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ABSTRACT

An automated segmentation algorithm for the isolation of pseudoinvariant

features was developed. This algorithm utilizes rate-of-change information

from the thresholding process previously associated with the

pseudoinvariant feature normalization technique. This algorithm was

combined with the normalization technique and applied to the six reflective

bands of the Landsat Thematic Mapper for both urban and rural imagery.

The segmentation algorithm and normalization technique were also applied

to color infrared high resolution U2 imagery. The accuracy and precision of

the normalization results were evaluated. The technique consistently

produced normalization results with errors of approximately one or two

reflectance units for both the rural and urban Thematic Mapper imagery as

well as the visible bands of high resolution airphoto imagery. The

segmentation algorithm shows great potential for the removal of human

intervention in the pseudoinvariant feature temporal image normalization

process.
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1.0 Introduction

As soon as man was able to take to the air for travel, the prospect of collecting

information about the Earth became possible. With the advances in aeronautical

technology of the past century, concurrent advances in imaging technology have

also been made. From hand held photography in hot air balloons to the French

SPOT satellite of today, imagery has become more and more complex as well as

intellectually exciting.

In whatever form this imagery has been collected, a primary use of aerial

images has always been mapping and land use classification. The complexity of

these processes range from a photointerpreter sitting down at a light table with a

photographic transparency to the statistical processing of a digital image containing

up to four million separate picture elements. However the data is processed, this

information is then used to track urban development, study the decay or improvement

of natural bodies of water, monitor the progress of a farmer's croplands, or even to

search the land for natural resources such as petroleum.

A first step in any processing of this remotely sensed imagery is the correction

of atmospheric degradations that have disrupted the quality of the signal reaching

the sensor. Much time and research has been devoted to this problem with varying

degrees of success. Many models have been designed to predict atmospheric

effects in an attempt to understand how they could be corrected. In general these

models are tedious and involve a great deal of human interaction in their

implementation. One of the many algorithms directed at this purpose is referred to as

temporal image normalization using pseudoinvariant features. Unlike classical

normalization algorithms which correct each image for their individual degradations,

this algorithm will force the second image of a temporally separated pair to appear as

if it were taken through the identical atmosphere as the first. In this manner, any



remaining differences are truly differences in the actual scene. Pseudoinvariant

feature normalization, unlike the others, does not require a large degree of human

interaction since it is statistically based. The human user is only required to segment

the original images such that only urban features remain.

This study is intended to remove the image analyst from the process of

temporal image normalization using pseudoinvariant features. This is accomplished

by the development of an automated image segmentation algorithm that isolates

pseudoinvariant features from the two temporally separated images. This study

involves the theoretical development of the segmentation algorithm, the empirical

application of this algorithm to the pseudoinvariant feature normalization of a wide

variety of Landsat TM images, and an in-depth analysis of the errors involved with

the algorithm and the normalization method. The primary goal of this study is to

remove the human interpreter from the pseudoinvariant feature normalization

process and to provide the remote sensing community with a completely automated

method of scene normalization. The secondary goal is to provide a viable and

quantitative measure of scene normalization accuracy which can be used as a

comparative tool for the large gamut of normalization techniques that are available.



1.1 Historical Background

The history of remote sensing dates back to the late nineteenth century when

man first took to flight. A natural outgrowth of this scientific accomplishmentwas the

acquisition of information about the land, the waters, and other people in a way that

was never available before. As techniques for information acquisition have become

more complex and sensitive, the informational content of the imagery is degraded by

the atmosphere that exists between the sensor and the target of interest. It has

become necessary to devote time and effort to the development of methods to

remove this degradation, along with those due to the sensor response function,

illumination geometry and collection geometry. This effort is part of a branch of

remote sensing called temporal image normalization.

1.1.1 Temporal Image Normalization

Temporal image normalization is defined as a process which removes most

of the effects of sun angle, look angle, and atmosphere from each of a pair of

temporally separated images, therefore causing them to look as if they were taken

under similar conditions.1 The successful application of this type of process

augments the accuracy of such processes as temporal change detection, automatic

feature extraction, and target
identification.2 This technique has been the subject of

research for high resolution imagery (Piech and Schott, 1974 and Piech et. al.,

1981)
34 and has achieved a great deal of success. As a direct extension from

these applications, coarser resolution imagery such as that from the Landsat

Thematic Mapper (TM) , has been the subject of successful normalization
studies.5

Gerson and Fehrenbach (1983) have described five different temporal image

normalization algorithms,6 including normalization procedures for high resolution



black-and-white and color aerial films. Evaluation of these techniques involved a

simple subjective comparison of the relative effectiveness of the normalization.

Comparison of these techniques have shown that the success of normalization

depends on several factors including scene content, the type of imaging process and

albedo effects. The best results come from normalizing two black-and-white

terrestrial images where several known reflectances can be located. Less successful

results were achieved with hydrographic images.

It was decided not to choose any of the normalization techniques described

by Gerson and Fehrenbach since all these techniques involved operations on both

images of the temporally separated pair. A normalization technique which operates

on a single image and causes it to appear like a second image was desired since a

reduction in error due to less complex normalization was expected. Such a

technique was demonstrated by Volchok and Schott (1985) through the use of

pseudoinvariant features.7 This technique works quite well on coarser images (e.g.

30 meter spot size), with normalization errors of the order of one reflectance unit.

This method is easily implemented and requires very little user intervention, thus

making it attractive to an image analyst.



1.1.2 Pseudoinvariant Feature Normalization

The temporal image normalization technique chosen for this study is based

on image components known as a pseudoinvariant features (PIFs). This is a class of

objects whose spectral signatures are relatively constant over time. Such features

include concrete, asphalt, stone and
rooftops.8 The reflectance of these objects over

time is not constant in an absolute sense. That is, although concrete and asphalt

surfaces may get soiled and hence exhibit a change in reflectance, it is expected that

the statistical distribution of the reflectances of these features will remain constant.

The actual normalization is executed in the following manner for Landsat TM

imagery (The techniques are described as being applied to TM imagery since this

was the subject of the initial research,9 but the method was shown to work equally

well, if not better, with higher resolution images.10) Two temporally separated

images of the same area must be obtained. Pseudoinvariant features are isolated

from these two images and their gray level distributions determined within each band

of both images (it is assumed that the digital brightness histogram and the

reflectance histogram are linearly related). A set of linear transformations can then

be derived to modify the histograms of the second image so that they look like the

histograms from the first image. These transformations, derived for the distributions

of the pseudoinvariant features, can then be applied to the second digital image. As

stated earlier, the results of this type of normalization yielded results with

approximately one reflectance unit of error between the two normalized images.

The derivation of this technique and the transformations is well documented by

Volchok (1985).11

The theory behind image normalization using pseudoinvariant features and

the application of this new technology for Landsat TM imagery has proven to be a

viable, simple, and much needed technique for temporal image normalization. This



method makes two temporally separated images of the same area
"look"

the same,

both visually and radiometrically. In this manner, an image analyst can perform

transformations on only one image of a temporally separated pair and still have

confidence in the subsequent radiometric measurements. This is quite an

improvement over past methods where each image of the pair had to be individually

corrected for their respective atmospheric and radiometric degradations before any

analysis could begin.

As a preliminary step toward this study, much work was done to simplify the

implementation of the concepts demonstrated in the original investigation.12 in order

to make the implementation of this technique less arduous. The current

implementation of this technique takes only minutes rather than the hours once

required. This facilitates two goals of all remotely sensed image analysis:

(1) maximization of accuracy and speed and, (2) minimization of man's involvement

and contribution of error.

An essential first step in the PIF normalization process is the isolation of the

pseudoinvariant features from the digital images. To date this has been done in an

iterative and interactive fashion as will be described in Section 1.3.1. The removal of

human interaction from this technique would enhance this technology further and

make available a powerful technique for many temporal studies such as change

detection. It is therefore the primary purpose of this study to develop an automated

algorithm for segmentation so that the human interaction can be removed from this

normalization process.

The question that inevitably arises with any technique used to normalize

images is "How good is the technique, i.e. how well are the images normalized?".

This question is addressed in the following section.



1.1.3 Quantification of Normalization Results

The quantification of the results obtained in an image normalization

procedure has not been considered in the literature in any rigorous form. Gerson

and Fehrenbach (1983) used only qualitative analysis in their comparison of different

normalization methods.13

Normalization error is not a simple concept to evaluate since quantitative

information in a scene is not always readily available. Ground truth panels in a

scene would undoubtedly be an invaluable tool for the evaluation of the

effectiveness of a scene normalization procedure since direct comparison of this

ground truth data could be made. Ground truth data is costly to obtain for high

resolution imagery since significant manpower is required. It is nearly impossible to

obtain with lower resolution imagery such as Landsat TM data since the size of the

required ground truth panels would need to be immense (on the order of 60 meters

on a side to eliminate mixed pixel effects). It is evident from this that a method of

quantitatively evaluating the effectiveness of scene normalization techniques is

required. A secondary purpose of this study is to develop a quantitative tool for

testing the quality of normalization using in-scene elements. Such a test can be

used to evaluate the results from any normalization technique and make possible

comparative judgements.

1.1.4 Spectral Signatures and Band Ratioing for

Classification and Segmentation

In order to use the pseudoinvariant feature normalization technique, the
man-

made features that are present in the image need to be segmented for statistical

analysis and subsequent development of transforms. To begin the process of

isolating pseudoinvariant features from a Landsat TM image, we must first examine



the methods commonly used in the classification of multispectral imagery. It is the

purpose of this and the following sections to review these classification techniques.

The analysis of remotely sensed multispectral imagery can be an

overwhelming task considering some of the multispectral scanners that are currently

being used today. These systems can have as few as three spectral bands while

others may have up to twenty-four regions of spectral
sensitivity,14 while sensors

being developed at present, such as the airborne imaging spectrometer , have as

many as 128 different spectral bands. The amount of data that is collected by these

sensors is immense and the amount of computer power necessary to handle this

data soon becomes overwhelming. An obvious first-cut solution to this problem is to

use some sort of data reduction technique which retains only information relevant to

the problem at hand. The field of remote sensing utilizes spectral signatures of

objects, band ratios and other statistical transforms, in an attempt to make the data

more manageable and relevant while eliminating much of the redundancy that is

present.

As defined by Slater (1980), a spectral signature comprises a set of values for

the reflectance or radiance of a feature where each value corresponds to the

reflectance or radiance of the feature averaged over a different, well-defined,

wavelength interval.15 The signatures are affected by illumination and viewing

geometries as well as atmospheric attenuation. More will be said about these signal

degradations later. It is important to note that spectral signatures are not unique

identifiers for a specified feature. As described by Lillesand and Kiefer (1979), a

spectral signature is more like an envelope in which the spectral reflectance curves

for a class of objects fall.16 This is illustrated in Figure 1. It has been shown,

however, that although there is variability in the relative magnitude of the spectral

reflectance curves for a particular feature class, the relative shape of the curve can

be considered to remain nearly
constant.17

8



Use of the spectral signature alone is hardly sufficient as a means to classify

or segment features from a complex scene. To aid in segmenting image features via

spectral signature analysis, band ratioing is an effective tool. Normally the spectral

ratio of two image bands tells an image analyst more about the imaged objects than

do the recorded values in any single
band.18 Examples of the success of band

ratioing as a means of
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Figure 1 Generalized spectral reflectance envelopes for deciduous and

coniferous trees. (Adapted from Lillesand and Kiefer, 1979)

classification are described for water quality by Lillesand and Kiefer (1979),19 for

geology by Chavez et. al. (1982)20 and Williams (1983)
21 and for vegetation by

Lillesand and Kiefer (1979).22 As Williams (1983) stated, "the use of band ratioing

in a
"shotgun"

fashion will be discouraging since an exorbitant number of ratio

images can be derived. This method should be used in a rational, well thought out

manner."23 It has been shown by Tucker (1973) that the ratio of Landsat



Multispectral Scanner (MSS) band 7 (0.8 to 1.1 urn) to MSS band 5 (0.6 to 0.7 urn)

reveals well the amount of vegetation in the scene.24 Biegel and Schott (1984)

have shown that the ratio of Landsat TM band 5 (1 .57-1 .78 urn) to TM band 3 (0.62-

0.69 urn) is well-suited for the classification of water, vegetation and urban

features25 Hence, the use of a properly selected band ratio can be an invaluable

classification tool for earth features. Band ratioing not only aids in the classification

of multispectral images from the standpoint of presenting an enhanced image to the

analyst, but also reduces many of the negative effects introduced to the image due to

atmospheric degradations and illumination and viewing geometry considerations.

These effects include variations in the image plane radiance due to optical

vignetting, variations in upwelled radiance with azimuth angle and ground radiance

differences due to topographic variations.26 Ratioing negates the effects of any

multiplicative extraneous factors in multispectral data that act equally in all

wavelength regions.27 Additive extraneous factors can also be removed by

computing ratios of difference images. This procedure is therefore beneficial since it

provides information that wasn't present in single band imagery and also improves

the quality of this information by removing many of the extraneous effects and

degradations.

A typical method to utilize the information derived from the spectral signature

or band ratioing data is density, or digital count, thresholding. An example of this is

shown by Volchok (1985) where pseudoinvariant features (PIF's) were segmented

from a Landsat TM scene utilizing a band-4 to band-3 ratio as well as band-7

imagery.28 This type of technique is extremely attractive in that it requires very little

computer memory and the results obtained can be adjusted with virtually no effort.

The accuracy of such a technique is dependent on the skill of the person performing

the thresholding and an a priori knowledge of the scene.

As an example of thresholding as a classification technique, consider a

general land-use classification including the following land cover types: soil, water,

10



and vegetation. On examining the spectral signatures of these three general classes

in the visible and near-infrared wavelength intervals (Figure 2(a)), it seems feasible

that classification can result simply from thresholding (density slicing) the MSS band-

7 image. Figure 2(b) is a two-band signature for the three classes which readily

illustrates the apparent ease of classification. However, as stated earlier, the spectral

signature curves of Figure 2(a) are not defined in such a singular manner but consist

of an envelope surrounding the depicted curves. The results of this natural variability

are the cloud-like formations of Figure 2(c). Note that the simple thresholding

technique will no longer work with a high degree of
accuracy.29 Spectral ratioing

will improve the quality of thresholding techniques as shown by Volchok (1985), but

more sophisticated and accurate classification and segmentation schemes exist.30

Such schemes include multivariate classification, which is a powerful statistical tool

that lends itself to automation. Such techniques will be discussed in the following

section with the intention of developing an automated multivariate segmentation

algorithm for man-made urban features.

11
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1.1.5 Supervised Multivariate Classification

Multispectral scanners can be single aperture devices, pushbroom sensors,

or focal plane array charged-couple-devices (CCD) which record imagery in several

(say k) different spectral bands. That is, they will produce k bands of geometrically

registered imagery of a target region. The advantage gained by using this type of

device is that each pixel in the multispectral scene is represented by a k-dimensional

vector composed of the individual spectral radiance components reaching the

sensor. This feature of multispectral imagery makes it ideally suited to many

multivariate analysis techniques. These statistical techniques act on individual pixels

to determine to which of several defined groups or classes each pixel belongs. In

this manner every pixel in a digital image can be assigned to a specific group, i.e.

classified.

There are essentially two distinct types of classification schemes. They are

supervised and unsupervised classification. In supervised classification, useful

information categories are defined by the user and a subsequent analysis performed

to determine the spectral separability of these categories. Unsupervised

classification, on the other hand, involves first a determination of spectral separability

of the raw image data followed by an interpretation of the resulting
categories.31 By

its essence, supervised classification is ruled out as an automated segmentation

technique, but it needs to be described in order to bring unsupervised classification

into a proper perspective.

Supervised classification consists of three distinct stages as described by

Estes (1983)
32 The first stage is training, where the analyst compiles an

interpretation key or spectral signature set by identifying representative samples of

the classes to be identified. In the second, or classification, stage the remaining

pixels in the target image are compared to each of the categories chosen in the
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training stage. The pixels are assigned to the category to which they most closely

correspond. The third stage is output. After the entire scene has been categorized,

the results are presented in any of several forms including a color encoded map,

tables of areas of specific cover types, or computer-compatible inputs to a grid-based

geographical information system. The actual classification of the individual pixels

(the second stage of the supervised process), can be accomplished in several ways,

each of which has trade-offs. Lillesand and Kiefer (1979) describe three different

types of classification algorithms.33

The first and simplest of these is known as the minimum distance to the mean

classifier. During the training stage a mean vector is computed for each of the

categories chosen by the analyst. This mean vector is a k-dimensional vector

consisting of the mean response levels of each of the spectral bands of the

multispectral image. Classification is then performed by determining the

multidimensional Euclidian distance of the unknown pixel to each of the mean

vectors of the chosen categories. The unknown pixel is then classified as a member

of the closest category. This method is computationally fast, but does not work well

when natural variability of the means of groups overlap each other. This can be

explained by the following example. Suppose one category has a multidimensional

mean and a very large variance while another category has a second distinct mean

and a very small variance. This phenomenon is illustrated in Figure 3. An unknown

pixel can be located within the scattergram of the larger variance group and yet have

a shorter Euclidian distance to the mean of the group with the smaller variance. This

would result in a misclassification of the pixel. A technique is needed which

accounts for this variability. Such a method is the parallelepiped classifier.

The parallelepiped classifier accounts for the variance in the distribution of

the category data by setting up ranges for each of the categories. These ranges can

be determined by finding the maximum and minimum digital counts in each of the k-

categories. For two-dimensional data, this boundary region can be thought of as a
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rectangle surrounding all the points included in that category (see Figure 4). An

unknown pixel is classified into the category within whose boundary it falls.
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Figure 3 Two Dimensional Scattergram Of Image Data For Minimum

Distance To The Mean Classifier
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Band 4 Digital Count -

Figure 4 Parallelepiped Classification Strategy Using Rectangular

Boundaries

This classifier is extremely fast computationally, but two problems exist. The first is

overlapping regions. Two regions in close proximity will likely have their boundary

regions covering some common area. This will result in confusion when a

classification decision must be made. Typically, these
"confused"

pixels will

arbitrarily be assigned to one group or the other. The second problem

is most often the cause of the first. The parallelepiped classifier does not deal well

with highly correlated band data, which will tend to cause boundaries to be formed

that exhibit lack-of-fit for the category data. If one thinks of this in two-dimensions,

data that are highly correlated will appear as a thin ellipsoid sloping either upward or

downward from the origin depending on the sign of the correlation. This appearance
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will then cause the resulting boundaries to greatly overestimate the size of the

classification region for the particular category. This is shown in Figure 5. Remotely

sensed data is often highly correlated in this manner, so this problem is a prominent

one with this classifier. Lillesand and Kiefer (1979) describe a modification to this

classifier that makes it more useful for highly correlated
data.34

"8
&

c
3

3?
S

Digital Count in Band i

Figure 5 Weakness Of Parallelepiped Classifier For Highly Correlated Data

The two classifiers described above are known as nonparametric classifiers

since they make no distributional assumptions on the data. These methods are

computationally quick and easy to implement, but often do not exhibit the desired

accuracy. The maximum likelihood classifier is parametric, i.e. it makes the

assumption that the data in each category takes on a multivariate normal distribution

(see Figure 6).

18



Sand

Forest

Water

Figure 6 Probability Density Functions Defined By A Maximum Likelihood

Classifier (after Lillesand and Kiefer, 1979)

Under the assumption of multivariate normality, the distribution of the data

from a particular earth feature is completely described by a mean vector and a

covariance matrix. With these quantities defined for each of the classes, the

probability that an unknown pixel belongs to each of these classes can be computed

and the pixel classified into a category based on the maximum probability

determined. Hence, this method accounts for both the variance of the data and the
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exhibited correlation. This classifier is computationally more complex to implement

and runs much slower than the simple decision-based algorithms of the two previous

classifiers, however there is a significant increase in accuracy. Modifications on this

method are described in Lillesand and Kiefer (1979)35 and in Schowengerdt

(1983)36

1.1.6 Unsupervised Multivariate Classification

While it is the goal of supervised multivariate classification to choose the

desired classes based on features of interest, the purpose of unsupervised

classification is to determine the classes based on their spectral separability.

Unsupervised classification examines a large number of pixels and forms classes

based on natural groupings present in the image values37 The image data are

submitted to a clustering algorithm and the resulting clusters in k-dimensional space

(representing k spectral bands) are each assumed to represent a class.38 Each

class that is formed may not be associated with a distinct land cover type, but the

classes are spectrally separable. At this point it is up to the analyst to determine the

physical counterparts of these statistical clusters based on information from land

cover maps, aerial photographs, and other forms of ground truth data.

In choosing training data for an unsupervised classification algorithm, one

must be certain to choose training sites with a heterogeneous mixture of pixels. This

ensures that all possible classes and their within-class variabilities are adequately

represented. This heterogeneous criterion contrasts the choice of training sites for a

supervised classifier where the analyst wishes to choose homogeneous training

sites for each individual class.39 These choices of training sites are illustrated in

Figure 7. Once the training data is collected, it is submitted to a clustering
algorithm

of some type. The number of clustering algorithms available are countless and are

limited only by the analyst's ingenuity
40 The following is a description of one of the
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more common algorithms known as the k-means algorithm, or ISODATA as referred

toby Kan (1972) 41

Supervised

Training

Class 1 Class 2

Unsupervised

Training

Class 1 Class 2 Class 3

Figure 7 Training Sites for Supervised and Unsupervised Training
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The k-means algorithm, as described by Schowengerdt (1983), works in the

following way.42 Once the training data has been collected based on the criterion

mention previously, the algorithm arbitrarily chooses k different means by randomly

selecting pixel coordinates. The number k depends on the number of clusters the

analyst wishes to form. The pixels in the training set are then assigned to one of the

k means depending on which particular pixel is closest to in a Euclidean sense.

Once all the pixels have been assigned to one of the arbitrary means, new mean

values are computed for each of the arbitrarily formed classes. The above is then

repeated, that is, each pixel is again assigned to the nearest mean and new mean

values calculated. This process is continued until there is no significant change in

the location of the k mean vectors. These clusters thus formed are then considered

to be k spectrally separable classes. This convergence to the means is illustrated in

Figure 8 for two-dimensional image data. This method is relatively insensitive to the

original choice of mean vector seeds, however, the number of iterations required to

converge to the true cluster means may be large if the original seeds greatly in error.

A FORTRAN version of this algorithm is described by Hartigan (1975).43

Subsequent classification of the entire image can then be accomplished by using a

minimum distance to the mean classifier. If a more precise classifier is required, an

associated covariance matrix may be computed for each of the clusters and a

maximum-likelihood classifier could be used. Whichever method is chosen, a

successful classification should result if the proper choice of training sites were made

originally. As mentioned previously, these sites contain a wide variety of land cover

types as well as large within-class variabilities.

The advantage of using unsupervised clustering is that more classes are

allowed to be formed; classes that may not have been formed in the case of a

supervised classification. In addition, the classes formed are more separable in a

spectral sense. An example of this are coniferous trees located
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Figure 8 Clustering by the K-Means Algorithm
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in shaded and sunlit areas of the same image. An image analyst would most likely

place pixels from both these areas in a single training set class. This would result in

the classification being confused since these two differently illuminated areas are not

spectrally identical, although they are the same land cover type. In fact, they may

appear different to a clustering type algorithm. For such reasons, it is often beneficial

to first run an unsupervised classifier to determine spectrally separable classes.

Clusters that represent features of interest can then be chosen as classes for a

supervised training set. Techniques that utilize this combination of methods are

referred to by Lillesand and Kiefer (1979) as hybrid techniques.44

A problem faced by both supervised and unsupervised classification

algorithms is the extensive computation time required due to the immense quantity of

data to be analyzed. For example, an image containing a quarter million pixels in

each of seven different spectral bands (i.e. a Landsat TM image) requires 2 MB of

data storage. The following section is a description of several methods that are

useful for reducing the amount of data that is necessary for a successful

classification. These methods analyze the original spectral data and derive images

that contain the majority of the original information content in a more compact form.

1.1.7 Preprocessing and Redundancy Reduction

It would seem that the accuracy of any of the above classification algorithms

would be increased significantly by the addition of more spectral bands of

information. According to Estes (1983) this is only true if the added bands contain

additional, non-redundant
information.45 This is often not the case in remotely

sensed data since the spectral information of a scene is indeed highly correlated.

For Landsat MSS data which contains four separate spectral bands, Kauth and

Thomas (1976) have shown that by transforming the spectral data, the redundancy

can be reduced to two-dimensions, rather than four, such that approximately 95% of
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the original variations is still represented by the transformed data.46 Crist and Kauth

(1986) have also shown that the six reflective spectral bands of Landsat TM can be

transformed to three bands of information that contain at least 95% of the total

variation in the original data.47 This reduction in redundancy serves two purposes.

The first is to increase computational speed since less data needs to be analyzed.

Secondly, the quality of this transformed data is superior in that the new coordinate

axes take on new physical definitions that aid in classification.48

This type of initial transformation of the image data is referred to as

preprocessing. Preprocessing used to reduce the amount of redundant information

is commonly called principal component or factor analysis.49 Another type of

preprocessing transformation derive new data sets from the original images. The two

primary data derivation methods in use today are spatial clustering and texture

analysis.

Spatial clustering is a general name for methods that take an initial look at the

image data to determine collections of neighboring pixels that comprise spatially

homogeneous units. Kauth etal. (1977) have developed a technique known as

BLOB which introduces spatial coordinates into the vector description of each pixel to

indicate the spatial homogeneity of certain field-like patches in the image.50 In this

manner, if a subsection of an image is identified to be homogeneous, then the

number of subsequent classification calculations can be greatly reduced. Kettig and

Landgrebe (1976) have developed a similar method known as ECHO (Extraction

and Classification of Homogeneous Objects) which divides an image into small sub-

images and tests for homogeneity within these
51 If a sub-image is homogeneous, it

is combined with surrounding homogeneous sub-images and
retested. In this

manner, homogeneous patches are established throughout the image and, as with

BLOB, subsequent classification analyses are enhanced. This type of clustering of

the original data not only facilitates an increase in speed of classification, but also

puts the result in a more desirable and less noisy
form.52 Several other techniques
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exist in the literature such as ISODATA by Kan (1972) CLASS by Fromm

(1976)54 and others by Bryant (1979).55 Bryant (1979) has written an excellent

review article on these techniques.56

Texture analysis generates another class of techniques that have become

prominent in the past decade. As described by Haralick etal. (1973), texture is one

of the most important characteristics used in identifying objects or regions of interest

in an image to the human observer.57 Texture is an innate property of all surfaces

and can be described as fine, coarse, smooth, rippled, or irregular. This information

along with spectral information, provide two of the three primary
"clues"

to

classification of objects for the human observer, the third being contextual

information. The addition of this information to a computer-aided classification

should also be a significant improvement. Haralick has demonstrated that by using

texture features based on the relative frequency distributions of the image gray tones,

along with spectral features, he was able to classify seven land use categories in a

satellite image with 83% accuracy or better. Success with texture analyses have

also been reported by Hsu (1978) Mitchell and Carlton (1978) Mitchell etal.

(1978),6 Richards and Landgrebe (1982),61 and Troy etal. (1973)
62

These preprocessing algorithms serve to reduce inherent redundancy in

multispectral images as well as to introduce extra information to the multivariate

classifiers that help to improve the accuracy. These techniques, however, are very

susceptible to the influence of signal degradations such as changing atmospheric

and illumination conditions. This susceptibility may render such techniques

ineffective as segmentation algorithms for temporally separated imagery. It will be a

purpose of this study to examine these and other techniques to determine if any

useful information can be obtained to aid in the classification and extraction of

pseudoinvariant features.
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1.2 Theoretical Background

The following section contains a description of the theory behind the

PIF normalization process, the derivation of the normalizing transforms, the

observed behavior and subsequent development of the automated

segmentation algorithm, and the attempted use of classical multivariate

techniques for automated segmentation. The theory presented here is

similar to that presented by Volchok (1985) in the original proof-of-concept

study.63

1.2.1 PIF Technique for Image Normalization

As stated earlier, there are three distinct steps in the PIF normalization

process. They are the isolation of pseudoinvariant features from the digital

imagery, the computation of the statistical distribution for the pseudoinvariant

features in all spectral bands of each of the temporally separated image, and

finally the determination of the normalizing transforms and their application

to the imagery.

The isolation of pseudoinvariant features from digital imagery

proceeds in the following fashion. It has been shown by Biegel and Schott

(1984) that an infrared-to-red ratio image is very effective in the classification

of water, vegetation, and urban features.
64 The brightness of vegetation in

this ratio image will tend to be very high, while that of urban features and

water will be considerably lower. In a digital environment this image can be
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derived from the quotient of Landsat TM bands 4 (0.78 - 0.91 ^m) and 3

(0.62-0.69u.m). To facilitate isolation of PIF's, Landsat TM band 7 (2.08-

2.35u.m) is used since water has nearly zero reflectance in this spectral

region. To perform the isolation, the following logic is followed (see Figure

9). The TM band-4 to band-3 ratio image is thresholded from the high digital

count values downward. In this manner, the vegetation pixels which have

high digital count values, are eliminated from the image, that is, these pixel

brightnesses are set to zero. The resulting image contains only water and

urban features. The TM band-7 image is then thresholded from the low

digital count values upward. This procedure will eliminate water from the

band-7 image since water has a low reflectance in this spectral region, and

therefore low digital count values. This threshold will also tend to eliminate

the wet farmland and vegetation that were missed in the thresholded band-4

to band-3 ratio. The resulting image contains only urban features and dry

vegetation-covered areas. If the two thresholded images are transformed to

binary images (i.e. all non-zero pixel brightnesses are replaced with a

brightness count of 255), and then combined using a logical .AND., the

resultant combination will be a binary image that is bright where there were

PIF's and dark everywhere else. This image is known as the PIF mask for

the current TM data set. Figure 10 is an illustration of the above process.

This procedure is then repeated on the second day's imagery.

The next step in the PIF technique is the determination of the

statistical distribution of digital brightness values of the PIF's in each of the

reflectance bands for the two TM images. This is accomplished using a

logical .AND. operator on the band imagery and the PIF mask. The PIF
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pixels in the band imagery correspond to pixels in the mask and are

therefore left on in the resulting image. This process is suited for

implementation in an array processor which enables the isolation to occur in

approximately
1/30th of a second. The resulting image represents the true

PIF brightness value distribution. The distribution statistics are then simply

obtained by taking the histogram of the resulting image, zeroing the zero

histogram bin since it has been artificially enlarged, and calculating the

subsequent histogram statistics, namely the mean and standard deviation.

All that remains in the PIF normalization process is the derivation of the

transformations for each image band. Two methods exist for the derivation

of these transforms: histogram specification and linear histogram

transformation. A discussion of these methods follows.
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Figure 9 Illustration of the logic used to segment PIF features

in Landsat TM six band imagery
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1.2.2 Derivation of the PIF Normalization Transforms

Histogram specification is a standard image processing technique

(Gonzalez and Wintz, 1 980).65 In short, two histograms are required as

input to this technique. The first histogram, referred to as the mapping

histogram, is transformed to look like the second, or test, histogram. The

theory behind this procedure is taken from histogram equalization. In this

procedure, one wants to map the histogram, or the probability distribution

function (PDF) for the brightness distribution, through its associated

cumulative distribution function (CDF) to obtain a flat normalized output

histogram (see Figure 1 1 ). This procedure, in and of itself, is not sufficient

for our purposes. However, if one applies this technique to two histograms

individually, in theory the end result of each equalization will be a flat

normalized histogram. From this point on, it is evident that if one took the

transformation maps for each of the individual histograms, that is, their

associated CDF's, and combined them into a single mapping function (one

in a forward fashion and one in a reverse fashion), this mapping function

would serve to transform one distribution to look like the other. This is

shown in Figure 12.

Linear histogram transformation is another technique which, like

histogram specification, transforms one brightness distribution function to

another under certain conditions. This procedure was described by Volchok

(1985) in a different
perspective.66 The procedure assumes two conditions:
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Figure 1 1 Example of the histogram specification process

the first is that the radiance at the sensor is linearly related to the reflectivity

of the scene elements on the ground. The second is that the brightness (i.e.

digital count) of the image is linearly related to the radiance reaching the

sensor. With these two assumptions in mind, the technique of linear

histogram transformation can be developed as follows:
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Figure 12 Example of histogram specification for PIF normalization

Let L1=a1R1 + p1

and L2 = a2R2 + p2

where L1 and L2 are the spectral radiance values of the PIF's in the first and

second image, respectively, R^ and R2 are the reflectance values of a scene

element in the first and second image, the a terms are linear coefficients

encompassing the atmospheric transmission and look angle effects, and the

P terms are the path radiance terms. In terms of digital count, or brightness,
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we have

DC! =m^ + fy

and DC2 = m2L2 + b2

where DC1 and DC2 are digital count values for the first and second images,

respectively, the m terms are linear coefficients encompassing the sensor

response characteristics, and the b terms are the sensor offset values. One

can then perform the following simplification, namely that

DC! = m^Ri + n^p, + bt

and DC2 = m2a2R2 + m2p2 + b2

Recalling the basic premise of this procedure, i.e. that the reflectances R^

and R2 on average are equal (i.e. R^ = R2) within PIF's, the following can be

written

DCt = mtDC2 + b,

where

m1a1
mt

m2a2

m^bg m^pg
bt= b1 + m1p1

m2a2 a2
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It can now be seen that DC1 and DC2 are linearly related. Because there is

a linear transformation between individual digital count values on separate

images, this concept can be extended to a distribution-based transformation.

The following linear histogram transformation can now be developed. Two

linearly related histograms can be transformed to look like each other in the

following fashion. The relative width of the histograms are related by the

ratio of their standard deviations. The histogram means are then

recomputed and the difference between these two means is added to the

adjusted mean x2. The histograms now have equivalent spreads and equal

mean values (see Figure 13). The transformations are described as

DC! = mtDC2 + bt

where

m
2

bt = x2
-

mtx1

If the assumption stated above (i.e. that digital count is a linear

function of reflectivity) is valid, then the linear histogram transformation

process will give a better result than histogram specification. Histogram

specification makes no assumptions about the nature of the difference

between two histograms, but only attempts to map one onto the other.

Histogram specification also tends to overcompensate for differences near

the extremes of histogram variance and therefore is only accurate within the

central portion of the data. Linear histogram transformation is designed to
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account for changes in gain and offset introduced by variations in imaging

conditions. The conditions described during the development of the PIF

transformations have all been of an assumed linear nature and therefore the

linear histogram transformation was chosen for use in the rest of this study.

Histogram specification will only be used as a quick check on the quality of

the original segmentation. If there is a significant difference between the

transforms developed using the linear histogram and histogram specification

methods in the central data region, it is likely that the original segmentation

included some mixed pixels. These mixed pixels will show up in the PIF

statistic calculations and will have a significant effect on the developed

linear transforms.

The following section will discuss the methodology for the

development of an automated segmentation algorithm based on the

classical multivariate classification routines discussed in Sections 1.1.5 to

1.1.7.
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1.2.3 Automated PIF Segmentation Using Multivariate

Techniques

The correction of the effects of a changing atmosphere and of varying

illumination and collection geometries on temporally separated images is

the primary motivation for this entire study. It is essential to be able to

account for and correct these differences if any quantitative processing or

change detection is to be carried out on these images. Classically, this has

been a problem in the development of multivariate classifiers. Much time

and effort is spent on the development of an accurate multivariate classifier.

The problem is that the classifier, once it is developed, is accurate only on

the particular image being worked with. If the same classifier is applied to

another image of this same area acquired on a different day, the classifier

would have less success. The success of the classifier may be increased by

applying several preprocessors to the image that will reduce the effects of

any signal degradation due to the temporal shift. It is the purpose of this

section to examine such preprocessors and their effects on the success of

multivariate classification as a segmentor of pseudoinvariant features. This

should not be viewed as a replacement for the process of image

normalization since the following application is developed to classify only a

single class of scene elements.

A principal component transformation of multispectral Landsat TM

imagery has been shown by Crist and Kauth (1986) to reduce the

dimensionality of TM data to three.67 According to their analysis, the first

principal component can be considered as representing image brightness,
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the second as representing greenness and the third as representing

wetness. These three principal component vectors characterize 95% of the

total variation within the spectral band data (excluding the thermal infrared

band). According to Crist and Kauth (1986) the fact that the exact

interpretation of the principal components is highly dependent on the sensor

being used must be considered. These interpretations mentioned above are

for the Landsat TM sensor. These physical interpretations of the first three

principal components should prove useful in the identification of urban

features. The greenness and wetness component should serve as two ideal

vector components to separate urban features from vegetation and

water/wetlands.

Texture is one of the most important visual clues to the analyst in the

identification of image features.68 Texture of image features in Landsat TM

data can be represented as the image standard deviation. The effects of

varying illumination geometry will tend to cast varying degrees of shade.

This will affect the measure of texture for any particular pixel. However, the

relative amount of texture at any one pixel should not vary significantly as a

function of changing illumination geometries since high texture areas will

increase with an increase in shadows, but at the same time the lower texture

areas will also increase. Considering this, the relative levels of texture

should remain approximately constant. Atmospheric degradation will tend to

flatten out the contrast in an image and thus decrease the amount of texture

that can be detected, but again this amount of contrast reduction should be

constant over the image if the assumption of a homogeneous atmosphere is

made at the image plane. For these reasons it is believed that a texture

component included in the pixel vector will increase the effectiveness of an
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image independent PIF classifier.

A final preprocessing technique which has already been discussed in

detail in section 1 .2.4 is that of band ratioing. This technique will tend to

eliminate the effects of shadows in an image and the variation in upwelled

radiance with azimuth.69 Due to the increase in the image quality and

information due to ratioing, this technique will be useful in feature

classification.

It is believed that by using images preprocessed as above in some

combination to be empirically determined, an image independent PIF

classifier can be developed. The accuracy of the classifier can be adjusted

by the use of a posteriori probability screener to allow only those pixels

having a certain associated
"sureness"

to be included in the mask image. In

light of the goal of this study, to remove man's intervention from this

normalization technique, an unsupervised classifier seems the logical

choice as a multivariate technique. With this type of algorithm a number of

different image features will be isolated. Identification of the particular pixel

collection that represents the pseudoinvariant features can then be

accomplished by forming a multidimensional map of the relative positions of

the cluster means. If a particular pattern develops in this multidimensional

map then the pseudoinvariant feature cluster can be located in an

automated fashion by reference to a standard map of typical land cover

clusters.

The first attempt to develop an automated multivariate segmentation
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algorithm quickly proved to be discouraging at the isolation of

pseudoinvariant features. The following is a brief description of the

developed algorithm which proved ineffective in the segmentation process

but was of great academic interest to the investigator. Once the unsuitability

of this technique was recognized, the attempt was abandoned in favor of the

rate-of-change algorithm to be described in the following section.

To develop a multivariate segmentation algorithm, the following line

of action was pursued. First, the dimensionality of the multispectral data was

reduced, primarily to increase the quality of the data used in the algorithm,

i.e. to remove the redundancy from the image data. A secondary reason

was to increase the computational efficiency of the subsequent

segmentation algorithm by reducing the amount of data to be examined

since multivariate techniques are computationally very expensive. In the

second step, the reduced multispectral data was run through an

unsupervised multivariate classification in order to segment the data into

spectrally separable classes. The third and final stage of this algorithm was

a search of the spectrally separable classes to identify that class or classes

that represented pixels that were pseudoinvariant features. Each of the

above stages will be discussed and their results presented in Appendix G.

In order to reduce the dimensionality of the multispectral image data,

a principal components analysis was chosen based on the material present

in the preceding Theoretical Background section. Computer code was

written to determine the principal components of six-dimensional image data

and to scale the principal component images to fill the full dynamic range of

42



the image processing display station. The code ran on a DEC VAX 8200

interfaced to a Gould/DeAnza IP8500 Array Processor located at the DIRS

laboratory. This code (PrinComp) and a functional description is included in

Appendix A. The principal component images were computed for all the

scenes described in the previous section (excluding the high resolution CIR

airphoto imagery). As had been predicted by other investigators in this area,

the first three principal components contained approximately 97% of the

variability in the multispectral image data. On this basis it was decided to

use only these three principal component images in the unsupervised

multivariate classifier. This classifier will separate the pixels into spectrally

separated classes.

The unsupervised multivariate classifier was based on the k-means

classifier described earlier. The code was designed to run on the equipment

mentioned above and this code (named "Cluster") and its functional

description is included in Appendix B. The three principal component

images for each of the scenes described in the previous section were run

through the unsupervised classifier and three-dimensional plots of the

cluster means for each scene were made . It was hoped that the investigator

could then find a commonality among the distribution of cluster means in

each of these plots. After associating each of the spectrally separated

clusters with a corresponding land cover type, and after locating the cluster

means on the appropriate scattergram, no commonality was found among

the distributions. The results leading to this point and a discussion of the

reasons for this failure will be discussed in Appendix G.
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At this point, it was decided to abandon this approach to the problem

of automated segmentation and proceed with the development of the rate-

of-change algorithm, which will more closely model the analyst's actions in

the previously used interactive segmentation procedure.
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1.2.4 Automated PIF Segmentation Using Rate-Of-Change

Techniques

To develop an algorithm to automate the first phase of the PIF

normalization process, i.e. the segmentation stage, one must understand

what is occurring when this segmentation is carried out interactively. If this

process can be understood, then there is a good chance that an algorithm

can be devised to simulate what an analyst is doing when carrying out a

segmentation.

As mentioned in Section 1.2.1, the segmentation procedure of PIF

normalization involves the binary thresholding of two separate images (the

Landsat TM band-4 to band-3 ratio image and the TM band-7 image). Up to

this point, this process was carried out in the following manner. The digital

representation of the TM band-4 to band-3 ratio image was displayed on the

image processing workstation. Using a joystick, the user could interactively

change a threshold value that set all values greater than the current

threshold value to zero and left all other values alone. The user observed

that there existed a certain range of threshold values where very few pixels

would be affected. At some point, this rate of change would increase

dramatically and almost all the pixels that represented vegetation would be

set to zero as the threshold value changed by a small amount. The rate of

change would then decrease dramatically and the falloff of pixels would

again be very slow. At this second inflection in the rate of change, i.e. right

after the sharp falloff of vegetation pixels, the user would typically stop the

thresholding process and thus select the threshold value for the TM band-4
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to band-3 ratio image. The TM band-7 image would then be examined on

the image processing workstation. The user would then be allowed to

change the threshold value on this image, this time setting all digital count

values below the current threshold to zero and leaving all others alone. The

user typically would observe the following. There would be a sudden drop

off of pixels representing water and wet farmland followed by a leveling of

this drop off rate. At this inflection point, the user would stop the thresholding

process and define the TM band-7 threshold value. The two thresholded

images would then be logically combined using an .AND. operator as

described previously and the result presented to the user. This is the PIF

mask created with the current threshold values. The user would have the

option to go back and fine tune the threshold values to obtain the best PIF

mask possible.

Several problems exist with the segmentation procedure just

described. One such problem is consistency between analysts in choosing

threshold values. Every person that would utilize the PIF normalization

technique would choose different values of the thresholds for the two

images. Some users were conservative in their choice, that is they would go

further than the required threshold values to be sure that all the unwanted

pixels are eliminated. Other users would be liberal in their choice, that is

they would stop thresholding just before the inflection point to be sure that

there were enough pixels for the distributional computations. The result of

such inconsistency in the choice of thresholds caused different users to

obtain transforms that yielded normalizations with different degrees of

accuracy. Another problem with the technique described above is that a

single analyst may tend to be conservative in the choice of threshold values
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on images of areas that are unfamiliar geographically while the same user

may be liberal on images of familiar geographical areas. This would cause

inconsistency in the choice of threshold values by the same analyst.

With the above observations in mind, a conclusion can be drawn that

there may be a certain region of allowable threshold values in each of the

thresholding curves. To locate this area, it was decided to observe the

change that occurred in the number of pixels as thresholding proceeded.

This seemed the most likely choice of criterion to observe since this is what

the user is looking at visually when carrying out the interactive

segmentation.

Figure 14 is a three dimensional surface plot of the above mentioned

phenomenon. The x-axis represents the threshold value chosen for the TM

band-4 to band-3 ratio image, the y-axis represents the threshold value

chosen for the TM band-7 threshold value and the z-axis represents the

number of image pixels that remain on in the image resulting from a logical

.AND. of the two binary thresholded images. Just as expected, there is a

monotonic decrease in the number of pixels left on as the threshold values

eliminate pixels from their respective input images. To locate the area

where the threshold values should fall, the points where the rate-of-change

of pixels mentioned above levels off must be found.

As mentioned above, Figure 14 represents the number of pixels

included in the PIF mask formed as a result of using any combination of

threshold values in the two defined regions. In order to find the positions in
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these thresholding regions where the rate-of-change in the number of pixels

goes through the aforementioned inflection points, the two-dimensional

derivative (gradient) is computed for the surface in Figure 14. The

computational form of the operator is:

Figure 14 Number of pixels remaining on in the logical combination

of the individual thresholded images
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where Gy is the gradient value at threshold value position i.j and x is the

number of pixels remaining on at the specified threshold positions (see

Figure 15). Figure 16 is a three- dimensional representation of the surface

derived using the above operator on the surface in Figure 14.

XI.J-1

X.-U Xi.i Xi + 1,j

Xi.j + 1

Figure 15 Illustration of the threshold positions used in gradient

calculation
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Figure 16 The gradient surface derived from Figure 14
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As the rate-of-change of the number of pixels slows down, the value of the

two-dimensional surface in Figure 16 will decrease (i.e. the value of the

derivative of a function decreases as the rate-of-change of the original

function decreases). The gradient surface is then evaluated to locate the

point at which the rate-of-change slows down or goes through a minimum in

both thresholding directions simultaneously. The circled area in Figure 16

indicates the localized region where the simultaneous minima in rate-of-

change occurs. It is in this area where the two threshold values are defined.

This observed behavior is the basis for the development of the automated

rate-of-change algorithm.
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2.0 Experimental Approach

Now that the theory has been established for the automated

segmentation of Landsat Thematic Mapper imagery, the following tasks are

necessary to validate the theory. First is the development of the automated

algorithm for the segmentation of pseudoinvariant features from Landsat TM

imagery. This task will be carried out by use of classical multivariate

classification techniques as well as the rate-of-change information from the

thresholding process that is currently part of the PIF technique. This latter

method will be referred to as the interactive technique. Once the algorithmic

approach has been established, several questions arise as to its accuracy

and precision. The second task will deal with the question "How well does

the transformation
work?"

This task will be explored by examining the

accuracy of the resulting transformations, both after applying the automated

and the traditional interactive segmentation processes. A final question that

arises is "How well can the results of the transformations be
repeated?"

This

is one of the original reasons for this study since the requirement for

repeatable, user-independent results is a must for a technique such as

pseudoinvariant feature normalization. This question will be addressed by

an examination of the precision of the results of this normalization technique

using the compilation of data that has been collected since this technique

was first proven viable. The results of this study will then be compared to

those results obtained using the automated segmentation algorithm.

Another consideration that will be explored concerning the precision of the

transformation processes is the effectiveness of the technique in the

development of transformations for different scenes imaged through
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identical atmospheres. Again this will be done in such a manner so that the

automated and interactive techniques can be simultaneously compared.

The algorithmic development as well as the questions listed above will be

addressed in the following section and the outcome of this endeavor

discussed separately in the Results section.

2.1 Selection of Appropriate Imagery

The choice of imagery for this study was limited to that data which was

available at the Digital Image and Remote Sensing laboratory (DIRS).

Three temporally separated Landsat TM scenes were available with

acquisition dates 9/13/82 (TM-4), 6/22/84 (TM-5) and 5/24/85 (TM-5). The

first two were selected for study for several reasons. The first involved the

prevailing atmospheric conditions of the imagery. The 9/13/82 (TM-4)

imagery was acquired through a very hazy atmosphere which tended to

decrease the overall dynamic range for this scene. The 6/22/84 (TM-5) and

5/24/85 (TM-5) imagery, on the other hand, were taken through a much

clearer atmosphere resulting in greater image contrast.. A second

consideration was that previous work by Volchok7^ to validate this

normalization technique, also utilized the earlier of the two dates listed

above. If the current study were to utilize the database collected by Volchok,

as well as take advantage of the difference in atmospheric conditions, this

choice of imagery seemed the most suitable.

The imagery above is stored on 1600 bpi computer compatible
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magnetic tape at the DIRS laboratory. These tapes were originally obtained

from the Earth Resources Observation Satellite Center (EROS) in Sioux

Falls, South Dakota. This study utilized full resolution 512 x 512 pixel

images extracted from the original 5966 by 6968 pixel Landsat TM scenes.

These 512 x 512 pixel subsections were extracted from the magnetic tape

utilizing the computer program LT4Read, the code for which is given in

Appendix E. This code runs on the Digital Equipment Corporation (DEC)

VAX 8200 located at the DIRS laboratory.

Two mid-size urban areas located in upstate New York were

extracted from the scenes. These included downtown Rochester and

downtown Buffalo. Also extracted was a scene located 512 pixels to the

west of the downtown Rochester image. This scene is dominated by rural

farmland and contains no large urban development center. This scene was

chosen to assure identical atmospheric conditions to its neighboring scene.

The pertinent image data for the above scenes are summarized in Table 1 .

Also chosen for this study were two high resolution color infrared

(CIR) airphotos of downtown Buffalo taken on 7/6/70 and 6/7/72. These

photographs were obtained from the National High Altitude Photography

Program (NHAP) of the United States Geological Survey (USGS), Denver,

Colorado. These CIR transparencies were digitized using an Eikonix 78/99

Digitizer Camera System interfaced to a DEC MicroVAX GKS Workstation.

The digitized images were 512 x 512 pixels in dimension with each pixel

representing approximately a 10 meter IFOV. These images will be used in

a side study to determine how well the automated segmentation routine
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works in conjunction with the PIF normalization technique on higher

resolution photographic imagery. The 1972 image will be transformed to

look like the 1 970 image and will then be compared to the results obtained

with the previously used interactive method.

Table 1 Summary of pertinent TM image data used for this study

Date 9/13/82 6/22/84

Sensor TM-4 TM-5

Scene ID E-40059-15244 E-501 13-1 5260

Approximate

Acquisition Time 10:30 am (EST) 10:30 am (EST)
Landsat PathD-17 PathD-17

Scene Coordinates Row 30 Row 30

Sun Elevation Angle
44 59

Sun Azimuth Angle
141 122

Downtown Rochester Row 2401 Row 2350

Subscene Column 5925 Column 3200

(Segmented
coordinates)*

(Quadrant 3)

Rural Rochester Row 2450 Row 2390

Subscene Column 5400 Column 2727

(Segmented
coordinates)*

(Quadrant 3)

Downtown Buffalo Row 3900 Row 900

Subscene Column 2750 Column 2750

(Segmented
Coordinates)*

(Quadrant 3)

Row and Column denote the coordinates of the upper left corner of

the 512 x 512 pixel subscene
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2.2 Rate-of-Change Segmentation Algorithm

The development of the rate-of-change algorithm for automated

segmentation of pseudoinvariant features is a direct application of the theory

previously described. The automated segmentation algorithm is described

in the following. The actual computer code (BldPIF) and functional

description of its operation is included in Appendix C. The results of this

algorithm and a comparison of its accuracy and precision are addressed

separately in the Result section which follows.

The TM band-4 to band-3 (infrared to red) ratio image is computed

and displayed along with the TM band-7 image. The images are

thresholded in a systematic manner and combined using a logical .AND. to

form a three-dimensional surface similar to that displayed in Figure 14. This

surface represents the number of pixels included in the logical combination

image as a function of threshold values. The gradient of this three-

dimensional surface is computed to form a second surface similar to that of

Figure 16. The dependent variable of this surface is the gradient of the

previous surface as a function of threshold values. The next stage of this

process is the examination of the gradient surface to locate the position of

the appropriate threshold values (i.e. the area where the surface has a local

minimum in both directions). The final stage of this process is the

application of these two threshold values to the original TM band-4 to band-

3 ratio and TM band-7 images, and the subsequent logical combination of

these thresholded images using an .AND. operator to obtain the PIF mask.

The algorithm makes heavy use of the Gould/DeAnza IP8500 Array
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Processor and it is not suggested that this algorithm be applied serially in a

mainframe computer. A comparison of the computational time difference

can be found in Appendix C.

The first and second stages of the rate-of-change algorithm involve

the preparation of the TM band-4 to band-3 and TM band-7 images for

thresholding. First the TM band-4 and TM band-3 images are loaded into

computer memory. The two images are then divided pixel by pixel (band-4

pixel divided by band-3 pixel) in order to form a floating point quotient image

in RAM. The maximum quotient value is found and a scaling factor

determined by dividing 255 (the maximum digital count in an 8-bit system)

by this maximum quotient value. This scaling factor must be found to scale

the quotient image so that the full dynamic range of the image display is

filled. The quotient image is then multiplied pixel by pixel by this floating

point scaling factor to define the final band-4 to band-3 ratio image. This

image is then truncated to 8-bit data and displayed in a single image plane.

The TM band-7 image is loaded into a second image plane.

The third stage of the algorithm is systematic thresholding of the two

images prepared as above. Two image transformation tables (ITTs) are

developed to threshold the appropriate images. An ITT is a mapping

function which transforms a pixel gray level to a new value. The first ITT,

which will be applied to the TM band-4 to band-3 ratio image, is filled with a

one-to-one mapping function from 0 up to the current threshold value. After

this point the ITT is filled with values of 0 up to its upper limit (i.e. 255). The

second ITT, which is applied to the TM band-7 image, is filled with values of
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0 up to its current threshold value. After this point it is filled with a one-to-one

mapping function. The first ITT will set all digital count values (DC'S) above

the current threshold to 0 while not affecting all other DC values. The

second ITT will do just the opposite, that is, set all DC values below the

current threshold value to 0 while leaving all other DC values alone. These

ITTs are applied to the appropriate images as follows. The TM band-4 to

band-3 threshold is set to its current value and applied to the image. The TM

band-7 threshold is then set and applied to its image. The two images are

then logically combined using an .AND. operator and the result stored in a

third image plane. The histogram is then determined using the Digital Video

Processor (DVP) in the IP8500. The value for the zero histogram bin is then

subtracted from the value 5122= 262144 to obtain the number of pixels that

have a non-zero value in the logical combination image. This value

becomes part of the three-dimensional surface. The TM band-7 ratio is

stepped through its determined range at increments of 2 DC values before

the TM band-4 to band-3 threshold is again changed. This process is then

repeated until the TM band-4 to band-3 ratio threshold has been stepped

through its determined range. A flowchart of this process is depicted in

Figure 17.

The thresholding ranges are determined in the following manner.

Past interactive segmentation results demonstrated that the threshold values

always fall within the following interval

x z T ,
^x- 2.0a for the TM band-4 to band-3

value

ratio image

x + a Tva|ue * x - 2.5a for the TM band-7 image
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where x is the mean and a the standard deviation of the histogram of the TM

band-4 to band-3 ratio or the TM band-7 images and Tva|Ue is the respective

threshold value chosen using the interactive segmentation process. Figure

18 shows the location of

Threshold the TM

Band 4 to 3 Image

I

Threshold the TM

Band 7 Image

Histogram the Logical

Combination Image

Count the Number

of Non-Zero Pixels

2

512 -Zero Bin

Form 3-D Surface

of Number of Pixels

Figure 1 7 Flowchart of thresholding / 3-D surface building algorithm
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these threshold values. Based on this information, the thresholding ranges

are determined by taking the histogram of each of the images to be

thresholded, determining the histogram statistics, and calculating the

ranges according to the above formula.

TM Band 7 Threshold Range

r^-H

TM Band 4/3 Ratio Threshold Range

t-^i

x-2.5a x + a x-2.0a

Figure 18 Illustration of the specified thresholding range

The fourth stage of the segmentation algorithm is the computation of

the gradient of this surface as discussed in the Theoretical Background

section. These calculations are perform serially on the DEC VAX 8200 since

these surfaces are typically very small (i.e. on the order of a 30 by 30 matrix).

The fifth stage of the algorithm is the determination of the threshold

values locations on the gradient surface. As described in the Theoretical

Background section, the circled area in Figure 16 represents the area where

the appropriate threshold values fall. This has been determined by the

evaluation of previously chosen threshold values using the interactive

segmentation technique and then locating their position on their respective

gradient plots.
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Next, this position is found in an automated fashion. If one looks at

the plot in Figure 16, it is apparent that the tall fin-like structure in the surface

parallel to the TM band-4 to band-3 ratio threshold axis points directly at this

region, which happens to be a localized minimum at the bottom of this

structure. This was true for all of the images selected for this study. To

locate this spot in an automated fashion, the program searches along the

maximum value in the TM band-4 to band-3 threshold range parallel to the

TM band-7 threshold axis for a maximum gradient value. The TM band-7

threshold value at which this maximum occurs is the band-7 threshold value,

which always occurs at the peak of this fin-like structure. After this value is

found, the program then searches parallel to the TM band-4 to band-3

threshold axis from the top of this fin-like structure downward. When the

algorithm finds the first local minimum along this scan, it knows the position

of the appropriate band-4 to band-3 ratio threshold value. This scanning

procedure can be seen in Figure 19.

Threshold 7

Threshold 4/3

Figure 1 9 Illustration of the pattern used in the thresholding procedure
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The sixth and final stage of the segmentation algorithm is the

formation of the PIF mask image. The previously determined threshold

values are used to form the two ITTs as described in stage three. These

ITT's are applied to the appropriate images, namely the original TM band-4

to band-3 ratio image and the TM band-7 image. The resulting thresholded

images are logically combined using an .AND. operator and the resulting

image is transformed to a binary image (i.e. all pixels with non-zero values

are assigned a DC value of 255 while all pixels with a DC value of 0 are left

alone). The result is the PIF mask where all pixels that are high (i.e. DC

value of 255) represent pseudoinvariant features, while all other pixels

represent non-PIF pixels.

The accuracy and precision of this algorithm is the focus of the

following sections. Before these can be examined, it is necessary to

complete the PIF normalization process since all subsequent analysis will

be based on the results of this normalization procedure.

2.3 PIF Transform Determination

The development of the PIF transformations has previously been

described in the Theoretical Background section. Once determined, these

transformations are applied to one set of images to make them appear as if

taken under identical imaging conditions as another image. For this

discussion the image set that is to be transformed will be referred to as the
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Day-1 image. The image set that serves as a reference for the

transformation will be called the Day-2 image. A TM image set consists of

TM bands 1 ,2,3,4,5 and 7. The thermal infrared band (TM band-6) was

excluded since the radiance reaching the sensor in this wavelength region

(10.2 to 12.4u.rn) is not a direct function of the reflectivity for an object; an

essential caveat for this procedure. It is important to note that not all six of

the bands listed above are needed for the transformation process; only an

infrared and a red band are actually required. This will be demonstrated

when the high resolution CIR airphoto image is PIF-transformed.

The determination of the PIF transform has two distinct phases: the

determination of the spectral (digital) distribution of pseudoinvariant features

and the derivation of the transforms. First, the PIF mask is loaded into a

single image plane of the array processor. A single band of the TM data set

is loaded into a second image plane. A third image is created by performing

a logical .AND. of the single band image and the PIF mask. The resulting

image contains only pixels that represent pseudoinvariant features. These

pixels possess the same digital count values that they had in the original

single band image. A histogram is taken of this resulting PIF image with the

DVP in the array processor. The resulting histogram has a zero bin that is

artificially enlarged since everything that is not a PIF in the single band

image has been assigned a digital count of 0. This histogram value at zero

is reassigned to 0 and the histogram statistics are calculated as follows:
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where x is the mean and a is the standard deviation of the histogram, n is the

number of non-zero pixels in the PIF image, and DCj is the
ith pixel's digital

count value. The histogram statistics are calculated for the associated PIF

images in each band image for both days. These statistical values

determine the PIF transforms for each band of the Day-1 image set.

For each band in both image sets the linear histogram

transformations are calculated as follows. The transformation is of the form

DC2 = mt DC1 + bt

where, as stated earlier, D^ and DC2 are the corresponding digital count

values in the Day 1 and Day 2 band image, respectively, and mt and bt are

the slope and intercept term of the corresponding linear histogram

transformation. These are defined as follows:
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The linear histogram transform coefficients are determined for each image

band. The transformations are applied to the Day-1 images by forming a

linear ITT with the form described above and applying these ITTs to the

appropriate images. The computer code that accomplishes the above

("Normalize") is described in Appendix D.

The next major phase of this study is to examine the questions "How

good is the accuracy of the resulting PIF
transforms?"

and "How precise are

the transforms that are derived?".
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2.4 Accuracy of the PIF Transformations

The accuracy of the PIF transformations developed during the

normalization process will be evaluated by choosing several identical

targets in the image sets of the two days and evaluating how closely the

transformed Day-1 targets match the corresponding Day-2 targets. This

evaluation, will be referred to as a control point analysis, and is conducted in

the following manner. Several sets of control points are collected from each

of the images according to several criteria. The analyst will look for
man-

made objects that ideally occupy several pixels in area, i.e. large parking

lots, warehouse rooftops, etc. These objects should span as much of the

dynamic range of the image as possible such that the error determined is

representative of the normalization process over the full dynamic range of

PIF pixels. Digital count values are then obtained for these identical objects

in each band of the Day-2 and transformed Day-1 images. The raw error

associated with the normalization can be expressed as

*km

,1/2

n

X(DCjk-DCjk')J

ii

where e^ is the raw r.m.s. error in the normalization associated with the kth

band, DCik is the digital count value of the
ith point in the kth band of the Day

2 image,
DCik"

is the transformed digital count value of the
ith point in the kth

band of the Day 1 image, and n is the total number of control point pairs

chosen from the two images.
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Choosing in-scene targets as a means for a control point analysis

leads to several problems in the evaluation of the error in the normalization

process. First, the reflectance of the element could change during the

temporal separation between the two images. Second, the analyst may not

choose exactly the same portion of the target on the two different dates.

Thirdly, the targets chosen may be too small and may thus cause mixed

pixel effects, as happens when the ground spot size of the sensor

encompasses more than the target of interest. The brightness value then

becomes a function of the brightness of surrounding objects as well as the

target brightness. These effects will be referred to as sampling errors and

the magnitude will be assessed to estimate their magnitude. Using the

same control points involved in the determination of the raw error above, a

linear regression is performed between the digital counts of the targets in the

Day-1 image and the digital counts of the corresponding targets in the Day-2

image. This regression is of the form:

DCik - mk DCik + bk

where DCik and
DCik'

are as described above, and mk and bk are the slope

and intercept terms from the linear regression for the
kth band. Under the

assumption that true PIF pixels in the two day's images are linearly related,

the residual error in this regression analysis is the sample error described

above. The distribution of this residual error should be random about the

regression line and is of the form:
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where DCjk is the digital count for the
ith target on the Day-2 image, DCik is

the predicted digital count value for the Day-2 image, and n is as before the

number of targets studied. Considering this assessment of the magnitude of

the error due to sampling and knowing the estimate of the raw error

determined earlier, the error due exclusively to the PIF normalization can be

defined:

-r

2 2 \1/2

ePiF-ie "esampJ

where eP|F is the error in digital count after the PIF normalization, e is the raw

error from the control point analysis immediately after the transformation and

esamp is tne
error due t0 tne sampling errors discussed previously.

All the errors are expressed in units of digital count values. This is

only a relative means of evaluating the error resulting
from a normalization

process. In order to establish an absolute scale on which to express error,

the above digital count values must be transformed to some other unit which

is constant between images. Such a unit is the reflectance of the ground

objects. In order to transform an error expressed in digital count values to

reflectance units, the analyst must make an estimate
as to the reflectivity of

the control point targets as they are chosen. The digital counts
of the Day-2
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image are then regressed against their corresponding estimated reflectance

values (best-guess estimates of reflectance are used based on standard

reflectance curves), The slope of this regression line is an expression of

digital counts per reflectance unit. The errors listed above are transformed

to errors in reflectance units by the following expression:

edc

where er is the error expressed in units of reflectivity, eDC is the error

expressed in units of digital counts, and ak is the slope of the regression line

of digital count as a function of reflectance.

The methods described above were used to describe the errors

associated with the PIF normalizations of the Rochester and Buffalo Landsat

TM images. This analysis was not used on the rural Rochester scene since

too few large PIF features could be located to perform a justifiable study, but

since this scene was taken under
"identical"

imaging conditions as the urban

Rochester scene, direct comparison of the two sets of transformations will

indicate the relative accuracy of these rural transformations. The digital

count error was computed for all image bands that were transformed,

however, the reflectance unit conversion was performed only on TM bands 1

through 4. The conversion was performed only on these bands since these

were the only bands where the reflectance of the
targets could be accurately

estimated. Errors typically encountered using this method for the normalized

images were of the order of one to two reflectance units in the visible and
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two to three percent reflectance in the near IR wavelength regions.

This section has described a method for estimating the effectiveness

of a normalization procedure that is not unique to the PIF normalization

process but which can be used with any normalization technique. The

results of this analysis on the current study for the normalizations utilizing the

automated and interactive segmentation processes appear in the Results

section. The following section will describe the methods used to establish

the precision of the PIF normalization process utilizing both the automated

and interactive segmentation processes.

2.5 Precision of the Normalization Process

A problem that has plagued the PIF normalization technique prior to

this study has been the lack of uniformity in accuracy achieved by different

investigators. As was earlier alluded, each user of this technique tended to

form a different PIF mask . This is the only point at which difference in the

developed transforms could be introduced. This validates the requirement

of a consistent segmentation technique. It is clear that the use of the

automated segmentation algorithm will yield normalization results with the

same accuracy each time it is run on an image set. The phenomenon that

will be examined here is if the degree of accuracy achieved on one set of

images is consistent with the degree of accuracy on other image
sets.

There are two directions from which this question will be approached.
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The first is to take the results of the control point analysis on the three heavy

urban areas and compared their resulting accuracies in each image band.

No rigorous statistical analysis can be conducted on this data set due to the

small sample size, however, the apparent consistency, or lack of it, will be

discussed. The second approach will test two aspects concerning the

precision of the PIF technique by comparing the results of the rural

Rochester normalization with the results obtained from the adjacent heavily

urban scene. Since these images are assumed to be taken through the

same atmosphere, the resulting transforms should be identical. The results

of this comparison will further substantiate the precision (or lack of it) for the

PIF normalization technique as well as test the robustness of the technique

to the degree of urbanization in the images to be normalized.

The identity of two transforms can be tested using the following

criterion. In Figure 20, let the transform labeled T^ represent the transform

for the urban Rochester imagery and let T2 be the transform for the rural

Rochester imagery. The error at any point between these two transforms Ej

can be determined as 1 T18
- T2i | where Tti and T2i are the values of the

respective transforms for the ith digital count value. The overall error

between the two transforms can be computed as

e =

-1/2

255

,efn,

i=1

3?

n

where e is the overall error between the two transforms, Ej are the individual
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errors weighted by the number of pixels nj in the
ith histogram bin of the Day-

1 image, and n is the total number of pixels in the histogram. Using the

above approach, the overall error associated with applying one transform or

another to an entire scene can be computed on a band-by-band basis.

T1 [Day 2]

T2[Day2]

Number of Pixels

Transform T,
.. Error

ie,]

Day 2 Histogram

Figure 20 Error exhibited between two linear histogram transformations
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All the analyses described above were conducted on the results of

normalizations carried out using the automated as well as the interactive

segmentation procedures. This is a limited study of the precision of the

normalizations that result from this technique, but it should give the reader

an idea of what can be expected when this technique is further utilized. For

this study, errors of less than 10% of the total dynamic range of PIF digital

counts were typical.

2.6 Application of Segmentation Algorithm to High Resolution

Imagery

The above analysis has been conducted using Landsat TM imagery

as data sets for the segmentation and normalization algorithms, in this

section, a further test of the robustness of both algorithms will be considered

by testing their effectiveness on high-resolution airphoto imagery. The

imagery used in this study are the two NHAP CIR airphotos described

previously (refer to Appendix I for possible problems encountered when

digitizing photographic imagery). The segmentation process will be carried

out identically to that described for the TM imagery.The investigator will be

required to replace the TM band-4 to band-3 ratio image with the infrared to

red ratio obtained by dividing the red and green image bands of the CIR

transparency. The TM band-7 image will be replaced by the infrared

information contained in the red image band. The normalization process are

carried out in an identical fashion to that described above. The results can
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then be evaluated by conducting a control point analysis choosing the data

set from the CIR airphoto imagery. The results obtain from this analysis will

be compared to those results from the above control point analyses.
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3.0 Results

The results obtained from the pseudoinvariant feature normalization

technique are largely dependent on the quality of the initial segmentation of

PIF's from the original imagery. To date, this process has been carried out in

a user interactive fashion. Immediate problems arising from such a process

are user-to-user inconsistency and familiarity effects. The familiarity of the

user with the study area aids in the segmentation process greatly.

Conversely, if the area under study is foreign to the analyst, the resulting

segmentation may be less reliable. This study aimed to eliminate these

inconsistencies from the segmentation process. The method developed will

automate this procedure, thus eliminating user-to-user inconsistency as well

as removing the effect of scene familiarity.

The success in segmenting the imagery in this study is a difficult

subject to quantify out of the context of the normalization procedure.

Therefore, the quality of the segmentation will be evaluated in a comparative

fashion. Segmentation using the developed automated algorithm will be

carried out in parallel with segmentation utilizing the interactive thresholding

process. The complete normalization procedure will be performed using

both the above segmentation results. Side-by-side comparisons can then

easily be made.
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3.1 Segmentation of PIF Features

Segmentation of pseudoinvariant features from the imagery in this

study was performed using the interactive thresholding process described in

Section 1.3.1 as well as the automated segmentation algorithm defined in

Section 2.3. The aim of any automation process is to mimic the results of the

manual process previously carried out. Table 2 is a summary of the

threshold values obtained using both the interactive and automated

segmentation algorithms.

The first notable observation from the data in Table 2 is that the

automated segmentation algorithm consistently produced threshold values

that were more conservative than those chosen by the analyst when using

the interactive process. By conservative, it is meant that the thresholds

chosen for the TM band-4 to band-3 ratio were consistently lower than those

chosen using the interactive process (i.e. more high brightness count pixels

were eliminated using the automated process) and conversely the threshold

values chosen for the TM band-7 images were consistently higher than

those from the interactive process (i.e. more low brightness count pixels

were set to zero). This characteristic of the automated segmentation

algorithm causes the resulting PIF mask to contain fewer pixels, thus

indicating that the number of mixed pixels composed of PIF and non-PIF

scene elements will be lower than the number remaining after the interactive

process. This conservative aspect also tends to eliminate useful data from

the PIF mask. Due to the decrease in the number of pixels remaining in the

PIF mask, urban features that may have been kept when using the
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interactive process are eliminated. This can hurt the resulting normalization

since the dynamic range of PIF brightness values is decreased, thus leaving

more chance for error to develop in the resulting transforms.

A comparison of the PIF masks developed using the interactive and

automated segmentation algorithms is shown in Figures 25 through 28 for

the Landsat TM imagery of urban Rochester, urban Buffalo and rural

Rochester and the NHAP high-resolution airphoto imagery of Buffalo. A

monochrome representation of the original images on which each mask is

based on are shown in Figures 21 through 24. Figures 29 through 32

depict the three-dimensional surfaces representing the number of pixels as

a function of threshold values as well as the corresponding gradient

surfaces used to determine the appropriate threshold values for each of the

PIF masks shown. A summary of the histogram statistics used to determine

the thresholding ranges as described in Section 2.2 for these plots is

contained in Table 3 for the TM and the high-resolution airphoto imagery.

To compare the quality of segmentation obtained from the automated

algorithm compared to the interactive method, the respective PIF masks

were used to complete the PIF transformation process. The resulting

accuracy and precision of these transformations were then used as a metric

for the quality of the
segmentation process. As considered here, accuracy is

a measure of how well the normalization worked, i.e. the magnitude of the

control point errors. Precision makes reference to the robustness of the

technique, i.e. whether or not the
technique maintains the same level of

accuracy for all image
types.
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1982 Image

1984 Image

Figure 21 Original 1982 and 1984 urban Rochester Image
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1982 Image

1984 Image

Figure 22 Original 1982 and 1984 urban Buffalo Image
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1982 Image

i W ** - *
*

.

I 1* *

1984 Image

Figure 23 Original 1982 and 1984 Rural Rochester Image
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1970 Image

1972 Image

Figure 24 Original 1970 and 1972 high-resolution airphoto

image
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i.r*

1982

1982

(a)

(b)

1984

i^-tm

j:-*%iS8

1984

Figure 25 PIF masks created for the 1 982 and 1 984 urban

Rochester images using (a) the automated and (b) the

interactive segmentation processes
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1982

(a)

1982

(b)

1984

1984

Figure 26 PIF masks created for the 1 982 and 1 984 urban Buffalo

images using (a) the automated and (b) the interactive

segmentation processes
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1982

1982

(a)

1984

1984

(b)

Figure 27 PIF masks created for the 1 982 and 1 984 rural Rochester

images using (a) the automated and (b) the interactive

segmentation processes
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1970

(a)

lit i

1970

(b)

%J'

: .

rr

6

"

j
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:iiW""^ i

JlV'J
'
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u .

^ ->
)-

.

EMC. *
3lhv *

1972

1972

Figure 28 PIF masks created for the 1 970 and 1 972 NHAP airphoto

images of Buffalo using (a) the automated and (b) the

interactive segmentation processes
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1982

(a)

1982

(b)

1984

1984

Figure 29 Three-dimensional surfaces representing (a) the number

of pixels as a function of threshold values and (b) the

gradient of the surface in (a) for the 1982 and 1984 urban

Rochester images
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1982 1984

1982

(b)

1984

Figure 30 Three-dimensional surfaces representing (a) the number

of pixels as a function of threshold values and (b) the

gradient of the surface in (a) for the 1982 and 1984 urban

Buffalo images
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1984

1982

(b)

1984

Figure 31 Three-dimensional surfaces representing (a) the number

of pixels as a function of threshold values and (b) the

gradient of the surface in (a) for the 1982 and 1984 rural

Rochester images
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1970 1972

(a)

1970

(b)

1972

Figure 32 Three-dimensional surfaces representing (a) the number

of pixels as a function of threshold values and (b) the

gradient of the surface in (a) for the 1970 and 1972 NHAP

airphoto images of Buffalo
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3.2 Development of PIF Transformations

The PIF masks developed in the previous section using the

automated and interactive segmentation procedures were used to calculate

statistics of the PIF histogram and subsequent PIF transformations for each

of the band images of the urban Rochester, urban Buffalo, and rural

Rochester TM data sets as well as the NHAP airphoto data of Buffalo. The

PIF histogram statistics and the developed linear histogram transformations

are summarized in Tables 4 through 7 using both of the segmentation

procedures. Figure 33 compares the linear transforms developed using the

automated and interactive segmentation techniques for the urban Rochester

TM imagery. As can be seen from these plots and the data summarized in

Tables 4 through 7, the transformations are nearly identical over the range

of digital count values defined by the dynamic range of the PIF pixels. It

should be noted that the errors between the transforms developed using

these two methods tend to be slightly higher at the longer wavelengths (i.e.

in the far infrared band (TM band-5 and band-7 ) ). The reason for this

increase in error is the effect of mixed pixels. Mixed pixels, especially those

containing PIF and vegetation scene elements, tend to increase the error

between these transforms more in longer wavelength regions since the

reflectance of vegetation is so high there. Since there is a mix of high and

low reflectance objects, the contribution of these pixels will erroneously

affect the PIF histogram statistics more in these wavelengths than in the

shorter bandpass regions where the reflectances of these scene elements

are more closely matched. Aside from this observation, there is high

equivalence between the developed transforms using the individual
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segmentation approaches.

Figures 34 and 35 show the urban Rochester data set and the NHAP

data set before and after the normalization procedure. The TM data of

Rochester is a color infrared composite with the infrared image information

displayed in the red display channel, the red information in the green

channel, and the green image information in the blue display channel. The

NHAP airphoto imagery is also a CIR image digitized from an original CIR

transparency.
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100.0 200.0 250.0 300.0

Day 1 DC

Figure 33 The PIF transformations developed utilizing the

automated and interactive segmentation results
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(a)

(c)

Figure 34 CIR composite TM image representing (a) the original

1982 urban Rochester image, (b) the 1984 urban

Rochester image and (c) the transformed 1 982 urban

Rochester image utilizing the segmentation result from the

automated algorithm
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(c)

Figure 35 CIR NHAP airphoto representing (a) the original 1972

Buffalo image, (b) the 1970 Buffalo image and (c) the

transformed 1972 Buffalo image utilizing the

segmentation result from the automated algorithm
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3.3 Evaluation of Transforms Using Control Point Analysis

To evaluate the effectiveness of the resulting PIF transformation,

identical targets were chosen in both the transformed Day-1 imagery and the

original Day-2 imagery. A perfect normalization process would cause these

scene elements to have identical digital count values provided no physical

change in the reflectance of the chosen targets had occurred between

image acquisition dates.

The control points were chosen on the basis of the criteria described

in Section 2.4. Targets chosen were large man-made objects occupying as

wide a dynamic reflectance range as possible. The coordinates of the

chosen targets are summarized in Tables 8 through 10 and are depicted in

the accompanying Figures 36 through 38.

The digital count values were collected from the Day-1 imagery, the

Day-2 imagery, and the transformed Day-2 imagery using both the

automated and interactive segmentation algorithms. The digital count

values are summarized in Tables F-1 through F-3 in Appendix F for the

control point analysis of the two urban Landsat TM scenes as well as the

high-resolution NHAP airphoto data.

Tables 11 through 13 summarize the errors in the PIF transformations

that
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Figure 36 The control points summarized in Table 8 are denoted by
+'s on the 1984 urban Rochester image
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Figure 37 The control points summarized in Table 9 are denoted by

+'s on the 1984 urban Buffalo image
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Figure 38 The control points summarized in Table 10 are denoted

by
+'s on the 1970 NHAP airphoto image of Buffalo
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were determined from these control point analyses. The raw r.m.s. error was

computed as described in Section 2.5 for the control points chosen before

and after the raw transformation. In each scene studied, it is seen that this

raw transformation resulted is a dramatic decrease in the difference between

the control point digital count values. As described earlier, this error

involved not only the error due to the PIF transformation, but also any error

due to incorrect sampling methods by the analyst and the nature of the

imagery. In order to remove this sampling error, described in Section 2.5,

the transformed Day-1 digital count values were regressed against the Day-

2 digital count values for the control points chosen. Under the assumptions

for PIF transformation validity, these digital count values should be related

by a direct linear function. Any residual error in this regression analysis

would be a result of non-PIF pixel influence on this control point data. Table

14 is a summary of this sampling error for the urban Rochester, urban

Buffalo TM scenes as well as the NHAP scene of Buffalo. The errors were

computed for both the automated and interactive segmentation results. This

sampling error should not be a function of the segmentation procedure used

and the data in Table 14 show this to be the case. The differences in these

sampling errors are very small in all cases shown, with none exceeding a

difference greater than 5.5%. These errors were removed from the error

after the raw transformation and are summarized in Tables 11 through 13.

As stated earlier, the errors have been expressed in units of digital

counts. These errors have only relative meaning in the context of the

analysis of an individual scene and must be expressed on a common scale

independent of the image. Reflectance is such a measure. The digital count

values

111
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could be expressed in terms of reflectance units of scene elements in a

ground- based reflectance space. To do this, reflectance values were

estimated for several scene elements and the respective digital counts

recorded for each of the Day-2 images in each of the scenes studied.

Targets of varying brightness were chosen so that a reflectance range

covering as much of the dynamic range of the scene as possible could be

obtained. Tables F-4 through F-6 in Appendix F summarize the reflectance

and digital count data selected from the urban Rochester and urban Buffalo

TM image sets as well as from the high-resolution airphoto data of Buffalo.

Also included in these tables are the results when the reflectivity was

regressed as a function of digital count value. This analysis was carried out

only on the visible and near-infrared spectral regions of the data since these

are the only regions where the reflectance values could be estimated with

any degree of accuracy. Along with the slope and intercept values for these

regressions, the
r2 value (i.e. the coefficient of correlation) was also

computed. In all cases this value exceeded 0.92 which indicates that almost

all of the variability was accounted for in the data. The slope terms, cck, are

summarized in Table 15 for each band of each of the scenes described.

These values were used to convert the errors in terms of digital count values

for the visible and near-infrared bands of the data described in Tables 1 1

through 13.

Finally, in looking at the data summarized in Tables 11 through 13,

the error in digital count after the sampling error was removed is less that 5%

of the total dynamic range in all cases of the Day-2 imagery in the visible

and near-infrared spectral regions (except for the IR airphoto data), and less

than 7.5% of this range in the far infrared regions. As described earlier, this

increase in error is expected to occur at longer wavelengths . Table 16

summarizes the error due
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to the PIF transformation expressed in reflectance units for the two urban TM

scenes studied. As seen from this table, the error is less than 2% reflectance

in the visible wavelength regions and less than 3% in the near-infrared. It

should also be noted that the errors derived from the results of the

automated segmentation technique versus the interactive technique are

approximately equal. There is no clear-cut difference that can be

established from this limited study.

3.4 Evaluation of Robustness Using Rural Image Data

To test the dependency of the automated segmentation technique on

the number of urban features located in a scene, a TM scene of rural

Rochester was chosen for PIF normalization. The scene was located 512

pixels to the west of the urban Rochester scene to ensure that the imaging

conditions, i.e. the atmospheric homogeneity, the sun angle and viewing

geometry, matched as identically as possible. With this assumption, the

transforms developed separately for these two scenes should also be

identical.

The transforms described in Tables 4 and 6 are shown graphically in

Figures 39 through 43 for both the automated and interactive segmentation

normalization results. The r.m.s. errors between these transforms weighted

by the Day-1 histograms are summarized in Table 17.
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Figure 39 PIF transformations for the urban and rural Rochester

imagery using (a) the automated segmentation and (b) the

interactive segmentation algorithm (TM Band-1)
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Figure 40 PIF transformations for the urban and rural Rochester

imagery using (a) the automated segmentation and (b) the

interactive segmentation algorithm (TM Band-3)
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Figure 41 PIF transformations for the urban and rural Rochester

imagery using (a) the automated segmentation and (b) the

interactive segmentation algorithm (TM Band-4)
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Figure 42 PIF transformations for the urban and rural Rochester

imagery using (a) the automated segmentation and (b) the

interactive segmentation algorithm (TM Band-5)
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Figure 43 PIF transformations for the urban and rural Rochester

imagery using (a) the automated segmentation and (b) the

interactive segmentation algorithm (TM Band-7)
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As seen from the data in Table 1 7, the errors between the urban and

rural transforms are typically higher when the automated algorithm was used

for segmentation than when the interactive technique was utilized. The

reason for this occurrence is that the analyst serves as an invaluable tool

deciding what is and what is not an urban feature in a rurally dominated

scene. As seen in the summary of the numbers of pixels that were classified

as PIF pixels in these images using the two segmentation techniques, the

numbers are indeed small when compared to the number contained in a

512 x 512 pixel digital image (approximately 3%). When the number of PIF

pixels becomes so small, any error due to mixed pixel effects will start to

have a more dramatic effect, especially in a rural area. It is interesting to

note that the number of pixels classified as PIF's is larger for the automated

segmentation algorithm than for the interactive technique. This had not

been the case with any of the previous analyses where the automated

technique had always proven more conservative.

In reviewing the data in Table 1 7, it should be noted that the errors

between the two transforms in the interactive segmentation results are less

than 8.5% of the Day-2 PIF brightness range, with the highest error occurring

in the near-infrared wavelength region. The errors between the two

transforms in the automated segmentation technique results are less than

16%, with the highest error again in the near-infrared region for this same

brightness range. The magnitude in percentage of these errors are

compared to the dynamic range of the PIF pixels only, and will be lower

when applied to the entire scene.
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These errors arise from primarily two sources. The first is the

breakdown of the assumption of atmospheric homogeneity of the urban and

rural Rochester images. If the atmospheres of these two images are not

exactly the same, then the transforms cannot be expected to be identical.

The second source of error between these two transforms is the

effectiveness of the automated segmentation algorithm in a primarily rural

scene. As stated earlier, the automated algorithm is slightly more liberal

than the interactive technique in the case of these images. This liberal

thresholding causes too many mixed pixels to remain in the PIF mask, thus

the quality of the resulting normalization will decrease, especially in the

longer wavelength regions.

The results obtained in this study indicate that the overall accuracy of

the PIF transformations is unaffected by the choice of the automated or

interactive segmentation algorithms. The r.m.s. errors encountered during

the control point analysis were approximately one or two reflectance units

regardless of which segmentation method was used. The robustness of the

automated algorithm held up well for urban imagery but suffered some loss

of accuracy when applied to rural imagery.

The technique failed when applied to imagery with significant cloud

cover. The presence of clouds changes the shape of the three-dimensional

surface since the rate-of-change of the number of pixels present in the PIF

mask did not decline enough at any point to show a plateau region in the

plot. The technique developed here was not derived to yield the optimal

segmentation results but rather to take advantage of the convenient

empirical observations made from the original interactive method.
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4.0 Conclusions and Recommendations

A technique has been developed to allow automated segmentation of

pseudoinvariant features from Landsat TM imagery and NHAP high-

resolution color infrared airphoto imagery. The technique has been shown

to work on imagery that is primarily urban as well as imagery that is

dominated by rural scene elements.

The automated technique was tested side by side with the previously

developed interactive segmentation algorithm by comparing the results of

the normalizations conducted using each of the segmented PIF masks as

input to the normalization scheme. Comparison of the digital count values of

selected in-scene control points have shown the automated and interactive

segmentation techniques to be equivalent, producing normalization errors of

less than 7.5% of the dynamic range of PIF brightnesses in the image. Both

techniques also produced results with errors in units of reflectivity of less

than 2% in the visible wavelength regions and less than 3% in the near

infrared.

The techniques developed in this study are expected to work equally

well on any imagery of a multispectral nature and of higher geometric

resolution than the Landsat Thematic Mapper sensor. The segmentation

technique was shown to work well on the NHAP high-resolution airphoto

imagery with a ground resolution of approximately 10 meters. The resulting

normalization exhibited very high error in the infrared wavelength region (on

the order of 9%) while producing excellent results in the visible bands (less

125



than 1% reflectance error). This weakness in the normalization is most likely

the result of a breakdown in the assumption of linearity between reflectance

and brightness count for digitized photographic data. More work needs to

be done to correct this non-linearity of the response function of the

photographic material.

This automated segmentation algorithm provides a non-interactive

temporal scene-to-scene radiometric normalization technique that is an

invaluable tool for such remote-sensing applications as temporal change

detection, development of time-independent land-use classification

algorithms, and any number of time-dependent ecological studies.

This study also provided a technique-independent method for

quantitatively evaluating the success of any normalization process. The

control-point analysis described with the conversion to an estimated

reflectance space provides a metric on which to measure the success of any

image normalization technique on any image medium.

A primary weakness encountered in this study was the failure of both

the interactive and the automated segmentation algorithms to work on

imagery containing significant cloud cover. The spectral distribution of these

image features causes confusion to occur when trying to isolate

pseudoinvariant features. Techniques need to be developed that can either

distinguish between clouds and urban features by spectral characteristics or

to preprocess the imagery to remove the cloud cover.
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The automated segmentation and PIF normalization techniques have

been tested exclusively on imagery of upstate New York. A further test of the

robustness of the segmentation algorithm as well as the normalization

technique needs to be conducted by applying these techniques to different

geographic locations. Urban features in other geographic locations will tend

to have different spectral signatures due to the different building materials. It

needs to be established whether or not this has a significant effect on the

segmentation algorithm.

The algorithm developed was not intended to determine
the-

optimal

PIF segmentation. It was designed to take advantage of the convenient

segmentation technique developed for the original proof-of-concept study.

Future study should be conducted to examine the quality of the

segmentation resulting from the automated routine. A quality metric needs

to be established as a measure of "goodness/poorness of
fit"

of

segmentation results. As mentioned earlier, the histogram equalization

approach to the development of the PIF transforms can be used as a quick

check for the quality of the original segmentation when compared to the

linear histogram transforms. Future work with this quality criterion may lead

to a more rigorous segmentation quality metric to fine-tune the

segmentation.

Due to the conservative number of pixels contained in the PIF masks

formed using the automated segmentation technique, a question arises

concerning the quality of the transformations derived. There is not only a

different number of pixels in the PIF masks for the two images, but these
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pixels often represent different ground features. The next step in the

development of a segmentation technique would be to use information from

both images to form a single PIF mask that contains the same number and

location of PIF pixels which can be used to segment the two day's registered

imagery. The resulting normalization would then be based on identical

gray-level distributions from the two images.
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Appendix A

PrinComp - Will find the principal component transforms

for any n-band image. the images are expected

to be 512 x 512 in size and 8 bits deep.

The PC's are scaled by the scalar determined

to maximize the dynamic range of pc 1 .

Required Subroutines: PixIn
PixOut

ImgMean

Variance

Required 1MSL Subroutines: E1GRS

Written by Carl Salvaggio August 1986

Character'1 Bell

Integer*^ N. M. MaxBnd. MinBnd. SmpInc DIM. 0

Parameter ( N - 512. M - 512. SmpInc - 5 )

Parameter ( MaxBnd - 10 . MinBnd - 2 )

Parameter ( Bell - Char (7) )
....

Parameter ( DIM - ( MaxBnd < MaxBnd + 1 ) ) / 2 )

Integer'2 ImageC N. M ). ImageAC N. M ). ImageBC N, M )

Integer*** JobN, IErr. IZ
.

Real'm Mean( MaxBnd ). Var( MaxBnd. MaxBnd )

Real'U ValuesC MaxBnd ). VectorsC MaxBnd. MaxBnd )

Real*** AC DIM ). DC MaxBnd ). Z( MaxBnd. MaxBnd )

Real*** TotVar. Scale

Character*80 FilNamC MaxBnd >. PCNamC MaxBnd )

Character*80 InName. OutName. Default

Character'1 Ans

Integer"^ Context. Status. Lib$Find_File

Open ( 9. Status -
'New'

)

Obtain image information

Call LibSErase_Page(1.1)

Write (6.*)

I Write (6.2)
, .,

2 Format CS'.'How many image bands do you have ? )

Read (5.*.End-900) NumBnd

If ( NumBnd .gt. MaxBnd .or. NumBnd .lt. MinBnd ) Then

Write (6.*) Bell

Write (6.800)

GoTo l

GoTo 3

End If

Read in binary image from disk

A-2



Appendix A

3 Write (6.*)

Default - 'Pics: ICNS902**.Landsat)*.
Pix'

Do 6 K - 1. NumBnd. 1
*t Write (6.5) K

5 Format ('$', 'Enter filename for band'.i3.': ')
Read (5, '(A)'.End-900) FilNamC K )
InName - FilNamC K )

Status Lib$Find_FileC InName. OutName.
Context. Default, OutName )

Call Lib$Find_File_End( Context )

If ( Status .eq. 65537 ) Then
FilNamC K )'' OutName

Else
Write (6.*)

'"

ERROR
***

File Not
Found'

GoTo **

End If
6 Continue

Write (6.*)

Write (6-*) 'Please Stand By

Do 30 K - 1. NumBnd. 1

Call PixIn( Image. FilNam( K ) ) ! Read in Image

Calculate the mean and variance for the individual bands

Call ImgMean( Image. SmpInc Mean( K ) )

Call Variance! Image. Mean(K). Image. MeanCK).

SmpInc Var(K.K) )

30 Continue

Fill in the Rest of the Covariance Matrix

Do 70 L - 1. NumBnd-1. 1

Call PixIn( ImageA. FilNamC L ) )

Do 60 K - L+l. NumBnd. 1
Call PixIn( ImageB. FilNamC K ) )

Call Variance! ImageA. Mean(L). ImageB. Mean(K).

SmpInc Var( L. K ) >

60 Continue

70 Continue

Do 90 I - 1. NumBnd. 1
Do 80 J - 1. NumBnd. 1

Var( J.I ) - Var( I.J )

80 Continue

90 Continue

Display The Image Statistics

Write (9.*)

Write (9.*) 'Image
Names'

Write (9.*)
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Do 100 I - 1. NumBnd. 1
Write (9.*) FilNamC I )

100 Continue

Write (9.*)
Write (9.*) 'Mean

Vector-

Write (9.*)

Write (9.*) ( MeanC I ). I - 1. NumBnd. 1 )

Write (9.*)

Write (9.*) 'Variance-Covariance
Matrix'

Write (9.*)

Do 130 I - 1. NumBnd. 1
Write (9,127) ( VarC I.J ). J - 1. NumBnd. 1 )

127 Format ( <NumBnd>f10.3 )
130 Continue

Put Covariance Matrix In A Systematic Format For EIGRS

ISub - 0
Do 150 I - 1. NumBnd, 1

Do 1**0 J - 1. I. 1
ISub - ISub + 1
AC ISub ) - Var( I.J )

1<*0 Continue
150 Continue

Calculate the Eigenvalues and Eigenvectors of Covariance Matrix

JobN - 1 ! JobN - 0 computes only eigenvalues

I JobN - 1 computes eigenvalues and eigenvectors

IZ MaxBnd
WK - MaxBnd + 1

Call EIGRSC A. NumBnd. JobN. D. Z. IZ. WK. IErr )

Do 151 I - 1. NumBnd. 1
Values( I ) - D( I )

151 Continue

Do 153 I - 1. NumBnd. 1
Do 152 J - 1. NumBnd. 1

Vectors( I.J ) - Z( I.J )

152 Continue

153 Continue

Flip the Values and Vectors to Descending Order

Do 155 I - 1. NumBnd/2. 1
T - Values( I )

Values( 1 ) - Values( NumBnd+1-1 ) ! Flip the values

Values( NumBnd+1-I ) - T

155 Continue
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160

165

Do 165 I - 1. NumBnd. 1
Do 160 J - 1. NumBnd/2. 1

T - VectorsC I, J )

VectorsC I.J ) - VectorsC

VectorsC I. NumBnd+1-J )

Continue

Continue

I. NumBnd+1-J
T

) I Flip the vectors

Correct the Eigenvector Matrix to a Positive Quadrant Format

170
180

Do 180 I - 1. NumBnd. 1
Do 170 J - 1, NumBnd, 1

VectorsC I, J ) - C-1)**CJ)

Continue

Continue

VectorsC I.J )

Compute the Total Variance of the Transformed Data

190

TotVar - 0.0
Do 190 I - 1. NumBnd. 1

TotVar - TotVar Value sC I )

Continue

Print Out Eigenvalues and Eigenvectors

200
210

215

217

220

Call Lib$Erase_Page(1.1)

Write (6.*)

Write (9.*)

Write (6.*) 'Eigenvalues

Write (9.*) 'Eigenvalues

Write (6.*)

Write (9.*)

Do 210 I - 1. NumBnd. 1

Write (6.200) Values( I ).

Write (9.200) ValuesC I ).

Format ( F12.5. 9x. f7.3 )

Continue
Write (6.*)

Write (9.*)

Write (6.215) TotVar

Write (9.215) TotVar

Format
('$'.*

Total Variance

X
Variability'

Z
Variability'

( ValuesC

( ValuesC

*.f13.5 )

Write (6.*)

Write (9.*)

Write (6.")
'Eigenvectors'

Write (9.*)
'Eigenvectors'

Write (6.*)

Write (9.*)

Do 220 I - l. NumBnd, l
Write (6.217) ( Vectors(

Write (9.217) ( Vectors(

Format ( <NumBnd>f10.5 )

Continue

TotVar )
TotVar )

100.0

100.0

I.J ).

I.J ).

J - 1. NumBnd.

J - 1. NumBnd.
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Write (9,*)

Write (9,*)

Determine the Number of PC's C eigenvectors ) to Keep

Write (6.*)
Write (6.*)

290 Write (6.300)

300 Format ('$'. 'Calculate and store the first (01 P.C's: 0: ')
Read (5.*) 0

If ( 0 .gt. NumBnd ) Then
Write (6,310) NumBnd

310 Format
(*$'.'

ERROR
*** 0nly'.i3,'

PC's are possible')

GoTo 290
Else If ( 0 ,le. 0 ) Then

GoTo 900
End If

Write (6.*)

Do 313 I - 1. 0. 1
Write (6.312) I

312 Format ('*'. 'Enter output filename for
PC('.i3.'

) : ')

Read (5.*(A)'.End-900) PCNamC I )

313 Continue

Calculate the Scale for the PC Images

Scale 0.0

Do 320 J - 1. NumBnd. 1
Scale - Scale ? ( 255.0

*
VectorsC J.l ) )

320 Continue
Scale - Scale / 255.0

Save the PC's

Do *00 I - 1. 0. 1

Write (6.*)

Write (6.31**) I
,. ,

31** Format ('$'. 'Computing PCC.I3-.

Clear the Past PC Image

Do 316 K - 1. N. 1

Do 315 L - 1. M. 1
Image( K.L ) - 0.0

315 Continue

316 Continue

Calculate the Current PC Image
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Do 390 J - 1, NumBnd, 1
Call PixInC ImageA, FilNamC J ) )

Do 380 K - 1. N. 1
Do 370 L - 1. M. 1

ImageC K.L ) - FloatC ImageC K.L ) ) ?

FloatC ImageAC K.L ) )
*

Vectors( J, I ) / Scale
If ( Image( K.L ) .lt. -255 ) ImageC K.L ) =

-255

,

If ( ImageC K.L ) .gt. 255 ) ImageC K.L )- 255
370 Continue
380 Continue
390 Continue

Be Sure the Image is Positive in Sign

Do 39** J - 1. N. 1
Do 393 K - 1. M. 1

Image ( J.K ) - Abs( ImageC J.K ) )
393 Continue
39** Continue

Save the Current PC Image

395 Write (6.*) 'Saving PC Image
in:'

Write (6.*) PCNamC I )

Call PixOutC Image. PCNam( I ) )

**00 Continue

.........

Error Messages

800 Format
(//.'"

ERROR Invalid Number Of Bands *".//)

.........
Termination Block

900 Close ( 9 )

Write (6.*)
Stop

'

Principal Components
Completed.'

End
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Subroutine ImgMeanC Image, SmpInc Mean )

ImgMean - Will find the mean value of an image.

The images are expected to be 512 x 512

IN SIZE AND 8 BITS DEEP.

Written by Carl Salvaggio October 1986

Integer*** N, M, SmpInc

Parameter ( N - 512, M - 512 )

Integer*2 ImageC N. M )

Real*** Mean

Real*8 Sum. TotNum

Calculate the Image Mean

TotNum - IntC N / SmpInc )**2

Sum - 0.0
Do 20 J - 1. M. SmpInc

Do 10 I - 1. N, SmpInc

Sum " Sum ? FloatC ImageC I.J))

10 Continue

20 Continue

Mean Sum / TotNum

.........

Return Control to Calling Program

Return

End
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Subroutine VarianceC ImageA. MeanA, ImageB. MeanB, SmpInc Var )

Variance - Will find the variance-covariance value

between two images. The images are expected

to be 512 x 512 in size and 8 bits deep.

Written by Carl Salvaggio October 1986

Integer"** N. M. SmpInc

Parameter ( N - 512. M - 512 )

Integer*2 ImageAC N. M ). ImageBC N. M )

Real"** MeanA. MeanB. Var

Real"8 Sum. TotNum

Calculate the Covariance (Variance) between two images

TotNum - Int( N / SmpInc )""2

Sum - 0.0
Do 20 J - 1. M. SmpInc

Do 10 I - 1. N. SmpInc

Sum - Sum t- ( Float( ImageAC I.J))- MeanA )

( Float( ImageBC I.J))- MeanB )

10 Continue

20 Continue

Var - ( 1.0 / ( TotNum - 1 ))
*

Sum

......... Return Control to Calling Program

Return

End
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Appendix B

Description of the K-Means Unsupervised Clustering Code

Cluster

Display
MinDst

Merge

Elim
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Cluster -

This program will look at an n-band image.

choose k randomly located centroids. and

execute a k-means clustering algorithm. image
pixel will be assign to the nearest centroid

(in a Euclidean sense). Once all the pixel

have been assigned to a centroid. the centroids

are recomputed. and the assignment process

begins again. this continues until there is no

significant change in the cluster centroids.

This algorithm was designed after Forgy's
method- described in:

M.R. Anderberg, Cluster Analysis for Applications. Academic
Press, New York. 1973. pp. 159-162.

Variable Declaration

CntrodC . ) -

the matrix of current centoid vectors

CvtB.CvtI -

the byte to integer temporary conversion values

dlstc ) -

the ith distance from
'point'

to 'cntrodc .

)'

IRnd.JRnd -

THE PIXEL coordinates of the random seeds

iseed -

the number of seconds since midnight. used to

MaxBnd - maximum number of image bands allowed

MaxClS -

MAXIMUM NUMBER OF CLUSTERS ALLOWED

MinBnd - Minimum number of image bands allowed

mlnpnt -

the number of the cluster closest to 'pointc
)'

NumBnd -

the number of image bands

numcls -

the desired number of clusters

ULDCntC . ) -

THE CENTROID VALUE FROM THE PREVIOUS ITERATION

PlXELC ) -

THE CURRENT PIXEL VECTOR WITH
'MaxBnd'

ELEMENTS

rowbufc ) -

temporary byte buffer to store image row data

tol - the minimum tolerance level for merging clusters

seed the random number generator

tolnce - the minimum tolerance in dc's between cluster

centroids to terminate the iterations

Total -

the total number of sampled pixels

Required Subroutines: MinDst

Merge
Elim

Author: Carl Salvaggio November 1. 1986
Rochester Institute of Technology

Center for Imaging Science

Byte
Character"1

Character"80
Character"31
Character"!

CvtB
Ans. AnsI. Ans2, Bell
InName. OutName. Default

Cmd
Unit
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Integer*2
Integer*2
Integer***
Integer***
Real***

Parameter
Parameter
Parameter
Parameter
Parameter
Parameter
Parameter
Parameter

Byte
Character"80
Integer"2
Integer***
Real"**
Real"**

Equivalence

NumBnd. NumCls. CvtI. LunSft, MinPnt, Tol. Num

NumMrg. NumElm
N, M, MaxBnd- MinBnd, SmpInc MaxCls. Total
Context. Status- Lib$Find_File. ISeed
IRnd- JRnd- Tolnce

C N - 512. M - 512 )
C SmpInc - 1 )
( MaxBnd 10- MinBnd
( MaxCls - 25 )
( Bell - CharC7)
( LunSft - 9 )
( Tolnce - 1.0 )
( Tol - 20 )

)

2 )

1 1 1 1

i ii i
COVERGENCE TOLERANCE

MERGING TOLERANCE

RowBufCM)

FilNamCMaxBnd)

P i xelCMaxBnd)

BinCMaxCls). SumCMaxCls.MaxBnd)
CntRodCMaxCls. MaxBnd), OldCntCMaxCls. MaxBnd)

Dist(MaxCls), Dst(MaxCls.MaxCls)

( CvtI. CvtB )

Obtain the number of bands and clusters

Call Lib*Erase_Page(1.1)
1 Write (6.2)

2 Format CS'.'How many image bands do you have ? ')

Read (5.".End-900) NumBnd
If (( NumBnd .lt. MinBnd ) .or. ( NumBnd .gt. MaxBnd )) Then

Write (6.") Bell
Write (6.") ERROR

"""

Illegal Number of
Bands-

Write (6.*)

GoTo 1
End If

3 Write (6.**)

*? Format C$'.'How many clusters do you wish to form ? ')

Read (5.".End-900) NumCls
If (( NumCls .lt. 1 ) .or. ( NumCls .gt. MaxCls )) Then

Write (6.") Bell
Write (6.') ERROR

""""

Illegal Number of
Clusters-

Write (6.")

GoTo 3
End If
Write (6.5)

5 Format ('$'. 'Sampling increment ( 1.2.*.8.16.32.6*.128 ) : ')

Read (5.".End-900) SmpInc

Write (6.6)

6 Format CS'.'Do you wish similar clusters to be merged ? ')

Read (5.'(A)'.End-900) AnsI

If ( AnsI .eq. 'V .or. AnsI .eq. 'V ) AnsI -
'Y*

If ( AnsI .ne.

'Y'

) GoTo 8

Write (6.7)

7 Format (*$'. 'Minimum inter-cluster distance : ')

Read (5.".End-900) Tol

8 Write (6.9)

9 Format ('$'. 'Eliminate clusters with 0 pixels ? ')
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Read (5-'(A)'.End-900) Ans2
If C Ans2 .eq.

'Y'

.or. Ans2 .eq.

'y'

) Ans2 =
*Y'

If C Ans2 .ne.

'Y'

) GoTo 10

Obtain band imagery names Cand check if they exist)

10 Write (6.")

Default - 'Pics: I CNS902**. landsat]*. Pi
x'

Do 30 K - 1. NumBnd. 1
11 Write (6.20) K

20 Format (.'%'. 'Enter filename for band'.i3.': ')
Read (5.'(A)'.End-900) FilNamC K )

InName - FilNamC K )

Status"Lib$Find_FileC InName .OutName .Context.Default.OutName )
Call Lib!>Find_File_ndC Context )

If ( Status .eq. 65537 ) Then
FilNamC K ) - OutName

Else
Write (6,*) Bell

Write (6,")
'"""

ERROR
"""

File Not
Pound-

Write (6,")

GoTo 11
End If

30 Continue

Open the
'NumBnd'

image files

Do **0 Lun - LunSft*1. NumBnd+LunSft. 1
Open ( Lun. File-FilNamC Lun-9 ).

Access-'DIRECT'

,

? Status- 'OLD'. RecLN/*. Form- 'UNFORMATTED'. Readonly )

**0 Continue

Initialize the centroid vectors

ISeed - Secnds(O.O) !!!!! Initialize seed with the seconds

1(11! since midnight

Do 60 I - 1. NumCls. 1

IRnd - RanC ISeed )

JRnd - RanC ISeed )

IRow - Int( IRnd
"
511.0 + 1 )

JCol - Int( JRnd
"
511.0 ? 1 )

Do 50 J - 1. NumBnd. 1

Read ( J+LunSft. Rec - IRow ) RowBuf

CvtB - RowBuf ( JCol )

CntRod( 1. J ) - CvtI

50 Continue

60 Continue

Check if any of the centroids are equal and merge them

61 If ( AnsI .eq.

'Y'
) Then

Call Merge( CntRod. Bin. NumCls. NumBnd. Tol. MaxBnd.
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MaxCls, Dst. NumMrg )
End If

Eliminate any cluster with 0 pixels

If C Ans2 .eq.

'Y'

) Then
If ( Iter .eq. 0 ) GoTo 66
NumElm - 0
Do 6** 1 - 1, NumCls. 1
If ( BinC I ) .eq. 0 ) Then
NumElm NumElm ? 1
Call ElimC Cntrod.Bin.NumCls.NumBnd. I.MaxBnd,MaxCls )
End If

6** Continue
End If

Print out the current centroids

66 Write (6.")

Write (6.67) Iter

67 Format
('$'.*

Iteration #'.i3)
Iter - Iter + 1
Write (6.62) NumMrg

62 Format ('$'. 'Number of clusters merged - *.i3)

Write (6.65) NumElm

65 Format ('$'. 'Number of clusters eliminated - '.i3)

Write (6.68)

68 Format ('$'. 'Current centoid values :')

Write (6,")

Do 80 I - 1. NumCls. 1
Write (6,69) I

69 Format
C$'.'Cluster('.i3.'

)')

Write (6.70) ( CntRodC I.J ). J - 1. NumBnd. 1 ). BinC I )

70 Format
('?'.t5.<NumBnd>f7.1.i9.'

pixels')

80 Continue

Clear the bins and sums

Do 86 I - l. MaxCls. 1
BinC I ) - 0
Do 85 J - 1. MaxBnd. 1

Sum( I.J ) - 0
85 Continue

86 Continue

Get the current pixel

Do 110 J - 1. N. SmpInc

Do 100 K - 1. M. SmpInc ! !

Do 90 L - 1. NumBnd. 1 ! I !

Read ( L+LunSft. Rec - J ) RowBuf

CvtB - RowBuf( K )

Row Loop

Column Loop

Band Loop
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PixelC L ) - CvtI
90 Continue !!!! End Band Loop

.........

pjfgd whjch cluster the current pixel is closest to

Call MinDstC Pixel. CntRod. NumBnd, NumCls, MinPnt,
* MaxBnd. MaxCls. Dist )

.........

Update the pixel/cluster count and sum/cluster value

BinC MinPnt ) - Bin( MinPnt ) * 1
Do 95 L - 1. NumBnd, 1

SumC MinPnt. L ) - SumC MinPnt.L ) + PixelC L )
95 Continue

100 Continue ! ! ! ! End Column Loop
110 Continue ! ! ! ! End Row Loop

.........

Store old centroids and compute new centroids

Do 130 I - 1. NumCls. 1

Do 120 J - 1. NumBnd. 1
If ( BinC I ) .eq. 0 ) GoTo 130
OldCntC I.J ) - CntRodC I.J )

CntRodC I.J ) - FloatC SumC I.J )) / FloatC BinC I ))
120 Continue
130 Continue

.........

Check for convergence of the centroids
.

Do 150 1 - 1. NumCls. 1
Do 1**0 J - 1, NumBnd. 1

If ( Bin( I ) .eq. 0 ) GoTo 150
If (Abs(0ldCnt( I.J ) - CntRodC I.J )) .gt. Tolnce) Then

GoTo 61
End If

1*0 Continue
150 Continue

Write (6.")
Write (6.160) Tolnce

160 Format ('$'. 'Convergence tolerance
of'.f7.**.'

exceeded')

Close the image files

Do 190 Lun - LunSft+1. NumBnd+LunSft. 1
Close ( Lun )

190 Continue

Write the final centroids to a file
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EN< }' File- 'Cluster.Out'. Status- 'New' )
Do 220 I - 1. NumCls. 1

-in
&ITE lh,Ql < CntRodC l.J ), J - 1, NumBnd, 1 )

210 Format C<NumBnd>f7.1 )
220 Continue

Close C 1 )

Run the color image generation program

Write C6-*)
Write (6,230)

230 Format <
*

S
*

. 'Generate a color composite image ( y or n ) ? ')
Read (5,'(A)'.End-900) Ans

If ( Ans .eq.

'y'

.or. Ans .eq.

'Y'

) Then
235 Write (6.2*<0)
2**0 Format ('$'. 'Enter Unit Number : ')

Read (5.'(A)'.End-900) Unit
If

(Unit.ne.'O'

.and.

Unit.ne.'I'

.and. Unit.ne.*2')Goto 235
Cmd - 'aUSER:lCNS902**.lMG0PS)DlSPLAY

'

CmdC 31:31 ) - Unit

Call LibSSpawn ('Run User:[CNS902**.ImgOps)Display')
Call LibSSpawn ( Cmd )

End If

Program termination

900 Write (6.")

End

Subroutine MinDst( Point. Cntrod, NumBnd. NumCls. MinPnt.

.....................

MA'diNC MaxCls- Dist )

MinDst - This subroutine will calculate the distance

of the current pixel to each of the

CENTROIDS. The algorithm will then

DETERMINE WHICH OF THE DISTANCE IS THE MINIMUM

AND RETURN THIS CLUSTER NUMBER TO THE CALLING

PROGRAM.

Variable Declaration

CntRodC . ) - the matrix of current centoid vectors

dlstc ) -

the ith distance from
'point*

to 'cntrodc .

)'

MaxBnd - maximum number of image bands allowed

MaxCls - maximum number of clusters allowed

MinPnt -

the number of the cluster closest to 'PointC
)'

NumBnd -

the number of image bands

NumCls -

the desired number of clusters
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POINTC ) -

THE CURRENT PIXEL VECTOR WITH
'MaxBnD'

ELEMENTS
SUM -

A RUNNING TOTAL FOR DISTANCE CALCULATIONS

Required Subroutines: None

Author: Carl Salvaggio November 11. 1986
Rochester Institute of Technology
Center for Imaging Science

Integer*2 MaxBnd. MaxCls
1nteger*2 MinPnt- NumBnd. NumCls
1nteger*2 Point(MaxBnd)
Real"** Cntrod(MaxCls.MaxBnd). DistCMaxCls)
Real"** Sum

Calculate the distance form the point to each centroid

Do 20 I - 1. NumCls, 1
Sum - 0.0
Do 10 J - 1. NumBnd. 1

Sum - Sum ( Float( Point( J ) ) - CntrodC 1. J ) )**2
10 Continue

DistC I ) - Sort( Sum )
20 Continue

Determine which of the ith distances is a minimum

MinPnt - 1
Do 30 I - 2. NumCls. 1

If ( Dist( MinPnt ) .gt. Dist( I ) ) MinPnt - I
30 Continue

Return the closest cluster number to calling program

Return
End

Subroutine Merge ( CntRod. Bin. NumCls. NumBnd. Tol.
MaxBnd. MaxCls. Dst. NumMrg )

Merge - This subroutine will examine all the centroids

and if any two of them are within a specified

distance of each other. this program will

merge them into one centroid

Variable Declaration

Tol -

the maximum distance for each band value
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TO ALLOW CONVERGENCE

ALL OTHERS ARE THE SAME AS CALLING PROGRAM

Author: Carl Salvaggio November 1. 1986
Rochester Institute of Technology

Center for Imaging Scioence

Integer*

2 NumCls. NumBnd- MaxBnd. MaxCls- Tol
Integer*2 NumMrg
Real*** Sum, DstCMaxCls.MaxCls)

Real*** CntRodCMaxCls.MaxBnd). BinCMaxCls)

Real*** BinI. BinJ

Compute a distance matrix

NumMrg - 0
5 Do 30 I - 1. NumCls. 1

Do 20 J - 1. NumCls. 1
Sum - 0.0
Do 10 K - 1. NumBnd. 1

Sum - Sum * ( CntRod( I.K ) - CntRodC J.K ) )""2

10 Continue
DstC I.J ) - Sqrt( Sum )

20 Continue

30 Continue

Test for equal centroids

Do 60 I - 1. NumCls- 1
, j | J j Row Loop

Do 50 J - 1+1. NumCls. 1 MM Column Loop

If ( Dst( I.J ) .le. Tol ) Then

NumCls - NumCls - 1

NumMrg - NumMrg ? 1
, , n , ,

If ( Bin( 1 ) .EQ. 0 .and. BinC J ) .EQ. 0 ) Then

BinI - 1.0

BinJ - 1.0
,

Divisor - 2.0

Else
. .

BinI - BinC I )

BinJ - BinC J >

BinC I ) - BinC I ) + BinC J )

Divisor - BinC I ) ? BinC J )

End If

Do **0 K - 1. NumBnd. 1

CntRodC I.K ) - ( BinI
" CntRodC I.K ) +

. BinJ
" CntRodC J.K ) ) /

+ ( Divisor )

i*0 Continue

Do 35 L - J. NumCls. 1

Do 3** M - 1. NumBnd. 1
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CntRodC L.M ) - CntRodC L+l.M )
3** Continue

BinC L ) - BinC L+l )
35 Continue

GoTo 5
End If

50 Continue !! End Column Loop
60 Continue 1 1 !! End Row Loop

Return the amended centroids to the calling program

Return

End

Subroutine ElimC Cntrod. Bin. NumCls. NumBnd, Num,
+ MaxBnd. MaxCls )

Integer*2 NumCls. MaxBnd. MaxCls

Integer*** Num

Real*** CntRodCMaxCls.MaxBnd). BinCMaxCls)

**

Reduce clusters by 1

NumCls - NumCls - 1

Move the remaining centroids up one in the list

Do 20 I - Num. NumCls. 1
Do 10 J - 1. NumBnd. 1

CntRodC I.J ) - CntRodC I+l.J )

10 Continue
BinC I ) - BinC 1+1 )

20 Continue

Return to calling program

Return

End
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Display - This program will take the final centroid
VALUES COMPUTED IN CLUSTER. FOR AND CREATE
A COLOR COMPOSITE REPRESENTATION OF THE
CLASSIFIED IMAGE. THE IMAGE IS CLASSIFIED
ACCORDING TO A MINIMUM DISTANCE TO THE MEAN
CLASSIFIER SINCE ONLY THE CENTROID DATA IS
KNOWN. THE COLORS THAT ARE ASSIGNED TO EACH OF

THE CLASSES ARE ARBITRARILY FIXED AND CAN BE

SEEN IN THIS CODE. As OF NOW A MAXIMUM OF 10
CLUSTERS CAN BE DISPLAYED.

Variable Declaration

CntrodC . )

CvtBR.CvtIR

CvtBG.CvtIG
CvtBB.CvtIB
CvtB.CvtI
DistC )

ImgSecC.)

MaxBnd
MaxCls
MinBnd
MinPnt

NumBnd
NumCls
PixelC )

RDigCnt,
GDigCnt.
BDigCnt

ROutRowC , ) ,
GOutRowC . ) .
BOutRowC . )
RowBuf ( )

the matrix of current centoid vectors

red byte to integer temporary conversion values

green byte to integer temporary conversion values

blue byte to integer temporary conversion values

byte to integer temporary conversion values

the ith distance from
'point'

to 'cntrodc .

)'

section of image in core memory that is being

operated on

maximum number of image bands allowed

maximum number of clusters allowed

Minimum number of image bands allowed

the number of the cluster closest to 'pointc
)'

the number of image bands

the desired number of clusters

the current pixel vector with
'maxbnd'

elements

THE R.G.B DIGITAL COUNTS FOR THE OUTPUT IMAGE

BYTE R.G.B ROW OF DATA FOR THE OUTPUT IMAGE

TEMPORARY BYTE BUFFER TO STORE IMAGE ROW DATA

Required Subroutines: MinDst

Author: Carl Salvaggio November 11. 1986
Rochester Institute of Technology
Center for Imaging Science

Byte CvtBR. CvtBG, CvtBB. CvtB

Character'1 Bell

Character"80 InName. OutName. Default

Integer*2 CvtIR. CvtIG. CvtIB. CvtI
Integer"2 NumBnd. NumCls. LunSft. MinPnt

Integer"2 RDigCnt. GDigCnt. BDigCnt. SecInc
Integer"** N. M. B. MaxBnd. MinBnd. SmpInc. MaxCls

Integer"** Context. Status. Lib$Find_File
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Parameter ( N - 512- M - 512, B - 1536 )
Parameter ( SmpInc - 1 )
Parameter ( MaxBnd - 10 , MinBnd - 2 )
Parameter ( MaxCls - 10 )
Parameter ( Bell - Char(7) )
Parameter ( LunSft - 9 )
Parameter ( SecInc - 6** )

Byte LinBufCB). LinOneCM). LinTwoCM). LinThr(M)
Byte RowBuf CM)
Byte ROutRowCSecInc.M). GOutRowCSec Inc.M)

Byte BOutRowC Sec Inc-M)

Character"80 FilNamCMaxBnd)
Integer"2 PixelCMaxBnd)
1nteger"2 ImgSecCSecInc.M.MaxBnd)
Real"** CntRodCMaxCls. MaxBnd)
Real"** DistCMaxCls)

Equivalence ( CvtIR. CvtBR )
Equivalence ( CvtIG. CvtBG )

Equivalence ( CvtIB. CvtBB )
Equivalence ( CvtI. CvtB )
Equivalence ( LinBuf( 1 ). LinOneC 1 ) )
Equivalence ( LinBuf( 513 ). LinTwoC 1 ) )

Equivalence ( LinBufC 1025 ), LinThrC 1 ) )

Obtain the number of bands and clusters

Call LibSErase_PageC1.1)
3 Write (6.**)

** Format CS'.'How many image bands did you have ? ')

Read (5.".End-900) NumBnd
If (( NumBnd .lt. MinBnd ) .or. ( NumBnd .gt. MaxBnd )) Then

Write (6.") Bell

Write (6.")
* """

ERROR
""*"

Illegal Number of
Bands'

Write (6.")

GoTo 3
End If

5 Write (6.6)

6 Format CS'.'How many clusters did you produce ? ')

Read (5.".End-900) NumCls

If (( NumCls .lt. 1 ) .or. ( NumCls .gt. MaxCls )) Then

Write (6.*) Bell
Write (6.*)

* """"
ERROR

""**

Illegal Number of
Clusters-

Write (6.")

GoTo 5
End If

Obtain band imagery names (and check if they exist)

10
20

Write (6.")
Default - 'Pics:tCNS902*t.Landsat]".

Pix'

Do 30 K - 1. NumBnd. 1
Write (6.20) K

Format ('$'. 'Enter filename for band'.i3. ')
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Read (5.'(A)'.End-900) FilNamC K )

InName - FilNamC K )

Status-L ib$F i nd_F i le ( 1 nName , OutName . Context , Default . OutName )
Call Lib$Find_File_EndC Context )
If C Status .eq. 65537 ) Then

FilNamC K ) - OutName
Else

Write C6.") Bell
Write C6-")

"""
ERROR

"""

File Not
Found"

Write C6.*)

GoTo 10
End If

30 Continue

Define the centoid vectors

Open C 1. File- 'Cluster.Out'.
Status-'Old'

)

Do to I - 1, NumCls. 1
Read (1.*) ( CntRodC I.J ). J - 1. NumBnd. 1 )

*0 Continue

Close ( 1 )

Open the
'NumBnd'

image files

Do 50 Lun - LunSft+1. NumBnih-LunSft. 1
Open C Lun. File-FilNamC Lun-9 ). Access-'DIRECT'.

? Status- 'OLD'. RecL-N/*. Form- 'UNFORMATTED'. Readonly )

50 Continue

Build the output image

Open ( 1. File-'Display.Pix'. Access-'DIRECT'.
Status- 'NEW'. RecL-N/**. Form-

'UNFORMATTED'

)

Get the current section

Write (6.")

Write (6.")
'

... Building R.G.B Output
Image'

Do 130 J - 1. N. SecInc Iect,ion Loop

Do 80 K - 1. SecInc SmpInc Row Loop

Do 70 L - 1. NumBnd. 1 MM Band Loop

Read ( L+LunSft. Rec - >K-1 ) RowBuf

Do 60 I - 1. M. 1 MM Column Loop

CvtB - RowBuf ( I )

ImgSec( K.I.L ) - CvtI

60 Continue End Column Loop

70 Continue |nd Band Loop

80 Continue Mil End Row Loop

Find which cluster the current pixel is closest to

B-13
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! I ! ! Row Loop

I ! I ! Column Loop

! ! H Band Loop

90

Do 110 K - 1. SecInc SmpInc
Do 100 I - 1. M. 1

Do 90 II - 1. NumBnd. 1
PixelC II ) - ImgSecC K- I. II )

Continue ! ! ! ! End Band Loop

Call MinDstC Pixel- CntRod. NumBnd- NumCls- MinPnt.

MaxBnd. MaxCls. Dist )

Build current row of the display image

100

If ( MinPnt .eq.
RDigCnt - 255
GDigCnt - 0
BDigCnt - 0

Else If ( MinPnt .

RDigCnt - 0
GDigCnt - 255
BDigCnt - 0

Else If ( MinPnt .

RDigCnt - 0
GDigCnt - 0
BDigCnt - 255

Else If ( MinPnt .

RDigCnt - 255
GDigCnt - 255
BDigCnt - 0

Else If ( MinPnt .

RDigCnt - 255
GDigCnt - 0
BDigCnt - 255

Else If ( MinPnt .

RDigCnt - 0
GDigCnt - 255
BDigCnt - 255

Else If ( MinPnt ,

RDigCnt - 255
GDigCnt - 255

BDigCnt - 255
ElseIf ( MinPnt ,

RDigCnt - 0
GDigCnt - 0
BDigCnt - 0

ElseIf ( MinPnt

RDigCnt - 0
GDigCnt - 100
BDigCnt - 0

ElseIf ( MinPnt
RDigCnt - 0
GDigCnt - 0
BDigCnt - 100

End If
CvtIR - RDigCnt

CvtIG - GDigCnt

CvtIB - BDigCnt

R0utRow( K.I ) -

G0utRow( K.I ) -

B0utRow( K.I ) -

Continue

1 ) Then

eq. 2 ) Then

eq. 3 ) Then

eq. ** ) Then

eq. 5 ) Then

eq. 6 ) Then

eq. 7 ) Then

eo. 8 ) Then

.eq. 9 ) Then

.eq. 10 ) Then

! ! ! ! Group 1 Red

! ! ! ! Group 2 Green

! ! I ! Group 3 Blue

! ! 1 1 Group ** Yellow

! I ! ! Group 5 Magenta

! ! I ! Group 6 Cyan

MM Group 7 White

MM Group 8 Black

MM Group 9 Dark Green

MM Group 10 Bark Blue

CvtBR

CvtBG
CvtBB

MM End Column Loop
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110 Continue

m

'. Output current display image row

Do 120 K - 1. SecInc SmpInc
Do 115 L - 1. B. 3

LinBufC L ) - ROutRowC K. L / 3 ? 1 )
LinBufC L ? 1 ) - GOutRowC K. L / 3 + 1 )

,,c
LinBufC L + 2 ) BOutRowC K, L / 3 + 1 )

115 Continue
RecNum - RecNum + 1
Write C 1, Rec-RecNum ) LinOne
RecNum - RecNum + 1
Write C 1. Rec-RecNum ) LinTwo
RecNum - RecNum ? 1
Write C 1. Rec-RecNum ) LinThr

120 Continue
130 Continue mm Enu Section Loop

Close C 1 )

.........

Close the image files

Do 1*0 Lun - LunSft+1. NumBnd+LunSft, 1
Close C Lun )

1*0 Continue

Program termination

900 Write (6.")

End

Subroutine MinDst( Point. Cntrod. NumBnd. NumCls. MinPnt,
MaxBnd MaxCls, Dist )

MinDst - This subroutine will calculate the distance

of the current pixel to each of the

centroids. The algorithm will then

determine which of the distance is the minimum

and return this cluster number to the calling

PROGRAM.

Variable Declaration

CntRodC , ) - the matrix of current centoid vectors

dlst( ) -

the ith distance from
'point'

to 'cntrodc .

)'

MaxBnd - maximum number of image bands allowed

MaxCls - maximum number of clusters allowed
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MinPnt -

the number of the cluster closest to 'PointC
)'

NumBnd -

the number of image bands

NumCls - the desired number of clusters

PointC ) -

the current pixel vector with
'MaxBnd'

elements

sum -

a running total for distance calculations

Required Subroutines: None

Author: Carl Salvaggio November 11. 1986

Rochester Institute of Technology

Center for Imaging Science

Integer"2 MaxBnd. MaxCls

Inte6ER*2 MinPnt. NumBnd. NumCls

Integer"2 PointCMaxBnd)

Real*** CntrodCMaxCls.MaxBnd). Dist(MaxCls)

Real"** Sum

Calculate the distance form the point to each centroid

Do 20 I - 1. NumCls. 1
Sum - 0.0

Do 10 J - 1. NumBnd. 1
Sum - Sum ? ( Float( PointC J ) ) - CntrodC I.J ) )"*2

10 Continue

DistC 1 ) - Sqrt( Sum )

20 Continue

Determine which of the ith distances is a minimum

MinPnt - 1
Do 30 I - 2. NumCls. 1

If ( Dist( MinPnt ) .gt. Dist( I ) ) MinPnt - I

30 Continue

Return the closest cluster number to calling program

Return

End
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Appendix C

Description of the Automated Rate of Change Segmentation Algorithm

BldPIF

FindPIF

Gradient

Interval

ScaleDivide
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BldPif -

This is an automated program which requires the
input of an infrared. red and far infrared band
imagery and will output an image which consists
OF ONLY PSEUDO INVARIANT FEATURES (PIF's). THE
PROGRAM WILL UTILIZE THE RATE OF CHANGE INFORM
ATION IN THREE-DIMENSIONS OF THE NUMBER OF PIXELS
IN ORDER TO LOCATE APPROPRIATE **/3 AND BAND 7
THRESHOLD VALUES. THE APPROPRIATE BANDS WILL
THEN BE THRESHOLDED AND LOGICALLY COMBINED
TO PRODUCE THE PIF MASK FOR THE CURRENT IMAGE
SET.

Variable Declaration:

ANDChan - The image memory channel that will contain the
result of the logical .and. of the thresholded

**/3 image and the thresholded band 7 image
|and3 -

the name of the file containing the band 3 image
Band** - The name of the file containing the band ** image
Band7 - The name of the file containing the band 7 image
Channel**to3 - The image memory plane that will contain the

**/3 (infrared to red ) ratio image
Channel7 - The image memory plane that will contain the

band 7 (far infrared) image

Exists - The logical variable that checks for file

existence

FourtoThree - The name of the file containing the band *t/3
ratio image

Hist - The 256 element vector that contains the histogram

of the andchan after return from the histogram

subroutine

Inc**to3 - The increment value for the thresholding for the

BAND *t/3 RATIO IMAGE

Inc7 - The increment value for the thresholding for the

band 7 image

MaskFil - The name of the file containing to write the

pif mask to

Stp**to3 - The stoping value for thresholding for the band

**/3 ratio image

Str**to3 - The starting value for thresholding for the band

*i/3 RATIO IMAGE

Stp7 - The stopping value for thresholding for the band

7 IMAGE

Str7 - The starting value for thresholding for the band

7 IMAGE

Thresh**to3 - The current thresold value for the band *t/3 ratio
IMAGE

Thresh7 - The current threshold value for the band 7 image

Total - The total number of pixels in a 512 x 512 image

Unit - The holder variable that will contain the unit

number attached during the call to ipi_attunit

Required Subroutines: User:'Cns902**.DeAnza] ShoMno
Threshold
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User:ICns902**.Pif]

User:ISls**255.Cis.Ipi]

WrtItt

Logical_And
Histogram

Binary

TriMno
FindPif

Interval
ScaleDivide
Gradient

Ipi_AttUnit

Ipi_DetUnit

Author: Carl Salvaggio Center for Imaging Science
Rochester Institute of Technology

January 31. 1987

Character'1 Bell. Ans

Character*80 FourtoThree. Band3- Band**. Band7. MaskFil
Integer*** Channel**to3. Channel7, ANDChan, Unit. Total

Integer*** HistC0:255)

Integer*** SaveX. SaveY

Integer*2 Str**to3. Stp*to3. Inc**to3. Str7. Stp7. Inc7

Integer"2 Thresh**to3. Thresh7

Logical'1 Exists
Real"** Numbers(256.256). GradC256.256)

Initialize constants

Parameter ( Bell - Char (7) )

Data Channel**to3

Data Channel7

Data AndChan

Data Total
Data FourtoThree

Format C+'.aI)

/ 0 /

/ 1 /
/ 2 /
/ 2621**** /

/'Temp.Out'/

! Bell ring

Get name for the band 3 image

Write (6.*)

2 Write (6.5)

5 Format C$'.*__3: ')

Read (5.'(A)'.End-900) Band3

Inquire ( File - Band3. Exist - Exists )

If ( Exists .eq. .FALSE. ) Then

Write (6.1) Bell

GoTo 2
End If

Get name for the band *? image
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10 Write (6.20)
20 Format ('$'.'_**: ')

Read C5.'CA)'.End-900) Band**
Inquire C File - Band**- Exist - Exists )
If C Exists .eq. .FALSE. ) Then

Write C6.1) Bell
GoTo 10

End If

.......

qet NAME FQR TH band j JMAGE

30 Write C6.**0)

**0 Format C'$'.'_7: ')
Read C5.'(A)'.End-900) Band7

Inquire ( File - Band7. Exist - Exists )
If ( Exists .eq. .FALSE. ) Then

Write (6.1) Bell
GoTo 30

End If

.......

Calculate the band */3 ratio image

Call ScaleDivide ( Band**. Band3. FourtoThree )

.......

get th thresholding region for */3 ratio and band 7 image

Call Interval ( FourtoThree. Band7. Str**to3. Stp**to3.
Inc**to3. Str7. Stp7. Inc7 )

.......

Attach the unit to the current program

Call Ipi_AttUnit ( Unit )

.......

Place the */3 ratio image in channel 0

Call ShoMno ( Unit. FourtoThree. Channel**to3 )

.......

J4/3 ratio threshold loop

Do 200 Thresh**to3 - Str**to3. Stp**to3. Inc**to3

........

Place refreshed band 7 image in channel 1

Call ShoMno ( Unit. Band7. Channel7 )
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Threshold the **/3 ratio image and save to channel 0

Call Threshold ( Unit. Channel**to3. Thresh**to3. 1 )
Call WrtItt C Unit. Channel**to3. Channel**to3 )

.........

gAND j IMAGE THRESHOLD loop

Do 100 Thresh7 - Str7. Stp7. Inc7

.........

Threshold the band 7 image and save to channel 1

Call Threshold ( Unit. Channel7. Thresh7. 0 )
Call WrtItt ( Unit. Channel7. Channel7 )

.........

>ANTj THE ^^ thresholded images (Channel 0 & 1 )

Call Logical_And ( Unit. Channel7. Channel**to3. ANDChan )

Call Binary ( Unit. ANDChan )

Call WrtItt ( Unit. ANDChan. ANDChan )

.........
Histogram the result of the .AND. (Channel 2)

Call Histogram (Unit. ANDChan. Hist )

.........
Display the threshold values and (f of pixels

Write (6.") Thresh**to3. Thresh7. Total - Hist(0)

.........

pjll the g ^ pixel surface matrix

Numbers(Thresh**to3.Thresh7) - Total - HistCO)

.........

End the band 7 threshold loop

100 Continue

.........

^ th i|/3 ratio threshold loop

200 Continue
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Temporary output

R 9?z,iS }
File- 'Temp.Num'. Status-'NEW'

)
D Do 700 I - Str7. Stp7. Inc7
D Do 600 J - Stp**to3. Str*to3. -Inc**to3

En Write CI.*) J. I, NumbersCJ.I)
D 600 Continue
D 700 Continue
D Close C 1 )

Compute the gradient

Call Gradient ( Str**to3. Stp**to3. Inc**to3,
Str7. Stp7. Inc7. Numbers. Grad )

Temporary output

D Open ( 1. File-'Temp.Grd*.
Status-'NEW'

)
D Do 850 I - Str7. Stp7. Inc7
D Do 800 J - Stp**to3. Str**to3. -Inc*to3
D Write (1.*) J. I. GradCJ.I)
D 800 Continue
D 850 Continue
D Close C 1 )

Find the PIF threshold values

Call FindPif ( Str**to3. Stp**to3. Inc**to3.
Str7. Stp7. Inc7. Grad. SaveX. SaveY )

Write (6.")
Write (6,*) 'Threshold for **/3 ratio '.SaveX

Write (6.") 'Threshold for Band 7 - '.SaveY

Write (6.")

Reload and threshold the Band **/3 ratio image

Call ShoMno ( Unit. FourtoThree. Channel**to3 )

Call Threshold ( Unit. Channel**to3. SaveX. 1 )

Call WrtItt ( Unit. Channel*to3. Channel**to3 )

Reload and threshold the Band 7 image

Call ShoMno ( Unit. Band7. Channel7 )

Call Threshold ( Unit. Channel7. SaveY. 0 )

Call WrtItt ( Unit. Channel7, Channel7 )

.AND. the two images to find the PIF mask
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Call Logical_And C Unit. Channel7. Channel**to3, ANDChan )

Make the PIF mask a binary image

Call Binary C Unit. ANDChan )

Call WrtItt C Unit. ANDChan, ANDChan )

Call TriMno C Unit. ANDChan )

Save the PIF mask

Write C6.*)

Write (6.870)

870 Format CS'.'Do you wish to save this PIF mask (y or n)? ')

Read (5.'(A)'.End-900) Ans
Call StrSUpCase (Ans.Ans)

If ( Ans .eq.

'Y'

) Then

Write (6.")

Write (6.880)

880 Format
('$'.'

Enter file name to store mask to: ')

Read (5.*CA)'.End-900) MaskFil
Call SavMno C Unit. MaskFil. AndChan )

End If

Terminate the program

Call LibSSpawn C 'Delete/NoConfirm
Temp.Out;"'

)

900 Call TriMno C Unit. -1 )

Call Ipi_DetUnit ( Unit )

Write (6.")

End
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Subroutine FindPif ( Str**to3. Stp**to3. Inc**to3.
Str7. Stp7. Inc7, Grad- SaveX, SaveY )

FindPIF Will examine the gradiant of the number of

pixel in the histogram data to find the plateau
point where the threshold points for the pif
mask should be located.

Variable Declaration -

Str**to3 -

Stp*to3 -

Inc*to3 -

Str7 -

Stp7 -

Inc7 -

Grad -

SaveX -

SaveY -

THE STARTING VALUE FOR THRESHOLD OF THE BAND

1/3 RATIO

THE STOPPING VALUE FOR THRESHOLD OF THE BAND

*4/3 RATIO

The increment value for the threshold of the band

**/3 RATIO

The starting value for threshold of the band

7 IMAGE

The stopping value for threshold of the band

7 image

The increment value for the threshold of the band

7 IMAGE

The array containing the gradient data

Will return the value of the **/3 threshold

Will return the value of the 7 threshold

Required Subroutines: None

Author: Carl Salvaggio

Modified

Modified

January 8. 1987

Rochester Institute of Technology

Center for Imaging Science
January 31. 1987 cs.

February 6. 1987 cs.

Integer"2 Str**to3. Stp*to3. Inc**to3. Str7. Stp7. Inc7

Integer"** SaveX. SaveY. I
Real"** Grad(256.256)

Real"** SaveMax. Maximum. SaveMin. Minimum. SaveGrad

Real"** Inc

Search parallel to the THRESH 7 axis to find max

D
D

SaveMax - 0.0

Maximum - 0.0

Do 10 I - Str7+(2"Inc7). Stp7. Inc7

Maximum - Max( Maximum. Grad(Str**to3+2"(Inc*to3).I) )

Write (6.") Grad(Str**to3*(2"1nc*to3).I).

Str*to3-(2"Inc**to3). I
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If ( Maximum .ne. SaveMax ) Then
SaveY - I
Write (6-*) SaveY- '.SaveY

End If

SaveMax - Maximum

10 Continue

Search parallel to THRESH **/3 to find local minima

Minimum - 1.0E32
SaveMin - 0.0
SaveGrad - 0.0

Write (6.*)

Do 20 I - Stp**to3-Inc**to3. Str**to3+Inc**to3. -Inc**to3

Write (6.*) GradU.SaveY)
If ( Grad(I.SaveY) .ge. SaveGrad ) Then

SaveGrad - GradCI.SaveY)
GoTo 20

End If

Minimum - MinC Minimum. GradCI.SaveY) )
If C Minimum .ne. SaveMin ) Then

IFlag - 1
SaveX - I

Write (6.*) SaveX - '.SaveX

End If
SaveMin - Minimum

20 Continue

If no valley found search for fin parallel to band 7 axis

If ( IFlag .eq. 0 ) Then
SaveMax - 0.0
Maximum - 0.0
Write (6.*)

Do 30 I - Stp*to3-Inc*to3. Str**to3+Inc**to3. -Inc**to3

Write (6.") GradCI.Str7+(2"Inc7))

Maximum - Max( Maximum. Grad(I.Str7+(2*Inc7)) )

If ( Maximum .ne. SaveMax ) Then
SaveX - I
Write (6.") SaveX - '.SaveX

End If
SaveMax - Maximum

30 Continue

End If

Return to calling program

Return

End
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Subroutine Gradient ( Str**to3- Stp**to3. Inc*to3.

.................
......ll5li.I^i.'Nc7'Surf, Grad )

Gradient - Will calculate the gradient at every point

on a surface. The original data must be in

three columns- x. y- z. with the x's changing

while y is constant

Variable Declaration :

Str**to3 -

Stp**to3 -

Inc**to3 -

Str7 -

Stp7 -

Inc7 -

Surf -

Grad

The starting value for threshold of the band

**/3 ratio

The stopping value for threshold of the band

**/3 ratio
The increment value for the threshold of the band

**/3 RATIO

The starting value for threshold of the band

7 IMAGE

The stopping value for threshold of the band

7 IMAGE

The increment value for the threshold of the band

7 IMAGE

The array containing the Z-dimension values

of the surface which the gradient is to be

TAKEN OF

THE ARRAY CONTAINING THE RESULTING GRADIENT

Required Subroutines None

Written by Carl Salvaggio

Modified

Center for Imaging Science

Rochester Institute of Technology

December 19. 1986
January 31. 1987 by CS.

Integer"2 Str**to3. Stp*to3. Inc**to3. Str7. Stp7. Inc7

Integer*** I. J
Real Surf (256.256). Grad(256.256)

Calculate the gradient of the surface

10

20

Do 20 I - Str**to3+Inc*to3. Stp**to3. Inc**to3

Do 10 J - Str7*Inc7. Stp7. Inc7

Grad(I.J) - Sqrt(( (Surf(I.J)-Surf(I-Inc*to3.J))

/ Real(Inc**to3))"*2 +

( (Surf(I.J)-Surf(I.J-Inc7))

/ Real(Inc7))"2 )

Continue

Continue

Return to calling program

Return

End
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Subroutine Interval ( FourtoThree, Band7. Str**to3. Stp**to3.
IN$^I22:.5J5Z:.I?Zi.INc7 )

Interval - This routine will determine the interval over which

the threshold regions should be searched. for both

the **/3 ratio and band 7 threshold regions. the
interval is defined as from the mean of the

histogram to 2 time the standard deviation below

the mean value. this was determined from empirical

evaluation of many different image histograms.

Variable Declaration -

FourtoThree - The name of the file containing the band **/3
ratio image

Band7 - The name of the file containing the band 7 image

Str**to3 - The starting value for threshold of the band

**/3 RATIO

Stp**to3 - The stopping value for threshold of the band

*l/3 RATIO

Inc**to3 - The increment value for the threshold of the band

**/3 ratio
Str7 - The starting value for threshold of the band

7 IMAGE

Stp7 - The stopping value for threshold of the band

7 IMAGE

Inc7 - The increment value for the threshold of the band

7 IMAGE

Required Subroutines: HistStats

Author: Carl Salvaggio February 6. 1987

Rochester Institute of Technology

Center for Imaging Science

Character"80 FourtoThree. Band7

Integer"** Channel**to3. Channel7. Unit

Integer"** Hist**to3C0:255). Hist7(0:255)

Integer"2 Str**to3. Stp**to3. Inc**to3. Str7. Stp7. Inc7

Real"** Mean*to3. Mean7. SD**to3. SD7

Data Channel**to3 / 0 /

Data Channel7 / 1 /

""
Attach the unit to the current program

Call Ipi_AttUnit ( Unit )
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Place the **/3 ratio image in channel 0

Call ShoMno ( Unit. FourtoThree. Channel**to3 )

Place refreshed band 7 image in channel 1

Call ShoMno C Unit. Band7. Channel7 )

***

Histogram the band */3 channel C Channel 0 )

Call Histogram C Unit. Channel**to3. Hist**to3 )

*"*

Histogram the band 7 channel C Channel 1 )

Call Histogram ( Unit. Channel7. Hist7 )

***

Find histogram statistics

Call HistStats ( Hist**to3. Mean**to3. SD**to3 )

Call HistStats ( Hist7. Mean7. SD7 )

***

Determine sampling intervals

Str**to3 - IntC Mean**to3 )

Stp**to3 - IntC Mean**to3 - 2.0*SD*to3 )

1nc**to3 - -2
Str7 - IntC Mean7 - 2.5"SD7 )

Stp7 - Int( Mean7 + SD7 )

Inc7 - 2

"""

Check for out of bounds errors

If ( Str**to3 .gt. 255 ) Str**to3 - 255

If ( Stp**to3 .lt. 1 ) Stp*to3 - 1

If ( Str7 .lt. 1 ) Str7 - 1

If ( Stp7 .gt. 255 ) Stp7 - 255

If ( Real( Str*to3 - Stp**to3 ) / 2.0 .ne.

Int( Real( Str*to3 - Stp*to3 ) / 2.0 ) ) Str**to3-Str**to3+1

IF (
R&'rSS htV7- ^72)/-^6 ) ) STP7 - STP7 + 1

* Return to calling program

Return
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End

Subroutine HistStats C Hist. Mean- StdDev )

HistStats - Will calculate the mean and standard deviation

of an image histogram

Variable Declaration

Hist - The INTEGER*** vector defined as C0:255) which

CONTAINS THE IMAGE HISTOGRAM

Mean - The REAL"** variable returning the histogram mean

StdDev - The REAL"** variable returning the histogram standard

DEVIATION

Required Subroutines None

Author: Carl Salvaggio February 6. 1987

Rochester Institute of Technology
Center for Imaging Science

Integer"**

Real"**
Real"**

HlST(0:255)

Mean. StdDev

SumX. SumX2

SumX - 0.0
SumX2 - 0.0
TotNum - 0.0

Determine histogram mean and standard deviation

Do 10 I - 0. 255. 1
TotNum - TotNum + Hist( I )

SumX - SumX ? ( I
"

Hist( I ) )

SumX2 - SumX2 ? Hist( I )
"

I*"2

10 Continue

Mean - SumX / TotNum

StdDev - Sort ( ( TotNum
"

SumX2 - SumX""2 ) /

( TotNum
"

( TotNum - 1 ) ) )

D Write (6.") 'TotNum - '.TotNum

D Write (6.") 'Mean - '.Mean

D Write (6.") 'StdDev - '.StdDev

Return to calling program

Return

End
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ScaleDivide - Divides two images and forces the quotient to

fill the full dynamic range

Variable Declaration

FilNamA - The filename contain the image for the numerator

FilNamB - The filename contain the image for the denominator

FilNamA - The filename contain which should contain the

quotient

Required Subroutines Pixin
PIXOUT

Author: Carl Salvaggio Center for Imaging Science
Rochester Institute of Technology

February 7. 1987

Character"80 FilNamA, FilNamB. OuotNam

Integer"2 ImageAC512.512). ImageBC512.512)

Real"** BigA. BigB, Ouot, Factor. MaxOuot

Integer"2 0uotientC512.512)

Place the images in core memory

Call PixIn ( ImageA. FilNamA )

Call PixIn ( ImageB. FilNamB )

Find the largest quotient value

MaxOuot - 0.0

Do 7 J - 1. 512. 1
Do 5 I - 1. 512. 1

BigA - RealC ImageAC I. J) )

BigB - RealC ImageBC I. J) )

Ouot - BigA / BigB

If ( Ouot .gt. MaxOuot ) Then

MaxOuot - Ouot

End If

5 Continue

7 Continue

Determine scaling factor to fill dynamic range
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Factor - 255.0 / MaxOuot

D Write (6.*) 'Factor - '. Factor

Perform the division and scale by the scaling factor

Do 20 J - 1, 512. 1
Do 10 I - 1. 512. 1

BigA - RealC ImageAC I. J) )

BigA - BigA
*
Factor

BigB - RealC ImageBC I. J) )

OuotientCI.J) - IFixC BigA / BigB )

10 Continue
20 Continue

Write the ouotient image out to disk

Call PixOut ( Quotient. OuotNam )

Return to calling program

Return

End
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Appendix D

Description of the PIF Normalization Code

Normalize

HistStats
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Normalize - This program will perform the PIF normalization

process. The PIF images will be calculated, the
PIF histograms determined for each band image.
THE HISTOGRAM STATISTICS COMPUTED. AND THE

APPROPRIATE TRANSFORMS DETERMINED. THIS PROGRAM

IS DESIGNED FOR USE AFTER DETERMINING THE PIF
MASK USING EITHER BLDPIF OR MANP1F.

Variable Declaration

AndChan

ClearChan -

DayI
Day2
FilNam
Hist

Hi stNam
ImageChan -

Intercept -

Mask

MaskChan
Mean
Slope
StdDev

The memory plane to display the result of the

logical and operation to

The memory plane that is used in the DVP clearing

PROCESS

THE NAMES OF THE DAY 1 IMAGE FILES

THE NAMES OF THE Day 2 IMAGE FILES

THE NAME OF THE FILE TO STORE THE PIF TRANSFORMS TO

The PIF histogram data array

The name of the file to store the PIF histograms to

The memory plane to display the image in

The PIF transform intercept array

The name of the file containing the PIF mask images

The memory plane to display the PIF mask in

The PIF histogram mean array

The PtF transform slope array

The PIF histogram standard deviation array

Required Subroutines: User:ISLS**255.CIS.IPIJ
User:[CNS902**.DeAnza]

VAX/VMS Rtl

Ipi_AttUnit
ShoMno
Logical_And
Histogram

Hi stStats
TriMno
MxbItt

WrtItt

SavMno

LibSErasePage
StrSUpCase

Author: Carl Salvaggio Center for Imaging Science
Rochester Institute of Technology

March 2. 1987

Character"! Bell. Cont. Ans

Character*80 Day1(6). Day2(6). FilNam. HistNam

Character"80 Mask (2)

Integer"** ImageChan. MaskChan. AndChan. ClearChan

Integer"** Hist(0:255)

Logical"1 Exists
Real"** Mean(2.6). StdDevC2.6)
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Real"** Slope(6). InterceptC6)

Initialize constants

Parameter C Bell - Char(7) )

Data ImageChan / 0 /
Data MaskChan / 1 /
Data AndChan / 2 /
Data ClearChan / 3 /
Data HistNam /

'Image#Day#.Hst'

/

Format C + ",a1) ! Bell ring

Get the number of bands that are to be normalized

Call LibSErase_Page(1.1)
Write (6.")
Write (6.")

'

PIF Scene Normalization
'

Write (6.")

Write (6.") 'Note: The Day 1 image that is referred to
in'

Write (6.")
'

this program is the data set
that'

you
wish"

Write (6.*)
'

to transform. The Day 2 image is the
'

Write (6.")
'

image you wish the Day 1 image to look
'

Write (6.*)
'

like after the transformation is
performed.'

Write (6.")

51 Write (6.52)

52 Format ('$'. 'Enter the number of band images your data has: ')

Read (5.".End-900) NumBands

If ( NumBands .gt. 6 ) Then

Write (6.1) Bell
Write (6.")

Write (6.*)
'"""

ERROR
"""

Maximum number of bands is
6'

Write (6.")

GoTo 51
End If

If ( NumBands .lt. 1 ) Then

Write (6.1) Bell
Write (6.")

Write (6.")
'"*"

ERROR
"""

You need at least one band

Write (6.*)

GoTo 51
End If

Get names for the Day 1 images

Write (6.")

Do 79 I - 1. NumBands. 1

2 Write (6.5) I
, , ,

,_
,

5 Format ('$'. 'Enter file name for Day 1 Image'.
12.'

: ')

Read (5.'(A)'.End-900) DayK I )

Inquire ( File-DayK 1 ). Exist-Exists )

If ( Exists .eq. .FALSE. ) Then

Write (6.")
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GoTo 2
End If

79 Continue

Write (6.1) Bell
Write (6.*)

****

ERROR
***

File does not
exist'

Write C6.*)

Get names for the Day 2 images

Write C6.")

Do 10 I - 1. NumBands. 1
20 Write C6.78) I
78 Format CS'. 'Enter file name for Day 2 Image

'.12-'

: ')
Read (5.'(A)'.End-900) Day2C I )
Inquire C File-Day2C I ). Exist-Exists )
If ( Exists .eq. .FALSE. ) Then

Write C6,")

Write (6.1) Bell
Write (6.*)

'""*
ERROR

""*

File does not
exist'

Write (6.")
GoTo 20

End If

10 Continue

Get the mask name for each day

Write (6.")

Do 68 K - 1. 2. 1
67 Write (6.69) K

69 Format CS*. 'Enter file name for
Day'.i2.'

Mask: ')
Read (5.'(A)*.End-900) MaskC K )

Inquire ( File-Mask( K ). Exist-Exists )

If ( Exists .eq. .FALSE. ) Then
Write (6.")

Write (6.1) Bell
Write (6.")

'""
ERROR

"""

File does not
exist*

Write (6.*)

GoTo 67

End If
68 Continue

Write (6.*)

Write (6.42)

**2 Format CS'.'Do you wish to save the histogram data (y or n)? ')

Read (5.'(A)*.End-900) Ans

Call StrSUpCase(Ans.Ans)

Attach the unit to the current process

Call IpiJVttUnit ( Unit )

'*
Find the histogram statistics for each band image
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Do 86** J - 1. 2. 1
Call ShoMno C Unit, MaskC J ), MaskChan )
Do 863 I - 1. NumBands, 1

If C J .eq. 1 ) Then
Call ShoMno C Unit. DayIC I ). ImageChan )

Else
Call ShoMno ( Unit, Day2C I ). ImageChan )

End If

Call Logical_And ( Unit. ImageChan, MaskChan. ANDChan )
Call Histogram ( Unit. ANDChan. Hist )
HistCO) - 0
Call HistStats C Hist. MeanCJ.I). StdDevCJ.I) )
If C Ans .eq.

'Y'

) Then
HistNamC6:6) - CharC J+m8 )
HistNamC10:10) - CharC J+**8 )
Open C 1. File-HistNam.

Status-'New'
)

Do 861 M - 0. 255. 1
Write CI.") M. HistC M )

861 Continue
Close C 1 )

End If

863 Continue
86** Continue

Display the histogram stats to the user

Write (6.*)

Write (6.")

Write (6.*)
'

PIF Histogram Statistics
'

Do 7**3 I - 1. 2. 1
Write (6.")

Write (6.7**1) I

7**1 Format
('$'.'

The histogram stats for
Day'.i2.'

are: ')
Write (6.")

Write (6.") 'Image Mean Standard
Deviation'

Do 7**2 J - 1. NumBands. 1
Write (6.739) J. MeanCI.J). StdDevCI.J)

739 Format (*S'.i3.10x.f6.2.10x.f6.2 )

7**2 Continue
Write (6.")

7**3 Continue
Read (5.'(A)'.End-900) Cont

Calculate the linear histogram transformations

Do 895 J - 1. NumBands. 1
Slope(J) - StdDev(2.J) / StdDev(I.J)

Intercept(J) - Mean(2.J) - Slope(J)
"

Mean(I.J)

895 Continue

DISPLAY THE TRANSFPORMS TO THE USER

Write (6.")

Write (6.*)
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Write (6,*)

Write C6.*)
'

PIF Linear Transforms
'

Write C6.")

Write C6.") 'Image Slope
Intercept-

Write C6,*)
Do 836 J- 1. NumBands. 1

Write C6.835) J. SlopeCJ). InterceptCJ)
835 Format C'$'.i3.10x.f6.2.10x.f7.2 )
836 Continue

Write C6.*)

Write transforms out to file

Write (6.837)
837 Format ('$'. 'Do you wish to save transforms to a file (y or n)? ')

Read (5.'(A)'.End-900) Ans
Call StrSUpCase (Ans.Ans)
If ( Ans .eq.

'Y'

) Then
Write (6.838)

838 Format
CS'.'

Enter filename to store to: ')
Read (5.*(A)'.End-900) FilNam
Open ( 1. File-FilNam.

Status-'NEW'

)
Do 839 J - 1. NumBands. 1

Write (1.") Slope(J). Intercept(J)
839 Continue

End If

Clear the channels

Call LogicalAnd ( Unit, ImageChan, ClearChan. ImageChan )

Call Logical_And ( Unit. MaskChan. ClearChan. MaskChan )
Call Logicai_And ( Unit. ANDChan. ClearChan, ANDChan )

Transform the Day 1 imagery

Write (6.")

Write (6.")

Write (6.")

Write (6.*)
'

PIF Transformations
'

Write (6.")

Call TriMno ( Unit. ImageChan )
Do 915 I - 1. NumBands. 1

Call ShoMno ( Unit. DayK I ), ImageChan )

Call MxbItt ( Unit. ImageChan. Slope(I). Intercept(I) )

Call WrtItt ( Unit, ImageChan. ImageChan )

Write (6.977) I
977 Format CS'.'Save transformed Image'.

i2.'

(y or n) ? ')

Read (5.*(A)*.End-900) Ans

Call StrSUpCase ( Ans.Ans )

If ( Ans .eq.

'Y'

) Then

Write (6.979)

979 Format CS'. 'Enter file name to store in: ')

Read (5.'(A)'.End-900) FilNam

Call SavMno ( Unit. FilNam, ImageChan )
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Write (6,*)
End If

915 Continue

Detach unit from the current process and terminate

900 Call Logical_And C Unit, ImageChan, ClearChan, ImageChan )
Call Logical_And C Unit. MaskChan. ClearChan, MaskChan )
Call Logical_And C Unit, ANDChan. ClearChan. ANDChan )

Call TriMno C Unit. -1 )
Call Ipi_DetUnit C Unit )
Write C6.*)

End

#

HistStats C Hist. Mean. StdDev )

HistStats - Will calculate the mean and standard deviation

of an image histogram

Variable Declaration

Hist - The INTEGER*** vector defined as C0:255) which

contains the image histogram

Mean - The REAL*** variable returning the histogram mean

StdDev - The REAL*** variable returning the histogram standard

DEVIATION

Required Subroutines None

Author: Carl Salvaggio February 6. 1987

Rochester Institute of Technology

Center for Imaging Science

Integer"** HistC0:255)

Real*** Mean. StdDev

Real"** SumX. SumX2

SumX - 0.0

SumX2 - 0.0
TotNum - 0.0

Determine histogram mean and standard deviation

D-7



Appendix D

Do 10 I - 0. 255. 1
TotNum - TotNum + HistC I )
SumX - SumX + C I HistC I ) )
SumX2 - SumX2 ? HistC I )

*

I**2
10 Continue

Mean - SumX / TotNum
StdDev - Sort C C TotNum

"

SumX2 - SumX**2 ) /
C TotNum

*

C TotNum - 1 ) ) )

D Write (6.*) 'TotNum- '.TotNum
D Write (6.*) 'Mean - '.Mean
D Write (6.*) 'StdDev - '.StdDev

Return to calling program

Return
End
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Appendix E

Description of the Code Used to Read Data

Off of TM Computer Compatible Tape

LT4Read

LandFull

Land512
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Lt**Read - Will look at a Landsat-** imagery file that has

been copied from magtape to disk, and extract

either a full scene or a full resolution subsection.

The image data that this program is

intended to read is located in 28672 byte records,

of which there are 1**92. The record contains four

image lines. each occupying 7168 bytes of the

record. This is the format that NASA used before

THEY STANDARDIZED ON THEIR CURRENT TAPE FORMAT.

Written by Carl Salvaggio October 28, 1986

9

10

11

50

60

70

20

30

40

Character'1
Integer"2

Ans

IChoice

")

")

( y or n ) ? ')

Call LibSErase_Page(1.1)

Write (5.9)

Format
CS'.'

Write (5.10)

Format
('$','""*

Landsat ** (unconventional) Tape Read

Write (5.11)
. ...v

Format (
'$* >

Write (5.")
Write (5.*)

Write (5.50)

Format CS'-'This program requires the data to be arranged /,
'

in the following data structure. The imagery /.
'

file should be on disk (copied directly from /.
'

magtape). This file should contain 1*92 image /.
'

records of length 28672 bytes.')

WRITE (5.*)

Write (5.60)

Format CS'.'Do you have this data ready

Read (5.'(A)*.End-900) Ans
iwj x t

If ( Ans .ne.

*y'

.and. Ans .ne.

'Y'

) Then

Write (5.")

Write (5.70) ,,,,.

Format CS'.'You must have this data ready first Ml )

GoTo 900

End If

Write (5.*)

Write C5.20)

Format ('$'. 'Sampling Choices:')

Write (5.")

Write <5.")
' (1) Subsample a

Write
<5.*>- '

(2) Extract 512

Write (5.">

Write (5.40)
,,

_.

Format CS'. 'Enter Choice (1 or 2) :

Read (5.".End-900) IChoice

If ( IChoice .lt. 1 .or. IChoice .gt

If ( IChoice .eq. 1 ) Then

Call Lib$Erase_Page(1.1)

Write (5.100)

full
scene'

x 512 full resolution

')

SCENE*

2 ) GoTo 30
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100 Format ('$'.
Write (5.101)

101 Format (.'%'.""

Write (5.102)
102 Format ('$'.

Write (5.")
Call LandFull

ElseIf ( IChoice .eq. 2 ) Then
Call LibSErase_Page(1.1)
Write (5.103)

103 Format CS*.
Write (5.104)

104 Format
('$'.'"""

Extract 512 x

Write (5.105)
105 Format

CS'
-

Write (5.")
Call Land512

EndIf

900 Write (5.")
Stop *LT4Read

Completed.'

End

Subsample A Full Scene

"*')

**')

""')

512 Full Res Scene

")

")

")

Subroutine LandFull

LandFull - Will look at a Landsat-4 imagery file that has

been copied from magtape to disk. and subsample

at an appropriate rate to obtain a full scene

image. the image data that this program is

intended to read is located in 28672 byte records.

of which there are 1492. the record contains four

image lines. each occupying 7168 bytes of the

record. This is the format that NASA used before

THEY STANDARDIZED ON THEIR CURRENT TAPE FORMAT.

Written by Carl Salvaggio October 28. 1986

Byte RecBuf( 28672 )

Character"80 FilNam. LandFil

Integer*4 NumImgRec. RecLen. NumRec

Integer"4 ImgPixLin. NumBytRec

Integer*4 StrRec StpRec StrPix. StpPix

Integer"4 Scan. Line
Integer*4 Recrd. PixInc RecInc OutSiz

Parameter ( OutSiz = 512 )

Parameter ( NumRec - 1492 )

Parameter ( NumPixLin - 7168 )

Parameter ( NumRecLin - 4 )

Parameter ( NumRecImg - NumRecLin'NumRec )

Get the filespec to store the 512x512 image to
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Write (5.1)
Format

CS'.'

Enter LANDSAT Imagery filename : ')
Read (5.'(A)'.End-900) LandFil
Write (5.2)
Format ('$'. 'Enter filename to store image to : ')
Read (5.'(A)'.End=900) FilNam

Open input and output files

Inquire (File-landFil. Recl-RecLen )

Write (*.*) 'RecLen - '.RecLen

Open ( 1, File-LandFil. Form= 'Unformatted
'

.

1
Organization-'Seouential'

.

2 Status-'Old'. RecL-RecLen/4 )

Open ( 2. File-FilNam. Form- 'Unformatted'.

1 Organization- 'Sequential'
.

2 Status- 'New'. RecLKXjtSiz/4 )

Grab image subsection and store to disk

PixInc - IntC RealC NumPixLin ) / Real( OutSiz ) )

RecInc - Int( Real( NumRecImg ) / Real( OutSiz ) )

StrPix - 1

StpPix - ( OutSiz - 1 )
"
PixInc + StrPix

StrRec - ( 2
*

NumRecLin ) ? 1 M Second Line. First Scan

StpRec - NumRecImg

Write (5.")

Write (5.3) NumRecImg. NumPixLin

3 Format (*$'. 'Image size :
*.i5.'

x*.i5)

Write (5.4) RecInc PixInc

4 Format CS'.'Subsampling rate :
'.i3.'

x'.i3)

Write (5.")

Recrd 1
Do 10 N - StrRec. StpRec RecInc

Line - N / 4

Scan - N - Line*4

Read (I.Rec-Line) RecBuf

JOffset - Scan
"
NumPixLin

Write (2.Rec-Recrd) ( RecBuf( I ). I - StrPix+JOffset.
? StpPix+JOffset. PixInc )

Recrd - Recrd + 1
If ( Recrd .gt. OutSiz ) Goto 900

10 Continue

Return to calling program
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900 CloseC 1 )

Close ( 2 )

Return
End

Subroutine Land512

LandFull - Will look at a Landsat-4 imagery file that has

been copied from magtape to disk. and sample

A SPECIFIED 512 X 512 SUBSECTION TO CREATE A FULL

RESOLUTION IMAGE. THE IMAGE DATA THAT THIS PROGRAM IS

INTENDED TO READ IS LOCATED IN 28672 BYTE RECORDS,

OF WHICH THERE ARE 1492. THE RECORD CONTAINS FOUR

IMAGE LINES. EACH OCCUPYING 7168 BYTES OF THE

record. This is the format that NASA used before

THEY STANDARDIZED ON THEIR CURRENT TAPE FORMAT.

Written by Carl Salvaggio October 28. 1986

Byte RecBuf( 28672 )

Character"80 FilNam. LandFil

Character'I Bell
Integer"** NumImgRec RecLen. NumRec

Integer*4 ImgPixLin. NumBytRec

Integer"4 StrRec StpRec StrPix. StpPix

Integer"4 Scan. Line
_ w ^ _

Integer"4 Recrd. PixInc RecInc OutSiz

Integer"4 XCoord. YCoord

Parameter ( Bell - Char( 7 ) )

Parameter ( OutSiz - 512 )

Parameter ( NumRec - 1492,)

Parameter ( NumPixLin - 7168 )

Parameter ( NumRecLin - 4 )

Parameter ( NumRecImg - NumRecLin'NumRec )

Get the filespec to store the 512x512 image to

Write (5.1)
..^.., . .

1 Format ('$'. 'Enter LANDSAT Imagery filename )

Read (5.'(A)'.End-900) LandFil

Write (5.2)
_ ,,

2 Format CS'. 'Enter filename to store image to : )

Read (5.'(A)'.End-900) FilNam

Open input and output files

Inquire (File-^andFil. Recl-Reclen )
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Write (",") 'RecLen = '.RecLen

Open ( 1. File-LandFil. Form- 'Unformatted'.
1 Organization-'Sequential'.Access-'Direct*.
2 Status- ' Old

'

. RecL-RecLen/4 )

Open ( 2. File-FilNam. Form- 'Unformatted'.
1 Organization-'Sequential'.Access-'Direct'.
2 Status- ' New'

. RecL=OutSiz/4 )

Display the image size

Write (5.")
Write (5.3) NumRecImg. NumPixLin

3 Format
('$'.'

Image size :
'.i5.'

x'.i5)

Obtain coordinates for the image to be extracted

6 Write (5.")

Write (5.4)
4 Format

('$','

Enter coordinates of upper left corner : ')

Read (5.".End-900) XCoord. YCoord

Check if coordinates are in image bounds

If ( ((XCoord-KKjtsiz-1 .gt. NumRecImg) .or.

(XCoord .lt. 0)) .or. ((YCoord+OutSiz-1 .gt.

NumPixLin) .or. (YCoord .lt. 0)) ) Then

Write (5.5)

Write (5.") Bell
Format

('$'.'"*"

ERROR
**"

Image coordinate out-of-bounds')

GoTo 6
End If

Grab image subsection and store to disk

PixInc - 1
RecInc - 1

StrPix - YCoord

StpPix - StrPix ? OutSiz - 1

StrRec - ( 2
"
NumRecLin ) ? XCoord + 1

StpRec - StrRec OutSiz - 1

Recrd - 1
Do 10 N - StrRec StpRec. RecInc

Line - N / 4
Scan - N - Line"4

Read (I.Rec-Line) RecBuf
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JOffset - Scan
"

NumPixLin

Write (2.Rec-Recrd) ( RecBuf( I ), I - StrPix*JOffset.

? StpP ix+JOffset. PixInc )

Recrd - Recrd + l
If ( Recrd .gt. OutSiz ) Goto 900

10 Continue

Return to calling program

900 Close ( 1 )

Close C 2 )

Return
End
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Appendix F

Summary of Digital Count Data and Reflectance Conversion

Data Used in the Control Point Analysis
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Appendix G

Summary of the Results Obtained Utilizing the

Multivariate Segmentation Algorithm
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This appendix is a summary of the work done in the development of the

multivariate segmentation algorithm. As was stated in Section 2.2 this approach

was dropped after little investigation in favor of the rate of change segmentation

algorithm that was the major focus of this study. The results presented here are for

the urban Rochester TM scenes. After studying these two image data sets, it was

decided that further pursuit of this means of segmentation would prove futile.

Table G-1 is a summary of the principal components computed using TM

bands 1 ,2,3,4,5 and 7. As can be seen from this data, as was predicted by other

investigators, the first three principal components explained about 97% of the

variability in the six band image data. Figure G-1 shows these principal component

images for the 1984 Rochester data. These images confirm the interpretation of

these principal components as explained by Crist and Kauth where the first

principal component represents overall image brightness, the second component

represents greeness (vegetation cover areas are highlighted) and the third

principal component represents wetness (wet areas are highlighted).

These first three principal component images were then used as input to an

unsupervised multivariate clustering routine using the k-means algorithm. The

results of 50 iterations through this clustering algorithm yeilded the cluster means

described in Table G-2.

G-2



Appendix G

Table G-1

Summary of the principal components data computed for the

1982 and 1984 urban Rochester reflective TM data

Eigenvalues

1

1 982 Image Data 320.72 200.90 30.24 7.10 2.26 0.87

(57.05) (35.74) (5.38) (1.26) (0.40) (0.16)
1984 Image Data 1199.20 675.23 146.52 20.18 15.71 1.73

(58.25) (32.80) (7.11) (0.98) (0.76) (0.08)

Associated 1982 Eigenvectors

Band 1 0.140 0.372 0.628 0.319 -0.582 0.086

Band 2 0.113 0.185 0.293 0.046 0.360 -0.858

Band 3 0.171 0.328 0.355 -0.026 0.694 0.504

Band 4 0.349 -0.764 0.486 -0.240 -0.006 0.032

Band 5 0.823 -0.002 -0.386 0.417 0.009 0.002

Band 7 0.374 0.370 -0.090 -0.815 -0.223 -0.039

Band 1 0.466 -0.005

Band 2 0.249 -0.052

Band 3 0.432 -0.044

Band 4 -0.518 -0.681

Band 5 0.306 -0.677

Band 7 0.414 -0.269

Associated 1984 Eigenvectors

2 3 4 5 i

0.528 0.293 0.635 -0.122

0.305 -0.014 -0.262 0.879

0.379 -0.116 -0.667 -0.458

0.481 -0.176 0.047 -0.049

-0.437 0.498 -0.095 0.004

-0.248 -0.788 0.269 0.020

Values in parentheses represent the percent of the total variability

explained by each of the individual eigenvalues / eigenvectors

G-3



Appendix G

Second Principal Component Image

Third Principal Component Image

Figure G-1 The first three principal component images derived from

the six reflective Landsat TM bands of the 1984 urban

Rochester data set
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Table G-2

Summary of the cluster means determined from the unsupervised

multivariate classifier run on the first three principal

component images of the 1 982 and 1 984 urban Rochester TM data

Cluster Means For 1982 Image

PC1 PC 2 PC 3

Cluster 1 3.2 4.7 42.5

Cluster 2 5.4 12.0 42.4

Cluster 3 6.1 17.7 46.1

Cluster 4 3.7 5.4 40.7

Cluster 5 6.3 14.6 43.8

Cluster 6 4.6 3.8 43.2

Cluster 7 5.1 10.5 42.0

Cluster 8 8.7 8.4 41.2

Cluster Means For 1984 Image

PC1 PC 2 PC 3

Cluster 1 64.4 74.1 59.4

Cluster 2 42.8 91.0 57.0

Cluster 3 81.0 102.0 58.8

Cluster 4 20.5 113.4 61.4

Cluster 5 111.7 139.8 62.3

Cluster 6 50.9 114.4 54.0

Above cluster means based on 50 samples

filjiRtpr Image Kev

Cluster 1 - Red

Cluster 2 - Green

Cluster 3 - Blue

Cluster 4 - Yellow

Cluster 5 - Magenta

Cluster 6 - Cyan

Cluster 7 - White

Cluster 8 - Black
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Color composite images were made using the cluster means described

in Table G-2 and appear in Figure G-2. The colors in this image correspond

to the color key defined in Table G-2. As can be seen from these images,

there is no individual spectral class that can be classified as urban features.

This can be expected since the spectral signatures of all urban features are

certainly not alike.

Several of the spectral classes could be identified as urban features but

these also contained pixels which were certainly not pseudo invariant

features. These non-PIF pixels were included in the spectral classes since

their spectral signatures were close enough to those of the respective urban

features in principal component space.

At this point it was realized that the following problems existed. First, no

individual spectral class resulting from the unsupervized multivariate

classifier could be identified as urban features. Second, several spectral

classes were found to contain urban features but these same classes also

contained non-PIF pixels. Third, upon individual runs of the clustering

algorithm, the same spectral classes were not obtained each time (due to

the initial choice of cluster means) which resulted in a method that may

produce different results each time. For these reasons it was decided to

abandon this multivariate segmentation method in favor of the rate of

change algorithm.
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1982 Color Composite Image

1984 Color Composite Image

Figure G-2 Color composite images of the spectral cluster formed by
the unsupervised multivariate clustering algorithm on the

first three principal component images of the 1982 and

1984 urban Rochester TM scenes

G-7



Appendix H

Appendix H

Description of the Array Processor Based Image

Utility Subroutines Used in the Major Programs

Binary
Histogram

Logical_AND

MxbITT

PixIn

PixOut

ShoMno

SavMno

TriMno

Threshold

WrtITT
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Subroutine Binary ( Unit. Channel )

Binary -

This program will take an image and set it to

255 if a pixel is on and 0 if a pixel is 0

Variable Declaration:

Channel - The memory channel that the user wishes to

binarize. This variable should be declared

as
INTEGER"

2 in the calling program.

Required Subroutines : [SLS4255.Cis.Ipi] PutItt

EnableItt

Author : Carl Salvaggio Center for Imaging Science
Rochester Institute of Technology

February 6. 1987

Integer"2 Channel. MemVoc. DvpMem

Integer"2 Itt(0:255)
Integer*^ Unit

Data MemVoc / 1 /

Data DvpMem / 1 /
! Memory VOC number

! DVP allocation number

Error checking

If ( Channel .lt. 0 .or. Channel .gt. 2 ) Then

Write (6.*)

Write (6.")
'**"

ERROR in THRESHOLD
***

Illegal Channel
Number'

Write (6.*)

Return

End If

Define the ITT

Do 10 I - 0. 255. 1
If ( I .eq. 0 ) Then

Itt( I ) - 0

Else
Itt( I ) - 255

End If

10 Continue

Write to the ITT and enable it

Call Ipi_PutItt ( Unit. Channel. Itt )

Call Ipi_EnableItt ( Unit. Channel. MemVoc. DvpMem )

Return to calling program

Return

End
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.SyBROUTINE^HlSTOGRAM^C^UNIT.^CHANNEL.HISTARRAY >..............

Histogram - This program will compute the histogram of a

specified channel and return the values of the

histogram in an array.

Variable Declaration:

Channel - This is the channel number that the user

wishes to take the histogram of. This variable
should be declared as INTEGER*2 in the calling

PROGRAM.

HistArray - This is the array that the histogram values are

returned in. This variable should be declared

as follows in the calling program:

INTEGERS HistArray(0:255)

Required Subroutines: [SLS4255.Cis.Ipi] Ipi_AttDvp
Ipi_DetDvp

Ipi_ClearHst

Ipi_CalcHst
IpijGetHst

Ipi_SetSize

Author: Carl Salvaggio Center for Imaging Science
Rochester Institute of Technology

January 16. 1987

Integer"4

Integer"4
Unit. Status. Channel. HstOps

HistArray( 0:255 )

Data HstOps / 0 /

Error checking

If ( Channel .lt.
Write (6.")

Write (6.")
"

Write C6.")

Return

End If

0 .or. Channel .gt. 2 ) Then

ERROR in HISTOGRAM Illegal Channel
Number'

Get the histogram

Call IpiJVttDvp ( Unit. 1 )

Call Ipi_SetSize ( Unit. 512 )

Call Ipi_ClearHst ( Unit )

Call Ipi_CalcHst ( Unit. Channel. HstOps )

Call IpijGetHst ( Unit. HistArray )

Call Ipi_JJetDvp ( Unit )

! Attach the DVP
! Set image size

! Clear the histogram

! Calculate histogram

! Get histogram from DVP
! Detach the DVP

Return to the calling program

Return

End
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.SuBRWTINE^LOGICAL-AnD^'.^UnIT.InChANA. InChANB. OutChAN )

Logicai And - Will take the images in two separate channels and

perform a logical .AND. on them and place the

result in a third channel.

Variable Declaration

All the following should be declared INTEGER*2

InChanA - The first of the input image channels

InChanB - The second of the input image channels

OutChan - The image channel for the output result image

Required Subroutines: ISLS4255.Cis.Ipi] Ipi_AttDvp

Ipi_DetDvp

Ipi_SetSize
Ipi_DvpMath

Ipi_Constants

Author: Carl Salvaggio Center for Imaging Science

Rochester Institute of Technology

January 23. 1987

Integer"2 InChanA. InChanB. OutChan

Integer*4 Unit

**

Assign the OpCode values

External Ipi And

**
Error checking

If ( InChanA .lt. 0 .or. InChanA .gt. 3 ) Then

Write (6.*)

Write <6.")
'*""

ERROR in Logical_And
"""

Illegal
InChanA'

Write (6.")

Return
End If

If ( InChanB .lt. 0 .or. InChanB .gt. 3 ) Then

Write <6.">
. . ,

Write <6.")
'"*"

ERROR in Logical_And
"""

Illegal
InChanB*

Write (6.")
Return

End If
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If ( OutChan .lt. 0 .or. OutChan .gt. 3 ) Then

Write (6.*)
,

Write (6.")
'***

ERROR in Logical_And
"*"

Illegal
OutChan'

Write (6.*)
Return

End If

Perform logical .AND.

Call Ipi_AttDvp ( Unit. 1 ) ! Attach the DVP

Call Ipi_SetSize ( Unit. 512 ) I Set image size

Call IpiJOvpMath ( Unit. Ipi_And. ! Perform .AND.

InChanA. InChanB. OutChan ) !

Call Ipi_DetDvp ( Unit ) ! Detach the DVP

Return to calling program

Return

End
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Subroutine MxbItt ( Unit. Channel. M. B )

MxbItt - This program will compute a linear ITT and

apply it to the image in the selected channel.

The ITT will be of the form y
- mx + b.

Variable Declaration:

Channel - The memory channel that the user wishes to

threshold in. This variable should be declared

as
INTEGER*

2 in the calling program.

M - The slope of the desired ITT. This variable

should be declared as REAL*4 in the calling

program.

B - The intercept of the desired ITT. This variable

SHOULD BE DECLARED AS REAL*4 IN THE CALLING

PROGRAM.

Required Subroutines : [SLS4255.Cis.Ipi1 PutItt

EnableItt

Author: Carl Salvaggio Center for Imaging Science

Rochester Institute of Technology

January 16. 1987

Integer*2 Channel. MemVoc. DvpMem

Integer"2 Itt(0:255)

Integer"4 Unit
Real"4 M. B. Value

Data MemVoc / 1 /
Data DvpMem / 1 /

Error checking

If ( Channel .lt. 0 .or. Channel .gt. 2 ) Then

Write (6.")
_

Write <6.">
'*""

ERROR in MXBITT
"""

Illegal Channel
Number*

Write (6.")

Return

End If

Define the ITT

Do 10 I - 0. 255. 1
Value - M

"
RealC 1) + B

If ( Value .gt. 255 ) Then
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Itt( I ) - 255
Else If ( Value .lt. 0 ) Then
Itt( I ) - 0

Else
IttC I ) - IFixC Value )

End If
10 Continue

Write to the ITT and enable it

Call Ipi_PutItt ( Unit. Channel. Itt )
Call Ipi_EnableItt ( Unit. Channel. MemVoc. DvpMem )

Return to calling program

Return
End
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Subroutine PixInC Image. FilNam )

This subroutine accesses an image file that exists in unformatted.

L0GICAL"1 storage and converts the image data into INTEGER*2 data.
STORED IN THE 512 X 512 ARRAY IMAGE ( I . J)

Written by Carl Salvaggio 10/3/86
Modified form existing code by Volchok. Biegel. Schimminger

and gorzynski

Integer Row. Column

Parameter ( Row - 512. Column - 512 )

Integer"2 ImageC Row. Column )

Logical'1 LogicC Row )

Character"80 Filnam

Character'1 Ans

OpenC 4. File-Filnam. Access='DIRECT'.
Status='0LD'

.

x Recl=Row/4.
Form='UNFORMATTED'

)

Do 120 I-l.Row

Read C4.Rec=I) C LogicCN). N - 1.Column )

Do 120 J " 1.Column

ImageC I. J) - LogicC J )
_^

IfC ImageCI.J) .lt. 0 ) ImageCI.J)-ImageCI.J)+256

120 Continue

Return

End

H-8



Appendix H

Subroutine PixOutC Image. FilNam )

This subroutine writes an image file by converting INTEGER 2

TO BYTE DATA and storing to an external binary file with 512

records, each of length 128 longwords

Required Subroutine : Macro-32 Subroutine MovByt

Written by Carl Salvaggio 10/6/86

Modified from existing code by Volchok. Biegel. Schimminger

and Gorzynski

Integer*4 Row. Column

Parameter C Row - 512. Column 512 )

Byte LogicC Column )

Integer"2 ImageC Row. Column )

Character"80 Filnam

OpenC 4. File=Filnam. Access-'DIRECT'.
Status-'NEW'

x Recl-Row/4. Form- 'UNFORMATTED'.

x
Organization-

'Sequential'

)

Do 130 I - 1. Row

Do 120 J - 1. Column
....

Call MovBytC ImageC I.J ). LogicC J ) )

120 Continue

WriteC4.Rec-D C LogicCN). N = 1. Column )

130 Continue

Close C 4 )

Return

End
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Subroutine ShoMno C Unit. Name. Channel )

ShoMno -

Will display a 512x512 monochrome image in the

specified channel.

Variable Declaration:

Name - The filename containing the 512x512 monochome

image. This should be declared as CHARACTER*80

in the calling program.

Channel - The channel that the image should be placed in.

This should be declared as INTEGER*2 in the

calling program.

Required Subroutines: [SLS4255.Cis.Ipi1 Ipi_OpenFile

Ipi_DiskPic

Ipi_PutPic
Ipi_CloseFile

Author: Carl Salvaggio Center for Imaging Science

Rochester Institute of Technology

January 20. 1987

Integer*2 Channel
Integer"4 IpiBlkC8). FilePtr. PicOps. Cmrs. Unit

Character*80 Name

Data PicOps / 0 /

*"

Error checking

If C Channel .lt. -1 .or. Channel .gt. 3 ) Then

Write C6.")

Write C6.")
'***

ERROR in SHOMNO
"""

Illegal
channel'

Write C6.")

Return

End If

Assign the CMR the proper value

If C Channel .eq. -1 ) Cmrs - 7

If C Channel .eq. 0 ) Cmrs - 1

If C Channel .eq. 1 ) Cmrs - 2

If C Channel .eq. 2 ) Cmrs - 4

If C Channel .eq. 3 ) Cmrs - 8
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Display the image

)
Call Ipi_OpenFile C IpiBlk. Name. 0

r^
< IpiBlk. FilePtr. PicOps )

p -r,UZPl? S VNIS' Cmrs' ZVal( Fi<-ePtr ).
Call Ipi_CloseFile C IpiBlk )

PicOps )

Return to calling program

Return
End
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Subroutine SavMno C Unit, Name. Channel )

SavMno - Will save a 512x512 monochrome image to disk

from the channel.

Variable Declaration:

Name - The filename containing the 512x512 monochome

image. This should be declared as CHARACTER*80
in the calling program.

Channel - The channel that the image should be placed in.

This should be declared as INTEGER*2 in the

calling program.
'

Required Subroutines: [SLS4255.Cis.Ipi1 IpijDpenFile

Ipi_DiskPic
IpijGetPic
Ipi_SetSize

Ipi_CloseFile

Author: Carl Salvaggio Center for Imaging Science
Rochester Institute of Technology

February 6. 1987

Integer*2
Integer*4

Character"80

Channel
IpiBlkC8).
Name

Data PicOps / 0 /

FilePtr. PicOps. Cmrs, Unit. Status

Error checking

If C Channel .lt.

Write C6.")

Write C6.")
"

Write C6.")

Return

End If

0 .or. Channel .gt. 2 > Then

ERROR IN SAVMNO Illegal
channel'

Assign the CMR the proper value

If C Channel .eq. 0 ) Cmrs - 1

If C Channel .eq. 1 ) Cmrs - 2

If C Channel .eq. 2 ) Cmrs - 4

Display the image
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Status - Ipi_OpenFile C IpiBlk. Name. IpiJSizePicC PicOps ) )

Call IpiJErrorCheck C Status.
'OpenFile:'

)
Status - Ipi_DiskPic C IpiBlk. FilePtr. PicOps )
Call IpiJErrorCheck C Status.

'DiskPic:'

)

Status = IpijGetPic C Unit. Cmrs. ZValC FilePtr ). PicOps )

Call IpiJErrorCheck C Status. 'GetPic:
'

)
Status - Ipi_CloseFile C IpiBlk )
Call Ipi_ErrorCheck C Status.

'CloseFile:'

)

Return to calling program

Return

End
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i
ne^TriMno C Unit, Chan )

TriMno -

Will display a specified channel in black and

white. Just send this routine the Channel

number. 0.1.2,3 to view these channels or send

-1 to reset to normal viewing

Variable Declaration

Chan - The channel to set to B & W C INTEGER*4 )
Unit - The unit attached to the process C INTEGER"4 )

Required Subroutines [SLS4255.Cis.Ipi]ViewChan

Author Carl Salvaggio Center for Imaging Science
Rochester Institute of Technology

February 25. 1987

Integer"4 Length, Unit. Status. Chan

**

Show the specified channel in B & W

If C Chan .eq. -1 ) Then

Status - Ipi_ViewChanC Unit. Chan. 0 ) ! Reset TRIMNO

Else
Status = Ipi_ViewChanC Unit. Chan ) ! Set TRIMNO

End If
Call IpiJErrorCheck C Status.

'ViewChan:'

)

""

Return to calling program

Return
End
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Threshold C Unit. Channel. Thresh. IOpt )

Thresh This program will threshold a monochrome Cone
channel) image by setting all DC's above a
specified value to zero while leaving all DC's
below the threshold value the same.

Variable Declaration:

Channel - The memory channel that the user wishes to

threshold in. This variable should be declared

as INTEGER*2 in the calling program.

Thresh - The digital count value at which the threshold

should occur. this variable should be declared

as INTEGER*2 in the calling program.

IOpt - The thresholding option:
.

IOpt = 0 will set all values below
'Thresh'

to a DC of zero.

IOpt <> 0 will set all values above
'Thresh'

to a dc of zero.

Required Subroutines [SLS4255.Cis.Ipi] PutItt

EnableItt

Author: Carl Salvaggio Center for Imaging Science
Rochester Institute of Technology

January 16. 1987

Integer"2 Channel. Thresh. MemVoc. DvpMem

Integer"2 IttC0:25>

Integer"4 Unit

Data MemVoc / 1 /

Data DvpMem / 1 /
! Memory VOC number

! DVP allocation number

Error checking

If C Channel .lt.

Write C6.">

Write C6.")

Write <6.">

Return

End If

0 .or. Channel .gt. 2 ) Then

'"""

ERROR in THRESHOLD
*""

Illegal Channel
Number'

If C Thresh .lt. 0 .or

Write C6.">

Write C6.")
'*""

ERROR in THRESHOLD

Write C6.")

Return

Thresh .gt. 255 ) Then

Illegal
Threshold'
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End If

Define the ITT

If C IOpt .ne. 0 ) Then
Do 10 I - 0. 255. 1

If C I .lt. Thresh ) Then
IttC I ) = I

Else
IttC I ) = 0

End If

10 Continue

Else
Do 20 I - 0. 255. 1

If C I .ge. Thresh ) Then
IttC I ) - I

Else
IttC I ) - 0

End If

20 Continue
End If

Write to the ITT and enable it

Call Ipi_PutItt C Unit. Channel. Itt )

Call Ipi_nableItt C Unit. Channel, MemVoc. DvpMem )

Return to calling program

Return

End
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Subroutine WrtItt C Unit. InChan. OutChan )

WrtItt. -

This program will save the image in the

specified channel thru the current ITT
INTO A SPECIFIED CHANNEL.

Variable Declaration:

InChan - The channel on which the current ITT is

present. This variable should be declared as

INTEGER*2 in the calling program.

OutChan - The channel which should be written thru the

the ITT in 'InChan'. This variable should be

declared as INTEGER*2 in the calling program.

Required Subroutines: [SLS4255.Cis.Ipi] Ipi_AttDvp

Ipi_DetDvp

Ipi-EnableI tt

Ipi_DvpMath

Ipi_Constants

Author: Carl Salvaggio Center for Imaging Science

Rochester Institute of Technology

January 16. 1987

Integer*2 InChan. OutChan

Integer*4 Unit. Status. Length

External Ipi Nop

**

Error checking

If C InChan .lt. 0 .or. InChan .gt. 2 ) Then

Write C6.")

Write C6.*)
'"""

ERROR in WRTITT
*""

Illegal In
Channel'

Write C6.")

Return

End If

If C OutChan .lt. 0 .or. OutChan .gt. 2 ) Then

Write C6.")

Write C6.")
"""

ERROR in WRTITT
"*"

Illegal Out
Channel'

Write C6.")

Return

End If

Save the channel thru ITT to memory
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Call Ipi_AttDvp C Unit. 1 )
Call IpiJEnableItt C Unit. InChan. 0. 1 )

! . . MemVoc. DvpMem )

Call Ipi_DvpMath C Unit. Ipi_Nop. InChan.

InChan. OutChan )

Call Ipi_nableItt C Unit. InChan. 0. 0 )
Call Ipi_DetDvp C Unit )

! Attach the DVP

! Enable the ITT

! Write thru ITT

! Disable the ITT

! Deattach the DVP

Return to calling program

Return

End
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Appendix I

Description Of Non-Linearity Problems EncounterWhen Digitizing
Photographic Transparencies
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When digitizing a photographic transparency, care must be taken to

observe the non-linear nature of the photographic material. This becomes

especially important when the resulting imagery is to be used with a process

such as pseudo invariant feature analysis. It is essential that the assumption

of linearity between the reflectivity of the scene elements and the brightness

values in the digital image be satisfied or the resulting linear transformations

become invalid. The following is a justification which allows the PIF

normalization procedure to be used on digitized airphotos as long as the

caveats mentions are satisfied.

Linearity can be established between reflectivity of scene elements and the

resulting brightness counts is a digitized image as follows:

If it is assumed that the radiance at the sensor, L, is a linear function of the

reflectivity, R, of a scene element

L = aR + p (1)

where a and P are linear coefficients encompassing atmospheric

effects

and we have the definition of intensity at the sensor

L-
d'

dA cose

where I is the intensity associated with a scene element at the

sensor

dA is the element of area associated with the scene

element

and 6 is the view angle measure to the normal
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then if we assume that our sensing system is viewing straight down at the

ground (i.e. 6 = 0) we have

I = J L dA cose

1-jLdA

1-LjdA

and therefore

l = LA (2)

which says that I at the sensor is a linear function of L at the sensor.

Now the irradiance at the sensor is found by taking equation (2) through the

optical system of the sensor with a transmittance x as

I = tLA

A can be rewritten as

*
7td

where d is the diameter of the aperture of the optical system.

The intensity on the sensor focal plane is

LtTcd
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so the irradiance on the focal plane is written as

- LTTCd
=

4f*

where f is the focal length of the optical system.

The term G# is defined as

G# = 4=
4f2

T7td

and the irradiance on the sensor is simplified to

Thus, the irradiance on the film plane is a linear function of the radiance on

the sensor.

By definition, the exposure on the film plane, H, is a linear function of the

irradiance, E, namely that

H = Et (3)

where t is the exposure time.

Therefore the exposure at the sensor is a linear function of the reflectivity of

the scene elements on the ground where
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and,

H = Et

H

H

H

JLt_
G#

(ct R + P) t

G#

2-LR + li
G# G#

and finally H = m R + b (4)

with m =

and b =

at

G#

11
G#

Now if the sensor is a photographic emulsion, the sensor response function

is classically represented by the D-log H curve. This curve and the

corresponding x-H (transmittance vs. exposure) curve are depicted in Figure

1-1. The relationships represented by these curves are highly non-linear. In

order to overcome this non-

o
tz

CO

'E
CO
c

CO
1

r-

c
CD

Q

D-Log H Curve

Transmittance - H Curve

Log H / H

Figure 1-1 Typical D-Log H Curve / x vs. H Curve
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linearity the following caveats must be instituted. The straight line portion of

the characteristic D-log H curve is not an indication of linearity since both

quantities are themselves logarithmic, however, in the exposure region

corresponding to this straight line portion of the curve, the following can be

said

Let y be the slope of the straight line portion of the D-log H curve so

D = y log H - log i
(5)*

where log i is the intercept value of the density axis

we can rewrite (5) as

D = y (log H - c log i)

where c is a constant.

Taking the antilogarithm of both sides of the above equation we get

x =
CH'Y

(6)

where C is a multiplicative constant.

*

T.H. James, Thp Thpnrv
of tha Photographic Process. Macmillan

Publishing Co., Inc., 1966,
p. 505.
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When y= -1 (i.e. for a positive working photographic material) we have x
=

CH so that a photographic system can be made to be linear over a limited

range under the following two caveats:

1 ) the exposure range is limited to that portion corresponding to the

straight line portion of the D-log H curve, and

2) the value y for the film is forced to be -1 .

So now we have that the transmittance of a photographic emulsion is

linearly related to the reflectivity of a scene element under the caveats listed

above, namely

x =
m'

R + V .(7)

where m and b are linear coefficients.

Now if we can make the assumption that the digitizing system has a linear

response function to incident radiance, LD, then we have

DC =

m"

LD +
b"

(8)

where DC is the brightness value produced for a scene element by

the digitizer, and

m and bare gain and offset factors for the digitizing system.

Since we know that

LD = xLo

where L0 is the constant radiance incident on the photographic

emulsion

and x is the transmittance of the transparency at any point

we can conclude that

DC =

m,H

R +
b'"

(9)
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where
m'"

and
b'"

are linear coefficients.

Equation (9) shows tat the digital count of a digitized airphoto is linearly
related to the reflectance of the scene elements included in the photograph

over a limited dynamic range.

The previous discussion has shown that under specific caveats the

brightness values of a digitized photographic transparency can be

considered to be linearly related to the reflectance of corresponding scene

elements. The caveats imposed are however very stringent. If the gamma of

the photographic material significantly deviates from unity or the dynamic

range of the scene exposures significantly deviate from the straight line

region of the D-log H curve, the assumption of linearity is weakened. The

weakening of this assumption can be prevented if the D-log H curve is

known for the film and appropriate action is taken to correct the brightness

values of the digital image for this non-linearity.

For this current study, the D-log H information was not available for

the NHAP image used and therefore no correction could be applied. The

caveats mentioned above were assumed to be true and the transparencies

of Buffalo were digitized and assumed to represent a linear system.
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