 8. Second, finding corners and 

edges in a 2D image is simple. Searching for distinct edges and corners is a difficult task to perform on a point cloud. 

Any refinement done on the point cloud to reduce calculation errors (i.e. to make planes flat) will also result in rounded 

edges. Look closely at figure 4 and note there are no sharp edges. Third, storing a list of all the linked lines in an image 

is essentially building the wireframe model. The resulting list only needs the elevation for each vertex. 

This is performed by first creating a binary edge image with the Canny edge detector. The edge pixels are then 

iteratively searched for adjoining pixels and grouped. Any group that contains less than a specified number of pixels is 

removed[6]. 

Once each group is identified, the algorithm attempts to simplify the groups. The beginning and end points are easily set. 

From those end points, a single line is constructed, and each of the edge pixels is tested to see if they fall farther away 

than a given tolerance. If they do, a vertex is added to the line, nearest to the outlying pixel. The new set of lines is tested 

again, and the process is repeated until all of the original pixels fall within the specified distance to the new lines. Each 

of these line segments is stored, one by one, into a cell array for individual retrieval later. Below is an example of the 

image from Figure 2 with its detected line segments with a minimum length of 15 pixels. 
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Figure 7 – Lines created from edge detection. The lower portion shows the same enlarged portion as figure 2. 

Step 4 – Find Initial Point Matches 

David Lowe’s Scale Invariant Feature Transform (SIFT) is a wonderful tool that is used for video stabilization, feature 

tracking and image matching. SIFT will characterize a pixel by looking at its surrounding area and calculate 128 

different values that represent that pixel. It will do this for all of the pixels in all of the images, and pick which pixels 

correspond to each other. Because of the way the characteristics are chosen, it can find matches regardless if the images 

are from different angles, or sizes. Finding these corresponding points will lay the foundation for the remaining portions 

of the workflow. 
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SIFT works great, but its speed is greatly increased when calculations are done in parallel on the graphics card. 

Changchang Wu developed this GPU implementation, and Parag Mital ported it over for use in Matlab [7]. This step can 

be done without GPU processing, but the increased speed is too good to pass up. There are two factors to consider when 

performing SIFT on a graphics card: 1) Adding more GPU cores will mean faster results, but 2) Adding more memory 

on the graphics card will mean more accurate results. Consideration number 2 is true because if the code detects that it 

will not be able to store all of the information it needs into a contiguous block of memory, it will reduce all of the images 

to half resolution. 

Step 5 – Create Fundamental Matrices 

The fundamental matrix describes the epipolar relationship between two images. If you pick a pixel in one image, you 

can use the fundamental matrix to find a line along which the same point lies. Calculating the fundamental matrix 

requires at least 7 matched points between the two images. These matched points come from SIFT in step 4. 

SIFT works well, but it will find some mismatched pairs. To correctly calculate the fundamental matrix, these spurious 

matches must be minimized. The technique used here is RANdom SAmple Concensus (RANSAC). The details of 

RANSAC will be left out, as this is a common step in model creation[1]. The entire fundamental matrix calculation was 

performed in this case with the Computer Vision toolbox for MatLab 2012. The version of MatLab is specified because 

many of the functions in the Computer Vision toolbox changed from 2011. The two major changes affected the point 

matches in this workflow: The coordinate system switched from x-y to row-column, and went from a row vector to a 

column vector. The original x-y coordinate system allowed for negative values, where row-column is more typical of a 

MatLab representation of a matrix. 

Step 6 – Image Rectification 

With the fundamental matrices now known, the transformation matrices for each image pair can also be calculated. The 

transformation matrices will warp the two images such that all of the parallax is in the horizontal direction in the two 

images. The MatLab command for this is “imtransform”. This is how stereo pairs are formed, and these images could 

now be displayed together as a red/cyan anaglyph. An example showing the same image as Figure 2 and one of its stereo 

mates is shown below. 
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Figure 8 – Stereo pairs in a red/cyan anaglyph. Inset at lower right shows the same enlarged portion as figure 2 

Step 7 – Transform Line Segments 

The same transformation matrices used to create the stereo pair can also be used to move the lines found in step 3 to the 

stereo coordinate system. This makes use of the “tformfwd” command. In the background, MatLab performs the 

transform using the homogenous form of the original X-Y point locations. 

This transform will put each of the line vertices from step 3 into a shared, but arbitrary, coordinate system. The bounding 

box containing the two images in this coordinate system was saved as an output of the “imtransform” function. For use 

in calculations, the transformed line segments must be shifted to the pixel row-column system. That is a simple 

addition/subtraction applied equally to all of the output values, and was used to overlay the lines in Figure 9. 
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Figure 9 – Edge lines overlaid onto the rectified image. The lower portion shows the same enlarged portion as figure 2. 
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Step 8 – Point Correspondence for Line Segments 

With all of the lines in the shared coordinate system of the stereo pair, all of the necessary information is now present to 

search for the corresponding points in the second image. Because the rectification step moved the parallax into the 

horizontal direction, the search area has been drastically limited. The matching point in the mate image should lie in the 

same row as the input point of the base image. 

As mentioned previously, because the point search does not run through the typical workflow, the more robust 

CMVS/PMVS tool cannot be utilized. Instead a customized search algorithm was created. 

Each vertex of the detected lines is taken individually. A 5x5 kernel using the surrounding pixels is created from the base 

image. Then, using the mate image, a strip consisting of the 7 rows centered on that of the point of interest is created. 

The strip is 7 pixels tall instead of 5 to allow for the possibility of error in parallax alignment. 

The corresponding point in the mate image could lie anywhere along the strip, but only extremely tall objects would 

have a large parallax in aerial images containing as much overlap as these images share. Knowing this, the actual search 

area was limited to 101 columns surrounding the point of interest, 50 to either side. 

The search is an iterative double loop in the MatLab code; one for the three searched rows, one for the columns. The 

kernel is slid across the strip and a score comparing it to the 5x5 pixels at that point in the strip is stored. At the end of 

the loop, the best unique score above a threshold is deemed to be the location of the matching point. 

The actual comparison was attempted in two ways. The first was to take the dot product of the two 5x5 blocks. This 

would be similar to the Spectral Angle Mapper, which is a classification method used in multi and hyperspectral 

imaging. The resulting output for each comparison is the angular distance between the two blocks in 25-dimensional 

space. This was the preferred method, because it can make a comparison even if the images were taken with different 

illumination. 

The less ideal method that was used in its place was a straight pixel-for-pixel difference between the two blocks. To help 

account for possible illumination differences, during the rectification step, the mate image was histogram matched to the 

base image. Despite its simplicity, this method resulted in a better set of matched lines. As can be seen in Figure 10 

though, it still was not successful to a useful degree. 
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Figure 10 – Matched Lines Found in the Mate Image 



12 

 

Step 9 – Calculate Elevation 

For the points that were found, the photogrammetric parallax equation was used to calculate the elevation at that pixel. 

 

Equation 1 – Height from Stereo Parallax 

Where: 

H is the flying height in meters above WGS84 datum. H is taken as the average of the two camera heights. 

Pd is the differential parallax; the pixel difference between point locations in the image pair. 

Pa is the absolute parallax; the pixel difference between the principal points of the image pair. 

hpt is the height in meters  of the point of interest above the WGS84 datum. 

 

 

Figure 11 – Diagram explaining parallax components. Pa=P2-P1, and Pd=x’-x. 

Step 10 – Reduce Elevation Error 

Once the point elevation is known, the same steps used to calculate the image corner coordinates can be used to find the 

point latitude and longitude. Because of the high amount of overlap between images, each point of interest will be found 

in more than one pair of images. Since it is unlikely that the heights calculated in step 9 will all be exactly the same, they 

are averaged together to minimize the error. 

Step 11 – Calculate Coordiantes 

Now that each point has only one height, the camera pointing vectors are created from the metadata and the row-column 

location of the pixels. The intersection of the pointing vector and a plane at the height of the pixel determines the latitude 

and longitude. 

For any points that were not found in the previous steps, the line segment containing it is identified and all points from 

that line segment are removed. 

All of the latitude, longitude, and elevations are stored grouped by their original segments in a matrix and saved to disk. 



13 

 

4. ANALYSIS 

This workflow did not perform well. The resulting model contained only enough structure to possibly be recognized as 

the RIT campus when viewed straight down. 

 

Figure 12 – Resulting Model Viewed Top-Down 

When the model is rotated to be viewed from the side, it becomes clear that there is no meaningful structure. The lines 

all appear to point back at the cameras, when the majority should all be purely horizontal or vertical. This is an 

indication that either the parallax equation, or point correspondence steps result in large errors. 

 

Figure 13 – Resulting Model, Rotated View 
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There is one major cause for the poor performance shown. The biggest source of error appears to be in the point 

correspondence of step 8. While Figure 10 clearly showed there were many points not matched between images, it may 

not be immediately obvious the points it did find were unreliable. Look at Figure 14 below. This is a histogram of 

parallax (in pixels) of all the points for which the workflow found matches. 

 

Figure 14 – Parallax for the Points Found 

This is a clear indication that the point matching algorithm is insufficient. For the image pair studied in this paper, the 

maximum parallax that could be found manually was 36 pixels. Since the majority of lines would have been at ground 

level, it makes sense that there are so many near-zero parallaxes. It is also believable that the peak near 20 pixels could 

be for buildings. The peaks at +/- 50 pixels and the number of counts above +/-40 are wrong. It would appear the 

correspondence algorithm has a tendency to favor the extremes of the range as the match. 

5. CONCLUSION AND IMPROVEMENTS 

This workflow needs improvement. As-is, it is not useful for creating models but it does have potential. Most other geo-

modeling workflows will start the model creation at the point cloud, like in Figure 3. While CMVS/PMVS does an 

excellent job of creating a point cloud, turning a point cloud into a wireframe is no simple task. Even determining what 

points in the cloud make up the edge of an object is difficult because some points may be missing, or there may be slight 

errors. 

This workflow attempted to save calculation time by changing perspective: pre-processing the images and only 

searching for the known vertices of edges. Perhaps a better method would be to save the pre-processed edges, and still 

use CMVS/PMVS. PMVS can save, as part of its output, a list of the original pixel coordinates used to create each point 

in the cloud. If those points can then be mapped back to the line segments found in the edge detection, a wireframe 

model could very easily be built. Given more time, that would be a good next step to try. 

Whether or not CMVS/PMVS is run, a bundle adjustment algorithm such as Bundler should definitely be implemented. 

Bundle adjustment is a required step for CMVS/PMVS. For the workflow in this paper, the benefits would be: 1) The 

points found by SIFT would be refined, leading to better fundamental and transformation matrices, and 2) The camera 

positions and orientations would more accurately be represented in the photogrammetry equations. 
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More accuracy would also be gained by introducing digital elevation maps (DEM), such as from the Shuttle RADAR 

Topography Mission (SRTM). This workflow used a single ground elevation, chosen at the location of the CIS building, 

as the ground elevation for the entire scene. This is a shortcut that can work for small, flat areas but will not work for 

general use. To drop the sides of the building to ground, an accurate ground elevation must be known. Using the method 

of ray/plane intersection of the corner coordinate section would require an iterative search. Each new corner coordinate 

answer would also give a new elevation. The loop would end when the change in latitude/longitude was smaller than the 

post spacing of the DEM. 

ACKNOWLEDGMENTS 

Pat North was a big help with this project, as always. 

REFERENCES 

1. Hartley, Richard, and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge, UK: 

Cambridge UP, 2003. Print.  

2. Schott, John R. "Section 2.2 Quantitative Analysis of Air Photos." Remote Sensing: The Image Chain Approach. 

New York: Oxford UP, 2007. Print. 

3. Lengyel, Eric. Mathematics for 3D Game Programming and Computer Graphics. Hingham, MA: Charles River 

Media, 2004. Print. 

4. Moffitt, Francis H. Photogrammetry. Scranton: International Textbook, 1967. Print.  

5. Nilsen, Jan E. "Jan Even Nilsen's homepage." Evenside. 27 Mar. 2007. Nansen Environmental and Remote 

Sensing Center. 01 Aug. 2012 <http://www-2.nersc.no/~even/>. 

6. Kovesi, Peter. "MATLAB and Octave Functions for Computer Vision and Image Processing." Peter's Functions 

for Computer Vision. 27 Sept. 2010. The Centre for Exploration Targeting at The University of Western Australia. 

01 Aug. 2012 <http://www.csse.uwa.edu.au/~pk/research/matlabfns/>. 

7. Mital, Parag K. "Siftgpu - Matlab (Mex) port of SiftGPU." Siftgpu - Matlab (Mex) port of SiftGPU. Oct. 2010. 

Google Project Hosting. 01 Aug. 2012 <http://code.google.com/p/siftgpu/>. 

8. Lowe, David. "Distinctive Image Features from Scale-Invariant Keypoints." International Journal of Computer 

Vision 60 (2004): 91-110. 


