
Abstracted Workflow Framework

with a Structure from Motion Application

by

Adam J. Rossi

A.S. Monroe Community College, 2001

B.S. Rochester Institute of Technology, 2004

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science

in the Chester F. Carlson Center for Imaging Science

College of Science

Rochester Institute of Technology

May 2014

Signature of the Author

Accepted by
Coordinator, M.S. Degree Program Date

CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE

COLLEGE OF SCIENCE

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

M.S. DEGREE THESIS

The M.S. Degree Thesis of Adam J. Rossi
has been examined and approved by the
thesis committee as satisfactory for the

thesis required for the
M.S. degree in Imaging Science

Dr. Harvey Rhody, Thesis Advisor

Dr. Carl Salvaggio

Dr. Derek Walvoord

Date

ii

Abstracted Workflow Framework

with a Structure from Motion Application

by

Adam J. Rossi

Submitted to the
Chester F. Carlson Center for Imaging Science

in partial fulfillment of the requirements
for the Master of Science Degree

at the Rochester Institute of Technology

Abstract

In scientific and engineering disciplines, from academia to industry, there is an increasing
need for the development of custom software to perform experiments, construct systems,
and develop products. The natural mindset initially is to shortcut and bypass all overhead
and process rigor in order to obtain an immediate result for the problem at hand, with the
misconception that the software will simply be thrown away at the end. In a majority of
the cases, it turns out the software persists for many years, and likely ends up in production
systems for which it was not initially intended. In the current study, a framework that
can be used in both industry and academic applications mitigates underlying problems
associated with developing scientific and engineering software. This results in software
that is much more maintainable, documented, and usable by others, specifically allowing
new users to extend capabilities of components already implemented in the framework.

There is a multi-disciplinary need in the fields of imaging science, computer science, and
software engineering for a unified implementation model, which motivates the development
of an abstracted software framework. Structure from motion (SfM) has been identified as
one use case where the abstracted workflow framework can improve research efficiencies
and eliminate implementation redundancies in scientific fields. The SfM process begins
by obtaining 2D images of a scene from different perspectives. Features from the images
are extracted and correspondences are established. This provides a sufficient amount of
information to initialize the problem for fully automated processing. Transformations are
established between views, and 3D points are established via triangulation algorithms.
The parameters for the camera models for all views / images are solved through bundle
adjustment, establishing a highly consistent point cloud. The initial sparse point cloud and
camera matrices are used to generate a dense point cloud through patch based techniques
or densification algorithms such as Semi-Global Matching (SGM). The point cloud can be

iii

visualized or exploited by both humans and automated techniques. In some cases the point
cloud is “draped” with original imagery in order to enhance the 3D model for a human
viewer. The SfM workflow can be implemented in the abstracted framework, making it
easily leverageable and extensible by multiple users.

Like many processes in scientific and engineering domains, the workflow described for
SfM is complex and requires many disparate components to form a functional system, often
utilizing algorithms implemented by many users in different languages / environments
and without knowledge of how the component fits into the larger system. In practice,
this generally leads to issues interfacing the components, building the software for desired
platforms, understanding its concept of operations, and how it can be manipulated in
order to fit the desired function for a particular application. In addition, other scientists
and engineers instinctively wish to analyze the performance of the system, establish new
algorithms, optimize existing processes, and establish new functionality based on current
research. This requires a framework whereby new components can be easily plugged in
without affecting the current implemented functionality.

The need for a universal programming environment establishes the motivation for
the development of the abstracted workflow framework. This software implementation,
named Catena, provides base classes from which new components must derive in order
to operate within the framework. The derivation mandates requirements be satisfied in
order to provide a complete implementation. Additionally, the developer must provide
documentation of the component in terms of its overall function and inputs. The interface
input and output values corresponding to the component must be defined in terms of their
respective data types, and the implementation uses mechanisms within the framework to
retrieve and send the values. This process requires the developer to componentize their
algorithm rather than implement it monolithically. Although the requirements of the
developer are slightly greater, the benefits realized from using Catena far outweigh the
overhead, and results in extensible software. This thesis provides a basis for the abstracted
workflow framework concept and the Catena software implementation. The benefits are
also illustrated using a detailed examination of the SfM process as an example application.

iv

Acknowledgements

I would like to thank my advisor, Dr. Harvey Rhody, for his willingness to take me on
as a research student and develop a thesis topic that was well-suited for my interests and
background. I was fortunate to have taken many courses with Dr. Rhody, and it was a
pleasure getting to know him as my thesis advisor throughout the course of our research.
His personal and professional advice have been invaluable to me. I’m always amazed at
how often I discover the applicability and foresight of his abstractions in practice.

Thanks to my committee members, Dr. Carl Salvaggio and Dr. Derek Walvoord.
After taking my first class with Carl, it became obvious that he is one of the exceptional
teachers at RIT. He truly cares about his students and puts a great deal of effort into
lectures and class material. He is student-focused and goes out of his way to make sure
they succeed. Additionally, I am very grateful not only to have Derek on my committee,
but to have him as a teaching assistant for many courses, and for the privilege of working
with him at Exelis. Derek solidified Image Science coursework theory through application
and educated me in new subject areas. I am very grateful for the opportunity to work
with Derek and I greatly value our friendship.

I would like to thank all the faculty, staff, and students at the Center for Imaging
Science at RIT. Although I was a part-time student and infrequently on campus, they
were very welcoming and helpful. I am also appreciative of their willingness to experiment
with the Catena software, and I hope they were able to gain from their investment.

I would like to give special thanks to my family and friends for their support. You kept
me motivated and helped me accomplish a significant milestone in my academic career.

Also, thank you to my former co-workers at Exelis (in alphabetical order): Bernie
Brower, Brad Paul, Brian Staab, Brian Terwilliger, Frank Tantalo, Jason Wynne, Jon
Antal, Ken Brodeur, Kevin Pietrzak, Tim Burt, and Wendy LeFebvre. You played a key
role in the development of my career. Special thanks to those who adapted the Catena
framework. Your input was invaluable for increasing software quality and flexibility: Bran-
don May, Jordyn Stoddard, Kyle Ausfeld, and Sue Munn. I would also like to thank my
GPS III teammates. We spent a lot of time away from home supporting a crucial project
that is going to improve national security: Bill Taft, Chris Bower, Greg Kirchoff, Howard
Brayman, Paul Gilmour, Rich Lourette, Steph Panicali, and Tim Flynn.

Thank you to the following musicians for providing a soundtrack to writing my thesis
and coding: Underworld, Com Truise, Tycho, Junior Boys, Hot Chip, Toro Y Moi, Lusine,
Bibio, Cut/Copy, Gold Panda, Aphex Twin, Boards of Canada, Washed Out, Tangerine
Dream, Philip Glass, and The Bad Plus.

Lastly, thank you to ITT / Exelis Geospatial Systems for the financial support of my
education.

v

I would like to dedicate this thesis to my wife, Jamie. My success and motivation to
complete the coursework and research would not have been possible without her support.
She made numerous sacrifices to ensure my success, and I am forever indebted to her.
Thank you for your loving support, Jamie.

vi

Contents

1 Introduction 1
1.1 Problem Definition . 1
1.2 Motivation . 1
1.3 Outline of Thesis . 3

2 Objectives 4
2.1 Structure from Motion (Image Science) . 4
2.2 Workflow Framework (Software Engineering) 5
2.3 Benefits of the Multi-Disciplinary Abstracted Workflow Framework 5

3 Implementation 6
3.1 Workflow Framework . 6

3.1.1 Stages . 6
3.1.2 Chain . 9
3.1.3 Rendering . 9

3.2 Catena . 10
3.2.1 Stage Implementation . 10
3.2.2 Chain Implementation . 15
3.2.3 Stage Development Patterns . 21
3.2.4 Tap Point Stage . 25
3.2.5 Unit Test . 25
3.2.6 Chain Builder . 26
3.2.7 Chain GUI . 26
3.2.8 Design Approaches . 28
3.2.9 Interface Definition Advantages . 31
3.2.10 Optimization Process . 32
3.2.11 Platform / Implementation Issues 32
3.2.12 Deployment Considerations . 33

vii

CONTENTS viii

4 SfM Theory 34
4.1 Image Source . 34
4.2 Image Filtering / Subsets . 35
4.3 Symbolic Links . 36
4.4 Image Conversion . 36
4.5 Feature Extraction . 37

4.5.1 SIFT . 37
4.6 Feature Matching / Filtering . 42
4.7 Image-Based Geometry Estimation . 44

4.7.1 Camera Model . 44
4.7.2 Epipolar Geometry . 45
4.7.3 Fundamental Matrix . 46
4.7.4 Fundamental Matrix Extensions Using Projective Transforms 47
4.7.5 Fundamental Matrix From Correspondences 48
4.7.6 Iterative Fundamental Matrix Computation 50
4.7.7 Triangulation & Point Cloud Generation 51

4.8 Radial Distortion Compensation . 52
4.9 Output Conversion . 53
4.10 View Clustering / Reduction . 53
4.11 Dense Point Cloud Generation . 55
4.12 Geographic Considerations . 56
4.13 Surface Reconstruction . 56
4.14 Visualization / Exploitation . 57
4.15 SfM Chain . 58

5 Results 60
5.1 SfM Application . 60

5.1.1 ET . 60
5.1.2 Hall . 63
5.1.3 RIT WASP . 66
5.1.4 ITT Exelis WAMI . 69

5.2 Extensibility . 72
5.2.1 Registration . 72
5.2.2 Health Imaging . 73
5.2.3 Hypothetical . 74

CONTENTS ix

6 Conclusions 76
6.1 Overview . 76
6.2 Abstraction Benefits . 77
6.3 Future Development . 77

6.3.1 Binary Overlays . 77
6.3.2 Composite Stages . 78
6.3.3 Generalized Property Optimization 78
6.3.4 Distributed / Multi-threaded Execution 78

A Supporting Information 79
A.1 Cross-product Notation . 79
A.2 Auto-generated Stage Documentation . 79

Bibliography 97

Acronyms 101

Index 104

List of Figures

3.1 Generalized chain representation showing the connection of stages to com-
pose a workflow. 7

3.2 Representative stage structure showing properties and input / output in-
terfaces. The input data comes from previous stages, while the output
data is fed into the subsequent stage(s). The individual stage interfaces are
well-defined such that equivalent stages can be swapped for other imple-
mentations in a chain. 8

3.3 StageBase class diagram and two derived classes / stages. The StageBase
class is the fundamental component in the workflow framework, from which
every stage must inherit. 8

3.4 High-level SfM chain defining all the steps of the algorithm. 15
3.5 The Chain Builder GUI provides a graphical interface to construct work-

flows, browse stage packages, modify stage properties, and render chains. . . 27
3.6 The Chain GUI accepts a programmatically constructed chain and provides

a graphical interface to modify stage properties, render chains, and most
importantly, visualize the outputs of stages. This provides feedback to tune
stage parameters. 29

3.7 The image mosaicing chain uses feature extraction and matching stages
from the SfM application to warp images with overlap into a composite
virtual image mosaic. 31

4.1 The Image Source stage generates a list of images from a given path and
extension. This is typically the first stage in a chain. 35

4.2 The Image Subset stage takes a list of images and down-selects using the
supplied criteria. 36

4.3 The Image Symbolic Link stage creates symbolic links to images on Unix
operating systems to establish a working directory. 36

4.4 The Image Convert stage converts images to a desired file format. 37

x

LIST OF FIGURES xi

4.5 The SIFT algorithm establishes a difference of Gaussian scale space by
convolving images at each octave to yield intervals. Reproduced from [1]. . 39

4.6 The SIFT algorithm finds scale space extrema by comparing the 8-point
neighborhood at the current scale and 9-point neighborhood of adjacent
scales. Reproduced from [1]. 40

4.7 The SIFT descriptor is computed from localized gradients combined into
localized histograms of magnitudes and orientations. Reproduced from [1]. . 41

4.8 The SIFT Stage implements the SIFT algorithm, generating keypoint de-
scriptors for each of the images provided. 42

4.9 Keypoint descriptor class diagram illustrating the power of object-oriented
design and polymorphism to handle multiple keypoint descriptor file formats. 42

4.10 The Feature Matching stage generates a match table for every image com-
bination using the independently generated keypoint descriptors. 43

4.11 Epipolar geometry illustrations for point correspondences. Reproduced
from Hartley and Zisserman [2]. 46

4.12 Image coordinates can be projected using the epipolar homography: x′ =
Hπx. Reproduced from Hartley and Zisserman [2]. 47

4.13 The Bundler Stage performs a bundle adjustment process using keypoint
matches and images in order to generate consistent camera matrices, sparse
point cloud, and 2D to 3D point correspondences. 50

4.14 Triangulation methods are used to solve for the 3D point (X̂) given the 2D
image correspondence coordinates (x and x′). The triangulation error is
highlighted in the figure as d and d′, which is the difference in the corre-
spondence points from the projection of X̂ (x̂ and x̂′). Reproduced from
Hartley and Zisserman [2]. 51

4.15 The Radial Undistort stage compensates for radial distortion detected in
the images to improve down-stream processes. 52

4.16 The Prep CMVS / PMVS stage converts the Bundler output to an accept-
able form for CMVS and PMVS. 53

4.17 The CMVS stage detects and filters redundant views in preparation for
PMVS. 55

4.18 The PMVS stage uses the consistent camera matrices found by Bundler to
generate a dense point cloud using a patch-based technique. 56

4.19 The Poisson Surface Reconstruction stage performs interpolation of vertices
to generate faces between 3D points, yielding a meshed 3D model. 57

4.20 The MeshLab stage provides visualization of the 3D point cloud and model. 58
4.21 The complete SfM chain used to generate 3D models from multi-view 2D

imagery. 59

LIST OF FIGURES xii

5.1 ET images provided by the CMVS / PMVS software distribution. 61
5.2 ET point cloud generated from nine multi-view images of the scene. 62
5.3 A subset of “Hall” images provided by the CMVS / PMVS software distri-

bution. 64
5.4 Point cloud of the “Hall” scene generated using the Catena SfM workflow

and 61 multi-view input images. 65
5.5 A subset of images taken of Rochester, NY were obtained from the RIT

WASP sensor. 67
5.6 A point cloud was generated using the RIT WASP images presented in

Figure 5.5. 68
5.7 A subset of images over downtown Rochester, NY were obtained from the

ITT Exelis WAMI sensor. 70
5.8 3D model of downtown Rochester, NY generated from multi-view imagery

obtained from the ITT Exelis WAMI sensor. 71
5.9 An example registration chain built in industry, leveraging stages from the

SfM application. 72
5.10 An example chain built in industry to facilitate dual-energy image registra-

tion, leveraging stages from the SfM application. 73
5.11 Correspondences between a pair of dual-energy X-ray images. 74
5.12 A hypothetical chain could be constructed using new “Google Images” and

“SURF” stages. 75

List of Source Code

1 The code provides an example of a complete implementation of a stage that
outputs resolution information of given images to a file. 11

2 A script that programmatically builds a SfM Catena chain. 16
3 A script that loads a persisted Catena chain and renders the tail stage. . . . 20
4 Example of the ShouldRun utility method for executing external applications. 21
5 An example of the RunCommand method provided on the StageBase class,

which is used to invoke external applications. 22
6 An example class derived from the Common.ImageProcessStageBase class.

The base class provides common stage functionality for stages that define
sfmImage(s) on both their input and output interface. 24

7 An example Catena chain that uses the TapPoint stage to inspect interme-
diate stage output values. 25

8 SfM chain used as an example for the Chain GUI. 26
9 Example invocation of the Chain GUI visualization tool. 27
10 The data structure required for stage visualizations using the Chain GUI. . 27
11 The data structure required for stage property sheets using the Chain GUI. 28
12 The data structure required for stage property ranges using the Chain GUI. 28

xiii

Chapter 1

Introduction

1.1 Problem Definition

In many scientific communities, including imaging science, it is common for a process to
be defined, which requires various algorithms and tools in order to carry out a specific
task. It is typically advantageous for the scientist to leverage previous work developed
by others in order to advance a particular aspect of the field. This ultimately involves
combining components implemented by others in order to establish a baseline system
for the scientist’s research and development. However, it is likely that the components
were not developed together nor envisioned as being part of a greater overarching system,
and they are likely inflexible for accomplishing a different goal. There is usually little to
no consideration given to reuse or documentation, especially in the context of developing
prototype software. This effectively results in monolithic, platform-specific, and disposable
software that has limited use in specialized domains by a small group of users. This
problem becomes amplified when multiple tools, developed by multiple users, are required
to carry out a task. Since tools are developed without considering the overall scope, they
are difficult to integrate. The need for a workflow framework that integrates applications
and allows for flexible extensions and replacement components becomes apparent.

1.2 Motivation

The structure from motion (SfM) task requires the integration of many proprietary and
open-source components in order to effectively carry out the processing. The common
steps are enumerated below:

1

1.2. MOTIVATION 2

1. Image source specification

2. Image list filtering / creating subsets

3. Creating symbolic links

4. Image conversion

5. Feature extraction

6. Feature matching

7. Bundle adjustment

8. Radial distortion compensation

9. Output conversion

10. View reduction

11. Point cloud generation

12. Surface reconstruction / image draping

13. Visualization / exploitation

Historically, components for the SfM process have been implemented in various lan-
guages, had inconsistent interfaces, required various input data formats, and were generally
incompatible with each other. If one wishes to establish a working SfM system, there is a
steep learning curve and a considerable amount of time required to establish a base sys-
tem. The integration of the components is typically very application and platform-specific,
making it difficult for others to leverage previous work. Additionally, this solution does
not result in a robust processing system and makes it difficult for users to utilize it as
a test bed for the development of alternative algorithms and components. Therefore, an
abstract solution to this problem will be presented, which can be utilized for the SfM
process, and more generally applied to other domains.

In general, there are varying levels of operating environments for SfM, or any scientific
application:

1. Manual Method: This includes manual execution of the tools and interfacing of
components. This solution is very laborious, time consuming, and error-prone.

1.3. OUTLINE OF THESIS 3

2. Semi-Automated Method: This provides a static workflow definition that cannot
be changed to accommodate new components or utilized for alternative applications.
Much of the implementation is “hard-coded” or otherwise inflexible.

3. Fully Automated Method: A flexible, automated workflow framework integrates
disparate tools for general applications. The interface between components is ad-
dressed to provide inter-operability of different component implementations through
strong contract. The components and workflow are self-documenting to promote
reuse by other users.

Typically, the semi-automated method is used to conduct research in the SfM domain.
Previous approaches, including scripts, Open Street Map (OSM) [3], and Visual SfM [4]
have allowed for automation of the workflow; however, these are static definitions that lack
extensibility and applicability to other domains. Therefore, the ideal solution for scientists
is a flexible workflow framework, which is not only needed by the SfM community, but
for scientific and engineering fields in general. By creating an abstract solution to this
problem, the fundamental components become applicable to other domains and the com-
ponents can be reused within the same general workflow specification. This thesis describes
the development of the abstracted workflow framework, Catena, and its applicability to
improving/optimizing the environment for scientific research in the SfM field.

1.3 Outline of Thesis

This thesis is organized in the following manner:

• Chapter 2: The thesis research is motivated by establishing an objective that
addresses a common need for an abstracted workflow framework in many scientific
and engineering domains.

• Chapter 3: Implementation and design details of the abstracted workflow frame-
work and the Catena software implementation are presented.

• Chapter 4: The image science theory of the SfM application is presented, and
implementation of the SfM components in the Catena framework is described.

• Chapter 5: Using the SfM workflow, 3D models from multi-view imagery were
generated. Components from the SfM workflow were leveraged for other applications
to demonstrate the extensibility of Catena.

• Chapter 6: Conclusions from the research are discussed and anticipated future
work is outlined.

Chapter 2

Objectives

In many applications, the manual or semi-automated solution to a scientific problem is
used, but lacks the flexibility and extensibility for use in future implementations. Using the
SfM implementation as an example, it is clear that monolithic software development yields
disposable software, which cannot be leveraged by future researchers. The solution to this
issue is multi-disciplinary, drawing on imaging science theory and software engineering
architecture, design, and implementation. Often there is disparity between these two
disciplines; image scientists tend to minimize the software component because they analyze
the problem in its native, entire form, while software engineers lack the theory knowledge
to allow for componentization and algorithm substitution. Analysis of the independent
requirements (i.e., without consideration for the other field) are described in Section 2.1
from an image scientist’s perspective and Section 2.2 from a software engineer’s perspective
as it relates to the SfM implementation. Ultimately, a fully automated solution is required,
which draws on strengths from both complementary fields of study to leverage design and
implementation of an abstracted workflow framework. The benefits of the abstracted
workflow framework will be exemplified in the SfM application.

2.1 Structure from Motion (Image Science)

Currently, the SfM implementation is run manually or semi-automatically with disparate
components, which tends to be error-prone and time-consuming. Therefore, the need exists
for a tool that easily integrates these individual components for fully automated execution
of the process. Ideally, the resulting framework would provide a method of implementation
that is extensible, and which minimizes the overhead to the researcher. A constrained
environment for research and development would allow for consistency between users,
and allow them to express the workflow in terms of components. This fully automated

4

2.2. WORKFLOW FRAMEWORK (SOFTWARE ENGINEERING) 5

solution must inherently allow for optimization of algorithms, and provide a method for
documentation of algorithms, parameters, and interfaces.

2.2 Workflow Framework (Software Engineering)

The software engineering approach to the SfM application includes componentization with
defined interfaces and documentation according to a contract set forth by the framework,
such that the framework automatically executes the necessary steps that enable the com-
ponents to be reused. High-level implementation in a cross-platform language would be
required such that the framework may be run on any operating system with little-to-no
consideration to maintain platform independence. The framework must be executed ef-
ficiently, requiring minimal computational resources, and allowing for parallel execution
using all available cores and compute nodes without additional burden on the developer
(i.e., feature of the framework). The framework should be able to persist / restore its
state, and provide programmatic and graphical interfaces. Component interfaces should
be defined / specified, and as such, the framework would validate legal combinations of
constructed components.

2.3 Benefits of the Multi-Disciplinary Abstracted Workflow
Framework

The potential benefits of combining the individual image science and software engineering
requirements far outweigh current level of support from any manual or semi-automated
method. The implementation capability will be easily accessible to the scientist / engineer
developer, principal investigator, manager, student, etc., and will be easily understood
through comprehensive documentation (requirement built into framework). In its simplest
form, a novice user can be given a baseline component implementation and can establish
predefined workflows with basic functionality that can be shared between users. Even at
this basic level, the user can manipulate nominal baseline parameters. Advanced users
can modify the baseline workflow or start constructing a custom workflow from predefined
component packages. This fully automated solution can quickly and quantitatively identify
deficiencies in components, which would expose areas needing additional development, and
can aid in guiding research efforts. The abstracted workflow framework is not specific to
the SfM application, but can be implemented for any workflow. This benefit minimizes
the learning curve to new users and eliminates duplication of efforts, allowing researchers
to easily contribute knowledge back to the field of study.

Chapter 3

Implementation

3.1 Workflow Framework

In many domains, the concept of a workflow, or chain, is applied to carry out a sequence
of tasks that can be represented by individual stages. This concept is often utilized in
the area of image processing. The output from a given stage is fed into subsequent stages
and becomes the input required to carry out a specific process. The generalization of this
concept is shown in Figure 3.1. This process continues sequentially until the final stage is
complete. In the current study, the abstracted workflow framework, named Catena [5], was
implemented in the Python programming language due to its object-oriented, platform-
agnostic, and ubiquitous nature. In addition, Python has gained a large following through-
out the scientific community and most of the anticipated target users are familiar with
this language. Chains can be built programmatically or through the usage of a graphical
user interface (GUI). Both methods support persistence for interoperability between en-
vironments and future usage of the constructed chain. The stages included as part of the
core framework, and custom stages implemented by users, are dynamically discovered and
loaded for ease of deployment, integration, operation, and extensibility.

3.1.1 Stages

The fundamental component of the workflow is the stage. The stage encapsulates a func-
tion and should be developed in such a manner that provides general capability across
chain instances (i.e., it should be designed generically so that it can be leveraged by other
applications). A stage defines three classes of information within it: the properties and
self-documentation; input interface; and output interface (Figure 3.2). The properties
required in the class constructor are used to control behavior and modes of the stage. Ad-

6

3.1. WORKFLOW FRAMEWORK 7

Stage #1

Property #1
Property #2
...
Property #N

Stage #2

Property #1
Property #2
...
Property #N

Stage #3

Property #1
Property #2
...
Property #N

Stage #4

Property #1
Property #2
...
Property #N

Figure 3.1: Generalized chain representation showing the connection of stages to compose
a workflow.

ditionally, information contained in the constructor facilitates self-documentation of the
stage, whereby it can be utilized to provide online help for users. Next, the input interface
is declared with type information. This is required prior to rendering the chain to validate
interface consistency among connected stages. Finally, the output interface is defined in
the same manner as the input. The advantage of defining stage interfaces is that it allows
the user to conveniently exchange one stage for another.

At the core of the stage lies the execution method, where the main function of the stage
is invoked. Due to the demand-pull nature of the chain rendering (explained in further de-
tail later), stages request input parameters from the associated up-stream stage(s) outputs.
This affects a recursive request up-stream. The output parameters from the up-stream
stage(s) and the properties provided upon construction by the instantiator comprise all
of the required information needed to carry out the function of a given stage. The stage
executes its specific function and sets the output parameters as defined on the output
interface. Finally, the framework ensures that all of the outputs are set and of the correct
type upon the completion of stage execution. Figure 3.3 provides the class diagram of the
StageBase class and two examples of classes (stages) that derive from it. This guarantees
consistency with the interface contracts specified between connected stages.

3.1. WORKFLOW FRAMEWORK 8

Stage

Input Interface Output Interface
Property #1
Property #2
…
Property #N

Figure 3.2: Representative stage structure showing properties and input / output inter-
faces. The input data comes from previous stages, while the output data is fed into the
subsequent stage(s). The individual stage interfaces are well-defined such that equivalent
stages can be swapped for other implementations in a chain.

+AddInputStage()
+AddOutputStage()
+RemoveConnections()
+GetInputStages()
+GetOutputStages()
+NumInputStages()
+GetPropertyMap()
+GetPackageName()
+GetStageName()
+GetStageDescription()
+GetPropertyDescription()
+SetPropertyDescription()
+GetProperty()
+SetProperty()
+GetInputStagesInterfaces()
+Reset()
+Prepare()
+InitializeOutputCache()
+ValidateCompleteOutputCache()
+GetOuput()
+GetOutputByKey()
+GetInputStageValue()
+SetOutputValue()
+StartProcess()
+RunCommand()
+GetInputInterface()
+GetOutputInterface()
+Execute()

StageBase

-stageDoc
-parameterDoc
-properties
-inputStages
-outputStages
-outputCache
-prepared
-uid +GetInputInterface()

+GetOutputInterface()
+WriteBundlerOptionsFile()
+Execute()

Bundler

+GetInputInterface()
+GetOutputInterface()
+Process()
+Execute()

Sift

Figure 3.3: StageBase class diagram and two derived classes / stages. The StageBase class
is the fundamental component in the workflow framework, from which every stage must
inherit.

3.1. WORKFLOW FRAMEWORK 9

3.1.2 Chain

A chain is composed of an arbitrarily complex sequence of stages representing a desired
workflow that is required to carry out a task. The user has the ability to employ a stage as
input into one or many down-stream stages, or even include it in different chain segments.
In addition, the user may construct the chain in such a manner that results in more than
one output stage. In this case, the output stages and the respective chains can be rendered
in parallel or sequentially.

3.1.3 Rendering

Once a chain is constructed from a collection of stages, it is ready for rendering. The
verb render is borrowed from the image processing concept, describing the method by
which the chain is executed to produce the desired output. The chain is rendered in a
demand-pull fashion. This means that the chain is rendered from the perspective of the
output stage. The request is made from stage to stage up-stream, and each stage executes
its function in order to produce an output for the stage(s) in front of it.

In addition, caching is employed as the chain is rendered so that a stage and its asso-
ciated outputs are only calculated once. This is essential in minimizing the computation
time of the overall chain. The caching scheme described is beneficial when a chain is
constructed with one stage connected to multiple up- or down-stream stages. It is impor-
tant to note that the developer is isolated from the rendering and caching details, as the
development methodology described in Section 3.1.1 ensures that both are employed as
part of the framework.

Using the generic components of the abstracted workflow framework, the user de-
fines customized stages by inheriting from a base stage class. This provides the self-
documentation feature, interface validation, caching, and rendering capability. A benefit
to this abstract approach is that an enhanced chain capability can be easily developed
to operate in multi-threaded, distributed, or high-performance computing environments
without modification to the concrete stage classes. The powerful benefit of abstraction
easily allows for scalability. Additionally, this architecture provides the flexibility to de-
velop an entirely different rendering or caching scheme without modification to the stage
implementations.

3.2. CATENA 10

3.2 Catena

Catena [5] is an abstracted workflow framework implemented in the Python programming
language that allows for the development of stages and chains. The stage and chain prop-
erties are defined at a high level and subsequently demonstrated with the SfM application.
This fully automated method was originally designed to solve SfM problems, however ben-
efits of the abstracted workflow framework have been realized in other scientific domains
and will be discussed. Catena ensures that stage implementation is intuitive, stage con-
nectivity is consistent in the development of chains, and re-use is promoted throughout
many fields of study.

3.2.1 Stage Implementation

This section illustrates the implementation of a stage for use with the Catena framework.
The trivial example will write a text file with the resolution information of the images that
are passed to the stage. The stage will act as a pass-through; it will simply set the input
images as the output. The code in Listing 1 is the entire implementation of the stage. It
will be explained thoroughly in the following subsections.

3.2. CATENA 11

import Chain

import Common

class ResolutionInfo(Chain.StageBase):

def __init__(self, inputStages=None, resolutionFilePath=""):

Chain.StageBase.__init__(self,

inputStages,

"Resolution Information",

{"Resolution Path":

"Path to resolution information file"})

self._properties["Resolution Path"] = resolutionFilePath

def GetInputInterface(self):

return {"images":(0,Common.sfmImages)}

def GetOutputInterface(self):

return {"images":Common.sfmImages}

def Execute(self):

images = self.GetInputStageValue(0, "images")

self.StartProcess()

f = open(self._properties["Resolution Path"], "w")

for im in images.GetImages():

f.write("%s: xres=%d, yres=%d\n" % (im.GetFileName(),

im.GetXResolution(),

im.GetYResolution()))

f.close()

self.SetOutputValue("images", images)

Listing 1: The code provides an example of a complete implementation of a stage that
outputs resolution information of given images to a file.

Module Imports

First, the Chain and Common modules are imported. The Chain module contains the base
Catena functionality and the StageBase class, from which all Catena stages must inherit.
The Common module contains data types that are typically used throughout the chain.

3.2. CATENA 12

import Chain

import Common

Class Definition

Next, the class is defined. As previously mentioned, all Catena stages must inherit from
Chain.StageBase. This base class contains the fundamental power and stage functional-
ity.

class ResolutionInfo(Chain.StageBase):

Constructor

The convention in Catena is for the constructor to take a list of input stages as the
first parameter. The subsequent parameters are optional and specific to the stage being
implemented. Another requirement is that each parameter be given a default value. This
serves a dual purpose as it provides a nominal parameter setting in the event the user does
not wish to override the default value, and the default parameter value conveys important
data type information to the framework (as Python is a loosely typed language).

def __init__(self, inputStages=None, resolutionFilePath=""):

Constructor Implementation

The base class’ constructor must be called immediately. The constructor takes three
parameters, including a list of input stages, a string that describes the stage, and a dic-
tionary. Each item of the dictionary describes the parameters of the stage. The key is the
parameter name, and the value is a description of the parameter. This information serves
as self-documentation in other applications, such as the Chain Builder and Chain GUI,
that offers users online help.

Chain.StageBase.__init__(self,

inputStages,

"Resolution Information",

{"Resolution Path":

"Path to resolution information file"})

3.2. CATENA 13

Stage Properties

Lastly, the properties dictionary is initialized using the parameters of the stage, provided
as parameters to the constructor. At this point, the user is free to carry out other initial-
ization procedures required for the stage.

self._properties["Resolution Path"] = resolutionFilePath

Input Interface

The GetInputInterface method must be implemented (overloaded) as part of the StageBase
contract. This is effectively a “pure virtual” method. A dictionary must be returned, which
represents the input interface. The item’s key is the input parameter name and the value
is a 2-tuple, where the first value is the index of the input stage from which the parameter
originates. The second value is the type of the parameter. This information is used to
perform interface consistency as chains are constructed, and to enforce type compatibility.
This allows the framework to perform run-time checking to minimize user errors both in
development and application.

def GetInputInterface(self):

return {"images":(0,Common.sfmImages)}

Output Interface

The GetOutputInterface method is similar to the input method in that it defines the
output parameters produced by the stage. The only difference is that the value of the
dictionary items is not a tuple, it is simply the data type of the output parameter.

def GetOutputInterface(self):

return {"images":Common.sfmImages}

3.2. CATENA 14

Execution Method

The final method required by the framework is the Execute method. This is where the
core functionality of the stage is carried out.

def Execute(self):

Execution Implementation

Each Execute method typically follows the same pattern:

1. Get input parameters from input stages using the GetInputStageValue method

2. Signal to the framework that processing is starting (StartProcess)

3. Carry out the work of the stage

4. Set the output parameters of the stage using the SetOutputValue method

The parameters from the input stages are acquired by calling the GetInputStageValue
method, providing the index of the input stage and the name of the parameter. This
effectively causes a recursive request up-stream from the end stage, as Catena implements
a demand-pull render model. The stage indices, parameter names, and data types must
be consistent with the interface defined in the GetInputInterface method.

images = self.GetInputStageValue(0, "images")

The framework is informed that processing is starting. This is used for analysis and
logging (e.g., to calculate timing information for chain and individual stage rendering).

self.StartProcess()

The main work of the stage is carried out next. In this example, the “Resolution Path”
string is accessed via the properties dictionary and a corresponding text file is opened for
writing. The images that were obtained from the input stage are iterated through, and

3.2. CATENA 15

the file name and resolution information are written for each image. The text file is closed
and the process is complete.

f = open(self._properties["Resolution Path"], "w")

for im in images.GetImages():

f.write("%s: xres=%d, yres=%d\n" % (im.GetFileName(),

im.GetXResolution(),

im.GetYResolution()))

f.close()

Finally, the output parameter values are set using the SetOutputValue method. The
parameter names and data types must be consistent with the interface defined in the
GetOutputInterface method.

self.SetOutputValue("images", images)

3.2.2 Chain Implementation

The following section will utilize SfM stages that have been developed in Catena order to
carry out a 3D modelling task. Figure 3.4 provides a high-level view of the SfM chain and
its component stages. The script in Listing 2 represents the complete implementation of
the SfM chain, however, it will be decomposed and explained thoroughly in the following
subsections.

Images
Feature

Extraction
Feature

Matching
Bundle

Adjustment
Point Cloud
Generation

Point Cloud
Processing

Visualization

Figure 3.4: High-level SfM chain defining all the steps of the algorithm.

3.2. CATENA 16

import sys, os

sys.path.append(os.path.abspath("."))

import Chain # Chain must be imported first, requirement of registry

import Sources, FeatureExtraction, FeatureMatch

import BundleAdjustment, Cluster

path to images

imagePath = "/images"

PMVS path

pmvsPath = os.path.join(imagePath,"pmvs")

build chain

imageSource = Sources.ImageSource(imagePath, "jpg")

sift = FeatureExtraction.Sift(imageSource, False, "SiftHess")

keyMatch = FeatureMatch.KeyMatch(sift, False, "KeyMatchFull")

bundler = BundleAdjustment.Bundler([keyMatch, imageSource])

radialUndistort = Cluster.RadialUndistort([bundler, imageSource])

prepCmvsPmvs = Cluster.PrepCmvsPmvs(radialUndistort, pmvsPath)

cmvs = Cluster.CMVS(prepCmvsPmvs)

pmvs = Cluster.PMVS(cmvs)

render chain

print Chain.Render(pmvs, "sfmLog.txt")

persist chain

Chain.StageRegistry.Save("sfmChain.dat")

Listing 2: A script that programmatically builds a SfM Catena chain.

Import Modules

The packages that contain stages to build the desired chain must be imported. The order
is very important in this case. First, the sys and os modules are imported in order
to append the absolute path of the current working directory to the path environment
variable. Catena requires scripts to be launched from the root directory, this is necessary in
order to locate stage packages. The auto-discovery feature requires the Chain module to be
imported first. This finds all occurrences of classes that inherit from the Chain.StageBase
class. The packages, which contain the stage definitions used during the chain building
are then imported.

3.2. CATENA 17

import sys, os

sys.path.append(os.path.abspath("."))

import Chain # Chain must be imported first, requirement of registry

import Sources, FeatureExtraction, FeatureMatch

import BundleAdjustment, Cluster

Path Definitions

The imagePath variable is set to the location of the images that will be processed for
creation of the 3D models. The pmvsPath variable is derived from the imagePath.

path to images

imagePath = "/images"

PMVS path

pmvsPath = os.path.join(imagePath,"pmvs")

Chain Construction

The remaining steps create an instance of each stage in the chain. The pattern of creating a
stage instance requires that the previous stage be given as the first parameter (input stage)
to the constructor. Each stage also defines its own properties, provided as subsequent
parameters to the constructor. Please refer to Appendix A.2 for detailed information of
each stage.

Image Source

The ImageSource stage is used to generate a list of images that exist on disk. In this case,
“jpg” is the file extension of interest. Therefore, all files whose extension is “jpg” will be
added to the image list and output to the following stage.

imageSource = Sources.ImageSource(imagePath, "jpg")

SIFT

The scale-invariant feature transform (SIFT) [1] stage accepts a list of images and generates
keypoint descriptor files for each respective image. The descriptor files contain feature
vectors of salient points in the image. The keypoint descriptors collection is represented
as a class and the instantiated object is passed to the output stage. The SIFT stage takes

3.2. CATENA 18

two parameters. The first controls whether the descriptor files are parsed and maintained
in memory, and the second selects the SIFT implementation.

sift = FeatureExtraction.Sift(imageSource, False, "SiftGPU")

Feature Matching

The key matching stage takes a keypoint descriptor collection object and matches the
descriptors based on their properties. The output is a class that represents the keypoint
match table. The feature matching stage takes two parameters; the first controls whether
the keypoint matches are parsed and maintained in memory, and the second selects the
feature matching implementation to employ.

keyMatch = FeatureMatch.KeyMatch(sift, False, "KeyMatchGPU")

Bundle Adjustment

The bundle adjustment stage is an abstraction of the Bundler [6] program. It accepts
the keypoint matches and images as input, generating a proprietary Bundler output file,
which is represented as a class within the framework.

bundler = BundleAdjustment.Bundler([keyMatch, imageSource])

Radial Undistort

The radial undistort stage takes the Bundler output and the list of images as input. It uses
the radial distortion coefficients computed by Bundler to warp the images so as to remove
the radial lens distortion. A new Bundler file is generated, along with a new collection
that represents the undistorted images.

radialUndistort = Cluster.RadialUndistort([bundler, imageSource])

3.2. CATENA 19

CMVS / PMVS Preparation

The cluster-based multi-view stereo software (CMVS) and patch-based multi-view stereo
software (PMVS) [7] programs expect their input to be in a particular form that is different
from Bundler’s output. Therefore, this preparation stage is used to pre-process the inputs.
This stage takes the Bundler file and image collection as input. It moves the Bundler file
and images to an acceptable directory for CMVS and PMVS. In addition, it generates a
“vis” file and collection of camera matrices that are computed from the contents of the
Bundler file.

prepCmvsPmvs = Cluster.PrepCmvsPmvs(radialUndistort, pmvsPath)

CMVS

CMVS [7] requires a Bundler file and image collection as its input. It runs a clustering
algorithm, which reduces the overall input image set by identifying redundant views of the
scene, and also breaks up the image set into smaller independent image sets for parallel
processing. The stage outputs a Bundler file, image collection, “vis” file, “cluster” file,
and “camera centers” file.

cmvs = Cluster.CMVS(prepCmvsPmvs)

PMVS

PMVS [8] requires a Bundler file and image collection as its input. It runs a patched-based
multi-view stereo algorithm to generate a dense point cloud. The outputs are the dense
3D point cloud, a “patch” file, and a “pset” file.

pmvs = Cluster.PMVS(cmvs)

3.2. CATENA 20

Chain Rendering

Finally, the chain is rendered by calling the Chain.Render method, which accepts the last
stage object as its input. The method also requires a string parameter, which specifies
where the log file shall be written.

print Chain.Render(pmvs, "sfmLog.txt")

Chain Persistence

The chain can be saved to a file for later usage by calling the Chain.StageRegistry.Save
method and providing a path to the data file to write. This allows for restoration of the
persist file, from which the chain can be rendered.

Chain.StageRegistry.Save("sfmChain.dat")

Persisted Chain Rendering

The script in Listing 3 illustrates how to restore a chain from a persist file and render
a selected stage. First, the Chain.StageRegistry.Load method is called with a path to
the persist file. The Load method returns a list of head and tail stages. This is useful
for programmatic traversal. Next, the Chain.Render is called by providing the first tail
stage as its parameter and a log file string. This requires a priori knowledge of the chain
structure. Since a single tail stage exists from the chain that was built, the PMVS stage
is located at index 0 in the tailStages list.

load the sfm chain

headStages, tailStages = Chain.StageRegistry.Load("sfmChain.dat")

render the tail stage (pmvs)

print Chain.Render(tailStages[0], "sfmLog.txt")

Listing 3: A script that loads a persisted Catena chain and renders the tail stage.

3.2. CATENA 21

3.2.3 Stage Development Patterns

The following sections explain some of the common stage implementation patterns. The
methods that aid in the implementation are explained.

Conditional Execution

A convenience method has been included in the Common.Utility package that can be
used to determine if the core stage functionality should be executed (example provided
in Listing 4). The first parameter is a boolean value that will typically be provided from
the user, which indicates whether the stage should be executed, even if other conditions
are satisfied that indicate execution is not needed. For example, if the outputs that would
result from executing the stage already exist, the execution of the stage could be bypassed.
The remaining parameters to the ShouldRun method are directories or files that will be
checked for existence. If the first parameter (Force Run) is true or any of the directories
or files given do not exist, the method will return true. The code below illustrates the
usage of the ShouldRun method.

Common.Utility.ShouldRun(self._properties["Force Run"],

bundlerOptionsFilePath,

bundlerOutputPath,

bundlerOutputFilePath)

Listing 4: Example of the ShouldRun utility method for executing external applications.

External Program Execution

A stage can represent an external application that accepts a set of command line arguments
for execution. A method named RunCommand has been provided on the StageBase class for
ease of implementation (see example in Listing 5). The first parameter is the name of the
executable. The location of the executable is determined at run-time and is dependent
on the platform (explained below). The next parameter is a string of the command
line arguments. The CommandArgs and Quoted methods are provided for convenience
(discussed below). The user may also specify the execution working directory (cwd) and
whether a shell should be used for invocation. Example usage of the RunCommand method
with the Bundle2PMVS program is provided below.

3.2. CATENA 22

self.RunCommand("Bundle2PMVS",

Common.Utility.CommandArgs(

Common.Utility.Quoted(imagelist),

Common.Utility.Quoted(bundleFile),

Common.Utility.Quoted(outputPath)),

cwd = os.path.split(imagelist)[0])

Listing 5: An example of the RunCommand method provided on the StageBase class, which
is used to invoke external applications.

The RunCommand method utilizes the GetExePath method in the Utility module. This
method serves two purposes. First, it locates the executable according to the platform.
For example, if executing on a 64-bit Linux environment, the executable will be searched
for under the stage’s directory: Linux64bit/bin. Secondly, in Linux environments, the
LD LIBRARY PATH environment variable is used to include paths to dependent libraries. As
such, in this example, the Linux64bit/lib directory will be added to the LD LIBRARY PATH

environment variable in order for the executable to resolve dynamic libraries.
The Quoted method simply formats the given string in quotes, as required when speci-

fying strings that contain spaces on the command line. The CommandArgs method accepts
a collection of argument strings and formats them into a single string that can be passed
to the RunCommand method.

Image Processing Base Stage Class

A base class named ImageProcessStageBase is provided in the Common package of Catena.
A common interface pattern and sequence of operations were discovered throughout many
stage implementations dealing with images, thus the common functionality was factored
out into this base class for ease of implementation. The input and output interfaces
include an image or images. The execution processes images depending on the “should
run” pattern, writing the images to a new directory or constructing a new name based on
the input name, and passing the processed images as the output.

There is one pure-virtual method that must be implemented, ProcessImage. This
method has two parameters, the input image file name and output image file name.
This method will be called by the base class on every image to process. Optionally,
the GetOutputImagePath can be overridden to specify the output image file name and
path. The default implementation assumes the output path is different from the input
and a unique file extension, relative to the input images, is specified.

As a simple complete example provided in Listing 6, a stage that copies images to an
“output path” will be implemented. One can envision the usage of this base class to imple-
ment a stage that processes image(s) using an algorithm implementation or other process.
The constructor parameters include StageBase parameters, stage-specific parameters, and
ImageProcessStageBase parameters (see code comments in Listing 6). However, many

3.2. CATENA 23

derived classes are much simpler than this example in that they only include the imple-
mentation of the ProcessImage method.

Please see the full example in the Catena repository:
Testing/exampleImageProcessStageBase.py

3.2. CATENA 24

class CopyImages(Common.ImageProcessStageBase):

def __init__(self,

inputStages=None, # input stages (StageBase)

prefixName="", # file name prefix (CopyImages)

outputPath="", # output path (ImageProcessStageBase)

imageExtension="tif", # image extension (ImageProcessStageBase)

forceRun=False, # force run (ImageProcessStageBase)

enableStage=True): # enable stage (ImageProcessStageBase)

Common.ImageProcessStageBase.__init__(self,

inputStages,

outputPath,

imageExtension,

forceRun,

enableStage,

"Copies images",

{"Prefix Name":"Output file name prefix"})

self._properties["Prefix Name"] = prefixName

def GetOutputImagePath(self, inputImagePath):

construct the output image path, including the prefix name

return os.path.join(self._properties["Output Image Path"],

self._properties["Prefix Name"] +

os.path.splitext(os.path.basename(inputImagePath))[0] +

"."+self._properties["Image Extension"])

def ProcessImage(self, inputImagePath, outputImagePath):

copy the input to output

shutil.copy(inputImagePath, outputImagePath)

Listing 6: An example class derived from the Common.ImageProcessStageBase class. The
base class provides common stage functionality for stages that define sfmImage(s) on both
their input and output interface.

3.2. CATENA 25

3.2.4 Tap Point Stage

A generalized tap point stage was implemented in the framework. It is essentially a pass-
through stage in terms of the parameters, but it allows for default or specific printing to the
log file (and stdout). Listing 7 illustrates the TapPoint stage, which takes a single stage
as the input and an optional dictionary of print functions. The print function dictionary
is keyed by type, where each value is a function that will print the input values (from the
input stage) of the specific type. The example shows an inline lambda function declaration
for the printing of sfmImages objects. If a print dictionary is not provided, the overloaded
string method on the object will be utilized. This is illustrated in the second tap point
stage instance in Listing 7.

import sys, os

sys.path.append(os.path.abspath("."))

import Chain # Chain must be imported first, requirement of registry

import Sources, FeatureExtraction, Common

build chain

imageSource = Sources.ImageSource("/images", "jpg")

insert tap point stage with print function

tap = Common.TapPoint(

imageSource,{Common.sfmImages:lambda x: "Image Path: " + x.GetPath()})

insert tap point stage without print function

tap = Common.TapPoint(tap)

sift = FeatureExtraction.Sift(tap, False, "SiftHess")

render chain

print Chain.Render(sift,"log.txt")

Listing 7: An example Catena chain that uses the TapPoint stage to inspect intermediate
stage output values.

3.2.5 Unit Test

A unit test script (unitTest.py) has been provided in the Testing directory. This script
exercises all of the stages included with the framework, including all of the optional modes

3.2. CATENA 26

(e.g., SIFT variants) and strives to exercise all the underlying support classes. The user
is encouraged to execute this script upon checking out or exporting the repository to
baseline the functionality of Catena on their system, as there may be subtle differences in
the environment that affect execution of the components.

3.2.6 Chain Builder

The Chain Builder tool allows for graphical building of chains. A screenshot of the interface
is provided in Figure 3.5. The list of stage packages is accessed by right-clicking on the
canvas. A context menu of stages, which were dynamically discovered at start-up time, are
displayed. By selecting the stage, an instance is placed on the canvas. When clicking on
the stage, a list of properties, their current value, a description of the stage and properties,
and interface definition are provided. The stages of the chain are connected by using the
tool found in the top menu bar. Once the chain is complete, it can be rendered by right-
clicking on the tail stage and selecting “render.” The bottom status section will display
progress of the render. In addition, the chain can be saved and loaded, similar to the
programmatic method explained previously.

3.2.7 Chain GUI

The Chain GUI tool is similar to the Chain Builder, but it assumes the chain has been
programmatically constructed. This tool is used to present stage properties to the user and
mainly to visualize outputs of stages. Refer to the full example in the Catena repository:
sfmChainGUI.py. The chain definition is given in Listing 8.

imageSource = Sources.ImageSource(imagePath, "jpg")

sift = FeatureExtraction.Sift(imageSource, False, "SiftHess")

keyMatch = FeatureMatch.KeyMatch(sift, False, "KeyMatchFull")

bundler = BundleAdjustment.Bundler([keyMatch, imageSource])

radialUndistort = Cluster.RadialUndistort([bundler, imageSource])

prepCmvsPmvs = Cluster.PrepCmvsPmvs(radialUndistort, pmvsPath)

cmvs = Cluster.CMVS(prepCmvsPmvs)

pmvs = Cluster.PMVS(cmvs)

Listing 8: SfM chain used as an example for the Chain GUI.

The Chain GUI is invoked as shown in Listing 9. A screenshot of the GUI is provided
in Figure 3.6, which allows the user to manipulate stage properties, render chains, and
visualize output.

3.2. CATENA 27

Figure 3.5: The Chain Builder GUI provides a graphical interface to construct workflows,
browse stage packages, modify stage properties, and render chains.

Visualization.ChainGUI.display(stagesVisualizations,

stagesDisplayProperty,

stagesPropertyRanges)

Listing 9: Example invocation of the Chain GUI visualization tool.

The stagesVisualizations list contains 3-tuples. The first tuple element is the
Catena stage object(s), followed by a label to be placed on the respective visualization
widget, and the class to be used for visualization, as illustrated in Listing 10.

stagesVisualizations =

[(imageSource,"Images",Visualization.ChainGUI.ImageWidget),

((imageSource,sift),"Features",Visualization.ChainGUI.FeatureWidget),

((imageSource,keyMatch),"Correspondences",

Visualization.ChainGUI.CorrespondenceWidget)]

Listing 10: The data structure required for stage visualizations using the Chain GUI.

3.2. CATENA 28

The stagesDisplayProperty list contains 2 or 3-tuples. The first tuple element is
the Catena stage object(s), followed by a label to be placed on the respective property
sheet, and optionally a collection of properties to include on the sheet. This is illustrated
in Listing 11. If the third element is not included, all of the properties of the stage will be
included in the property sheet.

stagesDisplayProperty =

[(imageSource,"Source"),

(sift,"Features"),

(keyMatch,"Keymatch"),

(bundler,"Bundler"),

(radialUndistort,"Radial Undistort"),

(prepCmvsPmvs,"Prep CMVS/PMVS"),

(cmvs,"CMVS"),

(pmvs,"PMVS")]

Listing 11: The data structure required for stage property sheets using the Chain GUI.

The stagesPropertyRanges dictionary contains dictionaries that define the property
name and range, expressed in a 2-tuple, as shown in Listing 12. If the property has an
integer or floating point data type, a slider will be used in conjunction with a spinbox to
enforce the defined range.

stagesPropertyRanges=

{pmvs:{"Cell Size":(1,40),

"Maximum Camera Angle Threshold":(1,45),

"Patch Threshold":(0.0,10.0),

"Sample Window Size":(1,20)}}

Listing 12: The data structure required for stage property ranges using the Chain GUI.

3.2.8 Design Approaches

When a scientist or engineer is presented with a problem, there are three general types
of scenarios that should be considered before beginning componentization of the problem
and the design and implementation of stages and chains, as listed below. The user should
be cognizant of the interfaces between stages in order to develop generalized components
that potentially can be leveraged in other applications.

3.2. CATENA 29

Figure 3.6: The Chain GUI accepts a programmatically constructed chain and provides
a graphical interface to modify stage properties, render chains, and most importantly,
visualize the outputs of stages. This provides feedback to tune stage parameters.

1. Leverage existing work, no stages need to be developed.

2. A subset of stages are available and/or existing third-party components wish to be
leveraged, the overall task flow should be considered and broken up so that existing
stages can be leveraged.

3. No stages are available for use.

The first case describes a scenario in which a complete set of stages are available to
carry out a task. As such, the chain is constructed either programmatically or by using
the Chain Builder GUI.

The second scenario is most probable in practice. Existing stages and/or components
are available, but a subset of the functionality needs to be implemented. In this scenario,
the existing stage functionality impacts the design of the chain / stage structure.

In the third case, there is complete freedom in defining the workflow breakup. How-
ever, it is usually advantageous to construct stages / chains such that they can be reused.
This requires forethought and experience in componentization of functionality. It is also
important to consider how the individual stages / components will be tested during de-
velopment.

3.2. CATENA 30

Mosaicing Example

The following example was taken from a scenario encountered in industry at Exelis, where
the existing stages built for the SfM task were leveraged for image mosaicing. An image
mosaic is a virtual image that is constructed of many images with some overlapping scene
content. The common scene content is exploited to establish correspondences such that
the images can be warped into a common coordinate system, resulting in a composite
“mosaiced” image. The following mature stages have been implemented and tested for the
SfM application, and will directly or indirectly be leveraged for the mosaicing application:

1. Image Source

2. Feature Extraction

3. Feature Matching

4. Bundle Adjustment

5. Point Cloud Generation

In order to facilitate the task of image mosaicing, new data types need to be de-
fined, which relate pairs of images, (MosaicImagePair) and a collection of these objects
(MosaicImagePairs). In order to utilize the existing stages, a new image source that pro-
vides MosaicImagePairs must be compatible with the next stage down-stream (i.e., Fea-
ture Extraction), which requires sfmImages as input. This is accomplished by inheriting
from sfmImages and implementing the accessor methods such that the MosaicImagePairs
class behaves identically as sfmImages. At this point, the Feature Matching stage can be
leveraged, therefore no new functionality needs to be implemented. The output from the
Feature Matching stage does not provide the exact information required for image mo-
saicing (with respect to the image pairs). This is the trade-off one needs to make when
implementing a new stage from scratch. In this case, it was desirable to leverage existing
stage capability at the cost of re-interpreting the output of the Feature Matching stage.
This stage provides a match table for every combination of image in the input. In the
mosiacing case, there are a limited number of pre-defined image pairs. Analysis was re-
quired to determine the benefit between the cost of computing matches for every image
combination versus a new feature matching implementation. In this case, it was simple to
implement a new stage (MosaicImageMatching) to leverage existing functionality of the
pre-developed Feature Matching stage. Lastly, a new stage was developed for the chain
that performs image mosaicing. This stage accepts the mosaic image pairs collection and
feature matches (tie points). It computes homographies (perspective transforms) between
pairs, and relates all pairs back to a reference image. This information is used to warp

3.2. CATENA 31

the images into a common coordinate system resulting in an image mosaic. The complete
chain is illustrated in Figure 3.7, the new stages are denoted by a cross-hatch pattern.

Mosaic Image Pairs
Mosaic Image
Pairs Source

Features

Matches

SIFT

Method

Matching

Method

Mosaic Image
Matching

Image
Mosaicing

Mosaic Image Pairs

Mosaic Image Pairs

Mosaic

Figure 3.7: The image mosaicing chain uses feature extraction and matching stages from
the SfM application to warp images with overlap into a composite virtual image mosaic.

To summarize, the feature extraction and matching stages originally developed for
SfM were leveraged and a new mosaic image pairs source was created to facilitate image
mosaicing. This is the essence of Catena. The SfM stages were successfully re-used even
though the original functionality was not intended for different applications (i.e., mosiac-
ing). Generalization and abstraction are very powerful concepts that enable software
reuse.

3.2.9 Interface Definition Advantages

There are many benefits to breaking down workflows in terms of stages / components
that define interfaces. Some of these advantages include: the ability to swap stages with
those that have equivalent interfaces; ability to benchmark / analyze performance; en-
capsulation of functionality; componentization of processes; and leveraging components
across application specific workflows, among others. The interface definition effectively

3.2. CATENA 32

enforces structure and clean separation of components. This has the added benefit of
being portable, as there are no external dependencies outside of a stage. This can be con-
trasted to functionality implemented in other environments and frameworks where there
are interdependencies between all the components, which makes it extremely difficult to
pick up a component and reuse it in another application. Often, functionality is not com-
ponentized and there are interdependencies that make it nearly impossible to leverage in
other applications. Thus, Catena addresses these problems by enforcing a strict policy that
enables scientists / engineers to componentize the desired workflow and encourages devel-
opment of independent stages with well-defined interfaces that can be easily interchanged
for new applications.

3.2.10 Optimization Process

Stages must define an input and output interface, making it very straight-forward to
isolate stages from the original chain and import them into a “test bed” chain for profiling
and analysis. Catena provides timing information at the stage level, but finer-grained
details of the overall timing can be accomplished using native Python timing tools. If
the stage is not a pure Python implementation, there are timing and analysis tools for
C/C++ and other languages including Intel’s VTune [9], Quantify [10], Very Sleepy [11],
HPCToolkit [12], and Visual Studio Profiler [13]. These tools will break down the overall
program run-time such that time consuming / CPU intensive operations can be isolated
and subsequently optimized. This process deserves a much deeper treatment and is beyond
the scope of this thesis. However, there are CPU vector extensions, graphics processing
units (GPUs), field programmable gate arrays (FPGAs), digital signal processors (DSPs),
distributed computing facilities, and other techniques using cooperative processing in order
to optimize algorithm implementations.

3.2.11 Platform / Implementation Issues

Catena was implemented using Python (developed against v2.7.3). The framework and
base stages have been tested on multiple platforms including many Linux distributions,
Mac OS X, and 32/64-bit Windows. Python is inherently cross-platform, but the pro-
grammer must be cognizant to ensure platform independence. If native external libraries
or applications are used as part of the stage implementation, they will have to be built
for each desired platform. For example, in the SfM application, many native open-source
components exist. This is generally the case when leveraging existing work. Addition-
ally, native implementations are more efficient, and Python implementations have been
optimized for speed in a language such as C++. The build tool CMake [14] attempts to
generalize platform-specific build issues and allows for easy cross-platform compilation of

3.2. CATENA 33

native libraries and applications. This build tool is strongly recommended.
Often there are many algorithms of the same basic class that are subtly different. For

example, the feature extractors that are used for the SfM application can all be viewed
as the same at a certain level of abstraction. Object-oriented software design can be
utilized to account for these differences while maintaining a consistent interface and single
component stage. First, all specific components of interest should be factored into a
common class representation (e.g., KeypointDescriptorFile). The class should contain
general properties and methods applicable to all components. In addition, any underlying
data types should be defined and used throughout the classes. Once this is established,
concrete classes that derive from the base class (e.g., KeypointDescriptorFileVLFeat)
should be implemented to carry out the specific component’s task. A Catena stage can
be wrapped around this functionality, exposing general properties and a mode to select
the desired implementation. Since the component was abstracted, the interface and the
datatypes declared therein are by default generalized. Therefore, the stage is compatible
with any stages that match the defined input/output interface.

3.2.12 Deployment Considerations

It is commonly desirable to distribute chains to target heterogeneous systems. Therefore,
considerations must be made for successful deployment. First, it is important to test the
execution of the chain on the target platform to ensure all stages operate as intended and
that the underlying native components function properly. Ideally, unit tests are written to
automate the testing of the stages developed. Experience has shown that it is common for
library dependencies to be missing, especially on Unix operating systems, as shared objects
are often added via package managers after the base installation. The developer might
have to rebuild applications and libraries, or install missing dependencies via package
managers or installers. There are Python tools such as Freeze [15] and py2exe [16] that
turn Python modules, scripts, and dependencies into either a single executable or portable
package. The developer should consider using these tools to aid in workflow deployment,
as this simplifies the deployment process.

Chapter 4

SfM Theory

The SfM algorithm processes multi-view imagery of a scene and generates 3D point clouds
and models. This chapter outlines the SfM theory by addressing the individual components
required in the processing chain. A description of each component and justification for
its utilization is presented, along with the underlying mathematics. Additionally, the
generalization of each component will illustrate how it can be wrapped into a Catena
stage for integration into the framework.

4.1 Image Source

The first step in the SfM process is to define the input images that will be used for the 3D
reconstruction. While it is possible to implement a stage that includes images from various
sources, different directories, etc., the assumption is made that all the images will reside
in a given directory and have the same image file format / file extension. This allows for
the implementation of a generalized image source that requires a path, file extension, and
an optional parameter that defines the focal pixel value of the image set, as illustrated in
Figure 4.1.

The focal pixel value is a requirement of the bundle adjustment stage further down the
chain, but it is appropriate to associate it with the image source. It is optional because
in some cases, the pixel pitch and focal length can be found in the exchangable image file
format (exif) metadata, which are sufficient for the calculation of the focal pixel value (see
Equation 4.1).

focalPixels =
sensorResolution[pixels] ∗ focalLength[mm]

sensorWidth[mm]
(4.1)

34

4.2. IMAGE FILTERING / SUBSETS 35

It is common for manufacturers to specify the “pixel pitch” of a sensor, which is the
physical size of a single pixel / detector. From the focal pixels equation, the sensor
resolution and width terms can be represented by pixel pitch, as shown in Equation 4.2.

pixelPitch =
sensorWidth[mm]

sensorResolution[pixels]
(4.2)

By substituting Equation 4.2 into Equation 4.1, a more intuitive definition of focal
pixels is obtained (see Equation 4.3).

focalPixels =
focalLength[mm]

pixelPitch[mm/pixel]
(4.3)

Image Source

Image ListPath
Extension
Focal Pixel
Override

Figure 4.1: The Image Source stage generates a list of images from a given path and
extension. This is typically the first stage in a chain.

4.2 Image Filtering / Subsets

Due to the fact that the entire directory of images was input by the image source, it is
convenient to develop stages that filter or generate subsets of the complete image set.
There are two stages that perform these functions in the framework, ImageFilter and
ImageSubset. Additional stages can be easily implemented to down-select from the initial,
complete set of images. For example, the ImageSubset stage is shown in Figure 4.2, which
will be used to select a subset of images from the complete set.

4.3. SYMBOLIC LINKS 36

Image Subset

Image List Max Images
Start Index
Increment

Image List

Figure 4.2: The Image Subset stage takes a list of images and down-selects using the
supplied criteria.

4.3 Symbolic Links

Further down the chain, stages generate additional files in the directory where the image
files exist. Therefore, it is desirable to create a directory, which contains symbolic links to
images. However, this is currently only possible in Unix environments, due to limitations
of other operating systems. This leaves the original directory of images pristine while
establishing a “working directory” for the SfM process. The ImageSymLink stage provides
this function, as shown in Figure 4.3.

Image
SymLink

Image List Path
Delete Existing
Link Keys

Image List

Figure 4.3: The Image Symbolic Link stage creates symbolic links to images on Unix
operating systems to establish a working directory.

4.4 Image Conversion

Sometimes it is necessary to convert images into different image file formats due to input
requirements of applications. Additionally, there are cases when the bit-depth, dynamic
range, or data type of the imagery is incompatible or sub-optimal for processing by sub-
sequent stages. For example, feature detectors typically operate well on 8-bit imagery
with high dynamic range. Therefore, a conversion process needs to be performed in order
to convert the imagery into a proper form. The ImageConvert stage (see Figure 4.4) in

4.5. FEATURE EXTRACTION 37

the Catena framework utilizes the Python imaging library (PIL) and performs image file
format conversion. This stage can also perform colorspace transformation from RGB to
grayscale, if desired.

Image
Convert

Image List Path
Extension
Mode

Image List

Figure 4.4: The Image Convert stage converts images to a desired file format.

4.5 Feature Extraction

The goal of the feature extraction step is to identify salient points or regions in an image
that can be uniquely identified across imaging conditions (e.g., in varying illumination
conditions, views / perspectives, and imaging modalities). A strong feature descriptor
should be robust such that it can be easily differentiated among a large set of features.
Characteristics of the points need to be computed in order to successfully establish cor-
respondence in the following stage. Typically, there are attributes associated with each
point, including scale, orientation, response, and a feature vector.

There are a variety of feature extraction algorithms available that attempt to estab-
lish an invariant feature space, including SIFT [1], ASIFT [17], SURF [18], STAR [19],
BRISK [20], MSER [21], Daisy [22], FAST [23], ORB [24], and Harris Corners [25], among
others. The algorithms define a multi-dimensional (typically 128 dimensions) feature space
in which keypoints are established. The goal of the feature space is to be invariant to imag-
ing conditions / distortions and provide an optimal space to establish correspondence of
the next step in the SfM workflow.

4.5.1 SIFT

The SIFT [1] algorithm is the most commonly used feature extractor in the SfM application
and many of the other feature extraction algorithms are heavily rooted in SIFT. First, the
number of octaves and intervals per octave (or simply intervals) are selected. Each octave
is a scale level of the image established by down-sampling or up-sampling by a factor of 2x.

4.5. FEATURE EXTRACTION 38

This contributes to the scale-invariance of SIFT. Typically, the input image is up-sampled
by 2x to establish the first octave. In most SIFT implementations the number of octaves
is calculated using Equation 4.4.

octaves = floor(log(min(imageWidth, imageHeight))/log(2.0)− 2) (4.4)

For example, if the sensor resolution is 1280x1024:

octaves = floor(log(min(1280, 1024))/log(2.0)− 2)

octaves = floor(log(1024)/log(2.0)− 2)

octaves = floor(3.01/0.30− 2)

octaves = floor(8.03) = 8

Therefore, the image pyramid would contain the following eight scales (octaves):
2560x2048, 1280x1024, 640x512, 320x256, 160x128, 80x64, 40x32, 20x16.

The number of intervals is typically set to three. The algorithm accepts a grayscale
image and is up-sampled by 2x and filtered with a Gaussian kernel, typically where σ =
1.6 is used to generate the kernel. Next, the Gaussian intervals are computed for each
octave, illustrated in Figure 4.5. Each interval is generated by convolving with the next
Gaussian kernel in the filter bank, and is generated using Equation 4.5 (from the Hess
implementation [26]):

σ2total = σ2i + σ2i−1 (4.5)

Next, the Difference of Gaussian (DoG) images are calculated by simply subtracting
interval pairs of images in the Gaussian octave stack, as illustrated in Figure 4.5. The
“scale-space extrema” are identified by iterating over all pixels in the DoG images, for
each octave and interval. First, the pixel value is tested against a contrast threshold (e.g.,
0.04), checking for a minimum signal level. If it passes this criterion, it is checked to see
whether it is a maximum in the current interval’s 8-point neighborhood and the 9-point
neighborhood of the two adjacent intervals, as illustrated in Figure 4.6.

Finally, the “ratio of principal curvatures” is computed and checked against a thresh-
old. This eliminates points that have a large response in only one of the vertical and
horizontal directions. The “principal curvature” is computed at the location and octave
of the detected feature by first calculating the 2x2 Hessian using the DoG image already
computed using Equation 4.6.

H =

[
Dxx Dxy

Dxy Dyy

]
(4.6)

4.5. FEATURE EXTRACTION 39

. . .

Gaussian

Difference of Gaussian
(DoG)

Scale
(next octave)

Scale
(first octave)

Figure 4.5: The SIFT algorithm establishes a difference of Gaussian scale space by con-
volving images at each octave to yield intervals. Reproduced from [1].

The trace and determinant (calculated in Equations 4.7 and 4.8) are then used to
compare against a threshold r, which is typically set to 10. If the feature passes the
condition in Equation 4.9, it is selected as a valid SIFT feature.

Tr(H) = Dxx +Dyy (4.7)

Det(H) = DxxDyy − (Dxy)
2 (4.8)

Tr(H)2

Det(H)
<

(r + 1)2

r
(4.9)

At this point, the salient points in the image are identified. The feature is located
to sub-pixel accuracy by interpolating in the DoG scale space. The scale and orientation

4.5. FEATURE EXTRACTION 40

Scale

Figure 4.6: The SIFT algorithm finds scale space extrema by comparing the 8-point neigh-
borhood at the current scale and 9-point neighborhood of adjacent scales. Reproduced
from [1].

values are assigned to the feature, establishing scale and orientation invariance. The scale
value is used to select the Gaussian image, for which the orientation will be computed.
Orientation histograms are computed typically using a 36 bin histogram representing all
the orientations around a feature. The magnitude and orientation are computed using
Equations 4.10 and 4.11, respectively, where L represents the Gaussian image.

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (4.10)

θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y)) (4.11)

The magnitude is scaled by a Gaussian-weighted circular window (σ = 1.5 times the
scale of the keypoint) and added to the orientation histogram. This effectively provides
a measure of the response at different angles around the feature. The histogram peak
is detected and the corresponding orientation is assigned to the feature. If there are
peaks within 80% of the global peak, they are also used to instantiate new features. This
means that multiple features could be generated for a single coordinate, but with different
orientations.

Finally, the descriptor vector is calculated by first locating the feature by rotating it
according to the computed orientation. The magnitudes and orientations are computed
around the keypoint, using Equations 4.10 and 4.11. The magnitude is modulated by a

4.5. FEATURE EXTRACTION 41

Gaussian weighting function using σ = d/2, where d is the width of the descriptor window.
This gives gradients farther from the feature center less contribution. The neighborhood
size is variable, but typically a 16x16 neighborhood is used to compute the descriptor.
The 16x16 neighborhood is broken into 4x4 windows, where 16 separate magnitude /
orientation histograms are computed for each window. Next, the histogram is quantized
into a desired number of bins, typically 8. Each of the 8 bins of the 16 histograms
comprises one element of the feature vector. In the typical case, the vector has 128
dimensions, but this varies depending on the choice of the neighborhood and histogram
bin size. The descriptor vector provides illumination and perspective invariance to the
feature (see Figure 4.7).

Image Gradients Keypoint Descriptor

Figure 4.7: The SIFT descriptor is computed from localized gradients combined into
localized histograms of magnitudes and orientations. Reproduced from [1].

There are a variety of SIFT implementations available including: SiftWin32 (base
implementation from Lowe) [1], VLFeat [27], OpenCV [28], OpenSIFT [26], and SIFT
GPU [29]. In order to provide a generalized SIFT component (shown in Figure 4.8), the
intricacies of each implementation need to be addressed. There are two main issues that
require attention: 1) depending on the implementation, there are subtle differences in
how the application is executed, 2) the output from the implementation (i.e., the keypoint
descriptors), need to be in different file formats. Therefore, the classes shown in Figure 4.9
were developed to allow for specific parsing of the file formats, while providing methods to
output a standardized format. The choice was made to standardize on Lowe’s file format.

4.6. FEATURE MATCHING / FILTERING 42

Therefore, it is possible to invoke any of the SIFT implementations and convert their
output to the Lowe format.

SIFT

Image List Keypoint Descriptors
Method

Figure 4.8: The SIFT Stage implements the SIFT algorithm, generating keypoint descrip-
tors for each of the images provided.

+Compare(in keypointDescriptor : KeypointDescriptor)

KeypointDescriptor

-Row
-Column
-Scale
-Orientation
-Vector

+Write()
+Parse()
+Clone()
+Filter(in x, in y, in width, in height)
+GetDescriptors()
+SortDescriptors()
+MatchDescriptors(in descriptors : KeypointDescriptors)

KeypointDescriptorFile

-Length
-Descriptors

+Parse()

KeypointDescriptorFileLowe

+Parse()

KeypointDescriptorFileVLFeat

+GenerateKeyList()
+GetDescriptor(in name)
+GetDescriptors()

KeypointDescriptors

-Descriptors
11

1

*

Figure 4.9: Keypoint descriptor class diagram illustrating the power of object-oriented
design and polymorphism to handle multiple keypoint descriptor file formats.

4.6 Feature Matching / Filtering

After feature points are generated for a set of images, it is necessary to construct a table
of matches. In the SfM domain, it is desirable to identify matches between every pair

4.6. FEATURE MATCHING / FILTERING 43

of images in the set, as two-view geometry is used to relate the views / images. The
feature vector, or signature of the keypoint, is used in conjunction with other metadata
(scale, orientation, response) to establish correspondences. If the feature space is perfectly
invariant, a feature vector for a keypoint from one view should have the same feature
vector from another view. However, in practice this is typically not the case, therefore,
thresholds must be employed when comparing feature vectors and metadata. For example,
a feature matching algorithm could compare the keypoint orientation from one image and
identify keypoint candidates from another image by employing a threshold of ±15◦ on the
orientation. Next, the dot product between the two feature vectors from the respective
keypoints are computed and compared against a threshold. In the case of SIFT, a 128-
dimensional feature vector is typically used for keypoints, so the dot product represents
the Euclidean distance between the two keypoints in a 128-dimensional vector space.

At this point, a table of putative matches has been established using only the feature
vector and metadata. It is often desirable to fit the data to a model and filter outliers
(e.g., using a technique such as random sample consensus (RANSAC) [30]). This algorithm
assumes a model (e.g., perspective transform or homography) can be used to represent
the transformation between views. A random subset of the matches are used to compute
a transform using the direct linear transformation (DLT) algorithm (explained in Sec-
tion 4.7.5). A fitness score is assigned by comparing the difference of a correspondence
taken from the match table versus the transformed point through the model. After many
iterations of this process, outliers are identified and filtered.

There are two feature matching implementations provided by the Catena framework:
KeyMatchFull [6] and key matching provided in the SiftGPU [29] library. Since the Sift-
GPU library requires the implementation of an application layer, it was intentionally
implemented to mimic the KeyMatchFull interface. Therefore, there are no considerations
made at the workflow layer to account for differences, other than the invocation of the
desired implementation via a “method” property (see Figure 4.10).

Matching

Keypoint Descriptors Keypoint Matches
Method

Figure 4.10: The Feature Matching stage generates a match table for every image combi-
nation using the independently generated keypoint descriptors.

4.7. IMAGE-BASED GEOMETRY ESTIMATION 44

4.7 Image-Based Geometry Estimation

It is possible to derive the camera matrices by exploiting epipolar geometry to estimate
the 3D scene using the previously computed correspondences through a bundle adjustment
process. A survey of multi-view geometry provides sufficient background information
necessary for the component theory used for the image-based geometry estimation step.

4.7.1 Camera Model

A pinhole camera model will be derived and used throughout this section. The interior or
intrinsic characteristics of a camera can be expressed in terms of the following parameters:

f : focal length
sθ: skew

sx, sy: 2D scaling (number of pixels per unit distance)
cx, cy: 2D camera center

The intrinsic parameters can be composed in matrix form, as shown in Equation 4.12.

K =

 fsx sθ cx
0 fsy cy
0 0 1

 (4.12)

The exterior or extrinsic parameters describe the camera pose (i.e., how the camera
is positioned in 3D space). The pose can be represented by three parameters: θ, tx, and
ty, expressing the camera rotation and translation. These parameters can be composed in
matrix form using Equations 4.13 and 4.14.

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(4.13)

t =

[
tx
ty

]
(4.14)

It is important to note that the pinhole camera model is unable to represent the radial
lens distortion normally present in real-world imaging systems. The radial distortion effect
needs to be removed, especially in close-range imaging scenarios. Hartley and Zisserman [2]
introduce a lens distortion factor L(r), where r is the radial distance (

√
x2 + y2) from the

camera center. The corrections for each dimension are expressed in Equation 4.15.

4.7. IMAGE-BASED GEOMETRY ESTIMATION 45

x̂ = xc + L(r)(x− xc) ŷ = yc + L(r)(y − yc) (4.15)

where,

x, y: 2D measured coordinate
x̂, ŷ: 2D corrected coordinate

xc, yc: 2D radial distortion center

It is shown that L(r) is only defined for positive r values and L(0) = 1. This allows
for the Taylor expansion given in Equation 4.16.

L(r) = 1 + k1r + k2r
2 + k3r

3 + . . . (4.16)

The intrinsic camera model can be extended with the radial distortion parameters:
k1, k2, k3, . . . , xc, yc. The compensation of radial lens distortion will be addressed in Sec-
tion 4.8 of the SfM workflow to warp the imagery so that it is rectified for subsequent
stages.

4.7.2 Epipolar Geometry

The epipolar geometry between two views states that for a given 3D point (X), the cor-
responding image points (x and x′), camera centers (C and C′), and X lie on a common
plane (π). Figure 4.11a illustrates the geometry and relationships. Figure 4.11b shows
that for the image point (x), its projection along the ray from C can take on any X, which
are imaged as a line in the second view, l′. The 3D point imaged in the first view as x,
must lie on the epipolar line (for x) in the second view, l′. This is defined as the epipolar
line for x. Also, the epipole represents the image of the second view’s camera center. This
is advantageous since correspondences have already been established between views. The
epipolar line constrains the possible image of X in the second view to a 2D line. This
property will be exploited in the bundle adjustment process.

4.7. IMAGE-BASED GEOMETRY ESTIMATION 46

C C /

 π

x x

X

epipolar plane

/

(a) The 3D point X, the two imaged
points, x and x′ through the camera
centers, C and C′, lie in the epipolar
plane π.

x

e

X ?

X

X ?

l

e

epipolar line
for x

/

/

(b) The epipolar line (l′) of x, from the
first view is defined as the 2D line in
the second view from which all possible
projections of the 2D point x along the
ray that trace the 3D point X in the
projection on the second view.

Figure 4.11: Epipolar geometry illustrations for point correspondences. Reproduced from
Hartley and Zisserman [2].

4.7.3 Fundamental Matrix

The fundamental matrix can be derived using relationships established from epipolar ge-
ometry. Figure 4.12 illustrates the homography (Hπ) that transforms an image point from
the first view (x) to the corresponding image point in the second view (x′). This is carried
out by mapping through the epipolar plane π. The epipolar line of x can be expressed
as the cross-product of the second view’s epipole (e′) with the image of X in the second
view, x′ (see Equation 4.17). Section A.1 illustrates the derivation of a cross-product using
matrix multiplication.

l′ =
[
e′
]
x
x′ (4.17)

However, x′ can be expressed as the projection of x through Hπ, i.e x′ = Hπx, as
shown in Equation 4.18.

l′ =
[
e′
]
x
Hπx (4.18)

This establishes the definition of the fundamental matrix in terms of the epipole and
projection from the epipolar plane (see Equation 4.19).

F =
[
e′
]
x
Hπ (4.19)

4.7. IMAGE-BASED GEOMETRY ESTIMATION 47

/e e

l
x

/

H

X

/xπ

π

Figure 4.12: Image coordinates can be projected using the epipolar homography: x′ =
Hπx. Reproduced from Hartley and Zisserman [2].

4.7.4 Fundamental Matrix Extensions Using Projective Transforms

Using the pre-defined pinhole camera model from Section 4.7.1, the projective camera
model is defined as the product of the intrinsic and extrinsic camera parameters (see
Equation 4.20).

P = K [R|t] (4.20)

P can be used to project 3D points into the 2D coordinate system of the camera. The
pixel coordinate on the focal plane, x is the projection, or image of X (see Equation 4.21).

x = PX (4.21)

Furthermore, a homography can be computed from two camera matrices by employing
the pseudo-inverse of P (see Equation 4.22).

H = P′P† (4.22)

This effectively transforms coordinates from one camera’s coordinate system to the
other, as given in Equation 4.23. Namely, the first camera’s point (x) is inversely projected
to the 3D coordinate system through P†, resulting in X, then projected into the second
camera’s coordinate system using P′.

4.7. IMAGE-BASED GEOMETRY ESTIMATION 48

x′ = Hx (4.23)

Combining the homography formulated as the cross-product of the epipole and the
product of two camera projection matrices (previously defined in Equation 4.19), the
epipolar line can be expressed according to Equation 4.24.

l′ =
[
e′
]
x

(P′P†)x (4.24)

This allows for the expression of the fundamental matrix in terms of the epipole and
camera projection matrices (see Equation 4.25).

F =
[
e′
]
x
P′P† (4.25)

It is also worth noting that the dot-product of x′ with the projection of x through the
fundamental matrix yields zero, as shown in Equation 4.26. However, this assumes perfect
correspondence, which is never found in practice. As explained in Section 4.6, thresholds
need to be employed when exploiting this property for feature matching.

x′
T
Fx = 0 (4.26)

Essential Matrix

A useful extension to the fundamental matrix is the essential matrix. Placing one of the
cameras at the origin (i.e., P = [I|0]), allows for a pair of normalized cameras, where the
first is identity and the second is expressed using Equation 4.27.

P′ = [R|t] (4.27)

The extension from Equation 4.26 yields: x̂′TEx̂ = 0, and the relationship with the
fundamental matrix is shown in Equation 4.28.

E = K′TFK (4.28)

4.7.5 Fundamental Matrix From Correspondences

The normalized 8-point algorithm can be used to calculate the fundamental matrix from
correspondences, according to Equation 4.26, using the DLT. The first step is to normalize
all the coordinates such that the centroid of the points is shifted to the origin and the
standard deviation from the origin is

√
2, expressed by the two transforms in Equation 4.29.

4.7. IMAGE-BASED GEOMETRY ESTIMATION 49

This process conditions the problem, making finite-precision computation of the singular
value decomposition (SVD) numerically stable.

x̂i = Txi x̂′i = T′x′i (4.29)

Next, the point correspondences are used to solve for the fundamental matrix. The
column vectors of homogeneous point correspondences can be expressed as: x = [x, y, 1]T

and x′ = [x′, y′, 1]T . Using the definition of the fundamental matrix in Equation 4.26, the
product of the correspondences with the fundamental matrix should equal 0, as shown in
Equation 4.30.

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0 (4.30)

This can also be expressed as a vector inner-product, as shown in Equation 4.31.

[x′x, x′y, x′, y′x, y′y, y′, x, y, 1]f = 0 (4.31)

With a set of N correspondences, a set of linear equations can be formed (see Equa-
tion 4.32).

Af =

 x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1

 f = 0 (4.32)

The A matrix must have a rank 8 for an exact solution (up to a scale, given homoge-
neous equations), otherwise the least-squares solution is obtained when the rank is greater
than 8 (i.e., more than 8 correspondences that are not co-linear).

Next, the SVD of A is calculated using Equation 4.33.

SVD(A) = UΣVT (4.33)

In the right null-space of A, the last column of V contains the solution for f . The
9-element vector is reformed into a 3x3 matrix that yields the fundamental matrix in the
normalized space, F̂. The matrix can be denormalized by applying the inverse transforms
from Equation 4.29, resulting in Equation 4.34.

F = T′TF̂T (4.34)

4.7. IMAGE-BASED GEOMETRY ESTIMATION 50

4.7.6 Iterative Fundamental Matrix Computation

The tools developed thus far can be used to robustly estimate the fundamental matrix
between image pairs by employing the following general algorithm:

1. Perform feature extraction on images

2. Perform feature matching on all image pairs, establish putative correspondences

3. Compute the fundamental matrix, employing the RANSAC algorithm to filter in-
consistent correspondences

4. Perform non-linear optimization on all Fundamental Matrices, resulting in a globally
consistent set of Fundamental Matrices

The Bundler [6] software employs this type of algorithm to calculate the camera ma-
trices for a set of views / images. From a high level, Bundler accepts correspondences
from image pairs, performs a bundle adjustment, and generates a “Bundle” file, which
contains camera projection matrices and 2D to 3D point correspondences, along with a
sparse point cloud in PLY format (see Figure 4.13). Bundler uses the sparse bundle adjust-
ment (sba) [31] library to perform bundle adjustment, which implements the Levenberg-
Marquardt (L-M) non-linear optimization algorithm [32]. It is worth noting that a modern
bundle adjustment library has been developed by Google called Ceres Solver [33]. This
provides a generalized non-linear optimization solution with a much cleaner and intuitive
application programming interface (API).

Bundler
Keypoint Matches

Bundle File
Image List

Figure 4.13: The Bundler Stage performs a bundle adjustment process using keypoint
matches and images in order to generate consistent camera matrices, sparse point cloud,
and 2D to 3D point correspondences.

4.7. IMAGE-BASED GEOMETRY ESTIMATION 51

4.7.7 Triangulation & Point Cloud Generation

Given a set of camera projection matrices and 2D point correspondences, it is desirable
to compute 3D points using a triangulation algorithm. The triangulation takes on the
general functional form shown in Equation 4.35.

X = τ(x,x′,P,P′) (4.35)

A simple linear triangulation method employs the DLT, as used to compute the fun-
damental matrix in Section 4.7.5. The projection matrices map 3D points onto 2D points
of the focal planes of the sensors: x = PX and x′ = P′X. The equations can be combined
into a linear form by recalling the fundamental matrix given in Equation 4.26, which states
that the cross-product of the two image points shall equal zero. In practice this will never
be the case, as illustrated in Figure 4.14, as there will likely be triangulation error (d and
d′) due to errors in the correspondences and/or camera models. Therefore, the DLT solves
for the linear least-squares solution for the 3D point.

/x

/

X

e e /

x x /

/

C C

x
d d

Figure 4.14: Triangulation methods are used to solve for the 3D point (X̂) given the 2D
image correspondence coordinates (x and x′). The triangulation error is highlighted in the
figure as d and d′, which is the difference in the correspondence points from the projection
of X̂ (x̂ and x̂′). Reproduced from Hartley and Zisserman [2].

4.8. RADIAL DISTORTION COMPENSATION 52

The cross product yields a set of linear equations as a function of 2D points, as shown
in Equations 4.36, 4.37, 4.38.

x(p3TX)− (p1TX) = 0 (4.36)

y(p3TX)− (p2TX) = 0 (4.37)

x(p2TX)− y(p1TX) = 0 (4.38)

These expressions can be placed into an AX = 0 form (see Equation 4.39).

A =

xp3T − p1T

yp3T − p2T

xp′3T − p′1T

yp′3T − p′2T

 (4.39)

The DLT method will yield the 3D point that represents the linear least-squares solu-
tion to the equation. Applying this method for all the correspondences across views allows
for the initial 3D point cloud to be generated.

4.8 Radial Distortion Compensation

As stated in Section 4.7.1, the original input images likely exhibit some amount of radial
distortion that should be removed before proceeding through the workflow. The radial
distortion coefficients from Equation 4.16, solved via the bundle adjustment method in
Section 4.7.6, can be used to warp the images. This results in spatially rectified im-
ages. The Radial Undistort stage provides this function in the Catena framework (see
Figure 4.15).

Radial
Undistort

Image List

Bundle File
Bundle File

Figure 4.15: The Radial Undistort stage compensates for radial distortion detected in the
images to improve down-stream processes.

4.9. OUTPUT CONVERSION 53

4.9 Output Conversion

The outputs from the bundle adjustment stage need to be modified in order to be com-
patible with the dense point cloud generation steps. This is purely a “book-keeping” step
to convert Bundler output to a form that is required by CMVS / PMVS (see Figure 4.16).

Prep
CMVS / PMVS

Bundle File

Path

Bundle File

Figure 4.16: The Prep CMVS / PMVS stage converts the Bundler output to an acceptable
form for CMVS and PMVS.

4.10 View Clustering / Reduction

Given a set of camera matrices and sparse 3D point cloud, it is desirable to cluster the
views into sub-groups to minimize the size of image sets for a dense reconstruction in the
following multi-view stereo (MVS) step. It is advantageous for the dense reconstructor
to operate on a minimal set of images, as the required memory and computation time
increases exponentially with the number of images, making some sets intractable to pro-
cess. Likewise, if the images are broken into independent clusters, they can be processed
in parallel. The algorithm implemented in the CMVS [8] has three main goals:

1. Compactness: remove redundant images from the collection

2. Size: minimize the size of the image clusters

3. Coverage: reconstruct the clusters to result in an identical point cloud as if it was
computed from the original / complete set

CMVS accomplishes these goals through the constraint equations with parameters
outlined in Table 4.1. There are default values that the user is able to tune for optimal
performance with their dataset. CMVS strives to establish a minimum set of clusters,

4.10. VIEW CLUSTERING / REDUCTION 54

Table 4.1: CMVS algorithm parameters.

Parameter Default Supporting
Goal

Description

α 150 Size / Com-
pactness

maximum cluster size, i.e., number of im-
ages per cluster

λ 0.7 Coverage view coverage parameter as a function of
3D points and clusters (explained below)

δ 0.7 Coverage ratio of covered points in a single view

where the individual cluster sizes are less than α. The coverage must meet the criteria, λ
and δ, which are parameters of constraint functions.

CMVS expresses reconstruction accuracy as a function of 3D points (X) and the cluster
(K), given as f(X,K). A detailed derivation of the CMVS function can be found in [8].
A 3D point Xj is considered “covered” if its reconstruction accuracy in the cluster, Kk,
is at least λ times the theoretical reconstruction accuracy. Individual coverage is enforced
by the ratio parameter δ, whereby the number of points covered by the view must be at
least δ times the cluster coverage. This minimization process removes redundant views,
as the constraint criteria inherently discover views that meet constraints with less cost.
It subsequently excludes poor-quality images, as they contain less reconstructed points,
which makes them more costly to include in a cluster, especially when another high-quality
view is available that contains the same 3D points.

The algorithm steps described below are carried out as part of CMVS, which is exposed
in the Catena framework as a stage, and its interface is illustrated in Figure 4.17.

1. 3D Point Filter: The neighborhood of every point in the input sparse 3D point
cloud is analyzed. If there is more than one point contained in the neighborhood,
it is consolidated, and the output 3D point is computed as the average of all the
neighbors. This process yields a sparser 3D point cloud with coverage information
that is required in the remaining steps of the algorithm.

2. Redundancy Removal: Using the constraint functions developed previously, each
image is removed from the respective cluster. If the constraints are still satisfied, it
is removed entirely from the image set. The algorithm processes images in increasing
order of resolution such that low resolution images are discarded first.

3. Cluster Establishment: Clusters are divided until the size constraint is met.
CMVS uses a Normalized Cuts algorithm [34] to facilitate the process, whereby the

4.11. DENSE POINT CLOUD GENERATION 55

reconstruction accuracy function is used to establish contribution of an image to the
final reconstruction.

4. Image Addition: The previous step enforced the size constraint without consid-
eration of coverage. This process adds images to clusters to maximize the coverage
metric, while honoring the size constraint.

CMVS Camera Centers
Bundle File

Bundle File

Cluster File
Vis File

Figure 4.17: The CMVS stage detects and filters redundant views in preparation for
PMVS.

4.11 Dense Point Cloud Generation

The camera matrices and sparse point cloud computed from the image-based geometry
estimation process in Section 4.7 can be used to generate a denser point cloud by employing
a multi-view stereo (MVS) technique. The PMVS [8] algorithm is a commonly used
implementation for the SfM workflow. Note, this step can operate on either the output
from Bundler or CMVS. By preparing the data with the CMVS implementation, the MVS
algorithm can be run on the individual clusters. The sectioning is advantageous since the
clusters are independent and can be run in parallel. Additionally, the smaller subset of
clusters can be executed faster and requires less memory.

There are three basic high-level steps in the PMVS algorithm:

1. Match: The Harris corner detection algorithm [35] is run and the DoG images are
computed. The image is sub-divided into 32x32 pixel regions (patches). Using the
four local maxima within the patch, the strongest “Harris corner” and “DoG” re-
sponses identify correspondences between image pairs. The respective camera models
are leveraged and epipolar geometry is utilized to verify consistent locations in the
image. The corresponding 3D point is triangulated and photometric consistency is
verified by calculating the normalized cross correlation (NCC) value of the patches.

4.12. GEOGRAPHIC CONSIDERATIONS 56

2. Expand: Patch neighbors are identified. The patch definition is expanded to include
nearby pixels, yielding dense patches.

3. Filter: The patches that have been expanded incorrectly due to occlusion (i.e., one
patch lies in front of another in 3D space), are broken up. The number of patches
adjacent to a given patch, relative to all views, is compared against a ratio that is
initialized to 0.7 and decreased by 0.2 after each “expand / filter” iteration.

The expand and filter steps are run three times after matching to consolidate clusters.
PMVS is wrapped in a Catena stage, as illustrated in Figure 4.18, and is available for use
in workflow chains.

PMVS
Pset File

Bundle File Patch File
Ply File

Figure 4.18: The PMVS stage uses the consistent camera matrices found by Bundler to
generate a dense point cloud using a patch-based technique.

4.12 Geographic Considerations

The point cloud generated from Bundler and PMVS are in an arbitrary coordinate system.
It is often desirable in geographic information systems (GIS) applications to transform the
point cloud into a geographic coordinate system where the 3D points take on a physical
meaning of latitude, longitude, and elevation. The method developed by Walvoord, et
al. [36] [37] computes a similarity transform using the full physical sensor model of the
collection system and the inertial navigation system (INS) and global positioning system
(GPS) metadata. The transform is applied to the entire point cloud to map it into a
geographic coordinate system for intuitive exploitation and display.

4.13 Surface Reconstruction

While a dense (or even sparse) point cloud is sufficient for automated exploitation methods,
it is often desirable to generate a visually pleasing 3D model of the point cloud. Poisson

4.14. VISUALIZATION / EXPLOITATION 57

surface reconstruction [38] is a commonly used technique for interpolating point clouds and
generating a mesh. By performing surface reconstruction, facets can be generated from
the point cloud and the colors interpolated to produce a more visually pleasing result.
Depending on the density of the point cloud, this technique can generate a sufficient
result for human visualization. The Poisson surface reconstruction algorithm is exposed
as a Catena stage, as illustrated in Figure 4.19. Alternative surface reconstruction methods
include a denser point cloud generation, such as the Semi-Global Matching (SGM) [39]
algorithm, which provides a denser input for the surface reconstruction, or a texture
mapping technique that utilizes the original imagery in order to “drape” over the point
cloud.

Poisson
Surface

Reconstruction
Ply File Ply File

Figure 4.19: The Poisson Surface Reconstruction stage performs interpolation of vertices
to generate faces between 3D points, yielding a meshed 3D model.

4.14 Visualization / Exploitation

There are a variety of tools that provide visualization capability, including Meshlab [40],
Blender [41], and CloudCompare [42]. The point cloud can also be exploited in an au-
tomated fashion for mensuration purposes (e.g., using tools such as point cloud library
(PCL) [43]). Figure 4.20 illustrates the typical termination of the SfM chain, where the
point cloud or surface reconstructed result is visualized.

4.15. SFM CHAIN 58

MeshLabPly File

Figure 4.20: The MeshLab stage provides visualization of the 3D point cloud and model.

4.15 SfM Chain

Using the componentized stages described in this chapter, the SfM workflow can be con-
structed using Catena (see Figure 4.21). With this, multi-view imagery is processed to
produce a 3D model of a scene, which can be mapped back to physical geographic coordi-
nates.

4.15.
S

F
M

C
H

A
IN

59

Image List Keypoint Descriptors

Keypoint Matches

Bundle File

Image List

SIFT

Method

Matching

Method

Radial
Undistort CMVS

PMVSBundle File Bundle File

Bundle File

Vis File
Cluster File

Camera Centers

Ply File

Patch File

Pset File

Image Source

Path
Extension
Focal Pixel
Override

Prep
CMVS/PMVS

Path

Poisson
Surface

Reconstruction

Bundler

MeshLab

Ply File

Figure 4.21: The complete SfM chain used to generate 3D models from multi-view 2D imagery.

Chapter 5

Results

5.1 SfM Application

The SfM chain was used on a variety of datasets to generate point clouds. Many multi-
view image sets were used to compute a 3D model of the given scene. This section presents
some of the results.

5.1.1 ET

The “ET” dataset provided with the CMVS / PMVS software consists of nine views
that have a resolution of 640x480x3. This dataset is commonly used to demonstrate
semi-automated SfM software and point cloud generation. The input images are given in
Figure 5.1. Using the SfM chain described in Chapter 4, the point cloud in Figure 5.2 was
generated. At the magnification shown in Figure 5.2, the point cloud is relatively sparse
and gaps in the model can be observed. This is due to occlusion and a limited number of
perspectives of the scene in the original input imagery. However, the point cloud is still
easily recognizable as ET.

60

5.1.
S

F
M

A
P

P
L

IC
A

T
IO

N
61

Figure 5.1: ET images provided by the CMVS / PMVS software distribution.

5.1. SFM APPLICATION 62

Figure 5.2: ET point cloud generated from nine multi-view images of the scene.

5.1. SFM APPLICATION 63

5.1.2 Hall

The “Hall” dataset provided with the CMVS / PMVS software is often used as an example
of a building reconstruction. The entire dataset consists of 61 views (3008x2000x3), for
which a subset is included in Figure 5.3. The Catena SfM workflow was utilized to generate
the point clouds, which represents a 3D model of the scene (see Figure 5.4). Although
Figure 5.4 shows a 2D representation of a 3D scene, this can be visualized with a 3D viewer
and manipulated to observe different perspectives. If a particular dimension of a feature
in the scene is known, this information can be used to transform the point cloud into a
metric coordinate system. Therefore, the points have physical dimensionality. This offers
the viewer the ability to perform mensuration exploitation of the scene (i.e., measure the
size of a feature, distance between two features, etc.).

5.1.
S

F
M

A
P

P
L

IC
A

T
IO

N
64

Figure 5.3: A subset of “Hall” images provided by the CMVS / PMVS software distribution.

5.1.
S

F
M

A
P

P
L

IC
A

T
IO

N
65

Figure 5.4: Point cloud of the “Hall” scene generated using the Catena SfM workflow and 61 multi-view input images.

5.1. SFM APPLICATION 66

5.1.3 RIT WASP

The Rochester Institute of Technology (RIT) Wildfire Airborne Sensor Program (WASP)
sensor was originally developed for remote sensing of wildfires. However, this technol-
ogy was used to obtain airborne imagery of downtown Rochester, NY at a resolution of
4000x2672x3. The entire dataset consists of 247 nadir views, and a subset is included in
Figure 5.5. The point cloud generated in Figure 5.6 exhibits some gaps on the sides of
buildings due to the nadir perspective of the collection geometry. There are also gaps in
the water regions, as it is very difficult to perform feature extraction / matching in these
areas. The content is inconsistent between views (moving water) and has no texture for
the algorithm to detect.

5.1.
S

F
M

A
P

P
L

IC
A

T
IO

N
67

Figure 5.5: A subset of images taken of Rochester, NY were obtained from the RIT WASP sensor.

5.1.
S

F
M

A
P

P
L

IC
A

T
IO

N
68

Figure 5.6: A point cloud was generated using the RIT WASP images presented in Figure 5.5.

5.1. SFM APPLICATION 69

5.1.4 ITT Exelis WAMI

The ITT Exelis Wide Area Motion Imagery (WAMI) system is a commercial sensor used to
provide remotely sensed (nadir or oblique) persistent surveillance imagery at a resolution
of 4872x3248x1. This system was used to capture 96 views of the city of Rochester, NY,
and a subset of these images are provided in Figure 5.7. Using the Catena SfM workflow, a
point cloud was generated (see Figure 5.8). The gaps previously present RIT WASP model
are filled with content, due to the oblique collection geometry. There are also differences
in resolution between the systems, which is a function of many variables, including sensor
/ vehicle altitude, optics, and sensor resolution, among others. In remote sensing, it is
useful to introduce the concept of ground sample distance (GSD). GSD can be used to
compare the resolutions of systems in terms of physical units (i.e., meters per pixel). It
combines many of the factors previously listed that contribute to the effective resolution.

In this particular example, the point cloud was transformed into a geographic coor-
dinate system using the method described in Section 4.12. As such, specific points in
the model represent known latitude / longitude / elevation positions in the geographic
coordinate system. This model was used to generate 3D fly-through animations.

5.1.
S

F
M

A
P

P
L

IC
A

T
IO

N
70

Figure 5.7: A subset of images over downtown Rochester, NY were obtained from the ITT Exelis WAMI sensor.

5.1.
S

F
M

A
P

P
L

IC
A

T
IO

N
71

Figure 5.8: 3D model of downtown Rochester, NY generated from multi-view imagery obtained from the ITT Exelis
WAMI sensor.

5.2. EXTENSIBILITY 72

5.2 Extensibility

A strong feature of the Catena abstracted workflow framework is the aspect of extensibil-
ity. The stages developed for the SfM application were leveraged to carry out registration,
mosaicing, and many other tasks with minimal new implementation of stages / compo-
nents. Given this success, it becomes easy to accurately hypothesize how Catena could be
used in new applications with additional stage development.

5.2.1 Registration

Many registration chains have been built in industry using pre-existing Catena stages.
Figure 5.9 illustrates an example chain with new stages (denoted by a cross-hatch pat-
tern) to facilitate image registration using image features via the SIFT algorithm. Two
images sources are used to input “reference” and “test” images. Every combination of
reference and test image is formed into an “image pair.” Feature extraction is performed
on the images and keypoint matches are established in the matching stage. The RANSAC
algorithm is used to filter correspondences that are inconsistent with the selected trans-
formation (e.g., homography). The correspondences are used to warp the test image to
the reference image’s coordinate space.

Image List Image
Combination

Image Source
(Reference)

Image Source
(Test)

SIFT

RANSACWarp

Image List

Image Pairs Keypoint Descriptors

Image Pairs

Registered Images

Matching

Keypoint Matches

Keypoint Matches

Figure 5.9: An example registration chain built in industry, leveraging stages from the
SfM application.

5.2. EXTENSIBILITY 73

5.2.2 Health Imaging

A case in the health imaging domain is presented to illustrate the flexibility and applica-
bility of stages developed for the SfM application. A pair of “dual-energy” X-ray images
are acquired by exposing a patient to a low and high dose of radiation. Since images are
not acquired simultaneously, this results in misregistration. However, in order to exploit
the imagery from this modality, the images must be accurately registered in order to com-
pare their relative intensities. Stages from the SfM were leveraged, requiring only two new
stages to be implemented. The image chain is shown in Figure 5.10, and the new stages
are denoted with a cross-hatch pattern.

Images

Proprietary
Image Source

Image Subset

Image Subset

Images

Quantize

Mode
StdDev

Quantize

Mode
StdDev

Image
Combine

Image 0

Image 1

Image 0

Image 1

Index=0

Index=1

Features

SIFT

Method

Matching

Method
Images Matches

Figure 5.10: An example chain built in industry to facilitate dual-energy image registra-
tion, leveraging stages from the SfM application.

5.2. EXTENSIBILITY 74

A propriety image source is required to input the X-ray images. The existing image
subset stage is used to select each image from the pair in order to appropriately quantize
the image, maximizing the dynamic range of the imagery. The images are recombined
and the SIFT feature extraction algorithm is executed. Correspondences are established
between the pair of images (shown in Figure 5.11), which illustrates the effectiveness of
this algorithm. At this point, the correspondences can be input into a registration stage
to warp the images.

Figure 5.11: Correspondences between a pair of dual-energy X-ray images.

5.2.3 Hypothetical

In this hypothetical scenario, images could be sourced from Google using a search string,
geolocation information, and a minimum image resolution criterion. It is very straight-
forward to contemplate the implementation of such a stage, enabling processing of existing
imagery. In addition, a different feature extraction algorithm could be implemented (e.g.,
SURF [18]). This feature extractor is already provided via the generic FeatureDetector
stage in the OpenCV package. The chain in Figure 5.12 illustrates the modification to

5.2. EXTENSIBILITY 75

the basic SfM chain with only two new stages (cross-hatch pattern) and utilizing existing
components.

Image List Keypoint Descriptors

Keypoint Matches

Bundle File

Image List

SURF

Matching

Method

Radial
Undistort CMVS

PMVSBundle File Bundle File

Bundle File

Vis File
Cluster File

Camera Centers

Ply File

Patch File

Pset File

Google
Images

Search String
Geolocation
Min Resolution

Prep
CMVS/PMVS

Path

Poisson
Surface

Reconstruction

Bundler

MeshLab

Ply File

Figure 5.12: A hypothetical chain could be constructed using new “Google Images” and
“SURF” stages.

Chapter 6

Conclusions

6.1 Overview

Throughout academia and industry, a common pattern of monolithic software development
with no consideration for reuse has been observed. Generally there was no consideration
given to architecture, resulting in many inflexible application-specific solutions. This re-
sulted in software that had a very short lifespan after scientific development, studies, and
analysis.

This motivated the development of a flexible workflow framework with specific design
and architectural choices to mitigate problems in the areas of componentization, reuse,
documentation, and maintainability. A software implementation named Catena [44] was
created in the Python programming language and open sourced. Catena is currently used
in many environments, including: Center for Imaging Science (CIS)/RIT, ITT Exelis,
Carestream Health, and MIT Computer Science and Artificial Intelligence Laboratory,
among others.

The components that make up the SfM chain, and the underlying data structures, were
developed, implemented, and included in the base Catena distribution. Many alternative
implementations of algorithms were tested by utilizing the interchangability feature of
stages given an equal interface. Likewise, collections of stages were replaced with a single
stage, showing that an entire process can be represented by multiple stages, implemented
in a “super-stage,” and easily replaced in the chain. The base packages were extended
in many environments to facilitate new applications, including mosaicing, registration,
general image processing, and other computer vision tasks.

Catena is an open-source project hosted on Google Code
(http://catena.googlecode.com). It will be developed and maintained with the goal
that it will continue to be used in many environments. An architectural foundation with

76

6.2. ABSTRACTION BENEFITS 77

packages of stages related to computer vision, image processing, and SfM provide a basis
for new work in different domains.

6.2 Abstraction Benefits

The benefits of abstraction have become obvious throughout practical usage of the Catena
implementation. First, the ability to construct chains from packages of stages, either
programmatically or graphically, is very powerful. This provides a high-level view of the
overall workflow that is normally obscured in other environments, offering access to users
at all levels.

The definition of stage interfaces and the ability to swap stages with equivalent in-
terfaces is extremely powerful. There have been many instances when stages have been
evaluated for performance (e.g., feature extractor) given an input dataset. The ability to
seamlessly and effortlessly swap stages becomes invaluable.

The visualization tools provide a generic utility to build chains, debug stage outputs,
and optimize parameters. This is normally a time-consuming process that is often over-
looked during algorithm development and implementation.

Lastly, the ability to develop packages of stages that represent baseline functionality,
with documentation of the interface and properties of the algorithm, is invaluable in en-
abling growth of the field. Without a framework that enforces a certain level of rigor and
a communication mechanism to the next scientist / engineer, algorithms and implemen-
tations are lost. This results in duplication of effort and slow research and development.

6.3 Future Development

A host of enhancements and features became apparent throughout the development and
usage of Catena, which are outlined and explained below.

6.3.1 Binary Overlays

The choice was made to include platform specific binaries with the Catena distribution.
The directory structure of the binaries was changed many times before settling on the
current structure where the executable resides underneath the package, in a directory
named according to the platform (e.g., Linux64bit). Helper methods were implemented
to make it easy for the developer to invoke an executable, in a platform-agnostic fashion,
within a stage. Over time, it was discovered that there are subtle differences, even within
the current breakdown of platforms, which creates the need for very specific platform
binaries. Therefore, the binaries should be removed from the package directories and

6.3. FUTURE DEVELOPMENT 78

placed in a separate directory, mirroring the package directory, but containing builds of
software that are very specific to a platform (e.g., openSUSE v11.4). The Subversion
(SVN) checkout / export process would involve checking out the main Catena software
and then choosing the platform(s) of interest. The platform directory would be placed
over top of the Catena software, effectively resulting in the current structure, but with
binaries built for the specific desired platform(s).

6.3.2 Composite Stages

In some cases, it would be advantageous to represent a sequence of stages as a single,
higher-level stage. The concept of a composite stage should be implemented, which ab-
stracts multiple stages while exposing all the properties of the underlying stages. This will
make it possible to abstract an entire chain, where the inputs are images and the output
is a point cloud or 3D model. Another example is wrapping the feature extraction and
matching stages into a single stage. There would be utility in this abstraction where a
composition of stages needs to be provided to a high-level user (e.g., via the Chain Builder
GUI).

6.3.3 Generalized Property Optimization

In many cases a chain is constructed from a collection of stages and a manual process
is required to determine an optimal, or sometimes satisfactory, set of property values for
stages given a dataset or input. The general problem of property optimization became
apparent after creating chains that require feature extraction and matching stages. If a
metric can be implemented as a stage, which provides an assessment for the amount of
error given some property vector, an automated method could utilize the cost function
and non-linear estimation technique (such as Genetic Algorithms, Simulated Annealing,
or L-M) and implemented in a generic fashion to automatically “tune” the properties of
the stages within a chain.

6.3.4 Distributed / Multi-threaded Execution

The abstracted workflow framework was implemented with distributed / multi-threaded
execution capabilities in mind. Given a chain, it is very straightforward to analyze the
dependencies to determine which can be executed in parallel. It is also possible with a
slight modification to the base stage class to indicate independent looping that could be
unrolled and executed across many threads and/or machines. A distributed computing
facility could be leveraged to carry out concurrent execution of stages or work within a
stage to drastically speed up rendering.

Appendix A

Supporting Information

A.1 Cross-product Notation

A cross product can be implemented as a matrix multiplication for 3-dimensional vectors
by creating a skew-symmetric matrix, e.g., given a = [a1, a2, a3], the skew-symmetric
matrix is constructed as:

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (A.1)

The cross product of a with b can be expressed as:

a× b = [a]× b (A.2)

A.2 Auto-generated Stage Documentation

This section contains dynamically generated documentation of the stages found in the
current set of packages. The self-documentation contract established by Catena is utilized
to facilitate this feature. The tool used to generate the LATEXdocumentation is included
in the source code. This allows users to automatically generate documentation for their
stages.

79

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

80

Table A.1: Auto-documentation for BundleAdjustment package

BundleAdjustment
Bundler Bundler takes a set of images, image features, and image matches as input,

and produces a 3D reconstruction of camera and (sparse) scene geometry as
output. The system reconstructs the scene incrementally, a few images at a
time, using a modified version of the Sparse Bundle Adjustment package of
Lourakis and Argyros as the underlying optimization engine. Bundler has
been successfully run on many Internet photo collections, as well as more
structured collections. (https://www.cs.cornell.edu/ snavely/bundler/)

Property Name Data
Type

Default
Value

Description

Constrain Focal bool True Add a soft constraint on focal lengths to stay near their
estimated values

Constrain Focal Weight float 0.0001 Strength of the focal length constraints
Estimate Radial Distortion bool True Whether to estimate radial distortion parameters
Fisheye Parameter File str [empty] Fisheye parameter file path
Fixed Focal Length bool False Use fixed focal length (Initial Focal Length)
Force Run bool False Force run if outputs already exist
Initial Focal Length float -2147483647.0 Initial focal length
Maximum Projection Error
Threshold

int 16 The maximum value of the adaptive outlier threshold

Minimum Projection Error
Threshold

int 8 The minimum value of the adaptive outlier threshold

Previous Bundler Results
File

str [empty] Previous bundle adjustment results file path

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

81

Projection Estimation
Threshold

int 4 RANSAC threshold when performing pose estimation to
add in a new image

Ray Angle Threshold int 2 Triangulation ray angle threshold
Run Slow Bundler bool False Run slow bundle adjustment (adds one image at a time)
Seed Image Index 1 int -2147483647 First image index to seed bundle adjustment
Seed Image Index 2 int -2147483647 Second image index to seed bundle adjustment
Trust Focal Estimate bool False Trust the provided focal length estimates (i.e., don’t at-

tempt to cross-check with self-calibration)
Use Focal Length Estimate bool True Initialize using focal length estimates specified in the list

file
Variable Focal Length bool True Use variable focal length

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

82

Table A.2: Auto-documentation for Cluster package

Cluster
CMVS CMVS takes the output of a structure-from-motion (SfM) software as input,

then decomposes the input images into a set of image clusters of managable
size. An MVS software can be used to process each cluster independently and
in parallel, where the union of reconstructions from all the clusters should
not miss any details that can be otherwise obtained from the whole image set.
(http://www.di.ens.fr/cmvs/)

Property Name Data
Type

Default
Value

Description

CPUs int 4 Number of CPUs to utilize
Force Run bool False Force run if outputs already exist

PMVS PMVS is a multi-view stereo software that takes a set of images and camera
parameters, then reconstructs 3D structure of an object or a scene visible in
the images. Only rigid structure is reconstructed, in other words, the soft-
ware automatically ignores non-rigid objects such as pedestrians in front of a
building. The software outputs a set of oriented points instead of a polygonal
(or a mesh) model, where both the 3D coordinate and the surface normal are
estimated at each oriented point. (http://www.di.ens.fr/pmvs/)

Property Name Data
Type

Default
Value

Description

CPUs int 4 Number of CPUs to utilize.

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

83

Cell Size int 2 Controls the density of reconstructions. The software tries
to reconstruct at least one patch in every csize x csize
pixel square region in all the target images specified by
timages. Therefore, increasing the value of csize leads to
sparser reconstructions. Note that if a segmentation mask
is specified for a target image, the software tries to recon-
struct only foreground pixels in that image instead of the
whole.

Force Run bool False Force run if outputs already exist
Image Pyramid Level int 1 The software internally builds an image pyramid, and this

parameter specifies the level in the image pyramid that is
used for the computation. When level is 0, original (full)
resolution images are used. When level is 1, images are
halved (or 4 times less pixels). When level is 2, images are
4 times smaller (or 16 times less pixels). In general, level
= 1 is suggested, because cameras typically do not have
r,g,b sensors for each pixel (bayer pattern). Note that in-
creasing the value of level significantly speeds-up the whole
computation, while reconstructions become significantly
sparse.

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

84

Maximum Camera Angle
Threshold

int 10 Stereo algorithms require certain amount of baseline for
accurate 3D reconstructions. We measure baseline by an-
gles between directions of visible cameras from each 3D
point. More concretely, a 3D point is not reconstructed if
the maximum angle between directions of 2 visible cam-
eras is below this threshold. The unit is in degrees. De-
creasing this threshold allows more reconstructions for
scenes far from cameras, but results tend to be pretty
noisy at such places.

Maximum Image Sequence int -1 Sometimes, images are given in a sequence, in which case,
you can enforce the software to use only images with simi-
lar indexes to reconstruct a point. sequence gives an upper
bound on the difference of images indexes that are used
in the reconstruction. More concretely, if sequence=3, im-
age 5 can be used with images 2, 3, 4, 6, 7 and 8 to recon-
struct points.

Minimum Image Number int 3 Each 3D point must be visible in at least minImageNum
images for being reconstructed. 3 is suggested in general.
The software works fairly well with minImageNum=2, but
you may get false 3D points where there are only weak
texture information. On the other hand, if your images
do not have good textures, you may want to increase this
value to 4 or 5.

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

85

Other Images int -3 Specifies image indexes that are used for reconstruction.
However, the difference from timages is that the software
keeps reconstructing points until they cover all timages,
but not oimages. In other words, oimages are simply used
to improve accuracy of reconstructions, but not to check
the completeness of reconstructions. There are two ways to
specify oimages, which are the same as timages.

Patch Threshold float 0.7 A patch reconstruction is accepted as a success and kept,
if its associated photometric consistency measure is above
this threshold. Normalized cross correlation is used as a
photometric consistency measure, whose value ranges from
-1 (bad) to 1 (good). The software repeats three itera-
tions of the reconstruction pipeline, and this threshold is
relaxed (decreased) by 0.05 at the end of each iteration.
For example, if you specify threshold=0.7, the values of
the threshold are 0.7, 0.65, and 0.6 for the three iterations
of the pipeline, respectively.

Sample Window Size int 7 The software samples wsize x wsize pixel colors from each
image to compute photometric consistency score. For ex-
ample, when wsize=7, 7x7=49 pixel colors are sampled in
each image. Increasing the value leads to more stable re-
constructions, but the program becomes slower.

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

86

Spurious 3D Point Threshold float 2.5 The software removes spurious 3D points by looking at its
spatial consistency. In other words, if 3D oriented points
agree with many of its neighboring 3D points, the point is
less likely to be filtered out. You can control the threshold
for this filtering step with quad. Increasing the threshold
is equivalent with loosing the threshold and allows more
noisy reconstructions. Typically, there is no need to tune
this parameter.

Target Images str [empty] The software tries to reconstruct 3D points until image
projections of these points cover all the target images
(only foreground pixels if segmentation masks are given)
specified in this field (also see an explanation for the pa-
rameter csize). There are 2 ways to specify such images.
Enumeration: a positive integer representing the number
of target images, followed by actual image indexes. Note
that an image index starts from 0. For example, ’5 1 3 5 7
9’ means that there are 5 target images, and their indexes
are ’1 3 5 7 9’. Range specification: there should be three
numbers. The first number must be ’-1’ to distinguish it-
self from enumeration, and the remaining 2 numbers (a,
b) specify the range of image indexes [a, b). For example,
’-1 0 6’ means that target images are ’0, 1, 2, 3, 4 and 5’.
Note that ’6’ is not included.

Use Visualize Data int 1 Whether to use the visualize data.

PrepCmvsPmvs Prepares directories for CMVS/PMVS.

Property Name Data
Type

Default
Value

Description

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

87

Force Run bool False Force run if outputs already exist
Target Path str [empty] Target path for CMVS/PMVS preparation

RadialUndistort Uses the radial distortion coefficients from the camera projection matrix solu-
tion to remove radial distortion from images.

Property Name Data
Type

Default
Value

Description

Force Run bool False Force run if outputs already exist

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

88

Table A.3: Auto-documentation for Common package

Common
MuxStage Takes a collection of stages and allows for the selection of one of the given

stages to mimic.

TapPoint Generic tap point stage for inspecting output values of a stage.

Property Name Data
Type

Default
Value

Description

Print Functions dict [empty] Dictionary of functions used to print parameters, keyed by
type

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

89

Table A.4: Auto-documentation for FeatureExtraction package

FeatureExtraction
ASIFT A fully affine invariant image comparison method, Affine-SIFT (ASIFT).

While SIFT is fully invariant with respect to only four parameters
namely zoom, rotation and translation, the new method treats the two
left over parameters : the angles defining the camera axis orientation.
Against any prognosis, simulating all views depending on these two pa-
rameters is feasible. The method permits to reliably identify features
that have undergone very large affine distortions measured by a new
parameter, the transition tilt. State-of-the-art methods hardly exceed
transition tilts of 2 (SIFT), 2.5 (Harris-Affine and Hessian-Affine)
and 10 (MSER). ASIFT can handle transition tilts up 36 and higher.
(http://www.cmap.polytechnique.fr/ yu/research/ASIFT)

Property Name Data
Type

Default
Value

Description

Downsample bool False Whether to downsample the image before feature extrac-
tion

Force Run bool False Force run if outputs already exist
Number of Tilts int 7 Number of tilts to use in algorithm

Daisy DAISY is very fast and efficient to compute. It depends on histograms of
gradients like SIFT and GLOH but uses a Gaussian weighting and circularly
symmetrical kernel. This gives us our speed and efficiency for dense com-
putations. We compute 200-length descriptors for every pixel in an 800x600
image in less than 5 seconds. (http://www.engintola.com/daisy.html)

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

90

Property Name Data
Type

Default
Value

Description

Disable Interpolation bool False Whether to disable interpolation
Force Run bool False Force run if outputs already exist
Number Random Samples int 100 If random samples is enabled, the number of samples to

take
Orientation Resolution int 36 If computing rotation invariant features, number of bins to

use
Parse Descriptors bool False Whether to parse the keypoint descriptors after generation
ROI str [empty] Region of interest to process, in the form: x,y,w,h
Random Samples bool False Whether to take random samples of keypoints
Rotation Invariant bool True Whether to computer rotation invariant features
Scale Invariant bool True Whether to compute scale invariant features

Sift Generates SIFT descriptors for the input images. SIFT generates features
that can be identified across varying imaging conditions, including scale, ro-
tation, and illumination. The SIFT algorithm was developed by David Lowe
(http://www.cs.ubc.ca/ lowe/keypoints/).

Property Name Data
Type

Default
Value

Description

CPUs int 4 Number of CPUs to utilize
Force Run bool False Force run if outputs already exist
Parse Descriptors bool False Whether to parse the keypoint descriptors after generation
Sift Method enum SiftWin32 Sift implementation to use {SiftWin32, SiftHess, SiftGPU,

VLFeat}

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

91

Surf SURF (Speeded Up Robust Features) is a robust local feature detector, first
presented by Herbert Bay et al. in 2006, that can be used in computer vi-
sion tasks like object recognition or 3D reconstruction. It is partly inspired
by the SIFT descriptor. The standard version of SURF is several times
faster than SIFT and claimed by its authors to be more robust against dif-
ferent image transformations than SIFT. SURF is based on sums of 2D
Haar wavelet responses and makes an efficient use of integral images.
(http://en.wikipedia.org/wiki/SURF)

Property Name Data
Type

Default
Value

Description

Force Run bool False Force run if outputs already exist
Hessian Threshold int 500 Only features with hessian larger than that are extracted.

good default value is 300-500 (can depend on the average
local contrast and sharpness of the image)

Number Octave Layers int 4 The number of layers within each octave
Number Octaves int 3 The number of octaves to be used for extraction. With

each next octave the feature size is doubled

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

92

Table A.5: Auto-documentation for FeatureMatch package

FeatureMatch
ASIFTMatch Performs matching of ASIFT descriptors.

Property Name Data
Type

Default
Value

Description

Force Run bool False Force run if outputs already exist
Parse Matches bool False Whether to parse the keypoint matches

KeyMatch Performs keypoint matching of SIFT descriptors.

Property Name Data
Type

Default
Value

Description

Force Run bool False Force run if outputs already exist
Key Match Method enum KeyMatchFull Key matching implementation to employ {KeyMatchFull,

KeyMatchGPU}
Parse Matches bool False Whether to parse the keypoint matches

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

93

Table A.6: Auto-documentation for OpenCV package

OpenCV
FeatureDetector Generates features for images using the methods implemented in the OpenCV

library. Note: the stage properties are dynamically loaded based on the se-
lected feature detection algorithm. Therefore, it is not possible to include a
complete set of properties for each algorithm in the table.

Property Name Data
Type

Default
Value

Description

Descriptor enum SIFT Descriptor type{SIFT, SURF, ORB, BRISK, BRIEF}
Descriptor:contrastThreshold float 0.04 Double
Descriptor:edgeThreshold float 10.0 Double
Descriptor:nFeatures int 0 Int
Descriptor:nOctaveLayers int 3 Int
Descriptor:sigma float 1.6 Double
Detector enum SIFT Detector type {FAST, STAR, SIFT, SURF, ORB, BRISK,

MSER, GFTT, HARRIS, Dense, SimpleBlob, GridFAST,
GridSTAR, GridSIFT, GridSURF, GridORB, GridBRISK,
GridMSER, GridGFTT, GridHARRIS, GridDense, Grid-
SimpleBlob}

Detector:contrastThreshold float 0.04 Double
Detector:edgeThreshold float 10.0 Double
Detector:nFeatures int 0 Int
Detector:nOctaveLayers int 3 Int
Detector:sigma float 1.6 Double
Force Run bool False Force run if outputs already exist

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

94

FeatureMatcher Performs feature matching using the methods implemented in the OpenCV
library.

Property Name Data
Type

Default
Value

Description

Distance Threshold float 0.5 Threshold as a percentage of mean distance
Force Run bool False Force run if outputs already exist
Matcher enum BruteForce Matcher type {BruteForce, BruteForce-L1, FlannBased}
Matches Path str [empty] Path to matches output file

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

95

Table A.7: Auto-documentation for Sources package

Sources
ImageConvert Converts images to a desired file format.

Property Name Data
Type

Default
Value

Description

Image Extension str [empty] Image extension
Image Path str [empty] Output image path
Mode enum PIL Conversion mode {PIL}

ImageFilter Filters a source of images according to date/time and optionally randomizes
the list.

Property Name Data
Type

Default
Value

Description

Day Month str [empty] Day and month of filter
End Time str [empty] Ending time of filter
Randomize bool False Whether to randomize the image list
Skip Images int 0 Number of images to skip
Start Time str [empty] Starting time of filter

ImageRandom Randomizes the list of images.

ImageRename Renames input images.

Property Name Data
Type

Default
Value

Description

Base Name str [empty] Base name of images

A
.2.

A
U

T
O

-G
E

N
E

R
A

T
E

D
S

T
A

G
E

D
O

C
U

M
E

N
T

A
T

IO
N

96

Move Files bool True Whether to move files, if not copy
Output Path str [empty] Output image path

ImageSource Provides a source of images from disk.

Property Name Data
Type

Default
Value

Description

Focal Pixel Override int 0 Focal pixel value when metadata not found
Image Extension str [empty] Image extension
Image Path str [empty] Path to images
Recursive bool False Whether to perform a recursive search

ImageSubset Creates a subset of the input images according to the properties provided.

Property Name Data
Type

Default
Value

Description

Increment int 1 Index increment
Max Images int 0 Maximum images in the output set
Start Index int 0 Starting index of subset

ImageSymLink Creates symbolic links for a list of images.

Property Name Data
Type

Default
Value

Description

Delete Existing Links bool False Whether to delete existing symbolic links
Link Keys bool False Whether to attempt linking corresponding key files
Symbolic Link Path str [empty] Path to create symbolic links

Bibliography

[1] David G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J.
Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[2] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cam-
bridge University Press, ISBN: 0521540518, second edition, 2004.

[3] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,” Pervasive
Computing, vol. 7, no. 4, pp. 12–18, Oct. 2008.

[4] Changchang Wu, “Visualsfm: A visual structure from motion system,” Oct. 2011,
http://homes.cs.washington.edu/~ccwu/vsfm/.

[5] A.J. Rossi, H. Rhody, C. Salvaggio, and D.J. Walvoord, “Abstracted workflow frame-
work with a structure from motion application,” in Image Processing Workshop
(WNYIPW), 2012 Western New York, 2012, pp. 9–12.

[6] Noah Snavely, Steven M. Seitz, and Richard Szeliski, “Photo tourism: exploring
photo collections in 3d,” ACM Trans. Graph., vol. 25, no. 3, pp. 835–846, July 2006.

[7] Yasutaka Furukawa, Brian Curless, Steven M. Seitz, Richard Szeliski, and Google Inc,
“Towards internet-scale multi-view stereo,” in Proceedings of IEEE CVPR, 2010.

[8] Yasutaka Furukawa and Jean Ponce, “Accurate, dense, and robust multi-view stere-
opsis,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 32, no. 8,
pp. 1362–1376, 2010.

[9] Intel, “Intel vtune amplifier xe 2013,” Feb. 2014, http://software.intel.com/

en-us/intel-vtune-amplifier-xe.

[10] IBM, “Rational purifyplus,” Feb. 2014, http://www.ibm.com/developerworks/

rational/library/957.html.

97

BIBLIOGRAPHY 98

[11] Coders Notes (Kayamon), “Very sleepy,” Feb. 2014, http://www.codersnotes.com/
sleepy/.

[12] Rice University, “Hpctoolkit,” Feb. 2014, http://hpctoolkit.org/.

[13] Microsoft, “Beginners guide to performance profiling,” Mar. 2014, http://msdn.

microsoft.com/en-us/library/ms182372.aspx.

[14] Kitware, “Cmake, cross-platform, open-source build system,” http://www.cmake.

org/.

[15] “You can use freeze to compile executables for unix systems.,” Feb. 2014, https:

//wiki.python.org/moin/Freeze.

[16] Mark Hammond Thomas Heller, Jimmy Retzlaff, “py2exe.org,” Feb. 2014, http:

//www.py2exe.org/.

[17] Guoshen Yu and Jean-Michel Morel, “ASIFT: An Algorithm for Fully Affine Invariant
Comparison,” Image Processing On Line, vol. 2011, 2011.

[18] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, “Speeded-up robust
features (surf),” Comput. Vis. Image Underst., vol. 110, no. 3, pp. 346–359, June
2008.

[19] Motilal Agrawal, Kurt Konolige, and MortenRufus Blas, “Censure: Center surround
extremas for realtime feature detection and matching,” in Computer Vision ECCV
2008, David Forsyth, Philip Torr, and Andrew Zisserman, Eds., vol. 5305 of Lecture
Notes in Computer Science, pp. 102–115. Springer Berlin Heidelberg, 2008.

[20] Stefan Leutenegger, Margarita Chli, and Roland Siegwart, “BRISK: Binary robust
invariant scalable keypoints,” in Proceedings of the IEEE International Conference
on Computer Vision, 2011.

[21] Per-Erik Forssén and David Lowe, “Shape descriptors for maximally stable extremal
regions,” in IEEE International Conference on Computer Vision, Rio de Janeiro,
Brazil, October 2007, vol. CFP07198-CDR, IEEE Computer Society.

[22] Engin Tola, Vincent Lepetit, and Pascal Fua, “A fast local descriptor for dense
matching,” in Conference on Computer Vision and Pattern Recognition, Alaska,
USA, 2008.

[23] Edward Rosten and Tom Drummond, “Machine learning for high-speed corner de-
tection,” in In European Conference on Computer Vision, 2006, pp. 430–443.

BIBLIOGRAPHY 99

[24] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R. Bradski, “Orb: An
efficient alternative to sift or surf.,” in ICCV, Dimitris N. Metaxas, Long Quan,
Alberto Sanfeliu, and Luc J. Van Gool, Eds. 2011, pp. 2564–2571, IEEE.

[25] Konstantinos G. Derpanis, “The Harris Corner Detector,” 2004.

[26] Rob Hess, “An open-source siftlibrary,” in Proceedings of the International Confer-
ence on Multimedia, New York, NY, USA, 2010, MM ’10, pp. 1493–1496, ACM.

[27] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of computer
vision algorithms,” http://www.vlfeat.org/, 2008.

[28] G. Bradski, “Opencv library,” Dr. Dobb’s Journal of Software Tools, 2000.

[29] Changchang Wu, “SiftGPU: A GPU implementation of scale invariant feature trans-
form (SIFT),” http://cs.unc.edu/~ccwu/siftgpu, 2007.

[30] Martin A. Fischler and Robert C. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography,”
Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[31] M.I. A. Lourakis and A.A. Argyros, “SBA: A Software Package for Generic Sparse
Bundle Adjustment,” ACM Trans. Math. Software, vol. 36, no. 1, pp. 1–30, 2009.

[32] D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,”
Journal of the Society for Industrial and Applied Mathematics, vol. 11, no. 2, pp.
431–441, 1963.

[33] Sameer Agarwal, Keir Mierle, and Others, “Ceres solver,” https://code.google.

com/p/ceres-solver/.

[34] Jianbo Shi and Jitendra Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 888–905,
1997.

[35] Chris Harris and Mike Stephens, “A combined corner and edge detector,” in In Proc.
of Fourth Alvey Vision Conference, 1988, pp. 147–151.

[36] Derek J. Walvoord, Adam J. Rossi, Bradley D. Paul, Bernie Brower, and Matthew F.
Pellechia, “Geoaccurate three-dimensional reconstruction via image-based geometry,”
2013.

BIBLIOGRAPHY 100

[37] Derek J. Walvoord, Adam J. Rossi, Bradley D. Paul, and Bernie Brower, “Geoaccu-
rate three-dimensional reconstruction via image-based geometry,” 2013-05-03.

[38] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe, “Poisson surface reconstruc-
tion,” in Proceedings of the fourth Eurographics symposium on Geometry processing,
Aire-la-Ville, Switzerland, Switzerland, 2006, SGP ’06, pp. 61–70, Eurographics As-
sociation.

[39] Heiko Hirschmller, “Accurate and efficient stereo processing by semi-global matching
and mutual information,” 2012 IEEE Conference on Computer Vision and Pattern
Recognition, vol. 2, pp. 807–814, 2005.

[40] Paolo Cignoni, Massimiliano Corsini, and Guido Ranzuglia, “Meshlab: an open-
source 3d mesh processing system,” ERCIM News, , no. 73, pp. 45–46, April 2008.

[41] Ton Roosendaal, “Blender 3d computer graphics software,” Oct. 2012, http://http:
//www.blender.org/.

[42] Daniel Girardeau-Montaut, “3d point cloud and mesh processing software,” Feb.
2014, http://www.danielgm.net/cc/.

[43] Radu Bogdan Rusu and Steve Cousins, “3d is here: Point cloud library (pcl).,” in
ICRA. 2011, IEEE.

[44] Adam J. Rossi, “Catena: Python abstract workflow framework,” Mar. 2013, http:

//catena.googlecode.com/.

Acronyms

API
application programming interface

CIS
Center for Imaging Science

CMVS
cluster-based multi-view stereo software

DLT
direct linear transformation

DoG
Difference of Gaussian

DSP
digital signal processor

exif
exchangable image file format

FPGA
field programmable gate array

GIS
geographic information systems

GPS
global positioning system

101

ACRONYMS 102

GPU
graphics processing unit

GSD
ground sample distance

GUI
graphical user interface

INS
inertial navigation system

L-M
Levenberg-Marquardt

MVS
multi-view stereo

NCC
normalized cross correlation

OSM
Open Street Map

PCL
point cloud library

PIL
Python imaging library

PMVS
patch-based multi-view stereo software

RANSAC
random sample consensus

RIT
Rochester Institute of Technology

ACRONYMS 103

sba
sparse bundle adjustment

SfM
structure from motion

SGM
Semi-Global Matching

SIFT
scale-invariant feature transform

SVD
singular value decomposition

SVN
Subversion

WAMI
Wide Area Motion Imagery

WASP
Wildfire Airborne Sensor Program

Index

CMVS, 53
Catena stage, 19

DLT, 48, 52
GSD, 69
PMVS, 55

Catena stage, 19
RANSAC, 43
SGM, 56
SIFT

DoG, 38
Catena stage, 17
descriptor, 40
intervals, 38
octaves, 37
OpenCV, 41
scales, 38
SIFT GPU, 41
SiftWin32, 41
VLFeat, 41

SfM, 1, 15, 34, 58, 60
image science, 4
multi-disciplinary, 5
software engineering, 5
stage documentation, 79

bundle adjustment
Bundler, 50
Catena stage, 18

camera model, 44
Catena, 10, 104

SfM, 58
abstraction, 77
automatic property optimization, 78
binary overlays, 77
Chain Builder, 26
Chain GUI, 26
chain implementation, 15
composite stages, 78
deployment, 33
distributed computing, 78
extensibility, 72, 74, 76
image processing base class, 22
multi-threading, 78
platform issues, 32
stage implementation, 10, 21, 31
tap point stage, 25
unit test, 25

chain, 9, 15
construction, 17
persistence, 20
rendering (demand-pull), 6, 7, 9, 20

Datasets
ET, 60
Hall, 63
ITT Exelis WAMI, 69
RIT WASP, 66

DLT, 51

epipolar geometry, 44, 45
epipolar line, 46

104

INDEX 105

epipolar plane, 46
essential matrix, 48
exif metadata, 34

feature extraction, 37
SIFT, 37
ASIFT, 37
BRISK, 37
Catena stage, 17
Daisy, 37
FAST, 37
Harris Corners, 37, 55
MSER, 37
ORB, 37
STAR, 37
SURF, 37

feature matching, 42
Catena stage, 18
KeyMatchFull, 43
SiftGPU, 43

focal pixel, 34
fundamental matrix, 46, 47, 50

geographic transformation, 56, 69

health imaging
dual-energy registration, 73

homography, 43, 46–48

image conversion, 36, 53
image mosaicing, 30
image registration, 72–74
image source, 34

Catena stage, 17
image subset / filtering, 35

lens distortion, 44, 52
Catena stage, 18

matrix cross-product, 79

pixel pitch, 34
point cloud generation, 51

stage, 6, 7, 9
optimization, 32

surface reconstruction
Poisson, 56

symbolic links, 36

triangulation, 51, 52

visualization, 57
Blender, 57
CloudCompare, 57
Meshlab, 57

