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Abstract

A feature-selection technique based on measures of global class

separability in multidimensional feature space is proposed for

classifying monochrome digitized imagery by machine.
Feature-

selection procedures are an essential step in optimal classification

in reduced feature space. Textural features constitute the type of

measurements used to characterize image data due to its

monochrome nature.
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The ability of the proposed feature-selection technique to provide an

optimal environment for classifying image pixels is measured by the

Gaussian Maximum Likelihood method. The appropriateness of using

textural features to characterize monochrome digital image data is

assessed in similar fashion. The robustness of the proposed feature

selection technique, and that of use of textural features, to provide

for accurate and effective image processing is tested by analyzing

several monochromatic images which contain multiple ground-cover

classes, various resolutions, orientations, grey-level quantization

levels, and individual textural feature parameter settings.
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1.0 Introduction

For many years, remotely sensed data has allowed man to examine

the state of this planet's resources and to unlock some of the earth's

more puzzling mysteries. Observational instruments carried by

aerial and spaceborne platforms generate immense quantities of

image and numerical data which permit man to better understand and

manage his environment.

With the advent of the digital computer in the early 1950's, the

science of remote sensing merged the pictorial and quantitative

aspects of image information. As the value of remotely sensed data

became more dependant upon timely processing, and while

technology made available increasing amounts of information, the

importance of numerical systems progressed rapidly. Today's digital

computers are indispensable tools to achieve the processing speed,

economy, precision and efficiency required to shape information in

accordance with the requirements of man.

The computer is of particular value in remote sensing for processing

digitally encoded images to replace time-consuming and laborious

visual analysis. Such processing consists of automated

manipulation and interpretation of image data, including image

rectification, restoration, enhancement, and classification. This

study shall make extensive use of computer processing to classify



digital image data, and to select image features to optimize the

classification process.

We first examine the concepts which pertain to image pattern

classification and to optimal feature selection.

1.1 Digitally Encoded Images

The signals collected by a sensor due to the electromagnetic energy

reflected by and emanating from the earth's surface are processed

and recorded in pictorial format to form digital images. Today's

digital images are of high quality and are stored in a computer

usually as two-dimensional arrays, where each picture element or

pixel has an associated grey-tone value. Digital images may vary in

size and are usually square to simplify processing. Figure 1.1-1

depicts a 5x5 digital image that possesses two grey-tone values, 0

and 1 (0 corresponding to light, 1 corresponding to dark), where the

arrangement of pixel brightness counts represents the number four.



Figure 1.1-1

To put an image in a form suitable for computer processing, it must

be digitized (i.e. represented as integral spatial and brightness

coordinates). Integer spatial coordinates are assigned to equally

spaced samples of the image, and each pixel is ascribed a brightness

value from a limited number of discrete grey levels. Gonzalez and

Wintz (1987) give an excellent description of digital images and of

the digitizing
process.1

1.2 Image Pattern Classification

Digital image classification consists of collecting and analyzing

digital image data, and applying statistically and/or structurally



based decision rules to determine the identity of its components.

The decision rules can be based upon spectral radiances measured

from imaged ground targets (spectral), upon the geometric shapes,

sizes, and patterns present in the image data (spatial), or upon the

temporal variations in spectral radiance (temporal). Figure 1.2-1

illustrates a model of an image pattern classification system, as

given by Swain and Davis (1978).2

Natural

pattern

Receptor

( sensor )

xi
~x2~

xn

Feature

extractor

ym

Decision

maker

Result

Figure 1.2-1

In Figure 1.2-1, the receptor may be an airborne or satellite-based

sensor which detects electromagnetic energy from natural ground

cover patterns. The output of the receptor is a set of
"

n
"

simultaneously collected measurements, corresponding to each

channel of the sensor, from which
"

m
"

features are extracted to

discriminate between image pixels. Features consist of original or

derived measurements of radiance which are translated into an m-

dimensional feature space. The classifier assigns vectors in this

space to one of several classes based on a classification rule.



1.2.1 Statistical and Structural Classification

Both statistical and structural approaches exist for classifying

digital image data. In statistical classification, a set of

characteristic features is extracted from each image pixel or image

block. Image pixels are attributed to separate image classes,

usually by partitioning the associated multidimensional feature

space, as reported by Fu (1968).3

The structural approach consists of describing an image pattern

using a hierarchical system of structures and grammar rules. These

latter entities are broken down into sets of subpatterns, as

suggested by Pavlidis (1977), which are described in their simplest

form by other subpatterns called primitives.4 Syntactic placement

rules describe the allowed structural relationships of image

primitives and subpatterns in each image pattern, and are the basis

for classification. The attractiveness of the structural approach for

classifying depends on the construction and description of the

primitives. In many recognition problems involving complex

patterns, the number of features required to ensure accurate

classification is sometimes very large and a structural approach is

judged more practical.

The structural approach shall not be used in this study, as use of a

grammar hinders its effective implementation. In addition, the local



order or repetitive pattern is rarely constant from place to place

and phase shifts, twisting and stretching are distortions that

locally affect spatial periodicity. It is difficult to identify pattern

primitives in even perfectly repetitive image pattern since the

primitives may themselves consist of other subpatterns.

A novel approach to describing and modelling image structures uses

mathematical curves known as fractals to characterize image

objects with a hierarchical organization of scaled structures.

Fractals were developed by Mandelbrot (1980) which enabled him to

organize a whole universe of self-similar objects in a mathematical

fashion.72 Further research in this field of study has resulted in

development of fractal numbers which measure local image textures.

Image fractals shall not be employed in this study as they have not

yet to been widely used for accurate and effective classification of

digital image data.

While the statistical approach to pattern recognition is not perfect,

it is particularly appropriate for classifying remotely sensed image

data into ground cover classes, as reported by Swain and Davis

(1978). 5 Statistical decision theory accounts for inherent

variations in remotely sensed data, and attempts to reduce their

negative effects on classification accuracy. This approach is also

very tolerant of errors associated with the questionable identity of

available training samples, and provides for image pattern



classification which is most probably correct when pattern classes

actually overlap in feature space (i.e. some measurements in

feature space are indistinguishable between classes). The majority

of today's commercial recognition systems use statistical

approaches, as reported by Devijver and Kittler (1986), because

often, only statistical tools can allow man to comprehend the

extreme variability of image patterns, due to the randomness of

nature.6

Of interest to the reader is the introduction by Fu (1986) of novel

grammars which unify the statistical and the syntactic approaches

to digital image pattern classification.?

1.3 Statistical Image Pattern Classification - Strategies

Statistical image pattern classification is a quantitative and

automated decision-making process. Measurements collected by a

sensor are assumed to have a density function or statistical

distribution in feature space, conditioned on the pattern class.

Pattern feature vectors are viewed as observations drawn from

respective class-conditional density functions.

Figure 1.3-1 shows various strategies to design a statistical

classifier, depending on the nature and on the reliability of



information concerning image class-conditional density functions.

Selection of the appropriate strategy must ensure maximum

classification accuracy of all image data and efficiency of the

associated process. Different classification strategies, employed

over a common image area, will most often result in different

degrees of classification accuracy and efficiency.

Prior
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As the information available concerning image class probability

distributions is often incomplete, two strategies exist to extract

quantitative information from image data and establish the nature

of class density distributions: the supervised method, and the

unsupervised method.

1.3.1 Supervised Classification

The basic assumption in statistical supervised classification is that

all ground cover classes can be described by a probability

distribution in feature space. The analyst supervises the

establishment of decision boundaries within the classification

environment by providing training samples to the classifier. This

type of classification is described as a five-stage process by

Richards (1986) and is reviewed below.8

In the first stage, ground cover classes are identified based on the

available features. Ground cover classes include urban, croplands,

rangelands, etc. Extensive visual analysis of the imagery is required

prior to attributing class names to ensure maximum accuracy and

efficiency of the classification process.

In the second stage, training pixels are selected from homogeneous

and representative areas in the image for each class; where the full



range of variability in grey tone values for each class is included. If

homogeneous areas are not readily available, the analyst must select

more than one region for a given class or must apply thresholding

algorithms to the data of interest to remove unwanted image

patterns, as stated by Maxwell (1976).9 Figure 1.3.1-1 illustrates

possible image sampling areas for supervised classifiers.

'???///,

Class

Class

1

2

Figure 1.3.1-1

Classifier training is the third stage; class parameters are

estimated from the chosen training sets. These parameters consist

of the statistical properties of each class distribution in feature

space (the parametric approach), or serve to define equations which

partition the feature space about each class (the non-parametric

approach). Assuming the class probability distributions are

10



multivariate normal, these parameters consist of class-mean

vectors and class covariance matrices. These statistics describe

the average position and the amount of spread of class density

functions about their mean vector in feature space.

In the fourth stage, every image pattern is labelled into one of the

predetermined classes using the trained classifier. As the number

of image pixels to classify is often overwhelming, the computer

becomes an essential tool to achieve process efficiency.

The fifth and final stage consists of producing tables of data (i.e.

confusion matrices) and plots which portray the results of the

classification process.

1.3.2 Unsupervised Classification

Unsupervised classification differs in that classes of interest are

no longer specified based on available features, but are defined by

their separability in feature space (i.e. image classes are identified

in feature space following delineation of inherent data structures).

Unsupervised classification produces reliable results when image

ground cover classes are easily discriminated in feature space, and

is used when reliable training data for supervised classification is

impossible or expensive to obtain.

1 1



Training data for the unsupervised process is chosen to include a

heterogeneous mixture of all classes and accounts for their within-

class variabilities. Figure 1.3.2-1 illustrates possible sampling

areas for training unsupervised classifiers.

Class 1

Class 2

Class 3

Figure 1.3.2-1

The image training data are submitted to automated clustering

processes in feature space which determine natural groupings of

classes, as reported by Richards (1986).10 Each cluster contains

data which is described by the probability distribution of at least

one class. Clusters which contain more than one class are usually

separated at the discretion of the analyst using tools such as maps,

air photographs, or site visits.

12



A wide choice of clustering algorithms are available to the analyst.

Methods such as CLASS by Fromm (1976)11 and ISODATA by Kan

(1972)12 are reviewed by Bryant (1979).13 One of the more

common methods was described by Duda and Hart (1973) and is

known as the K-means algorithm.14 In this process, an initial set

of decision boundaries is established in the feature space. Each

class is assigned a mean vector and each training pixel is assigned

to the closest of these. A new set of mean vectors is then

calculated from the initial data and image pixels are then

reassigned. This process continues until each mean vector and

associated class cluster remains relatively stationary in feature

space. A statistical classifier can then be applied to the entire

image and class parameters can be estimated from each individual

cluster, as reported by Schowengerdt (1983).77

In both supervised and unsupervised classification, the task of the

classifier is to establish a set of discriminant functions which

divide the image feature space into appropriate decision regions.

Discriminant functions are defined such that the discriminant

function for the ntn pattern class has the largest value at every

point in that part of feature space.

Supervised and unsupervised classification algorithms are used

extensively with image classifiers. These classifiers can be divided

into two groups; non-parametric and parametric.
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1.3.3 The Non-Parametric Classifier

The non-parametric classifier makes no distributional assumptions

with respect to the data. The analyst must either estimate the

class density functions or use some non-statistical decision rule to

partition feature space, as stated by Devijver and Kittler (1987).15

Non-parametric classifiers are sometimes used in remote sensing

exercises, but are encountered much less frequently than their

parametric counterparts. Non-parametric classifiers are more

powerful in their ability to estimate probability functions but their

computational costs are often excessive and require large numbers

of training patterns, as reported by Swain and Davis (1978).1 7

These limitations often prove to be unacceptable for many

classification exercises. Schowengerdt (1983) states that non-

parametric minimum distance and parallelepiped algorithms used to

establish non-statistical decision rules in feature space, generally

lack classification accuracy despite being computationally efficient

and easy to implement.73 These classifiers are preferred when the

nature of the data's distribution is unknown.

Non-parametric classifiers are neither considered nor reviewed in

this study as all class density functions are assumed to possess

gaussian distribution in feature space. The following sections

provide argument for this assumption. For a detailed description of
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several non-parametric classifiers, the interested reader is

directed to Nilsson (1965). 16

1.3.4 The Parametric Classifier

Parametric classifiers assume that the form of class probability

distributions is known, but that some of the distribution parameters

are undefined, as reported by Devijver and Kittler (1986).18 The

unknown parameters are generally replaced by values estimated

from representative training data sets prior to image pattern

classification. The class probability distributions are generally

assumed to be gaussian in nature, which often results in efficient

and accurate classification of image target data from various ground

cover classes.

1.3.5 Preferred Approach for Image Pattern Classification

The parametric supervised method of image pattern classification

(supervised partitioning of feature space and parametric decision

rules) shall be the preferred approach in this study . A multivariate

gaussian or normal model is assumed for the distribution of points

for each class and each image pattern is assigned to the class in

which it has the greatest probability of belonging.
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1.4 Class Probability Distributions / Normality

Assumptions in Feature Space

The assumption of multivariate gaussian probability distributions

for classes in feature space is particularly appropriate for remotely

sensed data of earth features, as reported by Swain and Davis

(1978). 19 Although this rationale imposes a restriction on the

nature of class density functions, it is known that most remotely

sensed natural processes can be modelled by a multivariate normal

behaviour, or can be described by a combination of gaussian

processes. Even when this assumption is severely violated,

classifiers designed on this basis are often still very correct.

Fukunaga and Flick (1986) state the difficulties of verifying the

gaussian nature of multivariate data when assuming normal class

distributions in multidimensional measurement space.20 Johnson

and Wichern (1982) report that one and two-dimensional

investigations are ordinarily sufficient to assume normality in

multidimensional feature space.7^

The Bayes Optimal or Gaussian Maximum Likelihood classifier is a

parametric classifier which uses the assumption of normality of the

statistical properties of image classes in feature space to minimize

the mean error of incorrect classification.
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1.5 Image Training and Test Data

The image data which characterizes each ground cover class in

feature space is commonly divided into two subsets: image training

data and image test data . The image training data is used to design

the classifier while the image test data is set aside to assess

classification accuracy.

Training samples are used to determine the values of class

distribution parameters, such as class mean vectors and class

covariance matrices, and serve to establish decision boundaries in

feature space prior to execution of the classification process.

Training samples represent particular class feature spaces and are

used to build the classifier.

Schowengerdt (1983)21 and Harris (1987)22 stress the importance

of properly selecting training samples for supervised classification

of image patterns for credible results. Points of concern include

attention to homogeneous training sampling areas, random selection

of sample pixels, adequate numbers of training samples per class,

whether the sample data possesses multivariate normal

distribution, and the range of variability of training samples in each

class. When the above requirements are not met, more than one

training region is often required per image class. The theoretical

minimum number of training samples is n+1 per class for n features;
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10n or 100n training samples per class lead to better estimates of

parameters, as reported by Swain and Davis (1978).23

As in the case of the image training data, the image test data must

be representative of the data to be classified. The test data should

ideally be chosen at random from the image data and include samples

of the total areas under scrutiny. The larger the set of test data,

the more representative the testing of the classifier. However, the

cost of collecting these data and ensuring that they represent

desired classes often restrict availability. Therefore, the analyst

must select all image training and test data with care to minimize

the costs and maximize the efficiency of the classification exercise

without sacrificing classification accuracy.

1.6 Bayes Optimal / Maximum Likelihood Classifier

The Bayes Optimal or Maximum Likelihood Classifier is a parametric

classifier which offers optimal performance over an entire

classified data set if all image classes have unimodal, (single

maximum) gaussian distributed probability density functions, as

reported by Duda and Hart (1973).24 As multi-modal class

distributions generally cannot be adequately approximated by a

single unimodal normal density function, optimal performance of the

Bayes Optimal classifier is denied with exception to subdividing
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multi-modal classes into subclasses, one for each mode of the

actual distribution. The probability distribution for each subclass

is represented by a normal density function in feature space. This

classifier is preferred for use in this study due to its parametric

nature, and to its particular suitability for normally distributed

image data.

The basic strategy of the Bayes Optimal classifier is to minimize

the expected average loss over an entire set of classifications to be

performed as reported by Richards (1986).25 The expected average

loss, Lx(Wj), is a measure of the penalty incurred when the

classifier erroneously labels an image observation vector X as

belonging to a class Wj when in reality it belongs to class Wj. To

classify X into a class Wj, for i = 1, 2, 3, m, using the Bayes

Optimal classifier, Lx(Wj) computed for each class Wj is derived as

per equation (1) :

m

LX(Wj)- X Cost(U)
*

p(Wj/x), 0)

j-1

where :

Cost(ij) : cost of classifying an image pattern with feature

vector X into class Wj when it is from class Wj, and
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p(Wj/X) : probability that an image pattern is a member of

class Wj given that it has a feature vector X in

multidimensional feature space.

The cost function Cost(iJ) is specified by the analyst to suit the

classification process at hand. A well known 0-1 cost function is

most commonly employed where Cost(i.j) is equal to 0, or no cost,

for correct classification and is equal to 1, or unit cost, for

incorrect classification. Using this function, the expected average

loss Lx(Wj) is derived as per equation (2) :

Lx(Wj) = 1 -

p(Wj/X), (2)

and will be minimized if Wj is selected so that p(Wj/X) is

maximized. Because of this maximizing property this classification

strategy is also known as the Maximum Likelihood Classifier.

Nilsson (1965) gives an excellent account of the derivation of the

Maximum Likelihood decision rule based upon the 0-1 penalty

functions. 2*>

The Bayes Optimal or Maximum Likelihood classifier relies upon a

posteriori probabilities p(Wj/X) to classify image patterns. The a

posteriori probability that an image pattern belongs to class Wj

given that it has feature vector X is given by :
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P(Wj/x) = p(x/wi)
*

pfwg , (3)

P(X)

where :

p(X) : summation of p(X/Wj)p(Wj) over all classes.

As p(X) is the same for all classes it can be ignored from further

calculations. The probabilities p(X/Wj) are known as state-

conditional probability density functions and represent the

probability that an image pattern has a feature vector X given that it

is in class Wj. The probabilities p(Wj) are known as a priori

probabilities and represent the probability that class Wj occurs in

the image area of interest. The product of the state-conditional

probability p(X/Wj) and the a priori probability p(Wj) represent the

probability that an image pattern has a feature vector X and is in

class Wj.

The a priori probabilities can be estimated from outside sources of

information such as ground surveys, existing maps or historical

data. In practice, these probabilities are often difficult (if not

impossible) to obtain. Therefore, they are often assumed to be equal

for all classes and can consequently be removed from further

calculation. Using the 0-1 loss function and assuming all above

assumptions are valid, the Bayes Optimal or Maximum Likelihood
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classification rule assigns the feature vector X to class Wj when the

conditions of equation (4) are satisfied .

Dwi(X) = p(X/Wj)max, (4)

where :

p(X/Wj)max = maximum value of all p(X/Wj)

overall i = 1, 2, ,
m.

The feature vector X is therefore assigned to the class Wj that

produces the maximum value of Dwi(X). Dwi(X) is known as a

discriminant function which partitions feature space into separate

classes for classification of image data.

Assuming that all state-conditional probability distributions are

multivariate gaussian leads to a Bayes Optimal classifier which is

computationally efficient and relatively easy to implement. In

addition, this classifier requires that relatively few parameters

need be determined for each class, thus reducing the requirement for

large numbers of training samples. State-conditional probability

distributions, in a K-dimensional normal feature space, are

expressed in general multivariate form by equation (5) :

p(X/Wj) = 1 *exp[-0.5(X-Mj)t*Ej-1*(X-Mj)], (5)

[(2tu)K/2]
*

[/Ej/o.5]
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where :

Ej K*K symmetric covariance matrix for class Wj,

/Ej/ : determinant of Ej,

Ejt : transpose of Ej,

Ej-1 : inverse of Ej,

X K-dimensional image pattern feature vector, and

Mj : K-dimensional mean vector for class Wj.

Each class covariance matrix Ej and class mean vector Mj is

estimated from training samples. In this study, the Moore-Penrose

generalized inverse of Ej was derived when Ej-1 did not exist

(singular matrix).75 This method of computing the inverse of a

singular matrix consists of providing a solution from a slightly

modified non-singular version of Ej. Appendix D refers.

Assuming that all a priori probabilities are equal, the discriminant

functions of equation (4) are derived by taking the natural logarithm

of each side of equation (5) to produce :

DWi(X) = Aj - 0.5*[(X-Mj)t
* Ej-1 *

(X-Mj)], (6)

where

Aj = [-0.5
*

In/Ej/] - [K/2
*

ln(27t)]. (7)

This result was given by Duda and Hart (1973).27 To make the

decision rule of equation (6) computationally simpler, the analyst
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may assume that the covariance matrices Ej for each class Wj (i = 1,

2 m) are equal. When such assertion is valid, a pooled

covariance matrix Ep is derived for all classes :

Ep = LEllm + Ep*n2 t - t Emlnm-l (8)

[ni + n2 + .... nm
-

m]

where :

nj : number of training samples in each of the

i = 1, 2, m classes.

The term Aj in equation (7) is then a constant for all classes so that

the discriminant function Dwi(X) in equation (6) becomes :

Dwi(X) = -0.5*[(X-Mj)t

*
Ep-1 *

(X-Mj)], (9)

and the feature vector X is assigned to the class that results in

minimum discriminant function. This discriminant function is

known as the Mahalanobis distance. Pooled covariance matrices

offer increased classification efficiency compared to individual

class covariance matrices, but also result in decreased

classification accuracy when they are used. Both approaches are

tested in this study; however, use of individual covariance matrices

is preferred to maximize classification accuracy.
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Derivations and treatments of the Bayes Optimal classifier are given

by Schowengerdt (1983)28 and Andrews (1972).29

1.7 Image Preprocessing

Preprocessing of digital images prior to pattern classification is an

essential operation which can greatly increase the accuracy of the

classifier. Image preprocessing consists of geometric and

radiometric image corrections, noise removal, and image

enhancement. These operations correct changes in image shape,

radiometric distortions due to a changing atmosphere, unwanted

signals and enhance visual interpretability by increasing the

contrast between image patterns. The extent of image

preprocessing on an image is dictated by the sensor's

characteristics. Several imaging preprocessing techniques are used

in this study and deserve our attention.

Geometric correction provides for compensation of image

distortions introduced by variations in the altitude, attitude, and

velocity of the sensor platform, the earth's curvature, atmospheric

refraction, relief displacement, and scan nonlinearities. Predictable

distortions are corrected by applying formulas derived from

mathematical modelling of the sources of distortion using orbital

models and scanner calibration data, as reported by Anuta (1973).30
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Unpredictable distortions are corrected by identifying ground

control points occurring in the image (pixel rows and columns) and

measured from a map (latitudes and longitudes), which are used to

determine coordinate transformation equations. These equations

relate geometrically correct map coordinates to distorted image

coordinates and provide for transformed image geometric integrity.

Radiometric correction preserves maximum image resolution and

provides for correction of radiometric distortions caused by scene

illumination, atmospheric conditions, viewing geometry, and

instrument response characteristics. Techniques for radiometric

correction include contrast manipulation operations on image grey

level histograms (i.e. linear contrast stretching, histogram

equalization and level slicing, cyclic contrast enhancement, and

thresholding). These operations consist of either individual pixel-

by-pixel radiometric transformations or of adaptive algorithms

whose parameters change from pixel to pixel in an image according

to local contrast, as reported by Fahnestock and Schowengerdt

(1983).31 Of particular interest to this study are histogram

equalization or flattening, grey-scale thresholding, and histogram

level slicing preprocessing operations.

In histogram equalization, the probability of occurrence of each

image grey level is made equal; this removes the effects of unequal

overall contrast and brightness in the initial scene. Because most
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image histograms are gaussian in shape, this operation tends to

reduce contrast in the very light or dark image areas, and expands

the middle grey levels toward the low and high radiances. The

resulting image histogram is approximately uniform, as reported by

Gonzalez and Wintz (1977).32 in unprocessed images, such effects

could otherwise dominate the measured feature values. Weszka,

Dyer and Rosenfeld (1976) discuss several histogram flattening

algorithms available to the analyst.33

Image grey scale thresholding allows the analyst to recognize and

manipulate individual objects from a given image by ensuring that

each of the latter entities possesses discrete boundaries, as

reported by Troy, Deutsch and Rosenfeld (1972).34 The resulting

image is segmented into classes defined by a single grey level

threshold. This procedure is most effective when applied to those

images where the range of grey tones is confined to a given range,

and when object and background grey tones do not overlap. When

grey-value range overlap does exist, object isolation is no longer

assured.

Histogram level slicing is an enhancement technique that divides the

scale of image grey levels into individual groups and attributes

single grey tones to each. The number of output grey tones is

established by the analyst. When properly done, level slicing can

reduce unwanted signals and enhance textural information.

27



Lillesand and Kiefer (1987) describe other image preprocessing

algorithms to eliminate undesirable image characteristics.35 All

image preprocessing operations should introduce no biases into

feature measurements and increase the accuracy of the classifier.

1.8 Evaluation of Classifier and Optimal Feature Space

The statistical approach to pattern recognition and the Bayes

Optimal classifier were selected for this study for several reasons.

The main reason is that class overlap in feature space exists. When

classification errors occur (especially when classes overlap), the

Bayes Optimal classifier minimizes the associated probability of

error.

The probability of error is a valuable indicator of the degree of

confidence the analyst can have in classification results, as

reported by Swain and Davis (1978).36 Should this error be

unacceptably high, the analyst may seek other features to

discriminate among the classes of interest, or change the design of

the Bayes Optimal classifier to maximize classification accuracy.

Swain and Davis (1978) propose various measures of the probability

of classifier error.37 Measures of the minimum overlap area

between class density functions were difficult to implement in

feature spaces with dimension greater than one. Error estimation
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based on classification accuracy of test and training data required

sufficient representative data points to be acceptably accurate.

Costs of acquiring image data also deserved consideration. Although

classifier error derived from training data is an overly optimistic

estimator of classification accuracy, test data allows for derivation

of a more reliable although still highly biased measure.

To reduce misclassification, the analyst may choose to apply

probability thresholds to class probability distributions in feature

space.74 Such approach does not improve classification accuracy of

image pixels within class boundaries; but prevents

misclassification of pixels outside the boundaries. Thresholds

improve estimates of the total area covered by each class within a

given image area.

Other reliable and accurate estimators of classifier error are

derived from divergence statistics, which constitute measures of

statistical separability between all classes in feature space. The

greater the value of the latter statistics, the more effective the

classifier (i.e. the lesser the probability of classification error).

Divergence-based statistics such as the Jeffries-Matusita (J-M) or

Bhattacharrya distance, proposed by Wacker (1971)3**, transformed

divergence, proposed by Swain and Davis (1978)39, and class

separation metrics generated from weighted class divergence

matrices, proposed by Schott et al. (1988)69, measure class
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separability in terms of image class means and covariances. The

first two measures are bounded by the probability of misrecognition

(or the Bayes risk), as shown by Chen (1973) 40 Transformed

divergence is almost as effective as the J-M distance, is more

economical, and considerably superior to simple divergence, as

reported by Swain et al. (1971).41 Class separation metrics are

chosen in this study and are generated from the Bayes Optimal

classification strategy which ensures minimum global

classification error over an entire set of normally distributed image

data in feature space.

These measures not only assess the accuracy of the classifier, but

also serve to validate the selection of optimal features. By

measuring the accuracy of the classifier, the ability of features to

ensure optimal partitioning of feature space into classes is also

ascertained. This shall be further discussed in section 2.5.1.

A final measure of classifier efficiency is the processing time

required to classify image patterns. This statistic corresponds to

the time needed to read in pertinent data, make classification

calculations, and write results in legible form. Should processing

time prove to be unacceptably long, the analyst may consider

redesigning the classifier to reduce costs, at the expense of

possibly sacrificing on the accuracy of the classifier.
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The three methods preferred for evaluating the classifier are

classification of randomly selected image test and training data,

analysis of class separation metrics derived from weighted class

divergence matrices, and computation of required processing times

to perform the identification exercise. These approaches were

selected from other proposed methods due to their effective

implementation, their availability from the developed software, and

their accurate and reliable nature.
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2.0 Digital Image Features

Computer classification of remotely sensed image data is a

quantitative process where image pixels are identified based upon

their feature values. In statistical classification, proper

characterization of image contents depends on the analyst's ability

to determine the features to be measured. A feature is a

measurement, or a mathematical transformation of measurements,

made from an image, which serves to classify image components

into appropriate classes. Features must properly describe the

contents of an image, remain unaffected by image translation and

rotation, and provide for easy processing. The analyst usually

decides on the nature and number of features to be measured from

the physics and complexity of the imagery.

To summarize previous discussion, a feature vector X of an image

pixel or image pattern is represented by an n-dimensional measure

in feature space. Each dimension corresponds to a specific spectral,

temporal or spatial measurement extracted from an imaged target,

or a mathematical transformation of these entities, as stated by

Schowengerdt (1983).42 An example is an image pattern

characterized by a set of grey levels in a multispectral image space.

Each spectral band corresponds to a specific dimension of the image

pattern feature vector. The dimensionality of the feature vector is

chosen at the discretion of the analyst. Figure 2.0-1 shows a
three-
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dimensional feature space within which data from an individual

ground cover class are clustered.

Band 1

Class pixels clustered

in 3-D feature space

Band 2

Band 3

Figure 2.0-1

If all class density functions are assumed to be normally distributed

in feature space, individual class statistics (i.e. mean vectors Mj and

individual covariance matrices Ej) may be derived to characterize

each class i. In the feature space of Figure 2.0-1, class i mean

vector Mj is defined in equations (10) and (12), and class i

covariance matrix Ej is outlined in equations (11) and (13).
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N
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(12)

"kji =X[Xk(1)"HkiltxjO)-Hji]/(Nj
- 0. (13)

1 = 1

Xk(l) and Xj(l) are the two feature values of pixel I, selected from Nj

pixels for class i. Variables k and I correspond to the dimensions of

each constituent of the individual class covariance matrix for class

i. Mean vector components uij, U2i, and U3j, correspond to the

projection of class i distribution onto each feature axis. Covariance

terms ojki represent the amount of spread of feature values from all
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pixels of class i about their mean vector components between al

two dimensions j, k of feature space.

2.1 Spectral, Temporal and Spatial Features

The features selected as tools to classify image data are divided

into three distinct classes; spectral, temporal, and spatial.

Spectral features consist of radiance measurements of image pixels

in various spectral bands (i.e. measures of the electromagnetic

energy reflected by and/or emitted from imaged ground targets).

Temporal features are measurements of the variation in spectral

response in image pixels over a given period of time. The analysis of

a time-variant imaged environment is beyond the scope of this

study. Finally, spatial features are measurements of spatial

contrast in various spectral channels, which allow for detection of

image pattern characteristics such as shape, size, texture,

orientation of target objects and image context. The assumption is

that the statistical dependencies between the spectral responses of

neighbouring image pixels contain valuable information for

classifying image data.

Since the principles of statistical classification apply for both

spatial and spectral features, it is reasonable to use both types of

features separately or in combination to extract pertinent image
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information and increase classification accuracy, as suggested by

Swain and Davis (1978) 43 Haralick et al. (1973) employed spectral

features and spatial textural features to considerably improve the

accuracy of satellite multispectral pattern classification relative

to using spectral features alone (from 70-74% to 83.5% accuracy for

classification of test data).44 The selection of appropriate

spectral and spatial features remained a function of the image data

characteristics. The ECHO (Extraction and Classification of

Homogeneous Objects) classifier, developed by Keltig and Landgrebe

(1976), combined spatial and spectral features with homogeneity

tests to increase the accuracy of supervised image pattern

classification, compared to classification exercises over individual

image pixels using spectral features alone.4^ Initial tests reduced

the error of classification of test data from 10.5% to 5.9% for

LANDSAT satellite imagery. Use of textural features alone was also

compared to spectral features using the ECHO classifier, resulting in

slight but consistent increases in supervised classification

accuracy.

Effective use of spatial features for image pattern classification

requires that there be a finite number of pixels per object to be

classified. The instantaneous field of view of the receptor must be

fine enough so that the number of image pixels per object is

sufficient to describe the spatial characteristics of object classes.

The ability to accurately classify image patterns using spectral and
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spatial features is greatly increased, especially when patterns are

not accurately identified using spectral features alone. This

provides the analyst with greater flexibility to establish an

effective feature space.

2.2 Tone and Texture for Formulation of Spatial Features

Tone and texture are fundamental concepts that allow classification

of objects or regions of interest in an image, and can be

characterized by means of spectral and spatial features. Tone

refers to the shades of grey in a digital image while texture refers

to the statistical distribution of grey tones.

Measurement of image tone consists of measuring grey-tone values

over individual image pixels. Means, standard deviations and ranges

of grey-tone values over entire image areas in select spectral

channels also provides for similar measurements. Image tone in

monochrome images is measured where one unique spectral channel

is considered available and each feature constitutes a dimension in

feature space.

Quantitative texture information is not directly measured by remote

sensing systems, but is extracted from digital image data. Haralick

(1979) reports on eight statistical approaches to measure and
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quantify image texture autocorrelations, optical and digital

transforms (measures of spatial frequency), textural edgeness (the

number of edge pixels per unit area), structural elements, spatial

grey tone co-occurrence probabilities, grey-tone run lengths, and

autoregressive models.4^

Tonal and textural information shall be extracted from monochrome

image data throughout this analysis for execution of feature

selection and image data classification exercises. For clear

understanding, all features used to measure tone and texture shall

be referred to as "textural features". Textural features considered

for use in this study are listed in Appendix A.

2.3 Textural Features Derived From Co-occurrence

Matrices

Haralick discusses the texture measurement methods of Section 2.2

and suggests that the spatial grey tone co-occurrence probability

approach is among the most powerful and simple statistical methods

to describe texture. Weszka et al. (1976) compared textural

features based on the Fourier transform and on grey-level co

occurrence probabilities, and tonal features based on local property

measurements across a digitized aerial image. The most accurate
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classifications were obtained using co-occurrence and local

property measurement features. 47

Grey level co-occurrences are joint probability densities of pairs of

grey levels in an image texture, within a given spectral band. This

approach to texture measurement is concerned with the spatial

distribution of grey tones in a local area, and assumes that textural

information is contained entirely in the spatial relationship between

image pixels. For processing digital images, Haralick (1971)

suggested two-dimensional spatial dependence of grey tones in a co

occurrence matrix for each fixed inter-pixel distance and angular

relationship.4** This matrix summarizes the frequency distribution

of adjacent grey tones in a specified angular and spatial relationship

over the image area of interest. The ease of derivation of this

matrix is function of the subimage size, the number of quantization

levels, and the spectral bands used to compute individual textural

features. The ability of the co-occurrence based representation to

capture texture is function of the size of the subimage region used

to calculate the co-occurrence matrix, the distances separating

sampled image pixels, and the matrix sampling orientation.

Figure 2.3-1 illustrates co-occurrence matrices in the horizontal (0

degree), vertical (90 degree), and oblique (45 &135 degree) image

sampling orientations for unit sampling distance (d = 1) between

image pixels. A 4x4 image area I is quantized to 4 grey-tone levels
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where Lx is the row designate and Ly is the column designate.

Indices (k,l) and (m,n) correspond to the row, column coordinates of

the pixels with grey tone i and j. The grey tone co-occurrence is

specified in a matrix P(i, j, d, degree) of relative frequencies with

which two neighbouring image pixels, one of grey tone i and the

other of grey tone j, separated by distance d and along a selected

sampling orientation "degree", occur on the image area under

analysis. For a given i, j, d, and degree setting, P(i, j, d, degree) is

derived by carrying out analysis of grey tone levels in both

directions along the established sampling orientation. The symbol #

represents the number of occurrences corresponding to an

established P(i, j, d, degree) setting.
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Figure 2.3-1
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Haralick, Shanmugam and Dinstein (1973) describe a class of

twenty-eight textural features which are extracted from grey-level

co-occurrence matrices.4^ These features are used to classify

image regions as uniform entities, where every pixel in a region is

assumed to represent the same class. Several of the latter

measurements, selected at random, were successfully tested for

supervised classification accuracy on several types of image data

using a non-parametric classifier. Photomicrograph data sets with

five classes were classified with 90% accuracy. Aerial

photographic data sets with eight classes were classified with 89%

accuracy, and satellite imagery data sets with seven classes were

classified with 82% accuracy. Eighty-three percent classification

accuracy was also obtained over these data sets using a combination

of textural and spectral features. Haralick and Shanmugam (1974)

employed several textural features for supervised classification of

image segments, extracted from LANDSAT multispectral image data,

into seven classes with 70% accuracy.50 This result compared

favourably to 74% classification accuracy obtained using spectral

features, consisting of means and standard deviations of grey-tone

values measured over the image areas from which were derived

textural co-occurrence matrices.

The spatial features proposed by Haralick et al. (1973) are all

function of co-occurrence matrix sampling distance and angle.

Changes in angular orientation will change the value of the feature
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vectors and result in possible erroneous classification. This can be

avoided by using angular averages and ranges of features for a given

sampling distance as inputs to the classifier. These measures are

relatively invariant under image rotation.51

Textural features derived from co-occurrence matrices are assigned

to individual image pixels or to entire image areas. These

measurements contain information on image textural

characteristics such as homogeneity, grey-tone linear structures,

contrast, number and nature of object boundaries, and image

complexity. Assignment of textural features to individual pixels

shall be carried out for all images in this study, as described in

Section 4.1.1. Texture measurements based on grey-level co

occurrence matrices are inappropriate for describing the shapes of

image patterns, as reported by Conners (1979).52 a structural

approach to image classification is suggested to distinguish

between class shapes as referred to in Section 1.2.1. This study

does not include structural features in the analysis as texture

measurement is not influenced by the shape of image classes.
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2.4 Other Spatial Features for Texture Analysis

Several other classes of spatial features have been reported useful

for extracting textural information and for classification of image

data in feature space. They include :

i) Grey-Level Difference Statistics : Weszka, Dyer and Rosenfeld

(1976) propose a class of first-order statistical features derived

from absolute differences between pairs of grey levels or of average

grey levels. 53 The features, which are derived from the probability

density functions, measure the degree of image texture coarseness

and directionality.

Other useful first-order statistical features employed for texture

analysis are the means and variances of local or average image

property values calculated at every pixel.

ii) Grey-Level Run Length Statistics : Galloway (1975) proposes a

class of spatial features computed over regions which reflect runs

of consecutive pixels of identical grey-tone value.
54 These

features are referred to as grey-level run-length statistics and are

indicative of individual image run grey-tone value, length, and

direction. Galloway demonstrated the effectiveness of these

features, combined with textural feature data sets proposed by

Haralick, for increased classification accuracy. These measures
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remain effective if image noise does not influence the values of

measured image grey tones.

Classification of image textures by Weszka, Dyer and Rosenfeld

(1976) using sets of co-occurrence matrix, run length, and grey-

level difference statistics features resulted in varying but

intuitively acceptable degrees of accuracy in the 70th to 80* n

percentile for classification of LANDSAT multispectral image

data. 55 These features were equalized in orientation and sampling

size for comparison. Run-length statistics were eventually

abandoned due to their sensitivity to image noise. Single sets of the

remaining features did equally well where the best feature in each

set obtained 75% classification accuracy. The sampling

directionality significantly affected classification accuracy;

classification accuracy increased dramatically when the best

feature pair in each set correctly classified 93% of the image data.

Pattern coarseness or sampling size was reported to be generally

more important than directionality for discriminating between

particular textures.

iii) Textural Edgeness : Sutton and Hall (1972) propose the gradient

of textural edgeness (i.e. the amount of edge per unit image area)

dependant on the distance between sampled pixels.56 The proposed

feature was applied by the authors with classification accuracy in

the 80th percentile. Rosenfeld (1975)57 proposes a similar
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approach to measuring textural edgeness by computing the average

value of the quick Robert's gradient over the image of interest, as

given by Rosenfeld and Thurston (1971).58 Duda and Hart (1973)

also propose the Sobel edge operator to obtain the smoothed gradient

output of an edge in a given direction.5 9

iv) Composite Features : Weszka, Dyer and Rosenfeld (1976) suggest

features derived from other sets of features for texture analysis.6 0

Means and standard deviations of various textural features over all

directions for all sampling distances are typical examples.

Composite features performed as well as the sets of features from

which they were derived.

v) Texture Transformations : Hsu (1978)61 and Irons and Peterson

(1981)62 propose generalizing the grey-tone co-occurrence textural

feature extractor to a textural transform mode. Grey-tone co

occurrence features derived over an entire image produce textural

features at a coarser resolution than the original image. By doubling

or tripling the computation time required to determine grey-tone

co-occurrence matrices, it is possible to provide a textural

transform that preserves resolution. This information is derived

from both local and global grey-tone co-occurrences

Other spatial features exist for texture analysis such as

measurement of colour disposition in multispectral images.
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Features which were selected for treatment of individual images

throughout this study are included in Appendix A-1.

2.5 Feature Space Dimensionality

Image classification accuracy is dependant upon the nature and the

number of features. It would seem that classification accuracy

would increase significantly if one was to add additional features to

the feature space. Estes et al. (1983) state that this is only true if

the additional features do not contain redundant information.6 3

This is rarely true for remotely sensed data since certain features

(especially spectral features) are highly correlated. To achieve

precision in classification, it is important to define a set of

meaningful features which accurately describe the information

contained in an image.

The analyst must realize that the costs of classification with large

numbers of features is often excessive. For the Maximum Likelihood

classifier proposed in this study, the cost associated with feature

numbers climbs quadratically, as stated by Richards (1986).64 The

analyst must be able to identify and use the most important

features.
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Feature selection reduces the dimensionality of the feature space by

removing those with little or no discriminatory ability. Combining

or transforming features to ensure increased separability between

classes is referred to as feature reduction.

2.5.1 Feature Selection

Many feature selection algorithms will increase the accuracy and

efficiency of the classification process. Regardless of their

operating methodologies, they share one common goal: to reduce the

number of features required to accurately classify patterns. Feature

selection techniques such as Mahalanobis feature selection, intraset

and interset Euclidean feature selection, Karhunen-Loeve feature

selection, Fisher feature selection, minimum entropy selection in

normal distribution and equal covariance, and divergence feature

selection in normal distribution are but a few of the more popular

methods available, as reported by Xuan (1984).6 5

To test the discriminatory ability of feature subsets to accurately

classify image data, several feature selection methods attempt to

minimize the Bayesian probability of misclassification. Others

employ probabilistic distance or statistical separability measures

between classes in feature space, as reported by Morgera and Datta

(1984). 66 The approach chosen for this study measures the
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mathematical separability between all image classes in feature

space for a reduced set of features, in terms of Mahalanobis-based

distance measurements. This method was perfered due to the

availability of software and to inherent difficulty of measuring the

probability of misclassification (or Bayes) error. If class

separability is not reduced by removing features from the original

set, these features can be conveniently discarded from the analysis

as they offer little or no discriminability.

Chen (1973) compared distance related feature selection approaches

for gaussian classes with equal means and covariances. He

recommends statistics such as the Bhattacharrya (or Jeffries-

Matusita) distance and divergence measures as discriminators.6 7

The ability of selected features to correctly classify patterns may

be quantitatively assured when using statistical image pattern

classifiers. The Bhattacharrya distance is a measure of the

separation of class probability distributions in feature space based

on the average separation distance. Transformed divergence

indicates class separability based upon the degree of overlap. Chen

elaborates upon the
Bayes'

risk for the Bhattacharrya measure and

establishes useful upper and lower bounds. Richards (1986)

emphasizes the effectiveness of both the Bhattacharrya distance and

the transformed divergence for use with the Maximum Likelihood

classifier when the multivariate class probability distributions are

assumed normal. 68 The transformed divergence statistic is
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reportedly more suitable and cost-effective to implement than the

Bhattacharrya distance if a large number of feature subsets are to

be assessed from a set of features. These feature selection

techniques were not implemented in this study due to the

unavailability of source code.

Schott et al. (1988) proposed an optimal feature selection technique

based on class separation metrics which were generated from

individual weighted-class divergence matrices.69 This method of

feature selection is preferred in this study due to computational

efficiency, accuracy, and appropriateness for multivariate normally

distributed class probability distributions in feature space. The

Gaussian Maximum Likelihood Classification theory (Section 1.6) is

the basis for this technique, and enables derivation of
Mahalanobis-

like distance measures between individual classes in feature space.

For N image classes characterized by gaussian distributions in a K-

dimensional feature space, the NxN class divergence matrix DM is

constructed as shown in Figure 2.5.1-1. This matrix allows the

analyst to observe class separability.
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DM =

d 1 1 d12 d 13 din

d21 d22 d23 d2n

d31 d32 d33 d3n

dnl dn2 dn3 dnn

Figure 2.5.1-1

Each value of djj corresponds to a Mahalanobis-like distance

measure between classes i and j and is defined in equation (13) :

djj = (Mi - Mj)t *

Ej "1
*

(Mi - Mj), (13)

where :

(Mj - Mj)t : transpose of difference between mean vectors

of classes i and j in K dimensional feature

space, and

Ej-1 : inverse of KxK individual covariance matrix Ej

for class i.

Equation (13) is different from the true Mahalanobis distance of

equation (9) as it includes individual class covariance matrices. The
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term Ai of equation (7) is also excluded, despite not being a constant

over all classes when using individual class covariance matrices,

and should be considered in future studies.

To render computation more efficient, pooled class covariance

matrices Ep may be substituted for individual covariance matrices

Ej in (13) when the determinant of all Ej are equal. Use of pooled

class covariance matrices decreases the accuracy but increases the

efficiency of the feature selection process.

Optimal features are selected on the basis of a class separation

metric Z which is generated from a weighted version of the

divergence matrix WDM, as shown in Figure 2.5.2-1. The class

separation metric used to select optimal features is the square root

of the weighted sum of all Mahalanobis distances over all classes i

and j in feature space and is defined in equation (14) :
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WDM =

w1 1d1 1 w12d12 ....wlndln

W21d21 W21d22...w2nd2n

w31d31 w32d32....w3nd3n

wnldnl wn2dn2 ....wnndnn

and

Figure 2.5.2-1

K K

Z = / X X wjj
*djj/**

0.5,

j-1 i-1

(14)

where :

djj : Mahalanobis-like distance from equation (13), and

wjj : weight factor assigned to djj.

The values of the weights that characterize each component of the

weighted divergence matrix are dictated by scenario specific

requirements and are set equal to 1.0 for the purpose of this study.

Optimal feature selection will maximize the class separation metric
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Z and the overall separation between classes in feature space. This

ensures maximum classification accuracy and minimum

classification error.

This feature selection process considers each combination of M

desired features from an initial data base of K features, and selects

the optimal combination (i.e. the combination that maximizes Z).

From an initial feature space of dimension K, all possible

combinations of features are assembled for best
"
M- "

dimensional

feature spaces ( where M = 2, 3 K ) and corresponding maximum

divergence statistics are established. For each best
" M-

"

dimensional feature space, the combination of features with

maximum value of Z is selected. By establishing a threshold value

for increases in the value of Z for increments in the dimensionality

of optimal feature space, or by defaulting to maximum value of Z, a

final optimal feature space is derived.

Another approach to feature selection employed in this study

reduces the dimensionality of the initial feature space by

manipulating correlation measures derived from pooled class

covariance matrices. Features with a high degree of correlation

contain redundant information and can be removed from further

analysis. For a K-dimensional feature space and N classes identified

therein, a KxK pooled class covariance matrix is derived from N

individual covariance matrices to establish a correlation coefficient
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matrix. Pooled class covariance matrices are derived from

equations (11) and (12), and correlation coefficients CC between all

features i and j (where i and j = 1, 2 K) of the initial feature

space are derived as per equation (15) :

CCij r crij /(o-ii
*

o-jj )**0.5 (15)

Once formulated between all cases i and j, a correlation coefficient

matrix is established of dimension KxK. Considering correlation

coefficients by column within the correlation coefficient matrix,

the correlation coefficients which are larger than an established

threshold are grouped into independent subsets. Their rows are then

deleted from consideration from the correlation coefficient matrix.

This analysis is carried out until all matrix columns are exhausted.

From each subset, the largest correlation coefficient is extracted

and its first dimension is a feature of the initial optimal feature

space.

Figure 2.5.3-1 illustrates an example of this method of feature

selection for a correlation coefficient matrix of dimension 4x4. The

initial feature space consists of 4 features and a threshold value of

0.6 is established. By manipulating the correlation coefficient

matrix as explained above, two uncorrelated features are extracted

from the initial set of four.
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All initial optimal features are subjected to the feature selection

analysis proposed by Schott et al. (1988) to derive the final optimal

feature space.

Instead of computing a pooled class covariance matrix for feature

selection as per equation (8), it is suggested that such matrix be

derived directly from all observations (i.e. consider all pixels are

from a same class). This provides for a more accurate estimator of

pooled class covariance when the determinant of individual class

covariance matrices are unequal. Although this method was not

adopted, it is suggested for consideration in future studies.

The combined method of deriving correlation coefficients from

pooled class covariance matrices and feature selection techniques

proposed by Schott et al. are used to derive final optimal features

for individual treatments on separate images in this study.

2.5.2 Feature Reduction

Feature reduction transforms image data to a new set of coordinates

in feature space to increase the separability of classes. The number

of features remains the same, and the data information is

concentrated in the first transformed coordinates. Transformed

coordinates with little or no discriminatory ability are removed
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from the analysis. This transformation increases the speed of the

classification process and results in data of a superior quality.

Although many feature reduction algorithms exist, the most

commonly employed in remote sensing are principal components

analysis and canonical analysis.

The principal components transformation creates a new feature

space of equal dimension and less correlation. The transformed

coordinates which contain small amounts of variances over image

data are discarded as they contribute little to the separability of

image classes. Crist and Kauth (1986) demonstrated that six

reflective spectral bands of LANDSAT TM were effectively

transformed to three bands of information that contained 95% of the

tonal variance in the original data. 70

If separability after principal components is inadequate, the

canonical transformation is a possible alternative for feature

reduction. This method rotates feature axes to ensure maximum

class separability. Axes are determined to maximize class

separation and minimize class variability. This method of feature

reduction is much more sensitive to class structure than the

principal components transformation. Richards (1986) offers a

detailed mathematical description of these feature reduction

techniques.7"'
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Feature selection techniques are chosen to be implemented in this

study as opposed to feature reduction algorithms. It is judged that

although feature reduction may increase classification accuracy

they also increase associated computational costs. This is a direct

result of algorithms (such as principal components) that maximize

the amount of data over a minimum number of variables by creating

new features from linear combinations of existing features.

Principal component analysis also requires that all features be

derived to allow for feature reduction. Finally, feature reduction

algorithms usually provide uninterpretable combinations of original

features. Feature selection algorithms provide for increases in both

classification accuracy and effectiveness.
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3.0 Method of Analysis

In this study, final optimal feature spaces are established for use on

several digitized monochrome images. The ability to discriminate is

evaluated by classifying sequences of image test and training data

using a Gaussian Maximum Likelihood Classifier. The effect on

classification accuracy from textural feature parameter settings is

assessed for each. The procedure employed is as follows:

1) Each monochrome image to be analysed is extracted from an

individual spectral channel of false-colour infra-red film. The

image is digitized to 256 grey levels and 512x512 pixels. The

selected channel provides for maximum visible texture across all

classes.

(2) Each image is preprocessed to correct for distortions and/or

degradations. Preprocessing operations include geometric

manipulation, radiometric correction, and contrast manipulation

(grey-level thresholding, level slicing, and contrast stretching). The

histograms of all images are flattened to ensure that all grey levels

are equally present and remove the effects of unequal overall

brightness and contrast. Otherwise, such effects might dominate

the classification and disrupt image classification accuracy.

Histogram level slicing is performed on all images to remove
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unwanted image information (i.e. such as noise) and to isolate image

patterns.

(3) For each image, the size of the image sampling window and the

interpixel sampling distance are established to derive feature

measurements for individual training pixels. Caution is exercised to

ensure that all textural features measure the textural information

of all image classes. Class mean vectors are derived and individual

and pooled class covariance matrices are generated. From these

statistics, correlation coefficient matrices, weighted class

divergence matrices and class separation metrics are calculated.

Uncorrelated features are extracted to establish initial and final

optimal feature spaces in accordance with the feature selection

techniques proposed for use in this study. Final optimal features

allow for subsequent best performance of a trained Bayes Optimal

classifier.

(4) The training data is used to train a Gaussian Maximum Likelihood

classifier for each image. Supervised classification of image

training and test data is performed to assess classifier accuracy

and efficiency, to establish the validity of employing textural

features for classifying monochrome imagery, and to determine the

ability of the derived final optimal feature space to separate

between image classes. Gaussian Maximum Likelihood classification

is also performed on textural image data from several image
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treatments using ERDAS software. This ensures selection of

unbiased test pixels to evaluate the appropriate classifier.

(5) The ability of final optimal feature spaces for classification is

assessed for several images by repeating the analysis on identical

monochrome imagery with varying resolution and orientation.

Textural feature parameters are repeated to establish their effects

on classification accuracy.

A flowchart of the method for all images is shown in Appendix E.

Each block in this flowchart reflects the use of specific source code

for deriving the required results. These programs are listed in the

following section.

3.1 Implementation of Software

All code is written in Fortran 77 and is available from the Imaging

Science department. Five main programs are used to perform

analysis as listed in the paragraphs which follow.

Program #1 derives textural features for individual pixels in

selected image windows. Parameters such as interpixel sampling

distance, number of image quantization levels, and image dimension
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areas are established to capture the desired textural feature

measurements.

Program #2 reduces the dimensionality of the initial image feature

space by analyzing pooled class covariance matrices, and by deriving

correlation coefficients between all dimensions included therein.

For an established absolute threshold (between 0.0 and 1.0, and

chosen as 0.6 for this study), the correlation coefficients that share

a common second dimension are grouped in individual sets, from

which are derived initial optimal textural features. All such

features possess a maximum correlation coefficient within their

individual set and make up the image's initial optimal feature space.

Program #3 further reduces the dimensionality of the initial optimal

feature space by establishing the
"n"

best feature combinations from

its components ( i.e. best 2 features for pixel classification, best 3

features , best n features ). For specific dimensionality, the

best combinations of features provide for maximum global

separability among all image classes within the boundaries of the

individual feature spaces. This quantity is measured in terms of an

expressed statistic entitled class separation metric Z. From the

best n feature combinations, a final optimal feature space is

extracted which provides for an increase of no less then 1% in Z

between consecutive best feature combinations or for a maximum

value in the latter measure. The strict value of the threshold 1%
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was established by the analyst to maximize feature selection

accuracy. Figures 3.0.1-1 and 3.0.2-1 are typical examples of final

selected features, based on the class separation metric. In Figure

3.0.1-1, 8 final optimal features are selected from an initial

optimal feature space of 12, based on measures of 1% increase in

the Z statistic. In Figure 3.0.2-1, 7 final optimal features are

selected from an initial optimal feature space of 17 features, based

on maximum value of Z statistic.
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The even shape of the curve in Figure 3.0.1-1 is result of feature

selection by discriminant analysis when all class covariance

matrices are non-singular in nature. The uneven shape of the curve

in Figure 3.0.2-1 is result of derivation of the Moore-Penrose

generalized inverse of singular covariance matrices.

Program #3 also derives individual class statistics ( i.e. class mean

vectors, pooled class covariance matrices, and individual class

covariance matrices ) in the feature spaces.

Program #4 classifies image training and test data into established

classes. For each treatment, the class statistics derived from
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Program #3 assist in establishing accurate discriminant functions

in final optimal feature space which serve to classify individual

image pixels. Global classification accuracy is used to measure the

separability of classes into individual and distinct distributions,

and to assess the ability of the classifier to accurately discriminate

between dissimilar image pixels.

Program #5 consists of several subprograms which perform display

of textural feature images, and reformatting of textural feature

data files to reflect the dimensions of optimal feature spaces.

Programs #1 through #5 are used for all images. As many of these

programs require significant computer processing time, all

programs were usually submitted in batch mode.
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4.0 Results from Analysis

This section will discuss preprocessing operations and will present

results of the derivation of final optimal feature spaces, and of the

classification of training and test data for all image analyses.

4.1 Processing of Digital Images

Three aerial scenes were selected for analysis, entitled Urban,

Field, and Forest Each scene had been recorded on false colour

infra-red film, and was characterized by multiple ground cover class

content and individual class textures. All images were digitized to

512x512 pixels over 256 grey levels in the red spectral channel.

Prior to testing and evaluation, the histogram of each digital image

was equalized and level slicing preprocessing was performed to

ensure good image quality.

The assumption of normal distribution of class probability density

functions in final optimal feature space was verified for all image

analyses. Histograms of final optimal feature values were plotted

for all training pixels over each class and all distributions were

characterized by a skewed and familiar unimodal normal shape.

Section 1.4 provides further discussion.

The processed images were analysed to establish optimal feature

spaces for maximum classification accuracy of digital image data,
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to validate the process by which they were constructed, and to

determine the effects on classification accuracy due to varying

image sampling window size, number of image quantization levels,

image magnification, and image rotation. The image data were

classified in supervised fashion using a Gaussian Maximum

Likelihood Classifier in final optimal feature space.

4.1.1 Image Class Windows and Image Sampling Windows

All analyses involved selecting image class and image sampling

windows across class areas to derive textural features. The size

and location of all windows were varied to capture appropriate

pixels to train classifiers. Image sampling windows were scanned

across and within the boundaries of image class windows in a row

by row fashion and were of an odd number of pixels in square

dimension to facilitate deposition of results. Textural features

were attributed to pixels at the center position of sampling

windows.

For all analyses, the sizes of the class and sampling windows were

set to encompass uniformly textured areas, to provide discriminant

measurements, to capture a sufficient number of training samples

for accurate estimation of class distributions, and to satisfy

computing requirements. Despite attempts to process images in

accordance with the above criteria, image restrictions (i.e. class

sizes and shapes) and code limitations (i.e. dimensions of arrays)
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resulted in frequent exceptions to these criteria. These exceptions

resulted in capture of insufficient number of training pixels for

small classes. Selection of training pixels from multiple areas of

common texture was attempted to minimize their effects. Figure

4.1.1-1 illustrates placement of image class and sampling windows

across image textures.
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4.2 Processing of Image Urban

Eleven ground cover classes were identified within image Urban

entitled : 1) light grey water, 2) medium grey water, 3) dark grey

water, 4) residential, 5) light grey forest, 6) dark grey forest, 7)

orchard, 8) light grey grass, 9) medium grey grass, 10) dark grey

grass, and 11) highway. The majority of these classes displayed

overall uniform texture with exception to class 4, where texture

varied from region to region. Image Urban is shown in Figure 4.2-1.

Figure 4.2-1
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4.2.1 Analyses 162, 164, 322, 324

Image Urban was processed in 4 ways entitled : 162, 164, 322, and

324 as listed in Table 4.2-1. Analyses (162, 164) and (322, 324)

displayed the effects of varying image sampling window size and

constant number of image grey tone quantization levels on

classification accuracy. Analyses (162, 322) and (164, 324)

displayed similar effects from varying number of image grey tone

quantization levels and constant image sampling window size.

TABLE 4.2-1

Analysis Parameter Settings for Analyses 162, 164, 322,

324 over Image Urban

Analvsis : 1 62 1 64 322 324

Parameters

Quantization Levels 16 16 32 32

Sampling Window Size 3*3 5*5 3*3 5*5

Interpixel Sampling 1 1 1 1

Degrees of Rotation 0 0 0 0
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Nineteen image class windows were selected across the eleven

established image ground cover classes within the image. Forty-

five textural features were measured over 2741 training pixels for

analyses 162 and 322, and over 1875 training pixels for analyses

164 and 324. All textural features used in analyses over image

Urban are listed in Appendix A-1. The distribution of training pixels

per image class for each analysis is listed in Table 4.2-2. Limited

numbers of training pixels per class were due to the small size of

classes compared to the size of image class and sampling windows.

TABLE 4.2-2

Number of Training Pixels per Class for Analyses 162, 164,

322, 324 on Image Urban

Imaae Classes Analvsis 162/322 164/324

1) light grey water 63 35

2) medium grey water 72 40

3) dark grey water 35 15

4) residential 805 613

5) light grey forest 330 216

6) dark grey forest 232 154

7) orchard 323 229

8) light grey grass 117 77

9) medium grey grass 136 90

10) dark grey grass 408 284

11) highway 220 122
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For each analysis, class individual matrices and a class pooled

covariance matrix of dimension 45x45 were derived from the initial

training data. From each pooled covariance matrix derived as per

equation (8), a feature correlation coefficient matrix of equal

dimension was extracted. In accordance with the correlation

coefficient matrix processing technique for feature selection

explained in Section 2.5.1, a threshold of 60% was established,

above and beyond which all correlation coefficients sharing a

common second dimension were grouped. An individual set of

uncorrelated initial optimal features was obtained for each

analysis; consisting of 11 features for analysis 162, 17 features for

analysis 164, 12 features for analysis 322, and finally 17 features

for analysis 324. For analysis 162, the initial optimal features

were measured over all image pixels and textural feature images

were derived. Initial optimal feature spaces for all analyses are

listed in Appendix A-2 while textural feature images for analysis

162 are displayed in Appendix A-10.

The approach suggested in Section 2.5.1 for deriving a more accurate

covariance matrix over all classes for establishment of initial

optimal features was carried out for all analyses. By considering all

training pixels belonging to a same class for each analysis the latter

matrix was derived. It was discovered that this matrix yielded

dissimilar initial optimal features from those derived from the

pooled covariance matrix used in this study when using the same

feature selection technique (see Figure 2.5.3-1). This investigation

was also carried out for all analyses over images Field and Forest
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and similar conclusions were made. Further investigation is

recommended.

For each analysis, the data file containing the original training data

was reformatted to contain the features of the initial optimal

feature space. From each data file class statistics in initial

optimal feature space, subsets of optimal feature combinations (i.e.

best 2 features for classification, best 3 features for

classification
, best n features for classification), and

associated measures of maximum divergence Z were derived. By

establishing a limit of no less than 1% increase in maximum

divergence statistic between best feature combinations, or

defaulting to its maximum value, final optimal feature spaces were

extracted. Figures 4.2-2 through 4.2-5 show the dimensions of

final optimal feature spaces in terms of Maximum Divergence vs

Number of Features in Final Optimal Feature Space. Circled data

points represent these dimensions. Appendix A-2 lists final optimal

features. Numbers of features in initial and final optimal feature

spaces are listed in Figure 4.2-6. Best feature combinations for

each analysis are listed in Appendix A-9.
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The initial training data were processed to include features of final

optimal feature space and class statistics were derived. Image

training and test data were classified using individual class

covariance matrices. The image test data consisted of thirty pixels

per class, selected at random by the analyst, across the face of each

of the 11 image classes. Results of classification in terms of

percentage of training and test data accurately classified are listed

in Appendix A-3 and in the plots of Figures 4.2-7 through 4.2-10.
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The abbreviation GCA in the following figures corresponds to "Global

Classification Accuracy". The term
"Roch"

in all plots relates to

analyses on image Urban.

o.o

4 5 6 7 8 9 10 11

Class Number

U 1 62 test data 1 62 training data

GCA Training Data : 83.4% GCA Test Data : 59.0%

Figure 4.2-7
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4.2.2 Analyses 261, 461, 223, 423

To illustrate the "next-to
optimal"

characteristic of final optimal

feature spaces for analyses 162, 164, 322, and 324, analyses 261,

461, 223, and 423 were carried out. Final
"sub-optimal"

feature

spaces were derived from feature sets which excluded final optimal

features derived from initial analyses 162, 164, 322, and 324, and

image training and test data were classified. Figure 4.2.-11

illustrates this process.
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Classification accuracies of identical training and test data for

analyses (162, 261), (164, 461), (322, 223), and (324, 423) are

shown in Figures 4.2-12 to 4.2-19 and in Appendices A-4 and A-5.

Due to the "next-to
optimal"

characteristic of final optimal feature

spaces for analyses 162, 164, 322, and 324, classification

accuracies for
"sub-optimal"

final feature spaces for analyses 261,

461, 223, and, 423 would be comparable.
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4.2.3 Individual Class Covariance Matrices vs Class pooled

Covariance Matrix

Use of individual class covariance matrices over class pooled

covariance matrices for classification and final optimal feature

selection was carried out. Class pooled covariance matrices were

derived for all analyses and image training data were classified in

final optimal feature space. Results are listed in Appendix A-6 and

in plots of Figures 4.2-20 through 4.2-23 (in all plots CCM signifies

Class Covariance Matrix). Statistical hypothesis testing was

performed for all analyses to prove inequality between individual
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class covariance matrices. Class pooled covariance matrices could

be used if test results were false.
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4.2.4 Validation of Final Optimal Feature Space

Construction Process

Validation of the process by which final optimal feature spaces

were constructed was carried out for analyses 162, 164, and 322.

For analysis 162, the initial optimal feature space consisting of 11

textural features was divided into two subsets containing 5

features apiece. Subset #1 contained optimal features derived from

discriminant analysis while subset #2 contained an equal number of

the remaining initial optimal features. Similar processing was

carried out for analyses 164 and 322. Two subsets, containing 8

features apiece were established for analysis 164 and 6 features
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apiece for analysis 322. Individual feature subsets for analyses

162, 164, and 322 are listed in Appendix A-7.

For each subset, the initial training and test data files were

restructured to contain their individual features. Class statistics

were derived to train maximum likelihood classifiers and image

training and test data were classified. Figure 4.2-24 illustrates

this process, where the abbreviation FOFS signifies Final Optimal

Feature Space. Classification results are listed in Figures 4.2-25

through 4.2-30 and in Appendix A-8.

91



VAILmBATITON IF QTOAIL WOMAIL IFEATOM

SIPACIE CTOSTnRUJCHTON IPTOCIESS

CORRELATION

COEFFICIENT

MATRIX

I
Initial Optimal

Feature Space

FOFS

Optimal FOFS

Subset *1

Optimal FOFS

Subset *2

I

4, -l/

Classification of

Identical Training

and Test Data

Figure 4.2-24

92



1.0
Plot Rochl 62 Subsets (training data)

162 subset #2 training data 1 62 subset #1 training data

GCA 162 Subset #1 : 82.6% GCA 162 Subset #2 : 37.0%

Figure 4.2-25

Plot Rochl 62 Subsets (test data)

u

CO

3
o

o
co

CO
o

3

CO

CO

CO

EI 1 62 subset #2 test data 1 62 subset #1 test data

GCA162 Subset #1 : 62.4% GCA 162 Subset #2 : 29.5%

Figure 4.2-26

93



.,
Plot Rochl64 Subsets (training data) ___

o
CO

3
u
o

CO

CO
u

CO

CO
CO

1 2 3 4 5 6 7 8 91011

Class Number

? 1 64 subset #2 training data 1 64 subset #1 training data
!

GCA 164 Subset #1 : 91.5% GCA 164 Subset #2 : 78.5%

Figure 4.2-27

1.0
Plot Rochl 64 Subsets (test data)

3 4 5 6 7 8 91011

Class Number

El 1 64 subset #2 test data 1 64 subset #1 test data

GCA 164 Subset #1 : 49.3% GCA 164 Subset #2 : 45.4%

Figure 4.2-28

94



1.2-1 Plot Roch322 Subsets (training data)

GCA 322 Subset #1 : 83.6% GCA 322 Subset #2 : 44.4%

Figure 4.2-29

1.0 Plot Roch322 Subsets (test data)

EH 322 subset #2 test data 322 subset #1 test data

GCA 322 Subset #1 : 64.5% GCA 322 Subset #2 : 37.8%

Figure 4.2-30

95



4.3 Processing of Image Field

Seven ground cover classes were identified within image Field

entitled : 1) light grey desert, 2) dark grey shrubs, 3) light grey

shrubs, 4) light grey stone, 5) light grey grass, 6) dark grey desert,

and 7) interspersed dark grey bushes and surrounding desert. All

classes displayed overall uniform texture with exception to class 7,

which included a mix of bush and desert textures. Image Field is

shown in Figure 4.3-1.

Figure 4.3-1
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Similar processing was carried out on image Field as was performed

on image Urban. Fourteen image class windows were selected

across the seven classes to encompass training pixels to train

classifiers. For class 7, entitled bushes/desert, large image class

windows were designed to included both desert and tree type pixels.

This allowed for use of large image sampling windows over all

classes.

4.3.1 Analyses 17, 21, 25, 3225, 21*3, 25*5, 21*r

Image Field was processed in 7 ways entitled : 17, 21, 25, 3225,

21*3, 25*5, and 21*ras listed in Table 4.3-1. Analyses (17, 21,

25) displayed the effects of increased image sampling window size

and constant number of grey tone quantization levels on

classification accuracy. Analyses (25, 3225) illustrated similar

effects from constant image sampling window size and increased

number of grey tone quantization levels. Analyses (21, 21*3) and

(25, 25*5) displayed the effects of increased image magnification

by enlargement of the interpixel sampling interval to every third

pixel for analysis 21*3 and to every fifth pixel for analysis 21*5.

Analyses (21, 21 *r) displayed the effects of a 30 degree clockwise

rotation.

For all analyses, final optimal feature spaces were established and

image test and training data were classified (note : the final optimal

feature space for analysis 21 *r consisted of that from analysis 21).
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TABLE 4.3-1

Analysis Parameter Settings for Analyses 17, 21, 25,

21*3, 25*5, 3225, 21*r over Image Field

Parameters

Quantization Levels

Sampling Window Size

Interpixel Sampling

Degrees of Rotation

Quantization Levels

Sampling Window Size

Interpixel Sampling

Degrees of Rotation

note : cw = clockwise rotation

Analvs is

17 21 25 21*3

16 16 16 16

17*17 21*21 25*25 21*21

1 1 1 3

0 0 0 0

25*5 3225 21*r

16 32 16

25*25 25*25 21*21

5 1 1

0 0 30 cw

98



With exception to analysis 21 *r, the logic of Appendix E was

followed for all analyses. Forty-six textural features were derived

for each pixel contained within the boundaries of all image class

windows. Textural features from all processes for image Field are

listed in Appendix A-1. The distribution of training pixels per class

for each analysis is listed in Table 4.3-2. Limited numbers of

training pixels for several classes was due to small class size

compared to the sizes of image class and sampling windows.

TABLE 4.3-2

Number of Training Pixels per Class for Analyses 17, 21,

25, 21*3, 25*5, 3225 for Image Field

Analysis : 17 21/21*3 25/25*5/3225

Imaae Class

1) light grey desert 1152 800 512

2) dark grey shrubs 1176 820 528

3) light grey shrubs 1152 800 512

4) light grey stone 576 400 256

5) light grey grass 392 200 72

6) dark grey desert 322 150 42

7) mix bushes/desert 837 485 229
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For all analyses, class individual covariance matrices and a class

pooled covariance matrix of dimension 46*46 were derived, and

feature correlation coefficient matrices were extracted. In

accordance with the correlation coefficient matrix feature selection

technique of Section 2.4.1, a threshold value of 60% was established

above and beyond which all correlation coefficients sharing a

common second dimension were grouped. Fifteen initial optimal

features were derived for analysis 17, 16 features for analysis 21,

14 features for analysis 25, 18 features for analysis 21*3, 16

features for analysis 21*5, and 15 features for analysis 3225. For

analysis 21, initial optimal features were measured over all image

pixels and textural feature images were derived. Initial optimal

feature spaces are listed in Appendix B-1, and textural feature

images for analysis 21 are displayed in Appendix C-6.

The training data files were restructured to contain initial optimal

features. These data files were processed to derive class mean

vectors, individual class covariance matrices, optimal feature

combination subsets and associated maximum divergence statistics

Z. Final optimal features were derived from analysis of maximum

divergence statistics in accordance with the feature selection

methods of Section 2.4.1. Figures 4.3.-2 through 4.3-7 show the

dimensions of final optimal feature spaces in terms of Maximum

Divergence vs Number of Features in Final Optimal Feature Space.

Circled data points represent these dimensions. Final optimal

feature spaces are listed in Appendix B-1. Figure 4.3-8 lists the
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dimensions of initial and final optimal feature spaces. Best feature

combinations for each analysis are listed in Appendix B-6.
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For each analysis, the training data was restructured to include

final optimal features. Class statistics were derived and image

training and test data were classified. Test data consisted of thirty

pixels per class, selected at random by the analyst, across the face

of each class. Results of the classification processes in terms of
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in Appendix B-2 and displayed in Figures 4.3-9 through 4.3-14. The

term
"Field"

in all plots relates to analyses over image Field.

o

CO
k.

3
o

o

co

CO

o

V)
<n

co

3 4 5

Class Number

1 7 test data 17 training data

GCA 17 Training Data : 98.7% GCA 17 Test Data 67.6%

Figure 4.3-9

106



>

o

co
L.

3
O

U
CO

c

o

CO
o

CO

CO

CO

3 4 5

Class Number

H 21 test data 21 training data

GCA 21 Training Data : 99.4% GCA 21 Test Data : 66.2%

Figure 4.3-10

u
CO

3
u
o

CO

CO

o

CO

CO
CO

3 4 5

Class Number

f3 25 test data 25 training data

GCA 25 Training Data : 99.5% GCA 25 Test Data : 63.3%

Figure 4.3-11

107



1.2
ss

o
1.0

CO
k.

3
U 0.8
u

CO

c 0.6
o
**

CO
o 0.4

w
CO
CO 0.2

3 4 5

Class Number

21*3 test data 21*3 training data

GCA 21*3 Training Data : 99.9% GCA 21*3 Test Data : 64.7%

Figure 4.3-12

>

U

co
k.

3
O
o

CO

c

o

CO

o

w
CO

CO

3 4 5

Class Number

U 25*5 test data 25*5 training data

GCA 25*5 Training Data : 99.9% GCA 25*5 Test Data 64.3%

Figure 4.3-13

108



0.0

3 4 5

Class Number

U 3225 test data 3225 training data

GCA 3225 Training Data :100% GCA 3225 Test Data : 55.2%

Figure 4.3-14

4.3.2 Individual Class Covariance Matrices vs Pooled

Class Covariance Matrix

Classification and feature selection exercises, using class pooled

covariance matrices, were not carried out as to ensure maximum

accuracy for all analyses. By statistical hypothesis testing, it was

determined that individual class covariances were unequal which

excluded class pooled covariance matrices from consideration.

Section 4.2.3 provides further argument.
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4.3.3 Analysis 21*r

Thirty test pixels were selected at random by the analyst within

each of the seven classes of the rotated image. Each test pixel was

characterized by final optimal features of analysis 21, and was

derived from image sampling windows of dimension 21*21 which

were oriented at 0 degrees with respect to the image.

Classification results of image test data from analyses 21 *r and 21

are listed in Appendix B-2 and are displayed in Figure 4.3-15.

3 4 5

Class Number

d 21 test data 21 *r test data

GCA 21 Test Data : 66.2% GCA 21 *r Test Data : 64.7%

Figure 4.3-15
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4.3.4 Validation of Final Optimal Feature Space

Construction Process

The optimality of final optimal feature spaces was tested for

analyses 21 and 25. Two subsets of features were formed for each

analysis from initial optimal feature spaces. Subsets #1 and #2

contained 8 features apiece for analysis 21, and 6 features apiece

for analysis 25. Subsets #1 contained optimal features derived

from discriminant analysis while subsets #2 contained an equal

number of the remaining features from the initial optimal feature

space. Individual feature subsets for analyses 21 and 25 are listed

in Appendix B-3.

Training and test data files were restructured for analyses 21 and

25 to contain the features of their respective subsets. Individual

class statistics were derived and image training and test data were

classified. Results from these classification exercises are listed in

Figures 4.3-16 through 4.3-19 and in Appendix B-4. Figure 4.2-24

illustrates the process used for validation of the optimality of final

optimal feature spaces.
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1.2 Plot Field25 Subsets (training data)

3 4 5

Class Number

25 subset #2 training data 25 subset #1 training data

GCA 25 Subset #1 : 99.1% GCA 25 Subset #2 : 87.8%

Figure 4.3-18

1.0
Plot Field25 Subsets (test data)

3 4 5

Class Number

d 25 subset #2 test data 25 subset #1 test dataD

GCA 25 Subset #1 : 62.8% GCA 25 Subset #2 : 46.6%

Figure 4.3-19
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4.3.5 Computer Selected Test Data and Full Scene Gaussian

Maximum Likelihood Classification

Objective and random selection of test data was carried out for

analyses 17 and 21 using the ERDAS software library. This approach

allowed for comparison of global classification accuracies of

randomly selected test data sets; one selected by the analyst and

the other by the computer. The results illustrate the effects of

mixed pixels on classification accuracy. Mixed pixels are difficult

to identify due to their location within the image (i.e. along class

boundaries). Twenty test pixels per class were selected at random

by the computer and were classified in final optimal feature space.

Classification results of computer (denoted by the title ERDAS) and

analyst selected test data for analyses 17 and 21 are shown in

Figures 4.3-20 and 4.3-21 and are listed in Appendix B-5.
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1.0 Plot 17 ERDAS vs Analyst Test Data

3 4 5

Class Number

1 7 test data analyst 1 7 test data Erdas

GCA Test Data Analyst : 67.6% GCA Test Data ERDAS : 49.3%

Figure 4.3-20
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Plot 21 ERDAS vs Analyst Test Data
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Class Number

21 test data analyst 21 test data Erdas

GCA Test Data Analyst : 66.2% GCA Test Data ERDAS : 55.0%

Figure 4.3-21
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Maximum Likelihood classification was carried out for analysis 21

using a computer developed classifier. Textural feature images of

final optimal features entitled angsecaver, angsecrang, corraver,

corrang, varrang, moyenne, and ecart were used to train the

classifier. Computer selected test data was classified by the

computer and identified by the analyst for determination of

classification accuracy. Results of classification are illustrated in

Figure 4.3-22 and in Appendix B-5 for 7 textural feature image

training set. The abbreviation FOFSC stands for classification in

final optimal feature space of computer selected image data, and

ERDAS stands for classification performed by the computer. The

classified image is displayed in Figure 4.3-23.
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Figure 4.3-22

Figure 4.3-23

117



Gaussian Maximum Likelihood classification was carried out for

analysis 21 after the training set was incremented by the textural

feature image of feature entitled bright. Although this feature was

not selected in final optimal feature space, computer classification

showed the effects on global classification accuracy from it's

addition to the analysis. Test data was selected and classified by

the computer and identified by the analyst for determination of

classification accuracy. Results are illustrated in Figure 4.3-24 and

in Appendix B-5 for 8 textural feature image training set. The

abbreviation ERDAS 7 FOFTI stands for computer classification of

image data using the 7 textural feature images for classifier

training (see textural feature images in previous paragraph). The

abbreviation 7 FOFTI + Bright stands for computer classification of

image data, using the same 7 textural feature images for classifier

training but incremented by the textural feature image of feature

entitled bright. The computer classified image is displayed in

Figure 4.3-25.
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3 4 5

Class Number

H ERDAS 21 (7 FOFTI + Brightpix.equal) ERDAS21 (7 FOFTI)

GCA Test Data ERDAS(7) : 45.7% GCA Test Data ERDAS(8) : 48.6%

Figure 4.3-24

Figure 4.3-25
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4.4 Processing of Image Forest

Five ground cover classes were identified within image Forest

entitled : 1) light grey trees, 2) orchard, 3) light grey crops, 4) grey

crops, and 5) dark grey crops. All ground cover classes displayed

overall uniform textural content over their digitized surfaces with

exception to class entitled orchard where texture was irregular over

large image areas. Image Forest is shown in Figure 4.4-1.

Figure 4.4.1
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Similar processing was carried out on image Forest as was

performed on both previous images. Five image class windows were

selected across the five ground cover classes to encompass

classifier training pixels.

4.4.1 Analyses 21, 25, 31, 3221, 3231, 31*r

Image Forest was processed in 6 ways entitled : 21, 25, 31, 3221,

3231, and 31 *r as listed in Table 4.4-1. Analyses (21, 25, 31) and

(3221, 3231) illustrated the effects of increased image sampling

window size and constant number of grey tone quantization levels on

classification accuracy. Analyses (21, 3221) and (31, 3231)

demonstrated the effects of increased grey tone quantization level

and constant image sampling window size. Analysis 31 *r displayed

the effects of a 30 degree clockwise image rotation.
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TABLE 4.4-1

Analysis Parameter Settings for Analyses 21, 25, 31,

3221, 3231, 31*r over Image Forest

Parameters

Quantization Levels

Sampling Window Size

Interpixel Sampling

Degrees of Rotation

note : cw = clockwise

Analvsis

21 25 31/31*r 3221 3231

16 16 16/16 32 32

21*21 25*25 31*31 21*21 31*31

1 1 1 1 1

0 0 0/30 cw 0 0

Final optimal feature spaces were derived and tested for all

analyses by classifying image training and test data. All processes

are summarized in the paragraphs that follow.

The logic of Appendix E was followed for all analyses, with

exception to analysis 31 *r which was carried out in similar fashion

to analysis 21 *r on image Field. Forty-six textural features were

measured for training pixels contained within each image class
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window and are listed in Appendix A-1. The distribution of class

training pixels per class for each analysis is listed in Table 4.4-2.

TABLE 4.4-2

Number of Training Pixels per Class for Analyses 21, 25,

31, 3221, 3231 for Image Forest

Analysis : 21/3221 25 31/3231

Imaae Class

1) light grey trees 1075 819 495

2) orchard 1075 819 495

3) light grey crops 1075 819 495

4) grey crops 1075 819 495

5) dark grey crops 1075 819 495

For all analyses, class pooled covariance matrices of dimension

46*46 were derived, feature correlation coefficient matrices were

extracted, and initial optimal features were derived from analysis

of feature correlation coefficients with an established threshold

value of 60%. Seventeen initial optimal features were derived for

analysis 21, 17 features for analysis 25, 14 features for analysis

31, 16 features for analysis 3221, and 15 features for analysis
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3231. For analysis 31, initial optimal features were measured for

all pixels and individual textural feature images were derived of

image Forest. Initial optimal feature spaces are listed in Appendix

C-1 and textural feature images are displayed in Appendix B-7.

The training data files were restructured to contain the features of

their initial optimal feature spaces and were processed to derive

class mean vectors, individual class covariance matrices, optimal

feature combination subsets and maximum divergence statistics.

From analysis of maximum divergence statistics, final optimal

feature spaces were established. Figures 4.4-2 through 4.4-6 show

the dimensions of all final optimal feature spaces for analyses 21,

25, 31, 3221, and 3231 in terms of Maximum Divergence vs Number

of Features in Final Optimal Feature Space. Circled data points

represent these dimensions. Final optimal feature spaces are listed

in Appendix C-1. Figure 4.4-7 illustrates the number of initial and

final optimal features for all analyses. Best feature combinations

for each analysis are listed in Appendix C-5.
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For each analysis, training data were reduced to include features of

final optimal feature space. Class statistics were derived and

training and test data were classified. Thirty test pixels per class

were selected at random by the analyst for each analysis. Results of

classification are listed in Appendix C-2 and in Figures 4.4-8

through 4.4-12.
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through 4.4-12. The term
"Irfarm"

in all plots relates to analyses

over image Forest.
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Figure 4.4-9

130



2 3

Class Number

El 31 test data 31 training data

GCA 31 Training Data : 100.0% GCA 31 Test Data : 72.6%

Figure 4.4-10

>,

I .o
-

Plot Irfarm3221
o
CO
k.

3
o
o

CO

1.0-

c

o

CO

o
0.5-ll 1 f ^ 1

CO

CO

CO 1 I
u

0.0-

1 2 3 4 5

Class Number

M 3221 test data 3221 training data

GCA 3221 Training Data : 100% GCA 3221 Test Data : 83.3%

Figure 4.4-11

131



2 3

Class Number

3231 test data 3231 training data

GCA 3231 Training Data : 100% GCA 3231 Test Data : 72.6%

Figure 4.4-12

4.4.2 Individual Class Covariance Matrices vs Pooled

Class Covariance Matrix

For all analyses, final optimal feature selection and classification

exercises were performed using individual class covariance

matrices over class pooled covariance matrices. This ensured

optimal process accuracy. Statistical hypothesis testing of the

inequality of individual class covariance matrices also excluded

pooled class covariance matrices from consideration. Section 4.2.3

provides further argument.
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4.4.3 Analysis 31*r

For analysis 31 *r, 30 test pixels were selected at random by the

analyst within each of the five image classes of the rotated image.

Each test pixel was characterized by final optimal features of

analysis 31, and was derived from image sampling windows of

dimension 31*31, oriented at 0 degrees orientation with respect to

the image. Classification results of test data from analyses 31 and

31 *r are listed in Appendix C-2 and are illustrated in Figure 4.4-13.
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GCA 31 Test Data : 72.6% GCA 31 *r Test Data 65.9%

Figure 4.4-13
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4.4.4 Validation of Final Optimal Feature Space

Construction Process

The optimality of final optimal feature spaces was tested for

analyses 21, 25, and 31. Subsets #1 and #2 were established for

each analysis, containing 8 features apiece for analysis 21, 8

features apiece for analysis 25, and 7 features apiece for analysis

31. Subsets #1 contained features which were deemed optimal from

their respective initial optimal feature spaces by discriminant

analysis while subsets #2 contained an equal number of remaining

features from the initial optimal feature spaces. Individual feature

subsets for analyses 21, 25, and 31 are listed in Appendix C-3 .

Training and test data files were restructured for each analysis to

include the features of their respective subsets. Individual class

statistics required to train Gaussian Maximum Likelihood classifiers

were derived, and image training and test data were classified.

Results from these classification exercises are listed in Figures

4.4-14 through 4.4-19 and in Appendix C-4. Figure 4.2-24

illustrates this process.
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1 .5 - Plot Irfarm31 Subsets (training data)
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31 subset #2 training data 31 subset #1 training data

GCA 31 Subset #1 : 100.0% GCA 31 Subset #2 : 97.3%

Figure 4.4-18

1.0 Plot Irfarm31 Subsets (test data)
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31 subset #2 test data 31 subset #1 test data

GCA 31 Subset #1 : 73.3% GCA 31 Subset #2 : 62.0%

Figure 4.4-19
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4.5 Robustness Testing of Classification Accuracies

To ensure that classification accuracies were relatively constant

over all analyses for all images, analysis 31 from image Forest was

subjected to 4 additional classification tests. Each test was

performed on dissimilar sets of 30 test pixels, selected at random

by the analyst, and classified in final optimal feature space from

analysis 31. Global classification accuracies of test data sets were

76.00%, 70.66%, 73.33%, and 71.33% compared to 72.66% accuracy

from the original set of test data. Despite this relative consistency

in results, it is premature to establish trends (i.e. increases,

decreases, constant readings) in classification accuracies from

changes in feature parameter settings for all analyses. This is

because classification accuracies are also dependant on the textures

which are measured and are changing from analysis to analysis.

Observed behaviour in classification accuracies for all analyses are

listed in Appendix F.

4.6 Processing Times for all Analyses

The computer processing times (CPU times) required for execution

of all analyses were of considerable length. Derivation of forty-six

textural features for all training pixels required CPU times ranging

from 3 to 7 hours, depending on the number of training pixels

selected from all classes. Derivation of run-length type textural
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features required significantly more CPU time than that required of

other features.

For multivariate discriminant analysis of initial optimal feature

spaces, CPU times ranged between 4 hours to several days. More

commonly encountered CPU times for this process were

approximately 10 hours for derivation of best final optimal features

from initial optimal feature spaces containing between 10 and 15

features. All remaining feature selection and classification

exercises required CPU times ranging between a few minutes to

approximately half an hour.

The processing times required to generate textural feature images

ranged from 18 hours to 10 days. Textural feature images of run-

length features were those which required excessively long

processing times. This explained the long hours required to generate

initial textural feature data files for training data.
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5.0 Discussion of Results

The following section consists of a discussion of the method of

analysis, of the results from all analyses.

5.1 Discussion of the Method of Analysis

Image Preprocessing : All images were subjected to histogram

equalization and histogram level slicing to ensure optimal image

quality and maximum accuracy of feature selection and

classification exercises. Histogram equalization removed unwanted

contrast and brightness levels from the image. Histogram level

slicing eliminated unwanted image data and increased distinction

between image textures. Absence of other apparent radiometric or

geometric inconsistencies excluded use of other preprocessing

algorithms.

All analyses were performed on monochrome images equal-

probability quantized to either 16 or 32 brightness levels.

Quantization levels were chosen based on classification experiments

carried out by other researchers where similar parameter settings

were
used.44 Selection of sufficient quantization levels ensured

minimal loss of class textures, reliable classification of image

training and test data and accurate selection of optimal features.
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Training and Test Data : For analyses on images Urban and Field,

several classes were allocated insufficient number of training

pixels (for image Urban : analyses (162, 322) and (164, 324) for

class entitled medium gray water, and analyses (164, 324) for class

entitled medium grey water; for image Field : analyses (25, 25*5,

3225) for class entitled dark gray desert). This was caused by the

small sizes of classes and to the large size of image class and

sampling windows. Unreliable class statistics were derived and

poor classification accuracies resulted.

Test data selected by the analyst included no mixed pixels to

maximize classification accuracy. To render the classification

process more representative, test data was selected at random by

the computer and classified in optimal feature space.

Dimensions of Image Class and Sampling Windows : Image class

windows were rectangular or square in shape and oriented at O

degrees rotation with respect to the image. Image sampling

windows were square in shape and of constant size for each

analysis. Because of these restrictions it was difficult to position

and size all windows to surround representative class textures and

to capture sufficient numbers of training pixels. Image sampling

window size was to capture the coarsest class texture, while

ensuring accurate measurement of finer class textures.
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Derivation of Inverses for Individual Class Covariance Matrices : The

Moore-Penrose generalized inverse was calculated for singular

individual class covariance matrices which existed when features

displayed linearly interdependency. Increasing the number of

training pixels per class reduced linear interdependency by providing

accurate class statistics and individual class covariance matrices

more susceptible to being non-singular in nature.

The Moore-Penrose generalized inverse is derived from a slightly

modified, non-singular version of the original matrix. The slightly

inaccurate inverse decreases classification and feature selection

accuracy by virtue of its nature. Moore-Penrose generalized

inverses of individual class covariance matrices were recognized by

the uneven shape of plots of Maximum Divergence vs Number of

Features in Final Optimal Feature Space Optimal feature selection

and classification exercises were characterized by the even shape of

these plots.

An alternative to use of Moore-Penrose generalized inverses would

be to disregard feature spaces characterized by singular individual

class covariance matrices as singularity reflects high correlation

among features. To minimize correlation, a higher threshold to

derive initial optimal features from correlation coefficients would

be established. The Moore-Penrose approach was adopted as

individual class covariance matrices frequently displayed

142



singularity and unacceptable large numbers of feature spaces would

have been disregarded.

Derivation of Initial Optimal Feature Spaces bv Analvsis of

Correlation Coefficient Matrices : The purpose of this exercise was

to provide for significant increases in the efficiency of the feature

selection process and for considerable reduction in the magnitude of

initial optimal feature sets. Features correlated among themselves,

beyond an established threshold, were removed from analysis as

they contained redundant information.

By decreasing the threshold, a greater number of initial features

would be discarded, discriminant analysis feature selection

efficiency would be increased, and global classification accuracy

would decrease. Increasing the value of this statistic would produce

exact opposite results. The value of the threshold is function of

classifier accuracy versus feature selection efficiency. Prior

knowledge of the ability of features to provide for superior

classification accuracy would allow for rejection of features which

contribute little to process accuracy.

Selection of a feature from a correlated set, based upon maximum

value of a derived correlation coefficient (see Section 2.5.1), did not

guarantee its optimality. Analyses in Section 4.2.2 over image Urban

classified image data within feature spaces which excluded final
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optimal features and comparable classification accuracies were

obtained. The feature spaces were derived by analysis of correlation

coefficients and discriminant analysis. Since discriminant analysis

ensured final optimal feature selection, analysis of correlation

coefficients was proven a sub-optimal technique for selection of

initial optimal features. This method of feature selection decreased

the accuracy of the classification process but significant increased

the efficiency of feature selection exercises.

Optimal Method for Formulation of Final Optimal Feature Spaces :

Optimal feature selection consists of performing multivariate

discriminant analysis over all features. This approach was not

carried out as excessive computation time would be required due to

the high number of features to be considered. However, optimal

feature selection was performed from subsets of features which

were derived by multivariate discriminant analysis from their

initial optimal feature spaces (see Sections 4.2.4, 4.3.4, and 4.4.4).

Classification accuracies for these subsets were consistently

superior to those for subsets containing other features from the

initial optimal feature spaces

Derivation nf Final Optimal Feature Spaces bv Analvsis of Maximum

Divergence Statistics : Final optimal feature spaces were derived

from multivariate discriminant analysis of initial optimal feature

spaces. By decreasing the value of the threshold of 1% between
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increments in divergence for increments in the dimensionality of

final optimal feature space, classification accuracy would increase

feature selection efficiency would decreases. Increases in the

threshold would produce opposite effects.

All weights wjj assigned to maximum divergence Mahalanobis-like

distances dy, were equal to 1 for all analyses. It was of concern

however, should a few Mahalanobis-like distances prove to be

excessively large, that final optimal feature spaces would possess

maximum value of maximum divergence statistic without ensuring

maximum discrimination between all classes. A solution to this

problem would consist of assigning appropriate weights to

individual Mahalanobis4ike distances based on some a priori

knowledge of the distances between classes. Assignment of

separate weights would also be performed when maximum

classification accuracy of data into select classes is desired. Small

weights would be assigned to Mahalanobis-like distances between

classes where classification accuracy is unimportant, while larger

weights would be assigned in an opposite manner.

Parameter Selection fnr Derivation of Textural Features : Optimal

classification accuracy was possible when textural features

provided for effective measurement of the textural information of

underlying classes and provided for discrimination between image

pixels. Code restrictions constrained parameter settings to be equal
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over all classes for each analysis. Therefore, it was common

practice to choose their values to capture the coarsest class

texture. This would also allow for capture of finer textured classes.

Utilization of Pooled Class Covariance Matrices vs Individual Class

Covariance Matrices : Statistical tests disallowed use of pooled

class covariance matrices in final optimal feature selection and

classification exercises. Maximum process accuracy was thereby

ensured. Pooled class covariance matrices were used for derivation

of initial optimal feature spaces to achieve significant increases in

the efficiency of the feature selection process. As stated in Section

2.5.1 a more accurate version of a pooled covariance matrix could be

derived from all pixel observations by considering them all from one

class. This approach is more precise and warrants attention in

additional studies.
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5.2 Analysis of Results

Results of all analyses for all images are discussed in the following

section. All results show the effects of feature selection, image

class and sampling window size, and feature parameter settings on

classification accuracy

5.2.1 Analysis of Results for Image Urban

Correct dimensioning and positioning of image class and image

sampling windows was required to ensure accurate classifier

training. The small size of classes light grey water (1), medium

grey water (2), dark grey water (3), and light grey grass (8)

restricted the dimensions of their image class windows, the number

of training pixels per class selected therein, and the size of alf

image sampling windows. Irregular shapes of all classes of water

(1, 2, 3), and non-uniform textures across classes residential (4)

and dark grey forest (6) affected positioning of image class

windows and restricted capture of class textures by image sampling

windows. Three by three and five by five pixel image sampling

windows were selected to capture training pixels from all classes

for all analyses. Of concern was the ability of image sampling

windows to capture the texture of coarser textured classes such as

residential (4) and orchard (7).
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Global classification accuracies for all analyses ranged between

83.4% - 91.1% for training data, and between 49.4% - 63.9% for test

data Results are listed in Table 5.2.1-1 and in Section 4.2.1. All

analysis designates are characterized by sampling window

size/quantization level attributes between parentheses.

TABLE 5.2.1-1

Global Classification Accuracy for Analyses

162, 164, 322, 324 over Image Urban

Global CIlassification Accuracv

Analysis Training Data Test Data

162 (3x3/1 6q) 83.4% 59.0%

164 (5x5/1 6q) 91.1% 51 .5%

322 (3x3/32q) 85.1% 63.9%

324 (5x5/32q) 85.0% 49.4%
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Small global classification accuracy of test data compared to

training data was due to poor classification of test data in all

classes of water (1, 2, 3), light grey grass (8), dark grey forest (6),

and highway (11). Appendix A-3 lists all classification accuracies

for all classes. Low classification accuracies were result of

inaccurate derivation of class statistics from insufficient and

unrepresentative training pixels. This was due to improper

positioning of image class windows, to improper size of image

sampling windows, and to the inability of feature parameter

settings to ensure discriminant measures of class textures.

Classification of image test data revealed that increasing image

sampling window size from 3*3 to 5*5 pixels, for constant

quantization level (16 or 32 grey tones) decreased global

classification accuracy from 59.0% to 51.5% for analyses 162 and

164, and from 63.9% to 49.4% for analyses 322 and 324. Increases

in quantization levels from 16 to 32, at constant image sampling

window size, resulted in marginal changes in classification

accuracy from 59.0% to 63.9% for analyses 162 and 322, and from

51.5% to 49.4% for analyses 164 and 324.

For different feature parameter settings, classification accuracies

are function of class textures. Classification accuracy is function

of the ability of the analyst to select correct feature parameters for

all textures to ensure maximum discrimination between class
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pixels. For class dark grey forest (6) over all analyses, inaccurate

feature parameter settings contributed to decrease classification

accuracy. This argument applies for all classes were poor results

were obtained.

For analyses (162, 261), (164, 461), (322, 223), and (324, 423),

classification accuracy in final optimal feature space (optimal) was

measured against classification of in sub-optimal feature space

(sub-optimal) which excluded previous final optimal features.

Section 4.2.2 provides further explanation. Classification

accuracies demonstrated the next to optimal characteristic of the

feature selection technique for derivation of initial optimal

features. Table 5.2.1-2 summarizes results from all analyses.
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TABLE 5.2.1-2

Global Classification Accuracy for Analyses (162, 261),

(164, 461), (322, 223), (324, 423) over Image Urban

Global Classification Accuracv

Analysis Training Data Test Data

Optimal 162 (3x3/1 6q) 83.4% 59.0%

Sub-Optimal 261 (3x3/1 6q) 78.3% 61.4%

Optimal 164 (5x5/1 6q) 91.1% 51.5%

Sub-Optimal 461 (5x5/1 6q) 83.2% 45.1%

Optimal 322 (3x3/32q) 85.1% 63.9%

Sub-Optimal 223 (3x3/32q) 85.5% 63.9%

Optimal 324 (5x5/32q) 85.0% 49.4%

Sub-Optimal 423 (5x5/32q) 95.8% 58.2%
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Global classification accuracies demonstrated that sub-optimal

final feature spaces for analyses 261, 461, 223, and 423 performed

as well as optimal final optimal feature spaces for analyses 162,

164, 322, and 324. As discriminant analysis, used to derive final

optimal feature spaces, was an optimal process, initial optimal

feature selection by analysis of correlation coefficient matrices

was determined a sub-optimal process.

For analyses 162, 164, 322, and 324, individual and pooled

covariance matrices were compared for final optimal feature

selection and classification of image data. Results are listed in

Table 5.2.1-3 and in Section 4.2.3.
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TABLE 5.2.1-3

Global Classification Accuracy for Analyses

162, 164, 322, 324 using Pooled and Individual Class

Covariance Matrices for Training Data over Image Urban

Analvsis

162 (3x3/1 6q)

164 (5x5/1 6q)

322 (3x3/32q)

324 (5x5/32q)

Global Classification Accuracy

Individual Cov. Matrices Pooled Cov. Matrix

83.4%

91.1%

85.1%

85.0%

54.6%

69.5%

60.8%

52.0%

Global classification accuracies using pooled class covariance

matrices were consistently inferior to those obtained using

individual class covariance matrices. Pooled class covariance

matrices increased the efficiency of the feature selection process

but decreased the accuracy of classification exercises. As process

accuracy was vitally important pooled class covariance matrices

were not used.
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The process by which final optimal feature spaces were derived was

validated for analyses 162, 164, and 322 by performing

classification over subsets of features Section 4.2.4 provides

further explanation. Two subsets of features were derived from

initial optimal feature space; subset #1 by discriminant analysis

and subset #2 by random selection of remaining features. Results

are listed in Table 5.2.1-4.

TABLE 5.2.1-4

Global Classification Accuracy for Analysis 162, 164, 322,

324
Subsets'

#1 and #2 over Image Urban

Global Classification Accuracy

Training Data Test Data

Analysis Subset #1 Subset #2 Subset #1 Subset#2

162 (3x3/1 6q) 82.6% 37.0% 62.4% 29.4%

164 (5x5/1 6q) 91.5% 78.5% 49.3% 45.4%

322 (3x3/32q) 83.6% 44.4% 64.5% 37.8%
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Global classification accuracies for subsets #1 were proven

consistently superior to those of subsets #2. The classification

results validated the process of final feature selection from initial

optimal feature spaces.

Initial and final optimal features for analyses 162, 164, 322, and

324 were not of singular occurrence. Initial optimal features

angsecaver, angsecrang, contraver, corraver, varraver, varrang,

sumenrang, diffenrang, and meascoranga were common to all

analyses. Final optimal features angsecaver, varraver, and diffrang

were also common to all analyses while final optimal features

angsecrang, contraver, corraver, indiffrang, sumenrang, entrang, and

meascoranga belonged in two or three analyses. Appendix A-2 lists

all final and initial optimal features for analyses over image Urban.

5.2.2 Analysis of Results for Image Field

Uniform class textures across large areas for image Field allowed

positioning and dimensioning of image class and sampling windows

to capture sufficient training pixels. Large image sampling windows

allowed for precise recording of class textural information and for

accurate estimation of class statistics. Global classification

accuracies for all analyses are listed in Table 5.2.2-1 and in Section

4.3.1
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TABLE 5.2.2-1

Global Classification Accuracy for Analyses

17, 21, 25, 21*3, 25*5, 3225 over Image Field

Global Classification Accuracy

Analysis Training Data Test Data

17 (17x1 7/1 6q) 98.7% 67.6%

21 (21x21/16q) 99.4% 66.2%

25 (25x25/1 6q) 99.5% 63.3%

21*3 (21x21/16q) 99.9% 64.7%

25*5 (25x25/1 6q) 99.9% 64.3%

3225 (25x25/32q) 100.0% 55.2%

For analyses 17, 21, 25, 21*3, 25*5, and 3225, global classification

accuracies for training data ranged between 98.7% and 100.0%, and

for test data between 63.3% and 67.6%. The exception was for

analysis 3225 where global classification accuracy for test data

156



was 55.2%. The decrease in global classification accuracy between

training and test data was due to insufficient numbers and non-

representativeness of training data for several classes. Inadequate

size of image class and image sampling windows, the small

dimension and awkward shape of classes light grey grass (5) and

dark grey desert (6), and inappropriate feature parameter settings

all contributed to decreasing classification accuracy. Reductions in

classification accuracy from test data compared training data was

apparent for classes light grey desert (1), light grey grass (5), and

dark grey desert (6) for several analyses. Appendix B-2 lists

classification accuracies for all classes.

Global classification accuracies of image training and test data

were compared for analyses (17, 21, 25) to demonstrate the effects

of constant number of quantization levels and increased image

sampling window size. Global classification accuracy decreased for

test data from 67.6% to 63.3% for increased image sampling window

size from 17*17 to 25*25 square pixels. Global classification

accuracies were compared for analyses (25, 3225) to demonstrate

the effects of constant image sampling window size and increasing

quantization levels from 16 to 32. Global classification accuracy of

test data decreased from 63.3% to 55.2% for analyses 25 and 3225

respectively. These results confirm that classification accuracies

are function of the textural content of each class under analysis for

constant feature parameter setting.
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The effect of a 30 degrees clockwise rotation on global

classification accuracy was illustrated in analysis 21 *r. Results

from analyses 21 and 21 *r are listed in Table 5.2.2-2 and in Section

4.3.3.

TABLE 5.2.2-2

Global Classification Accuracy for Analyses

21, 21*r over Image Field

Global Classification Accuracv

Analysis Test Data

21 (21x21/16q) 66.2%

21 *r (21x21/16q) 64.7%

(30 degree clockwise rotation)

Global classification accuracies for analyses 21 *r and 21 were

similar. This was due to the shift-invariant property of all textural

features, as was reported in Section 2.3.
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The effect of image magnification on global classification accuracy

was illustrated in analyses 21*3 and 25*5. Global classification

accuracies for analyses (21, 21*3) were comparable, as were those

for analyses (25, 25*5). The small scale of image Urban contributed

to the insensitivity of classification accuracy from increased

magnification. Larger increases in image magnification would

probably produce different classification accuracies. Table 5.2.2-1

lists results.

The process where by final optimal feature spaces were derived was

tested for analyses 21 and 25. This was carried out by performing

classification exercises of similar training and test data over

subsets of features of equal number derived from their initial

optimal feature spaces. Subset #1 features were derived by

discriminant analysis and subset #2 features were chosen at random

from those remaining. Results are listed in Table 5.2.2-3 and in

Section 4.3.4.
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TABLE 5.2.2-3

Global Classification Accuracy for Analyses

21, 25
Subsets'

#1 and #2 over Image Field

Global Classificat ion Accuracy

Training Data Test Data

Analysis Subset #1 Subset #2 Subset #1 Subset#2

21 (21x21/16q) 99.7% 97.2% 64.3% 58.5%

25 (25x25/1 6q) 99.1% 87.8% 62.8% 46.6%

Global classification accuracies for subsets #1 were proven

consistently superior to those for subsets #2. These results

confirmed the optimality of discriminant analysis for derivation of

final optimal features from initial optimal spaces for all analyses.

Computer selection of test pixels decreased global classification

accuracies from 67.6% to 49.3% for analysis 17 and from 66.2% to

55.0% for analysis 21 (see Section 4.3.2). These results were

expected since computer selected test pixels included mixed pixels
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which were often misclassified due to their ambiguous nature. Test

pixels selected by the analyst contained no mixed pixels.

Computer executed Gaussian Maximum Likelihood classification of

image Field for analysis 21 was carried out using textural feature

images of features angsecaver, angsecrang, corraver, corrang,

varrang, moyenne, and ecart to train the classifier. Global

classification accuracy decreased to 45.7% from 55.0% (obtained in

final optimal feature space). Such differences are attributable to

the number and location of different training pixels used to train

each analysis classifier.

Identical classification was carried out for analysis 21 for training

set incremented by the textural feature image derived from feature

entitled bright. Global classification accuracy increased from 45.7%

to 48.6%. Addition of textural feature image Brightpix.equal to final

optimal feature space provided for an increase in the distinction

between image classes as is seen in Figure 4.3-24.

Initial optimal features brightness, average, variance, angsecaver*,

angsecrang*, corraver*, corrang, varrang*, indiffrang, sumenrang*,

diffenrang*, meascoranga*, meascoraverb, sreimrang and gradnt

were common to 4 or more of the six analyses 17, 21, 25, 21*3,

25*5, and 3225. These features were also final optimal features for

4 or more of these analyses, with exception to features brightness
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and gradnt. All initial optimal features annotated by an asterisk
*

were also initial optimal features for analyses 162, 164, 322, and

324 over image Urban. Appendix B-1 lists all final and initial

optimal features for analyses of image Field.

5.2.3 Analysis of Results for Image Forest

Large image classes, and uniform and distinct class textures

facilitated accurate dimensioning and positioning of image class and

sampling windows. Accurate measurement of class textures from

within image sampling windows was possible to ensure maximum

discrimination between classes in feature space. Large numbers of

training pixels were extracted which allowed for precise estimation

of class statistics. Global classification accuracy for all analyses

are listed in Table 5.2.3-1
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TABLE 5.2.3-1

Global Classification Accuracy for Analyses

21, 25, 31, 3221, 3231 over Image Forest

Global Classification Accuracy

Analysis Training Data Test Data

21 (21x21/16q)

25 (25x25/1 6q)

31 (31x31/16q)

3221 (21x21/32q)

3231 (31x31/32q)

99.9% 79.3%

100.0% 76.6%

100.0% 72.6%

100.0% 83.3%

100.0% 72.6%

For analyses 21, 25, 31, 3221, and 3231, global classification

accuracies for training data ranged between 99.9% and 100.0% and

for test data between 72.6% and 83.3%. The decrease in global

classification accuracy between training and test data was

attributed to inaccurate estimation of class statistics due to lack

of representative training data for individual classes, and to the
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inability of feature parameter settings to provide for optimal

discriminant measures of class textures.

Global classification accuracies were compared for analyses (21,

25, 31) and (3221, 3231) to show the effects from constant number

of quantization levels and increased image sampling window size.

Global classification accuracies of test data for analyses (21, 25,

31) for 16 grey tone quantization levels, decreased from 79.3% to

72.6% for increased image sampling window size from 21*21 to

31*31 square pixels. For analyses (3221, 3231) similar effects

were observed for a constant 32 quantization levels. Global

classification accuracies for test data decreased from 83.3% to

72.6% for increased image sampling window size from 21*21 to

31*31 pixels. Global classification accuracies were compared for

analyses (21, 3221) and (25, 3225) to demonstrate the effects of

constant image sampling window size and varying number of

quantization levels. Global classification accuracy of test data

increased from 79.3% for analysis 21 to 83.3% for analyses 3221

while a constant classification accuracy of 72.6% was achieved for

analyses 31 and 3231 . All results are listed in Table 5.2.3-1 and in

Section 4.4.1. Individual class classification accuracies for all

analyses are listed in Appendix C-2.

The effect of a 30 degrees clockwise rotation on global

classification accuracy was illustrated in analysis 31 *r. The
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results from analyses 31 and 31 *r are listed in Table 5.2.3-2 and in

Section 4.4.3.

TABLE 5.2.3-2

Global Classification Accuracy for Analyses

31, 31*r over Image Forest

Global Classification Accuracy

Analysis Test Data

31 (31x31/16q) 72.6%

31 *r (31x31/16q) 65.9%

(30 degree clockwise rotation)

Although a difference exists in classification accuracies between

analyses 31 and 31 *r this exercise served to demonstrate the

relative insensitivity of all textural features to image rotation.

Section 2.3 provides further explanation.
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The process of final optimal feature space derivation was tested for

analyses 21, 25 and 31 by performing classification exercises of

similar training and test data over subsets of features consisting of

equal number of features derived from their initial optimal feature

spaces. Subsets #1 features were derived from discriminant

analysis while subsets #2 features were selected at random from

those remaining. Results are listed in Table 5.2.3-3 and in Section

4.4.4.

TABLE 5.2.3-3

Global Classification Accuracy for Analyses

21, 25, 31
Subsets'

#1 and #2 over Image Forest

Global Classification Accuracy

Training Data Test Data

Analysis Subset #1 Siubset #2 Subset #1 Subset#2

21 (21x21/16q) 100.0% 98.0% 78.6% 71 .3%

25 (25x25/1 6q) 100.0% 99.3% 78.0% 75.2%

31 (31x31/16q) 100.0% 97.3% 73.3% 62.0%
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Global classification accuracies of image training and test data in

final optimal feature spaces for subsets #1 were proven

consistently superior to those of subsets #2. Small differences

between classification accuracies of subsets are attributed to the

ability of features to constitute feature spaces within which

classes are amply discriminated. The superior classification

accuracies for subsets #1 over subsets #2 validated the technique

of final optimal feature selection by discriminant analysis from

initial optimal spaces for all analyses.

Initial optimal features brightness, average, variance, angsecaver*,

corraver*, corrang, varrang*, indiffrang, sumenrang*, entrang,

meascoraverb, maxprang, ent2, and gradnt were common to 3 or

more of the five analyses 21, 25, 31, 3221 and 3231. All initial

optimal features annotated by an asterisk
*

were initial optimal

features from analyses 162, 164, 322, and 324 over image Urban and

from analyses 17, 21, 25, 21*3, 25*5, and 3225 over image Field.

These initial optimal features were also final optimal features for 3

or more of the five analyses with exception to features brightness

and gradnt. Appendix C-1 lists all final and initial optimal features

for analyses over image Forest. The reoccurrence of features in

multiple analyses over all three images indicates that other images

displaying distinct textures could be accurately classified within

feature spaces containing the latter entities.
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6.0 Conclusion and Recommendations

Textural features were used to construct final optimal feature

spaces and to classify monochrome image pixels for all analyses.

The ability of textural features to provide for an optimal

environment for classification was function of the analyst's ability

to establish parameters which would allow for maximum distinction

between class textures.

Textural features were very appropriate for classification of

monochrome imagery provided that distinct textures exist over all

classes. It is suggested that they be used with spectral features

when multispectral image data is available to increase on

classification accuracy. Classification accuracy was influenced by

textural feature parameter settings, size of image class and

sampling windows, proper training of classifiers, and the values of

thresholds for feature selection exercises. High classification

accuracy was possible if class textures were unique amongst

themselves, few in number, and included large numbers of

representative training pixels. Classification accuracy was also

influenced by the ability of the analyst to properly carry out tasks

for supervised parametric classification.

Low classification accuracies for several classes were attributed to

improper textural feature parameter setting and selection of
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unrepresentative class training pixels. Results would be greatly

increased by grouping textures into common classes ( i.e. all

textures belonging to a ground cover class entitled
"desert"

would

score accurate classification if desert pixels were classified into

any of its textures). Classification accuracies were not recorded in

this manner as all textures were assumed independent from one

another and characteristic of separate classes. Reoccurrence of

final optimal features over all analyses also permits the analyst to

select these quantities for near-optimal classification of

monochrome imagery.

It is difficult to establish universal trends in classification

accuracy for different feature parameter settings. This is because

classification accuracies depend upon the textures being analysed

and vary from image to image. For all analyses in this study, it was

shown that changes in parameter settings resulted in selection of

different final optimal features and for changing classification

accuracy over all classes. It is suggested that future investigation

be directed towards optimizing parameter settings over all textures

to provide an optimal environment for their classification. For all

analyses over all images in this study, Appendix F provides a view of

the effects on classification accuracy from changing parameter

settings.
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Classification accuracies from all analyses were comparable to

those obtained by other researchers referenced in this study

(considering that several images used in this study contained

increased number of classes and classes of smaller size. A different

approach to feature selection was also implemented).

Initial optimal feature spaces were derived from analysis of pooled

class covariance matrices and final optimal features were derived

by execution of multivariate discriminant analysis from initial

optimal feature spaces. Final optimal feature spaces were sub-

optimal in nature due to the sub-optimal feature selection technique

used to derive initial final optimal features. By limiting

classification accuracy in this manner significant increases in

feature selection efficiency were achieved. Attention is to be

directed towards optimizing initial optimal feature selection (i.e. by

deriving a more representative pooled covariance matrix for all

classes) without decreasing the efficiency of this process.

Pursuant to this study, it is recommended that the source code be

reformatted to render all processes more effective. This includes

removing all run length type features from analysis and scanning

image pixels from within image class windows down consecutive

columns. Use of the Moore-Penrose generalized inverse over

individual class covariance matrices for derivation of final optimal
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features and for classification of image data was also to be

analysed in order to provide for optimal process accuracy.
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8.0 APPENDICES

Appendix A

A) Tgnal Features : Tonal features used for classification of digital

image data consist of:

i) brightness or gray-level counts of individual

image pixels, or

ii) means, standard deviations and range of gray-

level counts over image segments.

B) Textural Features : Textural features used for classification of

digital image data consist of:

i) Cooccurrence Matrix Textural Features : The

following fourteen textural features are extracted

from gray-tone cooccurrence matrices. For a

chosen image sampling distance and image window

size, four angular gray-tone cooccurrence matrices

can be derived for each feature. The mean and

range of each of the fourteen textural feature

averaged over all four directions consist of inputs
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to the classifier and twenty-eight features are

formed.

Notation : -

p(i,j) : (jj)th entry in a normalized gray-tone

spatial dependence matrix, = P(i,j)/R

-

Px(i) ith entry in the marginal-probability

matrix obtained by summing the rows of

p(i,j) where:

Ng

p(U) = S P(i,j).

i-1

-

Ng : number of gray levels in the quantized

image.

- R : number of resolution cells in the cooccurrence

matrix

Ng
-

Py(j) : X P(iJ)-

i = 1
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Ng Ng

-

Px+y(k) : X X P(U)- k = 2,3, 2Ng.

i-1 j-1

i + j = k

Ng Ng

-

Px-y(k) : X X P('.J)- k-0,1, Ng
- 1

i-1 j-1

/i - j/ = k

Ng Ng

1) Angular Second Moment: h = X X { P(U)}2-

i-1 j-1

N 1 N N
g-'

g g

2) Contrast: f2 = X n2 { X X P(U)}-

n=0 i=1 j=1

/i-j/=n

Ng Ng

3) Correlation: f3 = [X XjU) P(U)
-

UxUy]*

i = 1 j = 1 (var x)(var y)

Ng Ng

4) Variance: f4 = X X
('-^)2 P^-

i-1 j-1
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Ng Ng

5) Inverse Difference Moment: fs = j p(i.Q }
i-1 j = 1 (1+ (i-j)2)

2Ng

6) Sum Average: f6 = X ' Px+y(i).

i = 2

2Ng

7) Sum Variance: f7 = X (>-f8)2 Px+y(0-

i = 2

2Ng

8) Sum Entropy: f8 =
- X Px+yO) log{px+y(i)}-

i = 2

Ng Ng

9) Entropy: fg =
- X X P(U) log(p(i,j)).

i-1 j-1

10) Difference Variance: f 1 0 = variance of px-y.

Ng-1

11) Difference Entropy: f 1 1 =
- X Px-yO) log{pX-y(i)}-

i-0
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12), 13) Information measures of correlation:

f-12 = HXY - HXY1 .

max {HX.HY}

fl3 = (1 -

exp[ -2.0(HXY2
- HXY)])1/2

.

Ng Ng

where: HXY = - X X P(U) 'og(P(''J))-

i-1 j-1

Ng Ng

HXY1 =
- X X P(''J) log{Px(i)Py(J)l-

i-1j-1

Ng Ng

HXY2 =
- X X Px(i)PyG) log{pX(i)Py(J)}

i-1 j-1

14) Maximal Correlation Coefficient:

f-14 = (Second largest eigenvalue of Q)1/2.

Q(i j) = X { P(i.k)Pn>)}.

k Px(i)Py(k)
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Another approach to defining features of this class is to use

matrices based on pairs of average gray levels, taken over

neighbourhoods whose centers are 3 distance apart.

ii) Gray Level Difference Statistics : Let fm(x,y) be

the average gray-level of the image in a square

region of side m+1 approximately centered at (x,y),

or the gray-level of the same square region

centered at (x,y). The choice is left to the analyst.

Features are the differences of the latter entities

for pairs of horizontally, vertically, or diagonally

adjacent regions as follows:

1) /fm(x-m, y-[mi])
- fm(x+1, y-[mi])/ (horizontal)

2 2

2) /fm(x-[m + 11. y-m)
- fm(x-[m + 1], y+1)/ (vertical).

2 2

3) /fm(x-m, y-m)
- fm(x, y)/ and

(diagonals).

/fm(x-m, y)
- fm(x, y-m)/

A- 6



additional features derived from absolute

differences between pairs of gray levels or of

average gray levels. For for a given displacement 3

= (Ax,Ay) we let fa(x,y) = /f(x,y) - f(x + Ax, y + Ay)/

and p9 the probability density of f3(x,y) we derive

the following features which measure image

coarseness:

1) Contrast: CON = i2P9(i).

2) Angular 2nd Moment: ASM = X
P3(')2

3) Entropy: ENT =
- X P3(") log P3(i).

4) Mean : M = (1/m) ( X " P3(') ) (for m 9rav levels)

5) Inverse Difference Moment: IDM = X P3(') / ('2 + 1)-
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Another approach to defining features of this class is to use pd

based on differences between pairs of average gray levels, taken

over neighbourhoods whose centers are 3 distance apart.

iii) Gray Level Run Statistics : Let p(i,j) be the

number of runs of length j, in directions B = 0, 45,

90,135 degrees, consisting of points whose gray-

levels have value i. Let Nr be the number of runs

and Ng be the number of gray-levels. The features

which make up this type of measurement are listed

as follows :

Nr Nr

1) Long Runs Emphasis : LRE = X J2 P('-J) / X P(U)-

for anv gray-level i j = 1 j = 1

Nr Nr

2) Short Runs Emphasis : SRE = X (p(U)-) / X
P(''J)'

for any grav-level i j = 1 j2 j = 1

Ng Nr Nr

3) ftrav Level Distribution : GLD = X (X P(U) )2/ X P*'^

i = 1 j = 1 j
= 1

A- 8



Nr Ng Nr

4) Run Length Distribution : RLD = X (X p(U) )2/ X P('-J)-

j-1 i-1 j-1

Nr

5) Run Percentage : RPC = (X P(i j) ) ( N is the number of

for anv orav-level i
j = -\ fg2 points in the image).

Ng Nr Ng Nr

6) Long Runs Emphasis : LRM = X X J2 P(U) /X X
p(i'j)'

moments i = 1j = 1 i = 1 j = 1

Ng Nr Ng Nr

7) Short Runs Emphasis : SRM =X X P-IU) /X X P('-J)-

moments i = 1 j = 1 j2 i = 1 j = 1

Ng Nr Nr

8) Gray Level Non- : GLN = X (X P(U)
)2
' X P('-J)-

Uniformity i = 1 j = 1 j = 1

A- 9



Nr Ng Ng Nr

9) Run Length Non- : rld = (j p(iij) )2/ X P(U)

Uniformity j = 1 i = 1 i = 1 j = 1

Ng Nr Ng Nr

10) Fraction of Image : fir = X p(i,j) / X X P(U)-

in Runs i = 1j = 1 j = 1 j = 1

iv) Composite Features : from a given set of

features, a set of composite features is derived (1)

by taking the mean s, ranges and standard

deviations over all sampling directions for each

image sampling distance for each feature, and (2)

by taking the means, ranges and standard

deviations over all sampling orientations, for each

sampling direction for each feature.

v) Textural Edgeness : Features extracted from

image gradients provide a measure of the degree of

edgeness in image areas as follows:
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- For every sampling distance d and resolution cell

I defined over neighbourhood N the gradient may be

expressed as follows:

G(d) = X {/'("J) - Ki + d,j)/ + /l(i,j) - l(i -d,j)/ +

[(i,j) = N] /l(i,j)
-

l(i,j + d)/ + /l(i,j) - l(i,j -

d)/}

(The quick Robert's, Sobel and Prewitt gradient

filters may also be applied upon image data)

- following computation of a gradient for a desired

subimage and possible subsequent gray-level

thresholding the average value of the gradient

Ar(x,y) over a neighbourhood of radius r centered at

(x,y) is determined as follows:

Ar(x -

r,y)
- Ar(x + r,y) = Hr(x,y) ( horizontal

rate of change of average brightness ).

Ar(x,y
-

r)
- Ar(x,y + r) = Vr(x,y) ( vertical rate of

change of average brightness ).

and
(Hr2 +

Vr2)1/2 ( magnitude of maximum

rate of change ).
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tan-1(Vr/Hr) ( direction of maximum

rate of change ).

vi) Texture Transform Features : From each

channel of multispectral image data are derived

texture transforms using user-specified windows

of a given dimension. Each texture transform

represents the spatial distribution of gray-levels

in and around each pixel of the original image in a

given spectral channel of the image data. For

single channel image data, the features which are

extracted from the texture transform include the

mean, standard deviation, skewness and kurtosis

of the gray-levels within the windows, mean gray-

level differences between nearest-neighbor pixels

and the mean area above and below tonal

thresholds. For p-channel multispectral image

data the following features are extracted from

user-specified windows which take into account

the additional dimensionality of the image data:

1) Mean (MNL) : X xij/n (XU is grav level vector

norm length for image

pixel(ij)).
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2) Variance (VNL^ : XJ xij
- MNL^2

n - 1

3) Skewness (SKFW^ : / X (xij
- MNL^/

(n - 1)(VNL)3/2

4) Kurtosis (KURT) : X (xij
- mnu4

(n - 1)(VNL)2

5) Range (RNL^ :
max(xjj)

-

min(xjj)

6) Pearson's 2nd Coefficient of Skewness (PSKEW) :

/_MNL -

xm/_ (where xm = median norm length in

(VNL)^2 a window).

7) Absolute Value of Mean Norm Length Differences (MPIF^ :

/ X (xij
- xr) [_ (where xc = norm length of the gray

n - 1 level vector representing a

window's center pixel).
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8) Mean of Souared Norm Length Differences (MSCn

X. (xjj^xci2

n - 1

9) Maximum of Squared Norm Length Differences (MAXSQ^

max(xjj
- xc)2

10) Mean Euclidean Distance (MEUC) :

X [ Xj Ucf ^ij/12] 1/2 (where
xij/

- arav tone for

n - 1 spectral channel /, pixel

(i,j) of a multispectral

image), and

(x r = gray tone for

spectral channel / of a

window's center pixel).

11) Maximum Euclidean Distance (MAXEUC) :

[ X/(xc/ -

xij/)2]-p y
' * *"

" i * ^ ^
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Appendix A-l

Textural Features Utilized for all Analyses on

Images Urban, Field, and Forest

Image: Urban. /Field./Forest.

A-Cooccurrence Type Features

1- angular second moment average Y Y Y

(angsecaver)
2- angular second moment range Y Y Y

(angsecrang)
3- contrast average Y Y Y

(contraver)
4- contrast range Y Y Y

(contrang)
5- correlation average Y Y Y

(corraver)
6- correlation range Y Y Y

(corrang)
7- variance average Y Y Y

(varraver)
8- variance range

Y Y Y

(varrang)
9- inverse difference moments average Y Y Y

(indiffaver)
10- inverse difference moments range Y Y Y

(indiffrang)
11- sum average average

Y

(sumaver)
Y

12- sum average range

(sumavrang)

Y

Y
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Urban Field Forest

13- sum variance average Y Y Y

(sumvaver)
14- sum variance range Y Y Y

(sumvarang)
15- sum entropy average Y Y Y

(sumenaver)
16- sum entropy range Y Y Y

(sumenrang)
17-

entropy average Y Y Y

(entaver)
18-

entropy range Y Y Y

(entrang)
19- difference entropy average Y Y Y

(diffenaver)
20- difference entropy range Y Y Y

(diffenrang)
21- information measure of Y Y Y

correlation A av (measeoravera)
22- information measure of Y Y Y

correlation A range (meascoranga)
23- information measure of Y Y Y

correlation B av (meascoraverb)
24- information measure of Y Y Y

correlation B range (meascorangb)
25- difference variance average Y Y Y

(diffvaraver)
26- difference variance range Y Y Y

(dvarg)
27- maximum probability average Y Y Y

(maxpaver)
28- maximum probability range Y Y Y

(maxprang)

B - First nrriPr Statistics

29- gradient
Y Y Y

(gradnt)
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Urban Field Forest

30- brightness

(bright)
31- average brightness

(moyenne)
32- variance

(ecart)

C - Run Length Statistics

33- short run emphasis inverse moment av. Y

(sreimaver)
34- short run emphasis inverse moment range Y

(sreimrang)
35- long run emphasis inverse moment av. Y

(Ireimaver)
36-

long run emphasis inverse moment range Y

(Ireimrang)
37-

grey level non-uniformity average Y

(glnaver)
38-

grey level non-uniformity range Y

(glnrang)
39- run length non-uniformity average Y

(rlnaver)
40- run length non-uniformity range Y

(rlnrang)
41- fraction of image in runs average Y

(firraver)
42- fraction of image in runs range Y

(firrang)

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

Y Y

D - Grev Level Difference Statistics

43- contrast

(contrast2)
44- angular second moment

(angsec2)

Y

Y

Y Y

Y Y
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Urban Field Forest

45-
entropy

(ent2)

'

46- mean

(mean2)

note : av. = average,

Y = feature was used in all analyses for image under

consideration
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APPENDIX A-2

Summary of Initial and Final Optimal Feature Spaces for

Analyses 162, 164, 322, 324 for Image Urban

Analvsis : Ml 164 3^2 114

Features

angsecaver */@ */@ */@ */@

angsecrang
*

*/@ *

*/@
contraver */@ *

*/@ *

corraver * *

*/@ */@

corrang *

varraver */@ */@ */@ */@

varrang
* * *

*/@

indiffrang */@ *

*/@

sumenrang */@ */@ *

*/@

entrang */@ */@

diffenrang */@ */@ */@ */@

meascoranga */@
*

*/@ */@

meascoraverb *

*/@

meascorangb
* *

*/@

sreimrang
*

*/@

lreimrang
*

*/@

ent2 */@

glnaver
* *

glnrang
*

rlnaver
*

rlnrang
*

gradnt
*
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note :
* = feature was derived for initial optimal feature space

@ = feature was derived for final optimal feature space
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APPENDIX A-3

Percentage Classification Accuracy of Training and Test

Data for Analyses 162, 164, 322, 324

for Image Urban

(individual class covariance matrices)

Analvsis : 162 #164 #322 #324

Class Train Test Train Test Train Test Train Test

1 96.8 60..0 97.1 33.3 100.0 76.6 100.0 50.0

2 97.2 43.0 100.0 33.3 100.0 60.0 100.0 20.0

3 97.1 30.0 100.0 10.0 100.0 43.3 0.0 0.0

4 89.6 86.6 95.4 83.3 91.4 93.3 98.0 96.6

5 80.0 83.3 92.6 90.0 80.6 83.3 97.2 83.3

6 77.1 43.3 92.8 33.3 77.1 40.0 75.9 26.6

7 83.9 73.3 89.0 50.0 75.2 66.6 86.4 56.6

8 63.5 60.0 72.1 70.0 57.3 63.3 81- 63.3

9 56.4 36.6 75.3 36.6 92.3 70.0 97.4 70.0

10 90.4 66.6 95.5 60.0 90.4 56.6 100.0 43.3

11 85.9 66.6 91.8 66.6 71.3 50.0 99.1 33.3
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APPENDIX A-4

Percentage Classification Accuracy of Training Data

for Analyses (162, 261), (164, 461), (322, 223), (324, 423)

for Image Urban

Analvsis : 162 261 164 461

Class

1 96.8 96.8 97.1 100.0

2 97.2 97.2 100.0 100.0

3 97.1 97.1 100.0 100.0

4 89.6 85.0 95.4 97.5

5 80.0 74.5 92.6 79.2

6 77.1 80.1 92.8 96.1

7 83.9 87.3 89.0 58.1

8 63.5 60.7 72.1 56.3

9 56.4 94.8 75.3 48.1

10 90.4 88.0 95.5 86.6

1 1 85.9 4.0 91.8 95.1

Analvsis : 322 223 324 423

Class

1 100.0 100.0 100.0 100.0

2 100.0 98.6 100.0 100.0

3 100.0 100.0 0.0 100.0

4 91.4 90.8 98.0 99.0

5 80.6 80.9 97.2 98.6

6 77.1 77.5 75.9 93.5

7 75.2 77.7 86.4 93.9
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8

9

10

1 1

322 2 23 324 423

57.3 53.4 81.3 79.2

92.3 80.3 97.4 97.4

90.4 91.0 100.0 100.0

71.3 90.0 99.1 95.9
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APPENDIX A-5

Percentage Classification Accuracy of Test Data

for Analyses (162, 261), (164, 461), (322, 223), (324, 423)

for Image Urban

Analvsis : 162 261 164 461

Class

1 60.0 73.3 33.3 43.3

2 43.0 46.6 33.3 20.0

3 30.0 40.0 10.0 16.6

4 86.6 93.3 83.3 90.0

5 83.3 73.3 90.0 50.0

6 43.3 56.6 33.3 50.0

7 73.3 76.6 50.0 50.0

8 60.0 56.6 70.0 36.6

9 36.6 86.6 36.6 13.3

10 66.6 66.6 60.0 60.0

1 1 66.6 6.6 66.6 66.6

Analvsis :

Class

322 223 324 423

1 76.6 76.6 50.0 63.3

2 60.0 60.0 20.0 43.3

3 43.3 43.3 0.0 10.0

4 93.3 86.6 96.6 96.6

5 83.3 76.6 83.3 93.3

6 40.0 36.6 26.6 43.3

7 66.6 70.0 56.6 73.3
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U2. 221. J24_ Ml

8

9

10

1 1

63.3

70.0

56.6

50.0

56.6

60.0

70.0

66.6

63.3

70.0

43.3

33.3

70.0

70.0

53.3

23.3
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APPENDIX A-6

Percentage Classification Accuracy of Training Data

for Analyses 162, 164, 322, 324

for Image Urban

(pooled class covariance matrix)

Analvsis : H? 164 322 324

Class

1 53.9 91.4 57.1 22.9

2 38.8 55.0 52.8 5.0

3 60.0 33.3 54.3 0.0

4 74.4 94.5 79.0 91.0

5 68.8 75.9 70 .6 75.9

6 3.9 51.3 37.1 72.7

7 68.7 84.7 72.4 60.3

8 57.4 66.5 55.9 76.0

9 45.3 75.3 69.2 2.6

10 54.4 85.5 56.6 66.6

11 75.0 50.8 64.1 99.2
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APPENDIX A-7

Summary of Individual Feature Subsets for

Analyses 162, 164, 322 for Image Urban

Analyses : 162 164 322

Subsets : 1 #_2 11 &2 1 O

angsecaver * * *

angsecrang
* * *

contraver * * *

corraver * * *

varraver * * *

varrang
* * *

indiffrang * *

sumenrang
* * *

entrang *

diffenrang
* * *

meascoranga
* * *

meascoraverb *

meascorangb *

sreimrang
*

lreimrang
* *

ent2
*

glnaver
*

glnrang
*

note :
*

= feature was selected within appropriate analysis subset
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APPENDIX A-8

Percentage Classification Accuracy of Training and Test

Data for Analysis Subsets 162, 164, 322

for Image Urban

(individual class covariance matrices)

Analyses : 162 1AA

Subsets : #_1 #_2_ #_1_ O

Class Train Test Train lSi Train lSi Hail! 1*21

1 93.6 80..0 87.3 40.0 100.0 33.3 100.0 36..6

2 97.2 46.6 31.9 30.0 100.0 30.0 97.5 20.0

3 97.1 30.0 74.3 50.0 100.0 3.0 100.0 30.0

4 85.9 96.6 87.3 96.6 95.9 86.6 96.6 96.6

5 76.4 66.6 40.3 46.6 95.8 90.0 97.2 90.0

6 79.3 46.6 11.2 6.0 90.2 30.0 51.3 16.6

7 85.1 83.3 9.9 3.0 89.1 53.3 56.7 53.3

8 59.1 63.3 2.0 3.0 74.6 63.3 75.7 76.6

9 58.1 33.3 29.1 23.3 74.0 36.6 74.0 26.6

10 91.1 66.6 23.5 20.0 93.3 50.0 92.2 50.0

11 85.9 73.3 10.4 6.0 93.4 66.6 22.1 3.0
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Analvsis : 322

Subsets : 1 JL2

Class Train Test Train Test

1 100.0 76.6 42.8 26.6

2 100.0 63.3 56.4 36.6

3 100.0 46.6 82.9 66.6

4 91.5 96.6 72.1 73.3

5 80.9 86.6 46.4 56.6

6 76.7 36.6 14.2 10.0

7 77.1 70.0 14.2 20.0

8 57.8 60.0 11.5 16.6

9 94.9 73.3 64.1 60.0

10 90.4 56.6 21.3 10.0

11 50.0 43.3 61.4 40.0
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Appendix A-9

Best Combinations of Features for Analyses 162, 164, 322,

324 for Image Urban

Analvsis 162 Best Combinations of Features in Final Optimal

Feature Space :

best 2 = f4, f5

best 3 = f3, f4, f5

best 4 = f2, f3, f4, f5

best 5 = f3, f4, f5, f7, f8

best 6 = fl, f2, f3, f5, f6, f8

best 7 = f2, f3, f5, f6, f7, f8, f9

best 8 = f2, f3, f5, f7, f8, f9, flO, fll

best 9 = fl, f2, f3, f6, f7, f8, f9, flO, fll

best 10 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO

best 11 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll
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where :

Co-occurrence Type Features

fl = angular second moment average

f2 = angular second moment range

f3 = contrast average

f4 = correlation average

f5 = variance average

f6 = variance range

f7 = sum entropy range

f8 = difference entropy range

f9 = measure of correlation A range

Run Length Statistics

flO = long run emphasis inverse moment range

f1 1 = run length non-uniformity range
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Analvsis 164 Best Combinations of Features in Final Optimal

Feature Space :

best 2 = f4, f5

best 3 = fl, f5, fl6

best 4 = fl, f2, f5, f7

best 5 = fl, f2, f5, f7, flO

best 6 = f2, f4, f5, f7, f9, flO

best 7 = fl, f2, f5, f7, f8, f9, flO

best 8 = fl, f2, f5, f7, f8, flO, fll, fl4

best 9 = fl, f2, f3, f5, f7, f8, f9, fll, fl4

best 10 = fl, f3, f5, f6, 17, f8, f9, flO, fll, fl4

best 11 = f2, f5, f7, f8, f9, fll, fl2, fl3, fl4, fl5, fl6

best 12 = fl, f3, f7, f9, flO, fll, fl2, fl3, fl4, fl5, fl6, fl7

best 13 = fl, f2, f3, f4, f5, f6, f7, f9, flO, fll, fl2, fl3, fl5

best 14 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl5

best 15 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl5,

fl7

best 16 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl4,

fl5, fl7

best 17 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl4,

fl5, fl6, fl7
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where :

Co-occurrence Type Features

fl = angular second moment average

f2 = angular second moment range

f3 = contrast average

f4 = correlation average

f5 = variance average

f6 = variance range

f7 = inverse difference range

f8 = sum entropy range

f9 =

entropy range

flO = difference entropy range

fll = measure of correlation A range

fl2 = measure of correlation B average

fl3 = measure of correlation B range

Run Length Statistics

fl4 = short run emphasis inverse moment range

fl5 =
grey level non-uniformity average

fl6 = grey level non-uniformity range

fl7 = run length non-uniformity
average
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Analvsis 322 Best Combinations of Features in Final Optimal

Feature Space :

best 2 = f4, f5

best 3 = fl, f4, f5

best 4 = fl, f4, f5, fl2

best 5 = fl, f4, f5, fll, fl2

best 6 = fl, f3, f4, f5, fll, fl2

best 7 = fl, f3, f4, f5, f9, fll, fl2

best 8 = fl, f3, f4, f5, f9, flO, fll, fl2

best 9 = fl, f3, f4, f5, f6, f9, flO, fll, f12

best 10 = fl, f2, f3, f4, f5, f6, f9, flO, fll, fl2

best 11 = fl, f2, f3, f4, f5, f6, f7, f9, flO, fll, fl2

best 12 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2
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where :

Co-occurrence Type Features

fl = angular second moment average

f2 = angular second moment range

f3 = contrast average

f4 = correlation average

f5 = variance average

f6 = variance range

f7 = inverse difference range

f8 = sum entropy range

f9 = difference entropy range

flO = measure of correlation A range

Run Length Statistics

fll = long run emphasis inverse moment range

Grey Level Difference Statistics

fl2 = entropy 2
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Analysis 324 Pest Combinations of Feature, in Fjnn1 nftt:M|lT
Feature Space :

best 2 : f4, f6

best 3 : fl, f4, f6

best 4 : fl, f3, f4, f6

best 5 : fl, f3, f4, f6, f8

best 6 : fl, O, f4, f6, f8, fl5

best 7 : fl, f3, f4, f6, f8, flO, fl5

best 8 : fl, f3, f4, f6, f8, flO, fl3, fl5

best 9 : fl, f3, f4, f5, f6, f7, f8, flO, fl5

best 10 : fl, f2, f3, f4, f5, f6, f7, f8, flO, fl5

best 11 : fl, f3, f4, f5, f6, f7, f8, f9, flO, fl2, fl4

best 12 : fl, f3, f4, f5, f6, f7, f8, f9, flO, fl2, fl3, fl5

best 13 : fl, f2, f4, f6, f7, f8, f9, flO, fll, fl2, fl3, fl4, fl5

best 14 : fl, f2, f3, f4, f5, f6, f7, f8, f9, fll, fl2, fl3, fl4, fl5

best 15 : fl, f2, f3, f4, f5, f6, fl, f8, f9, flO, fll, fl2, fl3, fl4,

fl5

best 16 : fl, f2, f3, f4, f5, f6, fl, f8, f9, flO, fll, fl2, fl3, fl4,

fl5, fl6

best 17 : fl, f2, O, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl4,

fl5, fl7
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where :

Co-occurrence Type Features

fl = angular second moment average

f2 = angular second moment range

f3 = contrast average

f4 = correlation average

f5 = correlation range

f6 = variance average

f7 = variance range

f8 = inverse difference range

f9 = sum entropy range

flO =
entropy range

fll = difference entropy range

fl2 = measure of correlation A range

fl3 = measure of correlation B average

fl4 = measure of correlation B range

Run Length Statistics

fl5 = short run emphasis inverse moment range

fl6 = grey level non-uniformity
average

First Order Statistics

fl7 = gradient
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Appendix A-10

Angular Second Moment Average (Angsecaver)

Contrast Average (Contraver)
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Correlation Average (Corraver)

Variance Average (Varraver)
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Variance Range (Varrang)

Sum Entropy Range (Sumenrang)
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Difference Entropy Range (Diffenrang)

Measure of Correlation A Range (Meascoranga)
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Long Run Emphasis Inverse Moment Range (Lreimrang)

Run Length Non-Uniformity Range (Rlnrang)
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APPENDIX B-1

Summary of Initial and Final Optimal Feature Spaces for

Analyses 17, 21, 25, 21*3, 25*5, 3225 for Image Field

Analvsis : 17 21 25 21*3 25*5 3225

Features

brightness * * * * *

average <@ *@ "@ *@ <@ *@

variance *@ *@ *@ <@ *@
*

angsecaver <@ *@ *@ <@

angsecrang *@ *@ *@ *@ <@

contraver *@

contrang *@

corraver "@ <@ *@ *@ *@

corrang <@ <@ *@ *@ *@
*

varrang *@ <@ <@ *@
*

=*@

indiffrang <@ *@ *@ *@ *@

sumenrang "@
*

<@ *@ *@

entrang *@ <@

diffenrang <@ *@ *@ *@

meascoravera

meascoranga tg) *@ <@ *@
* *@

meascoraverb <@ *@ *@ <@

dvarg
* *

maxprang "@
*

sreimrang <@ *@ *@ <@
*

lreimrang
-F-

B-l-1



12 2J 25 21*3 25*5 3225

^5) tg)

glnaver 1@

glnrang t

contrast2 tg> *

gradnt
* * * *

note :
* = feature was derived for initial optimal feature space

@ = feature was derived for final optimal feature space
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APPENDIX B-2

Percentage Classification Accuracy of Training and Test

Data for Analyses 17, 21, 25, 21*3, 25*5, 3225, 21*r for

Image Field (individual class covariance matrices)

Analysis : 17_ 21_ 2_5_ 21*3

Class Train Test Train lsl Train lSt Train lsj

1 100.0 66.6 100.0 60.0 100.0 53.3 100.0 66.6

2 98.8 83.3 96.6 70.0 100.0 86.6 100.0 83.3

3 99.2 90.0 100.0 90.0 96.5 83.3 99.7 90.0

4 100.0 73.3 100.0 76.6 100.0 66.6 100.0 80.0

5 92.8 26.6 99.5. 46.6 100.0 60.0 99.5 40.0

6 100.0 43.3 100.0 20.0 100.0 13.3 100.0 16.6

7 100.0 90.0 100.0 100.0 100.0 80.0 100.0 76.6

Analvsis : 25*5 3_2_25_ HjLr

Class Train Test Train lSl XiLSJ

1 100.0 50.0 100.0 60.0 76.6

2 100.0 73.3 100.0 46.6 84.6

3 99.8 90.0 100.0 96.6 78.9

4 100.0 66.6 100.0 83.3 57.3

5 100.0 60.0 100.0 23.3 28.6

6 100.0 10.0 100.0 10.0 27.0

7 100.0 100.0 100.0 66.6 100.0
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APPENDIX B-3

Summary of Individual Feature Subsets for

Analyses 21 and 25 for Image Field

Analyses :
21 2 5

Subsets : JLi 2. 1

Jr Ki.

12

brightness *
*

average *
*

variance *
*

angsecaver *

angsecrang * *

corraver *
*

corrang *
*

varrang * *

indiffrang *

sumenrang * *

diffenrang *

meascoranga * *

meascoraverb *

dvarg *

maxprang *

sreimrang
* *

contrast2 *

glnaver *

gradient
* *

note :
*

= feature was selected within appropriate analysis subset
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APPENDIX B-4

Percentage Classification Accuracy of Training and Test

Data for Analysis Subsets 21 and 25

for Image Field

(individual class covariance matrices)

Analv;>es : 21 2A

Subsets L 2. 1 L2

Class Train Test Train Test Train Test Train Test

1 100.0 66.6 99.1 50.0 100.0 50.0 93.7 80.0

2 100.0 56.6 98.3 73.3 100.0 96.6 98.3 50.0

3 98.3 83.3 92.9 86.6 99.4 96.6 51.2 26.6

4 100.0 80.0 99.5 50.0 100.0 66.6 73.8 30.0

5 100.0 43.3 90.5 46.6 100.0 40.0 98.6 43.3

6 100.0 20.0 100.0 20.0 100.0 13.3 100.0 13.3

7 100.0 100.0 100.0 83.3 100.0 76.6 99.1 83.3
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APPENDIX B-5

Percentage Classification Accuracy of Computer Selected

Test Data (ERDAS) using Final Optimal Feature Space

Classifier (FOFSC) and Computer Generated Classifier

for Analyses 17 and 21 over Image Field

Classifier FOFSC 17 FOFSC 21 ERDAS 21(7) ERDAS 2im

Class

1 50.0 55.0 60.0 55.0

2 45.0 50.0 45.0 65.0

3 70.0 70.0 55.0 50.0

4 50.0 65.0 55.0 55.0

5 30.0 35.0 30.0 30.0

6 25.0 25.0 45.0 55.0

7 75.0 85.0 30.0 30.0

note : FOFSC = Final Optimal Feature Space Classifier

ERDAS(7) = Computer Generated Classifier using 7 Final

Optimal Textural Feature Images

ERDAS(8) = Computer Generated Classifier using 7 Final

Optimal Textural Images plus Textural Image

derived from feature Bright
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Appendix B-6

Best Combinations of Features for Analyses 17, 21, 25,

21*3, 25*5, 3225 for Image Field

Analvsis 17 Best Combinations of Features in Final Optimal

Feature Space :

best 2 = f2, f4

best 3 = f3, f6, fl3

best 4 = f2, f3, f6, fl3

best 5 = f2, f3, f4, f6, fl3

best 6 = f2, f3, f5, f6, f9, fl3

best 7 = f2, f3, f4, f5, f6, f9, fl3

best 8 = f2, f3, f4, f5, f6, f8, f9, fl3

best 9 = f2, f3, f4, f5, f6, f8, f9, fl3, fl4

best 10 = f2, f3, f4, f5, f6, f8, f9, fll, fl2, fl3

best 11 = 2, f3, f4, f5, f6, f8, f9, fll, fl2, fl3,
fl4

best 12 = f2, f3, f4, f5, f6, fl, f8, f9, fll, fl2, fl3,
fl4

best 13 = f2, f3, f4, f5, f6, fl, f8, f9, flO, fll,
fl2, fl3, fl4

best 14 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO,
fll, fl2, fl3, fl4

best 15 = fl, f2, f3, f4, f5, f6, fl, f8, f9,
flO, fll, fl2, fl3, fl4,

fl5
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where :

First Order Statistics :

fl = brightness

f2 = average brightness

f3 = variance of brightness

fl5 = gradient

Co-occurrence Type Features

f4 = angular second moment average

f5 = angular second moment range

f6 = contrast average

f7 = correlation range

f8 = variance range

f9 = inverse difference range

flO = sum entropy range

fll = difference entropy range

fl2 = measure of correlation A range

f13 = measure of correlation B average

Run Length Statistics

fl4 = short run emphasis inverse moment range
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Analvsis 21 Best Combinations of FfHtl,rps in Fjnn1 Qj2limaj

Feature Space :

best 2 = f3, f6

best 3 = f3, f6, fl4

best 4 = f2, f3, f6, fl4

best 5 = f2, f3, f4, f6, fl4

best 6 = f2, f3, f4, f6, f7, fl4

best 7 = f2, f3, f4, f6, fll, fl2, fl4

best 8 = f2, f3, f4, f6, f7, fll, fl2, fl4

best 9 = f2, f3, f4, f6, f7, fll, fl2, fl4, fl5

best 10 = f2, f3, f4, f6, 17, f9, fll, fl2, fl4, fl5

best 11 = f2, f3, f4, f5, f6, f7, f9, fll, fl2, fl4, fl5

best 12 = f2, f3, f4, f5, f6, fl, f9, flO, fll, fl2, fl4, fl5

best 13 = f2, f3, f4, f5, f6, f7, f8, f9, fll, fl2, fl3, fl4, fl5

best 14 = f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl4, fl5

best 15 = fl, f2, f3, f4, f5, f6, f8, f9, flO, fll, fl2, fl3, fl4, fl5,

fl6

best 16 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl4,

fl5, fl6
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where :

First Order Statistics :

fl = brightness

f2 = average brightness

f3 = variance of brightness

f16 = gradient

Co-occurrence Type Features

f4 = angular second moment average

f5 = angular second moment range

f6 = correlation average

f7 = correlation range

f8 = variance range

f9 = inverse difference range

flO = sum entropy range

fll = difference entropy range

f12 = measure of correlation A range

Run Length Statistics

fl3 = short run emphasis inverse moment range

fl4 = grey level non-uniformity
average

Grey Level Difference. Statistics

f15 = contrast
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Analvsis 25 Best Combinations of Features in Final Ontimal

fpatiire Space :

best 2 = f3, flO

best 3 = f3, f5, flO

best 4 = f3, f5, f8, flO

best 5 = f2, f3, f5, flO, fl3

best 6 = f2, f3, f5, f9, flO, fl3

best 7 = f2, f3, f5, f8, f9, flO, fl3

best 8 = f2, f3, f5, fl, f8, f9, flO, fl3

best 9 = f2, f3, f5, fl, f8, f9, flO, fl2, fl3

best 10 = fl, f2, f3, f5, f7, f8, f9, flO, fl2, fl3

best 11 = f2, f3, f4, f5, f6, 17, f8, f9, flO, fl2, fl3

best 12 = fl, f2, f3, f4, f6, fl, f8, f9, flO, fl2, fl3,
fl4

best 13 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fl2, fl3,
fl4

best 14 = fl, f2, f3, f4, f5, f6, fl, f8, f9, flO, fll, fl2, fl3,
fl4
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where :

First Order Statistics :

fl = brightness

f2 = average brightness

f3 = variance of brightness

fl4 = gradient

Co-occurrence Type Features

f4 = angular second moment range

f5 = correlation average

f6 = correlation range

f7 = variance range

f8 = sum entropy range

f9 = measure of correlation A range

flO = measure of correlation B average

fll = difference variance range

fl2 = maximum probability range

Run Length Statistics

fl3 = short run emphasis inverse moment range
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Analvsis 21*3 Best Combinations oi Features in Final

Optimal Feature Space :

best 2 = f3, f6

best 3 = f3, f6, fl4

best 4 = f3, f4, f6, fl4

best 5 = f2, f3, f4, f6, fl4

best 6 = f2, f3, f4, f6, fl4, fl5

best 7 = f2, f3, f4, f6, fl , fl4, fl5

best 8 = f2, f3, f4, f6, f7, fl3, fl4, fl6

best 9 = f2, f3, f4, f6, f7, fl2, fl3, fl4, fl6

best 10 = f2, f3, f4, f5, f6, fl, fl2, fl3, fl4, fl5

best 11 = f2, f3, f4, f5, f6, f7, fl2, fl3, fl4, fl5,
fl6

best 12 = f2, f3, f4, f5, f6, f7, fll, fl2, fl3, fl4, fl5,
fl6

best 13 = f2, f3, f4, f5, f6, fl, f8, fll, fl2, fl3, fl4,
fl5, fl6

best 14 = f2, f3, f4, f5, f6, f7, f8, flO, fll, fl2,
fl3, fl4, fl5, fl6

best 15 = f2, f3, f4, f5, f6, f7, f8, f9, flO, fll,
fl2, fl3, fl4, fl5,

fl6

best 16 = f2, f3, f4, f5, f6, f7, f8, f9, flO,
fll, fl2, fl3, fl4, fl5,

fl6, fl7

best 17 = fl, f2, f3, f4, f5, f7, f8, f9,
flO, fll, fl2, fl3, fl4, fl5,

fl6, fl7, fl8

best 18 = fl, f2, f3, f4, f5, f6, f7, f8,
f9, flO, fll. fl2, fl3. fl4.

fl5, fl6, fl7, fl8
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where :

First Order Statistics :

fl = brightness

f2 = average brightness

f3 = variance of brightness

fl8 = gradient

Co-occurrence Type Features

f4 = angular second moment average

f5 = angular second moment range

f6 = correlation average

f7 = correlation range

f8 = variance range

f9 = inverse difference range

flO = sum entropy range

fll =
entropy range

fl2 = difference entropy range

fl3 = measure of correlation A range

fl4 = measure of correlation B average

Run Length Statistics

fl5 = short run emphasis inverse moment range

fl6 = grey level non-uniformity range
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Grev Level Difference Statistics

fl7 = contrast

B-6- 9



Analysis 25_*i B_ejtf Combinations of Feature in Final

Optimal Feature Spare :

best 2 = f2, f6

best 3 = f2, f3, fl3

best 4 = f2, f3, fl3, fl5

best 5 = f2, f3, f4, fl3, fl5

best 6 = f2, f3, f5, f6, f7, fl3

best 7 = f2, f3, f5, f6, fl, fl3, fl5

best 8 = f2, f3, f5, f6, f7, f9, fl3, fl5

best 9 = f2, f3, f5, f6, f7, f9, fll, fl3, fl5

best 10 = f2, f3, f4, f5, f6, f7, fll, fl3, fl4, fl5

best 11 = f2, f3, f4, f5, f6, f7, f9, flO, fll, fl3, fl5

best 12 = f2, f3, f4, f5, f6, f7, f9, flO, fll, fl3, fl4, fl5

best 13 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl3, fl5

best 14 = fl, f2, f3, f4, f5, f6, fl, f8, f9, flO, fll, fl3, fl4, fl5

best 15 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl4,

fl5

best 16 = fl, f2, f3, f4, f5, f6, fl, f8, f9, flO, fll, fl2, fl3, fl4,

fl5, fl6
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where :

First Order Statistics :

fl = brightness

f2 = average brightness

f3 = variance of brightness

fl6 = gradient

Co-occurrence Type Features

f4 = angular second moment range

f5 = contrast range

f6 = correlation average

f7 = correlation range

f8 = variance range

f9 = inverse difference range

flO = entropy range

fll = difference entropy range

fl2 = measure of correlation A range

fl3 = measure of correlation B average

Run Length Statistics

fl4 = short run emphasis inverse moment range

fl5 =
grey level non-uniformity

range
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Analysis 3JL2S VSl Combinations of Features in Final

Optimal Feature Space :

best 2 = f2, f5

best 3 = f2, f3, f5

best 4 = f2, f4, f5, flO

best 5 = f2, f3, f4, fl5, flO

best 6 = f2, f4, f5, f9, flO, fl4

best 7 = f2, f4, f5, f8, f9, flO, fl4

best 8 = f2, f4, f5, f7, f8, f9, flO, fl4

best 9 = f2, f4, f5, f7, f8, f9, flO, fl3, fl4

best 10 = f2, f4, f5, f7, f8, f9, flO, fl2, fl3, fl4

best 11 = fl, f2, f3, f5, f6, fl, f8, f9, flO, fl2, fl4

best 12 = fl, f2, f3, f5, f6, fl, f8, f9, flO, fl2, fl4, fl5

best 13 = fl, f2, f3, f4, f5, f6, f7, f8, flO, fl2, fl3, fl4, fl5

best 14 = fl, f2, f3, f4, f5, f6, fl, f8, flO, fll, fl2, fl3, fl4, fl5

best 15 = fl, f2, f3, f4, f5, f6, fl, f8, f9, flO, fll, fl2, fl3, fl4,

fl5
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where :

First Order Statistics :

fl = brightness

f2 = average brightness

f3 = variance of brightness

fl5 = gradient

Co-occurrence Type Features

f4 = angular second moment average

f5 = correlation average

f6 = correlation range

f7 = variance range

f8 = inverse difference range

f9 = sum entropy range

flO = measure of correlation A range

fll = difference variance range

f12 = maximum probability range

Run Length Statistics

fl3 = long run emphasis inverse moment range

fl4 = short run emphasis inverse moment range
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Appendix B-7

Average Brightness (Moyenne)

Variance (Ecart)

B-7-1



Angular Second Moment Average (Angsecaver)

Correlation Average (Corraver)
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Correlation Range (Corrang)

Variance Range (Varrang)
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Inverse Difference Moments Range (Indiffrang)

Measure of Correlation A Range (Meascoranga)

B-7-4



Maximum Probability Range (Maxprang)

Contrast (Contrast2)
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APPENDIX C-1

Initial and Final Optimal Feature Spaces for Analyses 21,

25, 31, 3221, 3231, 31*r for Image Forest

Analvsis : 21 25 31/31*5 3221 3231

Features

brightness * * * * *

average *@ *@ *@ *@ *@

variance *@ *@ *@
* *

angsecaver *@ *@ *@ *@ *@

contrang
*

*@
*

corraver *@ *@ *@

corrang
*

*@ *@
*

*@

varrang *@ *@ *@
* *@

indiffrang *@ *@ *@ *@ *@

sumenrang *@ *@
* *@ *@

sumvarang

entrang

* *@

*@
*

*

*

diffenrang *@

meascoravera *@

meascoranga

meascoraverb *@

*@

*@ *@

dvarg

maxprang

glnrang

ent2

*@
*

*@

*@

*@

*

* *@

*@

contrast2

gradnt
* *

*@

* *

*

*
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note :
* = feature was derived for initial optimal feature space

@ = feature was derived for final optimal feature space
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APPENDIX C-2

Percentage Classification Accuracy of Training and Test

Data for Analyses 21, 25, 31, 3221
,3231, 31*r for Image

Forest (individual class covariance matrices)

Analv
-Sis.

: 21. 1L 11

Class Train Test Train Test Train Test

1 100.0 76.6 100.0 73.3 100.0 70.0

2 100.0 90.0 100.0 93.3 100.0 93.3

3 100.0 83.3 100.0 53.3 100.0 46.6

4 99.9 56.6 100.0 66.6 100.0 56.6

5 100.0 90.0 100.0 96.6 100.0 96.6

Analvsis 3221 3231 31*r

Class Train Test Train Test Test

1 100.0 80.0 100.0 76.6 66.6

2 100.0 93.3 100.0 90.0 96.6

3 100.0 76.6 100.0 30.0 26.6

4 100.0 76.6 100.0 70.0 40.0

5 100.0 90.0 100.0 96.6 100.0
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APPENDIX C-3

Summary of Individual Feature Subsets for

Analyses 21, 25, 31 for Image Forest

Analyses : 2-L 2_5_ 11

Subsets : 1 O 1 1 1 2

brightness * *

average
* * *

variance
* * *

angsecaver
* * *

contrang
* *

corraver
* * *

corrang
* * *

varrang
* * *

indiffrang
* * *

entrang
* * *

meascoravera
*

meascoranga
*

meascoraverb
*

maxprang
* * *

sumvarang
* *

sumenrang
* * *

dvarg
* *

ent2
* *

contrast2
*

gradient
* *

note :
* = feature was selected within appropriate analysis subset
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APPENDIX C-4

Percentage Classification Accuracy of Training and Test

Data for Analysis Subsets 21, 25, 31

for Image Forest

(individual class covariance matrices)

Analyses : 2_1 25.

Subsets : ILL 2. 1 2

Class Train Test Train Test Train Test Train Test

1 100.0 76.6 100.0 83.3 100.0 80.0 100.0 83.3

2 100.0 90.0 100.0 93.3 100.0 83.3 100.0 93.3

3 100.0 80.0 100.0 40.0 100.0 80.0 98.4 33.3

4 100.0 56.6 97.3 50.0 100.0 56.6 99.8 66.6

100.0 90.0 92.7 90.0 100.0 90.0 98.4 100.0

Analysis : 11

Subsets : 1 o

Class Train Test Train Test

1 100.0 73.3 95.2 63.3

2 100.0 93.3 91.3 30.0

3 100.0 46.6 100.0 83.3

4 100.0 56.6 100.0 60.0

5 100.0 96.6 100.0 73.3
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Appendix C-5

Best Combinations of Features for Analyses 21, 25, 31,

3221, 3231 for Image Forest

Analvsis 21 Best Combinations of Features in Final Optimal

Feature Space :

best 2 = f2, f4

best 3 = f2, f4, f6

best 4 = f2, f3, f4, f6

best 5 = f2, f3, f4, f6, fl5

best 6 = f2, f3, f4, f6, fl3, fl5

best 7 = f2, f3, f4, f6, fl3, fl5, fl6

best 8 = f2, f3, f4, f6, fll, fl3, fl4, fl5

best 9 = f2, f3, f4, f6, fll, fl3, fl4, fl5, fl6

best 10 = f2, f3, f4, f6, f9, fll, fl3, fl4, fl5, fl6

best 11 = f2, f3, f4, f6, f9, fll, fl2, fl3, fl4, fl5, fl6

best 12 = f2, f3, f4, f6, f8, f9, fll, fl2, fl3, fl4, fl5, fl6

best 13 = f2, f3, f4, f6, f7, f8, f9, fll, fl2, fl3, fl4, fl5, fl6

best 14 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fl2, fl3, fl5,
fl6

best 15 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl5,

fl6

best 16 = fl, f2, f3, f4, f5, f6, fl, f8, f9, flO, fll, fl2, fl3, fl5,

fl6, fl7
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best 17 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl4,

fl5, fl6, fl7

where :

First Order Statistics :

fl = brightness

f2 = average brightness

f3 = variance of brightness

fl7 = gradient

Co-occurrence Type Features

f4 = angular second moment average

f5 = contrast range

f6 = correlation average

f7 = correlation range

f8 = variance range

f9 = inverse difference range

flO = sum variance range

fll = sum entropy range

fl2 = entropy range

fl3 = measure of correlation B average

fl4 = difference variance range

fl5 = maximum probability
range
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Grev Level Difference Statistics

fl6 =

entropy
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Analysis 25 Best Combinations nf Features in Final Optimal

Feature Space :

best 2 = f2, f4

best 3 = f2, f4, f6

best 4 = f2, f3, f4, f6

best 5 = f2, f3, f4, f6, f9

best 6 = f2, f3, f4, f6, f9, fll

best 7 = f2, f3, f4, f6, f9, fll, fl4

best 8 = f2, f3, f4, f6, f9, fll, fl3, fl4

best 9 = f2, f3, f4, f6, f9, fll, fl2, fl3, fl6

best 10 = f2, f3, f4, f6, f9, fll, fl2, fl3, fl4, fl6

best 11 = f2, f3, f4, f6, f8, f9, fll, fl2, fl3, fl5, fl6

best 12 = f2, f3, f4, f5, f6, f8, flO, fll, fl2, fl3, fl5, fl6

best 13 = f2, f3, f4, f5, f6, f7, f8, flO, fll, fl2, fl3, fl5, fl6

best 14 = f2, f3, f4, f5, f6, fl, f8, f9, flO, fll, fl2, fl3, fl5, fl6

best 15 = fl, f2, f3, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl5, fl6,

fl7

best 16 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl5,

fl6, fl7

best 17 = fl, f2, f3, f4, f5, f6, fl, f8, f9, flO, fll, fl2, fl3, fl4,

fl5, fl6, fl7

C-5- 4



where :

First Order Statistics :

fl = brightness

f2 = average brightness

f3 = variance of brightness

fl7 = gradient

Co-occurrence Type Features

f4 = angular second moment average

f5 = contrast range

f6 = correlation average

f7 = correlation range

f8 = variance range

f9 = inverse difference range

flO = sum variance range

fll = sum entropy range

fl2 = entropy range

fl3 = measure of correlation A average

f14 = difference variance range

fl5 = maximum probability range

Grey Level Difference Statistics

f16 = entropy
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Analvsis 31 Best Combinations of Features in Final Optimal

Feature Space :

best 2 = f2, f4

best 3 = f3, f4, f5

best 4 = f2, f3, f4, f5

best 5 = f2, f3, f4, f5, f6

best 6 = f2, f3, f4, f5, f6, fl3

best 7 = f2, f3, f4, f5, f6, fll, fl3

best 8 = f2, f3, f4, f5, f8, f9, flO, fl2

best 9 = f2, f3, f4, f5, f7, f8, f9, flO, fl2

best 10 = f2, f3, f4, f5, f6, f7, f8, fll, fl2, fl3

best 11 = f2, f3, f4, f5, f6, f7, f8, f9, fll, fl2, fl3

best 12 = f2, f3, f4, f5, f6, 17, f8, f9, flO, fll, fl2, fl3

best 13 = f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl4

best 14 = fl, f2, f3, f4, f5, f6, fl, f8, f9, flO, fll, fl2, f!3, fl4
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where :

First Order Statistics :

fl = brightness

f2 = average brightness

f3 = variance of brightness

fl4 = gradient

Co-occurrence Type Features

f4 = angular second moment average

f5 = correlation average

f6 = correlation range

f7 = variance range

f8 = inverse difference range

f9 = sum entropy range

flO =
entropy range

fll = measure of correlation A range

f12 = maximum probability range

Grey Level Difference Statistics

f13 = contrast
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Analvsis 3_22J Best Combinations of Features in Final

Optimal Feature Space :

best 2 = f2, f4

best 3 = f2, f4, fl2

best 4 = f2, f4, fl2, fl5

best 5 = f2, f4, f8, fl2, fl5

best 6 = f2, f4, f8, fll, fl2, fl5

best 7 = f2, f4, f8, flO, fll, fl2, fl5

best 8 = f2, f4, f6, f8, flO, fll, fl2, fl5

best 9 = f2, f4, f6, f8, flO, fll, fl2, fl4, fl5

best 10 = f2, f4, f6, H, f8, flO, fll, fl2, fl4, fl5

best 11 = f2, f3, f5, f6, f7, f8, f9, fll, fl2, fl4, fl5

best 12 = fl, f2, f3, f5, f6, f7, f8, f9, fll, fl2, fl4,
fl5

best 13 = fl, f2, f3, f5, f6, f7, f8, f9, flO, fll, fl2, fl4,
fl5

best 14 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll,
fl2 fl4, fl5

best 15 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2,
fl4, fl5,

fl6

best 16 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll,
fl2, fl3, fl4,

fl5, fl6
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where :

First Order Statistics :

fl = brightness

f2 = average brightness

f3 = variance of brightness

f16 = gradient

Co-occurrence Type Features

f4 = angular second moment average

f5 = contrast range

f6 = correlation range

f7 = variance range

f8 = inverse difference range

f9 = sum variance range

flO = sum entropy range

fll = entropy range

fl2 = measure of correlation B average

fl3 = difference variance range

fl4 = maximum probability range

Grey Level Difference Statistics

fl5 = entropy
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Analysis 1211 Best Combinations of Features in Final

Optimal Feature Space :

best 2 = f2, f4

best 3 = f2, f4, fll

best 4 = f2, f4, fll, fl2

best 5 = f2, f4, f5, fll, fl2

best 6 = f2, f4, f8, flO, fll, fl2

best 7 = f2, f4, f8, f9, flO, fll, fl2

best 8 = f2, f4, f8, f9, flO, fll, fl2, fl3

best 9 = f2, f4, f5, f8, f9, flO, fll, fl2, fl3

best 10 = f2, f4, f5, f7, f8, f9, flO, fll, fl2, fl3

best 11 = f2, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3

best 12 = f2, f3, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl4

best 13 = fl, f2, f3, f5, f6, fl, f8, f9, flO, fll, fl2, fl3,
fl4

best 14 = fl, f2, f3, f5, f6, fl, f8, f9, flO, fll, fl2, fl3, fl4,
fl5

best 15 = fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, fl2, fl3, fl4,

fl5

where :

First Order Statistics :

fl = brightness

f2 = average brightness

f3 = variance of brightness

fl5 = gradient
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Co-occurrence Type Features

f4 = angular second moment average

f5 = correlation range

f6 = variance range

f7 = inverse difference range

f8 = sum entropy range

f9 =

entropy range

flO = difference entropy range

fll = measure of correlation B average

fl2 = maximum probability range

Run Length Statistics

f13 =

grey level non-uniformity range

Grey Level Difference Statistics

f14 = contrast
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Appendix C-6

Average Brightness (Moyenne)



Angular Second Moment Average (Angsecaver)

Angular Second Moment Range (Angsecrang)
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Correlation Average (Corraver)

Correlation Range (Corrang)
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Contrast (Contrast2)

Variance Range (Varrang)
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Inverse Difference Moments Range (Indiffrang)

Difference Entropy Range (Diffenrang)
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Measure of Correlation A Range (Meascoranga)

Short Run Emphasis Inverse Moment Range (Sreimrang)

C-6-6



Grey Level Non-Uniformity Average (Glnaver)
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Appendix D

To compute the Moore-Penrose generalized inverse, the singular

value decomposition of matrix A is derived. This consists of an NxN

orthogonal matrix U, a PxP orthogonal matrix V and a diagonal

matrix E = diag(vari , varm), m= min(N, P), such that l^AV = [E,

0] if N smaller or equal to P and U*AV = [E, 0]* if N greater or equal

to P. Only the first P columns of U are computed. The rank of A is

computed by counting the number of nonnegligible varj.

The matrices U and V can be partitioned as U = (Ui, U2) and V = (Vi ,

V2), where both U1 and Vi are matrices who's dimensions are the

rank of matrix A. The Moore-Penrose generalized inverse of A is

Agen inv
=
ViEr1Uit
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Appendix E

QKkaaa ira paaeaaa

^k.

SELECTION OF IMAGE CLASS AND

IMAGE SAMPLING WINDOW SIZE

AND LOCATION + TRAINING DATA

DERIVATION OF TEXTURAL FEATURES

DERIVATION OF CLASS STATISTICS

- MEAN VECTORS
-

CLASS COVARIANCE MATRICES

-CLASS POOLED COVARIANCE MATRIX

X_

DERIVATION OF CORRELATION

COEFFICIENT MATRIX

ESTABLISHMENT OF INITIAL

OPTIMAL FEATURE SPACE

DERIVATION OF CLASS STATISTICS

IN INITIAL OPTIMAL FEATURE SPACE

- CLASS MEAN VECTORS

- CLASS COVARIANCE MATRICES

2J

DERIVATION OF

- OPTIMAL FEATURE

SPACE COMBINATIONS

- MAXIMUM DIVERGENCE STATISTICS

SELECTION OF BEST OPTIMAL

FEATURE SPACE COMBINATION

^

CLASSIFICATION OF IMAGE TRAINING

AND TEST DATA IN FINAL OPTIMAL

FEATURE SPACE
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Appendix F

QUANTIZATION

LEVEL

SAMPLING

WINDOW

SIZE

GLOBAL

CLASSIFICATION

ACCURACY

c
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73
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>
m
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m
r-

a
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m
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H

O
73

m

CO

H

@@fira ^f ^f ^s earira lj

U ea^ra eanrs u U esira

* H* * * *1N

INTERPIXEL

SAMPLING

INTERVAL

GLOBAL

CLASSIFICATION

ACCURACY

QDOEDQ LTDCDIU]

COatftfaraaOQ

m m
r-

o

3D
m

co

H

ROTATION 30 CW 30 CW

eanra ea^ra

edOidOqdqiqd

(aaifffaraoaa

Note : ESfiTa = remained relatively constant

"T*
= increase

/fs>
= = increase or equal

^N I = increase and decrease
4,= decrease
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