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Abstract

The adoption of cube-satellites (cubesats) by the space community has drastically
lowered the cost of access to space and reduced the development lifecycle from the
hundreds of millions of dollars spent on traditional decade-long programs. Rapid
deployment and low cost are attractive features of cubesat-based imaging that are
conducive to applications such as disaster response and monitoring. One proposed
application is 3D surface modeling through a high revisit rate constellation of cube-
sat imagers. This work begins with the characterization of an existing design for
a cubesat imager based on ground sampled distance (GSD), signal-to-noise ratio
(SNR), and smear. From this characterization, an existing 3D workflow is applied
to datasets that have been degraded within the regime of spatial resolutions and
signal-to-noise ratios anticipated for the cubesat imager. The fidelity of resulting
point clouds are assessed locally for both an urban and a natural scene. The height
of a building and normals to its surfaces are calculated from the urban scene, while
quarry depth estimates and rough volume estimates of a pile of rocks are produced
from the natural scene. Though the reconstructed scene geometry and completeness
of the scene suffer noticeably from the degraded imagery, results indicate that useful
information can still be extracted using some of these techniques up to a simulated
GSD of 2 meters.

iii



Acknowledgements

I would like to thank Dr. David Messinger, Dr. Michael Gartley, and Dr. Carl
Salvaggio for their support and guidance during this research. I would also like to
thank Dr. Derek Walvoord and Adam Rossi for introducing me to image-based 3D
reconstruction and helping with troubleshooting. Thank you to Dr. David Nilosek
for assisting in applying his 3D workflow to my data sets. Thank you to Jason
Faulring for being an invaluable resource on the data that were used in this research
and for his continuous assistance with running code on Cyclone. Finally, thank
you to the STARE team at Lawrence Livermore National Laboratory for providing
specifications on their cubesat imagers.

iv



Disclaimer

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the U.S. Government.

v



Contents

1. Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Cube Satellites . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Image Quality Metrics . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 ELM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.5 Capturing Structure Geometry with 3D Models . . . . . . . . 19

2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Evaluate System Parameters . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Data and Alteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Spatial Resolution . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Signal-to-noise Ratio . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 3D Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Building Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Quarry Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3. Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1 System Evalution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Point Cloud Characterization . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Sources of Error . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2 Building Metrics - Spatial Resolution . . . . . . . . . . . . . . 48
3.2.3 Building Metrics - SNR . . . . . . . . . . . . . . . . . . . . . . 62
3.2.4 Quarry Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vi



4. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 86

Appendix 89

A. Point Cloud Generation Failure at 2.4 m GSD - Natural Scene . . . . . . . 90

vii



List of Figures

1.1 1U cubesats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 OutSat on Upper Stage of Atlas V . . . . . . . . . . . . . . . . . . . 4
1.3 Planet Labs Dove satellites launching from ISS . . . . . . . . . . . . . 5
1.4 STARE cubesat payload and bus . . . . . . . . . . . . . . . . . . . . 7
1.5 NIIRS vs. GSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Effect of DoG Filter on Low and High SNR images . . . . . . . . . . 18
1.7 Sparse Bundler Point Cloud . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Best-Case NIIRS prediction for V4 . . . . . . . . . . . . . . . . . . . 26
2.2 SNR Degradation Workflow . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Reconstructed Clinton Square Building . . . . . . . . . . . . . . . . . 32
2.4 Aligned, Projected Clinton Square Building . . . . . . . . . . . . . . 33
2.5 Building Surfaces to be Estimated . . . . . . . . . . . . . . . . . . . . 33
2.6 Surface Normal Estimation with PCA . . . . . . . . . . . . . . . . . . 34
2.7 Quarry Measurement Regions . . . . . . . . . . . . . . . . . . . . . . 35
2.8 Measurement region for Quarry Depth Estimate . . . . . . . . . . . . 36
2.9 Thresholded Rock Pile . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.10 Bounding Box Estimation Process . . . . . . . . . . . . . . . . . . . . 38
2.11 Pseudo-Integration Calculation . . . . . . . . . . . . . . . . . . . . . 39

3.1 Smear Predictions for V3 and V4 . . . . . . . . . . . . . . . . . . . . 41
3.2 SNR predictions for V3 and V4 . . . . . . . . . . . . . . . . . . . . . 43
3.3 Example Image Correspondences . . . . . . . . . . . . . . . . . . . . 45
3.4 Georegistration Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Propagation of Error from 3D Workflow . . . . . . . . . . . . . . . . 47
3.6 Point clouds of downtown Rochester, NY . . . . . . . . . . . . . . . . 49

viii



3.7 Comparison of Building Projections Dependent on GSD . . . . . . . . 51
3.8 Error of Geoaccurate Camera Centers vs. GSD . . . . . . . . . . . . 53
3.9 LIDAR Building Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.10 Surface Normal Estimation - Surface 1 . . . . . . . . . . . . . . . . . 58
3.11 Surface Normal Estimation Process - Surface 2 . . . . . . . . . . . . . 60
3.12 Comparison of All Building Surface Normals . . . . . . . . . . . . . . 61
3.13 Error of Surface Normals . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.14 SNR-Dependent Point Clouds . . . . . . . . . . . . . . . . . . . . . . 64
3.15 Comparison of Building Projections Dependent on SNR . . . . . . . . 65
3.16 Points Used for Surface 2 Dependent on SNR . . . . . . . . . . . . . 67
3.17 Quarry Point Cloud from Full Resolution Imagery . . . . . . . . . . . 69
3.18 Quarry Projections Dependent on GSD . . . . . . . . . . . . . . . . . 70
3.19 Alignment Error Demonstration . . . . . . . . . . . . . . . . . . . . . 72
3.20 Volume Approach 1 Results . . . . . . . . . . . . . . . . . . . . . . . 75
3.21 Uncertainty in Rock-Ground Interface . . . . . . . . . . . . . . . . . . 77
3.22 Outliers in Volume Approach 1 . . . . . . . . . . . . . . . . . . . . . 79
3.23 Volume Approach 2 - LIDAR . . . . . . . . . . . . . . . . . . . . . . 82
3.24 Volume Approach 2 - Image-based Point Clouds . . . . . . . . . . . . 84

A.1 The number of images selected for reconstruction by CMVS at each
GSD level decreases as GSD increases, resulting in only 10 of the 31
input images being used in the 2.4 m GSD case. . . . . . . . . . . . . 91

A.2 Failure at 2.4 m GSD . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ix



List of Tables

1.1 STARE V4 Design Parameters . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Examples of NIIRS Levels and Criteria . . . . . . . . . . . . . . . . . 10
1.3 Range of Variables in Complete GIQE 4 Data Set . . . . . . . . . . . 12

2.1 Data Sets for Point Cloud Generation . . . . . . . . . . . . . . . . . . 29
2.2 3D Workflow Options [1] . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Building Height Estimates Based on GSD . . . . . . . . . . . . . . . 52
3.2 Surface Normal Estimates Based on GSD . . . . . . . . . . . . . . . . 56
3.3 Building Height Estimates Based on SNR . . . . . . . . . . . . . . . . 66
3.4 Surface Normals Estimates Based on SNR . . . . . . . . . . . . . . . 66
3.5 Quarry Depth Estimates Based on GSD . . . . . . . . . . . . . . . . 71
3.6 Effect of Alignment Error on Quarry Depth Estimate for Level 1 . . . 73
3.7 Rock Pile Bounding Box Estimates . . . . . . . . . . . . . . . . . . . 74

x



Chapter 1

Introduction and Background

With recent encouragement and outreach through NASA’s Educational Launch of

Nanosatellites (ELaNa) and the Colony II CubeSat Bus Program sponsored by the

National Reconnaissance Office (NRO), the implementation of space applications

on specifically tasked nanosatellites has surged. This work reports the initial inves-

tigation of the viability of a novel cubesat imager for the application of 3D recon-

struction. The primary challenges of developing a cubesat tasked with imaging are

designing a quality optical system that can fit into such a small volume and down-

linking the data to ground stations. This research focuses on the former. The optical

payload is constrained by the small physical size of the cubesat, which drastically

limits the image quality of the system. The anticipated performance of a particular

design is characterized according to ground sampled distance (GSD), signal-to-noise

ratio (SNR), and image smear, or blur caused by spacecraft motion.

The structure from motion (SfM) concept has been successful in geo-accurately

reconstructing the third dimension from a set of multi-perspective, two-dimensional

images captured with a high-resolution airborne framing camera [2]. If this applica-

tion could be extended to cubesats, a small constellation or train of cubesat imagers

could provide a set of images with varying perspective over an area of interest for

3D reconstruction. This concept would be an inexpensive tool for surface modeling,

1



1.1. OBJECTIVES Introduction and Background

damage assessment following a natural disaster, and volumetric change detection.

Advantages to a spaceborne SfM implementation also include the capability of any

of these applications in areas with denied airborne access. This work examines the

viability of a novel cubesat imager for this application based on the anticipated

performance of the payload with respect to spatial resolution and SNR.

1.1 Objectives

The primary objective of this research is to assess the impacts of spatial resolution

and radiometric limitations of the proposed cubesat design on the 3D reconstruction

process. In order to fulfill this objective, several tasks must be accomplished. The

imager has not yet launched, so data are unavailable for use in this work. Therefore,

data must be simulated from existing data or generated with a tool such as the

Digital Imaging and Remote Sensing Image Generation (DIRSIG) model [3]. The

former is presented in this research. In order to simulate data, the spatial resolution

and radiometric limitations of the payload must first be determined. The design

is detector-limited, so GSD is used to characterize the spatial resolution. SNR

summarizes the radiometric performance of the imager and is bound by blur caused

by spacecraft motion. Next, existing data are degraded to simulate the cubesat data

according to the aforementioned limitations.

A secondary objective is to demonstrate differences in point cloud quality. The

simulated data are input to an existing 3D workflow, however, the community lacks

metrics that communicate point cloud quality. This objective is accomplished by

isolating small regions of the point clouds for which calculations are made to ex-

tract scene information and geometry from basic principles. These calculations are

compared across degraded versions of the same scene to illustrate the link between

image quality and point cloud quality.

2



1.2. BACKGROUND Introduction and Background

1.2 Background

The remainder of this chapter presents the background information that is necessary

to understand the methods implemented and the results produced in this work. An

overview of cubesats and image quality is presented, followed by the Empirical

Line Method (ELM) which is used for image simulation in this research. Then a

popular feature extraction algorithm often used in the first stage of SfM is discussed.

This feature extraction algorithm is approximated in the implementation of the 3D

workflow used, the details of which are also outlined in this section and accompanied

by an alternate means of obtaining 3D models via laser scanning which will serve

as truth data in this study.

1.2.1 Cube Satellites

Cubesats are a subclass of nanosatellites that are composed of stackable 10x10x10

cm units (1U), shown in Fig. 1.1, that weigh approximately 1 kg. These units can

be stacked along one dimension to create larger 2U, 3U, or 6U cubesats.

Fig. 1.1: Three 1U cubesats awaiting integration to a P-POD. Photo credit: NASA.

The cubesat form factor was established at Stanford from lessons learned following

the successful operations of the pioneering OPAL picosatellite [4]. Stanford part-

nered with California Polytechnic Statue University (Cal Poly) to produce a cubesat

deployer that could be attached to the launch vehicle, known as the Poly Picosatellite

Orbital Deployer (P-POD). Each P-POD holds three cubesats and can be stacked

3



1.2. BACKGROUND Introduction and Background

together with additional P-PODs. The P-PODs are attached to the exterior of a

launch vehicle, as shown in Fig. 1.2.

Fig. 1.2: The cubesats are attached near the engine, so they must endure severe vibration
and heat exposure before deployment. From LeGaux [5]

While the small volume available for a payload poses an engineering design prob-

lem to fit the best possible system in the small volume, the advantages of the cube-

sat versus a larger satellite are many. The small form factor and light weight of the

cubesats allow several to be launched as auxiliary payloads to larger satellites. This

ride-share significantly lowers the cost of deploying cubesats to space. The standard

size allows for use of the P-POD to deploy the cubesats from the launch vehicle.

Organizations such as NASA and the NRO have further facilitated the process by

offering launch opportunities and providing a standard cubesat bus and housing

structure. This outreach allows research teams to simply develop their desired pay-

load and integrate it with the standard bus. This culture rapidly accelerates the
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1.2. BACKGROUND Introduction and Background

timeline from initial concept development to launch and drastically lowers the cost

of sending payloads to space, effectively lowering the barrier of entry in order to

foster experimentation and growth in space technologies.

The development of cubesats has spurred space experiments in a variety of fields.

The most recent ELaNa launch included a space biology experiment and a techno-

logical demonstration of deploying hundreds of sprites from a cubesat. SPORESat

was developed by Purdue and NASA to investigate the gravitational sensing of plant

spores [6]. The mission of the 3U KickSat was to validate their design for deploying

hundreds of single-board, 3.5 x 3.5 cm spacecraft, termed sprites [7]. Implementing

imaging systems onboard cubesats is also an active area of research. In the com-

mercial sector, Planet Labs and Skybox imaging have led the charge towards Earth

observation from small satellites. In February 2014, Planet Labs launched Flock

1, consisting of 28 3U cubesats, from the International Space Station (ISS) that

delivers imagery with 3-5 meter resolution [8]. Two of these cubesats are shown in

Fig. 1.3.

Fig. 1.3: Two Dove satellites from Flock 1 are ejected from the ISS [9].
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1.2. BACKGROUND Introduction and Background

Skybox Imaging launched SkySat-1 in 2013 which was successful in capturing high-

resolution, HD video of Earth from space [10]. SkySat-1 touts sub-meter resolution

from a small satellite the size of a mini-fridge. In other imaging from small satellites,

LLNL has developed pathfinder cubesats capable of imaging other objects in orbit

[11]. The most recent 3U pathfinder has been redesigned for Earth observation.

These pathfinders are the inspiration for this research and will be discussed in depth,

in the next section.

1.2.1.1 STARE

The Space-Based Actionable Refinement of Ephemeris (STARE) program originated

with the objective of refining orbital projections of space debris in order to decrease

the false alarm rate of collision warnings to operational satellites [11]. The program

proposed to do this with a constellation of 3U cubesat imagers in low-Earth orbit

(LEO) that captured debris streaking across the field-of-view in imagery. The pri-

mary challenges to accomplishing this mission from cubesats are designing a quality

optical system whose resolution is constrained by the small payload volume and

communicating with the platform through the bus electronics, the quality of which

is also limited by the available space.

6



1.2. BACKGROUND Introduction and Background

Fig. 1.4: The STARE optical payload (right) as it fits in to the provided Colony II Bus
(left). From Simms, et al. [11].

The small space for the payload and bus inside the cubesat is shown in Fig. 1.4.

The optical resolution of imagery provided by the optical payload is limited by the

diameter of the aperture that can fit inside the cubesat. The Colony II Bus elec-

tronics limit the realization of the STARE mission by the slow, 57.6 kbps rate at

which data can be downlinked [5]. Due to the constraints of one ground station

and the low data rate, only 1 MB of data could be downloaded per day [11]. With

images on the order of 1MB in size, this downlink constraint necessitated on-board

processing for the mission. Each imager was made capable of processing the im-

agery on-board with an algorithm that refined orbital information of the debris by

detecting the streak endpoints and calculating its trajectory relative to known stars

in the background. Each cubesat imager would calculate this information for any

object crossing its field-of-view and transmit the information to a master cubesat

that downlinked the relevant information to a ground station.

In addition to the anticipated downlink limitation, there were three major prob-

lems with the Colony II bus: the reaction wheels were not functional therefore the

bus had to rely on weak magnetic torque coils for slew, there was a parasitic drain on

one of the battery cells that was predicted to likely cause the batteries to discharge

before use on-orbit, and the solar panels and antenna did not deploy [5]. The NRO,

Naval Postgraduate School (NPS), and LLNL are developing the CubeSat Next-

7



1.2. BACKGROUND Introduction and Background

Generation Bus (C-NGB) framework to remedy such issues [12]. This program is

also aiming to accomodate form factors larger than 3U and increase the data rate.

Improved cubesat communication continues to be an active area of research, with

designs such as inflatable antennae that will bridge the gap between current and

desired data rates for cubesats [13].

Additional issues encountered by the pathfinders include severe defocus and mis-

alignment of the Cassegrain optical payloads during launch. To remedy this prob-

lem, a novel compact optical sensor was developed that was robust to the forces

experienced by the cubesats during launch [14]. This design has been optimized for

Earth observation, but has not yet launched. Key design parameters for this imager

are shown in Table 1.1. This research will focus on the expected image quality of

Tab. 1.1: STARE V4 Design Parameters

Focal length 650 mm
Aperture diameter 85 mm

Pixel pitch 2.2 µm
Well depth 7,641 electrons
Read noise 4.7 electrons
Bit depth 12

the constrained optical design for the V4 pathfinder, and its implications for 3D

reconstructions derived from images of such quality.

1.2.2 Image Quality Metrics

Various image quality metrics have been developed to characterize imagery in two

major categories: spatial resolution and radiometric fidelity. Common measures of

spatial resolution include the ground-sampled distance (GSD), the system modu-

lation transfer function (MTF), and the relative edge response (RER) which is a

simplified metric of the MTF. GSD is the projection of one detector element from

the imaging system altitude onto the ground, and is calculated for nadir image

8



1.2. BACKGROUND Introduction and Background

viewing as

GSD = p
h

f
(1.1)

where p is the detector pitch, h is the altitude of the system, and f is the effective

focal length [15]. In other words, GSD maps the area on the ground that will

be represented in one pixel of the image. Equation 1.1 assumes that the detector

pitch/spacing and the detector width are equal. The GSD is often an estimate

of the spatial resolution of a detector-limited system, but it does not account for

resolution effects induced by blur of the optical system. The system MTF is a more

comprehensive metric that includes effects from the optical system and the detector

sampling. The RER is the slope of the edge-spread function (ESF), the spatial

equivalent of the MTF. This metric is typically determined empirically. A popular

measure of radiometric fidelity is the SNR, which has many forms, the simplest of

which is

SNR =
S

N
, (1.2)

where S is the signal and N is the noise. All of these metrics are related to image

quality, yet none of them, alone, can be used to quantify image quality.

The remainder of this section will address historical developments to describe

image quality such as the National Imagery Interpretability Rating Scale (NIIRS)

and the General Image Quality Equation (GIQE). Then a review of the more com-

plex image quality metrics such as SNR and Q will be presented as they pertain to

this research.

1.2.2.1 NIIRS

The NIIRS was developed for the government in the early 1970’s in order to encap-

sulate the effects of numerous image quality variables into a one-dimensional scale

[16]. Multiple scales were developed for different types of imagery: visible, infrared,

and multispectral. The scale was meant to rate the utility of an image based on its

information potential, or the extent of information that could be gleaned from the

9



1.2. BACKGROUND Introduction and Background

image by an analyst. The scale ranges from 0 to 9, where a rating of 0 signifies that

none of the higher level tasks can be accomplished from the image and the highest

rating of 9 corresponds to the ability to identify individual barbs on a barbed wire

fence from the image. Intermediate examples of corresponding NIIRS levels and

criteria for civilian uses of visible imagery are listed in Table 1.2. The NIIRS allows

Tab. 1.2: Examples of NIIRS Levels and Criteria

NIIRS Level Task
1 Distinguish between major land use classes (e.g., urban, agri-

cultural, forest, water, barren).
3 Detect individual houses in residential neighborhoods.
5 Detect large animals (e.g., elephants, rhinoceros, giraffes) in

grasslands.
7 Detect individual steps on a stairway.
9 Identify individual bunches of pine needles.

for decimal values for images with criteria that fall between the specified levels. A

difference in NIIRS of 0.2 between two images is considered noticeable. The NIIRS

has become a useful tool for communication among image analysts and between

remote sensing system manufacturers and their customers as a general metric of

imaging system capabilities.

1.2.2.2 GIQE

Traditionally, remote sensing sytems are very expensive to produce. Therefore, a

prediction of image quality is useful before investing on the order of a billion dollars

to build a particular system. The GIQE was developed to predict the image qual-

ity of remote sensing systems based on physical collection parameters [17]. These

parameters include GSD, the system MTF by means of the RER, and SNR. While

these parameters account for system design choices that affect image quality, addi-

tional consideration was made to account for post-processing of the imagery that

makes it more appealing to the eye. Modulation transfer function compensation

10



1.2. BACKGROUND Introduction and Background

(MTFC) is typically performed on EO imagery to offset the blur induced by the

remote sensing sytem. This sharpening amplifies edges and noise in the image.

These effects are represented by the edge overshoot term (H) and the noise gain

(G). This combination of design variables attempts to relate the anticipated scale

and resolution of the imagery to the NIIRS. The most recent form of the GIQE is

NIIRS = 10.251− a · log10GSDGM + b · log10RERGM − (0.656 ·HGM)

−(0.344 ·G/SNR)

(1.3)

where the GM subscript denotes the geometric mean of that variable, a is 3.16 and

b is 2.817 if RER <0.9, otherwise a is 3.32 and b is 1.559 [17]. The noise gain is

calculated as

G =

√√√√ M∑
i=1

N∑
j=1

(MTFCkernelij)2. (1.4)

and the edge overshoot term is calculated as the magnitude of the normalized edge

response of the MTFC filter.

The original GIQE was ascertained from a regression analysis on a set of images

rated by trained NIIRS analysts for which the system collection parameters were

known. It was determined that the original equation did not account for the complex

interactions of the variables on the NIIRS rating, i.e., the GSD term became less

significant as the RER decreased. Therefore, the GIQE was updated with another

set of images, half of which were used to perform regression analysis while the other

half were used to validate the model. The coefficient of determination for the set of

images used for validation was 0.934 with a standard error of 0.307, slightly more

than a perceptible change in image quality. The characteristics of the input data

from which the equation was regressed are summarized in Table 1.3. The NIIRS

prediction is dominated by the GSD term, as shown in Fig. 1.5.

11
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Tab. 1.3: Range of Variables in Complete GIQE 4 Data Set

Variable Minimum Maximum Average
GSD 3 in. (0.08m) 80 in. (2.03m) 20.6 in.
RER 0.2 1.3 0.92

H 0.9 1.9 1.31
G 1 19 10.66

SNR 2 130 52.3

0 20 40 60 80

4

5

6

7

8

9

GSD (in.)

N
II

R
S

NIIRS vs. GSD

Fig. 1.5: The GIQE is dominated by the GSD term of the regression equation, shown for
both possible coefficients of a: 3.32 if RER >0.9 (red), 3.16 otherwise (blue).

Due to the large dependence of the NIIRS level on GSD, the best-case prediction

can be calculated from just the first term of the GIQE.

1.2.2.3 SNR

SNR is a common image-quality metric that measures the ability of a remote sensing

system to accurately translate the target scene of interest to an image, on the photon

level. This metric affects the contrast, and effectively the resolution, of an image.
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The SNR of a system is often represented as

SNR =
mean target signal

standard deviation of signal
[18]. (1.5)

The mean target signal is calculated by propagating the radiance of the target

through the remote sensing system. The spectral radiance of a target in the visible

spectrum, assuming a Lambertian target, at the entrance aperture of a remote

sensing system is

Ltarget = τatm(λ)
ρtgt(λ)

π
· Etgt(λ), (1.6)

where τatm is the atmospheric transmission from the target to the sensor aperture,

ρ is the reflectance of the target, and Etgt is the irradiance at the target [18]. Ad-

ditional sensor-reaching radiance includes radiance scattered off of the background

and reflected towards the entrance aperture, this will be referred to as the upwelled

radiance. Both the target radiance and the upwelled radiance are often calculated

with MODTRAN due to the rigor of the calculations based on the collection geom-

etry [19]. The number of photons that arrive at the detector after passing through

a Cassegrain design is

ndet =
Adetπfftint
4(F#)2hc

∫ λ2

λ1

Ltarget(λ) · τoptics(λ) · λdλ, (1.7)

where Adet is the area of an individual detector element, ff is the fill-factor of the

Cassegrain, F# is the f-number of the optical system, h is Planck’s constant, c is

the speed of light, and τoptics is the wavelength-dependent optical transmission [18].

The signal in electrons can be calculated as

Se = ndet ·QE(λ). (1.8)

The most dominant sources of noise tend to be shot noise (if the signal is large),

read noise, and quantization noise. Shot noise arises from the random fluctuation in
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arrival of photons at the detector. This type of noise follows a Poisson distribution,

the standard deviation of which is the square root of the expected value. In other

words, the shot noise from the target signal, alone, can be expressed as

σshot =
√
ndet (1.9)

The shot noise includes the effect of the entire sensor-reaching radiance, specifically

it includes contributions from both the target radiance and the upwelled radiance.

Noise terms add in quadrature, so the total shot noise is

σshot =
√
ndet,tgt + ndet,upwelled (1.10)

where ndet,tgt is calculated as in Eq. 1.7 and ndet,upwelled is calculated by replacing

Ltarget with Lupwelled in the same equation. The sensor read noise is typically mea-

sured in the laboratory, and can be incorporated into the system noise calculation

as follows.

σsystem =
√
σ2
shot + σ2

read (1.11)

1.2.2.4 Q

Q is a measure of how finely the detector samples the point spread function and is

sensitive to GSD, MTF, and SNR. It is defined as

Q = λ
F#

p
[15], (1.12)

where λ is the band-average wavelength and p is the detector pitch. Specifically,

Q is the ratio of the detector sampling frequency and the optical bandpass limit

for a diffraction-limited system. Therefore, a Q = 2 system would have a detector

sampling frequency that is twice the highest frequency that will be passed by the

optical transfer function. This means that the detector sampling frequency meets the

14



1.2. BACKGROUND Introduction and Background

Nyquist criterion and no frequencies that pass through the optics will be aliased.

This ratio is an attractive characteristic that suggests the optimization of both

optical and detector resolution. However, due to satellite motion during integration

time, it is very difficult to design a remote sensing system with Q = 2. Smear

induced on the focal plane as a satellite passes over a target while integrating limits

the allowable integration time. This constraint also limits the SNR. The smaller

pixel size required to meet the Nyquist criterion for frequencies passed by the optics

adversely affects the smear, and thus the SNR of the system. Fiete demonstrates

that in some cases lowering Q from 2 results in noticeable aliasing yet the overall

image quality improves because edges appear sharper [15]. Therefore, increasing Q

from 1 to 2 will only improve image quality if the change does not cause a noticeable

drop in SNR.

1.2.3 ELM

ELM is used to estimate surface reflectances from observed radiances using known

ground truth reflectances in the scene [20]. The method is a regression technique

used to calculate unknown reflectances with the aid of ground truth reflectances.

Typically, ground truth is acquired by producing panels of known reflectances and

placing them in the scene to be imaged. Measuring the reflectance spectra of objects

already in the scene is another method of acquiring ground truth. In its simplest

form, if the sensor’s radiance can be expressed as a linear function of digital counts,

the ground truth digital count values can be related to the reflectance values as

follows.

DC = mr + b (1.13)

If at least two reflectances in the scene are known, they can be used to calculate m

and b to define the linear relationship in Eq.1.13. Ideally, the known reflectances

would correspond to extrema in DC. Eq. 1.13 can be rearranged for reflectance and

applied to the entire image to generate a reflectance image. This reflectance image
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can be used with the equations discussed in Section 1.2.2.3 to simulate images taken

from a particular system.

1.2.4 Feature Extraction

1.2.4.1 SIFT

The Scale-Invariant-Feature Transform (SIFT) is a popular and well-proven method

of feature extraction developed for the computer vision community. It was created

for the purpose of object recognition between images that have different perspec-

tives [21]. Images taken of the same object at different times may have changes in

illumination, perspective and noise; thus SIFT was designed to be robust to these

changes. In short, the algorithm attempts to detect stable keypoints and their loca-

tions in the images, then a keypoint descriptor is generated based on the computed

orientation of the keypoint and its surroundings for each keypoint that is deemed

stable. In the first step, the algorithm implements a difference-of-Gaussian (DoG)

filter as an approximation to the Laplacian filter, which has been proven to identify

scale-invariant features [21]. During the second step of keypoint orientation and

descriptor assignment, rotational invariance is achieved by including the orientation

of neighboring pixels in the descriptor computation. The result is a rotation and

scale invariant keypoint descriptor that is robust to partial affine distortion.

The first step involves searching through a scale-space, or a series of the same

image blurred with Gaussian kernels of varying standard deviation [21]. Features are

filtered out by differencing adjacent scales; this is the DoG filter. The filter essen-

tially acts as a bandpass filter, which attenuates the low frequencies of homogenous

regions and the high frequencies caused by noise, while passing frequencies repre-

senting edges. The downside to this filter is that the overall contrast of the image

is reduced in the filtering process. Each filtered pixel is compared to its neighbors

within the image, and to the corresponding pixel and its neighbors of other images

in the scale space in order to identify extrema as keypoint candidates.
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Additional steps are taken to eliminate weak edge responses from the pool of can-

didate keypoints produced by the filtering process. Once the weaker edge responses

have been removed from the set, the keypoints are assigned descriptors. SIFT de-

scriptors are 128 elements long, and are composed of the estimated orientations of

the pixels surrounding the keypoint location. The magnitudes and directions of

the gradient surrounding the keypoint are calculated, and weighted by a Gaussian

window. This window functions to assign lower weights to gradients farther from

the keypoint location. These gradient orientations are binned into orientation his-

tograms. A 4x4 array of orientation histograms is computed, each of which contains

8 bins. The vector describing these histograms is the 128-element (4x4x8) descriptor.

Lowe demonstrated that the orientation assignment to keypoints was accurate

95% of the time in the face of (plus or minus) 10% pixel noise. The major cause

of error in matching descriptors in the presence of noise was empirically determined

as the initial keypoint location and scale detection [21]. Examples of applying the

same DoG filter to images with different SNR are shown in Fig. 1.6. The filtered

images have been scaled between 0 and 1 for display purposes.
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(a) High SNR (b) Low SNR

(c) High SNR DOG Filtered (d) Low SNR DOG Filtered

Fig. 1.6: Two clips of the same image are shown with (a) high SNR and (b) low SNR. The
difference-of-Gaussian filtered images are shown (c) for the high SNR clip and
(d) for the low SNR clip. Note that the features on the rooftop of the upper left
building are clearly visible in (c) but they are obscured by noise artifacts in (d).

As seen in Fig. 1.6(c), the filter highlighted features from Fig. 1.6(a). However,

applying the same filter to the noisy image in Fig. 1.6(b) resulted in noise artifacts

being detected as strong features in Fig. 1.6(d). Because noise levels were added to

the same original image in order to produce the images with different SNRs, any

extra features indicated in Fig. 1.6 (d) are artifacts.
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1.2.5 Capturing Structure Geometry with 3D Models

Technology developments such as LIDAR (LIght Detection and Ranging) enable

large-scale 3D mapping of the environment that can be useful for performing en-

vironmental assessments that would take much more time to perform without the

model. LIDAR has been used to assess vegetation health, to model floodlines, and

to evaluate carbon dioxide pollution[22]. An alternative to the active sensing of

LIDAR systems is 3D reconstruction from multiple images providing various per-

spectives of the same scene, known as structure from motion (SfM). An advantage

to this method is that passive imaging systems are more common, and thus, less

expensive than LIDAR platforms. However, the method relies on geometric calcu-

lations to construct the model, which results in more room for error in the resulting

point cloud. Additionally, areas of the scene that are occluded in shadow or that

lack texture are omitted from the reconstructed model. This section will describe

LIDAR and the SfM process. In this work, a SfM-based 3D reconstruction technique

will be used and compared against LIDAR data collected over the same scene.

1.2.5.1 LIDAR

Light Detection and Ranging (LIDAR), alternatively known as laser altimetry, is the

optical version of radar. A laser pulse is emitted from the platform, and the height

of the surface below it is calculated by the elapsed time between the generation

and return of each laser pulse [22]. The result is a 3D point cloud that can be

geo-referenced using information of the platform position and orientation. Airborne

LIDAR platforms are capable of capturing sub-meter detail [23], [24].

In a billion-dollar program, this 3D mapping technique has been extended to the

spaceborne platform, the Ice Cloud and Elevation Satellite (ICESat), whose mission

is to monitor the topography of polar ice sheets in order to make predictions of future

changes in ice volume and sea-level [25]. To accomplish this mission, ICESat contains

a telescope with a 1-meter aperture diameter, a dimension which is much larger than
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what can be accomodated by a 3U cubesat. LIDAR has not yet been implemented

on a cubesat, however, research on using a similar method for generating 3D point

clouds of other spacecraft in orbit with a laser range finder from a 6U cubesat is

underway [26].

1.2.5.2 Structure-from-Motion

Structure-from-motion (SfM) is a computer vision application that generates a 3D

model from multiple views of the same scene. The SfM workflow typically can

be broken down into two general stages: determining the relative camera pose,

and triangulating 3D points to build the model. The relative camera pose, or the

positions representing the camera center in 3D space where each image was collected,

is calculated with projective geometry after finding point correspondences between

each image pair. This stage of SfM requires application of a feature extraction

algorithm like SIFT to each image, feature matching between images to identify

point correspondences, and typically some sort of optimization to minimize any

errors in the feature matches and/or camera parameters. With the camera pose

estimated, corresponding points in the images can be located in 3D space. This can

be done directly from corresponding points, or more complex algorithms can be used

to reduce error in point correspondences and generate dense 3D models [27], [28].

The result is a point cloud that is positioned in an arbitrary coordinate system.

1.2.5.3 3D Workflow

The 3D workflow used in this work was created by David Nilosek [?]. It utilizes

SiftGPU feature extraction and matching, bundle adjustment for the first stage of

the SfM process. To actually prodcue the 3D model, a combination of the software

packages Cluster-based Multi-View Stereo (CMVS) and Patch-Based Multi-View

stereo (PMVS) are used [29], [27]. A seven degrees-of-freedom similarity transform

is used to position the relative SfM point cloud in the desired Earth-fixed coordinate
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system.

1.2.5.3.1 SiftGPU Developed by Chanchang Wu, SiftGPU is an implementation

of SIFT that utilizes the graphics processing unit (GPU) in addition to the central

processing unit (CPU) in order to reduce the processing time of the algorithm [30].

The use of the GPU allows processing to occur in parallel, which rapidly speeds up

the process when high-resolution imagery is used.

1.2.5.3.2 Bundler This workflow uses Bundler, a software package developed by

Noah Snavely, to estimate the optimized relative camera pose of the input imagery[31].

Bundler takes a set of images, image features, and point correspondences as input

and produces a 3D model of the cameras and sparse scene geometry. In this process,

Bundler estimates the intrinsic and extrinsic camera parameters to include: the fo-

cal length, radial distortion coefficients, and the transformation that translates a 3D

point to a point on the camera’s image plane (the camera projection matrix). The

algorithm iteratively calculates camera pose, triangulates points, then optimizes the

calculation by minimizing the reprojection error, which is defined as the sum of

distances between the projections of each triangulated point onto the image plane

of the camera in which it appears and its corresponding image features. This cycle

begins with the image pair with the most feature matches and repeats with the

addition of the camera with the next highest number of feature matches. These

models are often too sparse to be useful, an example of which is shown in Fig. 1.7.
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Fig. 1.7: A sparse point cloud produced by Bundler is shown below the estimated camera
pose. The pairs of yellow and green/red points indicate each of the camera
centers calculated for the input imagery.

1.2.5.3.3 CMVS/PMVS Cluster-based Multi-View Stereo (CMVS) is a software

package that optimizes the multi-view stereo reconstruction algorithm by dividing

the reconstruction into clusters that can be processed in parallel [29]. The software

package also removes redundant images that hardly contribute to the 3D model

and are better off excluded from the image set in order to reduce processing time.

This process is particularly desirable for large image sets numbering hundreds or

thousands of images, where optimizing the reconstruction can save days to weeks of

processing time.
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The Patch-Based Multi-View Stereo (PMVS) software package takes as input

the camera pose calculated from bundle adjustment and the image clusters from

CMVS and outputs a dense 3D point cloud of the entire scene [27]. The procedure

uses a match, expand, and filter approach to iteratively produce a geometrically

accurate, dense reconstruction. The algorithm employs its own feature extraction

step using DoG and Harris corner detection to pick out robust features. Each image

is divided into a user-specified grid and only the strongest features in each grid cell

are retained. For each detected feature in a cell, a set of features is collected in the

remaining images that fall within two pixels from the corresponding epipolar line.

These points are triangulated to find the 3D point that is termed the patch center.

The algorithm iterates through these possible patch centers until a good patch is

found, which is determined by minimizing the angular difference between the patch

center and the optical axis of the corresponding camera and the patch center and

the optical axis of the original image. There may be cells in the image where no

patches were reconstructed. If this is the case, neighboring patches are used to to

initialize new patches in the empty image cells. Filtering is performed to remove

erroneous patches by enforcing visibility constraints, and the expansion and filtering

process are repeated to optimize the model. The result is a dense, 3D point cloud

positioned in an arbitary coordinate system.

1.2.5.3.4 Georegistration The georegistration transform attempts to calculate the

seven degrees of freedom similarity transform between the relative point cloud out-

put from PMVS and the desired Earth-fixed coordinate system [32]. The two sets

of points between which the transform is calculated are the GPS camera centers

recorded onboard while the imagery was collected and the relative camera centers

produced by the SfM workflow. Three components must be determined to compute

this transform: scale, rotation, and translation. The scale is calculated by the ratio

of the mean vectors of the two sets of points. The rotation matrix, R, is calculated

with the Kabsch algorithm which finds the rotation matrix between two sets of

23



1.2. BACKGROUND Introduction and Background

points with a least-squares method [33]. Finally the translation vector is calculated

by the difference of the GPS centroid and the rotated and scaled relative centroid.

Then, the components can be simultaneously applied to the relative point set, as

follows

Ts =

[
sR T

0 1

]
[32]. (1.14)

The resulting point cloud is anchored in the Earth-fixed coordinate system spec-

ified by the GPS camera centers and can be compared to known locations. Nilosek

demonstrated that this transformation is more sensitive to error in the camera cen-

ters, than more complex georegistration approaches in terms of geoaccuracy [32].

However, it is used in this work to bring point clouds into the same coordinate

system, so that relative measurements on different point clouds can be compared.
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Chapter 2

Methodology

This chapter will cover the methods used to produce the results. First, the NIIRS

prediction of V4 based on GSD is presented. Next, the SNR and smear calculations

used to determine the operating SNR of the system are discussed. Because there is

no on-orbit data from the cubesat, the next section describes the images that are

altered to better represent the expected performance of the V4 sensor. Finally, the

metrics that will be used to assess the quality of the point clouds are outlined.

2.1 Evaluate System Parameters

The GIQE provided a starting point for the expected performance of the V4 imager

at Earth-observing altitudes [17]. To characterize the spatial resolution of the system

dependent on altitude and detector performance, the nadir GSD of the system was

evaluated from Eq.1.1. Altitudes between 200 and 700 km are considered. Orbits

below 400 km experience greater drag which causes the spacecraft to fall out of orbit

within months. However, these altitudes are considered with applications in mind

such as one-time, on-demand intelligence over a general area. Recall from Section

1.2.2.2 that the dominant term in the GIQE is the GSD term. An approximation
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of the GIQE was used based only on the nadir GSD in order to produce a rough

estimate for the best-case scenario, written as

NIIRS ≈ 10.251− 3.32 ∗ log10(GSD)[17]. (2.1)

The resulting NIIRS prediction for the altitude range of interest is illustrated in

Fig. 2.1. Another factor that will affect spatial resolution is spacecraft motion

Fig. 2.1: The nadir GSD range of 0.7 to 2.4 m results in an approximate NIIRS prediction
ranging from 5.8 to 4, respectively.

during the integration time which induces blur on the focal plane, or smear. Because

satellites travel at such high speeds (on the order of 7 km/s in LEO), smear poses

a potential threat to the image quality of these systems. The bus electronics for

cubesats are currently not sophisticated enough to rotate the optical payload to

stare at the same point on Earth throughout the integration time. In this case,
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where the look angle of the platform is constant throughout the integration time,

the smear can be calculated from the Eq. 2.2.

smear =
v · tint
GSD

(2.2)

The mean orbital speed of the cubesat can be approximated as

v =

√
GM

r
(2.3)

where the gravitational constant (G) is equal to 6.67×10−11 m3kg−1s−2, M is the

mass of Earth, and r is the sum of Earth’s radius and the orbit altitude. Equation 2.3

assumes that the mass of the cubesat is negligible compared to that of Earth and

that the orbit is circular. The smear calculation bounds the functional integration

time of the system; beyond one pixel of smear the image quality will suffer noticeably

to the human eye.

Another important factor that will affect image quality is the signal-to-noise

ratio (SNR). The SNR of the system is calculated for a 10% reflector with the two

most dominant sources of noise: shot noise and read noise. The upwelled and target

radiance values are generated using MODTRAN with multiple imaging satellite

elevation (ISEL) and sun elevation angles. Then the SNR is calculated as

Se
σsystem

(2.4)

where Se and σsystem are calculated according to Eq. 1.7 through Eq. 1.11. With the

combination of the smear analysis and the SNR predictions, an acceptable range of

integration times is derived. These integration times and corresponding signal-to-

noise ratios for V4 will be used in calculations for image-based simulation.
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2.2 Data and Alteration

The V4 pathfinder has not launched yet, so imagery is not available for this study.

Instead, two datasets were used for this evaluation: 15 images collected over down-

town Rochester in 2011 and 31 images from the SHARE 2012 campaign that were

collected over a quarry in Avon, NY [34], [35]. The former provided an urban scene

while the latter provided a more natural scene for analysis in this work. These sites

were captured with the Wildfire Airborne Sensor Program (WASP) which includes

an RGB sensor. LIDAR data were also collected over the same sites, and will be

used as truth data. The following subsections will specify how the data are degraded

both spatially and with noise.

2.2.1 Spatial Resolution

To degrade the spatial resolution of the WASP imagery to better approximate the

expected spatial resolution of V4, a Gaussian image pyramid was used to downsam-

ple the full-resolution imagery. The GSD of the imagery over the urban scene was

approximately 25 cm, while the GSD of the natural scene was approximately 15 cm.

The images from each scene were downsampled to four additional resolutions, total-

ing 5 distinct resolutions per dataset. The cv2.pyrdown function was used from the

Open Computer Vision (OpenCV) library to implement this step [36]. This function

blurs the image with a Gaussian kernel, then rejects even rows and columns. The

levels of image resolution created with this function and their corresponding GSDs

are summarized in Table 2.1.
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Tab. 2.1: Data Sets for Point Cloud Generation

Level Image Dimensions Urban GSD (m) Natural GSD (m)
1 4000 x 2672 0.25 0.15
2 2000 x 1336 0.50 0.30
3 1000 x 768 1.0 0.60
4 500 x 384 2.0 1.2
5 250 x 192 4.0 2.4

These datasets have GSDs that fall within the expected range for the V4 design

and the higher resolution images provide a reference for comparison. Level 5 for

each dataset was excluded from analysis for different reasons. In the urban scene, a

point cloud was reconstructed at this resolution, however, the content geometry was

so warped that it was unrecognizable. In the natural scene, less overlap between the

input images resulted in CMVS excluding too many images from the reconstruction

to reproduce the entire area of interest in the point cloud. More details on this

occurrence are included in Appendix A.

2.2.2 Signal-to-noise Ratio

The workflow for SNR degradation of the imagery is illustrated in Fig. 2.2. The

Downsample ELM

Incorporate
MOD-
TRAN

radiance

Count
Photons
at Sensor

Add
Noise

Quantize

Fig. 2.2: SNR Degradation Workflow

images are downsampled first due to memory constraints. This step also minimizes

noise acquired from the actual sensor that produced the images. ELM is applied as-

suming that the maximum reflectance of the scene is 0.60, corresponding to metallic
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building surfaces, and assuming a minimum reflectance of zero. After these assumed

reflectances are used to identify the variables in Eq. 1.13, the equation can be re-

arranged for reflectance and applied to the entire image to generate a reflectance

image. Then, MODTRAN is used to provide ground-reflected and upwelled radi-

ances for a 100% reflector. A sensor-reaching radiance image is predicted by the

product of the ground-reflected radiance with the reflectance image plus an added

bias of the upwelled radiance. An image at the focal plane of a particular system

can be predicted with the remainder of the equations discussed in Section 1.2.2.3

and the system specifications. Signal-dependent shot noise is simulated by perform-

ing a random draw from a Poisson distribution whose mean value is the pixel value

in photons, at every pixel of the image. Conversion to electrons and quantization

complete the SNR degradation workflow. This method of SNR degradation was

chosen as opposed to simple addition of Gaussian noise in order to simulate the

signal-dependence of sensor noise.

2.3 3D Workflow

The 3D workflow has multiple parameters that are user-specified. Parameters that

were set to non-default values are summarized in Table 2.2.

Tab. 2.2: 3D Workflow Options [1]

Command Line
Option

Parameter Default

-f Focal length in pixels 6111.11
-x Maximum dimension for SiftGPU 2000
-y Maximum number of features de-

tected by SiftGPU
8000

-l Pyramid Level for PMVS 1

The default focal length in pixels (focal pixels) was calculated for the WASP RGB
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sensor as

focal pixels =
focal length

pixel size
[1]. (2.5)

For each downsampled case, the focal pixels must be scaled by the downsample

factor, e.g., the focal pixels for Level 1 should be

focal pixels = 6111.11 ∗ 0.5

= 3055.56 (2.6)

Both SiftGPU and PMVS have the option to downsample the input imagery inter-

nally, however, to maintain control of the downsampling function, this was performed

external to the 3D workflow. To prevent both algorithms from downsampling the

externally downsampled imagery, the maximum image dimension parameter was set

to 4000 for the full resolution cases of both scenes. Because the number of columns

in the remaining levels are less than or equal to 2000, as shown in Table 2.1, the

default parameter was sufficient for those levels. For all cases, the PMVS pyramid

level was set to 0, again to prevent additional downsampling in this stage. Finally,

the maximum number of SiftGPU features detected was changed as needed. The

default value causes unreliable features to be detected at Levels 3-5, which ulti-

mately causes the reconstruction to fail. At these levels, the number of features was

incrementally reduced from the default until a reconstruction was successful. Note

that the selection of this parameter may contribute to error in the point clouds, as

it may cause bad matches that do not cause the reconstruction to fail completely.

2.4 Metrics

2.4.1 Building Metrics

Two tasks were performed on the resulting point clouds in order to characterize the

degradation of the reconstructions due to the loss of spatial resolution. The first
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task was estimating the height of a building and the second was estimating normals

to a few of the building surfaces. Surface normal calculation must be performed in

order to produce a facetized model from a point cloud, a common post-processing

step. Before these measurements were made, the Clinton Square building from the

urban scene was manually segmented from the point cloud using CloudCompare, an

open-source point cloud processing software package [37]. As shown in Fig. 2.3, this

building is not aligned with the axes.

Fig. 2.3: The Clinton Square building cropped out of the reconstructed point cloud is
tilted with respect to the axes.

The building was rotated until the sides, top, and bottom surfaces appeared to

be aligned with the axes. Next, the points were projected onto the xz plane and

thresholds were visually selected to isolate points on the top surface of the building

and points on the ground plane, as shown in Fig. 2.4.
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Fig. 2.4: Red points representing the roof and ground of the aligned and projected point
cloud indicate those points thresholded for use in the height calculation.

The mean z-coordinate of the ground points was subtracted from the mean z-

coordinate of the roof points to yield the height estimate.

Principal Component Analysis (PCA) was used to estimate the normal to each

planar surface indicated in Fig. 2.5.

Fig. 2.5: The numbered surfaces, outlined on a subset of one of the WASP images used
for the reconstructions, will be used for surface normal calculation.

While there is some error in the reconstruction of the surfaces that prevents the
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points from falling on the same plane, the points vary much less in the z-direction

than in the other two dimensions. Therefore, the first two principal component vec-

tors should capture the directions along which the points vary most, or two vectors

that fall within the near-planar surface described by the points. As principal com-

ponent vectors are chosen orthogonal to the preceding vectors, the third indicates

the direction normal to the plane. This application of PCA is illustrated for a set

of points in Fig. 2.6.

(a) (b)

Fig. 2.6: The first two principal component vectors (green) indicate the directions of max-
imum variability in the 3D points, while the third principal component vector
(red) is the normal to the surface defined by the first two principal component
vectors.

The eigenvalue corresponding to the third eigenvector captures the variance of the

points in the normal direction, or a sense of how well the points fit to a plane, where

a lower value represents a closer planar fit.

2.4.2 Quarry Metrics

Two metrics were developed for the quarry data: the vertical depth of one section

of the quarry and the volume of a pile of rocks and dirt. The areas of the point

clouds where these measurements were made are shown in the WASP imagery in
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Figure 2.7.

(a) (b)

Fig. 2.7: The depth of the quarry was measured from the region in (a) and the volume of
the left rock/dirt pile in (b) was calculated.

Similar to the process in the height estimation of the Clinton Square building, the

flat surfaces at the top and bottom of the quarry wall in Fig. 2.7 (a) were aligned

with the xy plane. This allowed a simple calculation of the depth through the

difference of the mean z-coordinates of the two surfaces. The region of the quarry

cropped with CloudCompare and the aligned points projected onto the yz plane are

shown in Fig. 2.8.
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(a) Quarry wall in CloudCompare (b) Aligned and projected points

Fig. 2.8: The points in (a) were aligned and projected onto the yz plane as shown in (b).

The second task was more complicated because the ground surrounding the

two rock piles was not entirely flat. This complication made it difficult to threshold

points comprising the rock pile from points comprising the ground. The z-coordinate

used for thresholding was selected through visual inspection. Thresholds were also

imposed in the x and y directions to isolate the left rock pile in Fig. 2.7 (b), resulting

in the separated points shown in Fig. 2.9.
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Fig. 2.9: The rock pile from the LIDAR data thresholded to show the identified ground
points (green) and the points that comprise the pile (blue).

For the first volume approach, the rock points were projected onto the xy, or the

ground plane, as shown in Fig. 2.10 (a). The principal component vectors of these

points were calculated to find the directions of maximum variability in the ground

plane of the rock pile. The bounding volume of the rock pile was identified by the

location of the extrema in the directions of the 2 PCA vectors and the original z-

axis of the aligned points. Using the first two principal component vectors of the

3D set of points resulted in the primary and secondary principal component vectors

falling outside of the ground plane, since the variability in the z-dimension was not

sufficiently smaller than that in the other two dimensions. For this reason, the

former method was used to keep the z-axis fixed. This resulting bounding box is

shown in Fig. 2.10 (b).
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(a) PCA vectors in ground plane (b) Bounding Box

Fig. 2.10: The PCA vectors of the projected points in (a) are used to identify the limits
of the bounding volume shown in (b).

After constructing the bounding box, the volume of the box was calculated and

compared across the multi-resolution point clouds. The volume of the bounding box

is not an ideal estimate of the rock pile, rather some fraction of the volume would

provide a more accurate estimate. However, the bounding box is still a reasonable

measurement to capture the extent of the rock pile dependent on GSD.

A second approach to volume estimation was implemented based on a pseudo-

integration of the pile surface. To estimate the surface, the space was divided into

equal grid elements on the ground plane. The highest point in each grid element, or

bin, was retained and used to calculate the volume of that grid element. All volumes

were summed to complete the volume estimate, as shown in Fig. 2.11
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(a) Grid elements on ground plane (b) Volume Approximation

Fig. 2.11: For each grid element, or bin, in (a) the point with the highest z-coordinate is
used to calculate the volume of that element. The final volume is the sum of
each of the volumes in (b).

The most accurate volume calculation of such an asymmetrical group of points is

beyond the scope of this research and is a topic of research in itself. Therefore,

this analysis was restricted to volume calculations founded on basic principles that

should still provide insight into how the structure of the rock pile varies with GSD.
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Chapter 3

Results and Analysis

This chapter will begin with the presentation of the cubesat system characterization

and discussion of the anticipated repercussions on image quality. Sources of error

for the point clouds will be outlined before point cloud results and comparisons are

examined in the range of spatial resolutions and signal-to-noise ratios expected for

V4. The first dataset examined is the urban scene which contains height estimates

of a building and normal estimates to its surfaces. The quarry dataset is analyzed

through a local quarry depth estimate and volume estimates of a pile of rocks within

the quarry.

3.1 System Evalution

Smear calculations for both V3 and V4 are shown in Fig. 3.1. Both designs were

evaluated in order to illustrate the tradeoffs between the V4 design with a Q ap-

proaching 2 and the V3 design with a Q closer to 1. The calculations illustrated in

Fig. 3.1 indicate that smear will be a problem even at short integration times (below

1 ms) for V4. For an altitude of 200 km, smear limits the V4 integration time to

less than 0.1 ms.
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3.1. SYSTEM EVALUTION Results and Analysis

(a) V3

(b) V4

Fig. 3.1: Smear dependent on platform altitude and integration time are illustrated, with
a red line denoting the noticeable 1 pixel of smear boundary.
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3.1. SYSTEM EVALUTION Results and Analysis

An increase in altitude to sustainable orbits such as 450 km and 700 km allows

a slight increase in allowable integration times to approximately 0.2 and 0.3 ms. In

contrast, the larger detector elements of the V3 design places the one-pixel boundary

of smear at higher integration times. To put the constraints on these integration

times into perspective, SNR calculations for both designs are shown in Fig. 3.2.
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3.1. SYSTEM EVALUTION Results and Analysis

(a) V3

(b) V4

Fig. 3.2: SNR estimates based on integration time, platform altitude, and system design
specifications indicate that SNR. All calculations are for nadir viewing of a 10%
reflective target. Various sun elevation angles are indicated by the legend.
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3.2. POINT CLOUD CHARACTERIZATION Results and Analysis

The higher integration times for V3 and the larger detector elements for V3 allow

the high SNRs shown in Fig. 3.2 (a). However, Fig. 3.2 (b) shows that the integra-

tion limits previously discussed for V4 put the SNR expectations for a 10% reflector

from imagery collected at 200, 450, and 700 km at 10.5, 15.3, and 20.2, respectively.

Note that these SNR calculations are for the full bit depth of the sensor, however,

the 3D workflow requires high-contrast, 8-bit images as input. Stretching the con-

trast of the imagery will amplify the noise and decrease the SNR. Therefore, the

actual SNR of the imagery input to the 3D workflow will be lower than the values

previously specified. Such low SNR values will certainly present a problem for the

feature extraction and matching process, which is pivotal to the remainder of the

reconstruction workflow.

3.2 Point Cloud Characterization

3.2.1 Sources of Error

Due to the multiple stages present in the 3D workflow and measurement process,

there are many sources of error that affect the results. These include:

1. Image Correspondence Error: occurs when features are improperly matched

between images, which occurs more as spatial resolution is lost. This error

contributes to the remaining types of error. There are two stages in the 3D

workflow at which this error can occur: in the initial SiftGPU and matching

stage, and within PMVS itself. Fig. 3.3 shows an example from SiftGPU

matching.
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Fig. 3.3: Matches identified from the SiftGPU features are illustrated for subsets of an
image pair. The red boxes have been placed to guide the eye to the same region
of each image, they do not represent precisely the same locations. Only matches
that fall within the red boxes are displayed. Poor image correspondences such
as the lowermost orange line are identified.

2. Camera Pose Error: inaccurate calculation of the relative camera pose is af-

fected by poor image correspondences. Error in the camera parameters also

contribute to this error. Although bundle adjustment is used to attempt to

eliminate the effects of poor image correspondence, a large number of incorrect

matches will still result in error.

3. Triangulation Error: Error that occurs on a point-by-point basis caused by

mismatches within PMVS and/or by camera pose error. Since PMVS uses the

SfM-estimated camera centers to restrict the search space for feature matches,

this error is often caused by error in the camera centers. Manifested in noisy

points and misshapen surfaces.

4. Georegistration Error: a global error exacerbated by error in camera pose

and manifested as an improper scaling, translation, and/or rotation of the

entire point cloud. This error makes it difficult to automate isolating the same
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3.2. POINT CLOUD CHARACTERIZATION Results and Analysis

region from each point cloud, which is why it was done manually for each case.

Examples of this error based on GSD are shown in Fig. 3.4.

Fig. 3.4: Shifted versions of the Clinton Square building from each point cloud level il-
lustrate error in the georegistration transform. The full resolution case is in the
bottom right, while the 2m GSD result is in the upper left. The 2m GSD result
has tens of meters of error from the full resolution case in all dimensions.

5. Alignment Error: error induced by the measurement process when rotating the

point cloud with the Cartesian axes to enable calculations. Because all of the

measurement regions were individually aligned by visual inspection, differences

in the measurement can be attributed to the alignment process itself.

The propagation of these errors throughout the workflow are illustrated in Fig. 3.5.
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Image Cor-
respondence

Error

Camera Pose
Error

Georegistration
Error

Triangulation
Error

Alignment
Error

Fig. 3.5: Original image correspondence error propagates through the entire workflow and
measurement process.
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3.2.2 Building Metrics - Spatial Resolution

The point clouds produced at each level of image resolution are shown in Fig. 3.6.

(a) GSD = 0.25m

(b) GSD = 0.5m

48



3.2. POINT CLOUD CHARACTERIZATION Results and Analysis

(c) GSD = 1.0m

(d) GSD = 2.0m

Fig. 3.6: As the GSD of the input imagery increases from (a) to (d), the number of re-
constructed points decreases. The point cloud shown in (d) has points that are
larger in size in order to improve visibility.
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It can be seen in Fig. 3.6 that detail in the point clouds is lost with the loss of

spatial resolution, as would be expected. With the simulated increase in GSD, the

spacing between points increases making it more difficult to discern the geometry of

structures within the scene. To further explore this loss of fidelity in the point clouds,

the region of the point cloud containing the Clinton Square building in Fig. 2.5 was

isolated. The projections of the 3D points of this building on to the xz plane from

the LIDAR data and from the 3D workflow at each level of image resolution are

illustrated in Fig. 3.7. The first thing to note from Fig. 3.7 is that the LIDAR

building is noticeably more detailed and less noisy than the point cloud produced

from the full resolution imagery. The LIDAR result captures points on all surfaces

of the building, whereas the result in Fig. 3.7(b) omits points on the front, left, and

back faces. This omission is due to the nadir collection of the imagery. The omitted

areas of the building are not captured in the imagery, therefore they cannot be

reconstructed. Despite these gaps, the image-based point cloud does capture some

detail that is not in the LIDAR result. The vertical surfaces between the multi-level

rooftop are reconstructed in Fig. 3.7 (b) and (c) but are not captured in the LIDAR

result. The remaining image-based point clouds demonstrate noticeable distortion

in the geometry of the building, culminating in the blob of points depicted at the

4m GSD level (Fig. 3.7 (f)) which hardly resembles the actual building. The lowest

level of image resolution was omitted from further analysis for this reason.
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(a) LIDAR (b) GSD = 0.25 m

(c) GSD = 0.5 m (d) GSD = 1 m

(e) GSD = 2 m (f) GSD = 4 m

Fig. 3.7: Projections of the Clinton Square building onto the xz plane. Note that these
projections only appear to be profiles because the front and back planes of the
building were not reconstructed due to the nadir imagery collection.

51



3.2. POINT CLOUD CHARACTERIZATION Results and Analysis

3.2.2.1 Building Height Estimation

The calculated heights for the first four levels are reported in Table 3.1. The spatial

Tab. 3.1: Building Height Estimates Based on GSD

Level GSD (m) Height (m)
LIDAR N/A 59.8

1 0.25 59.7
2 0.5 59.5
3 1.0 58.5
4 2.0 58.0
5 4.0 N/A

degradation correlates to increased error in the height estimates. The error between

the first two levels was minor and was attributed to error introduced by aligning

the building with the axes. The larger error of the second and third levels was

expected, as features were lost due to the downsampling process. While the top

surface of the building appears to be reconstructed appropriately, note that the

definition of the ground worsened noticeably at Level 3 (Fig. 3.7(d)), affecting the

height estimate. Furthermore, the sparse reconstruction and warped scene geometry

are indicative of a larger problem that increases error in the height estimate: the

loss of spatial resolution rendered the SfM process more susceptible to error in

image correspondence. The image correspondence error translated to camera pose

error. Figure 3.8 shows the increased error in each of the SfM estimated camera

centers with respect to the GPS camera centers, which directly affects the model

reconstructed by PMVS.
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Fig. 3.8: The Euclidean distance between each SFM estimated camera center and its GPS
center counterpart is shown for each of the four GSD levels. Note that the same
cameras were not used in each level of reconstruction due to CMVS.

Figure 3.8 shows that the SfM-calculated camera pose have significantly larger

error from the GPS camera centers at levels three and four. This error propagated
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through the triangulation process of the PMVS algorithm, manifested by the false

z-coordinates that fell between the actual z-coordinates of the multi-level surfaces.

In the end, it is image correspondence error that increases with the loss of spatial

resolution and initiates a chain reaction of error that affects the building height

estimate.

3.2.2.2 Surface Normal Estimation

For reference, the surfaces that will be examined to assess the reconstructed geom-

etry of the 3D workflow are first illustrated by the LIDAR data in Fig. 3.9.
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3.2. POINT CLOUD CHARACTERIZATION Results and Analysis

(a) Surface 1

(b) Surface 2

Fig. 3.9: Three surfaces of the Clinton Square building captured from the LIDAR platform
provide a reference for the reconstruction of the same surfaces from imagery.
Note that the z-axis scale is different than that of the x and y axes for viewing
purposes; the variation of the points in the z-dimension is much smaller than the
variation in the other two dimensions.
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The LIDAR point cloud demonstrates densely populated surfaces, with few noisy

points as shown in Fig. 3.9. Note that some small structures are present within

the surfaces, though the surface normal estimation approach assumes the entire

section is one flat surface. The results of surface normal estimation for all data are

summarized in Table 3.2.

Tab. 3.2: Surface Normal Estimates Based on GSD

GSD(m)
Num.
of Pts.

Normal Variance (m2)

Surface 1
LIDAR 4401 [-0.001, -0.006, 1.000] 0.029
0.25 1130 [ 0.011, 0.002, 1.000] 0.151
0.5 374 [ 0.020, 0.018, 1.000] 0.224
1.0 80 [-0.020, 0.024, 1.000] 0.407
2.0 40 [ 0.035, 0.072, 0.997] 0.688

Surface 2
LIDAR 3789 [0.015, 0.000, 1.000] 0.024
0.25 793 [ 0.037,-0.009, 0.999] 0.146
0.5 321 [-0.033, 0.009, 0.999] 0.251
1.0 87 [-0.507, 0.013, 0.862] 0.661
2.0 16 [-0.545, 0.016, 0.838] 1.743

Surface 3
LIDAR 3857 [0.003, 0.001, 1.000] 0.017
0.25 700 [ 0.001,-0.005, 1.000] 0.155
0.5 330 [ 0.010, 0.018, 1.000] 0.177
1.0 80 [-0.163, 0.001, 0.987] 0.712
2.0 23 [-0.262,-0.010, 0.965] 0.894

The variance of the surface points increased as the spatial resolution was de-

graded. This can be seen in close-ups of the best (Surface 1) and worst (Surface 2)

case surfaces, shown in Figs. 3.10 and 3.11 respectively.

56



3.2. POINT CLOUD CHARACTERIZATION Results and Analysis

(a) GSD = 0.25m

(b) GSD = 0.5m
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(c) GSD = 1.0m

(d) GSD = 2.0m

Fig. 3.10: The plane fit to the points by the space defined by the first two PCA vectors,
and corresponding normal are shown. The z-axis has been scaled differently
than the x and y axes in order to highlight variation in the z-dimension.
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(a) GSD = 0.25m

(b) GSD = 0.5m
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(c) GSD = 1.0m

(d) GSD = 2.0m

Fig. 3.11: The plane fit to the points by the space defined by the first two PCA vectors,
and corresponding normal are shown. The z-axis has been scaled differently
than the x and y axes in order to highlight variation in the z-dimension.
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The image correspondence error previously discussed in the building height esti-

mation was also responsible for this trend. The variation in the direction of the

estimated surface normals is illustrated in Fig. 3.12. Using the estimated normal

(a) Surface 1 (b) Surface 2

(c) Surface 3

Fig. 3.12: Estimated surface normals are shown for each surface in Fig. 2.5 along with
their projections onto the xz and yz planes for comparison.

from the full resolution data as truth, the maximum angle between the remaining

estimated normals and truth for the first surface was 4.3 degrees. The second sur-

face had a maximum angle, or error, of 35.2 degrees and the third had an error of
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15.3 degrees. All errors are summarized in Fig. 3.13. The variation in these errors
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Fig. 3.13: The surface normal errors are shown with respect to the highest resolution point
cloud.

is explained by the features on each surface, which are shown in Fig. 2.5. Because

the second surface is so barren, its points were prone to larger error in image corre-

spondence than the points on the other two surfaces. In contrast, the first surface

has larger objects on it that are still visible at lower resolution, thus the accuracy of

the reconstruction of this surface was more robust to the loss of spatial resolution.

These cases of surface normal estimation illustrate how the scene content affects the

reconstruction accuracy.

3.2.3 Building Metrics - SNR

The low SNR chosen from the one-pixel boundary of smear drastically reduced the

number of reconstructed points. Therefore, intermediate signal-to-noise ratios were
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simulated. Views of the point clouds produced from this range of SNR values are

shown in Fig. 3.14.

(a) SNR = 73.4

(b) SNR = 35.3
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(c) SNR = 15.3

Fig. 3.14: Shown from left to right, a wide area of the point clouds are shown as the SNR
is decreased.

Recall from Fig. 1.6 that images with lower SNR cause false extrema to be detected

by the DoG filter. As the DoG filter is also used in PMVS to detect patch centers

that will be reconstructed, this high SNR causes unreliable noise artifacts to be

picked out as strong features. These are not reliable patch centers as they obscure

actual matching features between the images, thus only the strongest edges that can

be detected over the noise remain in the reconstruction at low SNR values.

Projections of the Clinton Square building from input imagery of various SNR

(based on 10% target reflectance) are shown in Fig. 3.15.
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(a) SNR = 73.4 (b) SNR = 35.3

(c) SNR = 15.3

Fig. 3.15: From left to right, the projection of the Clinton Square building on to the xz
plane is shown for decreasing SNR values. Red points indicate values that were
used to produce height estimates.

It can be seen that the projection of the rooftop loses the definition shown in

Fig. 3.15 (a) as SNR decreases. This is likely due to an increased error in corre-

spondences between the images due to increased noise. Not only do the shapes of

the surfaces start to warp, but they also appear to be more noisy in terms of their

triangulated locations. The results of the height estimation process are summarized

in Table 3.3.
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Tab. 3.3: Building Height Estimates Based on SNR

SNR Height (m)
LIDAR 59.8

73.4 59.5
35.3 59.1
15.3 57.2

The error between the LIDAR measurement and those corresponding to the

highest two SNR levels are within the error of the alignment and measurement

process. The height measurement for the third and lowest SNR suffered a larger

error. This SNR was identified as the highest SNR that can be achieved by the V4

imager due to a one pixel limit on smear at an orbit altitude of 450 km. Again, this

error was attributed to image correspondence error caused by the decreased SNR

of the input imagery. While the completeness and the geometry of the point cloud

suffer noticeably at the lowest SNR value, the height estimate only deviated from

the LIDAR estimate by less than three meters.

3.2.3.1 Surface Normal Estimation

The surface normals were estimated for the best case (Surface 1) and worst case

(Surface 2) surfaces, as identified from the spatially degraded data in Section 3.2.2.

The results are summarized in Table 3.4 The estimated surface normals dependent

Tab. 3.4: Surface Normals Estimates Based on SNR

SNR Num. of Pts. Normal Variance (m2)
Surface 1

73 334 [0.017, 0.004, 1.000] 0.311
35 271 [0.003, 0.024, 1.000] 0.476
15 106 [0.010, -0.007, 1.000] 0.558

Surface 2
73 233 [-0.031, -0.014, 0.999] 0.271
35 153 [-0.029, 0.014, 0.999] 0.717
15 127 [-0.297, -0.007, 0.995] 0.572

on SNR reflect a similar trend as those dependent on spatial resolution. As the SNR
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worsens, the variance of the points comprising the surface in the normal direction

increases. Again, this reflects the effects of image correspondence error on the final

point cloud. The exception is the larger variance for the SNR = 35 case for Surface 2,

relative to the SNR=15 case. The reason for this exception is illustrated in Fig. 3.16.

The red points used for the surface normal calculation in Fig. 3.16 (a) and (b) show

(a) SNR = 73.4 (b) SNR = 35.3

(c) SNR = 15.3

Fig. 3.16: For the three SNR cases, projections onto the xy plane of the Clinton Square
building are shown. Red points indicate those used for the normal calculations
of Surface 2.

that points throughout the surface are included in the calculation, whereas Fig. 3.16

(c) shows that only points on the edges of the surface are reconstructed and used

for the calculation. The lack of reconstructed points on the interior of the surface is
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due to overwhelming noise that obscures features available in that area. At this low

SNR, only points on the edges of the surface can still be detected and matched in the

3D workflow. These are stronger features, so it is expected that their variance in the

normal direction will be lower. This effect is also responsible for the fairly consistent

accuracy of the surface normal direction dependent on SNR. Because lowering the

SNR aggressively filters out weaker features from the reconstruction, it has less of

an effect on the surface normal accuracy than the spatial degradation presented in

Section 3.2.2.
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3.2.4 Quarry Metrics

The measurement regions that will be discussed in this section are illustrated in the

point cloud produced from the full resolution imagery, shown in Fig. 3.17.

Fig. 3.17: The measurement region where the depth of the quarry was calculated is shown
in red while the rock piles are indicated by the green circle. Refer to Fig. 2.7 to
see these regions from actual WASP imagery.

3.2.4.1 Wall Depth Estimation

The projections of the 3D points of the quarry wall onto the yz plane at each level

of image resolution are illustrated in Fig. 3.18.
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(a) LiDAR (b) Level 1

(c) Level 2 (d) Level 3

(e) Level 3

Fig. 3.18: Note that the apparent gap between the two surfaces was manifested because of
shadow cast in that region of the imagery (see Fig. 2.7 (a)). Red lines indicate
the mean z-coordinates of the surfaces used for the height estimate.

The LIDAR data in Fig. 3.18 captures the actual downward slope that is obscured

by shadow in the WASP imagery, and therefore omitted from the reconstructions.
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Note that the top and bottom surfaces in the measurement region have much better

definition in the LIDAR data, whereas the reconstructions show more uncertainty

in the z-dimension. The depth estimates for the first four levels are reported in

Table 3.5.

Tab. 3.5: Quarry Depth Estimates Based on GSD

Level GSD (m) Height (m)
LIDAR N/A 33.99

1 0.15 33.73
2 0.30 33.81
3 0.60 33.59
4 1.2 34.15

Although the reconstructions are noticeably different, the mean values used for

the depth calculation and indicated in Fig. 3.18 by red lines, were not significantly

affected. This is reflected in the reported depth measurements by no more than one

meter of error at any level. These results demonstrate that even at the 1.2 meter

GSD, the depth measurement is accurate. Due to such small error, the measurement

is most limited by the alignment error, as approximately one meter of variation

can occur due to uncertainty in aligning the surfaces with the ground plane. This

alignment error is illustrated by the slight variations in rotation shown in Fig. 3.19.
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(a) Reference

(b) -2◦ about x-axis (c) +2◦ about x-axis

(d) -2◦ about y-axis (e) +2◦ about y-axis

Fig. 3.19: The aligned cloud that was used for the calculation reported in Table 3.5 is
shown in (a), while (b) and (c) show the cloud rotated by a difference of 2◦

from (a) about the x-axis in either direction and (d) and (e) show rotation
about the y-axis.
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The slightly rotated (2◦ about the x or y-axis in either direction) point clouds

in Fig. 3.19 show that slight rotation error can cause noticeable alignment error. It

is evident that the surfaces are no longer parallel with the axes in Fig. 3.19 (b) and

(c). The error in Fig. 3.19 (d) and (e) is slightly less noticeable, but is manifested

in the increased thickness of the surfaces in the vertical direction. Therefore, these

limits were used to perform a statistical analysis of the effects of rotation on the

depth estimate. Using the original alignment angles for Level 1 from Table 3.5

as the mean value of a normal distribution, 1000 randomly drawn values from the

distribution were applied to the point cloud illustrated in Fig. 3.19 (a), for each

of which the depth measurment was recalculated. The standard deviation of this

normal distribution was set to one degree, so that approximately 95% of the values

would be less than or equal to two degrees from the mean. The results of this

analysis about both the x and y axes are summarized in Table 3.6.

Tab. 3.6: Effect of Alignment Error on Quarry Depth Estimate for Level 1

Axis of Rotation Min (m) Max (m) Mean (m) Std. Dev. (m)
x 30.59 36.51 33.70 0.94
y 33.35 34.04 33.73 0.093

The mean values of the depth estimate from this analysis are extremely close, if

not equal to the 33.73 m estimate reported in Table 3.5, as expected. The minimum

and maximum values, however, show up to 2 m of error induced by the previously

mentioned limits. Note that the same limit of rotation about the y-axis results in

a standard deviation that is an order of magnitude lower than for rotation about

the x-axis. This difference occurs because the points on the surfaces span much

more space along the y-dimension than along the x-dimension (refer to Fig. 2.8

(a)). Therefore, the same angle of rotation about either axis will cause the extrema

along each axis to deviate by a different amount from the center of rotation. The

analysis of the alignment error verifies that it can cause larger errors than observed

in Table 3.5, verifying that it is the limiting error in this analysis. A more reliable
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method for calculating the depth would be invariant to rotation, possibly a method

which fits a plane to the two surfaces and calculates the distance in the direction

nearest to perpendicular to both planes. However, the estimates produced with this

approach are accurate to within 1.67% error from the LIDAR data.

3.2.4.2 Volume Estimation

The bounding boxes for the rock piles are shown at each level of image resolution

in Fig 3.20 and the results are summarized in Table 3.7. Recall that the purpose

of the bounding box measurement was to capture the effect of image resolution on

important dimensions of the asymmetrical rock pile. The volume of the box is not

meant as an accurate measure of the volume of the rock pile, rather as a rough,

zeroth-order estimate.

Tab. 3.7: Rock Pile Bounding Box Estimates

Level GSD (m) x (m) y (m) z (m) Volume
LIDAR N/A 17.1 22.0 3.0 1129

1 0.15 13.2 24.5 2.6 841
2 0.30 15.9 25.3 2.6 1046
3 0.60 13.0 30.0 3.0 1170
4 1.2 17.2 25.3 3.1 1349

Note that the largest error with respect to the LIDAR estimate is observed at Level

1, or the smallest GSD. This occurrence was due to the uncertainty in the boundary

between the ground plane and the pile of rocks, which is a large source of error.

Even at Level 1, this boundary is prohibitively noisy, as seen in Fig. 3.21.
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(a) GSD = 0.15 m (b) GSD = 0.30 m

(c) GSD = 0.60 m (d) GSD = 1.20 m

Fig. 3.20: The bounding boxes determined to calculate a volume estimate for the rock pile
are shown for each GSD.
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(a) GSD = 15 cm

(b) GSD = 30 cm
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(c) GSD = 60 cm

(d) GSD = 1.2 m

Fig. 3.21: The approximate two meters of uncertainty in the ground at the full resolution
(a) makes it difficult to isolate the rock pile from the ground for the volume
estimate. The uncertainty worsens as GSD gets larger.
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Because there is such a large uncertainty in the ground plane for the full-resolution

case, the edges of the rock pile that taper off are lost in the thresholding process.

Therefore, the volume estimate for the full-resolution case is lower than the LIDAR

volume estimate which has less uncertainty in the ground plane (refer to Fig. 2.9

for the LIDAR points). This uncertainty in the ground plane is a combination of

triangulation error, alignment error, and the fact that the ground surrounding the

rock pile is not completely flat. The slightly curved ground can be seen in the LIDAR

point cloud in Fig. 3.23 (a). Lowering the ground threshold for the image-based point

clouds causes several outliers to be included in the bounding volume, drastically

affecting the volume calculation. For this reason, the rock points were thresholded

near the top of the rock-ground interfaces illustrated in Fig. 3.21. Yet, outliers still

remained as shown in Fig. 3.22. These outliers contribute to the large changes in the

volume estimate between the image-based point clouds. Additionally, noisy points

from poor image correspondences around the pile-to-air interface contribute further

error that is also magnified by the volume calculation.
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(a) GSD = 0.30m

(b) GSD = 1.2m

Fig. 3.22: Outliers in both (a) and (b) noticeably effect the limits of the bounding box,
adding error to the volume estimate.

The pseudo-integration approach to the volume estimate was also very sensitive

79



3.2. POINT CLOUD CHARACTERIZATION Results and Analysis

to the uncertainty in the ground plane. In addition, this approach required determi-

nation of the proper size of the grid elements, or bin size. The results of various bin

sizes for the LIDAR estimate are illustrated in Fig. 3.23. As shown in Fig. 3.23, the

volume of the pile largely depends on the bin size. If the bin size is too small, some

bins will have a height of zero and the volume will be inaccurate. However, if the bin

size is too large, the volume of the entire pile will be overestimated. The 0.5 m bin

size was chosen to best represent the volume of this data because it resulted in no

zero volume elements within the observable boundary of the rock pile. This volume

estimate was compared to estimates from the image-based point clouds shown in

Fig. 3.24, but note that the bin size must change for each data set to accomodate

the variable point spacing.
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(a) LIDAR Point Cloud

(b) Bin = 0.25m
Volume = 215 m3
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(c) Bin = 0.5m
Volume = 365 m3

(d) Bin = 1m
Volume = 433 m3

Fig. 3.23: The volumes estimated from the LIDAR data using the second approach are
shown for various bin sizes. The volume changes significantly based on the bin
size.
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(a) Bin Size = 0.6 m
Volume = 290 m3

(b) Bin Size = 0.9 m
Volume = 351 m3
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(c) Bin Size = 1.8 m
Volume = 480 m3

(d) Bin Size = 3.6 m
Volume = 505 m3

Fig. 3.24: The volumes estimated using the second approach are shown for the image-
based point clouds. Note that the bin size increases accordingly due to the
decrease in point density.
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The second volume approach also underestimates the volume of the Level 1

point cloud with respect to the LIDAR estimate. As was also observed with the

first volume approach, due to the drastic increase in point spacing of the remaining

levels, the volume estimate increases as the GSD becomes larger. Again, this is

because triangulation error produces points that fall outside the true extent of the

pile. As both volume estimates are dependent on detecting the outer limits of the

pile, calculations are very sensitive to errors generated from the 3D workflow. While

both volume approaches yield significant error, it is important to note that the pile

is only approximately 3 m high, a dimension which is extracted with a maximum

13.3% error according to Table 3.7. This small height causes the portion of the pile

that is lost in the 2+ meters of ground plane error to be a significant contribution

to the error in volume.
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Chapter 4

Conclusions and Future Work

At sustainable orbits (roughly above 400 km which translates to a GSD of 1.4 m),

the combination of a large GSD and low SNR will strongly affect the completeness

and geometric accuracy of the cubesat-based point clouds. However, this work shows

that some meaningful information can still be extracted with the chosen 3D workflow

despite these limitations. An order of magnitude simulated change in GSD, from

0.25 meters to 2 meters, results in an error of approximately 2 meters for a building

height estimate with a LIDAR truth of 60 meters. Over the same range of GSD,

however, surface normal approximations suffer significantly, deviating a maximum

of 35 degrees at the 1m GSD mark for a surface with few features. Signal-to-noise

ratios evaluated between the best-case V4 estimate of 15 and a higher value of 73

demonstrated up to 3 meters of error in the height estimate of the same building.

However, surface normals from imagery in this SNR range were much more consistent

than those estimated at the largest GSDs. This result indicates that the low SNR

of V4 is the limiting factor for the height estimate, but GSD is the limiting factor

for the surface normal estimates.

From the quarry scene, it was demonstrated that estimating the local depth of a

quarry over the GSD range of 15 cm to 1.2 meters was within 1 meter of error from

the LIDAR data. This error is within the error induced by the measurement process
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itself, therefore no discernible error is attributed to the loss of spatial resolution over

this range. However, volume estimates of a rock pile in the quarry incur significant

error and continue to increase as GSD becomes larger. The inherent nature of both

volume estimate approaches depends on detecting the extrema of the boundary of

the rock pile, therefore they are much more sensitive to error than the other metrics

used.

As the results from both scenes demonstrate, the independent impacts of spatial

resolution and SNR on the quality of resulting point clouds are significant depending

on the application. Though the completeness and geometry of the reconstructions

suffer noticeably beyond a GSD of 0.5 m, height and surface normal estimates are

still informative with the aformentioned errors. Thus, the ultimate utility of the

point cloud depends on the application and the error tolerance of the user.

It is important to note that the quality metrics reported here are dependent on

the 3D workflow that was chosen. Image correspondence error due to the feature

extraction and matching process of choice, subsequent camera pose error, and tri-

angulation error due to PMVS may all be mitigated by using other stages in the

workflow. This is particularly significant for the volume estimates, which have high

error. Alternate stages may minimize the ultimate triangulation error to which the

extrema-dependent volume estimates are sensitive. Furthermore, fine-tuning the

parameters in the workflow used in this work may also achieve that end.

It remains to determine the impacts of smear, the optical transfer function, jitter,

and other MTF effects on point cloud quality, not to mention the simultaneous

impact of large GSD and low SNR. While smear was used to limit the integration

time for SNR predictions, it was not simulated in the images, nor were the other

previously mentioned effects. Due to the low SNR to which the high-Q design of

V4 is limited, decreasing Q towards 1 may provide a more suitable cubesat imager

for multi-view, image-based 3D reconstruction, if this can be done without too

much loss of spatial resolution due to increased GSD. Other options include the

investigation of lower noise detectors that can fit in the cubesat payload or using
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a slightly larger satellite that would be able to house higher-quality detectors and

optical configurations.

As the same sets of images were degraded in this analysis and used to repre-

sent imagery at different altitudes, DIRSIG simulation of images for input to 3D

reconstruction workflows would be more illuminating. DIRSIG would be able to

capture differences in parallax dependent on the imaging altitude, a factor which

is not included in this work. Difference in parallax dependent on altitude would

also contribute to point cloud quality. The difficulty with using DIRSIG images for

point cloud generation lies in producing a scene with enough texture and variation

in content to allow accurate feature matches.

Opportunities for additional work that would facilitate studies such as the one

presented in this work are numerous due to the error-ridden workflow. While there

are errors present in the PMVS reconstruction, georegistration transform, and mea-

surement process, they are all linked to error in the initial detection and matching

of features performed in this work with SiftGPU. Therefore, the comparison of the

robustness of other existing feature detection algorithms to that of SiftGPU would

be beneficial. A more robust feature extractor that produces more accurate image

correspondences would reduce much error. Furthermore, sophisticated quality met-

rics that directly rate to the utility of the point clouds would also be beneficial.

The metrics presented in this work were simply intended to provide examples of a

qualitative assessment of information that can be extracted from point clouds.
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Appendix A

Point Cloud Generation Failure at

2.4 m GSD - Natural Scene

The 3D workflow outlined in Section 1.2.5.3 failed at the 2.4 m GSD case for the

natural scene due to the use of CMVS. At this large GSD, a majority of the 31

input images were rejected. The number of images retained by CMVS as a function

of GSD, or pixel size on the ground, is shown in Fig. A.1. Note that the number of

images may change between running the same set of images through the workflow

a second time, due to the random nature of the algorithm.
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Fig. A.1: The number of images selected for reconstruction by CMVS at each GSD level
decreases as GSD increases, resulting in only 10 of the 31 input images being
used in the 2.4 m GSD case.

The resulting point cloud for the 2.4 m GSD case is shown in Fig. A.2. This

failure example illustrates that CMVS was designed for large image collections with

redudant images. Redundant images were not included in this input data set. Note

that a successful reconstruction at this GSD can be achieved by removing CMVS

from the 3D workflow with a different implementation[38].
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Point Cloud Generation Failure at 2.4 m GSD - Natural Scene

Fig. A.2: Failure at 2.4 m GSD
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