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Abstract

In many algorithms designed to retrieve water constituent concentrations, an assumption

of negligible water-leaving radiance is made in the near infrared (NIR) wavelengths (750-

950 [nm]). This allows fairly accurate atmospheric correction to be applied to the oceanic

imagery. Given this assumption, it is possible to derive model estimates of aerosol type

and density and compensate for its effects in other regions of the spectrum. Unfortunately

this assumption is only valid in areas of very low total suspended sediment (TSS) concen-

trations, such as open ocean waters. Increased TSS load causes significant back-scattering

within the water, increasing the water leaving signal in the NIR region, which confounds

the compensation algorithms and incorrectly attributes all the effects entirely to aerosols.

A possible solution to this problem is to model suspended sediment inherent optical prop-

erties (IOPs) in the NIR using the Ocean Optical Phytoplankton Simulator (OOPS) and

couple this data using atmospheric and hydrologic radiative transfer models (MODTRAN
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and HYDROLIGHT, respectively). These models can be combined for a given sensor ge-

ometry to predict sensor reaching radiance and match the resulting spectra with actual

image spectra. This is done including the NIR which should allow us to better character-

ize the sediment load. Look-up tables (LUTs) of radiances from modeled atmospheres and

reflectances from modeled water allow us to make this an iterative process which can be op-

timized to give us the best match for the pixel in question. The products of this algorithm

are the water constituent concentrations and the atmospheric parameters. This process

has been implemented for AVIRIS hyperspectral imagery captured over the Rochester, NY

embayment with reasonable success in atmospheric and constituent retrieval.
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Chapter 1

Introduction

The quality of water is an important indicator of the health of the environment and is

very important to the quality of human life. We depend upon clean water for drinking,

bathing, day-to-day chores, and recreation, as well as for agricultural and industrial uses.

Inland and coastal areas are especially important and vulnerable to us in this regard.

The needs of a growing population place an ever-increasing demand upon the available

freshwater supply. Monitoring is necessary to ensure that contaminants from point sources

and excess runoff are detected so that remedial action may be taken to correct potentially

harmful situations. Traditionally, water quality analysis has involved direct sampling of

the areas in question. On-site monitoring is expensive and time-consuming, so it would

be of great utility to develop a remote-sensing based monitoring and evaluation system

to track changes in water quality in the coastal and littoral zones that is not dependent

on frequent sampling of the study areas. Remote sensing methods can also reach areas

that would be difficult to sample using traditional methods and provide greater spatial

distribution information than direct sampling.

1



2 CHAPTER 1. INTRODUCTION

1.1 Overview

The purpose of this research is to develop and test a physics-based modeling method

for extracting water constituent concentrations from hyperspectral imagery without first

correcting the imagery atmospherically. This is desirable because current atmospheric

correction methods are of questionable accuracy over coastal waters. Instead we will model

both the water reflectance and the atmosphere using established radiative transfer models.

This is desirable because water quality is of great importance to people throughout the

world, particularly in coastal regions where many people live, work, and recreate. In

order to accomplish this we have to model the effects of the atmosphere on the sensor

reaching signal by characterizing the upwelled radiance (Lu). Our assumption will be that

the water constituents will produce a characteristic reflectance (ρw) based on the inherent

optical properties of water and the concentration of the individual constituents. These

constituents can be divided into three primary groups: colored dissolved organic material

(CDOM), chloropyhll (CHL), and total suspended solids (TSS). Look-up tables (LUTs)

will be developed combining the reflectance and atmospheric data sets.

Traditionally, retrieval of water constituent information has been conducted in two

steps: application of an atmospheric correction algorithm to find the water reflectance,

then use of a bio-optical algorithm to extract CHL, CDOM, and TSS concentrations. The

first such algorithms were developed for use with open ocean imagery, where concentrations

of constituents are typically low.

These algorithms are of limited use in near-shore situations because the assumption that

water reflectance drops to zero in the NIR is not true in cases of high sediment concen-

trations. Since many of these algorithms rely on a band-ratio of pre-corrected reflectance

data or a semi-analytic method that takes advantage of this assumed zero reflectance, the
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correction is not accurate when this is not true.(Gordon and Wang, 1994; Gordon, 1997;

Gao et al., 2000)

Also, atmospheric correction using an empirical line method (ELM)(Smith and Milton,

1999) is often not practical. Ground reflectance measurements must be taken at the same

time as the acquisition of the imagery, or highly accurate reflectance estimates of in-scene

components must be made. These can be difficult or expensive to obtain. If such measure-

ments are available, however, ELM is a very good method of atmospheric compensation.

Previous work in this area used an ELM to invert the sensor radiance to reflectance,

then matched scene-derived reflectance spectra to modeled reflectance spectra attained

through use of the HYDROLIGHT (Mobley and Sundman, 2000) radiative transfer

model (Raqueño, 2004). The present research is aimed at reproducing, and/or improving

upon, the results of this technique using a different modeling approach.

Whereas the previously mentioned project(Raqueño, 2004) did the spectral matching

in reflectance, the aim of this thesis is to test the efficacy of a method of spectral matching

in radiance space. Rather than using some form of atmospheric correction on the image

data and matching to the resulting reflectance spectra, we will include various atmospheric

models in the algorithm and match to the sensor reaching radiance. The attraction of

this method is the possibility that we can reduce error in atmospheric correction and

develop a more operational solution for the actual water constituent concentrations. This is

important because > 95% of the signal in the VIS/NIR over water is due to the atmosphere.

Any reduction in error in this region will make a large difference in the accuracy of our

concentration estimates.

Unlike other studies, the spectral region of 700− 950nm is included for the reason that

we are assuming the majority of the change in water reflectance in this region is due to
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changes in the TSS concentration. One of the reasons ocean researchers assume negligible

reflectance in this region is the low sediment concentrations found in Case I waters. We

will demonstrate that the contribution to total ρw of CDOM and CHL is negligible in

this region. It is part of our hypothesis that including this information will improve the

retrieval of concentration values of all of the constituents.

One of the difficulties with this area of research is not that it is impossible to come

up with a solution to the model-derived sensor-reaching radiance, but that there may be

many solutions for each pixel. This aspect makes it necessary to provide constraints for

the algorithm to prevent solutions that may not be physically possible(Defoin-Platel and

Chami, 2007). For example, an area with a high CHL concentration would not usually

have an extremely low sediment concentration.

The constraints are applied in two ways. First, when creating the look-up tables, upper

limits approximating the upper limits of the ground truth samples were used. This limits

the utility of this method to the data set we have, but other concentration ranges can be

added later for a more robust LUT. Second, the interpolation/optimization routine can be

told what minimum/maximum values to consider, and also where in the LUT to begin.

For example, on a clear day we know that the visibility was greater than 10 km, so the

program is set to ignore those values that are lower than that point.

That being said, it is difficult to constrain this process too much because of the nature of

the area under study. Coastal regions often include a wide range of constituent values. Deep

lake or ocean waters removed from shore usually exhibit low constituent concentrations.

Closer to shore, one may encounter concentrations orders of magnitude higher, due to

natural or agriculturally induced run-off, or from the turbid discharge from rivers and

streams. The data set we are using was taken by the AVIRIS (Airborne Visible Infrared
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Imaging Spectrometer) sensor (Vane et al., 1993) of the Rochester embayment and includes

the oligotrophic (relatively clear, nutrient-poor) waters of Lake Ontario, turbid discharge

from the Genesee river, and the hypereutrophic (low visibility, nutrient-rich) waters of the

various ponds and small bays in the area. This relatively wide range of concentrations

makes this area a good test-bed for this algorithm, but also limits the constraints that can

be applied. I will discuss methods of ensuring optimal matches in upcoming sections.
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Chapter 2

Background

In this chapter I will outline the relevant theory behind the various parts of the algorithm

we have developed to derive constituent concentration values from hyperspectral imagery.

This will include a discussion of the relevant energy paths in radiative transfer theory,

atmospheric compensation, a brief overview of scattering and absorption, and a look at

some previous work in spectral-matching techniques over water.

2.1 Radiative Transfer

Radiative transfer is defined as the process of transmission of electro-magnetic radiation

through a medium. As a beam of energy traverses a medium, it can lose energy through

absorption, gain energy through emission, or energy can be re-directed through the process

of scattering. In this section I will discuss the effects of the atmosphere and of water on

the sensor-reaching signal.

7
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Figure 2.1: Solar and self-emitted energy paths (labeled so as to be consistent with Schott
(1997))

2.1.1 Radiance Reaching the Sensor

For passive remote sensing, where the sensor depends on naturally occurring radiation, we

can divide the energy paths into two groups, those originating from solar radiation, and

those resulting from the temperature of objects (self-emitted radiation). These paths are

shown in Figure 2.1. Each of these paths can contribute some part of the total radiance

L(λ) reaching a sensor.

Irradiance is the rate at which the radiant flux is delivered to a surface; the surface in
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question in this case being the outer limits of the atmosphere. Exoatmospheric irradiance

E
′
sλ is the portion of the sun’s radiance that reaches the Earth’s outer atmosphere at

each wavelength. Figure 2.2 illustrates the effect of even a fairly clear atmosphere on the

Figure 2.2: Example of irradiance spectra before and after being attenuated by a fairly
clear atmosphere. (MODTRAN output)

irradiance reaching the ground between .4µm and 2.5µm.

2.1.1.1 Energy Paths

The energy paths that account for the solar portion of the total radiance reaching the

sensor at each wavelength are represented by paths A,B,C,G from Figure 2.1. Path A

represents the photons from the sun that pass through the atmosphere, reflect off the

target, and pass through the atmosphere again to reach the sensor. Path B is the solar

downwelled portion of the energy paths, sometimes referred to as skylight. This path

represents photons that were scattered by the atmosphere before being reflected off of the

target to the sensor. Path C shows light that is scattered by the atmosphere into the
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sensor without ever encountering the target. These upwelled photons increase the signal

at the sensor without imparting any information about the surface of interest. Photons

reflected off background objects (e.g. buildings), reflected further by the target surface and

finally reaching the sensor are represented by path G. Significant background objects must

be characterized for their contribution to total radiance. A shape factor, F , is included

to represent the fraction of the sky that is open, while 1 − F represents the portion that

is obscured by the background. We can also simplify matters by making an assumption

that the target surface is approximately Lambertian (radiating equally in all directions).

For nadir viewing over water, this is a fairly valid assumption. Thus, the total radiance

reaching the sensor due to solar terms is:

Lsλ = LA + LB + LG + LC

or

Lsλ =
{
E

′
sλ cosσ

′
τ1(λ)

r(λ)
π

+ F [Edsλ]
r(λ)
π

+ (1− F ) [Lbsλ] r(λ)
}
τ2(λ) + Lusλ (2.1)

Thermal effects can also contribute to the total radiance reaching a sensor. Objects

with a temperature above absolute zero radiate energy in the form of self-emitted photons.

Generally, the higher the temperature and the higher the emissivity of the object, the

greater the number of photons emitted. In the area of the visible spectrum 400− 700nm,

the vast majority of the photons detected are of solar origin. At longer wavelengths (near

10 microns) the effect of the sun is negligible, and these self-emitted photons become very

important in gaining information about targets. Paths D,E,F,H from Figure 2.1 illustrate

these self-emitted sources. Path D shows photons self-emitted from a target that reach

the sensor. These photons can be used to determine thermal property information about
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the target. Path E shows atmospherically generated photons that reflect from the target

toward the sensor. Path F also depicts atmospherically generated photons that radiate

directly to the sensor. Path H shows the line taken by photons thermally generated by a

background object and reflected from the target to the sensor. The total radiance reaching

the sensor due to self-emitted terms is:

Lελ = LD + LE + LF + LH

or

Lελ =
{
ε(λ)LTλ + F [Edελ]

r(λ)
π

+ (1− F )[Lbελ]
r(λ)
π

}
τ2(λ) + Luελ (2.2)

Taken together, the total radiance reaching the sensor from all paths is:

Lλ = LA + LD + LB + LE + LG + LH + LC + LF

or

Lλ =
{
E

′
sλ cosσ

′
τ1(λ)

r(λ)
π

+ ε(λ)LTλ + F [Edsλ + Edελ]
r(λ)
π

+ (1− F ) [Lbsλ + Lbελ] r(λ)
}
τ2(λ) + Lusλ + Luελ

(2.3)

In Equations 2.1, 2.2, and 2.3,

Lλ total sensor-reaching radiance at a given wavelength

E
′
sλ exoatmospheric spectral irradiance

σ
′

solar zenith angle from the normal to the target

τ1(λ) atmospheric transmission along the sun-target path

r(λ) total spectral reflectance of the target
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ε(λ) spectral emissivity of the target

LTλ Planck radiance for a blackbody of temperature T at wavelength λ

Edsλ solar downwelled irradiance (skylight)

Edελ self-emitted downwelled irradiance (skylight)

F shape factor for the obscuration of the target by background

Lbsλ reflected solar radiance for the background

Lbελ self-emitted radiance for the background

τ2(λ) atmospheric transmission along the target-sensor path

Luλ upwelled or path radiance

The radiance due to thermal effects is a negligible part of the total radiance for the

region of the electromagnetic spectrum we are studying, so the self-emitted terms can be

eliminated from consideration in this case. In addition, areas such as open water have a

shape factor of one, removing the (1− F ) terms and further reducing the equation to

Lλ =
{
E

′
sλ cosσ

′
τ1(λ)

r(λ)
π

+ Edsλ
r(λ)
π

}
τ2(λ) + Lusλ (2.4)

2.1.2 Transmission

We are concerned with two different atmospheric transmissions. The first is the transmis-

sion along the sun-target path τ1, which can be defined as:

τ1(λ) = e−δ1(λ) ≈ e−δ(λ) secσ (2.5)
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where δ1(λ) is defined to be the optical depth along the sun-target path, δ(λ) is the optical

depth vertically through the atmosphere and σ is the solar zenith angle. Figure 2.3 illus-

trates how this calculation is implemented practically for an assumed stratified atmosphere.

Figure 2.3: Graphic showing the calculations for transmission in a stratified atmosphere.
Each layer j is assumed to be homogeneous for each constituent i. The absorption cross
section Cαij and number density mij are considered to be constant for each path length zj .

The second transmission loss we are concerned with is that from the target to the sensor
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τ2, which can be defined in similar terms:

τ2(λ) ≈ e−δ
′
(λ) sec θ (2.6)

where δ
′

is the optical depth vertically from the target to the sensor altitude and θ is

the view angle. The transmission terms τ1 and τ2 are modeled for this study using the

MODTRAN radiative transfer program (Berk et al., 1989), as discussed more fully in

Section 3.2.1.

2.1.2.1 Absorption and Scattering in Water

The radiance reaching the sensor from the water comes from two main sources: that which

is reflected at the water surface; and that which is scattered back by the water molecules

and matter suspended in the water. The only part that is of interest to us is the back-

scattered part, because the reflected part would have the same spectral composition as the

light hitting the surface. Only the light that has gone into the water and been scattered

back to our sensor has information about water constituents Cracknell (1981). The concept

of spectral absorption, scattering, and transmission are illustrated in Figure 2.4. For an

incident radiant flux, or power, Φi(λ), some part of it is absorbed, transmitted, and scat-

tered by a given volume of water ∆V through length ∆r. Φa(λ) is the portion absorbed,

Φt(λ) is the portion transmitted with no directional change, and Φs(λ) is the portion scat-

tered out of the water at an angle Ψ into solid angle ∆Ω (Mobley, 1994). Inherent optical

properties (IOP’s) are properties that depend solely upon the medium through which the

light is traveling. Inherent optical properties include the absorption coefficient, the scatter-

ing coefficient, the volume scattering function β, the index of refraction n, and the beam
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Figure 2.4: Diagram of extinction components for an absorbing and scattering vol-
ume.(Mobley, 1994)

attenuation coefficient. This can be summed up in the equation:

cλ = aλ + bλ [m−1] (2.7)

where cλ is the total beam attenuation coefficient, aλ is the absorption coefficient, and

bλ is the total scattering coefficient.The total scattering coefficient bλ is calculated by

integrating the volume scattering function over all angles. The backscattering coefficient

bb(λ) is similarly derived by integrating over the angles from 90◦ to 180◦. Apparent optical

properties depend both on the inherent optical properties and the light field in which they

are measured. We are going to treat the water as an equivalent lambertian surface and

derive an apparent reflectance using HYDROLIGHT (Mobley and Sundman, 2000) that

we can then use to model a sensor-reaching radiance, when combined with radiance values
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for each MODTRAN-derived atmosphere (Berk et al., 1999).

2.2 Atmospheric Compensation

2.2.1 In a Perfect World

In remote sensing we always hope that the signal from the target can be completely sep-

arated from the signal due to the intervening atmosphere. The atmospheric signal (path

radiance) has no target information in it. Ideally, an atmospheric correction method would

give us perfectly calibrated sensor radiance or target reflectance. If this is possible, then

the resulting spectra can be used to characterize the target and give us specific information

about it.

2.2.2 Techniques For Atmospheric Compensation

There are a variety of methods available to calculate the path radiance within a remotely

sensed scene and minimize the effect of the atmosphere on visible and near infrared imagery.

It is assumed when correcting high resolution scanner data that, due to the small field of

view of the sensor, the atmospheric conditions within each scene are constant . As a result,

the correction factor is a constant for each band of the dataset, although it may need to

be adjusted for view angle due to lens falloff and other effects. Some of the most common

methods to calculate the path radiance are: atmospheric measurements and modeling with

sensor calibration, dark pixel subtraction, and spectral ratio techniques.

Atmospheric measurements and modeling involves the theoretical determination of the

path radiance contribution of the atmosphere for the particular time of the overflight.

Calculation of the contribution of the scattering to the reflected radiance requires that many

atmospheric variables at the time of the overflight be recorded and put into theoretically
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derived equations to determine the effect of the atmosphere on each spectral band. Two

such atmospheric modeling utilities are MODTRAN (Berk et al., 1989) and 6S (E. et al.,

1997). User-supplied radiosonde data may be used as input to MODTRAN, but the

nearest regularly taken radiosonde to Rochester is at the Buffalo, NY airport, and its

applicability 100 kilometers away is questionable.

Dark pixel subtraction is a technique which determines the pixel in the image with the

lowest brightness value. This pixel is assumed to have near zero reflectance and therefore

represents the upwelled radiance spectra for the scene. This method works well in scenes

where there are pixels with deep, clear water, which have a very low reflectance in the near

infrared. It is less accurate when the lowest scene reflectivity is elevated by even a few

percent (Schott, 1997). This is similar to the technique used in TAFKAA (Gao et al.,

2000), where the reflectance of water is assumed to go to zero at 865nm.

Spectral ratio techniques consist of a comparison of at least two known reflectance values

with sensor recorded radiance values. Once the actual response and the recorded response

values have been determined, linear regression can be used to determine the atmospheric

effects for the overall image (Schott, 1997).

For scenes with sharp shadow lines, upwelled radiance can be solved for using the

Piech and Walker sun-shadow method (Piech and Walker, 1974). This might be useful for

near-shore imagery near large objects that can cast pixel-sized shadows.

None of these methods is fool-proof, and all are problematic when used over water,

especially coastal and inland waters, where the assumption of zero reflectance in the NIR

can invalidate the process. Which is why, in this research, we are going to omit this step

and attempt to model the atmospheric effects directly.
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2.3 Remote Sensing Platforms

Remote sensing platforms can vary considerably depending on their intended use. Those

utilizing single-band, or pan imagery, depend on the total integrated radiance hitting a

pixel. Corresponding gray tones are assigned based on the relative responses of the pixels in

the array. These sensors have good spatial resolution due to the small pixel size possible for

the individual element of the array. Multi-spectral sensors use filters or separate elements

to capture data at specific wavelengths of the electro-magnetic spectrum. The bands

are not contiguous in multispectral imagery, however, and cannot be used to define a

spectral signature. Imaging Spectroscopy is the acquisition of images where for each spatial

resolution element in the image a spectrum of the energy arriving at the sensor is measured.

Hyperspectral imaging sensors use a diffraction grating to split the signal into separate ,

yet contiguous, wavebands. These are useful to explore the theory that materials can be

identified by their unique spectral reflectance signature. These spectra are used to derive

information based on the interaction of matter and energy expressed in the spectrum.

2.3.1 AVIRIS

The main data set under consideration in this study is AVIRIS imagery acquired on May

20, 1999. The overflight was at approximately 11:20 AM EDT. Ground truth collections

were undertaken for the areas under the acquisition. Water samples were taken for many

of the ponds and bays in the area, as well as for the Genesee River and the river plume

extending into Lake Ontario. A brief description of AVIRIS follows.

AVIRIS is an acronym for NASA’s Airborne Visible InfraRed Imaging Spectrome-

ter. The main objective of the AVIRIS project is to identify, measure, and monitor

constituents of the Earth’s surface and atmosphere based on molecular absorption and
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particle scattering signatures. It is an optical sensor that delivers calibrated images of

radiance in 224 contiguous spectral bands with wavelengths from 400 to 2500 nanometers

[nm]. Each band is nominally on 10nm centers(Vane et al., 1993). A drawing of the sensor

apparatus is shown in Figure 2.5 and the focal plane detectors setup is shown in Figure

2.6.

Use of this sensor for a collection over water offers a slight, yet important, inversion of

usual practice for image acquisition. Usual practice is to acquire images with a high sun-

angle, in order to maximize the reflected signal reaching the sensor elements. A high sun

angle increases the probability of solar glint in collections over water. This is undesirable

because a pixel contaminated with solar glint has little information from the photons that

have interacted with the water volume. We will have to choose the areas of study carefully

to minimize this effect in our study. This will be discussed further in Section 4.2.1.
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Figure 2.5: Drawing of AVIRIS Spectrometer(Vane et al., 1993)
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Figure 2.6: Drawing of AVIRIS focal plane detectors showing spectral coverage from 400-
2500 [nm](Vane et al., 1993)
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2.4 Spectral Matching

With the advent of hyperspectral imagers, different methods of processing are available to

researchers. Rather than comparing relative values from isolated bands, as is done with

multi-spectral imagery, we can compare the overall shape of the spectral curves over a

continuous range to achieve a better result.

2.4.1 Previous Work In This Area

A proof-of-concept study of spectral matching was carried out on a 2001 Hyperion data

set of the western part of the Singapore Strait. Liew and Kwoh (Liew and Kwoh, 2003)

used a 6S atmospheric model and the three-component water reflectance model (Sathyen-

dranath et al., 1989) to create a LUT to match to the data set using an iterative chi-squared

minimization. 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) was

developed by the Laboratoire d’Optique Atmospherique. The code permits calculations

of near-nadir (down-looking) aircraft observations, non-lambertian surface conditions, ab-

sorbing gases, Rayleigh scattering, and aerosol scattering effects. The spectral resolution

is 2.5 nm. The wavelength range of Liew and Kwoh’s study was 450-700nm. The LUT

was generated out to 905nm, but the wavelengths above 700 were not included in the mini-

mization due to concerns about atmospheric absorption in the NIR. Comparison of results

with SeaWiFS OC2 chlorophyll algorithm showed promise of better results with spectral

matching methods than with traditional band ratio methods, especially in coastal waters.

A spectral matching technique was developed for extracting bottom classification and

bathymetry information from hyperspectral imagery. Mobley, et al (Mobley et al., 2005)

used a LUT and PHILLS (Ocean Portable Hyperspectral Imager for Low-light Spec-

troscopy) data to investigate shallow waters around Lee Stocking Island, Bahamas. They
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used EcoLUT (a trimmed-down version of Hydrolight used to speed processing) to model

reflectances for various depths and bottom types and were able to get fairly consistent re-

sults. Retrieved bottom depths were within 5% and 0.5m of independently obtained depth

measurements. The water they were dealing with was very clear, having CHL concentra-

tions in the 0.1→ 0.2mg/m3 range, with low concentrations of sediments and CDOM also.

No attempt was made to extract concentration information in this study. The matching

was done in the visible region (400-750nm). Mobley used TAFKAA (Gao et al., 2000)

to do the atmospheric correction. In addition, a correction was performed on the PHILLS

data in the form of an offset and gain adjustment, bringing the minimum spectrum down

to zero beyond 650n. The stated reason for this was to correct for a systemic data problem

that gave too high values in the red.(Mobley et al., 2005)

A similar technique utilizing an iterative spectral optimization algorithm (SOA) and

coupled aerosol-water models was implemented using SeaWiFS (Sea-viewing Wide Field of

view Sensor) data of the Middle Atlantic Bight (Chomko et al., 2003). This was a Case I

water study, with very low constituent concentrations, and an assumption of negligible wa-

ter reflectance at the SeaWiFS 765 and 865nm bands was made. For the low CHL, CDOM,

and TSS concentrations of this area, this was a fairly valid assumption for ocean reflectance

models. Difficulties were experienced due to problems with the algorithm getting ”stuck”

near its starting point for areas with suspected high CDOM concentrations, and also in

the presence of absorbing aerosols. The authors state that the difficulty in extending this

(SOA) technique to Case II (coastal and inland) waters is the elevated water reflectance in

the NIR. They suggest possibly tuning the bio-optical models used for the particular body

of water of interest.

Empirical methods for extracting information from remotely-acquired data are many
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and varied. Most of them have been developed for use with open ocean data, for the

problem of atmospherically correcting the data is more tractable there. Decoupling the

oceanic and atmospheric optical signals using band-ratio information for SeaWiFS data

is discussed in (Gordon and Wang, 1994). Good results are obtained for data sets of the

Mid-Atlantic Bight, but it is stated that the algorithm breaks down in coastal and inland

waters (Gordon, 1997).

2.4.2 Extending Spectral Matching Techniques

This effort to extract constituent concentrations using spectral matching techniques uses

similar methods to those just mentioned, but with the addition of extending the matching

to the NIR in order to improve accuracy in retrieved CHL and TSS concentration values.

Our current work is an extrapolation of the work done by Raqueño in (Raqueño, 2004)

(Raqueño et al., 2000) with a few key changes and adjustments. Performing the match-

ing in radiance space eliminates the need for atmospheric correction, while extending the

wavelengths considered out to the NIR will achieve improved sediment retrieval. While

this necessitates atmospheric modeling, it is hoped that this method will give comparable,

if not improved results when compared to the earlier efforts. This will enable more eas-

ily realized constituent concentration studies to be conducted in near-shore areas where

traditional ocean water algorithms are of limited use.
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Modeling

3.1 Why Model?

As outlined in the previous chapter, atmospheric correction is difficult in coastal areas. For

this reason, this research will focus on modeling the atmospheric effects using MODTRAN

to eliminate the need for this correction. In cases where the total radiance or reflectance

is difficult or impossible to separate into its component parts we must often use a different

approach to get the answers we need.

For the case in question, we have Ltot = Lw + Lu, where Ltot is the total radiance

reaching the sensor, Lw is the water-leaving radiance, which is made up of the directly

reflected solar irradiance and the reflected downwelled or sky radiance, and Lu is the

upwelled radiance due to atmospheric scattering. Figure 3.1 shows the components of

the sensor-reaching radiance. If we cannot properly account for the atmosphere or the

reflectance of the water, we are stuck. However, a properly modeled atmosphere, when

combined with a properly modeled water reflectance will result in the observed sensor-

reaching radiance. Paths A, the reflected solar component, and B, the reflected skylight

25
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Figure 3.1: Graphic showing components of sensor-reaching radiance.

component, can also contain solar and sky glint, respectively. This will necessitate either

the use of a glint removal process or careful selection of the study site to avoid areas of solar

glint. Traditional atmospheric compensation algorithms treat sky glint as insignificant to

total sensor-reaching radiance (Gordon and Wang, 1994). Therefore, the contribution of

sky glint to the total sensor-reaching signal will be treated as negligible in this study.

3.2 Modeling with MODTRAN

The Space Vehicles Directorate of the Air Force Research Lab describes MODTRAN as:

The Moderate Resolution Transmittance (MODTRAN) Code calculates at-

mospheric transmittance and radiance for frequencies from 0 to 50,000 cm-1

at moderate spectral resolution, primarily 2 cm-1 (20 cm-1 in the UV). The
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original development of MODTRAN was driven by a need for higher spectral

resolution and greater accuracy than that provided by the LOWTRAN series of

band model algorithms. Except for its molecular band model parameterization,

MODTRAN adopts all the LOWTRAN 7 capabilities, including spherical re-

fractive geometry, solar and lunar source functions, and scattering (Rayleigh,

Mie, single and multiple), and default profiles (gases, aerosols, clouds, fogs,

and rain). (Description taken from MODTRAN 4 Software Factsheet found at:

http://www.kirtland.af.mil/library/factsheets/factsheet.asp?id=7915)

MODTRAN has been extensively verified and validated. In a comparison of radiance codes

for climate modeling, MODTRAN was compared with three independent interferometer

measurements of up-looking radiance and the overall agreement was excellent. MODTRAN

UV radiance calculations were also compared with balloon measurements of transmitted

solar energy to 40 km altitude. Comparisons of MODTRAN and integrating sphere data for

visible and near-IR integrated solar radiation have also been conducted. Detailed validation

of the MODTRAN code has also been performed recently using hyperspectral data from

AVIRIS.(http://www.vs.afrl.af.mil/ProductLines/IR-Clutter/modtran4.aspx)

3.2.1 Modtran LUT

As a proof-of-concept, we will be using supplied default atmospheric aerosol models from

MODTRAN to create our atmospheric look-up table, varying the aerosol type (urban,

rural, maritime) and concentration through manipulation of the VIS parameter. More

extensive modeling choices or user-supplied radiosonde data will probably be necessary in

the future to make this a more accurate method. Since we are working with imagery from

May of 1999, we will be using midlatitude summer as the seasonal setting.(Berk et al., 1999)

http://www.kirtland.af.mil/library/factsheets/factsheet.asp?id=7915
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Table 3.1 shows the range of the parameters that will be changed for each MODTRAN run,

the visibility(VIS ) being changed by 1km for settings under 25km, and in 5km increments

for settings from 25 − 70km. We also supply the time of day, day of year, latitude and

longitude of the target area, ground altitude, and altitude of the sensor.

Table 3.1: Parameters for adjusting MODTRAN runs

Aerosol Visiblity(km)
urban 1→ 70
rural 1→ 70

maritime 1→ 70

MODTRAN is run twice for each setting. Once at 100% target reflectance to get

downwelled and directly reflected solar terms to use with the modeled reflectance, and

once at 0% to get an upwelled radiance unchanged by reflected adjacency effects. This

yields an atmospheric LUT of 102 members. The resulting radiance curves are re-sampled

to AVIRIS bandcenters in preparation for further processing.

Since MODTRAN does not output a downwelled term directly, it must be derived by

taking the difference between the GRND RFLT and DRCT RFLT terms, which are,

respectively, the total ground reflected radiance (sun and sky) and the directly reflected

radiance (sun). It was originally thought that this would yield an accurate downwelled

value when run at 100% target reflectance, for all of the downwelled would be in that term.

But it was realized after the completion of these modeling runs that adjacency effects,

or ”trapping” are included in the GRND RFLT term and could cause the resulting

difference term to be slightly too large, especially when run with multiple scattering. Also,

the upwelled radiance obtained from the 0% MODTRAN run may result in a slightly lower

than optimal estimate of this factor. Future water studies utilizing this technique may
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find it better to run MODTRAN at a nominal reflectance curve simulating water target

reflectance at each wavelength in order to minimize errors from this area.

Now that we have an atmospheric model we need to be able to estimate what is hap-

pening in the water to obtain a sensor-reaching radiance to use in our model.

3.3 Modeling with HYDROLIGHT

Hydrolight is a radiative transfer code designed to solve for the radiance distributions and

derived quantities for natural water bodies.(Mobley and Sundman, 2000) We input the

inherent optical properties (IOPs) of the water volume under study, including various water

constituents, and get out spectral reflectance to combine with our atmospheric radiance

spectra. Hydrolight also takes into account wind effects on the water surface, incorporating

the Cox-Munk capillary wave slope statistics as described in (Mobley, 1994) to describe the

surface reflection and transmission. This attenuates the amount of downwelling irradiance

Ed(λ) going into the water volume so that an accurate calculation can be made of the

remote-sensing reflectance. This will enable us to model Lw, incorporating both volume

reflectance and the averaged Fresnel reflectance from the water surface(Mobley, 1994).

Mobley defines the remote sensing reflectance as:

Rrs(θ, φ;λ) ≡ L(z = a; θ, φ;λ)
Ed(z = a;λ)

[sr−1] (3.1)

This is evaluated just above the air-water interface, as indicated by the depth z = a; Ed

is the downwelled irradiance, and L is the water-leaving radiance. These are spectrally

dependent quantities, as indicated by λ. In order to simulate a lambertian surface, we will

multiply this by π[sr], making a unitless apparent reflectance factor.
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3.4 Water Constituents

The color of water is influenced by many factors. Water depth, chlorophyll concentration,

sediments, and dissolved materials can all have an effect on the appearance of water.

A classification scheme has been accepted by the ocean study community that divides

water into Case I or Case II(Morel and Prieur, 1977). Case I waters are those in which

phytoplankton and related material are the major contributors to optical variations in the

water-leaving signal. Case II waters are influenced not only by phytoplankton, but also by

other substances that vary independently of chlorophyll. While Case I makes up most of

the world’s water, coastal and inland waters are much more often Case II. Case II waters

are optically much more complex, in that many different constituents can contribute to

changes in the reflectance. Three main groupings will be discussed in the next sections.

The methods developed for deriving the properties of open ocean waters cannot be used for

these more complex cases, so new algorithms must be developed.(Sathyendranath, 2000)
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Figure 3.2: Graph showing the spectral absorption coefficients for water constituents in
Lake Ontario (Bukata et al., 1995) Dissolved organic carbon is yet another term for CDOM.

3.4.1 Suspended Solids

Suspended solids are of importance in the remote sensing of water because of the alteration

of the signal due to increased scattering, especially in the NIR. Whereas deep ocean waters

appear blue due to scattering in the 400-500nm region and strong absorption in the red

(> 650nm), waters with high sediment loads can appear brownish-red due to an increased

scattering in the red. This increased scattering continues into the near-infrared.

Suspended solids can include both organic and inorganic particles. Decaying plant and
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Figure 3.3: Graph showing the spectral scattering coefficients for water constituents in
Lake Ontario (Bukata et al., 1995) Dissolved organic carbon is not included for this because
CDOM does not have appreciable scattering effects.

animal material as well as solids carried into the water body by run-off contribute to the

total. Of interest to us is the particle size distribution in the water volume. Rather than

using the Junge size distribution, which is commonly used by open ocean models, we will

be using a log-normal size distribution, which has been found to better simulate natural

conditions in near-shore regions. This is because terrestrial sediments approach log-normal

in their size distribution and these, presumably, are what we will find in coastal areas

and lakes due to runoff and natural eutrophication processes. A sediment sampling from
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Conesus Lake, near Rochester, New York, shows the validity of this assumption. This is

illustrated in Figure 3.4. The samples were taken and analyzed by the Upstate Freshwater

Institute and matched to a log-normal size distribution equation from the Ocean Optics

Plankton Simulator (Kim, 2000) by Jason Hamel of RIT.

Figure 3.4: Plot of distribution of sampled sediments from Conesus Lake showing agreement
with log-normal size distribution

3.4.2 Contribution to total water reflectance (TSS)

We are operating under the assumption that TSS is the major contributor to water re-

flectance in the NIR. This assumption is supported by the data reported by Bukata et al.

(1995). This data is extrapolated to the NIR and used as inputs for the modeling of the

spectral reflectance curves along with some adjustments made to account for local variation

based on empirical data (see Section 3.4.5).
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A result of modeling runs done with Hydrolight (Mobley and Sundman, 2000) shows

that increasing the TSS concentration causes an increased reflectance in the NIR (above

700nm.) When taken alongside the well-defined differences in the visible range (400 −

700nm), this gives us reason to hope we can discern these differences in the collected

sensor data. Figure 3.5 illustrates this concept very well.

Figure 3.5: Graph showing water reflectance value due to TSS only. Wavelength is in
nanometers (HYDROLIGHT output)

3.4.3 Colored Dissolved Organic Material

Colored dissolved organic matter (CDOM) is the optically measurable component of the

dissolved organic matter in water. Also known as Chromaphoric Dissolved Organic Carbon,

gelbstoff, yellow substance, humic matter. CDOM occurs naturally in aquatic environments

primarily as a result of tannins released from decaying matter such as leaves (Sathyen-

dranath, 2000). CDOM most strongly absorbs short wavelength light ranging from blue

to ultraviolet, whereas pure water absorbs longer wavelength red light. Therefore, deep

ocean water with little or no CDOM appears blue. The color of water will range through
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green, yellow-green, and brown as CDOM increases. CDOM and chlorophyll both absorb

in the same spectral range so it is difficult to differentiate between the two. Although

Figure 3.6: Graph showing water reflectance value due to CDOM only. Wavelength is in
nanometers (HYDROLIGHT output)

variations in CDOM are primarily the result of natural processes, human activities such

as agriculture, logging, effluent discharge, and wetland drainage can affect CDOM levels

in fresh water and coastal regions. Figure 3.6 shows the effect on reflectance of adding

various amounts of CDOM to pure water. For very high concentrations (such as 14.0m−1)

it is easy to see that the absorption of light is almost total.

3.4.4 Chlorophyll

Chlorophyll presents us with a problem in that it exists both as a ”free” constituent and

as part of phytoplankton. In the free form (from the natural breakdown of organisms)

it exhibits one set of scattering and absorption coefficients, while chlorophyll within liv-

ing or whole organisms will exhibit different properties due to scattering effects from the

internal and external structures of that specific organism. There are also interspecies dif-
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ferences to consider, as have been explored in (Kim, 2000). Figure 3.7 shows the results

of Hydrolight simulations done with a scattering contribution in the NIR. In an effort

Figure 3.7: Graph showing the reflectance value due to chlorophyll only with scattering in
NIR. Black line is spectra for pure water. Wavelength is in nanometers (HYDROLIGHT
output)

to mitigate this effect, we will be using a scattering coefficient for chlorophyll (see Figure

3.8) that decreases exponentially in the NIR. This replaces the earlier curve which did a

straight-line extrapolation from the last known data point. While we know that this is

not exactly correct, we believe it is a workable approximation and a better representation

of chlorophyll scattering than a straight line. This will probably result in slightly higher

predicted TSS values for pixels with elevated NIR reflectance due to chlorophyll-containing

phytoplankton being ”classified” as suspended sediment.
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Figure 3.8: Graph showing scattering coefficients of chlorophyll with exponential decay to
zero vs. linear extrapolation

The result is that, while we can assume that the contribution to total reflectance from

pure chlorophyll in the NIR is negligible, there is phytoplankton scattering that will con-

tribute to the signal in the NIR that is linked to chlorophyll.

If we compare the resulting reflectance curves from the two sets of scattering coefficients

(Fig. 3.7 vs. Fig. 3.9), we can see that the ρw values for the exponentially decayed case are

insignificant in the NIR. This will result in most of the modeled reflectance in that region

coming from the TSS concentration.

3.4.5 Using OOPS to get HYDROLIGHT input parameters

We will be using the Ocean Optics Plankton Simulator (OOPS)(Kim, 2000) to produce the

absorption/scattering coefficients and the scattering phase functions of suspended solids

needed for the HYDROLIGHT modeling runs. Coefficients for CHL and CDOM were
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Figure 3.9: Graph showing the reflectance value due to chlorophyll with decreased scatter-
ing in NIR. Wavelength is in nanometers. (HYDROLIGHT output)

generated by taking the average values of the samples gathered in the ground truth collec-

tion and scaling them to represent differing concentrations. This was seen as being more

representative of the conditions than using coefficients found in literature for biota and

dissolved organic material that may not even be present in this body of water. OOPS

is a visual, interactive tool to facilitate the investigation of the effect of changes in IOP’s

and their vertical distribution in the water column on the water-leaving radiance. Inputs

to OOPS include the complex refractive index for the material in question, along with

a size distribution function specifying maximum, minimum, mean, and standard devia-

tion. Calcite has been chosen for this study as a representative mineral type. Output will

be the absorption/scattering coefficients and the phase function for the wavelength range

specified. Usual practice is to use the phase function at 550nm as a default setting.
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3.4.6 Hydrolight LUT

To create the LUT of reflectance spectra, we take the sediment IOP’s as modeled with

OOPS and load them into HYDROLIGHT along with a concentration value. Absorp-

tion and scattering spectra are combined with constituent concentrations to produce scaled

spectral absorption and scattering coefficients as illustrated in equations 3.2 and 3.3, re-

spectively. The Fournier-Forand (F-F) function was used for mathematical estimations of

the scattering phase function, with a back-scattering of 2.5 % rather than the HYDRO-

LIGHT default of 1.8 %. This is the same back-scattering model used in (Raqueño, 2004),

for the reason that the results were more easily reconciled with measured backscatter values

in the turbid waters of the study area.

a(λ) = awater(λ)+[CHLconc]achl(λ)+[TSSconc]atss(λ)+[CDOMconc]acdom(λ)
[
m−1

]
(3.2)

b(λ) = bwater(λ) + [CHLconc]bchl(λ) + [TSSconc]btss(λ)
[
m−1

]
(3.3)

where,

a(λ) total spectral absorption coefficient

awater(λ) spectral absorption cross-section of pure water

achl(λ) spectral absorption cross-section of CHL

atss(λ) spectral absorption cross-section of TSS

acdom(λ) spectral absorption cross-section of CDOM

b(λ) total spectral scattering coefficient

bwater(λ) spectral scattering cross-section of water

bchl(λ) spectral scattering cross-section of CHL

btss(λ) spectral scattering cross-section of TSS
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CHLconc constituent concentration

TSSconc constituent concentration

CDOMconc constituent concentration

These equations, combined, give us the total spectral beam attenuation c(λ).

c(λ) = a(λ) + b(λ) (3.4)

Note that CDOM is not included in the scattering equation (3.3) because it is assumed

to have only absorption properties, with no significant scattering characteristics. Files

of the absorption and scattering coefficients used in this research suitable for use with

HYDROLIGHT will be included in an accompanying CD with this document.

We will be varying the concentrations of CHL and CDOM based on values obtained

from the May 20, 1999 data collect. Ten values for each constituent will be included,

covering the range of concentrations observed during the collect. The look-up table will be

more heavily populated with lower concentrations, because greater differences in reflectance

are generated by small increases in constituent concentrations at the lower end of the

concentration scale than by small increases at higher concentrations. The final LUT will

have 1000 reflectance curves. The concentration values used are distributed as shown in

Table 3.3. The reflectance curves generated are re-sampled to match AVIRIS bandcenters.
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Table 3.3: Concentration Values used in HYDROLIGHT

CHL(mg/m3) TSS (g/m3) CDOM (m−1)
0.0 0.0 0.0
0.5 0.5 0.5
1.0 1.0 0.75
3.0 2.0 1.0
5.0 4.0 2.0
7.0 8.0 4.0
12.0 10.0 7.0
24.0 14.0 10.0
48.0 20.0 12.0
68.0 24.0 14.0

3.5 Combining the Models to obtain Sensor-Reaching Radiance

As a proof of concept, a constituent concentration matching that of sampled data was run

through Hydrolight and combined with modeled atmospheric radiance and transmission

from MODTRAN to simulate a sensor-reaching radiance. The results of this are shown

in Figure 3.10, plotted against a pixel from the same area as the ground truth collection

from the AVIRIS overflight. Even with this rough approximation, we can see that the pixel

spectral radiance is bracketed by the modeled data. This test run is important because it

shows that our modeling technique is able to contain the test data. Optimization should

now be able to zero in on a best match for the AVIRIS data. As can be seen in the graph

(Figure 3.10), AVIRIS sensor response is low below 420nm. For this reason the matching

algorithm will be restricted to the region between 420 and 950nm.

This section has laid out the basics of the modeling techniques that will be used in the

spectral matching algorithm. The next section will offer refinements in the implementation

and discuss the areas to be included in the study.
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Figure 3.10: Sample of modeled radiances compared to AVIRIS radiance



Chapter 4

Approach

This technique combines a model of the atmosphere with a model of the water reflectance to

simulate a sensor-reaching radiance. This simulated radiance is then matched to an actual

sensor radiance and an error metric is calculated. Matching many simulated radiances in an

iterative comparison allows us to find the combination of atmosphere and water reflectance

that best matches the sensor radiance.

4.1 Modeled Radiance

The modeled radiance at each wavelength is described by the following:

Lλ =
{
E

′
sλ cosσ

′
τ1(λ)

r(λ)
π

+ Edsλ
r(λ)
π

}
τ2(λ) + Lusλ (4.1)

as outlined in Section 2.1.1.1. Water reflectance r(λ) is modeled for the same temporal

period using HYDROLIGHT (see Section 3.3) with varying concentrations of chloro-

phyll, colored dissolved organic material, and representative sediments with a particle size
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distribution that approaches naturally occurring data (as shown in Figure 3.4). Once sig-

nificant concentrations are achieved for each constituent (Case II waters) differentiation

becomes problematic. Figure 4.1 illustrates this difficulty by showing that the Case I wa-

ters (where the constituent concentrations are low and mainly influenced by CHL) are well

spaced and easily differentiated. The Case II waters, where concentrations are higher and

constituents are well-mixed, are tightly grouped and difficult to separate. In other words,

small differences at low concentrations result in reflectance values that are relatively easy

to differentiate, while small differences at high concentrations result in reflectances that

are very close to one another. This visualization is created using the ENVI N-Dimensional

visualizer and a dataset of 640 reflectance values created using HYDROLIGHT using

varying levels of CHL, TSS, and CDOM. Axes can then be rotated to illustrate degrees of

separability within the dataset. The axis chosen best shows the separation between points

representing low concentrations of constituents (Case I) and those representing higher con-

centrations (Case II).

While initially daunting, this illustration underscores the importance of accurate mod-

eling. At this time, we are limiting the number of variables used to construct our look-up

table (LUT)to three constituents and atmospheric modeling. This can be expanded to in-

clude separate phytoplankton species with differing scattering characteristics, for example.

Further refinements and alternatives will be discussed in Section 6, when I will suggest

directions for future work. We will assume for now that the present technique is sufficient

to satisfy the minimum level for differentiation.
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Figure 4.1: ENVI’s N-dimensional visualizer allows us to see the difficulty in differentiating
the reflectance due to constituent concentration variations in Case II waters

Ground truth for the areas examined with this test has been gathered, so we have

a good idea of the TSS concentration range we need to generate the HYDROLIGHT

reflectance data. We are using a fairly wide range of concentrations so that we can test

this method in different areas of the images without biasing the outcome unfairly.
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4.2 Study Site and Ground Truth

The area we are studying is in the Rochester Embayment of Lake Ontario. Specifically,

we will be studying Long Pond, Cranberry Pond, Braddock’s Bay, and a small area of

Irondequoit Bay. These, along with the plume of Genesee River water in Lake Ontario,

provide an astounding range of constituent concentrations within a relatively small area.

Long Pond has relatively high TSS concentrations, and consequently, higher reflectance

in the NIR. This pond was chosen because ground truth samples were taken at the time

of the image acquisition and for the fact that the bottom is not detectable in the imagery,

eliminating that parameter from consideration. Similarly, future work in modeling and

measuring the benthic characteristics of this geographic area will extend the methods

described in this research to areas where a sensor would detect the bottom. Figure 4.2

shows the approximate locations of the ground truth sampling for Long Pond on 5/20/1999.

Figure 4.2: Depth map of Long Pond (Makarewicz and Lampman, 1994). Sample locations
added
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The water sample collection involved three boats (Boston Whaler in the Genesee River,

Lake Ontario and Irondequoit Bay, a canoe in Long Pond and Cranberry Pond, and a kayak

in Braddock bay), a radiometer team, deployment of truth panels, and two spectrometer

teams. Water samples, Secchi depths, and surface water temperatures were collected by

each team on the water . Atmospheric parameters in the form of morning radiosonde

released at the Buffalo Airport was acquired from the NOAA radiosonde database. Only

the data regarding constituent concentrations will be used in this study, as we are modeling

the atmosphere rather than trying to quantify it for the time of the collect, and in inverting

the sensor data to reflectance. Future studies may use the radiosonde data as a starting

point for creating an atmospheric LUT. It was decided for this study to use the standard

atmospheric models included in the MODTRAN code.
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Figure 4.3: Locations of sampling points on an image for the Rochester Embayment May
20, 1999 Collection. Bar graphs show relative magnitudes of the measured values. (Used
by permission (Raqueño, 2004))

Figure 4.3 indicates the sample locations by different team icons and labeled by sample

bottle ID. Detailed description of the processing of water samples collected can be found in

(Raqueño, 2004), outlining the methods used to derive the inherent optical properties IOP

which characterize the spectral absorption and scattering coefficients of each constituent

independent of illumination conditions. These IOPs, verified and supplemented with data

from the literature (Bukata et al., 1979; Makarewicz and Lampman, 1994) are used as input

values for HYDROLIGHT (Mobley and Sundman, 2000) to generate modeled spectral

reflectance values. Default inputs supplied by HYDROLIGHT as well as data from the
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literature will be used in cases where the optical properties could not be determined (Bukata

et al., 1979). The collected ground truth will also be used for validation of the output of

the spectral matching algorithm.
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Figure 4.4: Map of western part of Rochester Embayment.(Makarewicz and Lampman,
1994)
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4.2.1 AVIRIS Dataset

As discussed in Section 2.3.1, the reference data we are using comes from a collect carried

out on May 20, 1999. Some pre-processing was necessary before the data could be used

in the spectral matching algorithm. Two main collection flights were undertaken, one in

an east-west line and one in a mainly north-south line. The north-south line was heavily

contaminated with solar glint and was not used in this study. Fortunately, the river and

the ponds thought to be most interesting to a constituent characterization study were well

represented in the east-west line. Due to the sun-target-sensor geometry at the time of the

collect, some sub-pixel glint is inevitable and will probably contribute to errors in retrieved

constituent concentrations.

The data was subset to the VIS/NIR region of the spectrum, and some of the bands

in the blue (below 419nm) were discarded due to low sensor response and signal-to-noise

(SNR) effects that made them questionable. An overlap of bands caused by the design of

the sensor required the removal of a redundant band at ∼ 700[nm] The end result was a

data set with 55 bands from 419-947[nm].

4.2.1.1 AVIRIS Signal-to-Noise Ratio

A 5X5 spatial averaging filter was applied to improve SNR and the image was masked

to separate the land from the water. The averaging filter has the effect of lowering the

instrument noise at the expense of spatial resolution. For a straight pixel aggregation,

noise is decreased by a factor of
√
n, n being the number of pixels being averaged. In this

case a gaussian low-pass kernel was applied with the intent being to reduce sensor noise

while maintaining spatial resolution as much as possible. The improvement in this case is

a roughly doubled SNR. The value of the trade-off of spatial resolution for improved SNR
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was discussed at the 9th AVIRIS Earth Science and Applications Workshop (Green and

Boardman, 2000). With the very low reflectance of water, particularly in the NIR, the

water-leaving radiance is correspondingly very small, so the trade-off of spatial resolution

for improved SNR was deemed acceptable. Still, the possibility exists of the changes we

are counting on to differentiate the spectral radiance curves being within the noise levels of

the sensor. For the dataset under consideration in this study, the SNR was nominally 800

in the visible and about 360 at 2.2 microns (Green and Boardman, 2000). This number is

achieved for a 50% reflectance target, so we can assume a lower SNR for a water target

with single-digit reflectance values. In order to determine the observed SNR, an area of

assumed uniform reflectance out in Lake Ontario was selected and the signal-to-noise ratio

determined before and after applying the low-pass filter. The digital counts of a 100 pixel

(a) Image of AVIRIS collect area showing
ROI(small red region)

(b) Filtered image (gaussian low-pass)

Figure 4.5: Scene-derived Signal-to Noise Ratio area

region of interest (ROI) were averaged and divided by the standard deviation (σ) to obtain
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an accepted in-scene estimation of signal-to-noise ratio.

SNR =
DC

σ
(4.2)

The results of Equation 4.2 for both the raw and gaussian low-pass filtered images are

shown in Figure 4.6. We can see a clear 2 : 1 increase in the SNR. A straight pixel

aggregation would have up to a 5 : 1 increase, but the gaussian filter will preserve more

spatial information in the image data and this is desirable in a study that purports to

produce location-specific concentration maps.

Figure 4.6: Graph of scene-derived SNR

Continuing updates to the AVIRIS sensor have improved the SNR for current datasets,

and newer noise reduction algorithms are being developed to help the processing of archived

data such as the set we are using. Future work may include pre-processing the data with

one of these algorithms, such as the wavelet-shrinkage noise reduction algorithm proposed

in (Othman and Qian, 2006), which claims an 84% reduction in noise for a dataset from
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2002.
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4.3 Optimizing the Spectral Match

Once the modeled radiance curves have been generated, we can find the one that best

matches the observed data. That curve will then tell us what the atmosphere and con-

stituent concentrations were that produced it. Figure 4.7 shows how the radiance and

reflectance from the MODTRAN and HYDROLIGHT simulations are combined to

produce a modeled sensor-reaching radiance Lmod, which is then compared to hyperspec-

tral sensor radiance Lobs to find the best-fitting spectral curve. The situation exists that

Figure 4.7: Illustration of modeled radiance generation using Modtran and Hydrolight

we will need to interpolate between two or more spectral curves to get the best estimation
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of aerosol and constituent concentrations. That is, we may not have populated our LUT

densely enough at the point of the match to give the needed radiance, so we make an

assumption of linearity between the two closest points and interpolate to find the concen-

trations that would have given the correct radiance had we done that simulation. The

dimensionality of the interpolator is derived from the number of variables to be considered

in the algorithm. In the present case, we will be using four variables for interpolation. The

fifth, IHAZE, is categorical and cannot be interpolated. Rather, we will interpolate to

the best match in each IHAZE category and return the lowest RMS value. An interpola-

tion/optimization program was written to carry out the fitting, using a root-mean-squared

(RMS) error minimization to arrive at the best match. The error will be computed over

the range λ0 → λn, which in this case is 419 → 947nm. Now we need a routine that will

find the smallest error from a series of values. One such optimization is AMOEBA.

The AMOEBA function in IDL performs multidimensional minimization of a func-

tion Func(x), where x is an n-dimensional vector, using the downhill simplex method.

AMOEBA is based on the routine amoeba described in section 10.4 of Numerical Recipes

in C: The Art of Scientific Computing (Second Edition), published by Cambridge Univer-

sity Press. Basically, amoeba searches for a vector that returns a minimum error according

to user-supplied inputs. Initial values within the range of the parameters are supplied as a

starting point for the iterations. If a minimum is found, AMOEBA returns an n-element

vector corresponding to the function’s minimum value. If a minimum within the given

tolerance is not found within the specified number of iterations, AMOEBA returns a scalar

value of −1. Results are returned with the same precision (single- or double-precision

floating-point) as is returned by the user-supplied function to be minimized. (source: IDL

Reference Guide)
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4.3.1 Methods to Implement Optimization

4.3.1.1 Method 1: No constraints

This method is the most hopeful. Assuming that the modeled radiance spectra of the water

are accurate and can be differentiated, the algorithm is given no constraints for possible

constituent concentrations and a starting point at the mean of each concentration range.

Figure 4.8 shows the process flow for this approach.

Figure 4.8: Overview of simultaneous extraction algoritm
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4.3.1.2 Method 2: NIR First

Here we match in the NIR first to lock in TSS concentration and atmosphere, then use the

visible region (400-700nm) to optimize the rest of the constituents as seen in Figure 4.9.

This approach is based on the assumption that there is enough information in the NIR

to allow a reasonable match based on just the radiance due to increased reflectance from

the suspended sediments in the water. Assuming this is correct, we can lock in that value

for each pixel in the image. Since we also get atmospheric information with this match,

we lock in those values also, and re-run the algorithm over the visible bands to predict

the remaining constituent concentrations. For this method we also used a mean starting

point. The results of these trials were inconsistent produced overly simplified output maps,

leading us to discard it in favor of one with more consistent and realistic spatially variant

output.

4.3.1.3 Method 3: New Starting Point

For this method, the algorithm was run once over the image (as in Method 1) to get an

initial output, then the output concentration files were read back into a modified program

that used each value to change the starting point for a second optimization.

4.3.1.4 Method 4: Low Starting Point

This method came about from the idea that the LUT was populated in a biased manner.

That is, the lower values were more heavily represented, because small initial changes in

concentration brought about the most obvious changes in volume reflectance, and therefore,

water-leaving radiance. Setting the starting point at the mean value could have the effect

of skewing the result. In setting an unrealistic starting point, the possibility of finding
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Figure 4.9: Modification of algorithm for NIR-first match

a local rather than global minimum was increased. Dropping the starting point into the

lower range of the LUT can avoid this and improve the results.

4.3.1.5 Method 5: Constraints

Rather than use a large portion of the image that has many water types in it, a smaller area

is considered that encompasses just one body of water at a time. So rather than having to

consider the entire range of the LUT, we can limit it to the extrema of concentrations of the

individual body of water under consideration. This would entail using a priori information
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to set the limits for each pond or river. Another approach would entail an initial run

through the algorithm to set an AEROSOL value, taking the average output for the ponds

area and locking it in for another iteration to obtain constituent concentration output.

As the purpose of this investigation was to cover as broad an area as possible, this

technique was not implemented; but this may be useful in regions where the constituent

concentration ranges have been previously established through sampling.

Each of these methods was implemented and the results compared with the values

obtained from laboratory evaluation of samples from the various bodies of water in the

study. Method 4 was determined by this to have the greatest probability of success and is

the technique used for the results discussed in the concluding sections of this study.
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Results and Discussion

This investigation began with the expectation of finding a good match between modeled and

observed data. As with many such endeavors, results have been mixed and need exploration

and interpretation. The performance of the algorithm is evaluated by comparing the output

(predicted) constituent concentrations to laboratory measurements of water samples taken

from the study areas.

Analysis of the samples collected in May 1999 from the study areas in the Rochester

Embayment (Long Pond, Cranberry Pond, Braddock Bay, Irondequoit Bay, and the Gene-

see River plume) showed a wide range of chlorophyll, suspended sediment, and CDOM

concentrations between each body of water (Raqueño, 2004). These widely varying con-

centrations make this area a good test bed to determine the performance of our algorithm.

Studies completed in 1990 and 1994 by Dr. Joseph Makarewicz of the Aquatic Sciences

program in SUNY Brockport confirm the persistent trophic states of the bay and ponds

shown In Figure 4.4 on page 50 (Makarewicz and Lampman, 1994; Makarewicz et al., 1990).

Successful implementation of this spectral matching algorithm could allow for estimation
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of the trophic status of water bodies using remote sensing techniques to supplement in situ

sampling.

5.1 Spectral Match

One side benefit of this technique is that we can reconstruct the input image using our

modeled data. Obviously, the closer we can get to an exact spectral match , the closer the

visual match will be. Figure 5.1 shows a comparison between the input and output spectral

radiance values for three pixels from the Genesee river and plume. These matches were

accomplished using the low starting point method discussed in Section 4.3.1.4. Agreement

between the modeled and observed curve is fairly close. The spectral shape of each is

similar, and the amplitude is close. Data from a pixel further out in Lake Ontario is included

for comparison purposes, as is a mixed pixel (shown in red) to show an intermediate case.

In both instances, the match between modeled and observed data is good. Reconstruction

of the image data using the modeled radiance is shown for a visual comparison.

In Figure 5.2(a) we see the original input sub-image of the Genesee river mouth with the

reconstructed image shown in 5.2(b). The reconstructed image is composed of the pixels

that have the best matching spectral radiance values as determined by the matching algo-

rithm. Despite minor differences in the output image, we can see that the reconstruction

is faithful to the original input.
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Figure 5.1: Comparison of radiance (input vs. output) for Genesee River and sediment
plume. Lake pixel (green) added for comparison.

(a) Input Image of Genesee River mouth (b) Output Image of Genesee River mouth (mod-
eled data)

Figure 5.2: Reconstruction of plume image from modeled radiance
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Image reconstruction and Spectral matches for an image showing three bodies of water

in the study area are shown in Figures 5.3 and 5.4. Long Pond, Cranberry Pond, and

Braddock Bay are very important to this study because they encompass a wide range of

constituent concentrations verified by ground truth collection. Figure 5.4 shows a close

agreement between observed and modeled spectral radiance curves for pixels in each of

these water bodies. Each image was run through the algorithm several times to prevent

spurious results. Minor variations did occur, but the output values were mainly consistent

across the several runs.

(a) Input Image of Braddock’s Bay, Cranberry
Pond, and Long Pond

(b) Output Image (modeled data)

Figure 5.3: Reconstruction of ponds image from modeled radiance
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Figure 5.4: Comparison of radiance (input vs. output) for three ponds in Rochester Em-
bayment

While the visual reconstruction of an image does not indicate that the algorithm was

successful, it does encourage the expectation of success and suggest that modeled data

can be used to create images of water based on input constituent concentration levels.

This may be useful to model the appearance of toxic spills, plankton blooms, or seasonal

sediment loading. The close agreement of the images shown in Figure 5.3 is gratifying, as

it shows that the modeled reflectances and atmospheric transmissions are close enough to

simulate observed data.

5.2 Constituent Concentrations

Each successful completion of the algorithm outputs image files based on the constituent

concentration levels that rendered the lowest RMS for each pixel. The output concentration
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maps resulting from Method 4 (4.3.1.4 ) are shown in Figure 5.5. The files are color mapped

using ENVI’s EOS A color table. For each map, purple and blue indicate low values, while

red to dark burgundy indicate higher values.

A root mean square error was computed for each constituent, based on the difference

between predicted and measured values, as indicated by:

RMS =

√√√√√ n∑
i=1

(
[Cpred]i − [Cobs]i

)2

n
(5.1)

where,

[Cpred]i predicted value for location i

[Cobs]i observed (measured) value for location i

n number of locations

This will result in an absolute RMS error expressed in the concentration units of the

constituent. A more realistic measure may be the RMS expressed as a percentage of the

total range of the constituent concentration. That is:

[RMS]% =
100

[range]

√√√√√ n∑
i=1

(
[Cpred]i − [Cobs]i

)2

n
(5.2)
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(a) CHL Concentration Map (b) TSS Concentration Map

(c) CDOM Concentration Map (d) Aerosol Concentration Map

Figure 5.5: Output Concentration Maps

Table 5.1 is a compilation of output from Method 4 as discussed in Section 4.3.1.4.

Data from the output maps corresponding to the ground truth collection locations were

gathered using ENVI’s ROI (region of interest) tool. 4X4 or 5X5 pixel ROIs were used,

depending on shore proximity (sometimes the larger ROI would intersect with shore pixels

and invalidate the data.) The mean of the ROI was then used to determine the constituent

concentration for the area. No points are included for comparison with open lake regions
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due to the lack of ground truth data for those areas.

Sample CHL
[

mg
m3

]
TSS

[
g

m3

]
CDOM

[
1/m@350nm

]
SITE

Site ID Lab predicted Lab predicted Lab predicted

A22 64.15 65.80 22.67 22.85 6.15 9.00
Long Pond A18 62.37 64.30 21.33 23.52 6.09 3.83

A20 62.37 63.70 23.33 23.05 6.10 8.48

A23 6.24 2.43 3.67 1.03 4.81 2.36
Cranberry Pond

A19 5.35 2.17 2.67 0.89 4.86 2.90

A6 5.35 9.44 6.80 4.95 9.02 9.05
A4 6.68 6.07 10.50 5.08 7.96 9.24

Braddock Bay
A5 7.13 9.00 10.67 8.88 9.10 10.21
A3 5.35 4.71 6.00 6.41 12.80 12.68

Genesee River Plume A25 4.28 3.45 10.00 12.27 2.75 1.96

Irondequoit Bay A27 19.60 21.89 15.30 13.28 4.12 1.42

Table 5.1: Table of laboratory and predicted values for ponds in the Rochester Embayment

5.2.1 Atmospheric Output

The output of the aerosol map (see Figure 5.5(d)) was treated somewhat differently than

the other concentration maps. Rather than small sample regions, the areas of the ponds,

including Braddock’s Bay, were combined into one ROI to determine the modeled visibility

measured in kilometers. The result was a mean visibility of 28.15 km (std. dev. 2.11).

This was consistent with the output of an image of Irondequoit Bay, which had a mean of

30.05 km (std. dev. 2.51). For both images, the aerosol maps had a range from 22.5−37 km.

This figure includes the results for the total water area, including the area of Lake Ontario

visible in the test image. Homogeneous areas within Long Pond and Braddock’s Bay were

compared and found to have a mean of 26.3 km and a standard deviation of 0.84. The pixel-

to-pixel variation within these areas was mainly gradual, on the order of 0.1 to 0.2 km. The

larger variations across the entire image may be due to small regions of glint adding to the
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radiance reaching the sensor. It is encouraging that two bodies of water, with completely

different constituent loading, have such a close similarity in the aerosol map output. The

categorical parameter, IHAZE, was consistent throughout the results, always returning a

value of ”3”, which indicates the urban aerosol model used by MODTRAN (Berk et al.,

1999).

The results from Cranberry Pond are more problematic. As we can see from the output

map (Figure 5.5(d), the aerosol result for this pond is higher than for the two nearby water

bodies (Braddock Bay and Long Pond), as indicated by the large patch of green in the

output map. The mean for Cranberry is 31.1 km with a standard deviation of over 2.0

km. These inconsistent values may be due to bottom reflectance. Since the bottom type

was not modeled in our LUT as a variable, any radiance change due to bottom reflectance

would evidence itself in one or more of the modeled variables. The ground truth notes for

this pond mention the Secchi disc ”bottoming out” in one measurement, and the Secchi

depth in another measurement was very close to the recorded depth (within 0.1m).

Since we do not have atmospheric data specific to the Rochester embayment, the con-

sistency of the aerosol (visibility) results is a good indicator of the quality of our results.

Large pixel-to-pixel variations would indicate an atmosphere that varies too much to be

realistic.

In the next sections we will examine the results of the in-water constituent concentration

retrieval.
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5.2.2 Chlorophyll

The output concentration map for CHL (5.5(a)) shows the relative concentrations based

on color scale. These maps can be queries using ENVIs Region of Interest (ROI) or Pixel

Locator tools for the value at a given location. The values for areas where samples were

acquired was determined and recorded in Table 5.1. We would expect, for a successful

result from the algorithm, that the output values for Long Pond would be high, and the

values for ponds with lower sampled concentrations to be low. This is what the output

map shows when the values are plotted in bar graph form. Figure 5.6 indicates a fairly

close agreement between modeled and observed data. To further illustrate this agreement,

a scatter plot of the data points for each water body is shown in Figure 5.7. A one-to-

one trendline is included in this graph to indicate the distance the data points are from a

perfect match.

Error analysis of the data points using Equation 5.1 shows an absolute RMS error of

2.33
[mg
m3

]
. In terms of percent error of the concentration range, Equation 5.2 results in a

value of 3.43% for a range of 0.0-68.0
[mg
m3

]
. There is a very real possibility that we have

underpopulated our LUT in terms of concentration levels of CHL, however. Long Pond

may have concentration levels well above the top value 68.0
[mg
m3

]
. Makarewicz reports that

samples taken in May of 1988 were in the range of 130.0
[mg
m3

]
(Makarewicz et al., 1990).

In our attempt to simply bracket the sampled values, we may have forced the algorithm

to underestimate the concentrations in some parts of Long Pond. This would help explain

the solid dark red appearance of the output map for this area.

The agreement of the output map with the historical trophic states of the study ar-

eas (Makarewicz et al., 1990; Makarewicz and Lampman, 1994) shows that the algorithm

is able to distinguish high concentrations of chlorophyll from low with relatively good
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accuracy in this data set.

Figure 5.6: Bar graph of laboratory vs predicted values for Chlorophyll. Site IDs as
specified in Table 5.1 and Figure 4.3

Figure 5.7: 1:1 Plot of laboratory vs predicted values for Chlorophyll
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5.2.3 Total Suspended Sediment

In a similar fashion to the CHL anlysis, the output concentration map for TSS (5.5(b))

shows the relative concentrations based on color scale. This map can be queried using

ENVIs Region of Interest (ROI) or Pixel Locator tools for the value at a given location

in the same way. The values for areas where samples were acquired was determined and

recorded in Table 5.1. Figure 5.8 indicates a fairly close agreement between modeled and

observed data in Long Pond, Irondequoit Bay, and the Genesee plume. To further illustrate

this agreement, a scatter plot of the data points for each water body is shown in Figure 5.9.

A one-to-one trendline is include in this graph to indicate the distance the data points are

from a perfect match. Lower than expected values in Cranberry Pond could indicate

contamination due to bottom reflectance, causing a higher than expected atmospheric

(AEROSOL) result, and a subsequent lowering of output constituent concentration value.

Cranberry Pond is problematic in all of the output map values, however, and an argument

can be made to exclude the results of that pond on the grounds that bottom reflectance is

contaminating the results. As the desired product is an algorithm that can function in a

wide variety of conditions, we have left the data points in the results in the hope that an

improved future model including bottom reflectance can lower the discrepancies.

Error analysis of the data points using Equation 5.1 shows an absolute RMS error of

2.34
[ g
m3

]
. In terms of percent error of the concentration range, Equation 5.2 results in a

value of 9.77% for a range of 0.0-24.0
[ g
m3

]
. While not exact, when compared to errors from

studies of ocean water, and considering that the values are derived from a remote sensing

system, this result is still encouraging. As in the CHL case, we may have underpopulated

our LUT in terms of concentration levels of TSS. Long Pond may have concentration

levels of sediment above the top value of 24.0
[ g
m3

]
used in our study. Samples taken in
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May of 1988 in two feeder streams (Black Creek and Northrup Creek) (Makarewicz et al.,

1990) support an argument for an expanded LUT. Again, in our attempt to simply bracket

the sampled values, we may have forced the algorithm to underestimate the concentrations

in some parts of Long Pond.

With the exception of some data points, the agreement of the output with the observed

trophic states of the study areas shows that the algorithm is able to distinguish high

concentrations of total suspended sediment from low with relatively good accuracy in this

data set.
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Figure 5.8: Bar graph of laboratory vs predicted values for Total Suspended Sediment.
Site IDs as specified in Figure 5.1

Figure 5.9: 1:1 Plot of laboratory vs predicted values for Total Suspended Sediment

5.2.4 Colored Dissolved Organic Material

The output concentration map for CDOM (5.5(c)) also shows the relative concentrations

based on color scale. This map can be queried using ENVIs Region of Interest (ROI) or
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Pixel Locator tools for the value at a given location in the same way. The values for areas

where samples were acquired was determined and recorded in Table 5.1. Figure 5.10 shows a

more varied agreement between modeled and observed data in Long Pond, Irondequoit Bay,

the Genesee plume and Cranberry Pond. In the area of highest concentrations (Braddock

Bay), agreement with sampled data is quite close. To illustrate this agreement, a scatter

plot of the data points for each water body is shown in Figure 5.11. A one-to-one trendline

is include in this graph to indicate the distance the data points are from a perfect match.

Close agreement of data points in Braddock Bay suggest that the algorithm can predict

with good accuracy the relative concentration levels. Again, Cranberry Pond is problematic

in that it is giving lower than expected values.

Error analysis of the data points using Equation 5.1 shows an absolute RMS error of

1.90
[

1
m@350nm

]
. In terms of percent error of the concentration range, Equation 5.2 results

in a value of 13.54% over a range of 0.0-14.0
[

1
m@350nm

]
. As in the CHL and TSS case, we

may have underpopulated our LUT in terms of concentration levels of CDOM. Braddock

Bay may have concentration levels of CDOM above the top value of 14.0
[

1
m@350nm

]
used in our study. .

While this is not as encouraging as the chlorophyll and sediment results, the algorithm

is able to distinguish high concentrations of colored dissolved organic matter from low

with relatively good accuracy in this data set. High areas are generally reported as high

, while low concnetrations result in a lower predicted output. Better understanding and

improved modeling of the effects of CDOM absorption on water-leaving reflectance could

bring about in an improvement on these results.
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Figure 5.10: Bar graph of laboratory vs predicted values for Colored Dissolved Organic
Material. Site IDs as specified in Figure 5.1

Figure 5.11: 1:1 Plot of laboratory vs predicted values for CDOM
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5.3 Comparison of Results to Previous Work

In an evaluation of a new technique it is advantageous to be able to compare results with

previous efforts that have the same intent. Two previous studies have attempted to extract

water quality parameters for the ponds in the Rochester area.

(Raqueño, 2004) used the same AVIRIS dataset to extract water constituent con-

centrations of the ponds of the Rochester Embayment, also using an AMOEBA-based

optimization scheme. His piecewise method of optimization applied AMOEBA fitting se-

quentially over localized spectral regions of the dataset, fixing TSS with the red region

match, CHL and TSS with the green, and CDOM, CHL, and TSS with the blue. This

matched the constituents with their assumed spectral regions of greatest influence. Dif-

ferences with the method of the current study include the use of an ELM (empirical line

method) inversion to reflectance space, eliminating the necessity of matching the atmo-

spheric parameters, and the exclusion of spectral bands including the near-infrared. It was

with his assistance and constant encouragement that the current technique was developed,

with the desire that improved results could be obtained.

Tables 5.2, 5.3, and 5.4 show a point -by-point comparison of constituent concentration

results for the two methods. The tables show the results compared against ground truth

sample concentrations with error being expressed as percent of the assumed concentration

range. Mean error for all sample sites is shown in red at the bottom of each table.

We can see that there is variation in the accuracy of the results from site to site, but

the overall error in the current values shows a definite improvement from the 2004 study.

Most improvement is seen in the CHL and TSS results, with a small decrease in total error

seen for CDOM results.
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Chlorophyll

Sample 2004 2010
SITE

Site ID Lab
[

mg
m3

]
predicted err predicted err

A22 64.15 31.00 48.75 65.80 2.43
Long Pond A18 62.37 53.00 13.78 64.30 2.84

A20 62.37 57.00 7.90 63.70 1.96

A23 6.24 13.00 9.94 2.43 5.60
Cranberry Pond

A19 5.35 16.00 15.66 2.17 4.68

A6 5.35 0.59 7.00 9.44 6.01
A4 6.68 6.50 0.26 6.07 0.90

Braddock Bay
A5 7.13 6.30 1.22 9.00 2.75
A3 5.35 12.00 9.78 4.71 0.94

Genesee River Plume A25 4.28 4.10 0.26 3.45 1.22

Irondequoit Bay A27 19.60 19.00 0.88 21.89 3.37

Average error (percent of range) 16.84 3.43

Table 5.2: Comparison of predicted CHL values for ponds in the Rochester Embayment
between (Raqueño, 2004) and Simultaneous Extraction technique
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Total Suspended Sediment

Sample 2004 2010
SITE

Site ID Lab
[

mg
m3

]
predicted err predicted err

A22 22.67 19.2 14.46 22.85 0.75
Long Pond A18 21.33 19.5 7.62 23.52 9.13

A20 23.33 17.6 23.88 23.05 1.17

A23 3.67 3.2 1.96 1.03 11.00
Cranberry Pond

A19 2.67 2.8 0.54 0.89 7.42

A6 6.80 15.00 34.17 4.95 7.71
A4 10.50 8.7 7.50 5.08 22.58

Braddock Bay
A5 10.67 9.00 6.96 8.88 7.46
A3 6.00 11.00 20.83 6.41 1.71

Genesee River Plume A25 10.00 15.5 22.92 12.27 9.46

Irondequoit Bay A27 15.30 14.8 2.08 13.28 8.42

Average error (percent of range) 16.72 9.77

Table 5.3: Comparison of predicted TSS values for ponds in the Rochester Embayment
between (Raqueño, 2004) and Simultaneous Extraction technique

Colored Dissolved Organic Material

Sample 2004 2010
SITE

Site ID Lab
[

mg
m3

]
predicted err predicted err

A22 6.15 3.90 16.07 9.00 20.36
Long Pond A18 6.09 2.5 25.64 3.83 16.14

A20 6.10 5.30 5.71 8.48 17.00

A23 4.81 4.76 0.36 2.36 17.50
Cranberry Pond

A19 4.86 4.74 0.86 2.90 14.00

A6 9.02 5.05 28.36 9.05 0.21
A4 7.96 10.50 18.14 9.24 9.14

Braddock Bay
A5 9.10 10.30 8.57 10.21 7.93
A3 12.80 9.60 22.86 12.68 0.86

Genesee River Plume A25 2.75 1.70 7.50 1.96 5.64

Irondequoit Bay A27 4.12 3.60 3.71 1.42 19.29

Average error (percent of range) 15.81 13.54

Table 5.4: Comparison of predicted CDOM values for ponds in the Rochester Embayment
between (Raqueño, 2004) and Simultaneous Extraction technique
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Percent Extraction Errors

OLI Blue Band Simultaneous

Cranberry Pond

CHL 5.55 5.14
TSS 12.9 9.21

CDOM 32.9 15.75

Long Pond

CHL 6.1 2.41
TSS 4.4 3.68

CDOM 42.5 17.83

Table 5.5: Comparison of extraction errors for ponds in the Rochester Embayment between
(Gerace, 2010) and Simultaneous Extraction technique

(Gerace, 2010) also extracted constituent concentrations during the course of his eval-

uation of LANDSAT’s OLI (Operational Land Imager) sensor. In this he resampled the

AVIRIS data to the nominal bands of the OLI and extracted values also using a multi-

dimensional LUT/optimization technique. Due to the methods employed, a point-by-point

comparison is not possible, as it was in the previous discussion. Comparing the average

errors for the two ponds considered in his method, we can see that the OLI Blue Band

method does fairly well for CHL and TSS values, but poorly for CDOM extraction. This is

explained by the low SNR in the blue region and calibration issues with the AVIRIS sensor.

This situation is exacerbated by the limited number of bands available for this technique,

rendering CDOM concentration matching difficult. Table 5.5 shows that the overall error

of the Simultaneous Extraction method is lower than that of the OLI Blue Band method,

although the OLI method has very good results for a multiband sensor technique.



Chapter 6

Summary and Future Work

This problem has been in place for several decades and has been problematic for coastal

regions because of the complexity of the problem. While ocean researchers have to deal with

very low concentrations of water quality constituents, investigators in littoral zones have

to consider that the concentrations may span several orders of magnitude in a relatively

small spatial area. Atmospheric correction algorithms that have been used to process ocean

imagery break down or are of limited use in coastal regions.

The process that we have used here has shown an ability to model complex waters while

simultaneously modeling the atmosphere, producing a simulated sensor-reaching radiance

that allows us to derive the constituent concentrations. It is very promising that the

model’s prediction and the real data have the same spectral shape, enabling reconstruction

of the image data. Constituent concentration results have been achieved that agree, to

a great extent, with sampled data from the study site. This is our goal, and when we

can reconstruct the image data almost exactly, we’ll know that our various models are as

correct as we can make them.

81
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6.1 Future Work

While the results attained with this technique are quite good for a proof of concept, there

are many points that can be improved upon for more accurate results in the future.

One of the improvements we can make is that the models we are using, both Hydrolight

and MODTRAN, have fundamental plane parallel assumptions for the scene elements that

make our algorithm prone to discrepancies when compared to real scenes. This will become

more important as improvements are made to the spatial resolution of the datasets available

for water remote sensing research.

The optimization technique, AMOEBA, that we used may also be improved upon. Fu-

ture work should explore the use of several different optimization techniques (simulated

annealing or a genetic algorithm, for example) to check consistencies in the different solu-

tions. This may mitigate the possibility of arriving at local minima in the solution space.

The optimization technique could also include spectral weighting techniques to take ad-

vantage of the specific regions affected most by the various constituents.

Further refinements to the creation of atmospheric LUTs using MODTRAN are neces-

sary to correct errors in Ld (downwelled radiance). The two-pass method used in this study

may result in a larger value due to adjacency effects and can be improved upon using user-

specified reflectance files for the target and background. Also, when available, accurate

radiosonde data can be substituted for the default MODTRAN atmospheres used for the

construction of the current LUTs. In addition to using more accurate data for establishing

an atmospheric starting point, an initial optimization run can be used to determine the

atmospheric parameters (VIS and IHAZE) for the study and use these values in a second

run to determine the constituent concentrations.

Consideration should be given to the implementation of a glint reduction algorithm in
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the preparation of the dataset for processing, depending on the angle of image acquisition.

Glint can have a severe effect on the accuracy of the extracted constituent concentration

values.

This work used limited constituent models. Future models could vary CHL further by

including different species of phytoplankton that have differing absorption and scattering

characteristics. Sediment types could also be varied according to locally known mineral

loads and particle size distributions. Further investigation of the scattering characteristics

of sediment and phytoplankton in the NIR would also help refine our model. Both of these

constituents could be modeled with varying depth concentrations if differentiation between

surface and depth concentration plumes can be determined.
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Appendix A

HYDROLIGHT Input Files

The following tables show the values used for modeling spectral reflectance using HYDRO-
LIGHT and OOPS.

A.1 Chlorophyll Absorption and Scattering

Tables A.1, A.2, A.3, and A.4 show the absorption coefficients used as inputs to HYDRO-
LIGHT for the reflectance simulations used in this research. These values are derived from
measured values taken from the Rochester embayment on May 20, 1999 and scaled such
that a(450nm) = 0.50 to correspond with chlorophyll absorption curves from the literature.
Figure A.1 shows a plot of the coefficients for illustrative purposes.
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Figure A.1: Plot of spectral absorption coefficients for CHL
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Table A.1: Input CHL Absorption Coefficients For HYDROLIGHT Simulations

λ(nm) abs λ abs λ abs λ abs λ abs
290 0.128077 323 0.0649985 356 0.0437625 389 0.043157 422 0.0558204
291 0.123918 324 0.0665615 357 0.0432894 390 0.0434517 423 0.0560402
292 0.11976 325 0.066188 358 0.0432741 391 0.0439684 424 0.0564111
293 0.115601 326 0.0621174 359 0.0432569 392 0.044163 425 0.0559847
294 0.111442 327 0.0609866 360 0.0453757 393 0.0437026 426 0.0557121
295 0.107284 328 0.0620989 361 0.0454535 394 0.0437418 427 0.0565578
296 0.103125 329 0.0605508 362 0.0443631 395 0.0445422 428 0.0578152
297 0.0989668 330 0.0600061 363 0.0445175 396 0.0443434 429 0.057661
298 0.0948082 331 0.0607837 364 0.0448903 397 0.0441056 430 0.057126
299 0.0906497 332 0.055281 365 0.0445429 398 0.045273 431 0.0586933
300 0.0864911 333 0.0538281 366 0.0426942 399 0.0461144 432 0.0601306
301 0.0823326 334 0.0577395 367 0.0425096 400 0.0459653 433 0.0598083
302 0.081009 335 0.0531472 368 0.0425713 401 0.0455832 434 0.0597909
303 0.0734366 336 0.0537061 369 0.0416076 402 0.0452132 435 0.0598612
304 0.0770474 337 0.0558877 370 0.0424918 403 0.0454125 436 0.0605167
305 0.0817166 338 0.053881 371 0.0427891 404 0.0458626 437 0.0608478
306 0.0715372 339 0.0561191 372 0.0421452 405 0.0468896 438 0.0602749
307 0.0681478 340 0.0555438 373 0.0423332 406 0.047711 439 0.0596956
308 0.0691625 341 0.0545635 374 0.0428175 407 0.0479798 440 0.0599439
309 0.0710385 342 0.0589099 375 0.0424118 408 0.0491651 441 0.0601288
310 0.0750636 343 0.0600001 376 0.0428978 409 0.0504785 442 0.0587797
311 0.0767433 344 0.0562754 377 0.0431905 410 0.050727 443 0.0578204
312 0.0722777 345 0.0510046 378 0.0442921 411 0.0505997 444 0.0574621
313 0.0684088 346 0.0482201 379 0.0452389 412 0.0513139 445 0.0569723
314 0.0775185 347 0.0482778 380 0.0442525 413 0.0524362 446 0.0551089
315 0.073964 348 0.0458908 381 0.043693 414 0.0530084 447 0.053286
316 0.0659659 349 0.0431512 382 0.0436612 415 0.0531006 448 0.0524722
317 0.0724147 350 0.0463549 383 0.0444306 416 0.054059 449 0.0510158
318 0.071782 351 0.0477505 384 0.0446908 417 0.0548313 450 0.05
319 0.0666088 352 0.0488066 385 0.0440213 418 0.0542466 451 0.0495415
320 0.0714594 353 0.0465837 386 0.0436429 419 0.053871 452 0.0483128
321 0.0706554 354 0.042367 387 0.0447575 420 0.0538818 453 0.047082
322 0.063329 355 0.0436385 388 0.0442847 421 0.0549861 454 0.0458171

(continued on next page)
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Table A.2: Input CHL Absorption Coefficients For HYDROLIGHT Simulations–part 2

λ(nm) abs λ abs λ abs λ abs λ abs
455 0.04469 488 0.0334727 521 0.0194472 554 0.00969207 587 0.00863265
456 0.0441704 489 0.0329128 522 0.0191731 555 0.00936727 588 0.00875548
457 0.0436772 490 0.0327874 523 0.0185442 556 0.00919397 589 0.00853945
458 0.043288 491 0.0330238 524 0.0180555 557 0.00905533 590 0.00859392
459 0.0428096 492 0.0326664 525 0.0178579 558 0.00869526 591 0.00879703
460 0.0428029 493 0.0324024 526 0.0174976 559 0.00839566 592 0.00864516
461 0.0420534 494 0.0319693 527 0.0170058 560 0.00838824 593 0.00870095
462 0.041258 495 0.0314725 528 0.0167815 561 0.00828498 594 0.00913417
463 0.0416517 496 0.0311028 529 0.0159296 562 0.00815298 595 0.00906527
464 0.0416018 497 0.0307266 530 0.0153081 563 0.00813879 596 0.00900882
465 0.0405674 498 0.0300147 531 0.0149899 564 0.0079883 597 0.00905204
466 0.0398532 499 0.0294019 532 0.0146578 565 0.00821356 598 0.00913411
467 0.0396736 500 0.0288593 533 0.0147068 566 0.00862852 599 0.00916835
468 0.0393063 501 0.0284173 534 0.0146487 567 0.0086806 600 0.0090515
469 0.0390045 502 0.0284731 535 0.0138848 568 0.00869095 601 0.0088175
470 0.0383845 503 0.0281475 536 0.0135045 569 0.00823415 602 0.00923479
471 0.0378868 504 0.02795 537 0.01347 570 0.00775694 603 0.00996043
472 0.0376321 505 0.0274873 538 0.0132369 571 0.0080332 604 0.00964556
473 0.0372633 506 0.0267082 539 0.0129298 572 0.00803823 605 0.00934697
474 0.0368934 507 0.025787 540 0.0122634 573 0.00807043 606 0.00950974
475 0.0367049 508 0.0249729 541 0.0122548 574 0.00830263 607 0.01011
476 0.0365304 509 0.0251642 542 0.0123635 575 0.00838943 608 0.0101005
477 0.0361859 510 0.0252525 543 0.0121962 576 0.00820728 609 0.00978133
478 0.0356546 511 0.0246769 544 0.0122355 577 0.00804056 610 0.0100682
479 0.0352872 512 0.0239783 545 0.0115581 578 0.00826648 611 0.010247
480 0.034994 513 0.0233597 546 0.0106524 579 0.00825062 612 0.0103018
481 0.0345963 514 0.0227739 547 0.0107881 580 0.00831102 613 0.0104521
482 0.034436 515 0.0218247 548 0.0111495 581 0.00856794 614 0.0107118
483 0.0342864 516 0.0215426 549 0.0110339 582 0.00867449 615 0.0108639
484 0.0348232 517 0.0211907 550 0.0107722 583 0.00872945 616 0.0109778
485 0.0350503 518 0.0206175 551 0.0106038 584 0.00898368 617 0.0109987
486 0.0345614 519 0.0203868 552 0.0102597 585 0.00893686 618 0.010769
487 0.0339555 520 0.0195854 553 0.00986429 586 0.00852472 619 0.0109809

(continued on next page)
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Table A.3: Input CHL Absorption Coefficients For HYDROLIGHT Simulations–part 3

λ(nm) abs λ abs λ abs λ abs λ abs
620 0.0111736 653 0.0110248 686 0.0181143 719 0.00105587 752 0.000253259
621 0.0110866 654 0.0110777 687 0.0167875 720 0.000970225 753 0.000119209
622 0.0112463 655 0.0114857 688 0.0153586 721 0.000900714 754 0.000119209
623 0.0116271 656 0.0117241 689 0.0141098 722 0.00130508 755 0.000194365
624 0.0118188 657 0.012125 690 0.0128892 723 0.001276 756 0.000194365
625 0.0117108 658 0.0128803 691 0.0119374 724 0.00108465 757 0.000194365
626 0.0119102 659 0.0133625 692 0.0110427 725 0.00106979 758 0.000194365
627 0.0118279 660 0.0135732 693 0.0101619 726 0.000568639 759 0.000130984
628 0.0117673 661 0.0140785 694 0.0086621 727 0.000258094 760 0.000130984
629 0.0121338 662 0.0147456 695 0.00732307 728 0.000452467 761 0.000130984
630 0.0123476 663 0.01527 696 0.00658599 729 0.000518249 762 0.000130984
631 0.0122571 664 0.0163247 697 0.00579818 730 0.000475528 763 0.000215731
632 0.011739 665 0.0177328 698 0.00545775 731 0.000592027 764 0.000186077
633 0.0117444 666 0.0183491 699 0.00508097 732 0.000582977 765 0.000107988
634 0.011885 667 0.0187599 700 0.00453382 733 0.000479747 766 8.64E-05
635 0.0117667 668 0.019388 701 0.00428591 734 8.27E-05 767 8.64E-05
636 0.0119688 669 0.0197808 702 0.00384094 735 0.000155961 768 8.64E-05
637 0.011997 670 0.0209332 703 0.00304189 736 0.000444593 769 0.000228951
638 0.0119948 671 0.0215718 704 0.00274437 737 0.00052365 770 0.000228951
639 0.012084 672 0.0215657 705 0.00270713 738 0.000626987 771 0.000252192
640 0.0122135 673 0.0219011 706 0.00240357 739 0.000371637 772 0.000252192
641 0.0119917 674 0.0221241 707 0.00243146 740 8.36E-05 773 0.000252192
642 0.0114093 675 0.0226847 708 0.00241044 741 3.30E-06 774 0.000252192
643 0.0109376 676 0.0229074 709 0.00219248 742 6.45E-05 775 0.000167052
644 0.0107925 677 0.0225562 710 0.00197887 743 0.000396982 776 0.000167052
645 0.0108667 678 0.0225992 711 0.0017827 744 0.00085504 777 0.000167052
646 0.0113429 679 0.0227457 712 0.00162333 745 0.000687883 778 0.000167052
647 0.0116131 680 0.0219468 713 0.00145156 746 0.000474471 779 0.000167052
648 0.0109333 681 0.0213336 714 0.00115292 747 0.000400725 780 0.000167052
649 0.0105947 682 0.0209599 715 0.00109396 748 0.000400725 781 0.000167052
650 0.0107755 683 0.0202555 716 0.00150271 749 0.000431704 782 0.000167052
651 0.0110397 684 0.0195301 717 0.00180036 750 0.000431704 783 0.000167052
652 0.0112134 685 0.018821 718 0.00148078 751 0.000253259 784 0.000264001

(continued on next page)
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Table A.4: Input CHL Absorption Coefficients For HYDROLIGHT Simulations–part 4

λ(nm) abs λ abs λ abs λ abs λ abs
785 0.0002640 818 0.0005186 851 0.0005186 884 0.0005186 917 0.0005186
786 0.0002640 819 0.0005186 852 0.0005186 885 0.0005186 918 0.0005186
787 0.0002640 820 0.0005186 853 0.0005186 886 0.0005186 919 0.0005186
788 0.0002640 821 0.0005186 854 0.0005186 887 0.0005186 920 0.0005186
789 0.0002640 822 0.0005186 855 0.0005186 888 0.0005186 921 0.0005186
790 0.0002640 823 0.0005186 856 0.0005186 889 0.0005186 922 0.0005186
791 0.0006943 824 0.0005186 857 0.0005186 890 0.0005186 923 0.0005186
792 0.0005361 825 0.0005186 858 0.0005186 891 0.0005186 924 0.0005186
793 0.0004513 826 0.0005186 859 0.0005186 892 0.0005186 925 0.0005186
794 0.0001455 827 0.0005186 860 0.0005186 893 0.0005186 926 0.0005186
795 0.0001455 828 0.0005186 861 0.0005186 894 0.0005186 927 0.0005186
796 0.0001455 829 0.0005186 862 0.0005186 895 0.0005186 928 0.0005186
797 0.0005186 830 0.0005186 863 0.0005186 896 0.0005186 929 0.0005186
798 0.0005186 831 0.0005186 864 0.0005186 897 0.0005186 930 0.0005186
799 0.0005186 832 0.0005186 865 0.0005186 898 0.0005186 931 0.0005186
800 0.0005186 833 0.0005186 866 0.0005186 899 0.0005186 932 0.0005186
801 0.0005186 834 0.0005186 867 0.0005186 900 0.0005186 933 0.0005186
802 0.0005186 835 0.0005186 868 0.0005186 901 0.0005186 934 0.0005186
803 0.0005186 836 0.0005186 869 0.0005186 902 0.0005186 935 0.0005186
804 0.0005186 837 0.0005186 870 0.0005186 903 0.0005186 936 0.0005186
805 0.0005186 838 0.0005186 871 0.0005186 904 0.0005186 937 0.0005186
806 0.0005186 839 0.0005186 872 0.0005186 905 0.0005186 938 0.0005186
807 0.0005186 840 0.0005186 873 0.0005186 906 0.0005186 939 0.0005186
808 0.0005186 841 0.0005186 874 0.0005186 907 0.0005186 940 0.0005186
809 0.0005186 842 0.0005186 875 0.0005186 908 0.0005186 941 0.0005186
810 0.0005186 843 0.0005186 876 0.0005186 909 0.0005186 942 0.0005186
811 0.0005186 844 0.0005186 877 0.0005186 910 0.0005186 943 0.0005186
812 0.0005186 845 0.0005186 878 0.0005186 911 0.0005186 944 0.0005186
813 0.0005186 846 0.0005186 879 0.0005186 912 0.0005186 945 0.0005186
814 0.0005186 847 0.0005186 880 0.0005186 913 0.0005186 946 0.0005186
815 0.0005186 848 0.0005186 881 0.0005186 914 0.0005186 947 0.0005186
816 0.0005186 849 0.0005186 882 0.0005186 915 0.0005186 948 0.0005186
817 0.0005186 850 0.0005186 883 0.0005186 916 0.0005186 949 0.0005186

950 0.0005186
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Tables A.5, A.6, A.7, and A.8 show the chlorophyll scattering coefficients used as inputs
to HYDROLIGHT for the reflectance simulations used in this research. This curve utilizes
data from (Bukata et al., 1979), and is extrapolated into the NIR for our purposes. A plot
of the coefficients is shown in Figure A.2.

Figure A.2: Plot of spectral scattering coefficients for CHL
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Table A.5: Input CHL Scattering Coefficients For HYDROLIGHT Simulations

λ(nm) scat λ scat λ scat λ scat λ scat λ scat
290 0.128 323 0.128 356 0.128 389 0.128 422 0.1184 455 0.105
291 0.128 324 0.128 357 0.128 390 0.128 423 0.1176 456 0.105
292 0.128 325 0.128 358 0.128 391 0.128 424 0.1168 457 0.105
293 0.128 326 0.128 359 0.128 392 0.128 425 0.116 458 0.105
294 0.128 327 0.128 360 0.128 393 0.128 426 0.1152 459 0.105
295 0.128 328 0.128 361 0.128 394 0.128 427 0.1144 460 0.105
296 0.128 329 0.128 362 0.128 395 0.128 428 0.1136 461 0.105
297 0.128 330 0.128 363 0.128 396 0.128 429 0.1128 462 0.105
298 0.128 331 0.128 364 0.128 397 0.128 430 0.112 463 0.105
299 0.128 332 0.128 365 0.128 398 0.128 431 0.1115 464 0.105
300 0.128 333 0.128 366 0.128 399 0.128 432 0.111 465 0.105
301 0.128 334 0.128 367 0.128 400 0.128 433 0.1105 466 0.105
302 0.128 335 0.128 368 0.128 401 0.128 434 0.11 467 0.105
303 0.128 336 0.128 369 0.128 402 0.128 435 0.1095 468 0.105
304 0.128 337 0.128 370 0.128 403 0.128 436 0.109 469 0.105
305 0.128 338 0.128 371 0.128 404 0.128 437 0.1085 470 0.105
306 0.128 339 0.128 372 0.128 405 0.128 438 0.108 471 0.1052
307 0.128 340 0.128 373 0.128 406 0.128 439 0.1075 472 0.1054
308 0.128 341 0.128 374 0.128 407 0.128 440 0.107 473 0.1056
309 0.128 342 0.128 375 0.128 408 0.128 441 0.1068 474 0.1058
310 0.128 343 0.128 376 0.128 409 0.128 442 0.1066 475 0.106
311 0.128 344 0.128 377 0.128 410 0.128 443 0.1064 476 0.1062
312 0.128 345 0.128 378 0.128 411 0.1272 444 0.1062 477 0.1064
313 0.128 346 0.128 379 0.128 412 0.1264 445 0.106 478 0.1066
314 0.128 347 0.128 380 0.128 413 0.1256 446 0.1058 479 0.1068
315 0.128 348 0.128 381 0.128 414 0.1248 447 0.1056 480 0.107
316 0.128 349 0.128 382 0.128 415 0.124 448 0.1054 481 0.1073
317 0.128 350 0.128 383 0.128 416 0.1232 449 0.1052 482 0.1076
318 0.128 351 0.128 384 0.128 417 0.1224 450 0.105 483 0.1079
319 0.128 352 0.128 385 0.128 418 0.1216 451 0.105 484 0.1082
320 0.128 353 0.128 386 0.128 419 0.1208 452 0.105 485 0.1085
321 0.128 354 0.128 387 0.128 420 0.12 453 0.105 486 0.1088
322 0.128 355 0.128 388 0.128 421 0.1192 454 0.105 487 0.1091

(continued on next page)
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Table A.6: Input CHL Scattering Coefficients For HYDROLIGHT Simulations–part 2

λ(nm) scat λ scat λ scat λ scat λ scat λ scat
488 0.1094 521 0.1133 554 0.1194 587 0.121 620 0.121 653 0.1114
489 0.1097 522 0.1136 555 0.1195 588 0.121 621 0.1209 654 0.1112
490 0.11 523 0.1139 556 0.1196 589 0.121 622 0.1208 655 0.111
491 0.1101 524 0.1142 557 0.1197 590 0.121 623 0.1207 656 0.1108
492 0.1102 525 0.1145 558 0.1198 591 0.1211 624 0.1206 657 0.1106
493 0.1103 526 0.1148 559 0.1199 592 0.1212 625 0.1205 658 0.1104
494 0.1104 527 0.1151 560 0.12 593 0.1213 626 0.1204 659 0.1102
495 0.1105 528 0.1154 561 0.12 594 0.1214 627 0.1203 660 0.11
496 0.1106 529 0.1157 562 0.12 595 0.1215 628 0.1202 661 0.1095
497 0.1107 530 0.116 563 0.12 596 0.1216 629 0.1201 662 0.109
498 0.1108 531 0.1161 564 0.12 597 0.1217 630 0.12 663 0.1085
499 0.1109 532 0.1162 565 0.12 598 0.1218 631 0.1198 664 0.108
500 0.111 533 0.1163 566 0.12 599 0.1219 632 0.1196 665 0.1075
501 0.1111 534 0.1164 567 0.12 600 0.122 633 0.1194 666 0.107
502 0.1112 535 0.1165 568 0.12 601 0.1219 634 0.1192 667 0.1065
503 0.1113 536 0.1166 569 0.12 602 0.1218 635 0.119 668 0.106
504 0.1114 537 0.1167 570 0.12 603 0.1217 636 0.1188 669 0.1055
505 0.1115 538 0.1168 571 0.1201 604 0.1216 637 0.1186 670 0.105
506 0.1116 539 0.1169 572 0.1202 605 0.1215 638 0.1184 671 0.1045
507 0.1117 540 0.117 573 0.1203 606 0.1214 639 0.1182 672 0.104
508 0.1118 541 0.1172 574 0.1204 607 0.1213 640 0.118 673 0.1035
509 0.1119 542 0.1174 575 0.1205 608 0.1212 641 0.1174 674 0.103
510 0.112 543 0.1176 576 0.1206 609 0.1211 642 0.1168 675 0.1025
511 0.1121 544 0.1178 577 0.1207 610 0.121 643 0.1162 676 0.102
512 0.1122 545 0.118 578 0.1208 611 0.121 644 0.1156 677 0.1015
513 0.1123 546 0.1182 579 0.1209 612 0.121 645 0.115 678 0.101
514 0.1124 547 0.1184 580 0.121 613 0.121 646 0.1144 679 0.1005
515 0.1125 548 0.1186 581 0.121 614 0.121 647 0.1138 680 0.1
516 0.1126 549 0.1188 582 0.121 615 0.121 648 0.1132 681 0.0995
517 0.1127 550 0.119 583 0.121 616 0.121 649 0.1126 682 0.099
518 0.1128 551 0.1191 584 0.121 617 0.121 650 0.112 683 0.0985
519 0.1129 552 0.1192 585 0.121 618 0.121 651 0.1118 684 0.098
520 0.113 553 0.1193 586 0.121 619 0.121 652 0.1116 685 0.0975

(continued on next page)
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Table A.7: Input CHL Scattering Coefficients For HYDROLIGHT Simulations–part 3

λ(nm) scat λ scat λ scat λ scat λ scat
686 0.097 719 0.0590000 752 0.0045238 785 0.0017593 818 0.0010920
687 0.0965 720 0.0575000 753 0.0043182 786 0.0017273 819 0.0010795
688 0.096 721 0.0550000 754 0.0041304 787 0.0016964 820 0.0010674
689 0.0955 722 0.0525000 755 0.0039583 788 0.0016667 821 0.0010556
690 0.095 723 0.0500000 756 0.0038000 789 0.0016379 822 0.0010440
691 0.094 724 0.0475000 757 0.0036538 790 0.0016102 823 0.0010326
692 0.093 725 0.0450000 758 0.0035185 791 0.0015833 824 0.0010215
693 0.092 726 0.0425000 759 0.0033929 792 0.0015574 825 0.0010106
694 0.091 727 0.0400000 760 0.0032759 793 0.0015323 826 0.0010000
695 0.09 728 0.0375000 761 0.0031667 794 0.0015079 827 0.0009896
696 0.089 729 0.0350000 762 0.0030645 795 0.0014844 828 0.0009794
697 0.088 730 0.0325000 763 0.0029688 796 0.0014615 829 0.0009694
698 0.087 731 0.0300000 764 0.0028788 797 0.0014394 830 0.0009596
699 0.086 732 0.0275000 765 0.0027941 798 0.0014179 831 0.0009500
700 0.085 733 0.0250000 766 0.0027143 799 0.0013971 832 0.0009406
701 0.084 734 0.0225000 767 0.0026389 800 0.0013768 833 0.0009314
702 0.083 735 0.0200000 768 0.0025676 801 0.0013571 834 0.0009223
703 0.082 736 0.0175000 769 0.0025000 802 0.0013380 835 0.0009135
704 0.081 737 0.0150000 770 0.0024359 803 0.0013194 836 0.0009048
705 0.08 738 0.0125000 771 0.0023750 804 0.0013014 837 0.0008962
706 0.0785 739 0.0118750 772 0.0023171 805 0.0012838 838 0.0008879
707 0.077 740 0.0105556 773 0.0022619 806 0.0012667 839 0.0008796
708 0.0755 741 0.0095000 774 0.0022093 807 0.0012500 840 0.0008716
709 0.074 742 0.0086364 775 0.0021591 808 0.0012338 841 0.0008636
710 0.0725 743 0.0079167 776 0.0021111 809 0.0012179 842 0.0008559
711 0.071 744 0.0073077 777 0.0020652 810 0.0012025 843 0.0008482
712 0.0695 745 0.0067857 778 0.0020213 811 0.0011875 844 0.0008407
713 0.068 746 0.0063333 779 0.0019792 812 0.0011728 845 0.0008333
714 0.0665 747 0.0059375 780 0.0019388 813 0.0011585 846 0.0008261
715 0.065 748 0.0055882 781 0.0019000 814 0.0011446 847 0.0008190
716 0.0635 749 0.0052778 782 0.0018627 815 0.0011310 848 0.0008120
717 0.062 750 0.0050000 783 0.0018269 816 0.0011176 849 0.0008051
718 0.0605 751 0.0047500 784 0.0017925 817 0.0011047 850 0.0007983

(continued on next page)
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Table A.8: Input CHL Scattering Coefficients For HYDROLIGHT Simulations–part 4

λ(nm) scat λ scat λ scat
851 0.000791667 884 0.000620915 917 0.000510753
852 0.000785124 885 0.000616883 918 0.000508021
853 0.000778689 886 0.000612903 919 0.000505319
854 0.000772358 887 0.000608974 920 0.000502646
855 0.000766129 888 0.000605096 921 0.0005
856 0.00076 889 0.000601266 922 0.000497382
857 0.000753968 890 0.000597484 923 0.000494792
858 0.000748031 891 0.00059375 924 0.000492228
859 0.000742188 892 0.000590062 925 0.000489691
860 0.000736434 893 0.00058642 926 0.000487179
861 0.000730769 894 0.000582822 927 0.000484694
862 0.000725191 895 0.000579268 928 0.000482234
863 0.000719697 896 0.000575758 929 0.000479798
864 0.000714286 897 0.000572289 930 0.000477387
865 0.000708955 898 0.000568862 931 0.000475
866 0.000703704 899 0.000565476 932 0.000472637
867 0.000698529 900 0.00056213 933 0.000470297
868 0.000693431 901 0.000558824 934 0.00046798
869 0.000688406 902 0.000555556 935 0.000465686
870 0.000683453 903 0.000552326 936 0.000463415
871 0.000678571 904 0.000549133 937 0.000461165
872 0.000673759 905 0.000545977 938 0.000458937
873 0.000669014 906 0.000542857 939 0.000456731
874 0.000664336 907 0.000539773 940 0.000454545
875 0.000659722 908 0.000536723 941 0.000452381
876 0.000655172 909 0.000533708 942 0.000450237
877 0.000650685 910 0.000530726 943 0.000448113
878 0.000646259 911 0.000527778 944 0.000446009
879 0.000641892 912 0.000524862 945 0.000443925
880 0.000637584 913 0.000521978 946 0.00044186
881 0.000633333 914 0.000519126 947 0.000439815
882 0.000629139 915 0.000516304 948 0.000437788
883 0.000625 916 0.000513514 949 0.00043578

950 0.00043379
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A.2 CDOM Absorption

A plot, Figure A.3 , and list of absorption coefficients, Tables A.9 and A.10, show the
values used as input to HYDROLIGHT. Note that the coefficients are normalized with
respect to the value at 350nm.

Figure A.3: Plot of spectral absorption coefficients for CDOM
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Table A.9: Input CDOM Absorption Coefficients For HYDROLIGHT Simulations

λ(nm) abs λ abs λ abs λ abs λ abs
290 3.32591 333 1.37506 376 0.606793 419 0.269439 462 0.123082
291 3.25426 334 1.34897 377 0.595786 420 0.264241 463 0.121044
292 3.18506 335 1.32319 378 0.584371 421 0.259655 464 0.118598
293 3.11779 336 1.29822 379 0.572854 422 0.25517 465 0.116661
294 3.05226 337 1.27386 380 0.561337 423 0.250482 466 0.114623
295 2.98703 338 1.25001 381 0.550839 424 0.245386 467 0.112686
296 2.92241 339 1.22708 382 0.540444 425 0.240901 468 0.110954
297 2.85973 340 1.20435 383 0.530354 426 0.236621 469 0.109119
298 2.79909 341 1.18172 384 0.520671 427 0.232238 470 0.107386
299 2.73987 342 1.1592 385 0.511091 428 0.227958 471 0.105654
300 2.68412 343 1.13769 386 0.501816 429 0.223677 472 0.104023
301 2.62705 344 1.11782 387 0.492134 430 0.219396 473 0.102189
302 2.56906 345 1.09754 388 0.482757 431 0.215319 474 0.100558
303 2.51595 346 1.07715 389 0.473482 432 0.211141 475 0.0989271
304 2.46479 347 1.05738 390 0.464208 433 0.207166 476 0.0971944
305 2.41424 348 1.03771 391 0.455341 434 0.203293 477 0.0956656
306 2.36481 349 1.01977 392 0.447187 435 0.199522 478 0.0941368
307 2.3168 350 1 393 0.439033 436 0.195853 479 0.09271
308 2.27023 351 0.979005 394 0.430472 437 0.192184 480 0.091385
309 2.22497 352 0.960863 395 0.42242 438 0.188413 481 0.0903658
310 2.17993 353 0.943435 396 0.41498 439 0.185049 482 0.0892447
311 2.13579 354 0.926516 397 0.407031 440 0.181788 483 0.0875121
312 2.09289 355 0.909088 398 0.399387 441 0.178221 484 0.0858813
313 2.0513 356 0.892067 399 0.39215 442 0.174857 485 0.0846583
314 2.01003 357 0.875454 400 0.384608 443 0.172004 486 0.0834353
315 1.96803 358 0.858739 401 0.377372 444 0.16915 487 0.0826199
316 1.92747 359 0.841311 402 0.370136 445 0.16599 488 0.0814988
317 1.88803 360 0.8248 403 0.363409 446 0.162729 489 0.0800719
318 1.84848 361 0.809919 404 0.35709 447 0.159569 490 0.0784412
319 1.81006 362 0.794733 405 0.350465 448 0.156716 491 0.0771162
320 1.7749 363 0.779446 406 0.344146 449 0.154066 492 0.0759951
321 1.74065 364 0.764667 407 0.337827 450 0.151518 493 0.0744663
322 1.706 365 0.750093 408 0.331304 451 0.148766 494 0.0734471
323 1.67165 366 0.735926 409 0.324781 452 0.146014 495 0.0725298
324 1.63853 367 0.721759 410 0.318768 453 0.143874 496 0.0721222
325 1.60663 368 0.707592 411 0.312959 454 0.141326 497 0.0713068
326 1.57524 369 0.693731 412 0.307251 455 0.138574 498 0.069778
327 1.54425 370 0.680481 413 0.302155 456 0.136332 499 0.0690646
328 1.51398 371 0.667538 414 0.296244 457 0.134089 500 0.0682492
329 1.48483 372 0.654492 415 0.290536 458 0.131541 501 0.0673319
330 1.45619 373 0.641752 416 0.284727 459 0.128891 502 0.0666185
331 1.42796 374 0.629827 417 0.279427 460 0.126547 503 0.0657012
332 1.40105 375 0.61831 418 0.274739 461 0.124917 504 0.0645801

(continued on next page)



108 APPENDIX A. HYDROLIGHT INPUT FILES

Table A.10: Input CDOM Absorption Coefficients For HYDROLIGHT Simulations–part
2

λ(nm) abs λ abs λ abs λ abs λ abs
505 0.0638667 548 0.0349214 591 0.0179008 634 0.00923764 677 0.00281669
506 0.0633571 549 0.0341061 592 0.017697 635 0.00913572 678 0.00261285
507 0.0626436 550 0.0333926 593 0.0171874 636 0.00872804 679 0.00302053
508 0.0617263 551 0.0330869 594 0.0167797 637 0.00842228 680 0.00302053
509 0.0602995 552 0.0326792 595 0.0166778 638 0.00842228 681 0.00302053
510 0.059586 553 0.0323734 596 0.0162701 639 0.00832036 682 0.00281669
511 0.0590764 554 0.0314562 597 0.0160663 640 0.00791268 683 0.00271477
512 0.0580572 555 0.0308446 598 0.0156586 641 0.00791268 684 0.00251093
513 0.0569361 556 0.0305389 599 0.0153528 642 0.00791268 685 0.00240901
514 0.0566304 557 0.0300293 600 0.0148432 643 0.00791268 686 0.00230709
515 0.0557131 558 0.0294178 601 0.0145375 644 0.00760692 687 0.00240901
516 0.0548977 559 0.0288062 602 0.0142317 645 0.00740308 688 0.00240901
517 0.0539804 560 0.0287043 603 0.0143336 646 0.00730116 689 0.00230709
518 0.0530632 561 0.0285005 604 0.0142317 647 0.00719924 690 0.00210325
519 0.052044 562 0.0280928 605 0.013824 648 0.00709732 691 0.00189941
520 0.0512286 563 0.0275832 606 0.0135183 649 0.00679156 692 0.00149174
521 0.0509228 564 0.0269717 607 0.0134164 650 0.00668965 693 0.00149174
522 0.0504132 565 0.0264621 608 0.0129068 651 0.00648581 694 0.0012879
523 0.0500056 566 0.0262582 609 0.0128048 652 0.00658773 695 0.00149174
524 0.0490883 567 0.0258506 610 0.0131106 653 0.00668965 696 0.0012879
525 0.0480691 568 0.0256467 611 0.0127029 654 0.00618005 697 0.000982136
526 0.0470499 569 0.0251371 612 0.0123972 655 0.00567045 698 0.000778298
527 0.0463364 570 0.0248314 613 0.0120914 656 0.00556853 699 0.000676377
528 0.0458268 571 0.0247294 614 0.0123972 657 0.00556853 700 0.000676377
529 0.0454192 572 0.0244237 615 0.0120914 658 0.00536469 701 0.000370618
530 0.0452153 573 0.0237103 616 0.0115818 659 0.00505893 702 0.000472537
531 0.0452153 574 0.0230987 617 0.0111741 660 0.00465125 703 0.000268697
532 0.0445019 575 0.022793 618 0.0111741 661 0.00465125 704 0.000574458
533 0.0431769 576 0.0225891 619 0.011276 662 0.00495701 705 0.000472537
534 0.0424635 577 0.0224872 620 0.0111741 663 0.00475317 706 6.49E-05
535 0.0417501 578 0.0220795 621 0.0111741 664 0.00485509 707 6.49E-05
536 0.0411385 579 0.0216719 622 0.0106645 665 0.00465125 708 0
537 0.0404251 580 0.0213661 623 0.0107664 666 0.00454933 709 0
538 0.0395078 581 0.0210603 624 0.0108684 667 0.00434549 710 0
539 0.0389982 582 0.0203469 625 0.0107664 668 0.00424357 711 0
540 0.0386925 583 0.020245 626 0.0102568 669 0.00383589 712 0
541 0.0380809 584 0.0197354 627 0.010053 670 0.00363205 713 0
542 0.0373675 585 0.0194296 628 0.00974724 671 0.00363205 714 0
543 0.0365521 586 0.0190219 629 0.00974724 672 0.00383589 715 0
544 0.0363483 587 0.0190219 630 0.00964532 673 0.00383589 716 0
545 0.0361445 588 0.0186143 631 0.00933956 674 0.00363205 717 0
546 0.035431 589 0.0184104 632 0.00944148 675 0.00383589 718 0
547 0.0351253 590 0.0181047 633 0.00933956 676 0.00342821 719 0

(continued on next page)
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A.3 Total Suspended Sediment Absorption and Scattering

The Ocean Optics Particle Simulator (OOPS) uses complex refractive index and a particle
size distribution function as input, and outputs absorption and scattering coefficients and
a scattering phase function that can be used as inputs into HYDROLIGHT to generate
spectral reflectance. Tables A.11 and A.12 show the coefficients used in the generation
of the data used in this research. Figures A.4 and A.5 illustrate these coefficients. Any
further inputs needed to reproduce the results found in this thesis can be found on the
accompanying data CD.

Figure A.4: Plot of spectral absorption coefficients for Total Suspended Sediment
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Figure A.5: Plot of spectral scattering coefficients for Total Suspended Sediment
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Table A.11: Input TSS Absorption Coefficients For HYDROLIGHT Simulations–OOPS
generated

λ(nm) abs λ abs
350 0.005237457 650 0.002922269
360 0.005106826 660 0.002870749
370 0.004987535 670 0.002846965
380 0.004841762 680 0.002807601
390 0.004754751 690 0.002751924
400 0.004642283 700 0.00272348
410 0.004504131 710 0.002671414
420 0.004422552 720 0.002650153
430 0.004331266 730 0.002621507
440 0.004224031 740 0.002566231
450 0.00413454 750 0.002548412
460 0.004058995 760 0.002497006
470 0.003970326 770 0.002467087
480 0.003898504 780 0.002454605
490 0.003813934 790 0.002418896
500 0.003749875 800 0.002377239
510 0.003674469 810 0.002349869
520 0.003603376 820 0.002323419
530 0.003529135 830 0.002293622
540 0.003484429 840 0.002262937
550 0.003401785 850 0.002246487
560 0.003356304 860 0.002217194
570 0.003296769 870 0.002199085
580 0.003259145 880 0.00216943
590 0.003203184 890 0.002144735
600 0.003157621 900 0.002125863
610 0.00308938 910 0.002101861
620 0.003048804 920 0.002075346
630 0.003012824 930 0.002051663
640 0.002962716 940 0.002032909

950 0.002013868
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Table A.12: Input TSS Scattering Coefficients For HYDROLIGHT Simulations–OOPS
generated

λ(nm) abs λ abs
350 0.26715918 650 0.28064396
360 0.26768956 660 0.28079984
370 0.26831653 670 0.28121204
380 0.26885044 680 0.28153557
390 0.26950796 690 0.28186356
400 0.26968285 700 0.28234802
410 0.27010112 710 0.28274098
420 0.27104303 720 0.28321312
430 0.2712308 730 0.28383814
440 0.27154487 740 0.28392878
450 0.27203471 750 0.28459351
460 0.27269356 760 0.28454409
470 0.27320544 770 0.28493155
480 0.27352272 780 0.28540552
490 0.27398731 790 0.28530478
500 0.27448653 800 0.28543741
510 0.27487933 810 0.28544285
520 0.27515232 820 0.28600129
530 0.2757653 830 0.28611105
540 0.27661294 840 0.28602466
550 0.27629627 850 0.28683667
560 0.27706265 860 0.28743955
570 0.27692628 870 0.28779696
580 0.277751 880 0.28810086
590 0.27817066 890 0.28849727
600 0.27869994 900 0.28893319
610 0.27914197 910 0.28926657
620 0.27962401 920 0.28954314
630 0.27999763 930 0.2898168
640 0.28034999 940 0.29010999

950 0.29036911
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