AUTOMATED SEGMENTATION OF URBAN FEATURES
FROM LANDSAT THEMATIC MAPPER IMAGERY
FOR USE IN PSEUDOINVARIANT FEATURE
TEMPORAL IMAGE NORMALIZATION

by

Carl Salvaggio

A thesis submitted in partial fulfilment of the
requirements for the degree of Master of Science
in the Center for Imaging Science in the
College of Graphic Arts and Photography of the
Rochester Institute of Technology

May 1987
Signature of the Author Carl Savaggio
Accepted by Name Illegible

Coord'inator, M.S. Degree Program



Center for Imaging Science
College of Graphic Arts and Photography
Rochester Institute of Technology
Rochester, New York

CERTIFICATE OF APPROVAL

M.S. DEGREE THESIS

The M.S. degree thesis of Carl Salvaggio
has been examined and approved by the thesis
committee as satisfactory for the thesis requirement
for the Master of Science degree

Dr. John R. Schott, Thasis Advisor

Dr. Roger Easton

Mr. Peter G. Engeldrum

5/24/47

! Daté




AUTOMATED SEGMENTATION OF URBAN FEATURES
FROM LANDSAT THEMATIC MAPPER IMAGERY
FOR USE IN PSEUDOINVARIANT FEATURE
TEMPORAL IMAGE NORMALIZATION

by
Carl Salvaggio

Submitted to the Center for Imaging Science in
partial fulfillment of the requirements for the
Master of Science degree at the
Rochester Institute of Technology

ABSTRACT

An automated segmentation algorithm for the isolation of pseudoinvariant
features was developed. This algorithm utilizes rate-of-change information
from the thresholding process previously associated with the
pseudoinvariant feature normalization technique. This algorithm was
combined with the normalization technique and applied to the six reflective
bands of the Landsat Thematic Mapper for both urban and rural imagery.
The segmentation algorithm and normalization technique were also applied
to color infrared high resolution U2 imagery. The accuracy and precision of
the normalization results were evaluated. The technique consistently
produced normalization results with errors of approximately one or two
reflectance units for both the rural and urban Thematic Mapper imagery as
well as the visible bands of high resolution airphoto imagery. The
segmentation algorithm shows great potential for the removal of human
intervention in the pseudoinvariant feature temporal image normalization
process.
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1.0 Introduction

As soon as man was able to take to the air for travel, the prospect of collecting
information about the Earth became possible. With the advances in aeronautical
technology of the past century, concurrent advances in imaging technology have
also been made. From hand held photography in hot air balloons to the French
SPOT satellite of today, imagery has become more and more complex as well as

intellectually exciting.

In whatever form this imagery has been collected, a primary use of aerial
images has always been mapping and land use classification. The complexity of
these processes range from a photointerpreter sitting down at a light table with a
photographic transparency to the statistical processing of a digital image containing
up to four million separate picture elements. However the data is processed, this
information is then used to track urban development, study the decay or improvement
of natural bodies of water, monitor the progress of a farmer's croplands, or even to

search the land for natural resources such as petroleum.

A first step in any processing of this remotely sensed imagery is the correction
of atmospheric degradations that have disrupted the quality of the signal reaching
the sensor. Much time and research has been devoted to this problem with varying
degrees of success. Many models have been designed to predict atmospheric
effects in an attempt to understand how they could be corrected. In general these
models are tedious and involve a great deal of human interaction in their
implementation. One of the many algorithms directed at this purpose is referred to as
temporal image normalization using pseudoinvariant features. Unlike classical
normalization algorithms which correct each image for their individual degradations,
this algorithm will force the second image of a temporally separated pair to appear as

if it were taken through the identical atmosphere as the first. In this manner, any



remaining differences are truly differences in the actual scene. Pseudoinvariant
feature normalization, unlike the others, does not require a large degree of human
interaction since it is statistically based. The human user is only required to segment

the original images such that only urban features remain.

This study is intended to remove the image analyst from the process of
temporal image normalization using pseudoinvariant features. This is accomplished
by the development of an automated image segmentation algorithm that isolates
pseudoinvariant features from the two temporally separated images. This study
involves the theoretical development of the segmentation algorithm, the empirical
application of this algorithm to the pseudoinvariant feature normalization of a wide
variety of Landsat TM images, and an in-depth analysis of the errors involved with
the algorithm and the normalization method. The primary goal of this study is to
remove the human interpreter from the pseudoinvariant feature normalization
process and to provide the remote sensing community with a completely automated
method of scene normalization. The secondary goal is to provide a viable and
quantitative measure of scene normalization accuracy which can be used as a

comparative tool for the large gamut of normalization techniques that are available.



1.1 Historical Background

The history of remote sensing dates back to the late nineteenth century when
man first took to flight. A natural outgrowth of this scientific accomplishment was the
acquisition of information about the land, the waters, and other people in a way that
was never available before. As techniques for information acquisition have become
more complex and sensitive, the informational content of the imagery is degraded by
the atmosphere that exists between the sensor and the target of interest. It has
become necessary to devote time and effort to the development of methods to
remove this degradation, along with those due to the sensor response function,
illumination geometry and collection geometry. This effort is part of a branch of

remote sensing called temporal image normalization.

1.1.1 Temporal Image Normalization

Temporal image normalization is defined as a process which removes most
of the effects of sun angle, look angle, and atmosphere from each of a pair of
temporally separated images, therefore causing them to look as if they were taken
under similar conditions.1 The successful application of this type of process
augments the accuracy of such processes as temporal change detection, automatic
feature extraction, and target identification.2 This technique has been the subject of
research for high resolution imagery (Piech and Schott, 1974 and Piech et. al.,
1981) 3,4 and has achieved a great deal of success. As a direct extension from
these applications, coarser resolution imagery such as that from the Landsat

Thematic Mapper (TM) , has been the subject of successful normalization studies.S

Gerson and Fehrenbach (1983) have described five different temporal image

normalization algorithms,6 including normalization procedures for high resolution



black-and-white and color aerial films. Evaluation of these techniques involved a
simple subjective comparison of the relative effectiveness of the normalization.
Comparison of these techniques have shown that the success of normalization
depends on several factors including scene content, the type of imaging process and
albedo effects. The best results come from normalizing two black-and-white
terrestrial images where several known reflectances can be located. Less successful

results were achieved with hydrographic images.

It was decided not to choose any of the normalization techniques described
by Gerson and Fehrenbach since all these techniques involved operations on both
images of the temporally separated pair. A normalization technique which operates
on a single image and causes it to appear like a second image was desired since a
reduction in error due to less complex normalization was expected. Such a
technique was demonstrated by Volchok and Schott (1985) through the use of
pseudoinvariant features.? This technique works quite well on coarser images (e.g.
30 meter spot size), with normalization errors of the order of one reflectance unit.
This method is easily implemented and requires very little user intervention, thus

making it attractive to an image analyst.



1.1.2 Pseudoinvariant Feature Normalization

The temporal image normalization technique chosen for this study is based
on image components known as a pseudoinvariant features (PIF's). This is a class of
objects whose spectral signatures are relatively constant over time. Such features
include concrete, asphalt, stone and rooftops.8 The reflectance of these objects over
time is not constant in an absolute sense. That is, although concrete and asphalt
surfaces may get soiled and hence exhibit a change in reflectance, it is expected that

the statistical distribution of the reflectances of these features will remain constant.

The actual normalization is executed in the following manner for Landsat TM
imagery (The techniques are described as being applied to TM imagery since this
was the subject of the initial research,9 but the method was shown to work equally
well, if not better, with higher resolution images.10) Two temporally separated
images of the same area must be obtained. Pseudoinvariant features are isolated
from these two images and their gray level distributions determined within each band
of both images (it is assumed that the digital brightness histogram and the
reflectance histogram are linearly related). A set of linear transformations can then
be derived to modify the histograms of the second image so that they look like the
histograms from the firstimage. These transformations, derived for the distributions
of the pseudoinvariant features, can then be applied to the second digital image. As
stated earlier, the results of this type of normalization yielded results with
approximately one reflectance unit of error between the two normalized images.
The derivation of this technique and the transformations is well documented by

Volchok (1985).11

The theory behind image normalization using pseudoinvariant features and
the application of this new technology for Landsat TM imagery has proven to be a

viable, simple, and much needed technique for temporal image normalization. This



method makes two temporally separated images of the same area "look" the same,
both visually and radiometrically. In this manner, an image analyst can perform
transformations on only one image of a temporally separated pair and still have
confidence in the subsequent radiometric measurements. This is quite an
improvement over past methods where each image of the pair had to be individually
corrected for their respective atmospheric and radiometric degradations before any

analysis could begin.

As a preliminary step toward this study, much work was done to simplify the
implementation of the concepts demonstrated in the original investigation.12 in order
to make the implementation of this technique less arduous. The current
implementation of this technique takes only minutes rather than the hours once
required. This facilitates two goals of all remotely sensed image analysis:

(1) maximization of accuracy and speed and, (2) minimization of man's involvement

and contribution of error.

An essential first step in the PIF normalization process is the isolation of the
pseudoinvariant features from the digital images. To date this has been done in an
iterative and interactive fashion as will be described in Section 1.3.1. The removal of
human interaction from this technique would enhance this technology further and
make available a powerful technique for many temporal studies such as change
detection. It is therefore the primary purpose of this study to develop an automated
algorithm for segmentation so that the human interaction can be removed from this

normalization process.

The question that inevitably arises with any technique used to normalize
images is "How good is the technique, i.e. how well are the images normalized?".

This question is addressed in the following section.



1.1.3 Quantification of Normalization Results

The quantification of the results obtained in an image normalization
procedure has not been considered in the literature in any rigorous form. Gerson
and Fehrenbach (1983) used only qualitative analysis in their comparison of different

normalization methods.13

Normalization error is not a simple concept to evaluate since quantitative
information in a scene is not always readily available. Ground truth panels in a
scene would undoubtedly be an invaluable tool for the evaluation of the
effectiveness of a scene normalization procedure since direct comparison of this
ground truth data could be made. Ground truth data is costly to obtain for high
resolution imagery since significant manpower is required. It is nearly impossible to
obtain with lower resolution imagery such as Landsat TM data since the size of the
required ground truth panels would need to be immense (on the order of 60 meters
on a side to eliminate mixed pixel effects). It is evident from this that a method of
quantitatively evaluating the effectiveness of scene normalization techniques is
required. A secondary purpose of this study is to develop a quantitative tool for
testing the quality of normalization using in-scene elements. Such a test can be
used to evaluate the results from any normalization technique and make possible

comparative judgements.

1.1.4 Spectral Signatures and Band Ratioing for

Classification and Segmentation

In order to use the pseudoinvariant feature normalization technique, the man-
made features that are present in the image need to be segmented for statistical
analysis and subsequent development of transforms. To begin the process of

isolating pseudoinvariant features from a Landsat TM image, we must first examine



the methods commonly used in the classification of multispectral imagery. It is the

purpose of this and the following sections to review these classification techniques.

The analysis of remotely sensed multispectral imagery can be an
overwhelming task considering some of the multispectral scanners that are currently
being used today. These systems can have as few as three spectral bands while
others may have up to twenty-four regions of spectral sensitivity,14 while sensors
being developed at present, such as the airborne imaging spectrometer , have as
many as 128 different spectral bands. The amount of data that is collected by these
sensors is immense and the amount of computer power necessary to handle this
data soon becomes overwhelming. An obvious first-cut solution to this problem is to
use some sort of data reduction technique which retains only information relevant to
the problem at hand. The field of remote sensing utilizes spectral signatures of
objects, band ratios and other statistical transforms, in an attempt to make the data
more manageable and relevant while eliminating much of the redundancy that is

present.

As defined by Slater (1980), a spectral signature comprises a set of values for
the reflectance or radiance of a feature where each value corresponds to the
reflectance or radiance of the feature averaged over a different, well-defined,
wavelength interval.15 The signatures are affected by illumination and viewing
geometries as well as atmospheric attenuation. More will be said about these signal
degradations later. It is important to note that spectral signatures are not unique
identifiers for a specified feature. As described by Lillesand and Kiefer (1979), a
spectral signature is more like an envelope in which the spectral reflectance curves
for a class of objects fall.16 This is illustrated in Figure 1. It has been shown,
however, that although there is variability in the relative magnitude of the spectral
reflectance curves for a particular feature class, the relative shape of the curve can

be considered to remain nearly constant.17



Use of the spectral signature alone is hardly sufficient as a means to classify
or segment features from a complex scene. To aid in segmenting image features via
spectral signature analysis, band ratioing is an effective tool. Normally the spectral
ratio of two image bands tells an image analyst more about the imaged objects than

do the recorded values in any single band.18 Examples of the success of band

ratioing as a means of
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Figure 1 Generalized spectral reflectance envelopes for deciduous and
coniferous trees. (Adapted from Lillesand and Kiefer, 1979)

classification are described for water quality by Lillesand and Kiefer (1979),19 for
geology by Chavez et. al. (1982)20 and Williams (1983),21 and for vegetation by
Lillesand and Kiefer (1979).22 As Williams (1983) stated, "the use of band ratioing
in a "shotgun"” fashion will be discouraging since an exorbitant number of ratio
images can be derived. This method should be used in a rational, well thought out
manner."23 it has been shown by Tucker (1973) that the ratio of Landsat



Multispectral Scanner (MSS) band 7 (0.8 to 1.1 pm) to MSS band 5 (0.6 to 0.7 um)
reveals well the amount of vegetation in the scene.24 Biegel and Schott (1984)
have shown that the ratio of Landsat TM band § (1.57-1.78 um) to TM band 3 (0.62-
0.69 um) is well-suited for the classification of water, vegetation and urban
features.25 Hence, the use of a properly selected band ratio can be an invaluable
classification tool for earth features. Band ratioing not only aids in the classification
of multispectral images from the standpoint of presenting an enhanced image to the
analyst, but also reduces many of the negative effects introduced to the image due to
atmospheric degradations and illumination and viewing geometry considerations.
These effects include variations in the image plane radiance due to optical
vignetting, variations in upwelled radiance with azimuth angle and ground radiance
differences due to topographic variations.26 Ratioing negates the effects .of any
multiplicative extraneous factors in multispectral data that act equally in all
wavelength regions.27 Additive extraneous factors can also be removed by
computing ratios of difference images. This procedure is therefore beneficial since it
provides information that wasn't present in single band imagery and also improves
the quality of this information by removing many of the extraneous effects and

degradations.

A typical method to utilize the information derived from the spectral signature
or band ratioing data is density, or digital count, thresholding. An example of this is
shown by Volchok (1985) where pseudoinvariant features (PIF's) were segmented
from a Landsat TM scene utilizing a band-4 to band-3 ratio as well as band-7
imagery.28 This type of technique is extremely attractive in that it requires very little
computer memory and the results obtained can be adjusted with virtually no effort.
The accuracy of such a technique is dependent on the skill of the person performing

the thresholding and an a priori knowledge of the scene.

As an example of thresholding as a classification technique, consider a

general land-use classification including the following land cover types: soil, water,

10



and vegetation. On examining the spectral signatures of these three general classes
in the visible and near-infrared wavelength intervals (Figure 2(a)), it seems feasible
that classification can result simply from thresholding (density slicing) the MSS band-
7 image. Figure 2(b) is a two-band signature for the three classes which readily
illustrates the apparent ease of classification. However, as stated earlier, the spectral
signature curves of Figure 2(a) are not defined in such a singular manner but consist
of an envelope surrounding the depicted curves. The results of this natural variability
are the cloud-like formations of Figure 2(c). Note that the simple thresholding
technique will no longer work with a high degree of accuracy.29 Spectral ratioing
will improve the quality of thresholding techniques as shown by Volchok (1985), but
more sophisticated and accurate classification and segmentation schemes exist.30
Such schemes include multivariate classification, which is a powerful statistical tool
that lends itself to automation. Such techniques will be discussed in the following
section with the intention of developing an automated multivariate segmentation

algorithm for man-made urban features.

11
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1.1.5 Supervised Multivariate Classification

Multispectral scanners can be single aperture devices, pushbroom sensors,
or focal plane array charged-couple-devices (CCD) which record imagery in several
(say k) different spectral bands. That is, they will produce k bands of geometrically
registered imagery of a target region. The advantage gained by using this type of
device is that each pixel in the multispectral scene is represented by a k-dimensional
vector composed of the individual spectral radiance components reaching the
sensor. This feature of multispectral imagery makes it ideally suited to many
multivariate analysis techniques. These statistical techniques act on individual pixels
to determine to which of several defined groups or classes each pixel belongs. In
this manner every pixel in a digital image can be assigned to a specific group, i.e.

classified.

There are essentially two distinct types of classification schemes. They are
supervised and unsupervised classification. In supervised classification, useful
information categories are defined by the user and a subsequent analysis performed
to determine the spectral separability of these categories. Unsupervised
classification, on the other hand, involves first a determination of spectral separability
of the raw image data followed by an interpretation of the resulting categories.31 By
its essence, supervised classification is ruled out as an automated segmentation
technique, but it needs to be described in order to bring unsupervised classification

into a proper perspective.

Supervised classification consists of three distinct stages as described by
Estes (1983).32 The first stage is training, where the analyst compiles an
interpretation key or spectral signature set by identifying representative samples of
the classes to be identified. In the second, or classification, stage the remaining

pixels in the target image are compared to each of the categories chosen in the
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training stage. The pixels are assigned to the category to which they most closely
correspond. The third stage is output. After the entire scene has been categorized,
the results are presented in any of several forms including a color encoded map,
tables of areas of specific cover types, or computer-compatible inputs to a grid-based
geographical information system. The actual classification of the individual pixels
(the second stage of the supervised process), can be accomplished in several ways,
each of which has trade-offs. Lillesand and Kiefer (1979) describe three different

types of classification algorithms.33

The first and simplest of these is known as the minimum distance to the mean
classifier. During the training stage a mean vector is computed for each of the
categories chosen by the analyst. This mean vector is a k-dimensional vector
consisting of the mean response levels of each of the spectral bands of the
multispectral image. Classification is then performed by determining the
muitidimensional Euclidian distance of the unknown pixel to each of the mean
vectors of the chosen categories. The unknown pixel is then classified as a member
of the closest category. This method is computationally fast, but does not work well
when natural variability of the means of groups overlap each other. This can be
explained by the following example. Suppose one category has a multidimensional
mean and a very large variance while another category has a second distinct mean
and a very small variance. This phenomenon is illustrated in Figure 3. An unknown
pixel can be located within the scattergram of the larger variance group and yet have
a shorter Euclidian distance to the mean of the group with the smaller variance. This
would result in a misclassification of the pixel. A technique is needed which

accounts for this variability. Such a method is the parallelepiped classifier.

The parallelepiped classifier accounts for the variance in the distribution of
the category data by setting up ranges for each of the categories. These ranges can
be determined by finding the maximum and minimum digital counts in each of the k-

categories. For two-dimensional data, this boundary region can be thought of as a
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rectangle surrounding all the points included in that category (see Figure 4). An

unknown pixel is classified into the category within whose boundary it falls.
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Figure 3 Two Dimensional Scattergram Of Image Data For Minimum
Distance To The Mean Classifier
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Figure 4 Parallelepiped Classification Strategy Using Rectangular
Boundaries

This classifier is extremely fast computationally, but two problems exist. The first is
overlapping regions. Two regions in close proximity will likely have their boundary
regions covering some common area. This will result in confusion when a
classification decision must be made. Typically, these "confused” pixels will
arbitrarily be assigned to one group or the other. The second problem

is most often the cause of the first. The parallelepiped classifier does not deal well
with highly correlated band data, which will tend to cause boundaries to be formed
that exhibit lack-of-fit for the category data. If one thinks of this in two-dimensions,
data that are highly correlated will appear as a thin ellipsoid sloping either upward or

downward from the origin depending on the sign of the correlation. This appearance
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will then cause the resulting boundaries to greatly overestimate the size of the
classification region for the particular category. This is shown in Figure 5. Remotely
sensed data is often highly correlated in this manner, so this problem is a prominent
one with this classifier. Lillesand and Kiefer (1979) describe a modification to this

classifier that makes it more useful for highly correlated data.34

Digital Count in Band k

Digital Countin Band i

Figure 5 Weakness Of Parallelepiped Classifier For Highly Correlated Data

The two classifiers described above are known as nonparametric classifiers
since they make no distributional assumptions on the data. These methods are
computationally quick and easy to implement, but often do not exhibit the desired
accuracy. The maximum likelihood classifier is parametric, i.e. it makes the
assumption that the data in each category takes on a multivariate normal distribution
(see Figure 6).
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Figure 6 Probability Density Functions Defined By A Maximum Likelihood
Classifier (after Lillesand and Kiefer, 1979) )

Under the assumption of multivariate normality, the distribution of the data
from a particular earth feature is completely described by a mean vector and a
covariance matrix. With these quantities defined for each of the classes, the
probability that an unknown pixel belongs to each of these classes can be computed
and the pixel classified into a category based on the maximum probability
determined. Hence, this method accounts for both the variance of the data and the
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exhibited correlation. This classifier is computationally more complex to implement
and runs much slower than the simple decision-based algorithms of the two previous
classifiers, however there is a significant increase in accuracy. Modifications on this
method are described in Lillesand and Kiefer (1979)35 and in Schowengerdt
(1983).36

1.1.6  Unsupervised Multivariate Classification

While it is the goal of supervised multivariate classification to choose the
desired classes based on features of interest, the purpose of unsupervised
classification is to determine the classes based on their spectral separability.
Unsupervised classification examines a large number of pixels and forms classes
based on natural groupings present in the image values.37 The image data are
submitted to a clustering algorithm and the resulting clusters in k-dimensional space
(representing k spectral bands) are each assumed to represent a class.38 Each
class that is formed may not be associated with a distinct land cover type, but the
classes are spectrally separable. At this point it is up to the analyst to determine the
physical counterparts of these statistical clusters based on information from land

cover maps, aerial photographs, and other forms of ground truth data.

In choosing training data for an unsupervised classification algorithm, one
must be certain to choose training sites with a heterogeneous mixture of pixels. This
ensures that all possible classes and their within-class variabilities are adequately
represented. This heterogeneous criterion contrasts the choice of training sites for a
supervised classifier where the analyst wishes to choose homogeneous training
sites for each individual class.39 These choices of training sites are illustrated in
Figure 7. Once the training data is collected, it is submitted to a clustering algorithm
of some type. The number of clustering algorithms available are countless and are

limited only by the analyst's ingenuity.40 The following is a description of one of the
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more common algorithms known as the k-means algorithm, or ISODATA as referred
to by Kan (1972).41

N
\ 7
Supervised
Training
N
p E
N
Class 1 Class 2
Unsupervised
Training

Class1 Class2 Class3

Figure 7 Training Sites for Supervised and Unsupervised Training
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The k-means algorithm, as described by Schowengerdt (1983), works in the
following way.42 Once the training data has been collected based on the criterion
mention previously, the algorithm arbitrarily chooses k different means by randomly
selecting pixel coordinates. The number k depends on the number of clusters the
analyst wishes to form. The pixels in the training set are then assigned to one of the
k means depending on which particular pixel is closest to in a Euclidean sense.
Once all the pixels have been assigned to one of the arbitrary means, new mean
values are computed for each of the arbitrarily formed classes. The above is then
repeated, that is, each pixel is again assigned to the nearest mean and new mean
values calculated. This process is continued until there is no significant change in
the location of the k mean vectors. These clusters thus formed are then considered
to be k spectrally separable classes. This convergence to the means is illustrated in
Figure 8 for two-dimensional image data. This method is relatively insensitive to the
original choice of mean vector seeds, however, the number of iterations required to
converge to the true cluster means may be large if the original seeds greatly in error.
A FORTRAN version of this algorithm is described by Hartigan (1975).43
Subsequent classification of the entire image can then be accomplished by using a
minimum distance to the mean classifier. If a more precise classifier is required, an
associated covariance matrix may be computed for each of the clusters and a
maximume-likelihood classifier could be used. Whichever method is chosen, a
successful classification should result if the proper choice of training sites were made
originally. As mentioned previously, these sites contain a wide variety of land cover

types as well as large within-class variabilities.

The advantage of using unsupervised clustering is that more classes are
allowed to be formed:; classes that may not have been formed in the case of a
supervised classification. In addition, the classes formed are more separable in a

spectral sense. An example of this are coniferous trees located
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Figure 8 Clustering by the K-Means Algorithm
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in shaded and sunlit areas of the same image. An image analyst would most likely
place pixels from both these areas in a single training set class. This would result in
the classification being confused since these two differently illuminated areas are not
spectrally identical, although they are the same land cover type. In fact, they may
appear different to a clustering type algorithm. For such reasons, it is often beneficial
to first run an unsupervised classifier to determine spectrally separable classes.
Clusters that represent features of interest can then be chosen as classes for a
supervised training set. Techniques that utilize this combination of methods are

referred to by Lillesand and Kiefer (1979) as hybrid techniques.44

A problem faced by both supervised and unsupervised classification
algorithms is the extensive computation time required due to the immense quantity of
data to be analyzed. For example, an image containing a quarter million pixels in
each of seven different spectral bands (i.e. a Landsat TM image) requires 2 MB of
data storage. The following section is a description of several methods that are
useful for reducing the amount of data that is necessary for a successful
classification. These methods analyze the original spectral data and derive images

that contain the majority of the original information content in a more compact form.

1.1.7 Preprocessing and Redundancy Reduction

It would seem that the accuracy of any of the above classification algorithms
would be increased significantly by the addition of more spectral bands of
information. According to Estes (1983) this is only true if the added bands contain
additional, non-redundant information.45 This is often not the case in remotely
sensed data since the spectral information of a scene is indeed highly correlated.
For Landsat MSS data which contains four separate spectral bands, Kauth and
Thomas (1976) have shown that by transforming the spectral data, the redundancy

can be reduced to two-dimensions, rather than four, such that approximately 95% of
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the original variations is still represented by the transformed data.46 Crist and Kauth
(1986) have also shown that the six reflective spectral bands of Landsat TM can be
transformed to three bands of information that contain at least 95% of the total
variation in the original data.47 This reduction in redundancy serves two purposes.
The first is to increase computational speed since less data needs to be analyzed.
Secondly, the quality of this transformed data is superior in that the new coordinate

axes take on new physical definitions that aid in classification.48

This type of initial transformation of the image data is referred to as
preprocessing. Preprocessing used to reduce the amount of redundant information
is commonly called principal component or factor analysis.49 Another type of
preprocessing transformation derive new data sets from the original images. The two
primary data derivation methods in use today are spatial clustering and texture

analysis.

Spatial clustering is a general name for methods that take an initial look at the
image data to determine collections of neighboring pixels that comprise spatially
homogeneous units. Kauth et al. (1977) have developed a technique known as
BLOB which introduces spatial coordinates into the vector description of each pixel to
indicate the spatial homogeneity of certain field-like patches in the image.50 In this
manner, if a subsection of an image is identified to be homogeneous, then the
number of subsequent classification calculations can be greatly reduced. Kettig and
Landgrebe (1976) have developed a similar method known as ECHO (Extraction
and Classification of Homogeneous Objects) which divides an image into small sub-
images and tests for homogeneity within these.51 If a sub-image is homogeneous, it
is combined with surrounding homogeneous sub-images and retested. In this
manner, homogeneous patches are established throughout the image and, as with
BLOB, subsequent classification analyses are enhanced. This type of clustering of
the original data not only facilitates an increase in speed of classification, but also

puts the result in a more desirable and less noisy form.52 Several other techniques
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exist in the literature such as ISODATA by Kan (1972),53 CLASS by Fromm
(1976)54 and others by Bryant (1979).55 Bryant (1979) has written an excellent

review article on these techniques.56

Texture analysis generates another class of techniques that have become
prominent in the past decade. As described by Haralick et al. (1973), texture is one
of the most important characteristics used in identifying objects or regions of interest
in an image to the human observer.57 Texture is an innate property of all surfaces
and can be described as fine, coarse, smooth, rippled, or irregular. This information
along with spectral information, provide two of the three primary "clues” to
classification of objects for the human observer, the third being contextual
information. The addition of this information to a computer-aided classification
should also be a significant improvement. Haralick has demonstrated that by using
texture features based on the relative frequency distributions of the image gray tones,
along with spectral features, he was able to classify seven land use categories in a
satellite image with 83% accuracy or better. Success with texture analyses have
also been reported by Hsu (1978),58 Mitchell and Carlton (1978),59 Mitchell et al.
(1978),60 Richards and Landgrebe (1982),61 and Troy et al. (1973).62

These preprocessing algorithms serve to reduce inherent redundancy in
multispectral images as well as to introduce extra information to the multivariate
classifiers that help to improve the accuracy. These techniques, however, are very
susceptible to the influence of signal degradations such as changing atmospheric
and illumination conditions. This susceptibility may render such techniques
ineffective as segmentation algorithms for temporally separated imagery. It will be a
purpose of this study to examine these and other techniques to determine if any
useful information can be obtained to aid in the classification and extraction of

pseudoinvariant features.
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1.2 Theoretical Background

The following section contains a description of the theory behind the
PIF normalization process, the derivation of the normalizing transforms, the
observed behavior and 'subsequent development of the automated
segmentation algorithm, and the attempted use of classical multivariate
techniques for automated segmentation. The theory presented here is
similar to that presented by Volchok (1985) in the original proof-of-concept

study.63

1.2.1 PIF Technique for Image Normalization

As stated earlier, there are three distinct steps in the PIF normalization
process. They are the isolation of pseudoinvariant features from the digital
imagery, the computation of the statistical distribution for the pseudoinvariant
features in all spectral bands of each of the temporally separated image, and
finally the determination of the normalizing transforms and their application

to the imagery.

The isolation of pseudoinvariant features from digital imagery
proceeds in the following fashion. It has been shown by Biegel and Schott
(1984) that an infrared-to-red ratio image is very effective in the classification
of water, vegetation, and urban features. 64 The brightness of vegetation in
this ratio image will tend to be very high, while that of urban features and

water will be considerably lower. In a digital environment this image can be
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derived from the quotient of Landsat TM bands 4 (0.78 - 0.91um) and 3
(0.62-0.69um). To facilitate isolation of PIF's, Landsat TM band 7 (2.08-
2.35um) is used since water has nearly zero reflectance in this spectral
region. To perform the isolation, the following logic is followed (see Figure
9). The TM band-4 to band-3 ratio image is thresholded from the high digital
count values downward. In this manner, the vegetation pixels which have
high digital count values, are eliminated from the image, that is, these pixel
brightnesses are set to zero. The resulting image contains only water and
urban features. The TM band-7 image is then thresholded from the low
digital count values upward. This procedure will eliminate water from the
band-7 image since water has a low reflectance in this spectral region, and
therefore low digital count values. This threshold will also tend to eliminate
the wet farmland and vegetation that were missed in the thresholded band-4
to band-3 ratio. The resulting image contains only urban features and dry
vegetation-covered areas. If the two thresholded images are transformed to
binary images (i.e. all non-zero pixel brightnesses are replaced with a
brightness count of 255), and then combined using a logical .AND., the
resultant combination will be a binary image that is bright where there were
PIF's and dark everywhere else. This image is known as the PIF mask for
the current TM data set. Figure 10 is an illustration of the above process.

This procedure is then repeated on the second day's imagery.

The next step in the PIF technique is the determination of the
statistical distribution of digital brightness values of the PIF's in each of the
reflectance bands for the two TM images. This is accomplished using a

logical .AND. operator on the band imagery and the PIF mask. The PIF
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pixels in the band imagery correspond to pixels in the mask and are
therefore left on in the resulting image. This process is suited for
implementation in an array processor which enables the isolation to occur in
approximately 1/30th of a second. The resulting image represents the true
PIF brightness value distribution. The distribution statistics are then simply
obtained by taking the histogram of the resulting image, zeroing the zero
histogram bin since it has been artificially enlarged, and calculating the
subsequent histogram statistics, namely the mean and standard deviation.
All that remains in the PIF normalization process is the derivation of the
transformations for each image band. Two methods exist for the derivation
of these transforms: histogram specification and linear histogram

transformation. A discussion of these methods follows.
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Figure 9 lllustration of the logic used to segment PIF features
in Landsat TM six band imagery
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Figure 10 lllustration of the image processing to segment a PIF
mask (refer to logic flow in Figure 9)
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1.2.2 Derivation of the PIF Normalization Transforms

Histogram specification is a standard image processing technique
(Gonzalez and Wintz, 1980).65 In short, two histograms are required as
input to this technique. The first histogram, referred to as the mapping
histogram, is transformed to look like the second, or test, histogram. The
theory behind this procedure is taken from histogram equalization. In this
procedure, one wants to map the histogram, or the probability distribution
function (PDF) for the brightness distribution, through its associated
cumulative distribution function (CDF) to obtain a flat normalized output
histogram (see Figure 11). This procedure, in and of itself, is not sufficient
for our purposes. However, if one applies this technique to two histograms
individually, in theory the end result of each equalization will be a flat
normalized histogram. From this point on, it is evident that if one took the
transformation maps for each of the individual histograms, that is, their
associated CDF's, and combined them into a single mapping function (one
in a forward fashion and one in a reverse fashion), this mapping function
would serve to transform one distribution to look like the other. This is

shown in Figure 12.

Linear histogram transformation is another technique which, like
histogram specification, transforms one brightness distribution function to
another under certain conditions. This procedure was described by Volchok

(1985) in a different perspective.55 The procedure assumes two conditions:
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Figure 11 Example of the histogram specification process

the first is that the radiance at the sensor is linearly related to the reflectivity
of the scene elements on the ground. The second is that the brightness (i.e.
digital count) of the image is linearly related to the radiance reaching the
sensor. With these two assumptions in mind, the technique of linear

histogram transformation can be developed as follows:
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Figure 12 Example of histogram specification for PIF normalization

where L and L, are the spectral radiance values of the PIF's in the first and
second image, respectively, Ry and R, are the reflectance values of a scene
element in the first and second image, the o terms are linear coefficients
encompassing the atmospheric transmission and look angle effects, and the

B terms are the path radiance terms. In terms of digital count, or brightness,
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we have

DC1 = m1L1 + b1

and DC2 = m2L2 + bz

where DC, and DC, are digital count values for the first and second images,
respectively, the m terms are linear coefficients encompassing the sensor
response characteristics, and the b terms are the sensor offset values. One

can then perform the following simplification, namely that

DC1 = m1a1R1 + m1B1 + b1

and DC2 = m2a2R2 + mzﬁz + b,

Recalling the basic premise of this procedure, i.e. that the reflectances R;

and R, on average are equal (i.e. Ry = R,) within PIF's, the following can be

written
DC1 = mtD(;2 + b‘
where
m,c.,
m, =
m,o,
m.a.b, m.o.B
112 1%*1P2
b= b, +mB, -
m,a, o,
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It can now be seen that DC; and DC, are linearly related. Because there is
a linear transformation between individual digital count values on separate
images, this concept can be extended to a distribution-based transformation.
The following linear histogram transformation can now be developed. Two
linearly related histograms can be transformed to look like each other in the
following fashion. The relative width of the histograms are related by the
ratio of their standard deviations. The histogram means are then
recomputed and the difference between these two means is added to the
adjusted mean X,. The histograms now have equivalent spreads and equal

mean values (see Figure 13). The transformations are described as

DC; = mDC; + b,

where
o
2
m,=—
%4
b, = X, - mXx

If the assumption stated above (i.e. that digital count is a linear
function of reflectivity) is valid, then the linear histogram transformation
process will give a better result than histogram specification. Histogram
specification makes no assumptions about the nature of the difference
between two histograms, but only attempts to map one onto the other.
Histogram specification also tends to overcompensate for differences near
the extremes of histogram variance and therefore is only accurate within the

central portion of the data. Linear histogram transformation is designed to
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Figure 13 Transformation of linearly related histograms
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account for changes in gain and offset introduced by variations in imaging
conditions. The conditions described during the development of the PIF
transformations have all been of an assumed linear nature and therefore the
linear histogram transformation was chosen for use in the rest of this study.
Histogram specification will only be used as a quick check on the quality of
the original segmentation. If there is a significant difference between the
transforms developed using the linear histogram and histogram specification
methods in the central data region, it is likely that the original segmentation
included some mixed pixels. These mixed pixels will show up in the PIF
statistic calculations and will have a significant effect on the developed

linear transforms.

The following section will discuss the methodology for the
development of an automated segmentation algorithm based on the
classical multivariate classification routines discussed in Sections 1.1.5 to
1.1.7.
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1.2.3 Automated PIF Segmentation Using Multivariate
Techniques

The correction of the effects of a changing atmosphere and of varying
illumination and collection geometries on temporally separated images is
the primary motivation for this entire study. It is essential to be able to
account for and correct these differences if any quantitative processing or
change detection is to be carried out on these images. Classically, this has
been a problem in the development of multivariate classifiers. Much time
and effort is spent on the development of an accurate multivariate elassifier.
The problem is that the classifier, once it is developed, is accurate only on
the particular image being worked with. If the same classifier is applied to
another image of this same area acquired on a different day, the classifier
would have less success. The success of the classifier may be increased by
applying several preprocessors to the image that will reduce the effects of
any signal degradation due to the temporal shift. It is the purpose of this
section to examine such preprocessors and their effects on the success of
multivariate classification as a segmentor of pseudoinvariant features. This
should not be viewed as a replacement for the process of image
normalization since the following application is developed to classify only a

single class of scene elements.

A principal component transformation of multispectral Landsat TM
imagery has been shown by Crist and Kauth (1986) to reduce the
dimensionality of TM data to three.67 According to their analysis, the first

principal component can be considered as representing image brightness,
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the second as representing greenness and the third as representing
wetness. These three principal component vectors characterize 95% of the
total variation within the spectral band data (excluding the thermal infrared
band). According to Crist and Kauth (1986) the fact that the exact
interpretation of the principal components is highly dependent on the sensor
being used must be considered. These interpretations mentioned above are
for the Landsat TM sensor. These physical interpretations of the first three
principal components should prove useful in the identification of urban
features. The greenness and wetness component should serve as two ideal
vector components to separate urban features from vegetation and

water/wetlands.

Texture is one of the most important visual clues to the analyst in the
identification of image features.68 Texture of image features in Landsat TM
data can be represented as the image standard deviation. The effects of
varying illumination geometry will tend to cast varying degrees of shade.
This will affect the measure of texture for any particular pixel. However, the
relative amount of texture at any one pixel should not vary significantly as a
function of changing illumination geometries since high texture areas will
increase with an increase in shadows, but at the same time the lower texture
areas will also increase. Considering this, the relative levels of texture
should remain approximately constant. Atmospheric degradation will tend to
flatten out the contrast in an image and thus decrease the amount of texture
that can be detected, but again this amount of contrast reduction should be
constant over the image if the assumption of a homogeneous atmosphere is
made at the image plane. For these reasons it is believed that a texture

component included in the pixel vector will increase the effectiveness of an
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image independent PIF classifier.

A final preprocessing technique which has already been discussed in
detail in section 1.2.4 is that of band ratioing. This technique will tend to
eliminate the effects of shadows in an image and the variation in upwelled
radiance with azimuth.69 Due to the increase in the image quality and
information due to ratioing, this technique will be useful in feature

classification.

It is believed that by using images preprocessed as above in some
combination to be empirically determined, an image independent PIF
classifier can be developed. The accuracy of the classifier can be adjusted
by the use of a posteriori probability screener to allow only those pixels
having a certain associated "sureness" to be included in the mask image. In
light of the goal of this study, to remove man's intervention from this
normalization technique, an unsupervised classifier seems the logical
choice as a multivariate technique. With this type of algorithm a number of
different image features will be isolated. ldentification of the particular pixel
collection that represents the pseudoinvariant features can then be
accomplished by forming a multidimensional map of the relative positions of
the cluster means. If a particular pattern develops in this multidimensional
map then the pseudoinvariant feature cluster can be located in an

automated fashion by reference to a standard map of typical land cover

clusters.

The first attempt to develop an automated multivariate segmentation
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algorithm quickly proved to be discouraging at the isolation of
pseudoinvariant features. The following is a brief description of the
developed algorithm which proved ineffective in the segmentation process
but was of great academic interest to the investigator. Once the unsuitability
of this technique was recognized, the attempt was abandoned in favor of the

rate-of-change algorithm to be described in the following section.

To develop a multivariate segmentation algorithm, the following line
of action was pursued. First, the dimensionality of the multispectral data was
reduced, primarily to increase the quality of the data used in the algorithm,
i.e. to remove the redundancy from the image data. A secondary reason
was to increase the computational efficiency of the subsequent
segmentation algorithm by reducing the amount of data to be examined
since multivariate techniques are computationally very expensive. In the
second step, the reduced multispectral data was run through an
unsupervised multivariate classification in order to segment the data into
spectrally separable classes. The third and final stage of this algorithm was
a search of the spectrally separable classes to identify that class or classes
that represented pixels that were pseudoinvariant features. Each of the

above stages will be discussed and their results presented in Appendix G.

In order to reduce the dimensionality of the multispectral image data,
a principal components analysis was chosen based on the material present
in the preceding Theoretical Background section. Computer code was
written to determine the principal components of six-dimensional image data

and to scale the principal component images to fill the full dynamic range of
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the image processing display station. The code ran on a DEC VAX 8200
interfaced to a Gould/DeAnza IP8500 Array Processor located at the DIRS
laboratory. This code (PrinComp) and a functional description is included in
Appendix A. The principal component images were computed for all the
scenes described in the previous section (excluding the high resolution CIR
airphoto imagery). As had been predicted by other investigators in this area,
the first three principal components contained approximately 97% of the
variability in the multispectral image data. On this basis it was decided to
use only these three principal component images in the unsupervised
multivariate classifier. This classifier will separate the pixels into spectrally

separated classes.

The unsupervised multivariate classifier was based on the k-means
classifier described earlier. The code was designed to run on the equipment
mentioned above and this code (named "Cluster") and its functional
description is included in Appendix B. The three principal component
images for each of the scenes described in the previous section were run
through the unsupervised classifier and three-dimensional plots of the
cluster means for each scene were made . It was hoped that the investigator
could then find a commonality among the distribution of cluster means in
each of these plots. After associating each of the spectrally separated
clusters with a corresponding land cover type, and after locating the cluster
means on the appropriate scattergram, no commonality was found among
the distributions. The results leading to this point and a discussion of the

reasons for this failure will be discussed in Appendix G.
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At this point, it was decided to abandon this approach to the problem
of automated segmentation and proceed with the development of the rate-
of-change algorithm, which will more closely model the analyst's actions in

the previously used interactive segmentation procedure.

44



1.2.4 Automated PIF Segmentation Using Rate-Of-Change
Techniques

To develop an algorithm to automate the first phase of the PIF
normalization process, i.e. the segmentation stage, one must understand
what is occurring when this segmentation is carried out interactively. If this
process can be understood, then there is a good chance that an algorithm
can be devised to simulate what an analyst is doing when carrying out a

segmentation.

As mentioned in Section 1.2.1, the segmentation procedure of PIF
normalization involves the binary thresholding of two separate images (the
Landsat TM band-4 to band-3 ratio image and the TM band-7 image). Up to
this point, this process was carried out in the following manner. The digital
representation of the TM band-4 to band-3 ratio image was displayed on the
image processing workstation. Using a joystick, the user could interactively
change a threshold value that set all values greater than the current
threshold value to zero and left all other values alone. The user observed
that there existed a certain range of threshold values where very few pixels
would be affected. At some point, this rate of change would increase
dramatically and almost all the pixels that represented vegetation would be
set to zero as the threshold value changed by a small amount. The rate of
change would then decrease dramatically and the falloff of pixels would
again be very slow. At this second inflection in the rate of change, i.e. right
after the sharp falloff of vegetation pixels, the user would typically stop the

thresholding process and thus select the threshold value for the TM band-4
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to band-3 ratio image. The TM band-7 image would then be examined on
the image processing workstation. The user would then be allowed to
change the threshold value on this image, this time setting all digital count
values below the current threshold to zero and leaving all others alone. The
user typically would observe the following. There would be a sudden drop
off of pixels representing water and wet farmland followed by a leveling of
this drop off rate. At this inflection point, the user would stop the thresholding
process and define the TM band-7 threshold value. The two thresholded
images would then be logically combined using an .AND. operator as
described previously and the result presented to the user. This is the PIF
mask created with the current threshold values. The user would have the
option to go back and fine tune the threshold values to obtain the best PIF

mask possible.

Several problems exist with the segmentation procedure just
described. One such problem is consistency between analysts in choosing
threshold values. Every person that would utilize the PIF normalization
technique would choose different values of the thresholds for the two
images. Some users were conservative in their choice, that is they would go
further than the required threshold values to be sure that all the unwanted
pixels are eliminated. Other users would be liberal in their choice, that is
they would stop thresholding just before the inflection point to be sure that
there were enough pixels for the distributional computations. The result of
such inconsistency in the choice of thresholds caused different users to
obtain transforms that yielded normalizations with different degrees of
accuracy. Another problem with the technique described above is that a

single analyst may tend to be conservative in the choice of threshold values
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on images of areas that are unfamiliar geographically while the same user
may be liberal on images of familiar geographical areas. This would cause

inconsistency in the choice of threshold values by the same analyst.

With the above observations in mind, a conclusion can be drawn that
there may be a certain region of allowable threshold values in each of the
thresholding curves. To locate this area, it was decided to observe the
change that occurred in the number of pixels as thresholding proceeded.
This seemed the most likely choice of criterion to observe since this is what
the user is looking at visually when carrying out the interactive

segmentation.

Figure 14 is a three dimensional surface plot of the above mentioned
phenomenon. The x-axis represents the threshold value chosen for the TM
band-4 to band-3 ratio image, the y-axis represents the threshold value
chosen for the TM band-7 threshold value and the z-axis represents the
number of image pixels that remain on in the image resulting from a logical
.AND. of the two binary thresholded images. Just as expected, there is a
monotonic decrease in the number of pixels left on as the threshold values
eliminate pixels from their respective input images. To locate the area
where the threshold values should fall, the points where the rate-of-change

of pixels mentioned above levels off must be found.
As mentioned above, Figure 14 represents the number of pixels

included in the PIF mask formed as a result of using any combination of

threshold values in the two defined regions. In order to find the positions in
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these thresholding regions where the rate-of-change in the number of pixels
goes through the aforementioned inflection points, the two-dimensional

derivative (gradient) is computed for the surface in Figure 14. The

computational form of the operator is:
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Figure 14 Number of pixels remaining on in the logical combination
of the individual thresholded images
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[(Xijq = X )+ (Xigj~ Xipq) ]
G =Lt 5 j 1

where G;; is the gradient value at threshold value position i,j and x is the
number of pixels remaining on at the specified threshold positions (see
Figure 15). Figure 16 is a three- dimensional representation of the surface

derived using the above operator on the surface in Figure 14.

i,j i+1,j

i,j+1

Figure 15 lllustration of the threshold positions used in gradient
calculation
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As the rate-of-change of the number of pixels slows down, the value of the
two-dimensional surface in Figure 16 will decrease (i.e. the value of the
derivative of a function decreases as the rate-of-change of the original
function decreases). The gradient surface is then evaluated to locate the
point at which the rate-of-change slows down or goes through a minimum in
both thresholding directions simultaneously. The circled area in Figure 16
indicates the localized region where the simultaneous minima in rate-of-
change occurs. ltis in this area where the two threshold values are defined.
This observed behavior is the basis for the development of the automated

rate-of-change algorithm.
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2.0 Experimental Approach

Now that the theory has been established for the automated
segmentation of Landsat Thematic Mapper imagery, the following tasks are
necessary to validate the theory. First is the development of the automated
algorithm for the segmentation of pseudoinvariant features from Landsat TM
imagery. This task will be carried out by use of classical multivariate
classification techniques as well as the rate-of-change information from the
thresholding process that is currently part of the PIF technique. This latter
method will be referred to as the interactive technique. Once the algorithmic
approach has been established, several questions arise as to its accuracy
and precision. The second task will deal with the question "How well does
the transformation work?" This task will be explored by examining the
accuracy of the resulting transformations, both after applying the automated
and the traditional interactive segmentation processes. A final question that
arises is "How well can the results of the transformations be repeated?" This
is one of the original reasons for this study since the requirement for
repeatable, user-independent results is a must for a technique such as
pseudoinvariant feature normalization. This question will be addressed by
an examination of the precision of the results of this normalization technique
using the compilation of data that has been collected since this technique
was first proven viable. The results of this study will then be compared to
those results obtained using the automated segmentation algorithm.
Another consideration that will be explored concerning the precision of the
transformation processes is the effectiveness of the technique in the

development of transformations for different scenes imaged through
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identical atmospheres. Again this will be done in such a manner so that the
automated and interactive techniques can be simultaneously compared.
The algorithmic development as well as the questions listed above will be
addressed in the following section and the outcome of this endeavor

discussed separately in the Results section.

2.1 Selection of Appropriate Imagery

The choice of imagery for this study was limited to that data which was
available at the Digital Image and Remote Sensing laboratory (DIRS).
Three temporally separated Landsat TM scenes were available with
acquisition dates 9/13/82 (TM-4), 6/22/84 (TM-5) and 5/24/85 (TM-5). The
first two were selected for study for several reasons. The first involved the
prevailing atmospheric conditions of the imagery. The 9/13/82 (TM-4)
imagery was acquired through a very hazy atmosphere which tended to
decrease the overall dynamic range for this scene. The 6/22/84 (TM-5) and
5/24/85 (TM-5) imagery, on the other hand, were taken through a much
clearer atmosphere resulting in greater image contrast.. A second
consideration was that previous work by Volchok?0 to validate this
normalization technique, also utilized the earlier of the two dates listed
above. If the current study were to utilize the database collected by Volchok,
as well as take advantage of the difference in atmospheric conditions, this

choice of imagery seemed the most suitable.

The imagery above is stored on 1600 bpi computer compatible
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magnetic tape at the DIRS laboratory. These tapes were originally obtained
from the Earth Resources Observation Satellite Center (EROS) in Sioux
Falls, South Dakota. This study utilized full resolution 512 x 512 pixel
images extracted from the original 5966 by 6968 pixel Landsat TM scenes.
These 512 x 512 pixel subsections were extracted from the magnetic tape
utilizing the computer program LT4Read, the code for which is given in
Appendix E. This code runs on the Digital Equipment Corporation (DEC)
VAX 8200 located at the DIRS laboratory.

Two mid-size urban areas located in upstate New York were
extracted from the scenes. These included downtown Rochester and
downtown Buffalo. Also extracted was a scene located 512 pixels to the
west of the downtown Rochester image. This scene is dominated by rural
farmland and contains no large urban development center. This scene was
chosen to assure identical atmospheric conditions to its neighboring scene.

The pertinent image data for the above scenes are summarized in Table 1.

Also chosen for this study were two high resolution color infrared
(CIR) airphotos of downtown Buffalo taken on 7/6/70 and 6/7/72. These
photographs were obtained from the National High Altitude Photography
Program (NHAP) of the United States Geological Survey (USGS), Denver,
Colorado. These CIR transparencies were digitized using an Eikonix 78/99
Digitizer Camera System interfaced to a DEC MicroVAX GKS Workstation.
The digitized images were 512 x 512 pixels in dimension with each pixel
representing approximately a 10 meter IFOV. These images will be used in

a side study to determine how well the automated segmentation routine
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works in conjunction with the PIF normalization technique on higher
resolution photographic imagery. The 1972 image will be transformed to
look like the 1970 image and will then be compared to the results obtained

with the previously used interactive method.

Table 1 Summary of pertinent TM image data used for this study

Date 9/13/82 6/22/84
Sensor T™-4 TM-5
Scene ID E-40059-15244 E-50113-15260
Approximate
Acquisition Time 10:30 am (EST) 10:30 am (EST)
Landsat Path D-17 Path D-17
Scene Coordinates Row 30 Row 30
Sun Elevation Angle 44° 59°
Sun Azimuth Angle 141° 122°
Downtown Rochester Row 2401 Row 2350
Subscene Column 5925 Column 3200
(Segmented coordinates)* (Quadrant 3)
Rural Rochester Row 2450 Row 2390
Subscene Column 5400 Column 2727
(Segmented coordinates)* (Quadrant 3)
Downtown Buffalo Row 3900 Row 900
Subscene Column 2750 Column 2750
(Segmented Coordinates)* (Quadrant 3)

*  Row and Column denote the coordinates of the upper left corner of
the 512 x 512 pixel subscene
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2.2 Rate-of-Change Segmentation Algorithm

The development of the rate-of-change algorithm for automated
segmentation of pseudoinvariant features is a direct application of the theory
previously described. The automated segmentation algorithm is described
in the following. The actual computer code (BIdPIF) and functional
description of its operation is included in Appendix C. The results of this
algorithm and a comparison of its accuracy and precision are addressed

separately in the Result section which follows.

The TM band-4 to band-3 (infrared to red) ratio image is computed
and displayed along with the TM band-7 image. The images are
thresholded in a systematic manner and combined using a logical .AND. to
form a three-dimensional surface similar to that displayed in Figure 14. This
surface represents the number of pixels included in the logical combination
image as a function of threshold values. The gradient of this three-
dimensional surface is computed to form a second surface similar to that of
Figure 16. The dependent variable of this surface is the gradient of the
previous surface as a function of threshold values. The next stage of this
process is the e>'<amination of the gradient surface to locate the position of
the appropriate threshold values (i.e. the area where the surface has a local
minimum in both directions). The final stage of this process is the
application of these two threshold values to the original TM band-4 to band-
3 ratio and TM band-7 images, and the subsequent logical combination of
these thresholded images using an .AND. operator to obtain the PIF mask.

The algorithm makes heavy use of the Gould/DeAnza IP8500 Array
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Processor and it is not suggested that this algorithm be applied serially in a
mainframe computer. A comparison of the computational time difference

can be found in Appendix C.

The first and second stages of the rate-of-change algorithm involve
the preparation of the TM band-4 to band-3 and TM band-7 images for
thresholding. First the TM band-4 and TM band-3 images are loaded into
computer memory. The two images are then divided pixel by pixel (band-4
pixel divided by band-3 pixel) in order to form a floating point quotient image
in RAM. The maximum quotient value is found and a scaling factor
determined by dividing 255 (the maximum digital count in an 8-bit system)
by this maximum quotient value. This scaling factor must be found to scale
the quotient image so that the full dynamic range of the image display is
filled. The quotient image is then multiplied pixel by pixel by this floating
point scaling factor to define the final band-4 to band-3 ratio image. This
image is then truncated to 8-bit data and displayed in a single image plane.

The TM band-7 image is loaded into a second image plane.

The third stage of the algorithm is systematic thresholding of the two
images prepared as above. Two image transformation tables (ITT's) are
developed to threshold the appropriate images. An ITT is a mapping
function which transforms a pixel gray level to a new value. The first ITT,
which will be applied to the TM band-4 to band-3 ratio image, is filled with a
one-to-one mapping function from 0 up to the current threshold value. After
this point the ITT is filled with values of 0 up to its upper limit (i.e. 255). The

second ITT, which is applied to the TM band-7 image, is filled with values of
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0 up to its current threshold value. After this point it is filled with a one-to-one
mapping function. The first ITT will set all digital count values (DC's) above
the current threshold to 0 while not affecting all other DC values. The
second ITT will do just the opposite, that is, set all DC values below the
current threshold value to 0 while leaving all other DC values alone. These
ITT's are applied to the appropriate images as follows. The TM band-4 to
band-3 threshold is set to its current value and applied to the image. The TM
band-7 threshold is then set and applied to its image. The two images are
then logically combined using an .AND. operator and the result stored in a
third image plane. The histogram is then determined using the Digital Video
Processor (DVP) in the IP8500. The value for the zero histogram bin is then
subtracted from the value 5122 = 262144 to obtain the number of pixels that
have a non-zero value in the logical combination image. This value
becomes part of the three-dimensional surface. The TM band-7 ratio is
stepped through its determined range at increments of 2 DC values before
the TM band-4 to band-3 threshold is again changed. This process is then
repeated until the TM band-4 to band-3 ratio threshold has been stepped
through its determined range. A flowchart of this process is depicted in

Figure 17.

The thresholding ranges are determined in the following manner.
Past interactive segmentation results demonstrated that the threshold values

always fall within the following interval

XzT, ,zX-200 for the TM band-4 to band-3
ratio image
X+ozT,,=X-250 for the TM band-7 image
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where X is the mean and o the standard deviation of the histogram of the TM
band-4 to band-3 ratio or the TM band-7 images and T,,,, is the respective

threshold value chosen using the interactive segmentation process. Figure
18 shows the location of

‘ > Threshold the TM
Band 4 to 3 Image

y

Threshold the TM
> Band 7 Image

v

Histogram the Logical
Combination Image

v

Count the Number

. Form 3-D Surface
of Nan-Zsfo:Fixels of Number of Pixels

5122 - Zero Bin

Figure 17 Flowchart of thresholding / 3-D surface building algorithm
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these threshold values. Based on this information, the thresholding ranges
are determined by taking the histogram of each of the images to be
thresholded, determining the histogram statistics, and calculating the

ranges according to the above formula.

TM Band 7 Threshold Range TM Band 4/3 Ratio Threshold Range
S

X-250 X+o X-2.0c X

Figure 18 lllustration of the specified thresholding range

The fourth stage of the segmentation algorithm is the computation of
the gradient of this surface as discussed in the Theoretical Background
section. These calculations are perform serially on the DEC VAX 8200 since

these surfaces are typically very small (i.e. on the order of a 30 by 30 matrix).

The fifth stage of the algorithm is the determination of the threshold
values locations on the gradient surface. As described in the Theoretical
Background section, the circled area in Figure 16 represents the area where
the appropriate threshold values fall. This has been determined by the
evaluation of previously chosen threshold values using the interactive
segmentation technique and then locating their position on their respective

gradient plots.
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Next, this position is found in an automated fashion. If one looks at
the plot in Figure 16, it is apparent that the tall fin-like structure in the surface
parallel to the TM band-4 to band-3 ratio threshold axis points directly at this
region, which happens to be a localized minimum at the bottom of this
structure. This was true for all of the images selected for this study. To
locate this spot in an automated fashion, the program searches along the
maximum value in the TM band-4 to band-3 threshold range parallel to the
TM band-7 threshold axis for a maximum gradient value. The TM band-7
threshold value at which this maximum occurs is the band-7 threshold value,
which always occurs at the peak of this fin-like structure. After this value is
found, the program then searches parallel to the TM band-4 to band-3
threshold axis from the top of this fin-like structure downward. When the
algorithm finds the first local minimum along this scan, it knows the position
of the appropriate band-4 to band-3 ratio threshold value. This scanning

procedure can be seen in Figure 19.

Threshold 7
Threshold 4/3

Figure 19 lllustration of the pattern used in the thresholding procedure
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The sixth and final stage of the segmentation algorithm is the
formation of the PIF mask image. The previously determined threshold
values are used to form the two ITT's as described in stage three. These
ITT's are applied to the appropriate images, namely the original TM band-4
to band-3 ratio image and the TM band-7 image. The resulting thresholded
images are logically combined using an .AND. operator and the resulting
image is transformed to a binary image (i.e. all pixels with non-zero values
are assigned a DC value of 255 while all pixels with a DC value of 0 are left
alone). The result is the PIF mask where all pixels that are high (i.e. DC
value of 255) represent pseudoinvariant features, while all other pixels

represent non-PIF pixels.

The accuracy and precision of this algorithm is the focus of the
following sections. Before these can be examined, it is necessary to
complete the PIF normalization process since all subsequent analysis will

be based on the results of this normalization procedure.

2.3 PIF Transform Determination

The development of the PIF transformations has previously been
described in the Theoretical Background section. Once determined, these
transformations are applied to one set of images to make them appear as if
taken under identical imaging conditions as another image. For this

discussion the image set that is to be transformed will be referred to as the
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Day-1 image. The image set that serves as a reference for the
transformation will be called the Day-2 image. A TM image set consists of
TM bands 1,2,3,4,5 and 7. The thermal infrared band (TM band-6) was
excluded since the radiance reaching the sensor in this wavelength region
(10.2 to 12.4um) is not a direct function of the reflectivity for an object; an
essential caveat for this procedure. It is important to note that not all six of
the bands listed above are needed for the transformation process; only an
infrared and a red band are actually required. This will be demonstrated

when the high resolution CIR airphoto image is PIF-transformed.

The determination of the PIF transform has two distinct phases: the
determination of the spectral (digital) distribution of pseudoinvariant features
and the derivation of the transforms. First, the PIF mask is loaded into a
single image plane of the array processor. A single band of the TM data set
is loaded into a second image plane. A third image is created by performing
a logical .AND. of the single band image and the PIF mask. The resulting
image contains only pixels that represent pseudoinvariant features. These
pixels possess the same digital count values that they had in the original
single band image. A histogram is taken of this resulting PIF image with the
DVP in the array processor. The resulting histogram has a zero bin that is
artificially enlarged since everything that is not a PIF in the single band
image has been assigned a digital count of 0. This histogram value at zero

is reassigned to 0 and the histogram statistics are calculated as follows:
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and

niDC?-('iDCi ?
i=1 i=1

n(n-1)

where X is the mean and o is the standard deviation of the histogram, n is the
number of non-zero pixels in the PIF image, and DC,; is the ith pixel's digital
count value. The histogram statistics are calculated for the associated PIF
images in each band image for both days. These statistical values

determine the PIF transforms for each band of the Day-1 image set.

For each band in both image sets the linear histogram

transformations are calculated as follows. The transformation is of the form
DC,= m,DC, + b,

where, as stated earlier, DC, and DC, are the corresponding digital count

values in the Day 1 and Day 2 band image, respectively, and m; and b, are

the slope and intercept term of the corresponding linear histogram

transformation. These are defined as follows:
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The linear histogram transform coefficients are determined for each image
band. The transformations are applied to the Day-1 images by forming a
linear ITT with the form described above and applying these ITT's to the
appropriate images. The computer code that accomplishes the above

("Normalize") is described in Appendix D.
The next major phase of this study is to examine the questions "How

good is the accuracy of the resulting PIF transforms?" and "How precise are

the transforms that are derived?".
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2.4 Accuracy of the PIF Transformations

The accuracy of the PIF transformations developed during the
normalization process will be evaluated by choosing several identical
targets in the image sets of the two days and evaluating how closely the
transformed Day-1 targets match the corresponding Day-2 targets. This
evaluation, will be referred to as a control point analysis, and is conducted in
the following manner. Several sets of control points are collected from each
of the images according to several criteria. The analyst will look for man-
made objects that ideally occupy several pixels in area, i.e. large garking
lots, warehouse rooftops, etc. These objects should span as much of the
dynamic range of the image as possible such that the error determined is
representative of the normalization process over the full dynamic range of
PIF pixels. Digital count values are then obtained for these identical objects
in each band of the Day-2 and transformed Day-1 images. The raw error

associated with the normalization can be expressed as

12
n

g = 2 (DC, - DGy )2

n

where g, is the raw r.m.s. error in the normalization associated with the kth
band, DC; is the digital count value of the it point in the kth band of the Day
2 image, DC;' is the transformed digital count value of the ith point in the kth
band of the Day 1 image, and n is the total number of control point pairs

chosen from the two images.
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Choosing in-scene targets as a means for a control point analysis
leads to several problems in the evaluation of the error in the normalization
process. First, the reflectance of the element could change during the
temporal separation between the two images. Second, the analyst may not
choose exactly the same portion of the target on the two different dates.
Thirdly, the targets chosen may be too small and may thus cause mixed
pixel effects, as happens when the ground spot size of the sensor
encompasses more than the target of interest. The brightness value then
becomes a function of the brightness of surrounding objects as well as the
target brightness. These effects will be referred to as sampling errors and
the magnitude will be assessed to estimate their magnitude. Using the
same control points involved in the determination of the raw error above, a
linear regression is performed between the digital counts of the targets in the
Day-1 image and the digital counts of the corresponding targets in the Day-2

image. This regression is of the form:

DC, =m, DC,' + b,

where DC; and DC;’ are as described above, and my and by are the slope
and intercept terms from the linear regression for the kth band. Under the
assumption that true PIF pixels in the two day's images are linearly related,
the residual error in this regression analysis is the sample error described

above. The distribution of this residual error should be random about the

regression line and is of the form:
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n

€ Z(Dcik ) DACik)

samp | i=1

n

where DC; is the digital count for the ith target on the Day-2 image, DACik is
the predicted digital count value for the Day-2 image, and n is as before the
number of targets studied. Considering this assessment of the magnitude of
the error due to sampling and knowing the estimate of the raw error
determined earlier, the error due exclusively to the PIF normalization can be

defined:

€ = ( e*- eiamp)”z

where gp ¢ is the error in digital count after the PIF normalization, € is the raw
error from the control point analysis immediately after the transformation and
€samp IS the error due to the sampling errors discussed previously.

All the errors are expressed in units of digital count values. This is
only a relative means of evaluating the error resulting from a normalization
process. In order to establish an absolute scale on which to express error,
the above digital count values must be transformed to some other unit which
is constant between images. Such a unit is the reflectance of the ground
objects. In order to transform an error expressed in digital count values to
reflectance units, the analyst must make an estimate as to the reflectivity of

the control point targets as they are chosen. The digital counts of the Day-2
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image are then regressed against their corresponding estimated reflectance
values (best-guess estimates of reflectance are used based on standard
reflectance curves), The slope of this regression line is an expression of
digital counts per reflectance unit. The errors listed above are transformed

to errors in reflectance units by the following expression:

€pc

g =—

r
oy

where g, is the error expressed in units of reflectivity, ey is the error
expressed in units of digital counts, and o, is the slope of the regression line

of digital count as a function of reflectance.

The methods described above were used to describe the errors
associated with the PIF normalizations of the Rochester and Buffalo Landsat
TM images. This analysis was not used on the rural Rochester scene since
too few large PIF features could be located to perform a justifiable study, but
since this scene was taken under "identical" imaging conditions as the urban
Rochester scene, direct comparison of the two sets of transformations will
indicate the relative accuracy of these rural transformations. The digital
count error was computed for all image bands that were transformed,
however, the reflectance unit conversion was performed only on TM bands 1
through 4. The conversion was performed only on these bands since these
were the only bands where the reflectance of the targets could be accurately
estimated. Errors typically encountered using this method for the normalized

images were of the order of one to two reflectance units in the visible and
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two to three percent reflectance in the near IR wavelength regions.

This section has described a method for estimating the effectiveness
of a normalization procedure that is not unique to the PIF normalization
process but which can be used with any normalization technique. The
results of this analysis on the current study for the normalizations utilizing the
automated and interactive segmentation processes appear in the Results
section. The following section will describe the methods used to establish
the precision of the PIF normalization process utilizing both the automated

and interactive segmentation processes.

2.5 Precision of the Normalization Process

A problem that has plagued the PIF normalization technique prior to
this study has been the lack of uniformity in accuracy achieved by different
investigators. As was earlier alluded, each user of this technique tended to
form a different PIF mask . This is the only point at which difference in the
developed transforms could be introduced. This validates the requirement
of a consistent segmentation technique. It is clear that the use of the
automated segmentation algorithm will yield normalization results with the
same accuracy each time it is run on an image set. The phenomenon that
will be examined here is if the degree of accuracy achieved on one set of

images is consistent with the degree of accuracy on other image sets.

There are two directions from which this question will be approached.
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The first is to take the results of the control point analysis on the three heavy
urban areas and compared their resulting accuracies in each image band.
No rigorous statistical analysis can be conducted on this data set due to the
small sample size, however, the apparent consistency, or lack of it, will be
discussed. The second approach will test two aspects concerning the
precision of the PIF technique by comparing the results of the rural
Rochester normalization with the results obtained from the adjacent heavily
urban scene. Since these images are assumed to be taken through the
same atmosphere, the resulting transforms should be identical. The results
of this comparison will further substantiate the precision (or lack of it) for the
PIF normalization technique as well as test the robustness of the technique

to the degree of urbanization in the images to be normalized.

The identity of two transforms can be tested using the following
criterion. In Figure 20, let the transform labeled T, represent the transform
for the urban Rochester imagery and let T, be the transform for the rural
Rochester imagery. The error at any point between these two transforms g;
can be determined as | Ty; - T,; | where T,; and Ty; are the values of the
respective transforms for the ith digital count value. The overall error

between the two transforms can be computed as

12

where € is the overall error between the two transforms, ¢; are the individual
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errors weighted by the number of pixels n; in the ith histogram bin of the Day-

1 image, and n is the total number of pixels in the histogram. Using the

above approach, the overall error associated with applying one transform or

another to an entire scene can be computed on a band-by-band basis.

T, [Day 2]

......
.
L
.......................

Number of Pixels

Input Digitsl Count ™,

Transform T, ~

Transform T1

— Error
(€]

Input Digital Count

Number of Pixels

Day 2 Histogram

Figure 20 Error exhibited between two linear histogram transformations
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All the analyses described above were conducted on the results of
normalizations carried out using the automated as well as the interactive
segmentation procedures. This is a limited study of the precision of the
normalizations that result from this technique, but it should give the reader
an idea of what can be expected when this technique is further utilized. For
this study, errors of less than 10% of the total dynamic range of PIF digital

counts were typical.

2.6 Application of Segmentation Algorithm to High Resolution
Imagery

The above analysis has been conducted using Landsat TM imagery
as data sets for the segmentation and normalization algorithms. In this
section, a further test of the robustness of both algorithms will be considered
by testing their effectiveness on high-resolution airphoto imagery. The
imagery used in this study are the two NHAP CIR airphotos described
previously (refer to Appendix | for possible problems encountered when
digitizing photographic imagery). The segmentation process will be carried
out identically to that described for the TM imagery.The investigator will be
required to replace the TM band-4 to band-3 ratio image with the infrared to
red ratio obtained by dividing the red and green image bands of the CIR
transparency. The TM band-7 image will be replaced by the infrared
information contained in the red image band. The normalization process are

carried out in an identical fashion to that described above. The results can
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then be evaluated by conducting a control point analysis choosing the data
set from the CIR airphoto imagery. The results obtain from this analysis will

be compared to those results from the above control point analyses.
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3.0 Results

The results obtained from the pseudoinvariant feature normalization
technique are largely dependent on the quality of the initial segmentation of
PIF's from the original imagery. To date, this process has been carried out in
a user interactive fashion. Immediate problems arising from such a process
are user-to-user inconsistency and familiarity effects. The familiarity of the
user with the study area aids in the segmentation process greatly.
Conversely, if the area under study is foreign to the analyst, the resulting
segmentation may be less reliable. This study aimed to eliminate these
inconsistencies from the segmentation process. The method developed will
automate this procedure, thus eliminating user-to-user inconsistency as well

as removing the effect of scene familiarity.

The success in segmenting the imagery in this study is a difficult
subject to quantify out of the context of the normalization procedure.
Therefore, the quality of the segmentation will be evaluated in a comparative
fashion. Segmentation using the developed automated algorithm will be
carried out in parallel with segmentation utilizing the interactive thresholding
process. The complete normalization procedure will be performed using
both the above segmentation results. Side-by-side comparisons can then

easily be made.
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3.1 Segmentation of PIF Features

Segmentation of pseudoinvariant features from the imagery in this
study was performed using the interactive thresholding process described in
Section 1.3.1 as well as the automated segmentation algorithm defined in
Section 2.3. The aim of any automation process is to mimic the results of the
manual process previously carried out. Table 2 is a summary of the
threshold values obtained using both the interactive and automated

segmentation algorithms.

The first notable observation from the data in Table 2 is that the
automated segmentation algorithm consistently produced threshold values
that were more conservative than those chosen by the analyst when using
the interactive process. By conservative, it is meant that the thresholds
chosen for the TM band-4 to band-3 ratio were consistently lower than those
chosen using the interactive process (i.e. more high brightness count pixels
were eliminated using the automated process) and conversely the threshold
values chosen for the TM band-7 images were consistently higher than
those from the interactive process (i.e. more low brightness count pixels
were set to zero). This characteristic of the automated segmentation
algorithm causes the resulting PIF mask to contain fewer pixels, thus
indicating that the number of mixed pixels composed of PIF and non-PIF
scene elements will be lower than the number remaining after the interactive
process. This conservative aspect also tends to eliminate useful data from
the PIF mask. Due to the decrease in the number of pixels remaining in the

PIF mask, urban features that may have been kept when using the
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interactive process are eliminated. This can hurt the resulting normalization
since the dynamic range of PIF brightness values is decreased, thus leaving

more chance for error to develop in the resulting transforms.

A comparison of the PIF masks developed using the interactive and
automated segmentation algorithms is shown in Figures 25 through 28 for
the Landsat TM imagery of urban Rochester, urban Buffalo and rural
Rochester and the NHAP high-resolution airphoto imagery of Buffalo. A
monochrome representation of the original images on which each mask is
based on are shown in Figures 21 through 24. Figures 29 through 32
depict the three-dimensional surfaces representing the number of pixels as
a function of threshold values as well as the corresponding gradient
surfaces used to determine the appropriate threshold values for each of the
PIF masks shown. A summary of the histogram statistics used to determine
the thresholding ranges as described in Section 2.2 for these plots is

contained in Table 3 for the TM and the high-resolution airphoto imagery.

To compare the quality of segmentation obtained from the automated
algorithm compared to the interactive method, the respective PIF masks
were used to complete the PIF transformation process. The resulting
accuracy and precision of these transformations were then used as a metric
for the quality of the segmentation process. As considered here, accuracy is
a measure of how well the normalization worked, i.e. the magnitude of the
control point errors. Precision makes reference to the robustness of the

technique, i.e. whether or not the technique maintains the same level of

accuracy for all image types.
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1982 Image

1984 Image

Figure 21 Original 1982 and 1984 urban Rochester Image
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1982 Image

1984 Image

Figure 22 Original 1982 and 1984 urban Buffalo Image
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1982 Image

1984 Image

Figure 23 Original 1982 and 1984 Rural Rochester Image
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1972 Image

Figure 24 Original 1970 and 1972 high-resolution airphoto
image
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(b)

Figure 25 PIF masks created for the 1982 and 1984 urban
Rochester images using (a) the automated and (b) the
interactive segmentation processes
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(b)

Figure 26 PIF masks created for the 1982 and 1984 urban Buffalo
images using (a) the automated and (b) the interactive
segmentation processes
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(b)

Figure 27 PIF masks created for the 1982 and 1984 rural Rochester
images using (a) the automated and (b) the interactive
segmentation processes
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Figure 28 PIF masks created for the 1970 and 1972 NHAP airphoto

images of Buffalo using (a) the automated and (b) the
interactive segmentation processes
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(b)

Figure 29 Three-dimensional surfaces representing (a) the number
of pixels as a function of threshold values and (b) the
gradient of the surface in (a) for the 1982 and 1984 urban
Rochester images
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(b)

Figure 30 Three-dimensional surfaces representing (a) the number
of pixels as a function of threshold values and (b) the
gradient of the surface in (a) for the 1982 and 1984 urban

Buffalo images
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(b)

Figure 31 Three-dimensional surfaces representing (a) the number
of pixels as a function of threshold values and (b) the
gradient of the surface in (a) for the 1982 and 1984 rural
Rochester images
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(b)

Figure 32 Three-dimensional surfaces representing (a) the number

of pixels as a function of threshold values and (b) the
gradient of the surface in (a) for the 1970 and 1972 NHAP

airphoto images of Buffalo
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3.2 Development of PIF Transformations

The PIF masks developed in the previous section using the
automated and interactive segmentation procedures were used to calculate
statistics of the PIF histogram and subsequent PIF transformations for each
of the band images of the urban Rochester, urban Buffalo, and rural
Rochester TM data sets as well as the NHAP airphoto data of Buffalo. The
PIF histogram statistics and the developed linear histogram transformations
are summarized in Tables 4 through 7 using both of the segmentation
procedures. Figure 33 compares the linear transforms developed using the
automated and interactive segmentation techniques for the urban Rochester
TM imagery. As can be seen from these plots and the data summarized in
Tables 4 through 7, the transformations are nearly identical over the range
of digital count values defined by the dynamic range of the PIF pixels. It
should be noted that the errors between the transforms developed using
these two methods tend to be slightly higher at the longer wavelengths (i.e.
in the far infrared band (TM band-5 and band-7 ) ). The reason for this
increase in error is the effect of mixed pixels. Mixed pixels, especially those
containing PIF and vegetation scene elements, tend to increase the error
between these transforms more in longer wavelength regions since the
reflectance of vegetation is so high there. Since there is a mix of high and
low reflectance objects, the contribution of these pixels will erroneously
affect the PIF histogram statistics more in these wavelengths than in the
shorter bandpass regions where the reflectances of these scene elements
are more closely matched. Aside from this observation, there is high

equivalence between the developed transforms using the individual
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segmentation approaches.

Figures 34 and 35 show the urban Rochester data set and the NHAP
data set before and after the normalization procedure. The TM data of
Rochester is a color infrared composite with the infrared image information
displayed in the red display channel, the red information in the green
channel, and the green image information in the blue display channel. The

NHAP airphoto imagery is also a CIR image digitized from an original CIR

transparency.
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Figure 33 The PIF transformations developed utilizing the
automated and interactive segmentation results
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(b)

()

Figure 34 CIR composite TM image representing (a) the original
1982 urban Rochester image, (b) the 1984 urban
Rochester image and (c) the transformed 1982 urban
Rochester image utilizing the segmentation result from the
automated algorithm
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Figure 35 CIR NHAP airphoto representing (a) the original 1972
Buffalo image, (b) the 1970 Buffalo image and (c) the
transformed 1972 Buffalo image utilizing the
segmentation result from the automated algorithm
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3.3 Evaluation of Transforms Using Control Point Analysis

To evaluate the effectiveness of the resulting PIF transformation,
identical targets were chosen in both the transformed Day-1 imagery and the
original Day-2 imagery. A perfect normalization process would cause these
scene elements to have identical digital count values provided no physical
change in the reflectance of the chosen targets had occurred between

image acquisition dates.

The control points were chosen on the basis of the criteria described
in Section 2.4. Targets chosen were large man-made objects occupying as
wide a dynamic reflectance range as possible. The coordinates of the
chosen targets are summarized in Tables 8 through 10 and are depicted in

the accompanying Figures 36 through 38.

The digital count values were collected from the Day-1 imagery, the
Day-2 imagery, and the transformed Day-2 imagery using both the
automated and interactive segmentation algorithms. The digital count
values are summarized in Tables F-1 through F-3 in Appendix F for the
control point analysis of the two urban Landsat TM scenes as well as the

high-resolution NHAP airphoto data.

Tables 11 through 13 summarize the errors in the PIF transformations

that
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Figure 36 The control points summarized in Table 8 are denoted by
+'s on the 1984 urban Rochester image
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Figure 37 The control points summarized in Table 9 are denoted by
+'s on the 1984 urban Buffalo image

105



lewuo} abew [enbip ayl Jo 1au100 Ya| 18MO| 8y} 0} SpuodsalIod (0'0) e1eUIPI00D BY |

(LG'ep) (9g‘8)

(v1E'vse) (02e‘gie)

(1s1'021) (951°28)

(v6'L€2) (vo1'002)

(6e€'82) (1ve‘ze)

(091‘02€) (0z1'282)

(v8v'vL) (28v'eE)

(oov'z€1) (vov‘se)
S8JeulIpI00) s8jeuiploo) ‘0
abew) g/61 abew| 0/61

oleyng jo Auabew ojoydire uonnjosas ybiy sy jo
sisA|eue juiod |0JJu0D BY} 10} USSOYD SBJBUIPIOOD abew sy} Jo Lewwng

O} 8iqeL

:8]ON

—ANM T WOONMNOD

N lulod
|0Jjuo)

106



Figure 38 The control points summarized in Table 10 are denoted
by +'s on the 1970 NHAP airphoto image of Buffalo
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were determined from these control point analyses. The raw r.m.s. error was
computed as described in Section 2.5 for the control points chosen before
and after the raw transformation. In each scene studied, it is seen that this
raw transformation resulted is a dramatic decrease in the difference between
the control point digital count values. As described earlier, this error
involved not only the error due to the PIF transformation, but also any error
due to incorrect sampling methods by the analyst and the nature of the
imagery. In order to remove this sampling error, described in Section 2.5,
the transformed Day-1 digital count values were regressed against the Day-
2 digital count values for the control points chosen. Under the assumptions
for PIF transformation validity, these digital count values should be related
by a direct linear function. Any residual error in this regression analysis
would be a result of non-PIF pixel influence on this control point data. Table
14 is a summary of this sampling error for the urban Rochester, urban
Buffalo TM scenes as well as the NHAP scene of Buffalo. The errors were
computed for both the automated and interactive segmentation results. This
sampling error should not be a function of the segmentation procedure used
and the data in Table 14 show this to be the case. The differences in these
sampling errors are very small in all cases shown, with none exceeding a
difference greater than 5.5%. These errors were removed from the error

after the raw transformation and are summarized in Tables 11 through 13.

As stated earlier, the errors have been expressed in units of digital
counts. These errors have only relative meaning in the context of the
analysis of an individual scene and must be expressed on a common scale
independent of the image. Reflectance is such a measure. The digital count

values
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could be expressed in terms of reflectance units of scene elements in a
ground- based reflectance space. To do this, reflectance values were
estimated for several scene elements and the respective digital counts
recorded for each of the Day-2 images in each of the scenes studied.
Targets of varying brightness were chosen so that a reflectance range
covering as much of the dynamic range of the scene as possible could be
obtained. Tables F-4 through F-6 in Appendix F summarize the reflectance
and digital count data selected from the urban Rochester and urban Buffalo
TM image sets as well as from the high-resoclution airphoto data of Buffalo.
Also included in these tables are the results when the reflectivity was
regressed as a function of digital count value. This analysis was carried out
only on the visible and near-infrared spectral regions of the data since these
are the only regions where the reflectance values could be estimated with
any degree of accuracy. Along with the slope and intercept values for these
regressions, the r2 value (i.e. the coefficient of correlation) was also
computed. In all cases this value exceeded 0.92 which indicates that almost
all of the variability was accounted for in the data. The slope terms, oy, are
summarized in Table 15 for each band of each of the scenes described.
These values were used to convert the errors in terms of digital count values
for the visible and near-infrared bands of the data described in Tables 11
through 13.

Finally, in looking at the data summarized in Tables 11 through 13,
the error in digital count after the sampling error was removed is less that 5%
of the total dynamic range in all cases of the Day-2 imagery in the visible
and near-infrared spectral regions (except for the IR airphoto data), and less
than 7.5% of this range in the far infrared regions. As described earlier, this
increase in error is expected to occur at longer wavelengths . Table 16

summarizes the error due
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to the PIF transformation expressed in reflectance units for the two urban TM
scenes studied. As seen from this table, the error is less than 2% reflectance
in the visible wavelength regions and less than 3% in the near-infrared. It
should also be noted that the errors derived from the results of the
automated segmentation technique versus the interactive technique are
approximately equal. There is no clear-cut difference that can be

established from this limited study.

3.4 Evaluation of Robustness Using Rural Image Data

To test the dependency of the automated segmentation technique on
the number of urban features located in a scene, a TM scene of rural
Rochester was chosen for PIF normalization. The scene was located 512
pixels to the west of the urban Rochester scene to ensure that the imaging
conditions, i.e. the atmospheric homogeneity, the sun angle and viewing
geometry, matched as identically as possible. With this assumption, the
transforms developed separately for these two scenes should also be

identical.

The transforms described in Tables 4 and 6 are shown graphically in
Figures 39 through 43 for both the automated and interactive segmentation
normalization results. The r.m.s. errors between these transforms weighted

by the Day-1 histograms are summarized in Table 17.
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Figure 39 PIF transformations for the urban and rural Rochester
imagery using (a) the automated segmentation and (b) the
interactive segmentation algorithm (TM Band-1)
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Figure 40 PIF transformations for the urban and rural Rochester
imagery using (a) the automated segmentation and (b) the
interactive segmentation algorithm (TM Band-3)
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imagery using (a) the automated segmentation and (b) the
interactive segmentation algorithm (TM Band-4)
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Figure 42 PIF transformations for the urban and rural Rochester
imagery using (a) the automated segmentation and (b) the
interactive segmentation algorithm (TM Band-5)
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interactive segmentation algorithm (TM Band-7)
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As seen from the data in Table 17, the errors between the urban and
rural transforms are typically higher when the automated algorithm was used
for segmentation than when the interactive technique was utilized. The
reason for this occurrence is that the analyst serves as an invaluable tool
deciding what is and what is not an urban feature in a rurally dominated
scene. As seen in the summary of the numbers of pixels that were classified
as PIF pixels in these images using the two segmentation techniques, the
numbers are indeed small when compared to the number contained in a
512 x 512 pixel digital image (approximately 3%). When the number of PIF
pixels becomes so small, any error due to mixed pixel effects will start to
have a more dramatic effect, especially in a rural area. It is interesting to
note that the number of pixels classified as PIF's is larger for the automated
segmentation algorithm than for the interactive technique. This had not
been the case with any of the previous analyses where the automated

technique had always proven more conservative.

In reviewing the data in Table 17, it should be noted that the errors
between the two transforms in the interactive segmentation results are less
than 8.5% of the Day-2 PIF brightness range, with the highest error occurring
in the near-infrared wavelength region. The errors between the two
transforms in the automated segmentation technique results are less than
16%, with the highest error again in the near-infrared region for this same
brightness range. The magnitude in percentage of these errors are
compared to the dynamic range of the PIF pixels only, and will be lower

when applied to the entire scene.
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These errors arise from primarily two sources. The first is the
breakdown of the assumption of atmospheric homogeneity of the urban and
rural Rochester images. If the atmospheres of these two images are not
exactly the same, then the transforms cannot be expected to be identical.
The second source of error between these two transforms is the
effectiveness of the automated segmentation algorithm in a primarily rural
scene. As stated earlier, the automated algorithm is slightly more liberal
than the interactive technique in the case of these images. This liberal
thresholding causes too many mixed pixels to remain in the PIF mask, thus
the quality of the resulting normalization will decrease, especially i.n the

longer wavelength regions.

The results obtained in this study indicate that the overall accuracy of
the PIF transformations is unaffected by the choice of the automated or
interactive segmentation algorithms. The r.m.s. errors encountered during
the control point analysis were approximately one or two reflectance units
regardless of which segmentation method was used. The robustness of the
automated algorithm held up well for urban imagery but suffered some loss

of accuracy when applied to rural imagery.

The technique failed when applied to imagery with significant cloud
cover. The presence of clouds changes the shape of the three-dimensional
surface since the rate-of-change of the number of pixels present in the PIF
mask did not decline enough at any point to show a plateau region in the
plot. The technique developed here was not derived to yield the optimal
segmentation results but rather to take advantage of the convenient

empirical observations made from the original interactive method.
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4.0 Conclusions and Recommendations

A technique has been developed to allow automated segmentation of
pseudoinvariant features from Landsat TM imagery and NHAP high-
resolution color infrared airphoto imagery. The technique has been shown
to work on imagery that is primarily urban as well as imagery that is

dominated by rural scene elements.

The automated technique was tested side by side with the previously
developed interactive segmentation algorithm by comparing the results of
the normalizations conducted using each of the segmented PIF masks as
input to the normalization scheme. Comparison of ;the digital count values of
selected in-scene control points have shown the automated and interactive
segmentation techniques to be equivalent, producing normalization errors of
less than 7.5% of the dynamic range of PIF brightnesses in the image. Both
techniques also produced results with errors in units of reflectivity of less
than 2% in the visible wavelength regions and less than 3% in the near

infrared.

The techniques developed in this study are expected to work equally
well on any imagery of a multispectral nature and of higher geometric
resolution than the Landsat Thematic Mapper sensor. The segmentation
technique was shown to work well on the NHAP high-resolution airphoto
imagery with a ground resolution of approximately 10 meters. The resulting
normalization exhibited very high error in the infrared wavelength region (on

the order of 9%) while producing excellent results in the visible bands (less
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than 1% reflectance error). This weakness in the normalization is most likely
the result of a breakdown in the assumption of linearity between reflectance
and brightness count for digitized photographic data. More work needs to
be done to correct this non-linearity of the response function of the

photographic material.

This automated segmentation algorithm provides a non-interactive
temporal scene-to-scene radiometric normalization technique that is an
invaluable tool for such remote-sensing applications as temporal change
detection, development of time-independent land-use classification

algorithms, and any number of time-dependent ecological studies.

This study also provided a technique-independent method for
quantitatively evaluating the success of any normalization process. The
control-point analysis described with the conversion to an estimated
reflectance space provides a metric on which to measure the success of any

image normalization technique on any image medium.

A primary weakness encountered in this study was the failure of both
the interactive and the automated segmentation algorithms to work on
imagery containing significant cloud cover. The spectral distribution of these
image features causes confusion to occur when trying to isolate
pseudoinvariant features. Techniques need to be developed that can either
distinguish between clouds and urban features by spectral characteristics or

to preprocess the imagery to remove the cloud cover.
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The automated segmentation and PIF normalization techniques have
been tested exclusively on imagery of upstate New York. A further test of the
robustness of the segmentation algorithm as well as the normalization
technique needs to be conducted by applying these techniques to different
geographic locations. Urban features in other geographic locations will tend
to have different spectral signatures due to the different building materials. It
needs to be established whether or not this has a significant effect on the

segmentation algorithm.

The algorithm developed was not intended to determine the optimal
PIF segmentation. It was designed to take advantage of the convenient
segmentation technique developed for the original proof-of-concept study.
Future study should be conducted to examine the quality of the
segmentation resulting from the automated routine. A quality metric needs
to be established as a measure of "goodness/poorness of fit" of
segmentation results. As mentioned earlier, the histogram equalization
approach to the development of the PIF transforms can be used as a quick
check for the quality of the original segmentation when compared to the
linear histogram transforms. Future work with this quality criterion may lead
to a more rigorous segmentation quality metric to fine-tune the

segmentation.

Due to the conservative number of pixels contained in the PIF masks
formed using the automated segmentation technique, a question arises
concerning the quality of the transformations derived. There is not only a

different number of pixels in the PIF masks for the two images, but these
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pixels often represent different ground features. The next step in the
development of a segmentation technique would be to use information from
both images to form a single PIF mask that contains the same number and
location of PIF pixels which can be used to segment the two day's registered
imagery. The resulting normalization would then be based on identical

gray-level distributions from the two images.
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ReQUIRED IMSL SUBROUTINES: EIGRS
WRITTEN By CARL SALVAGGIO AuGusT 1986
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CHARACTER®]1 BeLL

INTEGER®HL N. M. MaxBnD. MINBND. Sweinc., DIM, @
ParaMETER ( N = 512, M = 512, SmPInc = 5 )

ParamMeETER ( MaxBND = 10 , MINBND = 2 )

ParaMETER ( BELL = CHAR(7) )

ParamMETER ( DIM = ( MaxBND ®* ( MaxBnDp + 1) ) / 2)
INTEGER®2 Imace( N. M ), ImageAC N, M), ImaceB( N. M)
INTEGER®U JoaN, 1Err, 1Z

ReaL*4 Mean( MaxBND ). VAR( MaxBND, MaxBnD )

ReaL®d Vm.uss( MaxBND ). VECTORS( MaxBwnD. HAxBND )
ReAL®4 AC DIM ). DC MaxBND ). Z( MaxBND. MaxBND )
ReaL*y ToTVar. ScALE

CHARACTER®80 FiLNam( MaxBnD )., PCNam( MaxBnp )
CHARACTER"B0 INNAME. OuTName. DerFauLT
CHARACTER®1

INTEGER"U Comsx-r. Status. LIBSFIND_FILE

OreN ( 9. StaTtus = ‘New’ )

essasecse OBTAIN IMAGE INFORMATION

CaLL L1BSERASE_PAGE(1.1)

WRITE (6.°)

WrRITE (6.2) ,
FORMAT (’$’,'HOW MANY IMAGE BANDS DO YOU HAVE ? °)
Reap (5. LEND=300) NuMBND

1IF ( NUMBND .GT. MAXBND .OR. NUMBND .LT. MINBND ) THEN
WR1TE (6.%) BELL

wWriTE (6.800)
GoTo 1
ELse
GoTo 3
Enp IF
sassassen READ IN BINARY IMAGE FROM DISK
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3 WRITE (6."
DEFAULT = 'chs [CNSS024 . aNDSAT)® . PIXx’
Do 6 K= 1, NumBND. l
WRITE (6.5) K
FORMAT (’$’,‘ENTER FILENAME FOR BAND 3.7 )
Reap (5.'(A)'.END-900) F1LNam( K )
INNamE = Fi1iNam( K )
. Status = LIBSFIND_FILEC INNaMe. OuTNamE.

CONTEXT. DeFa 7. OuTNamE )
CALL L1BSFIND_FILE_END( CONTEXT ) = "
Ir ( Status .€Q. 65537 ) THEN
FILNaM( K ) = OUTNAME

Ve

EiLse
WRITE (6.%) ‘**® ERROR *** FiLE NoT Founp’
GoTo 4
D IF
6 CoNTINUE
WR1TE (6.%)

WRI1TE (6.°) ‘PLEASE STAND By ...’
Do 30 K = 1., NumBnD

CaLL PxxIN( IMAGE. FILNam( K ) ) ! REAaD IN IMAGE
CALCULATE THE MEAN AND VARIANCE FOR THE INDIVIDUAL BANDS

CaLL ImGMean( Image. SMPINC. Mean( K ) )
CaLL Variance( Image. Mean(K), Image. Mean(K),
SMPINC. VAR(K.K) )

30 CONTINUE

FiLL 1IN THE ResT oF THE COVARIANCE MATRIX

Do 70 L = 1. NumBnD-1.
CaLL PixIn( IHAGEA. FiLNam( L ) )
Do 60 K = L+1, NumBND., 1
CaLL PixInC IMGEB. FILNAM( K ) )
CaLL VARIANCE( ImaGeA. I

MAG EB. Mean(K) .,
SmeINC. VAR( L. ))

60 CONTINUE
70 CONTINUE

00901-1 NUHB
Do 8 J-l.

80 Commue
90 CONTINUE

unBND. 1
( J.I)=vVar( 1.J)

DispLAY THE IMAGE STATISTICS

WRITE (9.°)
WRITE (9.°) ‘Imace Names’
wWri1TE (9.°)
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Do 100 I = 1, NumBND. 1

WRITE (9.°) FiLNam(
100 CONTINUE ICRARET 9

WRITE (9.*)

WRITE (9.°) ‘MEaN VECTOR®

WRITE (9.*)

WRITE (9.°) ( Mean( 1 ), I =1, NuMBnD. 1)

WRITE (9 *)

WRITE (
WRITE (
DOBONRI?LQ'M?N)%V(IJ)J NumB
ITE AR . . =1, ’
127 FormaT ( CNUMBNDYF10.3") L e o 7
130 CONTINUE

Put Covariance MaTrRIx IN A SysTemaTic Format For EIGRS

I1SuB = 0
Do 150 1 = 1, NumBnp, 1
Dol J=1,1.1
I1Sup = ISua + 1
AC ISuB ) = Var( 1.J)
140 CoNTINUE
150 CONTINUE

CaLcuLAaTE THE EIGENvVALUES AND E1GENVECTORS OF COVARIANCE MaTRIX

JoBN = 1 Y JoBN = 0 COMPUTES ONLY EIGENVALUES

! JoBN = 1 COMPUTES EIGENVALUES AND EIGENVECTORS
1Z = MaxBnD
WK = MaxBnDp +

CaLL EIGRSC A. NumBNp. JoBN. D. Z. 1Z. WK, IERR )

Dol151 1] = NUMBND .
VALUES( 1 )-D( 1)
151 CONTINUE
Do 153 1 = 1, NumBnD. 1
Do 152 J = 1., NumBND.
VEc'roas(lJ)-Z(IJ)
152 CoNTINUE
153 CoNTINUE
eesscsces FLIP THE VALUES AND VECTORS TO DESCENDING ORDER

Do 155 IT- 1. NwBr(«D{Z.
- ES
VALUEQ%UI ) = VarLues( NUMBND+1 -1 ! FLIP THE VALUES
VaLues( NumBnD+1-] ) =
155 CONTINUE

A-4
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Do 165 1 = 1, NumBnD, 1
Do 160 J = 1 NumMBND/2, 1
T = VEctors( 1.J )

VECTORS( ].J ) = VECTORS( l. NumBND+1-J ) | F <
VecTtors( 1., NUMBND+1-J ) LIP THE VECTOR
160 CONTINUE

165 CONTINUE

CoRRECT THE EI1GENVECTOR MaTRIX TO A POSITIVE QUADRANT FORMAT

Do180 1 =1, NUHBND 1
Do 170 J = 1, NumBnD. 1
VECTORS( 1.0 = (-1)**(J) * Vectors( 1.J )
170 CoNTINUE
180 CONTINUE

ComPUTE THE TOTAL VARIANCE OF THE TRANSFORMED DaTta

Totvar = 0.0
Do 190 I = 1., NumBnD. 1
ToTVar = ToTVar + VaLues( 1 )
190 CONTINUE

PRINT OUT EIGENVALUES AND EIGENVECTORS

CaLL LIBSERASE_PaGE(1.1)
WRITE (6.°)
WRITE (9.°)
WRITE (6.*) ‘EI1GENVALUES X VARIABILITY'
WRITE (9.°) ‘EIGENVALUES % VARIABILITY’
wax'rs Eg.')
Do 210 =1, NuMBnD. 1
Wr1TE (6.200) Varues( 1 ).
WrRITE (9.200) VaLues( I ),
200 Format ( Fl12.5, 9x. F7.3 )
210 CONTINUE
WRITE (6.°)
WRITE (9.°)
WRITE (6.215) ToTVar
WRITE (9.215) TotVar
215 ForRmaT (‘$*,‘ToTaL Variance = °,F13.5)

WRITE (6.°

WRITE (9.')

WRITE (6.°) ‘EIGENVECTORS’
WR1TE (9.°) ‘EIGENVECTORS’

( VaLues( I ) 7 Jorvar ) ® 100.0
( VaLues( I ) /7 Totvar ) ® 100.0

Do 220 l = 1. NumBND, 1
WRITE (6. 217) ( Vectors( 1.J)
WrRITE (9.217) ( VECTORS( 1.J)
217 FormaT ( (NuMBND>F10.5 )
220 CONTINUE
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WRITE (9.*)
WRITE (9.*)

. DETERMINE THE NUMBER OF PC’Ss ( EIGENVECTORS ) TO KEEP

WRITE (6.°)
WRITE (6.°)
290 WRITE (6.300)

300 FormaT (‘S$‘, CALCULATE AND STORE THE FIRsT [Q] P.C.°s: Q: )
Reap (5.°) Q

Ir ( @ .6T. NUMBND ) THEN
WRITE (6,310) NumMBND

310 FoRmMAT (’$’,’**® ERROR *** OnLY’.13.’ PC's ARE POSSIBLE')
GoTo 290
ELse IF ( @ .LE. 0 ) THeN
GoTo 900
Enp IF
WRITE (6.°*)
Do3131=1,0,1
WRITE (6,312) 1
312 FormMaT (’$’,’ENTER OUTPUT FILENAME FOR PCC(’,13.° ) : )
Reap (5.°(A)‘,EnD=900) PCNam( 1 )

313 CoNTINUE

CAaLcuLAaTE THE ScALE FOR THE PC IMAGES

ScaLe = 0.0
Do 320 J = 1., NuMBnD, 1
ScaLe = ScaLe + ( 255.0 ® Vectors( J.1 ) )
320 CONTINUE

ScaLe = ScaLe / 255.0

TYTYYY Y YY) Save THE PC’s

Do401=1,0.,1

WRITE (6.%)

WRITE (6,314)
314 Format ('S‘, Comu’rme PCC’.13." ) ..v ')
sesesenss CLeAR THE Past PC Imace

Do 316 K =1, N, 1
Do315L=1. M 1
Imace( K.L ) = 0.0

315 CONTINUE
316 CONTINUE
scscscssnss CaLCULATE THE CURRENT PC Image
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Do 390 J = 1, NuMBnD. 1
CaLL PixINC ImageA. FILNam( J ) )
Do 380 K = 1, N,
Do370L = 1. M, 1
Image( K,L ) = FLoAT( Image( K.L ) ) +
FLoaT( ImageA( K.L ) ) *
Vectors( J.1 ) / ScaLl

E
Ir ( ImaGge( K.L ) .LT. =255 ) Image( K,L ) = -255
Ir C Image( K.L ) .GT. 255 ) ImaGe( K.L )= 255
370 CONTINUE
380 CONTINUE
390 CONTINUE

Be SURE THE IMaGE 1s PosITIVE IN SiGN

Do 394 J=1, N, ]
Do 393 K=1, M, 1
Image( J.K ) = ABs( Image( J.K ) )

393 CoNTINUE

394 CONTINUE

:""““ Save THE CURReNT PC ImaGE
395 WRITE (6.®) ‘SavinGg PC ImaGgE IN:’

WRITE (6.*) PCNam( 1 )
CaLL P1xOuT( Image. PCNam( 1 ) )

400 CONTINUE

escssscnn ERROR MESSAGES

800 FormaT (//.°*""® ERROR = INvaLID NumBer OF Banps ***‘.//)

ssansennn TerminaTION BLOCK

900 CLose ( 9)

ETOP ‘ PRincIPAL CoMPONENTS COMPLETED. ’
ND
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SUBROUTINE ] MGME AN(
- seses

Image. SmPInc, Mean )
XYY YRR R NR N R YR Y N YA L A RR R L AR A R A X2 224

ImMGMEAN = WILL FIND THE MEAN VALUE OF AN_IMAGE.
THE IMAGES ARE EXPECTED TO BE 512 x 512
IN SIZE AND 8 BITS DEEP.

WRITTEN By CarRL SaLvAGG1O Octoeer 1986

-
-
-
-
-
-
-
G e RN A RN O NRN N s G R RN RNl Ol N ER NN ERaataaasdsaosaaentacaossnnssannans

INTEGER"4L N. M, SmrInc
ParaMETER ( N = 512, M = 512 )
INTEGER®2 Image( N, M)
ReaL "y Mean

ReaL"8 Sum, ToTNum

CALCULATE THE ImAGE Mean

TotNum = INTC N /7 SwPInc )°®®2

Sum = 0.0
Do 20 J =1, M, SMrINC
Do 101 = 1. N. SMPINC
Sum = Sum + FLoaT( Image( 1. J ) )
10 CONTINUE
20 CONTINUE

MeaN = Sum / ToTNum

ssdsseses RETURN CONTROL TO CALLING PROGRAM

RETURN
Enp
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SUBROUTINE VARIANCE( IMaGEA., MeanA, ImaGeB. MeanB. SwepInc. Var )

LA A A A A A A A A X A I R Y R R Y R Y R R Y P R R R R Y X A S R g

- VARIANCE - WILL FIND THE VARIANCE-COVARIANCE VALUE
. BETWEEN TWO IMAGES. THE IMAGES ARE EXPECTED
. TO BE 512 x 512 IN S1ZE AND 8 BITS DEEP.
. WRITTEN By CarRL SaLvaGGlO OcToBER 1986
INTEGER®H N. M., SwrINnC
PaRaMETER ( N = 512, M = 512 )
INTEGER®2 IMacgeAC N. M )., ImageB( N. M)
ReaL"4 MeanA. MeanB. Var
ReaL*8 Sum, ToTNum

CaLcuATE THE COVARIANCE (VARIANCE) BETWEEN TWO IMAGES

TotNum = INTC N /7 SmPInc )**2

Sum = 0.0
Do 20 J=1. M, SmrINnC
Do 101 = 1. N, SMrINnC
Sum = Sum + ( FLoaT( ImageAC 1, J ) ) - MeanA ) *
* ( FLoaTt( ImaGgeB( 1. J ) ) - MeanB )
10 CONTINUE

20 CONTINUE
Var = ( 1,0 7/ ( TotNum =1 ) ) ® Sum

bubrintet it ReTuRN CONTROL TO CALLING PROGRAM

RETURN
EnD



Appendix B

Appendix B

Description of the K-Means Unsupervised Clustering Code

Cluster
Display
MinDst
Merge
Elim
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'...I......I..I.........................C.Q.QDOI.I.Q.I.IQ...I...........

CLUSTER -

CnTrRODC , )
CvTB.Cvrl
DisT( )
IRND. JRND
1Seep

xBND
MaxCLs
MINBND
MINPNT

2 6 89 6888 8088 008500 880 SS9 OISO S ST O SPE S TS ETE O

THIS PROGRAM WILL LOOK AT AN N-BAND IMAGE.
CHOOSE K RANDOMLY LOCATED CENTROIDS. AND
EXECUTE A K-MEANS CLUSTERING ALGORITHM. IMAGE
PIXEL WILL BE ASSIGN TO THE NEAREST CENTROID
CIN A EUCLIDEAN SENSE). ONCE ALL THE PIXEL
HAVE BEEN ASSIGNED TO A CENTROID. THE CENTROIDS
ARE RECOMPUTED. AND THE ASSIGNMENT PROCESS
BEGINS AGAIN. THIS CONTINUES UNTIL THERE IS NO
SIGNIFICANT CHANGE IN THE CLUSTER CENTROIDS.
THIS ALGORITHM WAS DESIGNED AFTER FORGY'S
METHOD. DESCRIBED IN:

M.R. ANDERBERG. CLUSTER ANALYSIS FOR APPLICATIONS. ACADEMIC
PResSs. New York, 1973, pp. 158-162.

LA Ll A L I Y Yy Y Yy Y Y Y Y Y YT

Var1aBLE DecLarRATION

THE MATRIX OF CURRENT CENTOID VECTORS

THE BYTE TO INTEGER TEMPORARY CONVERSION VALUES
THE ITH DISTANCE FROM ‘POINT’ TO ‘CNnTROD( . )’
THE PIXEL COORDINATES OF THE RANDOM SEEDS

THE NUMBER OF SECONDS SINCE MIDNIGHT. USED TO
MAXIMUM NUMBER OF IMAGE BANDS ALLOWED

MAXIMUM NUMBER OF CLUSTERS ALLOWED

MINIMUM NUMBER OF IMAGE BANDS ALLOWED

THE NUMBER OF THE CLUSTER CLOSEST TO ‘POINT( )’
THE NUMBER OF IMAGE BANDS

THE DESIRED NUMBER OF CLUSTERS

THE CENTROID VALUE FROM THE PREVIOUS ITERATION
THE CURRENT PIXEL VECTOR WITH ‘MaxBND’ ELEMENTS
TEMPORARY BYTE BUFFER TO STORE IMAGE ROW DATA
THE MINIMUM TOLERANCE LEVEL FOR MERGING CLUSTERS
SEED THE RANDOM NUMBER GENERATOR

THE MINIMUM TOLERANCE IN DC‘S BETWEEN CLUSTER
CENTROIDS TO TERMINATE THE 1TERATIONS

THE TOTAL NUMBER OF SAMPLED PIXELS

LA A A A XA A R A A A X A A X X R R X R R R R R R SR Y YRR Y XYY 3

REQUIRED SUBROUTINES: MinDsT

MeRGE
ELim

AuTHOR: CaARL SaLvaGGio NovemBer 1., 1986

ROCHESTER INSTITUTE OF TECHNOLOGY
CeNTER FOR IMAGING SCIENCE

L3
-
-
-
-
XA X A X X XX A S XX A A R R A RS S S R R X A SR 2223
-
-
-
-
-
-

OO RENRNENNNENE SR ENNO NS NENESARNSBARNGNEBRERNENRENEGEESERERRNINGIOEEIREES

ByTe

CHARACTER®]

CHARACTER®B0

CHARACTER" 31

CHARACTER®]

CviB

ANs. Ansl, Ans2, BeLL
INNaME., OuTName. DeFauLT
CmD

UNIT
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INTEGER®2 NumBnD. NumCis. Cvtl. LunSFT. MINPNT. Tou. Num
INTEGER®?2 NUMMRG, NUMELM
lNTEGER:H N. M., MaxBnD. MINBND., SvpInc. MaxCLs. ToTaL
INTEGER ™Y ConTexT, Status. L1BSFIND_FILE, ISEED
ReaL*®y IRND. JRND. TOLNCE
PARAMETER (N=2512, M=5]12)
c PARAMETER ( SMPINC = 1) 12
PARAME TER ( MaxBnp = 10. HINBND =2)
ParRaAMETER ( MaxCLs = 25 )
PARAME TER ( BELL = CHAR(7) )
PARAME TER ( LUNSFT =9 )
PaRAME TER ( Tounce = 1.0 ) 114} COVERGENCE TOLERANCE
c PARAMETER ( ToL = 20) 1111 MERGING TOLERANCE
ByTe RowBuF (M)
CHARACTER®80 F1LNam(MaxBnD)
INTEGER®2 P1xeL (MaxBnD)
INTEGER®Y Bin(MaxCLs), SuM(MaxCLs.MaxBnD)
ReaL*y CnTROD(MaxCLs. MaxBND), OLDCNT(MaxCLs. MaxBnD)
ReaL"y DisT(MaxCLs). DsT(MaxCLs.MaxCLs)
EourvaLeNnce (¢ Cvtl. CvtB)

OBTAIN THE NUMBER OF BANDS AND CLUSTERS

CaLL LiBSErRASE_PaGE(]1.1)
1l WRITE (6.2)
2 FORMAT (’S’,’HOw MANY IMAGE BANDS DO YOU WAVE ? ‘)
READ (5.*,Enp=900) NumBND
IFr (C NUMBND .LT. mNBND) .OR, ( NuMBND .GT. MaxBND )) THEN
WRITE (6 *} BeL
WRITE (6. ') 7 ERROR **** ILLEGAL NuMBER OF BanDs’
th&ﬂl’TEl(G.

EnD IF
3 WRITE (6.4)
4 FORMAT (’S’, How MANY CLUSTERS DO YOU WISH TO FORM ? ‘)
Reap (5.°,.EnD=900) NumCLs
IF (C NuMCLs ,LT. 1) .0rR. ( NumCLs .GT. MaxCLs )) THEN
WrR1TE (6.%) BeLL
WRITE (6.%) ’ ***"*® ERROR ®**** ILLeGaL NUMBER OF CLUSTERS®
legx're (6.*)

To
Enp IF
WrITE (6.5) ,
S FORMAT ('S'.'SAMPLING INCREMENT ( 1.2,4,8.16.32.64.128 ) : )
Reap (5,° .END=900) Smrinc
WRITE (6.6) ,
6 FormaT (‘S’, ‘Do YOU wxsu SIMILAR CLUSTERS TO BE MERGED 7 ‘)
READ (5.'(A)'.END-90 Ansl

Ir ( Ansl .EG. ‘Y’ .OR. ANsl Q. ‘Y ) ANsl = ‘Y’
Ifr ( ANsl .NE. ‘Y’ ) GoTo 8

WRITE (6.7 s
FORMaT (‘S ' ,'MINIMUM INTER-CLUSTER DISTANCE : ‘)
Reap (5.° .E p=900) ToL
8 WRITE (6.9) ,
9 ForMAT (’S’,’ELIMINATE CLUSTERS WITH O PIXELS ? ')

B-3
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READ (5.'(A)’, END-QOO) ANS?2
IfF ( ANS2 .EG. ‘Y’ ANS2 LEQ. ‘Y' ) ANS2 = ‘Y’
IFr C ANS2 .NE. ‘Y’ GoTo 10

-
eessanann
-

OBTAIN BAND IMAGERY NAMES (AND CHECK IF THEY EXIST)

10 WRITE (6.*)
DeFauLT = ‘Pics:[CNS9024.LaNDSAT]® .PIx”
Do 30 K = 1, NumBnD.
1] WrRITE (6,20) K
20 FORMAT (‘S$‘,’ENTER FILENAME FOR BAND'.13.°: ‘)
Reap (5,'(A)’.E~D'900) F1LNamM( K )
INName = FI1LNam( K )
StaTus=L1BSF IND_FI1LE(INNAME, OUTNAME ConTEXT.DEFAULT.OUTNAME )
CALL LipSFIND_F1LE_END( CONTEXT )
( Status .EQ. 65537 ) THEN
FILNAM( K ) = OuTName

NRITE (6.°) BeL
WRITE (6.°%) ress ERROR ®*** FiLe NoTt Founp’
WRI1TE (6.°%)
GoTo 11
1f

30 CONTINUE

ecsnssnse OPEN THE ‘NUMBND’ IMAGE FILES

Do 40 LUN = LUNSFT+]1, NunBND+LUNSF'r. 1
Oren ( Lun. Frie=F1oLNam( Lun-9 ). Access='DIRECT’.

+ StaTus="0LD’. RecL=N/4. FORM=‘UNFORMATTED’. ReADONLY )
40 CoNTINUE
:"""" INITIALIZE THE CENTROID VECTORS
1Seep = Secnps(0.0) 19011 INITIALIZE SEED WITH THE SECONDS

1411) SINCE MIDNIGHT
Do60 1 =1, NumCLs., 1
IRND = Ran( 1SeED )
JRND = Ran( ]Seep )
JRow = INT( IRND ® 511.0 + 1 )
JCoL = INTC JRND * 511.0 + 1)
Do 50 J = 1. NuvBND, 1
Reap ( J*LUNSFT. Rec = JRow ) RowBuF
CviB = ( JCoL )
CnTROD( l. J ) = Cvrl
50 CONTINUE
60 CONTINUE

ResaseEes CHECK IF ANY OF THE CENTROIDS ARE EQUAL AND MERGE THEM

( Ansl .EO. ‘Y’ ) THEN
&l IFCALL MerGe( CNTROD. BxN. NumCLs. NuMBND. ToL. MaxBwD,
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+ MaxCLs., DsT. NumMrG )
Enp IF

ELIMINATE ANY CLUSTER WITH 0 PIXELS

Ir ( AN 52 EQ. ‘Y’ ) THEN
IfF ITER 0. 0 ) GoTo 66
NuMELM =
Do EA ] = 1 NumCLs. 1
Ir (. BINC 1) ,EQ. 0 ) THEN
NUMELM = NUMELM + 1
E'(‘;;uiFELm( CNTROD.BIN.NUMCLS .NUMBND . ] ,MaxBND . MaxCLs )
b4 CONTINUE
Enp IF

PRINT OUT THE CURRENT CENTROIDS

66 WrRITE (6.°)
WRITE (6.67) ITER
67 FORMAT (‘$’,’]ITERATION #'.13)
ITER = JTER + 1
WRITE (6.62) NuMMRG
62 FORMAT (’$’°,’NUMBER OF CLUSTERS MERGED =‘,13)
WRITE (6.65) NumELM
65 ForMAT (’S’,’NUMBER OF CLUSTERS ELIMINATED = ‘,13)
WRITE (6.68)
68 FormaT (’$’,’CURRENT CENTOID VALUES :°')
WRITE (6,%)
Do 80 1 = 1. NumCLs. 1
WRITE (6.69) ]

69 FORMAT (‘S'.'Cwsvsn('.xl'
wWRITE (6,70) ( CnTROD( I.J =], NUMBND. 1). BinC 1)
70 FORMAT (°4°,75,(NUMBNDYF7. 1 19. PIXELS'

80 CONTINUE

eoonences CLEAR THE BINS AND SUMS

85 Con‘rmue
86 CONTINUE

wesssenene GET THE CURRENT PIXEL

DollOJ=1, N. SwpINnc 1
Do 100K = 1, H. SmpInc 111 Corumn Loor
Do 90 L = 1., NumBnD. 1 "
ReaDp ( L+LUNSFT. Rec = J ) RowBuF
CvTB = RowBur( K )

B-5



Appendix B

Pixer( L ) = Cvrl
90 CONTINUE 1110 Enp Banp Loor

FIND WHICH CLUSTER THE CURRENT PIXEL 1S CLOSEST T0

CaLL MINDsTC PixeL. CNTRoOD. NUMBND. NumCLs. MINPNT,
+ MaxBnD, MaxCrs. DisT )

-
Sessecsaas
-

UPDATE THE PIXEL/CLUSTER COUNT AND SUM/CLUSTER VALUE

BINC MINPNT ) = BIN( MINPNT ) + 1
Do9L =

NumBND, )
SumC MINPNT.L ) = Sum( MINPNT.L ) + PIxec( L)
95 ConTInuE

100 CoNTINUE 1111 Enp CoLumn Loor
110 ConTINUE 1111 END Row Loor
seecsenes STORE OLD CENTROIDS AND COMPUTE NEW CENTROIDS

Dol30 ] = 1 NumCLs, 1
Do 120 J = 1. NumBnD. 1
IfF ( BxN( 1 .€0. 0 ) GoTo 130
OLpCnT( 1,J ) = CNTRODC 1.J )
CnTRoD( 1.J ) = FLoaT( Sum( 1.J )) /7 FLoat( BinC I ))

7

120 CONTINUE

130 ConTINUE

L J

seeseseny CHECK FOR CONVERGENCE OF THE CENTROIDS

Do 150 1 = 1, NumCLs., 1
Do 140 J =1, NunBN 1
Ir CBINC T ) .ee. 0 ) GoTo 150
Ir (ABSC(OLDCNT( T1.J ) - CNTROD( 1.J)) .6T. TouncE) THEN
GoTo 61

Enp IF
140 CONTINUE
150 CONTINUE

WRITE (6.%)
WRITE (6,160) TouLnce
160 FormMAT (’$’, ‘CONVERGENCE TOLERANCE OF ',F7.4.’ EXCEEDED’)

esscsnsnes CLOSE THE IMAGE ‘FILES

Do 190 Lun = LUNSFT+1, NUMBND+LUNSFT. 1
CLose( Lun )
190 CONTINUE

wsesaeses WRITE THE FINAL CENTROIDS TO A FILE
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OPen ( 1. FILE"CLUSTER Outr’. S =’ ¢
Do 220 1 = 1, NumCLs. 1 TeREsea 2
WRITE (1.210) ( CNTROD( 1.J)., J=1, NumBnD, 1 )

210 FormaT ((NuMBND>F7.1 )
220 CONTINUE
CLose( 1)

:""“" RUN THE COLOR IMAGE GENERATION PROGRAM
WRITE (6.°)

230 gnns (? ?O)GE
ORMAT (‘8$’,’GENERATE A COLOR COMPOSITE IMAGE ( 2
Reap (5,°(A)’.END=800) Ans YORND ’

Ir ( ANs ,EQ. ‘Y’ .OR. ANS .EG. ‘Y’ ) THEN

235 WRITE (6,2u0)
2u0 ForRMAT (’S’, ‘ENTER UNIT NUMBER : ) .
Reap (5.'(A)'.E~D=900

IF (UNIT.NE.'D’ &N 3¢ ™ s
Cvo = ‘BUSER: [cnsgozu 1ne0ps]0:sm¢"’? . R 2" Yoo 225
i El:% o (" ("R U [CNS9024 . IMcOP

CaLL LiBSSPawn uN USER:

CALL L1BSSPpawn ( CmD ) sIDisPLAY’)

LYY Y Y Y YS PROGRAM TERMINATION

900 WRI1TE (6.%)
Enp

(44 22 X 3 X R R X X X R Y X R R X X R X R A X A R Y Y Y R Y Y Y Y Y Y Y Y Y Y Y P Y Y Y Y Y Y Y Y Y Y YT X

SuBROUTINE MINDST( POINT., CNTROD. NUMBND., NuMCLs. MINPNT,
xBND, MaxCLs, DisT )

+
LI YT Y Y Y YT Y Y Y Y Y YT Y YT YT Y Y Yy R Y e e Yy P Y Y Y Y Y Y Y Y Y Y Y Y YT Y YT ¥ Y TP

-

° MINDsT - THIS SUBROUTINE WILL CALCULATE THE DISTANCE

. OF THE CURRENT PIXEL TO EACH OF THE

. CENTROIDS. THE ALGORITHM WILL THEN

° DETERMINE WHICH OF THE DISTANCE IS THE MINIMUM
. AND RETURN THIS CLUSTER NUMBER TO THE CALLING
: PROGRAM.

PO ONOR SN NOORRB RN OB NRBEENOGRABRERERRNERTRARRIRRNNOBRORIETIRNIBGTEREAS
-

: Var1aBLE DECLARATION

® CNTROD( . ) = THE MATRIX OF CURRENT CENTOID VECTORS

* DistC ) -~  THE ITH DISTANCE FROM ‘POINT’ TO ‘CNTRODC ., )’
® MaxBND = MAXIMUM NUMBER OF IMAGE BANDS ALLOWED

- MaxCLs =  MAXIMUM NUMBER OF CLUSTERS ALLOWED

- MINPNT ~  THE NUMBER OF THE CLUSTER CLOSEST TO ‘POINT( )’
. NumBnD = THE NUMBER OF IMAGE BANDS

* NumCLs ~  THE DESIRED NUMBER OF CLUSTERS



Appendix B

: POINT( ) =  THE CURRENT PIXEL VECTOR WITH ‘MaxBND’ ELEMENTS
. Sum = A RUNNING TOTAL FOR DISTANCE CALCULATIONS

...............II.C...I.I........I.'...I....I....'........I....l...l.l..
-
-

REGUIRED SUBROUTINES: NonEe

..I...........I...II.......I.............................I..I..II.'.....
-

AuTHOR: CARL SaLvaGGio Novemeer 11. 1986
ROCHESTER INSTITUTE OF TECHNOLOGY
CENTER FOR IMAGING SCIENCE

-
-
-
-
....'I............'................'.......'................-.....l.I..I

INTEGER®2 MaxBND, MaxCLs

INTEGER®2 MINPNT, NUMBND. NumCLs

INTEGER®2 PoINT(MAXBND)

ReaL*y CnTrROD(MaxCLs .MaxBND) . DisT(MaxCLs)
ReaL*y Sum

CALCULATE THE DISTANCE FORM THE POINT TO EACH CENTROID
Do 20 1 =1, NumCLs. 1
Sum = 0.0
Do 10 J = 1. NumBnp. 1
Sum = Sum + ( FLOATC POINTC J ) ) - CnTrRODC 1.J ) )*"*2
10 CONTINU

E
Dist( 1 ) = SerT( Sum )
.20 CONT INUE

DETERMINE WHICH OF THE ITH DISTANCES IS A MINIMUM

MINPNT = 1
Do 30 1 =2, NumCLs. 1
Ir C DisT( MINPNT ) .GT. D1sTC 1 ) ) MINPNT = |
.30 CoNTINUE

Seshasiae RETURN THE CLOSEST CLUSTER NUMBER TO CALLING PROGRAM

RETURN
Enp

RO NORONRRANSRGANBRNINOERRROEERNGRNRIRITTRNRRNDECENRRNNNSESSCERITTSCECITRESTES

MerGe( CNTRop. Bin, NumCLs, NumBaD. Tou.
SUBtoUTINE: Hees xBND., MaxCLs., Dst. N

.'.........................!.........."....'.......9.........'......‘.'

MeRGE - TH1S SUBROUTINE WILL EXAMINE ALL THE CENTROIDS
AND IF ANY TWO OF THEM ARE WITHIN A SPECIFIED
DISTANCE OF EACH OTHER. THIS PROGRAM WILL
MERGE THEM INTO ONE CENTROID

OGN ORONREENGaSORNAOGNECSEENEREEBENGatesaEsRIGsISESTIRIRTIRGRRESTISETERSS
VariaBLE DecLARATION
TOL - THE MAXIMUM DISTANCE FOR EACH BAND VALUE

L 2N BN BN BN BN BN BN BN B A

B-8
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TO ALLOW CONVERGENCE

ALL OTHERS ARE THE SAME AS CALLING PROGRAM

LA A AL Rl L L Y Y Y Y Y Y Y Y R Y R Y S Y PR YR Y R RS Y Y

AuTHOR: CarL SaLvaGGIO NoOveMBER 1, 1986
RocHESTER INSTITUTE OF TECHNOLOGY
CENTER FOR IMAGING SCIOENCE

-
-
-
-
-
-
-
L d
-
-
XX I R R Y Y R R R A R R Y P R R R A R YR A R R R R AR R R RS A R

INTEGER®2 NumCLs. NumBnD. MaxBnp., MaxCis. Too
INTEGER®2 NUMMRG

ReaL*y Sum, DsT(MaxCLs.MaxCLs)

ReaL*4 CNTRoD(MaxCLs,.MaxBND) . BIN(MaxCLs)
ReaL*y Binl. BIN

COMPUTE A DISTANCE MATRIX

NumMRG = 0
S Do 30 l = 1 NumCLs., 1
Do 2 = 1 NumCLs., 1

Do 10 K = 1, NumBnD
Sum = Sum + ( CNTRDD( 1.K ) = CNTRoDC J.K ) )**2
10 CON'rm
Ds( .J ) = SGrRT( Sum )
20 CONTINUE
30 CONTINUE

:'“'"" TEST FOR EQUAL CENTROIDS
Do 60 I NumCLs. 1 1111 Row Loor
Do 50 J = 4], NUMCLs. 1111 CoLumn Loor

1IF ( Ds7C 1.J ) .LE. ToL ) THEN

NumMCLs = NumCLs - 1

NUMMRG = NuMMRG + 1

LEG. O .anD. BINC J ) 0. 0 ) THEN

IF ¢ BINC ] )
BIN] = 1.
BinJ = 1.0
Eis Dlvxsoa = 2.0
Ble = BIn(C 1)
BinJ = Bin( J )
BinC 1 )-Bm( 1)+ Bin( J)
Divisor = Bin( I ) + Bin( J)
%gbu(l)FK 1. NumBnD, 1
CNTRop¢ 1.K ) = ( Bin] ® CnTRoD( 1.K ) +
+ BinJ ® CNTRoD( J.K ) ) /
+ ( Divisor )
40 CONTINUE
Do 35 L = J, NumCLs. 1
Do34M=1, D, 1
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CNTROD( L.M ) = CNTROD( L+1.M )

34 CONTINUE
BInC L ) = BInC L+1 )
35 CONTINUE
To
Enp IF
50 CONTINUE 1111 Enp CoLumn Loor
60 ConTINUE 1111 END Row Loor

-
Secssanss
-

RETURN THE AMENDED CENTROIDS TO THE CALLING PROGRAM

RETURN
EnD

XL I R R R Y R T Y R P Y X Y Y Y Y Y R R A XY Y YRR YY Y YRR R Y Y

SUBROUTINE ELIM( CNTROD. BIN, NuMCLs. NUMBND, Num.
MaxBnp, MaxCLs

XX TR Y XYY YRR YR R Y P Y P P R Y R R R Y Y Y Y R XYY Y YRR X N ]

INTEGER®2 NumCLs. MaxBap., MaxCis

INTEGER"™H Num

ReaL*y CNTRoD(MaxCLs .MaxBND) . BIN(MaxCLs)
weocscces REDUCE CLUSTERS BY 1

NumCLs = NumCLs - 1

MOVE THE REMAINING CENTROIDS UP ONE IN THE LIST

Do 20 1 = Num, NumCLs. 1

Do 10 J = 1, NumBnD, 1
CNTROD( 1.J) = CNTRop( 1+1.J )
10 CONTIN
Bin( I ) = Bin( I+1 )
20 CoNTINUE
:"""" RETURN TO CALLING PROGRAM
RETURN

EnD

B-10
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......I........I...II....I.'..C..I....I...C...I..........I.....Q...l....

DispLay -

THIS PROGRAM WILL TAKE THE FINAL CENTROID
VALUES COMPUTED IN CLUSTER.FOR AND CREATE

A COLOR COMPOSITE REPRESENTATION OF THE
CLASSIFIED IMAGE. THE IMAGE 1S CLASSIFIED
ACCORDING TO A MINIMUM DISTANCE TO THE MEAN
CLASSIFIER SINCE ONLY THE CENTROID DATA IS
KNOWN. THE COLORS THAT ARE ASSIGNED TO EACH OF
THE CLASSES ARE ARBITRARILY FIXED AND CAN BE
SEEN IN THIS CODE. AS OF NOw A MAXIMUM OF 10
CLUSTERS CAN BE DISPLAYED.

A A AL LA ARSI LIRSS DY TR Y LY TP Y PR R R RN R pupippupppip iy

CnTrRODC ., )
CvTBR.CvTIR
CvTBG.CvTIG
CvvBB.CvTIB
CvTB.CvTl
Dist( )
ImGSEC(..)

MaxBnD
MaxCLs
MINBND
MINPNT
NumBND
NuMCLs
PixecL( )
RD1GCNT,
GD1GCNT,
BD1GCNT
ROUTROW(. ).
GOUTROW( . ).
BOuTROW( ,)
RowBUF( )

VariABLE DecLARATION

THE MATRIX OF CURRENT CENTOID VECTORS

RED BYTE TO INTEGER TEMPORARY CONVERSION VALUES
GREEN BYTE TO INTEGER TEMPORARY CONVERSION VALUES
BLUE BYTE TO INTEGER TEMPORARY CONVERSION VALUES
BYTE TO INTEGER TEMPORARY CONVERSION VALUES

THE ITH DISTANCE FROM ‘POINT’ TO ‘CNTRODC . )’
SECTION OF IMAGE IN CORE MEMORY THAT IS BEING
OPERATED ON

MAXIMUM NUMBER OF IMAGE BANDS ALLOWED

MAXIMUM NUMBER OF CLUSTERS ALLOWED

MINIMUM NUMBER OF IMAGE BANDS ALLOWED

THE NUMBER OF THE CLUSTER CLOSEST TO ‘POINT( )’
THE NUMBER OF IMAGE BANDS

THE DESIRED NUMBER OF CLUSTERS

THE CURRENT PIXEL VECTOR WITH ‘MaxBND’ ELEMENTS

THE R.G.B DIGITAL COUNTS FOR THE OUTPUT IMAGE

BYTE R,G.B ROW OF DATA FOR THE OUTPUT IMAGE
TEMPORARY BYTE BUFFER TO STORE IMAGE ROW DATA

REQUIRED SUBROUTINES: MInNDsT

-
L4
-
.
-
-

ByTe
CHARACTER®]
CHARACTER®B0
INTEGER®2
INTEGER"2
INTEGER®2
INTEGER™4U
INTEGER®Y

AuTHOR: CaRL SaLvagGio NoveMBer 11. 1986

ROCHESTER INSTITUTE OF TECHNOLOGY
CENTER FOR IMAGING SCIENCE

XYY XXX Y YR YR R Y DA SIS RS R R R R A X R 22 X SR X R 2 2 2 2 2 J

CvTBR. CvtBG. CvtBB. CvTB

BeLL

INNamME, OuTName. DeFauLT

CvtIR, CvtIG, CvtIB, Cvrl

NuMBND, NumCLs. LUNSFT, MINPNT
RD1GCNT. GD1GCNT. BD1GONT, SecInc

N. M. B, MaxBND. MINBND. SMPINC, MaxCLs
ConTEXT. StaTus. LIBSFIND_FILE

B-11
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PARAME TER (N=512, M=5]12, B= 1536 )
PARAMETER ( SMPINC = 1)

PARAME TER ( MaxBnDp = 10 , MINBND = 2 )
PaRAMETER ( MaxCLs = 10 )

PARAME TER ( BeLL = CHaAR(7) )

ParRAME TER ( LUNSFT = Q)

PARAME TER ( SecInc = 64 )

ByTe LINBUF(B), LINONE(M). LINTWO(M), LINTHR(M)
ByTE RowBuUF (M)

Bvte ROUTROW(SECINC.M) ., GOUTROW(SECINC.M)
ByTe BOUTRow(SECINC.M)
CHARACTER®BO F1LNam(MaxBND)

INTEGER®"2 P1xeL (MaxBND)

INTEGER"2 ImMGSEc(SecInC .M. MaxBND)
ReaL*y CNTRoD(MaxCLs. MaxBnD)

ReaL"y Di1sT(MaxCLs)

EQuIvALENCE ( CvtIR. CvTBR )

EQuIvALENCE ( Cv1IG. Cv1BG )

EouivaLeNncE ( CvtIB, CviBB )

EouivaLeNnce ( Cvrl. CviB)

EouivaLeNcE ( LINBur( 1 ). LINONEC 1) )
EQuivAaLENCE E LinBur( 513 ). LiNTwo( 1)

EcuivaLENCE LINnBur( 1025 ), LINTHR( l ) )

OBTAIN THE NUMBER OF BANDS AND CLUSTERS

CaLL LiBSErRAase_PaGe(1.1)

WRITE (6.4)

FORMAT (’S‘,’HOow MANY IMAGE BANDS DID YOU HAVE ? ‘)

Reap (5.°.Enp=900) NumBnD

IF (C NUMBND .LT. MINBND ) .OR. ( NuMBND .GT. MaxBND )) THEN
WRITE (6.%) BeLL
WRITE (6.%) ° ®*** ERROR ®***® ILLecaL NumBER OF BanDs’
WRITE (6.°)
GoTo 3

Enp IF

WRI1TE (6.6)

EORMAIS('Sé.'HOgo?AN;MELUSTERS DID YOU PRODUCE ? ‘)

eap (5.% ,Enp=9 LS

IF (C NumCLs .L7. 1 ) .OR. ( NuMCLs .GT. MaxCLs )) THEN
WRITE (6.%) BeLL ,
WRITE (6.°) * ****® ERROR ®**** ILLecaL NumBer OF CLUSTERS
WRITE (6.%)

kit OBTAIN BAND IMAGERY NAMES (AND CHECK IF THEY EXIST)

20

WrRI1TE (6.°)

DEFAULT - 'chs {CNS9024 . LanDsAT]® . P1x’
Do 30 K NUMBN 1
hhxrs (6 20) K ,
FORMAT (’$’,“ENTER FILENAME FOR BAND'.13.°: ‘)

B-12



Reap (5.‘(A)’.END=800) FiiLNam( K )
INNaME = F1LNam( K )

Appendix B

Status=L1B$F IND_F 1LE ( INName ,OuTNaME . ConTEXT . DEFAULT.OUTNAME )

CaLL LiBSFIND_F1LE_END( CONTEXT )
1Ir ( StaTUS .Eo. 65537 ) THEN

FiLNam( K ) = OuTName

ELse
WRI1TE (6.’) BeL
WRITE (6.°%) Tess ERROR *** FiLe Not Founp’
WRITE (6,')
GoTo 1

Enp IF

30 CONTINUE

DEFINE THE CENTOID VECTORS

OrPeEN ( 1, F!LE"CLUSTER Out’. StaTUus='OLD’ )
Dou4d0 1 =1, N

1
Reap (1.%) ( CNTROD( 1.J). J=1, NumBnD, 1)
40 CONTINUE
CLose( 1)

ssesscnce OPeN THE ‘NuMBND’ IMAGE FILES

Do (5)2 Lun = LUNSFT+1., NUMBND+LUNSFT. 1

C Lun, FILe=F1uLNam( Lun-9 ). Access=‘DIRECT’,
+ Status=‘0OLD’. RecL=N/4, Form=' UNFORHATTED'. READONLY )

50 CONTINUE

-
ceesccnss
L3

BUILD THE OUTPUT IMAGE

Open ( 1. FiLe='DispLay.P1x’, Access=’DIRECT’,
+ StaTus='NEW’. RecL=N/é, Form=* UNFORMATTED"

GET THE CURRENT SECTION

)

WRITE (6.°)
WRITE (6.%) ° ... BuiLpinG R.G.B OutpuT IMAGE
130 J = 1. N. Seclnc Section Loor
Do 80 K = 1, SecInc, SmPINC l“' Row Loor
Do 70 L = 1. NumBnD, 1 1101 BanD Loor
Reap ( L+LUNSFT, ‘REc = JK-1) RowBur
Do60 1 =1, .1 11 CoLumn Loor
CviB = RowBu 1)
ImcSec( K.I.L ) = Cvrl
60 CONTINUE 111t Enp CoLumn Loor
70 CONTINUE 1111 Enp Banp Loor
80 CONTINUE 1411 Enp Row Loor
sonccnces FIND WHICH CLUSTER THE CURRENT PIXEL 1S CLOSEST TO
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Appendix B

Do 110 K = 1, SecInc. SMPInC 111} Row Loor
Do 100 1 =1, M, 111l CoLumn Loor
Do 90 11 = 1. NumBnD, 1 1111 Banp LoorP
Pixer( I1 ) = ImgSec( K. I, I1)
CONTINUE 1411 Enp Banp LoorP

CaLL MINDsTC PixeL. CnTRoD. NuMBND. NumCLs. MINPNT,
MaxBND., MaxCLs., DisT )

BUILD CURRENT ROW OF THE DISPLAY IMAGE

IFr ( MINPNT .EQ. 1 ) THEN 111t Group 1 RED
RD1GCNT = 255
GD1GCNT = O
BDi1GCNT = 0

ELselF ( MINPNT .EQ. 2 ) THEN 111t GrRourp 2 GREEN
RDIGCNT =
GD1GCNT = 255
BDi1GONT = O

ELselr ( MINPNT .€G. 3 ) THEN 1114 Grour 3 BLue
RD1GCNT = O
GD1GCNT = O
BD1GCNT = 255

ELselr ( MINPNT .EOQ. 4 ) THEN 1111 GrRouP 4 YELLOW
RD1GCNT = 255
GD1GCNT = 255
BDIGCNT = 0

ELselF ( MINPNT .EQ. 5 ) THEN 1111 GROUP 5 MAGENTA
RD1GCNT = 255
GD1GCNT = 0
BDiGCNT = 255

ELselr ( MINPNT .EQG. 6 ) THEN 1111 Group 6 CyaN
RD1GCNT = 0
GD1GCNT = 255
BD1GCNT = 255

ELselF ( MINPNT .EQ. 7 ) THEN 1110 GrRouP 7 WHITE
RD1GCNT = 255
GD1GCNT = 255
BD1GCNT = 255

ELselF ¢ MINPNT .EQ. 8 ) THEN 114t Grour 8 BLack
RD1GCNT = 0
GDi1GCNT = 0
BD1GCNT = O

ELselr ( MINPNT .EQ. 9 ) THEN 1111 Group 9 DarRk GREEN
RD1GCNT = O
GD1GCNT = 100
BD1GCNT = O

ELselF ( MINPNT Q. 10 ) THEN 1111 Group 10 Bark BLUE
RD1GCNT = O
GD1GCNT = 0
BD1GCNT = 100

END_IF

CvtIR = RD1GCNT

CvtIG = GD1GCNT

CvTIB = BDiGCnT

ROuTRow( K.]1 ) = CvTBR

GOuTRow( K.I ) = CvTBG

BOuTRow( K.1 ) = CvTBB

CoNTINUE 111 Enp CoLumn Loor
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110 CONTINUE

. OUTPUT CURRENT DISPLAY IMAGE ROW

Do 120 K = 1, SEcI Smp
Do 115 L = - p.C3 MPINC

LINBUF( ") = ROUTROW( K.L/3+1)
LINBUF(L+1) GOUTROW( K ,L/3+1)
LINBUF( L + 2 ) = BOUTRoW( K, L / 3 +1 )
115 CONTINUE
RECNuM = RecNum + 1
WrRITE ( 1, Rec=RecNum ) LINONE
RECNuM = RecNum + 1
WRITE ( 1, REc=REcNuM ) LINTwo
RecNuM = RechNum + 1
WRI1TE ( 1. Rec=RecNum ) LINTHR
120 ConTINUE
130 CoNTINUE 111 END SECTION Loop
CLose( 1)

CLOSE THE IMAGE FILES

Do 140 Lun = LUNSFT+1. NUMBND+LUNSFT, 1
CLose( Lun )
140 CONTINUE

PROGRAM TERMINATION

900 WRITE (6.°%)
END

LA A A A 4 I XX Rl R R R T X R X R R Y YR Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y i ey

SUBROUTINE MINDsT( POINT., CNTROD. NUMBND. NuMCLS. MINPNT,
D, MaxCLs, DisT )

-

® MiNDsT - THIS SUBROUTINE WILL CALCULATE THE DISTANCE

. OF THE CURRENT PIXEL TO EACH OF THE

* CENTROIDS. THE ALGORITHM WILL THEN

i DETERMINE WHICH OF THE DISTANCE 1S THE MINIMUM
" AND RETURN THIS CLUSTER NUMBER TO THE CALLING
* PROGRAM.

-

G000 GG0SCANNNNNEGNS0S0GGAGINEOEGIRNERNAGINNLGENANEQRECEOINGEGRSTIESEISETRSGESIOEIETS
-

- VaR1ABLE DECLARATION

-

. CNTROD( . ) =  THE MATRIX OF CURRENT CENTOID VECTORS

® DisT( ) -~  THE ITH DISTANCE FROM ‘POINT’ TO ‘CNTROD( ., )’
- MaxBND =  MAXIMUM NUMBER OF IMAGE BANDS ALLOWED

* MaxCLs = MAXIMUM NUMBER OF CLUSTERS ALLOWED
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MINPNT =  THE NUMBER OF THE CLUSTER CLOSEST TO ‘POINT( )’
NuMBND - THE NUMBER OF IMAGE BANDS

NumCLs -  THE DESIRED NUMBER OF CLUSTERS

PoInT( ) -  THE CURRENT PIXEL VECTOR WITH ‘MaxBND’ ELEMENTS
Sum - A RUNNING TOTAL FOR DISTANCE CALCULATIONS

(22X X I R X R R R R R L R R R R Y R R X AR YRR AR RS L R X )

REQUIRED SUBROUTINES: NONE
AuTHOR: CarL SaLvacGio Novemeer 11, 1986

RocHESTER INSTITUTE OF TECHNOLOGY
CENTER FOR IMAGING SCIENCE

00000 SOERRGOENEESRANSaEGENOONGOcENRNNERSRNACRNEIEREtECERENSOEISEITARRESLS

INTEGER®2 MaxBND. MaxCLs

INTEGER®2 MINPNT, NumBaD, NumCis

INTEGER®2 POINT(MaxBND)

ReaL®4 CNTROD(MaxCLs .MaxBND) . DisT(MaxCLs)
ReaL*y Sum

CALCULATE THE DISTANCE FORM THE POINT TO EACH CENTROID

Do20 1 =1, NumCLs., 1
Sum = 0.0

Do 10 J = 1, NumBnD. 1
Sum = Sum + ( FLOAT( POINT( J ) ) = CnTRODC 1.J ) )**2
10 CONTINUE
Di1sT( 1 ) = SErT( Sum )
20 CONTINUE

ssssssecs DETERMINE WHICH OF THE ITH DISTANCES IS A MINIMUM
&Ngng- 12 NumCLs., 1
=2, LS.
IF ( D1sT( MINPNT ) .6T. D1sTC 1 ) ) MINPNT = |
30 CoNTINUE

wecocsoce RETURN THE CLOSEST CLUSTER NUMBER TO CALLING PROGRAM

RETURN
EnD

B-16



Appendix C

Appendix C

Description of the Automated Rate of Change Segmentation Algorithm

BIdPIF
FindPIF
Gradient
Interval
ScaleDivide
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.-.l..I....ll..........I...l......'.llll...I..I............I....I...I..l.'

BLDPiF - THIS 1S AN AUTOMATED PROGRAM WHICH REQUIRES THE
INPUT OF AN INFRARED, RED AND FAR INFRARED BAND
IMAGERY AND WILL OUTPUT AN IMAGE WHICH CONSISTS
OF ONLY PSEUDO INVARIANT FEATURES (PIF‘s)., THe
PROGRAM WILL UTILIZE THE RATE OF CHANGE INFORM-
ATION IN THREE-DIMENSIONS OF THE NUMBER OF PIXELS
IN ORDER TO LOCATE APPROPRIATE 4/3 aND BAND 7
THRESHOLD VALUES. THE APPROPRIATE BANDS WILL
THEN BE THRESHOLDED AND LOGICALLY COMBINED
TO PRODUCE THE PIF MASK FOR THE CURRENT IMAGE
SET.

Var1ABLE DECLARATION:

NUMBER ATTACHED DURING THE CALL TO IPI_ATTUNIT

REOUIRED SUBROUTINES:  UseR:[Cns9024.DeAnzal  SHOMNO
THRESHOLD

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

L)

-

: ANDCHAN - THE IMAGE MEMORY CHANNEL THAT WILL CONTAIN THE

. RESULT OF THE LOGICAL .AND. OF THE THRESHOLDED

. 4/3 IMAGE AND THE THRESHOLDED BAND 7 IMAGE

. Banp3 - THE NAME OF THE FILE CONTAINING THE BAND 3 IMAGE
Banpy - THE NAME OF THE FILE CONTAINING THE BAND 4 IMAGE

¢ Banp7 - THE NAME OF THE FILE CONTAINING THE BAND 7 IMAGE

® CHANNELUTO3 -  THE IMAGE MEMORY PLANE THAT WILL CONTAIN THE

b 4/3 (INFRARED TO RED ) RATIO IMAGE

* CHANNEL7 - THE IMAGE MEMORY PLANE THAT WILL CONTAIN THE

* BAND 7 (FAR INFRARED) IMAGE

* ExisTs - THE LOGICAL VARIABLE THAT CHECKS FOR FILE

* EX1STENCE

® FOURTOTHREE - THE NAME OF THE FILE CONTAINING THE BAND 4/3

® RATIO IMAGE

® HisT - THE 256 ELEMENT VECTOR THAT CONTAINS THE HISTOGRAM

* OF THE ANDCHAN AFTER RETURN FROM THE HISTOGRAM

® SUBROUTINE

. Inclro3 - THE INCREMENT VALUE FOR THE THRESHOLDING FOR THE

. BAND 4/3 RATIO IMAGE

* Inc7 - THE INCREMENT VALUE FOR THE THRESHOLDING FOR THE

. BAND 7 IMAGE

. MaskFiIL - THE NAME OF THE FILE CONTAINING TO WRITE THE

* PIF mask TO

® STr4TO3 - THE STOPING VALUE FOR THRESHOLDING FOR THE BAND

. 4/3 RATIO IMAGE

* STR4TOZ - THE STARTING VALUE FOR THRESHOLDING FOR THE BAND

- U4/3 RATIO IMAGE

® Ste7 - THE STOPPING VALUE FOR THRESHOLDING FOR THE BAND

. 7 1MAGE

* STR7 - THE STARTING VALUE FOR THRESHOLDING FOR THE BAND

. 7 IMAGE

. THRESHUTOS - THE CURRENT THRESOLD VALUE FOR THE BAND 4/3 RATIO

® 1MAGE

- THRESH7 - THE CURRENT THRESHOLD VALUE FOR THE BAND 7 1MAGE

. TotaL - THE TOTAL NUMBER OF PIXELS IN A 512 x 512 1maGe

® UNIT - THE HOLDER VARIABLE THAT WILL CONTAIN THE UNIT

-

-

-

-

-

-
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AUTHOR :

CHARACTER®]
CHARACTER®80
INTEGER®"L
INTEGER"U
INTEGER"H
INTEGER®2
INTEGER®2
LocicaL®"l
ReaL*y

Appendix C

WrRTITT
LoGicaL_AnD
HIsTOGRAM
Binary
TrR1MNO
User: [CNsS024.P1F) FINDPIF
INTERVAL
ScaLeDIvIDE
GRADIENT
User:[SLs4255.C1s.1P1]  IPI_ATTUNIT
Ip1_DeETUNIT

(XXX A YR Y R Y Y R R Y R Yy Y R R Y Y Y R Y R R R R RS AR R R 2

CARL SALVAGGIO CENTER FOR IMAGING SCIENCE

ROCHESTER INSTITUTE OF TECHNOLOGY
January 31, 1987

(2R E YRR R R R AR SRR R XSRS RS RRSS X 2 2 & 2 4

BeLL. Ans

FourTOTHREE . BAND3. BanDd., Banp7, MaskFiL
CHANNELU4TO3. CHANNEL7, ANDCHAN, UNIT. TOTAL
H1sT(0:255)

SaveX. SaveY

StrUTO3., StPuTO3. INc4TO3. STR7. STP7. INC7
THRESHUTOS., THRESH7

ExisTs
NuMBERS (256.256), GRAD(256.256)

INITIALIZE CONSTANTS

ParaMETER ( BeLL = CHAR(7) )

Data CHANNELUTOD
Data CHANNEL7

Data ANDCHAN
Data TovaL

DaTa FOURTOTHREE
FormaT (’+’,A))

WRITE (6.°)

WRITE (6.5)
FormaT (‘S’,

! BELL RING

GET NAME FOR THE BAND 3 IMAGE

ReAD (5.'(A>’.END-900) BanD3
INQUIRE ( FiLe = Banp3. ExisT = ExisTs )

Ir ¢ ExisTs .Eo0. .FALSE

) THEN

WRITE (6.1) BeELL

GoTo 2
Enp IF

GET NAME FOR THE BAND 4 IMAGE

C-3
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10  WriTE (6.20)
20 FORMAT (‘$’,'_4: *)
Reap (5.°(A)’ .Enp=900) Banpi
INQUIRE ( FILE = BaND4. ExIsT = ExisTs )

Ir ( Ex1sTs .E@. .FALSE. ) THEN
WrRITE (6.1) Be
GoTo 10 -

Enp IF

: GET NAME FOR THE BAND 7 I1MAGE

30 WRITE (6.40)
“0 . . ’

ORMAT (°‘S°‘, )
Reap (5.°(A)’ .ENp=800) Banp7
INoUIRE ( FILE = BanD7. ExisT = ExisTs )
Ir ( Exi1sTs .E0. .FALSE. ) THewn
WRITE (6.1) BeLL
GoTo 30
Enp IF

L ]
aeeccsccss
L]

CALCULATE THE BAND 4/3 RATIO IMAGE

CaLL ScaLeDivibpe ( Banpd, BanD3, FOURTOTHREE )

GET THE THRESHOLDING REGION FOR 4/3 RATIO AND BAND 7 IMAGE

CaLL INTERvAL ( FourTOTHREE. BanD7. STRUTO3. STP4TO3.
Inc4T103. STR7. STP7. INC7 )

ATTACH THE UNIT TO THE CURRENT PROGRAM

CaLL IPI_ATTUNIT ( UNIT )

PLACE THE 4/3 RATIO IMAGE IN CHANNEL O

CaLL SwoMno ( UNIT., FOURTOTHREE. CHANNELUTO3 )

secccscns 4/3 RATIO THRESHOLD LOOP

Do 200 THRESH4TO3 = STRUTO3. STP4TO3. INCUTO3

cccscscses PLACE REFRESHED BAND 7 IMAGE IN CHANNEL 1

CaLL SHOMNnO ( UNIT, Banp7, CHANNEL7 )
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THRESHOLD THE 4/3 RATIO IMAGE AND SAVE TO CHANNEL O

CALL THRESHOLD ( UNIT, CHANNELU4TO3, THRESHUTO3, 1 )
CaLL WRTITT ( UNIT. CHANNELUTO3. CHANNELLTOZ )

Ll
seacscsccass
-

BanND 7 IMAGE THRESHOLD LOOP

Do 100 THResH? = STR7. STP7. InC7

THRESHOLD THE BAND 7 IMAGE AND SAVE TO CHANNEL 1

CaLL THrResHOLD ( UNIT. CHANNEL7. THRESH7. 0 )
CaLL WRTITT ( UNIT, CHANNEL7. CHANNEL7 )

LAND. THE TWO THRESHOLDED IMAGES (CHanneL 0 8 1 )

CaLL LoGicaL AND ( UN1T. CHANNEL7. CHANNELUTO3. ANDCHAN )
CacLL Binary ( UN1T. ANDCHAN )
CaLL WRTITT ( UNI1T., ANDCHAN, ANDCHAN )

-
ccsnscacse HI1STOGRAM THE RESULT OF THE .AND. (CHANNEL 2)
L]

CaLL HisTogrRaM ( UNIT, ANDCHaN. HisT )

eecsccscss Di1SPLAY THE THRESHOLD VALUES AND # OF PIXELS

WRITE (6.°) THResHUTO3. THRESH7. ToTaL - HisT(0)

LYY YYYY Y Y FILL THE # OF PIXEL SURFACE MATRIX

NuMBERS ( THRESHUTO3, THRESH?7) = TotaL - HisT(0)

ecssccscccs END THE BAND 7 THRESHOLD LOOP
-
100 CONTINUE
-
connssncnn END THE 4/3 RATIO THRESHOLD LOOP

200 ConTINUE
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TEMPORARY OUTPUT

OPen ( 1. F1Le='TemP.Num’, Status=’NEW’ )
Do 700 I = STR7. STP7. Inc7
Do 600 J = SteuTO3, STRU4TO3. -INC4TO3
WrITE (1.°) J. 1. NumBers(J.I)
CONTINUE
CoNTINUE
CLose ( 1)

ooooooo
N
[ole]
oo

COMPUTE THE GRADIENT

CaLL GRADIENT ( STRUTO3. STPUTO3. INCUTO3.
STrR7. StP7. INC7. NuMmBERS. GRAD )

-
®oosccssan
L]

TeEMPORARY OUTPUT

Oren ( 1. FiLe="TemP.GRD’. StaTus='NEW’ )
Do 850 I = STr7. Stp7. INC7
Do 800 J = Stepuyt03, STRUTO3. -INnCUTO3
WrRITE (1.%) J. 1. GrRaD(J.I)
00 CONTINUE
50 CONTINUE
Ciose ( 1)

[elelelolelels)
0000

FIND THE PIF THRESHOLD VALUES

CaLL FINDPIF ( STrRUTO3, STPUTO3. INCUTO3.
* STR7. StP7. INC7. GRAD. SaveX., SaveY )

WRITE (6.*)

WRI1TE (6.°) ‘THRESHOLD FOR 4/3 RATIO = '.SAVEX

mns gg .*) ‘THRESHOLD FOR BanDp 7 = ‘,SaveY
1TE (6.

eosscassse RELOAD AND THRESHOLD THE BanD 4/3 RATIO IMAGE

CaLL SHoMno ( UNIT, FOURTOTHREE. CHANNELUTOD )
CaLL THResHOLD ( UNIT. CHANNEL4TOS. SaveX. )
CaLL WRTITT ( UNIT. CHANNELU4TO3. CHANNELUTOS )

XYY YYYY Y Y RELOAD AND THRESHOLD THE BanD 7 IMAGE

CaLL SHoMno ( UniT. BanDp7. CHANNEL7 )
CaLL THRESHOLD ( UNIT. CHAnNEL7. SaveY, 0 )
CaLL WRTITT ( UNIT, CHANNEL7, CHANNEL7 )

aeccccacns LAND. THE TWO IMAGES TO FIND THE PIF mask

C-6
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CaLL LoGIcaL AND ( UNIT. CHANNEL7. CHANNELUTO3Z, ANDCHAN )

Make THE PIF mask A BINARY IMAGE

CaLL Binary ( UN1T. ANDCHaN )
CaLL WRTITT ( UNn1T., ANDCHAN, ANDCHAN )
CaLL TRIMNO ( UN1T, ANDCHAN )

Save THE PIF mask

WRITE (6.%)
Wr1TE (6.870)
870 FormaT (’$°,°Do YOu WISH TO SAVE THIS PIF mask (v OR N)? ‘)
Reap (5.°CA)’.END=000) Ans
CaLL STrSUPCASE (ANs,ANS)
Ir ( ANs .EQ. ‘'Y’ ) THEN
WRITE (6.°)
WrRITE (6,880)
880 FORMAT (’$’,‘ENTER FILE NAME TO STORE MASK TO: ‘)
Reap (5.°(A)’.Enp=800) MasxkFiL
E C?LL SavMno ( UNIT. MaskFiL. ANDCHAN )
ND IF

TERMINATE THE PROGRAM

CaLL LiB$Spawn ( ’DeLETE/NoCONFIRM TeEmP.OuT:*’ )
800 CaLt TRiMno € UNIT. -1 )

CaLL IPI_DETUNIT € UNIT )

WrRI1TE (6.%)

EnD
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SUBROUTINE FINDPIF ( STRUTO3. STP4TO3. INCLTO3.
Str7. StP7. INC7. GRAD. SAVEX, SaveY )

AL AL AL LA L L L Yy T I I T I,

FINDPIF - WILL EXAMINE THE GRADIANT OF THE NUMBER OF
PIXEL IN THE HISTOGRAM DATA TO FIND THE PLATEAU
POINT WHERE THE THRESHOLD POINTS FOR THE PIF
MASK SHOULD BE LOCATED.

LA A LA A A A L I L Y Y R Y Y R Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y P Y N YR Y YT YRR R Y YRR NN

Var1ABLE DECLARATION -

STrR4TO3 - THE STARTING VALUE FOR THRESHOLD OF THE BAND
4/3 raTiO
StePyto3 - THE STOPPING VALUE FOR THMRESHOLD OF THE BAND
4/3 raTIO
Inc4To3 - THE INCREMENT VALUE FOR THE THRESHOLD OF THE BAND
4/3 raTIO
STR7 - ;HE STARTING VALUE FOR THRESHOLD OF THE BAND
IMAGE
Ste7 - ;us STOPPING VALUE FOR THRESHOLD OF THE BAND
IMAGE
INc7 - ;HE INCREMENT VALUE FOR THE THRESHOLD OF THE BAND
IMAGE
GrAD - THE ARRAY CONTAINING THE GRADIENT DATA
SaveX - WILL RETURN THE VALUE OF THE 4/3 THRESHOLD
SavVeY - WILL RETURN THE VALUE OF THE 7 THRESHOLD

XTI R R R YRR R Y 2 R AT R R 2 R SRR S22 222 )

REQUIRED SUBROUTINES: NoNE

GO NAsENNEGRANNNSGRINS0aS0GER0EOEGNSINNNEEERNEGASESARETRNRSEEACTNETERERRESS

AuTHOR: CARL SALVAGGIO January 8, 1987
ROCHESTER INSTITUTE OF TECHNOLOGY
CENTER FOR IMAGING SCIENCE
MODIFIED January 31, 1987 c.s.
MODIFIED FEBRUARY b6, 1987 c.s.

Y XYY YR Y YT RN A Y A XY Y R LS AL L X SR XSS Al s R dddd sl ddd

286 9 8 8868080 ¢ 8 80 88 884800 S 5SS BESE O S TS

INTEGER®2 STrRUTO3, STPUTO3, INcUTO3. STR7. STP7. INC7
INTEGER™Y VEX, SaveY, 1

ReaL*4 GRAD(256.256)

ReaL"4 SAvEMax., Maximum, SaveMIN., Minimum, SaveGrAD
ReaL*y Inc

Sepsssssnens SEARCH PARALLEL TO THE THRESH 7 AXIS TO FIND max

SaveMax = 0.0
Maximum = 0.0

Do 10 1 = Str7+(2°INc7). STP7. INcC7
Maximum = Max( Maximum, GRAD(STRUTO3+2°(INcUTO3).I) )
WRITE (6.®) GRAD(STRUTO3+(2"IncUT03).1).
¢ STRYUTO3+(2* INcUTO3). |

oo
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IF ( Maximum .NE. SaveMax ) THEN
SaveY = |
NR]TE (6‘.) I NNNCOEPREBOSTEIOGEISIGISGTOIRSTS SAVEY = ‘.SAVEY
Enp IF
SaveMax = MaxiMum

10 ConTINUE

SEARCH PARALLEL TO THRESH 4/3 TO FIND LOCAL MINIMA

Minimum = 1,0E32
SaveMIN = 0.0
SaveGrap = 0.0

D WRITE (6.°)
Do 20 1 = StrUTo3-INC4TO3S. STRUTO3+INCUTOS. -IncCUTO3

o

WR1TE (6.*) GRAD(].SAVEY)
IF ( GRAD(].SaveY) .GE. SaveGRAD ) THEN
SaveGraD = GRAD(]1.,SaveY)
GoTo 20
Enp IF
MINIMUM = MINC MINIMUM, GRAD(]I.SAVEY) )
IFr C MiNIMum .NE. SaveMIN ) THEN
IFLag = 1
SaveX = 1
wR!TE (6'.) XXX AT XYY X &VEX = 'aSAVEX
Enp IF
SAVEMIN = MINIMUM

20  CoNnTINUE

IF NO VALLEY FOUND SEARCH FOR FIN PARALLEL TO BAND 7 AXIS

Ir C IFLAG .EQ. 0 ) THEN

SaveMax = 0.0
Maximum = 0.0
WRITE (6.%)
Do 30 I = Stpu4To3-IncUTO3., STRUTO3+INCUTO3., -INCUTO3
WRITE (6.%) GRAD(I.STR7+(2°INC7))
Maximum = Max( Maximum, GRAD(I.STR7+(2°INC7)) )
Ir ( Maximum .NE. SaveMax ) THEN
SaveX = |
WITE (6'I) XXX YT YR LR ALY 2 Y] &VEX = '.SAVEX

D
Enp IF
SaveMax = MaxImum
30 CONTINUE
Enp IF
LYY Y YY) RETURN TO CALLING PROGRAM
-
RETURN
EnD
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SUBROUTINE GRADIENT ( STR4TO3. STPUTO3. INc4TO3.
STrR7., StP7. INC7. Surr., GRAD )

.I..I.I....IDC...I.I...CII-..........I.I.I........I.I..ll....l.....l...l

-

: GRADIENT - WILL CALCULATE THE GRADIENT AT EVERY POINT

. ON A SURFACE. THE ORIGINAL DATA MUST BE IN

: THREE COLUMNS, X, Y, Z, WITH THE X’S CHANGING

: WHILE Y 15 CONSTANT

.I.....C....I.....II....I.........l........l..............I.......l...l.

-

: Var1ABLE DECLARATION :

: STRU4TOS - THE STARTING VALUE FOR THRESHOLD OF THE BAND

. 4/3 raTIO

. Ste4TO3 - THE STOPPING VALUE FOR THRESHOLD OF THE BAND

. 4/3 raTIO

: INclT03 - THE INCREMENT VALUE FOR THE THRESHOLD OF THE BAND

. 4/3 rRaTIO

. STR7 - ;az STARTING VALUE FOR THRESHOLD OF THE BAND
1MAGE

: Stp7 - ;HE STOPPING VALUE FOR THRESHOLD OF THE BAND
1MAGE

: Inc7 - ;HE INCREMENT VALUE FOR THE THRESHOLD OF THE BAND
IMAGE

: SURF - THE ARRAY CONTAINING THE Z-DIMENSION VALUES

OF THE SURFACE WHICH THE GRADIENT IS TO BE
. TAKEN OF
: GrRAD - THE ARRAY CONTAINING THE RESULTING GRADIENT

GEOS0CRSNBRETINANRTCESRVNNESBENORENENNCNIDACGANNESOONNSEEEISESIGENESRERSSTERESR
-

. REQUIRED SUBROUTINES : NoNE

. WRITTEN BY CARL SALVAGGIO CENTER FOR IMAGING SCIENCE

® ROCHESTER INSTITUTE OF TECHNOLOGY
® DecemBer 19, 1986

: MODIFIED Januvary 31, 1987 By C.S.

Y X XYY Y Y YYYY YRR ALY AR AR RSSAAS R SS 2 R R2 R X 2 2 3

INTEGER®2 STRYTO3. StPuTO3. INCU4TO3. STR7. STP7. INC7
INTEGER®Y . J
ReaL SurF(256.256). GRAD(256.256)

ceccncses CALCULATE THE GRADIENT OF THE SURFACE

Do 20 1= STRLITO3+INCLITO3 SteuT03. INCUTO3
Do 10 J = STrR7+INnc7. StP7. INC
GrRaD(].J) = SoRT(( (Surr (1, J)-Suar(l -Inclr03.J))

. / EAL(INcLoTo3))"2 +

. C (Surr(1.J)=SurF(1.J-INC7))

. /7 ReaL(INC7))**2 )
10 CONTINUE

20 CONTINUE

LYY YR Y Y] RETURN TO CALLING PROGRAM

RETURN
EnD
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SUBROUTINE INTERVAL ( FOURTOTHREE. Banp7. STRUTO3. STPLTO3.
INc4T103, STR7. STP7. INC7 )

.0--.....IIIl...a.l.QI.........l.......l..I........l........o.........o-a-.q

INTERVAL - TH1S ROUTINE WILL DETERMINE THE INTERVAL OVER WHICH
THE THRESHOLD REGIONS SHOULD BE SEARCHED. FOR BOTH
THE 4/3 RATIO AND BAND 7 THRESHOLD REGIONS. THE
INTERVAL 15 DEFINED AS FROM THE MEAN OF THE
HISTOGRAM TO 2 TIME THE STANDARD DEVIATION BELOW
THE MEAN VALUE. THIS wWAS DETERMINED FROM EMPIRICAL
EVALUATION OF MANY DIFFERENT IMAGE HISTOGRAMS.

AR A A A A A A d A A A I T L Y Y I s

Var1aBLE DECLARATION -

FOURTOTHREE = THE NAME OF THE FILE CONTAINING THE BAND 4/3
RATIO IMAGE
Banp7 - THE NAME OF THE FILE CONTAINING THE BAND 7 IMAGE
STrUTO3 - THE STARTING VALUE FOR THRESHOLD OF THE BAND
4/3 raTIO
Ster4T03 - THE STOPPING VALUE FOR THRESHOLD OF THE BAND
4/3 raTiO
IncdT03 - Tng INCREMENT VALUE FOR THE THRESHOLD OF THE BAND
RATIO
STR7 - ;HE STARTING VALUE FOR THRESHOLD OF THE BAND
IMAGE
Ste7 - ;HE STOPPING VALUE FOR THRESHOLD OF THE BAND
IMAGE
Inc7 - ;HE INCREMENT VALUE FOR THE THRESHOLD OF THE BAND
IMAGE

LB B B BE BN BE I I B B B B B B DAY D B BN BN BN N B BN NN BN AR B )

G 0GG00SGGCEIRTONRTTETTRRNTRSTOTRBNEEONBOOINTNGRTRTTBRNGOINGRGSNNGERIGITERSE
-

: REQUIRED SUBROUTINES: H1sTSTATS

(XXX XTSRS RN R RS YA RS RS R RA RS NR RN R R NN R R R R R X 0 X 0 0 0 3
-

* AuTHOR: CarRL SaLvaGGl0 FeEBRuArRY 6, 1987
® RocHESTER INSTITUTE OF TECHNOLOGY
. CeENTER FOR IMAGING SCIENCE
CHaRACTER®B0 FoOUuRTOTHREE. BanD7
INTEGER®H CHANNELUTOZ, CHANNEL7., UNIT
hrr GEMPOED MOS0, o e
TEGER" TRUTOS, StPUTO3., INCUTO3, . ’
R:AL"-' MeanuTo3. Mean’. SDuvo3. SD7
Data CHANNEL4TO3S /707
Data CHANNEL7 /1/
sesnsseny ATTACH THE UNIT TO THE CURRENT PROGRAM

CaLL IPI_ATTUNIT ( UNIT )

C-11
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-
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PLACE THE 4/3 RATIO IMAGE IN CHANNEL O
SHoMNO ( UNIT. FOURTOTHREE. CHANNELUTO3 )

PLACE REFRESHED BAND 7 IMAGE IN CHANNEL 1
SHoMno ( UN1T. BanDp7. CHANNEL7 )

HisTOGRAM THE BAND 4/3 cHanNEL ( CHanner O )
HistoGraM ( UNIT. CHANNELUTO3. HisTuUTO3 )

Hi1sTOGRAM THE BAND 7 CHANNEL ( CHANNEL 1 )
HisToGrAaM ( UNIT, CHANNEL7. H1sT7 )

FIND HISTOGRAM STATISTICS

HisTSTATs ( HisT4To3. Meantto3, SD4TO3 )
Hi1sTSTATS ( HIsT7, Mean7, SD7 )

DETERMINE SAMPLING INTERVALS

STRUTO3 = INT( MEan4TO3 )

StePuTo3 = INT( Mean4TO3 - 2.0°SDU4TO3 )

Inc4T03 = -2

STrR7 = INT( Mean? - 2.5°SD7 )
Ste7 = INT( Mean7 + SD7 )
Inc7 = 2

1IFr ( STRUTOZ .6T. 255 ) STRUTO3 = 255

(
Ir ( StP4T103 .LT. 1 ) StP4T1O3 =1
Ir C STR7 AT, 1 ) Str7 =]
1If € STP7 .GT., 255 ) Stp7 = 255
1Fr C ReaL( STruto3 - STP4TO3 ) / 2.0 .,
- INTC ReaL( STRYTO3 - STPUTO3 ) /
1fr ( ReaL( Ste7 = STR7 ) /_2.0 .NE.
s INTC ReaL( STP7 = STR7 ) /7 2.0)
:"""”’ RETURN TO CALLING PROGRAM
RETURN

C-12
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EnD

ROUT
...'Qc.C§9E.99.£§50ﬁ1§I§IeI§.£.§l§I;.v§e§30§1995¥.2................0..-ll..
L]

: HisTSTATS - WILL CALCULATE THE MEAN AND STANDARD DEVIATION
OF AN IMAGE HISTOGRAM

LAAAA A AL LA A A A A A L A I Y YR Y Y Y Y YN
-

Var1AaBLE DECLARATION

HisT - THe INTEGER®4 VECTOR DEFINED As (0:255) wHicH
CONTAINS THE IMAGE HISTOGRAM

Mean - THe REAL®4 vARIABLE RETURNING THE HISTOGRAM MEAN

StoDev - THE REAL®4 VARIABLE RETURNING THE HISTOGRAM STANDARD
DEVIATION

L A A A4 4l X d a4 a2 A X X R 2 2 A X T R R Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YR Y

REQUIRED SUBROUTINES None
AuTHOR: CarL SaLvaGGlo FEBrRuary 6. 1987

ROCHESTER INSTITUTE OF TECHNOLOGY
CENTER FOR IMAGING SCIENCE

(XA 22X L R R R R A X N2 S R 22 AR R R RS RS2 R R 22X 2 2 3

INTEGER®L H1s7(0:255)
ReaL®y Mean. StpDev
ReaL "4 SumX, Sumx2
Sumx = 0.0
Sumx2 = 0.0
TotNum = 0.0
ecccasaces DETERMINE HISTOGRAM MEAN AND STANDARD DEVIATION

Dol10] =0, 255. 1

ToTNum = ToTNum + HisT( |
SumX = SumX + (] ® HisT( 1))
SumX2 = Sumx2 + HisT( 1 ) ® ]°°2

10 ConTINUE

B v Sy (O oM © SUMX2 = SMX**2 ) /
- oTNum * - o
SToDEv = SaRT C (T Nom * ¢ TorNum =1 3 3 5

D WRITE (6.®) ‘ToTNum = ‘,ToTNum

D WRITE (6.®) ‘MeaN = ‘', MeaN

D WRITE (6.%) ’STpDEV = ‘,.STDDEV
eaeacasnes RETURN TO CALLING PROGRAM

RETURN
END
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veeeees SUBROUTINE ScaLeDivive ¢ FiNawd. FiiNavB, QuotNaw )

" ScaLeDiviDE - DIVIDES TWO IMAGES AND FORCES THE QUOTIENT TO
< FILL THE FULL DYNAMIC RANGE

LAAAA AL AR LA A d A A Al A X X  E R Y Y Yy Y Y Y Y Y Y SRRy
L3

VaR1ABLE DECLARATION

FriLNamA - THE FILENAME CONTAIN THE IMAGE FOR THE NUMERATOR

F1LNamB - THE FILENAME CONTAIN THE IMAGE FOR THE DENOMINATOR

F1LNamA - THE FILENAME CONTAIN WHICH SHOULD CONTAIN THE
QUOTIENT

P1xOut

G0 GG00GOTCENNEENAEEcOENSRGEESOINGREEtE0OEEERECENTEecaEENNEERERcROEGSTIGIRISTIOTS

AUTHOR : CarL SaLvaGGIO CENTER FOR_IMAGING SCIENCE
ROCHESTER INSTITUTE OF TECHNOLOGY
FeBruarY 7, 1987

XX YT XYY YT XYR R YRR SRR SRS AR S AR RS2 X X 2 2 2 2 2 2 2 44

L ]
-
-
-
-
-
-
-
-
: REQUIRED SUBROUTINES PixIN
-
-
-
-
-
-
-
-

CHARACTER®"80 F1LNamA, FILNamB. QuoThal
INTEGER®2 IMAGEA(SIZ 512). IMAGEB(512 512)
ReaL*4 BicgA. BigB. Quor, FacTor. MaxQuoTt
INTEGER"2 QuoTIENT(512.512)

seecssnns PLACE THE IMAGES IN CORE MEMORY

CarL PixIN ( ImageA. FILNamA )
CaLL PixIN ( ImageB. FiLNamB )

seeccsane FIND THE LARGEST QUOTIENT VALUE

Do 7 J 1 512
DoS1 51
BIGA = REAL( IHAGEA(LJ) )
Bi1GB = ReaL( ImageB(I.J) )
QuoT = BigA / BiGB
IF ( QuoT .GT. MaxQuoT ) THEN

MaxQuoT = QuoT
Enp IF
5 CONTINUE
7 CONTINUE
-
sssancass DETERMINE SCALING FACTOR TO FILL DYNAMIC RANGE
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FacTtor = 255.0 / MaxQuoTt
D WRITE (6.®) ‘FacTorR = ’, FACTOR

. PERFORM THE DIVISION AND SCALE BY THE SCALING FACTOR

Do 20 J=1, 512. 1
Dol01 =1, 512, 1
Bi1GA = ReaL( ImageA(].J) )
Bi1GA = BiGA * FacTor
Bi1GB = ReaL( ImageB(I.J) )

QuoTienT(l.J) = IFi1x( BigA / B1GB )
10 CONTINUE
20 CONTINUE

: WRITE THE QUOTIENT IMAGE OUT TO DISK

CaLt P1Out ( QUOTIENT, QuoTNam )

RETURN TO CALLING PROGRAM

RETURN
EnD
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Appendix D

Description of the PIF Normalization Code

Normalize
HistStats
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b AR A A AL AL L AL A AL L LT TR R e e o

ANDCHAN - THe

8 8 80 % 889890 8 885 ¢ 9 0 08 8 ST 0SS 9SO 2SS SR TP S S E IS

NORMAL 1ZE - TH1S PROGRAM WILL PERFORM THE PIF NORMALIZATION
PROCESS. THE PIF IMAGES WILL BE CALCULATED. THE
PIF H1STOGRAMS DETERMINED FOR EACH BAND IMAGE.
THE HISTOGRAM STATISTICS COMPUTED. AND THE
APPROPRIATE TRANSFORMS DETERMINED. THIS PROGRAM
1S DESIGNED FOR USE AFTER DETERMINING THE PIF
MASK USING EITHER BLDPIF or MANPIF.

AR AL AL LA L L I I I L LYY LYY Y Y TN Y XY Y NN R U g iy A np gy ety g e e e

Var1aBLE DeEcLARATION

MEMORY PLANE TO DISPLAY THE RESULT OF THE

LOGICAL AND OPERATION TO

CLeaRCHAN - THE MEMORY PLANE THAT IS USED IN THE DVP CLEARING
PROCESS

Davl - THE NaMEs OF THE DAY 1 IMAGE FILES

Davy? - THE NamEs OF THE DAy 2 IMAGE FILES

F1LNam - THE NAME OF THE FILE TO STORE THE PIF TRANSFORMS TO

HisT - THE PIF HISTOGRAM DATA ARRAY

HisTNam - THE NAME OF THE FILE TO STORE THE PIF HISTOGRAMS TO

IMaGECHAN = THE MEMORY PLANE TO DISPLAY THE IMAGE IN

INTERCEPT - THE PIF TRANSFORM INTERCEPT ARRAY

Mask - THE NAME OF THE FILE CONTAINING THE PIF Mask IMAGES

MaskCHAN = THE MEMORY PLANE TO DISPLAY THE PIF mask IN

Mean - THE PIF HISTOGRAM MEAN ARRAY

SLoPE - THe PIF TRANSFORM SLOPE ARRAY

StoDev - THe PIF HISTOGRAM STANDARD DEVIATION ARRAY

LA A A X A X X XA XA 2 2 R X A X 2 R R A T R R Y R Y Y Y Y Y Y Y Y Y Y Y Y Y YR Y Y Y Y Y Y Y XYY YRR Y Y Y

REQUIRED SUBROUTINES:  User:[SLS4255.CIS.IP]) é:gﬁATTUNIT

User: [CNS9024 . DeANZA] INO
LoGicAaL_AND
H1STOGRAM
HisTStaTS
TRIMNO
MxB]TT
WRTITT
. SavMno
VAX/WVMS RTL L 1BSERASEPAGE
STR$UPCASE

X Y YRR Y Y R XY LR R Y R R Y Y DY R R R R RS SIS RS R XY 2%

AuTtHOR:  CARL SALVAGGIO CENTER FOR IMAGING SCIENCE

ROCHESTER INSTITUTE OF TECHNOLOGY
MarcH 2, 1987

NG00 000G RISRGEINIARRGSRNEGEERSANGEERNOETNSOTREEIINNEERENGERORSRGSEEREEERSS

CHARACTER®] BerLL. ConT. ANns
CHARACTER® B0 Davl(6). Dav2(6). FiLNam, HisTNam
CHARACTER®BO Mask(2)

INTEGER®™H ImaGeECHAN, MaskCHan., ANDCHAN, CLEARCHAN
{NTEGER’? Exst(O:ZSS)

1CAL" XISTS
RgﬁL'a Mean(2.6). StpDev(2.6)
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ReaL"4 SLOPE(B). INTERCEPT(E)
INITIALIZE CONSTANTS

ParaMETER ( BeLL = CHaR(7) )

Data IMAGECHAN /
DaTa MaskCHaN /
Data ANDCHAN /
Data CLearRCHAN /
Data HisTNam /

SWIN—O

/
/
/
/
MA

IMaGE#Dav# HsT’ /

FormaT (‘+7,al) ! BELL RING

GET THE NUMBER OF BANDS THAT ARE TO BE NORMALIZED

CaLL LszERAs:_PAGE(l 1
WRITE (6.°
WRI1TE (6.°
WRITE
WRI1TE (B
WRITE (b
WRITE (6
WRITE (6.
(6
(6
6
(

vv

=—- PIF SCeENE NORMALIZATION =---'

~
o]

L]
~

‘NoTe: THE Day 1 IMAGE THAT 1S REFERRED TO IN’

THIS PROGRAM 1S THE DATA SET THAT YOU WISH®
TO TRANSFORM, THE DAY 2 IMAGE IS THE

IMAGE YOU WISH THE DAy 1 IMaGE TO LOOK ‘
LIKE AFTER THE TRANSFORMATION 1S PERFORMED.’

’
’
.

WRITE
WRITE
WRITE )
FORMAT .'ENTER THE_NUMBER OF BAND IMAGES YOUR DATA HAS: ')
READ (5.*.ENnD=900) NumBanDs
IF ( NumBanDs .GT. 6 ) THEN
WRITE (6, 1) BeLL
WRITE (6.*
WRITE (6. ') r®** EFRROR ®°° MaxIMUM NUMBER OF BANDS IS 6’
WRITE (6.°*
GoTo 51
Enp IF
Ir ( NumBanDs .LT. 1 ) THEN
WRITE (6.1) BeLL
WRITE (6.°)
WRITE (6. ') s*=e ERROR *°* YOu NEED AT LEAST ONE BAND’
WRITE (6.%)
GoTo 51
Enp IF

SN

P EEREER

8 av v

easccsssns GeET NaMES FOR THE Day 1 IMAGES

2
5

WRITE (6.%)
Do z‘g 1 '(%.SNUMBANDS. 1
Fo;;fx (‘S' “ENTER £ NaME FOR Day 1 Imace’.12.° : *)
o ;(é) 'EBD-?(()O; l))”%(x;n-ExxS'rs )
IRE 1LE=DAY X
}?m(J ExisTs .E@. FALSE. ) THEN
WRITE (6.°)

D-3
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skt gg.lg “% ErroR F
1TE L) e ®*® FI1LE DOES NOT EXIST’
WrRiTE (6.*) !
GoTo 2
Enp IF
79  CoNTINUE
:""““ GET NaMES FOR THE Day 2 1maGes
WRITE (6.°)
Dol01 =1, NUMBANDS, 1
;g UF‘RITE u(s.ss) ¢ S 5 1
ORMAT (’$’,’ENTER FILE NAME FOR AY MaGE’.I2." : )
Reap (5.°(A)’.EnND=900) DAY 1)
lNouxRE ( FiLe=Dav2( ] EXIST‘EXISTS )
Ifr ( Exxsn EQ. .FALSE. *) THEN
WRITE (6.%)
WRITE (6.1) BeLL
WRITE (6.°) ress ERROR *** FILE DOES NOT EXIST’
WRI1TE (6.%)
GoTo 20
Enp IF
10 ConTiNue
:“""" GET THE MASK NAME FOR EACH DAY
WRI1TE (6.°)
Do68K=1, 2.1
67 WRITE (6.69) K
69 ForMAT (’'S’,’ENTER FILE NAME FOR Davy’,12.’ Mask: )
Reap (5.’(A)’.EnD=900) Mask( K )
INOUIRE ( FILe=Mask( K ), ExisT=Ex1sTs )
Ir ( Exi1sTs .Eo0. .FALSE. ) THEN
WRITE (6.*)
WrRITE (6.1) BELL
WRITE (6.%) °**° ERROR *** FILE DOES NOT EXIST’
WRITE (6.°) :
GoTo 67
Enp IF
68 CONTINUE
WR1TE (6.°)
WRITE (6, 42)
42 FormaT (‘S’,’Do You WlSH 'ro SAVE THE HISTOGRAM DATA (Y OR N)? *)
Reap (5.°(A)’.EnD=900)
CaLL STrSUPCase (Ans. Ans)
:"""" ATTACH THE UNIT TO THE CURRENT PROCESS
CaLL Ip1_ATTUNIT ( UNIT )
sesansues FIND THE HISTOGRAM STATISTICS FOR EACH BAND IMAGE
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Do 8B4 J=1, 2,1

CaLL SHOMNO ( UNIT. Mask( J ),
Do 863 I =], NUMEANDS.KI THASRCRENE )

If ( JEO. 1 ) THEN

ELS(E:ALL SHoMNO ( UNIT. Davl( 1 ). ImaGeCHan )
CaLL SHOMNO  UNIT, Dav2( 1 ). ImaGeCHaN )

Enp IF

CaLL LocicaL AND ( UNIT, ImageCHAN. MaskCHan, ANDCHAN )
CaLL HisToGrRAM ( UNIT. ANDCHAN, HIsT )
HisT(0) = 0
CaLL H1sTSTATS ( HisT. Mean(J.1). STpDev(J.I) )
Ir ( ANs E@. ‘Y’ ) THEN

H1sTNAM(6:6) = CHAR( 1448 )

H1sTNaM(10:10) = CHaR( J+t&8 )

OPeN ( 1, FILe=HIsTNaM, STATUS=’New’ )

Do 861 M= 0, 255, 1

WRITE (1.%) M, HisT( M)

861 CONTINUE
CLose (1)
Enp IF
863 CONTINUE

864 CONTINUE

DISPLAY THE HISTOGRAM STATS TO THE USER

WRITE (6.°)

WRITE (6.%)

WRITE (6.*) ° —- PIF HisToGcrRAaM STATISTICS --—-'

Do743 1 =1, 2,1
WRITE (6.°%)
WRITE (6.741) 1

741 FormaT (’S‘.° THE HISTOGRAM STATS FOR Davy’,12.’ are: ‘)

WR1TE (6.°)
WRITE (6.°) ‘ImaGE MeaN STtanDarRD DEviATION'

1, NumBanps., 1
WRITE (6 739) J. I"EAN(I b. STDDEV(I N))
739 FormaT (°$°.13.10%x.F6.2.10x.F6.2 )
742 CONTINUE
Hu'rz 6.
743 ConTl
READ (5.'(A)‘.END-900) Cont

eesnneens CALCULATE THE LINEAR HISTOGRAM TRANSFORMATIONS

Do 895 J = 1. NumBanps, 1
StoPe(J) = STpDEV(2.J) / STDDEV(]. N))
INTERCEPT(J) = Mean(2.J) - SLoPe(J) * Mean(l.J)
895 CoOnTINUE

scconsses DISRLAY THE TRANSFPORMS TO THE USER

WRITE (6.°)
WRITE (6.%)
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WRITE (Ble) P
1Te (6.°) ' ——- F T —
m”E gg.; : IF LiNearR TRANSFORMS

1TE (6.%) ‘ImaGe P ’
WRITE (B SLorPe INTERCEPT

‘Do 836 J= 1. NumBanps

WRITE (6. 835) J. SLOPE(J) INTERCEPT(J)
FORMAT ( ("$’,13.10x.F6.2.10x.F7. 2)

CoNTINUE
WRITE (6.°%)

837

838

839

WRITE TRANSFORMS OUT TO FILE

WRITE (6. 837)

ORMAT (’$°,’Do you wisH TO SAVE TRANSFORMS TO A FILE ( 3?2
READ (5.’ (A3’ END=000) A TR
CALL STrRSUPCASE (Ans A~s)

Ir (

ANS LEQ. ‘Y’ ) THEN
WrRITE (6.838)
FORMAT (’$',"ENTER FILENAME TO STORE TO: ')
REaD (5, *(A)’.END=900) F1LNam
OrPeN ( 1, F1Le=F1LNam. STATus- NEW’ )
00839.!-1, NuMBaNDS ,

WRITE (1.°) SLorPe(J). INTERCEPT(J)
Commue

Enp If

CLEAR THE CHANNELS

CaLL LocicaL AND ( UN1T, IMageCHan. CLEARCHAN, IMAGECHAN )
CaLL LoGgicaL AND ( UNIT., MaskCHan. CLEARCHAN., MaskCHAN )
CaLL LocicaL AND ( UN1T., ANDCHan. CLearCHAN. ANDCHAN )

977

979

TransFORM THE Day 1 IMAGERY

WRITE (6.°)
WR1TE (6.°)
WRITE (6.%)
an'rs (6.*) * —— PIF TRANSFORMATIONS -——-'

1Te _(6.%)

CALL TRIHNo C UN1T, IMAGECHAN )
Do915 1] =

1. NumBanps. 1

CaLL SHoMno ( UniT, DavlC I ). ImageCHan )
CaL MxBITT ( UNIT., ImacgeCHaN. Stopre(l)., INTErRCeEPT(I) )
CaLt WRTITT ( UNIT. IMAGECHAN. IMaGECHAN )
WRITE (6.977) 1
FORMAT (’S’,’SavE TRANSFORMED IMAGE’.12.’' (Y OR N) ? ')
Reap (5.°(A)’.EnD=900) ANs
CaLL STRSUPCAse ( ANs.ANs )
Ir C ANs .EG. ‘Y’ ) THEN

wWrI1TE (6.,979) i

FORMAT (‘$’,’ENTER FILE NAME TO STORE IN: ‘)

Reap (5.°(A)’ ,EnD=900) FI1LNam

CaLL SavMno ( UNIT, FiLNam, ImageCHan )
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WRITE (6.°)
Enp If
915 ConTINUE

- DETACH UNIT FROM THE CURRENT PROCESS AND TERMINATE

900 CaLL LocIcaL_AND ( UNIT, IMAGECHAN. CLEARCHAN, IMAGECHAN )
CALL LOGICAL_AND ( UNIT. MaskCHan., CLEARCHAN. MaskCHAN )
CaLL LoGICAL_AND ( UN1T. ANDCHAN. CLEARCHAN. ANDCHAN )

CacL TRIMNO C UNIT. -1 )
CaLL IP1_DETUNIT € UNIT )
WRI1TE (6.*)

EnD

SUBROUTINE H1sTSTATS ( HisT. Mean. StoDev )

LAAA A A A A A A A 2 A A A A R L R L R R Y Y Y R Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Yy
-

= HisTStaTs - WILL CALCULATE THE MEAN AND STANDARD DEVIATION
® OF AN IMAGE HISTOGRAM

AL AL 22 A A I X A A R X R R X X Y R Y R Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y XYY X
-

: Var1aBLE DECLARATION
* Hist - THe INTEGER®4 VECTOR DEFINED AS (0:255) wHICH
= CONTAINS THE IMAGE HISTOGRAM
* Mean - THE REAL®4 VARIABLE RETURNING THE H1STOGRAM MEAN
. StoDev - THE REAL®4 vARIABLE RETURNING THE HISTOGRAM STANDARD
: DEVIATION
S OSG00ONSESAERANANRITOENGETVVNCGORAGAANGEGEETRIINRSIGNGINEINTESNSERIGRIGOIGEETRISESRTS
L]
: REQUIRED SUBROUTINES NONE
P OG00SO RGNNNINGGRACSEGOGNNEAGGGETE00ENRGGSRENAGETEGTNNERNNINEGEOGSISIGTRGSGISESIES
-«
* AuTHOR: CarL SaLvaGgGlo FeBruary 6, 1987
. ROCHESTER INSTITUTE OF TECHNOLOGY
° CENTER FOR IMAGING SCIENCE
L ]
00 G 0000000000000 0000GRGIRNEESEIGNENNNIGAENGEEGEIaNNtaEcEaacetscssssasaaaasas
INTEGER®"U H1sT(0:255)
ReaL*4 Mean. StpDev
ReaL*4 . 2
SumX = 0.0
SumX2 = 0.0
TotNum = 0.0
-
sosssessss DETERMINE HISTOGRAM MEAN AND STANDARD DEVIATION



Do 10 ] = 0. 255, 1

TotNum = ToTNum + HisT( 1 )
SumX = SumX + (1 ®* HisT( 1))
SumX2 = SumX2 + HisT( I ) * I**2

10 ConNTINUE

Mean = SumX / ToTNum
SToDEV = SORT ( ( TOTNUM ® SumX2 - Sumx*®2 ) /
C ToTNum * ( ToTNum = 1) ) )

WRITE (6.%) ‘ToTNum = °,ToTNum
WRITE (B6.®) ‘MeaN = ‘,Mean
WRITE (6.%) ’‘STpDEV = ’,STDDEV

oo

RETURN TO CALLING PROGRAM

RETURN
Enp

D-8
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Description of the Code Used to Read Data
Off of TM Computer Compatible Tape

LT4Read
LandFull
Land512

Appendix E
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XX AR LR L A R R R Y R Y Y P Y Y PR YRR AR Y YA AR Y AR AR 2

-

: LT4READ - WILL LOOK AT A LANDSAT-4 IMAGERY FILE THAT HAS

- BEEN COPIED FROM MAGTAPE TO DISK, AND EXTRACT

: EITHER A FULL SCENE OR A FULL RESOLUTION SUBSECTION.
. THE IMAGE DATA THAT THIS PROGRAM IS

. INTENDED TO READ 1S LOCATED IN 28672 BYTE RECORDS.

. OF WHICH THERE ARE 1492. THE RECORD CONTAINS FOUR
. IMAGE LINES. EACH OCCUPYING 7168 BYTES OF THE

- RECORD. THIS IS THE FORMAT THAT NASA USED BEFORE

. THEY STANDARDIZED ON THEIR CURRENT TAPE FORMAT,

-
-
-

WRITTEN BY CARL SALVAGGIO OcToBER 28. 1986

NG E NG N BRI RN RGN G NENNNENEERRONGNANIESlNRlNNNENRNONGEERNREREROR.

CHARACTER®1 Ans
INTEGER"2 ICHo1cCE
CaLL LiBSErAse_PaGge(l.1)
wWrR1TE (5.9)
9 FORMAT ('sl"...........I..I....II.........C...‘..I.....I.-l)
WrITE (5,10)
10 FORMAT (’$’,‘*** LanDSAT 4 (UNCONVENTIONAL) TAPE Reap ***’)
WriTe (5.11)
11 meT (lsl'l...................Q...l...I....‘.IQ.Q.I......l)
WriTE (5.°)
WRITE (5.°)
WrRITE (5.50)
50 FORMAT (’$’.°THIS PROGRAM REQUIRES THE DATA TO BE ARRANGED'/.
b * IN THE FOLLOWING DATA STRUCTURE. THE IMAGERY'/.
’ * FILE SHOULD BE ON DISk (COPIED DIRECTLY FROM /.,
5 ’ MAGTAPE). THIS FILE SHOULD CONTAIN 1492 1mace’/.
. ‘ RECORDS OF LENGTH 28672 BYTES.')
WRITE (5.°)
WRITE (5.60)
60 FORMAT (’$’,“DO YOU HAVE THIS DATA READY ( YOR N ) ? ‘)

Reap (5.°CA)‘.END=900) Ans
IfF ( ANS .NE. ‘Y’ .AND. ANs .NE. ‘Y’ ) THEN
wWRITE (5.%)
wWrRITE (5.70)
70 FORMAT (’$’.‘YOu MUST HAVE THIS DATA READY FIRST !!}’)
ENDG?TO 900
F

WRITE (5.°)
wrRITE (5,20)
20 FORMAT ('5'.'SAMPL1NG CHolces: )

WeITE (5.°) * (1) SUBSAMPLE A FULL SCENE’
wWriTe (5.%) ‘ (2) ExTracT 512 x 512 FULL RESOLUTION SCENE’
50 pirE )
1Te (5,
40 quA'(rS(’Sé&gasr; (l:oéoxcge(l orR 2): ")
Reap (5.°, HOI
If ( ICHOICE .LT. 1 .OR. ICHOICE .GT. 2 ) GoTo 30

If ¢ ICHO1CE .€G. 1 ) THEN
CaL Li1BSErRASE_PAGE(1.1)
wriTe (5.100)



100
101
102
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FORMAT ( lsl ' (R A LA AL XL Y Yy Y Yy Y Yy Y Y Y Y Y Y Y Y Y Y Y ] )

WRITE (5,101)

ORMAT ('3',"00 SU ceus
WRITE (5,102) BsaMPLE A FuLL Scene )

FORMAT ( lsl 3 (A Al l g Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y W] )

WRITE (5.*)

DFULL
Erselr ( ICHOICE .E@. 2 ) THEN

103
104
105

CaLL LIBSERASE_PAGE(1.1)

WRITE (5,103)

FMMT ( lsl ” A AL A A XX YRR Y A XY Y A Y R Y Y XY Y Y Y R Y Y YYYYL ] I)
WRITE (5.104)

FoRMaT (°$’,’"** E cons
WRITE (5,105) XTRACT 512 x 512 FuLL Res Scene )

FORMAT ( lsl " R XA I 22 X2 XX R YRR Y Y Y N R Y Y Y XYY YRR Y Y YR YR Y W) )
WRITE (5.°%)
CaLL LanD512

ENDIF

900 WRI1TE (5.%)
Erop ‘LTUREAD COMPLETED. '’
ND

(XX I 2 A R R R R R L R A A AL R L R R A S S R R AT RSS2 X 3

SUBROUTINE LANDFULL

[ X R X X R R R R S X X R X S S XS R S22 RS Y 22 )

-
-«
-
-
-
-
-
-
-
L]
-
-
-
-

LANDFULL - WILL LOOK AT A LANDSAT-U IMAGERY FILE THAT HAS

BEEN COPIED FROM MAGTAPE TO DISK. AND SUBSAMPLE
AT AN APPROPRIATE RATE TO OBTAIN A FULL SCENE
IMAGE. THE IMAGE DATA THAT THIS PROGRAM IS
INTENDED TO READ 1S LOCATED IN 28672 BYTE RECORDS.
OF WHICH THERE ARE 1492. THE RECORD CONTAINS FOUR
IMAGE LINES. EACH OCCUPYING 7168 BYTES OF THE
RECORD. THIS 1S THE FORMAT THAT NASA USED BEFORE
THEY STANDARDIZED ON THEIR CURRENT TAPE FORMAT,

WRITTEN BY CarRL SALVAGGIO OcTtoBer 28. 1986

Y Y Y Y2 R L R R L R LA R 2 L S S R R R R R AR XSS ]

ByTe RecBur( 28672 )

CHARACTER®80 F1LNam, LanDFIL

INTEGER"U NumIMGRec. RecLEN. NuMRec
INTEGER®U ImMGP1IxLIN, NuMBYTREC

INTEGER*U STRREC. STPREC. STRPIx., STPPIX
INTEGER"U Scan., LINE

INTEGER®4 Recrp. PixINc, RecInc., OutSiz
PARAMETER ( OQurSiz = 512 )

PARAMETER ( NumMReEC = 1492 )

PARAMETER ( NuMPIxLIN = 7168 )

PARAMETER ( NUMRECLIN = 4 )

PARAMETER ( NuMRecImG = NUMRECLIN®NuMREC )

L4
aSensoannas
L4

GET THE FILESPEC TO STORE THE 512x512 IMAGE TO
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WrRITE (5.1)

1 ‘FOrRMAT (‘S’, 'ENTER LANDSAT IMAGERY FILENAME : ‘)
READ (5.‘(A)*.END=900) LanDF 1L
WRITE (5,2

2 FORMAT (’$’,’ENTER FILENAME TO STORE IMAGE TO : ‘)

Reap (5.°(A)’.END=800) F1LNam

-
LI RRYY Y

OPEN INPUT AND OUTPUT FILES

InouIRe (FiLE=LANDFIL. RecL=RecLEN )
D WRITE (*.") ‘RecLen = ’.RecLeN

OrPenN ( 1. FiLe=LanDFiL. Form='UNFORMATTED’.
ORGANIZATION='SEQUENTIAL’ ,AcCESS='DIRECT’.
2 Status=‘0LD’. RecL=RecLen/4 )

OreN ( 2. FiLe=F1LNam, Form=’UNFORMATTED'.
ORGANIZATION='SEQUENTIAL ‘ ,ACcCESS="DIRECT’.
2 Status=‘New’. RecL=0utS1iz/4 )

GRAB IMAGE SUBSECTION AND STORE TO DISK

PixInc = INT( ReaL( NumPixLin ) / ReaL( OutSiz ) )
RecInc = INT( ReaL( NumRecImc ) / Rear( OutSiz ) )

STRPIX = 1
StePI1x = ( 0UTS1Z - 1 ) * PixInc + STrRPIX
STRREC = ( 2 ® NuMRECLIN ) + 1 11 Seconp LINE. FIRST Scan
StPRec = NuMRecIme
WRITE (5.%)
WRITE (5.3) NumMRecImc. NumPIxLin
3 FORMAT (‘$°,°IMAGE SIZE : ‘.15, x°.15)

WRITE (5.4) RecInc. PixInc
FORMAT (‘$‘,’SUBSAMPLING RATE : ‘.13.° x’.13)
WRITE (5.%)

RecrD = 1

Do 10 N = STRREC. STPReEc. RecInc
LxNE = “ / u -
READ (1, REC'L!NE) RecBur

JOFFSET = ScaN * NumPIxLiIN
WR1TE (2.Rec=RecrD) ¢ RecBur( I ). I = STRPIx+JOFFSET.
+ STPP1x+JOFFSET. PixInC

RECRD = RECRD + 1
1Fr ¢ Recrp .GT. OuUTS1IZ ) Goto 900
10 CONTINUE

seecenans RETURN TO CALLING PROGRAM
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900 CLose( 1)
CLose( 2 )

RETURN
Enp

SUBROUTINE LANDS12

R R e Y Y Y Y Y Y Y Y Y Y Y YR Y P YRR Y Y XY RS L RS R g

: LaNDFuULL = WILL LOOK AT A LANDSAT-U4 IMAGERY FILE THAT HAS

= BEEN COPIED FROM MAGTAPE TO DISK. AND SAMPLE

. A SPECIFIED 512 x 512 SUBSECTION TO CREATE A FULL

. RESOLUTION IMAGE. THE IMAGE DATA THAT THIS PROGRAM IS
. INTENDED TO READ 1S LOCATED IN 28672 BYTE RECORDS.,

. OF WHICH THERE ARE 1492, THE RECORD CONTAINS FOUR

. IMAGE LINES. EACH OCCUPYING 7168 BYTES OF THE

. RECORD. THIS 1S THE FORMAT THAT NASA USED BEFORE

= THEY STANDARDIZED ON THEIR CURRENT TAPE FORMAT.

-
-
-

WRITTEN By CARL SALVAGGIO OctoBer 28, 1986

P Y Y Y T T Y Y e T Y Y Y Y Y Y YT Y YA Y YRR R RS L L LSS Al Al i

ByTe RecBur( 28672 )

CHARACTER®80 F1ruNam, LanDpFiIL

CHARACTER"1 BeLL

INTEGER"Y NumImMGRec. RecLen, NuMREcC

INTEGER"U ImcP1xL 1N, NUMBYTREC

INTEGER®YU StRRec. STPRec. STRPIx. StPPIx

INTEGER"U Scan., LINE

INTEGER "YU Recrp., PixInc. RecInc. OutSiz

INTEGER "4 XCoorp. YCOORD

PARAMETER ( BELL = CHAR( 7 ) )

PARAMETER ( QutS1z = 512 )

PARAMETER ( NuMRec = 1492 )

PARAMETER ( NumPixLin = 7168 )

PARAMETER ( NUMRECLIN = 4 )

PARAMETER ( NuMRecImc = NumMReECLIN"NuUMREC )
SEnEna eSS GET THE FILESPEC TO STORE THE 512x512 IMAGE TO

wriTeE (5.1) s
1 FORMAT C’S$‘,’ENTER LANDSAT IMAGERY FILENAME : )

Reap (5.°(A)’.EnD=300) LANDFIL

WrITE (5.2) ,
2 FORMAT (’S’,’ENTER FILENAME TO STORE IMAGE TO : ‘)

ReaD (5.°(A)’ .EnD=000) FiiNam

esssccses OPEN INPUT AND OUTPUT FILES

Inouire (FiLe=LanpFIL. RecL=RecLen )

E-5
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D WRITE (*,®) ’‘RecLeNn = ’.RecLen

Oren ( 1. FiLe=LANDFIL. FORM='UNFORMATTED’.
ORGANIZATION='SEQUENTIAL’ ,ACCESS='DIRECT’.
StaTus=‘'0LD’. RecL=RecLen/4 )

Oren ( 2. FiLe=F1LNam, FORM=‘UNFORMATTED’.
ORGANIZATION='SEQUENTIAL’ .Access='DIRECT’.
2 STATUS=‘New’ . RecL=0utS1z/4 )

N

DISPLAY THE IMAGE SIZE

WriTe (5.*)
WR1TE (5.3) NuMReEcIMG. NUMPIXLIN
3 FormaT (’S$°,‘IMAGE SIZE : ‘L1570 x',15)

- OBTAIN COORDINATES FOR THE IMAGE TO BE EXTRACTED

6 WRITE (5.°)
WRITE (5.4)
Y ForRMAT (’S’,’ENTER COORDINATES OF UPPER LEFT CORNER : ‘)

Reap (5.*.EnD=900) XCoorp. YCOORD

CHECK IF COORDINATES ARE IN IMAGE BOUNDS

Ir ¢ ((XCoorp+OuTs1Z-1 .GT. NuMRecImG) .OR.
(XCoorD .LT. 0)) .or. ((YCoorD+HJUTSIZ-1 .GT.
NuMP1xLIn) .oR. (YCOORD .LT. 0)) ) THEN
WriTE (5.5)
WrIiTE (5,%) BELL .
S ForRMAT (‘$‘,°*** ERROR *** IMAGE COORDINATE OUT—OF-BOUNDS’)
ENDG?TO ®
F

esscsesoes GRAB IMAGE SUBSECTION AND STORE TO DISK

PixInc = 1
RecIine = 1

STRP1x = YCOORD
StPPIx = STRPIX + OQutSiz - 1

STRREC = ( 2 * NumRecLIN ) + XCoorD + 1
StPReEC = STRReC + QuTS1Z - 1

ReECRD = 1

Do 10 N = STRREC. STPRec., RecInc
LiNe=N/4
Scan = N - LINE"Y
Reap (1.Rec=LInE) RecBur

E-6
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JOFFSET = Scan * NumPIxLin
WRITE (2.Rec=Recrp) ( REcBUF( I ), I = STRPIx+JOFFSET.
+ StPPIx+JOFFSET, PIxINnC )

ReECRD = ReECRD + 1
I C Recrp .GT. OUTS1Z ) GoTto 900
10 CONTINUE

Sasegsses RETURN TO CALLING PROGRAM

900 CLose( 1 )
CLose( 2 )

RETURN
EnDp
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Appendix F

Summary of Digital Count Data and Reflectance Conversion
Data Used in the Control Point Analysis
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Appendix G

Summary of the Results Obtained Utilizing the
Multivariate Segmentation Algorithm
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Appendix G

This appendix is a summary of the work done in the development of the
multivariate segmentation algorithm. As was stated in Section 2.2 this approach
was dropped after little investigation in favor of the rate of change segmentation
algorithm that was the major focus of this study. The results presented here are for
the urban Rochester TM scenes. After studying these two image data sets, it was

decided that further pursuit of this means of segmentation would prove futile.

Table G-1 is a summary of the principal components computed using TM
bands 1,2,3,4,5 and 7. As can be seen from this data, as was predicted by other
investigators, the first three principal components explained about 97% of the
variability in the six band image data. Figure G-1 shows these principal component
images for the 1984 Rochester data. These images confirm the interpretation of
these principal components as explained by Crist and Kauth where the first
principal component represents overall image brightness, the second component
represents greeness (vegetation cover areas are highlighted) and the third

principal component represents wetness (wet areas are highlighted).

These first three principal component images were then used as input to an
unsupervised multivariate clustering routine using the k-means algorithm. The
results of 50 iterations through this clustering algorithm yeilded the cluster means

described in Table G-2.
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Table G-1

Summary of the principal components data computed for the
1982 and 1984 urban Rochester reflective TM data

Eigenvalues ~
1 2 3 4 5 6
1982 Image Data 320.72 200.90 30.24 7.10 2.26 0.87
(57.05) (35.74) (5.38) (1.26) (0.40) (0.16)
1984 Image Data 1199.20 675.23 146.52 20.18 15.71 1.73
(58.25) (32.80) (7.11) (0.98) (0.76) (0.08)

Associated 1982 Eigenvectors

1 2 3 4 5 6
Band 1 0.140 0.372 0.628 0.319 -0.582 0.086
Band 2 0.113 0.185 0.293 0.046 0.360 -0.858
Band 3 0.171 0.328 0.355 -0.026 0.694 0.504
Band 4 0.349 -0.764 0.486 -0.240 -0.006 0.032
Band 5 0.823 -0.002 -0.386 0.417 0.009 0.002
Band 7 0.374 0.370 -0.090 -0.815 -0.223 -0.039

Associated 1984 Eigenvectors

1 2 3 4 5 6
Band 1 0.466 -0.005 0.528 0.293 0.635 -0.122
Band 2 0.249 -0.052 0.305 -0.014 -0.262 0.879
Band 3 0.432 -0.044 0.379 -0.116 -0.667 -0.458
Band 4 -0.518 -0.681 0.481 -0.176 0.047 -0.049
Band 5 0.306 -0.677 -0.437 0.498 -0.095 0.004
Band 7 0.414 -0.269 -0.248 -0.788 0.269 0.020

* Values in parentheses represent the percent of the total variability
explained by each of the individual eigenvalues / eigenvectors
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Second Principal Component Image

Third Principal Component Image

Figure G-1 The first three principal component images derived from
the six reflective Landsat TM bands of the 1984 urban
Rochester data set
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Table G-2
Summary of the cluster means determined from the unsupervised

multivariate classifier run on the first three principal
component images of the 1982 and 1984 urban Rochester TM data

Cluster Means For 1982 Image

PC 1 PC 2 PC 3
Cluster 1 3.2 4.7 42.5
Cluster 2 5.4 12.0 42.4
Cluster 3 6.1 17.7 46.1
Cluster 4 3.7 5.4 40.7
Cluster 5 6.3 14.6 43.8
Cluster 6 4.6 3.8 43.2
Cluster 7 5.1 10.5 42.0
Cluster 8 8.7 8.4 41.2

Cluster Means For 1984 Image

PC 1 PC2 PC3
Cluster 1 64.4 74 .1 59.4
Cluster 2 42.8 91.0 57.0
Cluster 3 81.0 102.0 58.8
Cluster 4 20.5 113.4 61.4
Cluster 5 111.7 139.8 62.3
Cluster 6 50.9 114.4 54.0

* Above cluster means based on 50 samples

Cluster Image Key

Cluster 1 - Red Cluster 5 - Magenta
Cluster 2 - Green Cluster 6 - Cyan
Cluster 3 - Biue Cluster 7 - White
Cluster 4 - Yellow Cluster 8 - Black
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Color composite images were made using the cluster means described
in Table G-2 and appear in Figure G-2. The colors in this image correspond
to the color key defined in Table G-2. As can be seen from these images,
there is no individual spectral class that can be classified as urban features.
This can be expected since the spectral signatures of all urban features are

certainly not alike.

Several of the spectral classes could be identified as urban features but
these also contained pixels which were certainly not pseudo invariant
features. These non-PIF pixels were included in the spectral classes since
their spectral signatures were close enough to those of the respective urban

features in principal component space.

At this point it was realized that the following problems existed. First, no
individual spectral class resulting from the unsupervized multivariate
classifier could be identified as urban features. Second, several spectral
classes were found to contain urban features but these same classes also
contained non-PIF pixels. Third, upon individual runs of the clustering
algorithm, the same spectral classes were not obtained each time (due to
the initial choice of cluster means) which resulted in a method that may
produce different results each time. For these reasons it was decided to

abandon this multivariate segmentation method in favor of the rate of

change algorithm.
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.
e

;ig.

1984 Cdlor Composite Image

Figure G-2 Color composite images of the spectral cluster formed by
the unsupervised multivariate clustering algorithm on the
first three principal component images of the 1982 and
1984 urban Rochester TM scenes
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Appendix H

Description of the Array Processor Based Image
Utility Subroutines Used in the Major Programs

Binary
Histogram
Logical_AND
MxbITT
PixIn
PixOut
ShoMno
SavMno
TriMno
Threshold
wWrITT
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SUBROUTINE BINaRY ( UNIT., CHANNEL )

b A A ALl g L e Tt T ooy
-

. Binary - THIS PROGRAM WILL TAKE AN IMAGE AND SET IT TO
. 255 1F A PIXEL IS ON AND O IF A PIXEL 1S O

hAAA A AL IR LI Y Ty
-

VarR1ABLE DECLARATION:

CHANNEL - THE MEMORY CHANNEL THAT THE USER WISHES TO
BINARIZE. THIS VARIABLE SHOULD BE DECLARED
as INTEGER"2 IN THE CALLING PROGRAM.

LA AR AL A X R R Y R Y P Y Y R R R AR SRR R 2 2 2 )

ReQUIRED SuBROUTINES : [SLS4255.C1s.lpP1] PutlTT
ENaBLEITT

(L L A R Y Y Y Y Y R Y Y Y Y R R YR R YRR AT XYY YRR 22N

AUTHOR: CarL SaLvacGio CENTER FOR IMAGING SCIENCE
ROCHESTER INSTITUTE OF TECHNOLOGY
FeBrRUARY 6., 1987

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LI X Y R R P Y R P R A X R Y R Y P A A YRR Y R R A Y ALY 2 X2

INTEGER®2 CHANNEL., MeMVoc., DvPMem

INTEGER®2 1717(0:255)

INTEGER®U UNIT

DaTta MemVoc / 1 / ! Memory VOC NUMBER
Data DvPMeM / 1 / ! DVP ALLOCATION NUMBER

ERROR CHECKING

IF C CHANNEL .LT. O .OR., CHANNEL .GT. 2 ) THEN
WrRITE (6.%)
WRITE (6.%) “*** ERROR 1N THRESHOLD *** ILLecaL CHanNeL NUMBER'
WRITE (6.%)
RETURN
Enp IF

cesennes DerFiNe THE ITT

Do 10l =0, 255. 1
IfFr (1 .€0. 0 ) THEN
ITTC I )=0

ELse
IT7¢ 1 ) =255
Enp IF
10 ConTINUE

weswanane WRITE TO THE ITT AND ENABLE IT

CarL Ip1_Putlvt ( UNIT, CHANNEL, ITT )
CaLL IPI_ENABLEITT ( UNIT. CHANNEL. MemVoc., DvePMem )

sssacnans RETURN TO CALLING PROGRAM

RETURN
EnD
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SUBROUTINE HISTOGRAM ( UNIT. CHANNEL. HISTARRAY )

e R L L R T e I T

HistoGrAaM - THIS PROGRAM WILL COMPUTE THE HISTOGRAM OF A
SPECIFIED CHANNEL AND RETURN THE VALUES OF THE
HISTOGRAM IN AN ARRAY,

AR A AL AL AL R LRI R R R R Y TR N T R Y N R R R R (o e e et g g g e o o o S eR g gy

VARIABLE DECLARATION:

CHANNEL - THIS IS THE CHANNEL NUMBER THAT THE USER
WISHES TO TAKE THE HISTOGRAM OF. THIS VARIABLE
SHOULD BE DECLARED AS INTEGER®2 IN THE CALLING
PROGRAM,

HISTARRAY - THIS 1S THE ARRAY THAT THE HISTOGRAM VALUES ARE
RETURNED IN. THIS VARIABLE SHOULD BE DECLARED
AS FOLLOWS IN THE CALLING PROGRAM:

INTEGER"4 HisTARRAY(0:255)

LA LA A A R R R Y Y Y Yy Yy Y Y Y Y Y Y Y P Y Y Y YA YR TY Y LY

REQUIRED SUBROUTINES: [SLSu255.Crs.Ir1) IP1_ATTDVP
Ip1_DetDvp
IP1_CLEARHST
IP1_CALCHST
IPI_GETHST
IP1_SeTS1ZE

LA XA L L L A XA R L R R R R Y R A A Y R R R R SR R X )

AUTHOR: CarL SALVAGGIO CENTER FOR_IMAGING SCIENCE
RocHESTER INSTITUTE OF TECHNOLOGY
January 16. 1987

-
-
-
-
-
-
-
»
-
-
-
-
-
]
-
.
-
»
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Ll
X R R R R Y Y Y R R R R Y Ry R R Y R RS R AR NN )

INTEGER"4L UniT, Status. CHANNEL. HsTOPs
INTEGER"U HisTARRAY( 0:255 )

DaTA HsTOPs /7 0 /

aesnnnaas ERROR CHECKING

IF ( CHANNEL .LT. O .0rR. CHANNEL .GT. 2 ) THEN

WRITE (6.%) .
WRITE (6.%) ‘**"* ERROR 1N HISTOGRAM ““* ILLecaL CHANNEL NUMBER’
WrRITE (6.%)
RETURN
Enp IF
it GET THE HISTOGRAM

CaL Ip1_ATTDVP ( UNIT, 1)) ! ATTACH THE DVP
CaL IP1_SetSrze C Unit, 512 ) ! SET IMAGE SIZE
Cat [p1_CrearHsT ( UniT ) |

CaLL Ip1_CatcHst € UNIT. CHANNEL, HsTOPs ) ! CALCULATE HISTOGRAM

CacL IPI_GeTHsT ( UNIT., HISTARRAY ) ! GET HISTOGRAM FROM DVP

Cact Ip1_DetDve ( UNIT ) ! DetacH THE DVP
seananuee RETURN TO THE CALLING PROGRAM

RETURN

EnD

H-3
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SUBROUTINE LOGICAL_AND ( UNIT., INCHANA. INCHANB, OUTCHAN )

i bl R L R R R e e R N T Y Y T T R Y T ¥ PN

28 9889 88388 S8 S ¢S 9SS SIS

LOGICAL_AND - WILL TAKE THE IMAGES IN TWO SEPARATE CHANNELS AND

PERFORM A LOGICAL .AND. ON THEM AND PLACE THE
RESULT IN A THIRD CHANNEL.

LA A L A L Ry R LTy ey

VAR1ABLE DECLARATION

ALL THE FOLLOWING SHOULD BE DECLARED INTEGER*2

INCHANA - THE FIRST OF THE INPUT IMAGE CHANNELS
INCHANB - THE SECOND OF THE INPUT IMAGE CHANNELS
OuTCHAN - THE IMAGE CHANNEL FOR THE OUTPUT RESULT IMAGE

LAAAA AL AL A A ALl d 2 R X Yy Y Y Y P Y YYY YRR TYTRLR Y Y2Y

ReouIirep SuBrouTINEs:  [SLS4255.Cis.lp1l Ip1_ATTDVP
Ip1_DETDVP
IP1_SeTS1ZE
IP1_DvPMATH
Ip1_ConsTanTs

LAAAA R A AL R AL L Ll LA Al R A R L L IR AL R R S RS LR L LA

AUTHOR : CarL SaLvaGGIO CeNTER FOR IMAGING SCIENCE
RocHESTER INSTITUTE OF TECHNOLOGY
January 23, 1987

RN RN RN B AR RN ORI RANNRONNBNORNBRBRBARNABABRANAROOBERNBERBBRRERRRNBBRRRRE

INTEGER"2 INCHANA., INCHANB, OuTCHAN
INTEGER"Y UnIT

Ass1GN THE OPCoDE VALUES

EXTERNAL Ir1__AND

nanasanan ERROR CHECKING

IF &RINCHANA(G 3u. 0 .0rR. INCHANA .GT. 3 ) THEN
1TE (6.°
WRITE (6.°) ‘*** ERROR IN LOGICAL_AND *"** ILLEGAL INCHANA’
WrRITE (6.%)
RETURN
Enp IF

If ‘(‘RINCHANB(G SLT. 0 .or. INCHANB .GT. 3 ) THeN
1Te (6.%
WRITE €6.%) ‘"** ERROR 1IN LoGicaL AND *** ILLecaL INCHANB’
WR1TE (6.")
RETURN
Enp IfF
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If \fm ?u’rCr(agN .)L'I‘. 0 .0r, OuTCHAN .GT. 3 ) THEN
TE e
WRITE (6.%) ‘*** ERROR 1n LoGicaL Anp *** ILiLecaL OutCHan’
WRITE (6.%)
RETURN
Enp IF

-
coeacanane

PerFORM LOGICAL .AND.

CaLL IP1_ATTDve ( UNIT, 1) ! ATTacH THE DVP

CaLL IP1_SevSize ( Univ, 512 ) ! SET IMAGE SIZE

CaLt Ieri_DveMatH ( UNIT. IPI_AND. ! PeRFORM .AND.
INCHANA, INCHANB. OutCHan ) :

CaLL Ip1_DETDVP ¢ UNIT ) i DeTacH THE DVP

-
seasesasas

RETURN TO CALLING PROGRAM

RETURN
EnD

H-5



Appendix H

SuBROUTINE MxBITT ( UniT. CHanneL. M. B

LAAALALAL LA LA R R X R R R R Y Yy e Y Y R R P Y R P R SRR S A

MxBIvT - THIS PROGRAM WILL COMPUTE A LINEAR ITT anD
APPLY IT TO THE IMAGE IN THE SELECTED CHANNEL.
THE ITT WILL BE OF THE FORM Y = MX + B,

...Q.-C.n..lllu.....lﬂ..ﬂ..ddc...uCIIO...IQQQ..'QQQQQ.'Q'“CQG'...'.'."'
VAR1ABLE DECLARATION:

CHANNEL - THE MEMORY CHANNEL THAT THE USER WISHES TO
THRESHOLD IN. THIS VARIABLE SHOULD BE DECLARED
As INTEGER®2 IN THE CALLING PROGRAM.

M- THE storPe OF THE DESIRED ITT. THIS VARIABLE
SHOULD BE DECLARED AS REAL®4 IN THE CALLING
PROGRAM.

B - THE INTERCEPT OF THE DESIRED ITT. THIs VARIABLE
SHOULD BE DECLARED AS REAL"4 IN THE CALLING
PROGRAM.

£ 86 8638 90858 80868830888 s

LR R R R Y R R R R R Y Y R R A R R R Y PR Y SR YRS R RS R RS R SR SRS SRR Sl
@ .
-

ReouireD SUBROUTINES : [SLSu255.C1s.Ie1l PutiTT
: EnaBLEITT

I Y Y R Y Y Y Y R R R R R YR YR Y YRR YR XYY YRR RS RRYRY XSRS 22X 2 20 2 2 2 4
-

AUTHOR : CarL SAaLvaGG1Oo CENTER FOR IMAGING SCIENCE
RocHESTER INSTITUTE OF TECHNOLOGY
January 16, 1987

-
-
-
-
XY XY XYY Y P Y YR Y YRR Y Y YR YR Y YRR R YRR R R RSS20 S48 0 A 24

INTEGER®2 CHANNEL . MemVoc. DveMem
INTEGER"2 IT7(0:255)

INTEGER"Y UNIT

ReaL"y M. B. VaLue

Data MemVoc / 1 /
Dava DveMem / 1 /

conenaene ERROR CHECKING

IF ( CHANNEL .LT. O .OR. CHANNEL .GT. 2 ) THEN

WRITE (6.%) .
WRITE (6.°) ‘*** ERROR 1n MXBITT *** ILLeGcAL CHAnNEL NUMBER
WRITE (6.%)
RETURN
Enp IF
Scosencecsas mFxNE T"‘E ITT

Dol1l0 1 =0, 255. 1
VaLue = M * Reac(l) + B
IF C VALUE .GT. 255 ) THEN
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IT7¢ 1) =255
ELse IfF ( VALUE .LT. 0 ) THEN
It7(1)=0

LSE
ITvC 1 ) = IF1x( VaLue )
Enp IF
10  ConTINUE

WRITE TO THE ITT AND ENABLE IT

CaLt I Putlvr € UniT. CHannel, IvT )
IPI_ENABLEITT C UNIT. CHANNEL. MEmVoc. DvPMem )

csscnnses

RETURN TO CALLING PROGRAM

RETURN
Enp
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SUBROUTINE PIXINC Imace. FiiNam )

Ldd Al A d X X I LT Y R R Y Yy Y Y Y Y Y Y Y Y Y Y Y YT YN X g

THIS SUBROUTINE ACCESSES AN IMAGE FILE THAT EXISTS IN UNFORMATTED.
LOGICAL"1 STORAGE AND CONVERTS THE IMAGE DATA INTO INTEGER®*2 DATA.
STORED IN THE 512 x 512 arraY IMage(I.J)

WRITTEN BY CARL SALVAGGIO 10/3/86
MODIFIED FORM EXISTING CODE BY VOLCHOK. BIEGEL. SCHIMMINGER
AND (GORZYNSKI

-
-
-
-
-
L 4
-
-
L AL LR R R XS R R R R R Y R R RS R Y RSS R R 2 LD S S LR ARttt

INTEGER Row. CoLumn

PARAMETER ( Row = 512, CoLumn = 512 )

INTEGER"2 ImaGge( Row., CoLumn )

LoGgicaL"l Logic( Row )

CHARACTER"80 F1Lnam

CHARACTER"1 Ans

Open( 4, FrLe=FiunaM, Access='DIRECT’., Status=‘OLD’.
X RecL=Row/4. Formv='UNFORMATTED’ )

Do 120 I=1.Row

Reap (4.,Rec=1) ( LoGgic(N). N = 1.CoLumN )
Do 120 J = 1,CoLumn
ImaGge(1.J) = LoGgic( J
1fr( IMaGe(I.J) .LT. O ) Imace(1.J)=Imace(].J)+256
120 CONTINUE

RETURN
EnD
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SUBROUTINE PIxOuT( IMAGE, FILNaM

L e e R T N T Y L XXX PR R R ARSI S R LR LA LA LAl i

THIS SUBROUTINE WRITES AN IMAGE FILE BY CONVERTING INTEGER®2
70 BYTE DATA AND STORING TO AN EXTERNAL BINARY FILE WITH 512
RECORDS. EACH OF LENGTH 128 LONGWORDS

REQUIRED SUBROUTINE : MACRO-32 SUBROUTINE MovByT

WRITTEN BY CARL SALVAGGIO 10/6/86
MODIFIED FROM EXISTING CODE BY VOLCHOK. BIEGEL. SCHIMMINGER
AND GORZYNSKI

-
-
-
-
-
-
-
-
[
-
-
Ty 2 e R R Y R A R Y Y R A R X L A RIS LSS L R i

INTEGER"Y Row. CoLumn

PARAMETER ( Row = 512, CoLumn = 512 )
Byte Logic( CoLumn )

INTEGER®2 ImaGe( Row. CoLumn )

CHARACTER"80 FI1unaM

Open( 4, FiLe=Fiunam. Access=‘DIRECT’. Status=‘NEW’
x RecL=Row/4. ForM=‘UNFORMATTED’.
X ORGANI ZATION='SEQUENTIAL’ )

Do 130 I = 1. Row
Do 120 J = 1. CoLumn
CaLL MovByt( ImaceC 1.J ). Locrc( J ) )

120 CONTINUE
wWr1TE(4, Rec=I) ( LoGgIc(N), N = 1, CoLumn )
130 CONTINUE

Crose( 4 )

RETURN
Enp
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SUBROUTINE SHOMNO ( UNIT, Name, CHANNEL )

MAA A AR A T S I
-

: SHoMno - WILL DISPLAY A 512x512 MONOCHROME IMAGE IN THE
. SPECIFIED CHANNEL.

LA AR AL AL AL AL LR RS T T TR Y Y Y LY TRV LY T PP R gy pgryepigrgegepepuyeuepapupupupapegeg gy
-

VARIABLE DeEcLARATION:

Name - THE FILENAME CONTAINING THE 512x512 MONOCH
IMAGE. THIS SHOULD BE DECLARED AS CHARACTER'80
IN THE CALLING PROGRAM.

CHANNEL - THE CHANNEL THAT THE IMAGE SHOULD BE PLACED IN.
THIs sHOULD BE DECLARED AS INTEGER®"2 1N THE
CALLING PROGRAM,

(AR EE A S Il L R R Y R R R R R YR YRR YRR YRR YRR 2R 222 ]

REQUIRED SUBROUTINES: [(SLS4255.Cis.1r1) Ip1_OPeENFILE
Ip1_D1skPic
Ip1_PutPicC
Ip1_CLosefFILE

[ R R Y X R R YRR R R YR Y YRS 2 2 2 4

AUTHOR: CArRL SaLvagGIo CeNTER FOR IMAGING SCIENCE
ROCHESTER INSTITUTE OF TECHNOLOGY
January 20, 1987

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.................l........i...'d..h.......Q......'.....I."Q...Q'.C....C..
INTEGER"2 CHANNEL

INTEGER"U IP1BLK(8)., FILePTR. P1cOpPs. Cmrs, UNIT
CHARACTER"80 Name

Data PicOps 7 0 /

ERROR CHECKING

IF ¢ CHANNEL .LT. -1 .OR. CHANNEL .GT. 3 ) THEN
WrITE (6.%)
WRITE (6.%) ‘*** ERROR 1IN SHOMNO *** ILLEGAL CHANNEL’
WRITE (6.*)
RETURN
Enp IF

eannunnae AssIGN THE CMR THE PROPER VALUE

IF ( CHANNEL .€Q. =1 ) CMrs = 7
IF ( CHANNEL .EQ. 0 )

I ( CHANNEL .EO. 1 ) C

IF ( CHANNEL .EQ. 2 ) CMrs = 4
IF ( CHanneL .eq. 3 ) C

H-10
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LA E X R TR TY
-

DISPLAY ‘THE 1MaGE

CaLL IPI_OPENFILE ( IPIBLK, NamMe. 0)
Cait Ipr_DiskPic (¢ IpiBik. FILEPTR. P1cOPs )
CaLL IP1_PutPic C UNIT, Cmrs. ZVALC FILEPTR ). P1cOPs )
CaiL IP1_CLoseFiLe ¢ IpIBik )
-
:"”""“ RETURN TO CALLING PROGRAM
RETURN
EnD
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SUBROUTINE SAVMNO  UNIT, NA':IE. CHANNEL

LA A AR A R R L R R R Y LTIy, IR Y YRR YRR 2 2 X 1
-

5 Savitno - WILL SAVE A 512x512 MONOCHROME IMAGE TO DISK
N FROM THE CHANNEL.

I.I-l..I...ll."'l..".d..l'..'........'......-...l.ﬂ......ll'...l.-...ll-
Var1ABLE DecLARATION:

NaMe - THE FILENAME CONTAINING THE 512x512 MONOCHOME
IMAGE. THIS sHOULD BE DECLARED as CHARACTER*80
IN THE CALLING PROGRAM.

CHANNEL - THE CHANNEL THAT THE IMAGE SHOULD BE PLACED IN.
THIS sHOULD BE DECLARED As INTEGER®2 IN THE
CALLING PROGRAM. °

LA AR LA A A L Y Y Y Y Y YRy Yy Y Y Y YT Y YR Y YR YY Y YRR Y]

REQUIRED SUBROUTINES: [SLS4255.C1s.Ir1) IPI_OPENFILE
Ir1_DiskPic
Ir1_GeTPicC
IP1_SevS1ze
Ip1_CLoseFILE

(AL R R R R R Y Y R R Y Y Y Yy Y Y Y Y Y Y Y Y Y Y Y Y P PR R YR RN

AUTHOR : CarRL SALVAGGIO CENTER FOR IMAGING SCIENCE
RocHESTER INSTITUTE OF TECHNOLOGY
FeBruarRY 6. 1987

£ 928 888888838888 st S S s s s

(2 2 X Y R R R R R R R Y R Y P R Y Y PR SRR SRS 2 SRR

INTEGER"2 CHANNEL

INTEGER"U IP1BLk(B). FILePTR, P1cOPs. CMrs. UNIT. StaTus
CHARACTER"B0 Name

Data P1cOps /7 0 /

ERROR CHECKING

IF C CHANNEL .LT. O .O0R. CHANNEL .GT. 2 ) THEN

WRITE (6.%)
WRITE (6.%) ‘*** ERROR IN SAVMNO ““*“ ILLEGAL CHANNEL'
WRITE (6.°)
RETURN
Enp IF
sevesncas AssIGN THE CMR THE PROPER VALUE
Ifr ( CHanneL .€Q. O ) CMRS = 1
IF ( CHANNEL .EQ. 1 ) CMRs = 2
IF ( CHANNEL .€EQ. 2 ) CMRs = 4§
sssasenns DISPLAY THE IMAGE
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Status = Ip1_OpenFiLe ( IPIBuk. Name. Ipi_SizePic( PicOps ) )
CaLL Ir1_ERRORCHECK ( STATUS. ‘OPENFILE:’ )

Status = Ip1_DiskPrc ( IpiBuk. FiLePTrR. P1cOps )

CaLL IPr_ERRORCHECK ( Status. ‘DiskPrc:’ )

Status = IP1_GeTPIC C UNIT. CMrs. ZVAL( FILEPTR ). P1cOpPs )
CaLL Iei_ERRORCHECK ( StaTus. ‘GeTPIc:’ )

Status = Iep1_CLoseFiLe ( IP1BLk s

CaLL Ip1_ERRORCHECK ( StaTus., ‘CLOSeFILE:’ )

RETURN TO CALLING PROGRAM

RETURN
EnD
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SUBROUTINE TRIMNO ( UNIT, CHAN )

A A Al A L L L L R L R R Ry R Y Ry =y g ep R R T T T SRR S

TRIMNO - WILL DISPLAY A SPECIFIED CHANNEL IN BLACK AND
WHITE. JUST SEND THIS ROUTINE THE CHANNEL
NUMBER, 0.1.2.3 TO VIEW THESE CHANNELS OR SEND
-1 TO RESET TO NORMAL VIEWING

.0‘...-........I......Q............I..I.‘I..C.Qd....Ql......ﬂ..........'.-
Var1ABLE DECLARATION

CHAN - THE CHANNEL TO SET TOo B & W ( INTEGER®4 )
UNIT - THE UNIT ATTACHED TO THE PRoceSS ( INTEGER®*4 )

bAA A AL AR A A4 AR LR R 2R R T R T T Y Y Y R Ry Y Y Yy Y P Y Y R Y YRR Y ]
-

s £ 883853888 s8¢ ¢

: REQUIRED SUBROUTINES [SLSu255.C1s. IP1IViEwCHAN
......I......Q.d......GQII........I....l....ﬂ"ﬂ.‘l.O.....I.'..Q'.'.'..'..I.
-

: AUTHOR CARL SALVAGGIO CenTeER FOR_ IMAGING SCIENCE

. ROCHESTER INSTITUTE OF TECHNOLOGY
. Fesruary 25, 1987

-

XX R PR R S R R R R R Y R Y Y P Y Y Y YRR YRR YRR YRR AR 2 2 ]

INTEGER"U4 LENGTH, UNIT, StaTus. CHaN

-
SuNsReene
-

SHOW THE SPECIFIED CHANNEL IN B & W

IF ¢ CHAN .EQ. -1 ) THEN
Status = [PI_VIEWCHANC UNIT., CHAn., O ) ! Reset TRIMNO

ELse
. Status = IPI_ViewCHAN( UNIT. CHAN ) t Setv TRIMNO
F
CaLL Ip1_ERRORCHECK ( StATUS. ‘VIEWCHAN:' )
:"'"""“ RETURN TO CALLING PROGRAM
RETURN
Enp
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SUBROUTINE THRESHOLD ( UNIT. CHANNEL. THRESH. 10PT )

bbb bbb bbbl A AL AL L AL L L LT LY TR R R Y Rt R YR e imy Ot Ui e ierpapapupepeey

THRESH - THIS PROGRAM WILL THRESHOLD A MONOCHROME (ONE
CHANNEL) IMAGE BY SETTING ALL DC‘S ABOVE A
SPECIFIED VALUE TO ZERO WHILE LEAVING ALL DC’s
BELOW THE THRESHOLD VALUE THE SAME.

..O....'I'...."..I..'.....Q'ﬂ...Q...QQ..QQ.-......-..-I“...l........-..

Var1ABLE DECLARATION:

CHANNEL - THE MEMORY CHANNEL THAT THE USER WISHES TO
THRESHOLD IN., THIS VARIABLE SHOULD BE DECLARED
As INTEGER®2 IN THE CALLING PROGRAM.
THRESH - THE DIGITAL COUNT VALUE AT WHICH THE THRESHOLD
SHOULD OCCUR. THIS VARIABLE SHOULD BE DECLARED
As INTEGER"2 IN THE CALLING PROGRAM.
10PT - THE THRESHOLDING OPTION: .
IOPT = 0 wWILL SET ALL VALUES BELOW ‘THRESH®
70 A DC oF zero.
I0PT <> O WILL SET ALL VALUES ABOVE ‘THRESH’
10 A DC oF zero.

58 8 882 8 36 3858839835383 ¢

LAAA AR AL A L R AL K Y R R Y R R Y Y R R Y YR Y P Py Y Y Y Y Y YT YY YR Y YN
L

REQUIRED SUBROUTINES : ([SLS4255.C1s.Ip1l PutlTT
. EnaBLEITT

(AR AZ A X A e L X R R R R Y R R YRR XSS XY RS R 22X X ]

AUTHOR : CarRL SALVAGGIO CENTER FOR IMAGING SCIENCE
RocHESTER INSTITUTE OF TECHNOLOGY
JanNuary 16, 1987

X Y Y Y R Y Y R Y R R Y Y R R Y R Y P R Y R R Y SRR R SRR SRS SN X 2 Y )

$ §$ 8808

INTEGER"2 CHANNEL . THRESH. MemVoc. DveMem

INTEGER"2 [T7(0:255)

INTEGER™Y UNIT

Data MemVoc /7 1 7/ ! Memory VOC NUMBER

Data DveMem 7 1 / ! DVP ALLOCATION NUMBER
Snasenses ERROR CHECKING

IF aRCHAm(EL 5:.1'. 0 .0rR. CHAMNEL .GT. 2 ) THEN
1TE (6."
WRITE €(6.%) “*** ERROR IN THRESHOLD *** ILtecaL CHanneL NuMBER’
WrI1TE (6.*)
RETURN
Enp IF

IF ¢ THRESH .LT. O .OR. THRESH .GT. 255 ) THEN
WRITE (6.%)
WRITE (6.°) “*""* ERROR IN THRESHOLD “** ILLeGAL THRESHOLD’
WRITE (6.%)
RETURN
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Enp IF

naanceses DeFine THE ITT

IF ¢ I0PT .NE. O ) THEN
Do 10 I = 0, 255.

1
IfF (1 LT THRESH ) THEN

IvvC 1) =1
ELse
ITT( I1)Y=0
Enp If
10 CONTINUE

ELsE
Do 201 =0, 255. 1
IF (I .cE. THRESH ) THEN
Itv( [ ) =1

SE
ITTC1)=0
EnDp IF
20 CONTINUE
EnD IF

-
sSascsanane

WRITE TO THE ITT AND ENABLE IT

CarL Ip1_Putltt ( UNIT., CHANNEL, ITT )
Care IP1_EnaBLEITT ( UNIT, CHANNEL. MemVoc. DveMem )

csenscaans RETURN TO CALLING PROGRAM

RETURN
EnD
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SUBROUTINE WRTITT ( UNIT. InNCHAN. OUTCHAN )

b A A L LA L L R R R N R O A = N P R Y P T YT Y T Y Y Y R Y T Y R X )

»

- WRTITT. - THIS PROGRAM WILL SAVE THE IMAGE IN THE
. SPECIFIED CHANNEL THRU THE CURRENT ITT
N INTO A SPECIFIED CHANNEL.

-

bl A A A L L L Y Y Y Y Y Y Y Y YT P Y Y Y Y Y Y P Y YR YL X

VARIABLE DECLARATION:

INCHAN - THE CHANNEL ON WHICH THE CURReNT ITT 1s

& PRESENT. THIS VARIABLE SHOULD BE DECLARED AS
¢ INTEGER®2 IN THE CALLING PROGRAM.

OutCHaN - THE CHANNEL WHICH SHOULD BE WRITTEN THRU THE

THE ITT IN “INCHAN’. THIS VARIABLE SHOULD BE
DECLARED As INTEGER®2 IN THE CALLING PROGRAM.

(AL R R L Y Y YRR TR YR P R L S A2 22 d

RequireD SuBrOUTINES:  [SLS4255.C1s.lIr1] Ie1_ATTDVP
Ie1_DeTDve
IP1_ENaABLEITT
Ip1_DvPMaTH
IP1_CoNSTANTS

[ R R Y R Y R X R R Y R R R N R Y N R R R R YA R YR Y RS RYYRRRRE YR S 2 S 2 2 20

AUTHOR : CARL SaLvaGG1o CENTER FOR IMAGING SCIENCE
RocHESTER INSTITUTE OF TECHNOLOGY
JAanuary 16, 1987

-
-
-
-
-
-
L3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L]
-
-
LY Y Y Y Y Y R Y Y Y R Y R Y R Y Y Y Y Y PP R R Y R R XY RS SIESZSS R A L 204

INTEGER"2 INCHAN, OuTCHAN
INTEGER"Y UNIT. StaTus. LENGTH
EXTERNAL Ir1__Nor

ERROR CHECKING

I C INCHAN .LT. O .OR. INCHAN .GT. 2 ) THEN
WRiTE (6.%)
WRITE €6.%) ‘"** ERROR IN WRTITT *** ILrecaL IN CHANNEL®
WriTE (6.%)
RETURN
Enp IF

(3 &ROUTC?gN iLT. 0 .0r. QUTCHAN .GT. 2 ) THEN
1Te (6.*
WRITE €6.%) ‘*** ERROR IN WRTITT *** ILtecaL Out CHAnnEL’
WrITE (6.7)
RETURN
Enp IF

ittt SAVE THE CHANNEL THRU ITT TO MEMORY
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CaLL
CaLL

CaLL

CaLL
CaLL

tecwcacce
-

IP1_ATTDVe ( Un1T, 1)
IPp1_ENABLEITT ( UNIT, INCHAn, 0. 1)
f , . MeEmVoc. DveMem )
Ip1_DveMaTH ( UnIT. IP1_Nop., INCHaN,
INCHAN. OuTCHAN )
IP1_ENABLEITT C UNIT, INCHAN, 0. O )
Ie1_DetDve ( UnIT )

RETURN TO CALLING PROGRAM

RETURN

EnD
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AttacH THE DVP
EnaBLe THE ITT

WRI1TE THRU ITT

! DisaBLe THE ITT

DeatTacH THE DVP
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Description Of Non-Linearity Problems Encounter When Digitizing
Photographic Transparencies
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When digitizing a photographic transparency, care must be taken to
observe the non-linear nature of the photographic material. This becomes
especially important when the resulting imagery is to be used with a process
such as pseudo invariant feature analysis. It is essential that the assumption
of linearity between the reflectivity of the scene elements and the brightness
values in the digital image be satisfied or the resulting linear transformations
become invalid. The following is a justification which allows the PIF
normalization procedure to be used on digitized airphotos as long as the

caveats mentions are satisfied.

Linearity can be established between reflectivity of scene elements and the
resulting brightness counts is a digitized image as follows:

If it is assumed that the radiance at the sensor, L, is a linear function of the
reflectivity, R, of a scene element

L=cR+B (1)

where a and B are linear coefficients encompassing atmospheric
effects

and we have the definition of intensity at the sensor

Lo dl
dA cosb

where | is the intensity associated with a scene element at the

sensor
dA is the element of area associated with the scene

element
and 0 is the view angle measure to the normal

I-2



Appendix |

then if we assume that our sensing system is viewing straight down at the
ground (i.e. 8 = 0°) we have

= J.L dA coso
1= [Loa
=L [
and therefore
I=LA (2)

which says that | at the sensor is a linear function of L at the sensor.

Now the irradiance at the sensor is found by taking equation (2) through the
optical system of the sensor with a transmittance t as

I=tLA
A can be rewritten as

2
nd
A=-4—

where d is the diameter of the aperture of the optical system.

The intensity on the sensor focal plane is




Appendix |

so the irradiance on the focal plane is written as

L'|:1:d2

4f

E=

where f s the focal length of the optical system.

The term G# is defined as

L
G#:—:
E 1:1td2

and the irradiance on the sensor is simplified to

E=GF

Thus, the irradiance on the film plane is a linear function of the radiance on
the sensor.

By definition, the exposure on the film plane, H, is a linear function of the
irradiance, E, namely that

H=Et (3)
where t isthe exposure time.

Therefore the exposure at the sensor is a linear function of the reflectivity of
the scene elements on the ground where
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H=Et
and,
H - (aFé;B)t
H=g—;R+%
and finaly H=mR+b (4)
with m=g—;-
and b=g_:¢

Now if the sensor is a photographic emulsion, the sensor response function
is classically represented by the D-log H curve. This curve and the
corresponding t-H (transmittance vs. exposure) curve are depicted in Figure
I-1. The relationships represented by these curves are highly non-linear. In
order to overcome this non-

® '
= D-Log H Curve !
L] [
x '
E
7]
C
©
£ S
=
-~
2 | Transmittance - H Curve
g a -~
e ———————
(]
LogH / H

Figure I-1  Typical D-Log H Curve / T vs. H Curve
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linearity the following caveats must be instituted. The straight line portion of

the characteristic D-log H curve is not an indication of linearity since both

quantities are themselves logarithmic, however, in the exposure region

corresponding to this straight line portion of the curve, the following can be

said

Let y be the slope of the straight line portion of the D-log H curve so
D=ylogH - log i (5)"

where log i is the intercept value of the density axis
we can rewrite (5) as

D=vy(logH-clogi)

where c¢ is aconstant.

Taking the antilogarithm of both sides of the above equation we get

t=CH” (6)

where C is a multiplicative constant.

* T.H.James, The Theory of the Photoaraphic Process, Macmillan
Publishing Co., Inc., 1966, p. 505.
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When y = -1 (i.e. for a positive working photographic material) we have t =
CH so that a photographic system can be made to be linear over a limited
range under the following two caveats:

1) the exposure range is limited to that portion corresponding to the
straight line portion of the D-log H curve, and

2) the value vy for the film is forced to be -1.
So now we have that the transmittance of a photographic emulsion is

linearly related to the reflectivity of a scene element under the caveats listed
above, namely

t=m'R+Db (7)
where m and b are linear coefficients.

Now if we can make the assumption that the digitizing system has a linear
response function to incident radiance, Lp, then we have

DC=m"Lp +Db" (8)
where DC is the brightness value produced for a scene element by

the digitizer, and
m and bare gain and offset factors for the digitizing system.

Since we know that

Lo=1lo

where L, is the constant radiance incident on the photographic
emulsion
and <t isthe transmittance of the transparency at any point

we can conclude that

DC=m"R +b" (9)
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where m™ and b™ are linear coefficients.

Equation (9) shows tat the digital count of a digitized airphoto is linearly
related to the reflectance of the scene elements included in the photograph
over a limited dynamic range.

The previous discussion has shown that under specific caveats the
brightness values of a digitized photographic transparency can be
considered to be linearly related to the reflectance of corresponding scene
elements. The caveats imposed are however very stringent. If the gamma of
the photographic material significantly deviates from unity or the dynamic
range of the scene exposures significantly deviate from the straight line
region of the D-log H curve, the assumption of linearity is weakened. The
weakening of this assumption can be prevented if the D-log H curve is
known for the film and appropriate action is taken to correct the brightness

values of the digital image for this non-linearity.

For this current study, the D-log H information was not available for
the NHAP image used and therefore no correction could be applied. The
caveats mentioned above were assumed to be true and the transparencies

of Buffalo were digitized and assumed to represent a linear system.
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