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ABSTRACT 

With the increasing availability of low-cost digital cameras with small or medium sized sensors, 

more and more airborne images are available with high resolution, which enhances the 

possibility in establishing three dimensional models for urban areas. The high accuracy of 

representation of buildings in urban areas is required for asset valuation or disaster recovery. 

Many automatic methods for modeling and reconstruction are applied to aerial images together 

with Light Detection and Ranging (LiDAR) data. If LiDAR data are not provided, manual steps 

must be applied, which results in semi-automated technique.  

The automated extraction of 3D urban models can be aided by the automatic extraction of dense 

point clouds. The more dense the point clouds, the easier the modeling and the higher the 

accuracy. Also oblique aerial imagery provides more facade information than nadir images, such 

as building height and texture. So a method for automatic dense point cloud extraction from 

oblique images is desired.  



 iii 

In this thesis, a modified workflow for the automated extraction of dense point clouds from 

oblique images is proposed and tested. The result reveals that this modified workflow works well 

and a very dense point cloud can be extracted from only two oblique images with slightly higher 

accuracy in flat areas than the one extracted by the original workflow.  

The original workflow was established by previous research at the Rochester Institute of 

Technology (RIT) for point cloud extraction from nadir images. For oblique images, a first 

modification is proposed in the feature detection part by replacing the Scale-Invariant Feature 

Transform (SIFT) algorithm with the Affine Scale-Invariant Feature Transform (ASIFT) 

algorithm. After that, in order to realize a very dense point cloud, the Semi-Global Matching 

(SGM) algorithm is implemented in the second modification to compute the disparity map from 

a stereo image pair, which can then be used to reproject pixels back to a point cloud. A noise 

removal step is added in the third modification. The point cloud from the modified workflow is 

much denser compared to the result from the original workflow.  

An accuracy assessment is made in the end to evaluate the point cloud extracted from the 

modified workflow. From the two flat areas, subsets of points are selected from both original and 

modified workflow, and then planes are fitted to them, respectively. The Mean Squared Error 

(MSE) of the points to the fitted plane is compared. The point subsets from the modified 

workflow have slightly lower MSEs than the ones from the original workflow, respectively. This 

suggests a  much more dense and more accurate point cloud can lead to clear roof borders for 

roof extraction and improve the possibility of 3D feature detection for 3D point cloud 

registration. 
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1 Introduction 

With the increasing availability of low-cost digital cameras with small or medium sized sensors, 

airborne images of urban regions have been used in various applications, such as building 

detection (Sirmacek and Unsalan, 2008), building modeling (Jurisch and Mountain, 2008; Wang 

et al., 2008; Smith et al., 2009; Habbecke and Kobbelt, 2010), surface reconstruction (Wu et al., 

2012), road extraction (Amo et al., 2006; Zhang et al., 2011), shadow compensation (Tsai, 2006), 

and vegetation extraction (Secord and Zakhor, 2007). In all of these, building modeling is a most 

common technique. Correct and consistent representations of buildings are required for asset 

valuation or disaster recovery. Currently, aerial images combined with Light Detection and 

Ranging (LiDAR) data are used to realize fully automated techniques for the extraction of 

building geometry (Wang et al., 2008; Haala and Kada, 2010; Cheng et al., 2011). However, 

image-based modeling still remains the most complete, economical, portable, flexible and widely 

used approach (Remondino and El-Hakim, 2006) for urban mapping. So, a robust and automated 

technique based only on images is desired. 

1.1 Three-Dimensional (3D) Modeling and Reconstruction 

3D modeling and reconstruction of an object is a process that starts from data acquisition and 

ends with a 3D virtual model visually interactive on a computer, and is a long-lasting research 

problem in the graphic, vision and photogrammetric communities (Remondino and El-Hakim, 

2006). In the photogrammetric field, many methods have been proposed to create 3D buildings 
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from airborne images recently. Most of them mentioned in the literature reconstruct the building 

in two steps: create the building models and add texture to the building. 

1.1.1 Creation of Building Models 

The creation of building models is the first step and the most difficult step in 3D modeling. 

Mostly, it is solved in a manual or semi-automatic way. For example, Jurisch and Mountain 

(2008) create the geometric model manually. They first captured the 2D building polygons from 

ortho images, and LiDAR data were used for orthorectification and tessellation. And then they 

manually measured the building heights based on oblique images by using a height measurement 

tool. Finally, they extruded the 2D building polygons into a 3D block model. Smith et al. (2009) 

extract the geometry semi-automatically. They first manually measure the roof structures and 

then automatically extrude to the ground which was defined by a manual point measurement.  

In order to find the footprint automatically, Habbecke and Kobbelt (2010) registered the oblique 

aerial images with cadastral maps which contain the footprints of buildings. They said that 

oblique images provide information on building heights, appearance of facades, and terrain 

elevation, but challenges are introduced by the scale of pixels varying across an image caused by 

perspective foreshortening, the strongly changing appearance between different views, and the 

inevitable (self-) occlusion of buildings. After registration, a valid height map was generated 

from the oblique images with the camera parameters computed during the registration. Based on 

this height map, they built models on the footprints on the registered cadastral map. 
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Wang et al. (2008) extracted buildings automatically. However, they derived building models 

from LiDAR data instead of aerial images saying that the occlusions and shadows that occur in 

the images may fail the extraction. Because of point spacing, scanning angle, the performance of 

the line extraction algorithm, they refined the derived building models by projecting back on the 

vertical image and triangulating with accurate ground control points. An affine transformation 

was used to correct the building models with the parameters estimated by using the distance 

between the projected roof edges and the extracted edges from the image. 

1.1.2 Texturing of the Building Models 

After establishing the building models, the next step is texturing. Jurisch and Mountai (2008) 

achieve it in a manual way. They first extract the most suitable image for each face from the 

image data set, and then crop the appropriate section from the rectified image. Finally, they apply 

the cropped image to each face. Smith et al. (2009) perform the texturing of the 3D geometry 

from oblique images automatically. They used the in-flight GPS and rotation information to 

calibrate the cameras in the coordinate system of the geometric model, and then calculated the 

corresponding image coordinates for each vertex of a triangle mesh representing the 3D surface 

by knowing the parameters of the interior and exterior orientation of the cameras. At last they 

attached color values within the projected triangle to the surface. 

Wang et al. (2008) first selected the best oblique image before texturing. Since their oblique 

images are captured at a certain angle, they defined a reference vector with a certain angle to the 

building façade within the vertical plane passing through the normal vector of the facade. Then 
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they assign a score to all oblique images based on the angle between the reference vector and the 

vector from the center of the façade to the camera center of an oblique image. The image with 

highest score was chosen for texturing. At the same time, a visibility analysis is performed to 

make sure that the façade is not blocked by other buildings. After that, based on exterior 

orientation parameters from the GPS/IMU, they computed the accurate exterior orientation 

parameters from the differences between the building façade projected onto the oblique image 

and the building edges on the image. At last, the right image portion was determined by 

projecting the building façade onto the oblique image with the corrected exterior orientation 

parameters and added to the 3D building model. 

1.2 Point Cloud Extraction 

Extracting a dense point cloud of the structures, based on some 2D images taken from different 

view angles, is another common approach for building models creation. The key to automatically 

recovering 3D structure from aerial images is to identify reliable invariant features, match these 

features from images with diverse angular views of that scene, and then generate accurate 

mathematical relationships to relate the images (Walli et al., 2009).  

Walli et al. (2009) and Nilosek and Salvaggio (2010) implemented computer vision techniques to 

reconstruct a scene from airborne nadir-viewing images. They first establish the corresponding 

relationships of the semi-invariant features detected between images by the Scale-Invariant 

Feature Transform (SIFT) (Lowe, 2004) algorithm, and then remove erroneous matches by using 

the RANdom SAmple Consensus (RANSAC) (Fischler and Bolles, 1981) technique in 
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conjunction with the Fundamental Matrix relationship between images of the same scene. Once 

the correct corresponding points have been found, they use the Sparse Bundle Adjustment (SBA) 

(Lourakis and Argyros, 2004) algorithm to compute and optimize the camera parameters and 3D 

coordinates. At the end, they recovered a dense point cloud from matching images by using the 

Fundamental Matrix to reduce the correspondence search and a normalized cross correlation to 

detect the correspondence. The approach by Agarwal et al. (2009), more focusing on the 

processing speed, is different from the previous one. However, the fundamental procedure for 

structure recovery is the same as previously mentioned: SIFT, RANSAC, Fundamental Matrix 

and SBA. 

The images used in the work done by Nilosek and Salvaggio (2010) and Walli et al. (2009) for 

finding the corresponding points are nadir images, which have less perspective transformation 

between images taken from the same scene than oblique images. Also, they have much more 

overlapping percentage. The larger the overlap, the easier to find the corresponding points. But 

oblique images have a much higher degree of affine and projective transform than nadir iamges, 

which limits the accuracy of the SIFT algorithm in detecting the corresponding features. 

Gerke (2009) did not use the vertical images, focusing instead on the potential of the oblique 

views only. In their preprocessing steps, they first calibrated the cameras and then rectified 

images by the camera positions and orientations. After that, they compute the disparity map  of 

stereo image pair by using the Semi-Global-Matching (SGM) approach (Hirschmuller, 2008). 

From the disparity map, a very dense 3D point cloud was derived. There are some manual steps 

in the camera calibration stage. They manually derived measured tie points, and also ground 
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control points (GCP) were added into the bundle block adjustment (Gerke and Nyaruhuma, 

2009). 

The goal of this present study is trying to find a fully automated method for dense point cloud 

extraction from oblique images only.  

1.3 Organization of Thesis 

This thesis is organized as follows: the objective is outlined in Section 2, while the experimental 

data are described in Section 3. In Section 4, the basic method and fundamental algorithms are 

detailed, and also some modifications are described for this study. Results are discussed in 

Section 5. Conclusion follows in Section 6, and the future work is in Section 7. 
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2 Objective 

As discussed in Section 1, almost all existing methods for 3D modeling and reconstruction are 

based on nadir images or are semi-automated when using oblique images. In contrast to nadir 

images, oblique aerial images, taken at an oblique angle with respect to the ground, have the 

important advantage of providing information on building facades, such as height and texture. 

This information enables new kinds of applications such as 3D city modeling and damage 

assessment (Gerke and Kerle, 2011). However, the oblique images have significantly varying 

image scale and more occlusion from buildings or high trees, which create much more 

difficulties in processing. 

The objective of this project is to take advantage of oblique images and extract dense point 

clouds in an automated way. The extracted dense point cloud, instead of the LiDAR data, can be 

used to create the building models. Furthermore, adding texture to the building models can 

realize an automated method for building modeling only using aerial images. Also, the dense 

point cloud gives higher possibility for 3D point cloud registration. It gathers all facades 

information for a building, even if some walls are not complete or do not exist in a particular 

point cloud. A roof frame, or surface, can be extracted from dense point cloud for asset 

evaluation or disaster recovery. 

In this thesis, the approach will be to make several modifications to an existing workflow. In 

order to take the advantage of oblique images, a new algorithm will be implemented to detect the 
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features from oblique images. It is an affine invariant mechanism which can detect features in 

images with large differences in view angles, such as oblique images we used in this project. 

Then, in order to extract dense point cloud, an efficient stereo matching will be used to compute 

the disparity map, from which a dense point cloud can be derived. At last, a noise removal step 

will be added to remove noise from the extracted dense point cloud. 
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3 Data 

In recent years, oblique aerial images have become widely available, such as ―bird’s-eye view‖ 

in Microsoft’s internet map service, ―Maps and Earth‖ in Google, and Pictometry Online (Gill, 

2010). The oblique airborne images used in this study were Pictometry images, provided by 

Pictometry, Inc. 

3.1 Pictometry Imagery 

 

Figure 3 - 1 The images from five perspectives provided by Pictometry. 

Pictometry data include five perspectives (as Figure 3-1 shows) and the system provides position 

and orientation data, suggesting ready referencing and photogrammetric processing (Gerke and 

Kerle, 2011). The ground resolution for the oblique imagery is approximately 14-18cm with the 

flying height between approximately 1378m and 1420m. The ground resolution for the nadir 



 

 

10 

imagery is approximately 14cm. The pixel size at the focal plane is 0.0074mm with a nominal 

focal length for the vertical camera of 65mm and the oblique cameras of 85mm. The overlap for 

 

(a) 

 

(b) 

 

(c) 

Figure 3 - 2 All images used in this thesis. (a) ten North-viewing images, (b) six West-viewing 

images, (c) nine nadir viewing images. 
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the vertical images varies approximately from 30% to 60% and the overlap of the oblique 

imagery is approximately from 20% to 90% (Smith et al., 2009). 

Figure 3-2 gives all the images used in this thesis: ten North-viewing images, six West-viewing 

images, and nine nadir viewing images. The data site is the Rochester Institute of Technology 

(RIT) campus, which includes many buildings and parking lots with cars on them. These images, 

with the size of 3248×4872 pixels, are taken at a height around 1400m with focal lengths 

between 11400 and 11500 pixels.   

The vertical image is taken by positioning the camera view vertically to the earth. It shows 

almost all the roof information of the buildings but no façade information at all. The other 

oblique images are taken from oblique view directions: North, South, West or East, which show 

not only the roof information but also the façades of the buildings. 

Here is another pair of Pictometry images from another site (Figure 3-3). They are taken at a 

height of almost 800m with the focal length of almost 22904 pixels. 

 

Figure 3 - 3 Another pair of Pictometry images. 
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3.2 Some Testing Images 

Some additional testing images are used in this project, such as the Tsukuba images (Figure 3-4), 

the toys images (Figure 3-5), the City Hall images (Figure 3-6) and the block images (Figure 3-

7). The Tsukuba images, in the size of 288×384 pixels, are provided by Scharstein and Szeliski 

(2002). The toys images and the block images, in the size of 2448×3264 pixels, are taken by the 

author with an iPhone 4S with a focal length of 3070 pixels. The City Hall images, in the size of 

5616×3744 pixels, are provided by Hover Inc. (2013). 

 

Figure 3 - 4 The Tsukuba images. 

 

Figure 3 - 5 The toys images. 
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Figure 3 - 6 The City Hall images. 

3.3 Pictometry Imagery vs. Testing Images 

Compared to the Pictometry images, the Tsukuba images are rectified. They have high overlap 

percentage and low disparity range. The toys images are oblique images with high ratio of toy 

height to camera height. The City Hall images are oblique airline images with high ratio of 

building height to camera height. The block images are oblique images with different ratio of 

block height to camera height. These differences will be seen to affect the accuracy of the results. 

 

(a)      (b) 

Figure 3 - 7 The block images. (a) is the Mega block image, (b) is the Lego block image.  
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4 Methodology 

In this thesis, several modifications will be made to an existing workflow. First, the previous 

work by RIT researchers will be introduced. Then, the first modification will be made by 

replacing the feature detection part from the Scale-Invariant Feature Transform (SIFT) algorithm 

to the Affine Scale-Invariant Feature Transform (ASIFT) algorithm in order to detect the features 

more accurately and efficiently in oblique images. After that, the second modification will be 

made by implementing Semi-Global Matching (SGM) algorithm to do the stereo matching. At 

last, the third modification is adding a noise removal method to remove the extraneous points in 

the extracted point cloud. 

4.1 Previous Work 

4.1.1 The RIT 3D Workflow 

RIT researchers Nilosek and Salvaggio (2010) proposed a workflow to generate 3D point cloud 

based on some common computer vision techniques. This workflow is constructed in four parts: 

feature detection and camera pose estimation, sparse 3D reconstruction and optimization, geo-

rectification, and dense model extraction. After that, Professor Harvey Rhody established a 

similar workflow for processing nadir imagery of downtown Rochester, NY, taken from RIT’s 

Wildfire Airborne Sensor Program (WASP) sensor (WASP, 2013). This similar workflow is 

shown as Figure 4-1. 
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Figure 4-1 The RIT workflow. 

In this workflow, the Scale-Invariant Feature Transform (SIFT) algorithm is used to detect the 

distinctive keypoints in each image. These feature points are invariant to scale, rotation, 

translation, and slight changes in illumination. Then, the RANdom SAmple Consensus 

(RANSAC) algorithm is applied to match the keypoints between all the images and remove 

outliers.  

After that, they implement Bundler (Snavely et al., 2006) to compute and optimize the camera 

parameters and 3D coordinates. Bundler is a structure-from-motion (SfM) system. It takes a set 

of images, image features, and image matches to produce 3D reconstructions of camera and 

sparse scene geometry, using a modified version of the Sparse Bundle Adjustment (SBA) as the 

underlying optimization engine.  

At last, Post-Match Vacancy Service (PMVS) (Furukawa and Ponce, 2009) is implemented to 

reproject image pixels back to the 3D world. PMVS is a multi-view stereo software. It takes a set 

Feature Detection (SIFT) 

Feature Matching (RANSAC) 

Camera and Sparse Scene Geometry 

Reconstruction and optimization (SBA) 

3D Point Cloud Extraction (PMVS) 
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of images and camera parameters to reconstruct 3D structure of an object or a scene visible in the 

images, presenting the results as a set of oriented points containing both 3D coordinate and the 

surface normal. 

4.1.2 Fundamental Algorithms 

In the RIT workflow, there are some fundamental algorithms, such as SIFT, RANSAC, 

Fundamental matrix and SBA. 

4.1.2.1 Scale-Invariant Feature Transform (SIFT) 

Image matching is the first step in 3D reconstruction from stereo images. SIFT (Lowe, 2004), the 

Scale Invariant Feature Transform, was proposed by David Lowe in 1999 (Lowe, 1999). It can 

robustly identify distinctive invariant features from images. These features are invariant to image 

scale, rotation, and partially to illumination viewpoint. They can be used to perform reliable 

matching between different views of an object or scene. Furthermore we can use these 

corresponding features to calculate the camera parameters. 

The SIFT algorithm computes the features in the following four major stages: scale-space 

extrema detection, keypoint localization, orientation assignment, and keypoint descriptor. 

A. Detection of Scale-Space Extrema 

SIFT utilizes a Difference of Gaussian (DOG) edge detector of varying widths to identify 

candidate locations and simulate all the possible scales. One of the reasons is because it is an 

efficient way to compute, and most importantly, DOG provides a close approximation to the 
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scale-normalized Laplacian of Gaussian, ς2∇2G, which is required for true scale invariance, 

mentioned by Lindeberg (1994). 

The Difference-of-Gaussian (DOG) function convolved with the image of two nearby scales 

separated by a constant multiplicative factor k is 

D x, y, ς =  G x, y, kς − G x, y, ς  ∗ I x, y = L x, y, kς − L x, y, ς ,   (4-1) 

where the scale space, L x, y, ς , of an image, I x, y , is 

L x, y, ς = G x, y, ς ∗ I x, y ,    (4-2) 

G x, y, ς =
1

2πς2 e
−

 x 2+y 2 

2ς2 .     (4-3) 

Figure 4-2 shows the efficient approach to construction of D x, y, ς . In the left column, the 

image is repeatedly convolved with Gaussians with varying width to produce Gaussian images. 

Lowe (2004) divided each octave of scale space, s, into, k, intervals, such that k = 2
1/s

. For each 

octave, the Gaussian image count should be s + 3 to guarantee that the extrema detection covers 

a complete octave. In the right column, the DOG images are produced by subtraction of adjacent 

Gaussian images. After finishing one octave, the calculation is repeated by down-sampling the 

Gaussian image by a factor of 2.  
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Figure 4 - 2 The calculation of Gaussian images and DOG images (Lowe, 2004). 

In the DOG images, each sample point is compared to its twenty-six neighbors, eight neighbors 

in the current images and nine neighbors in above and below images, to detect the local maxima 

and minima, shown as Figure 4-3.  

 

Figure 4 - 3 The detection of maximum and minimum in the DOG image (Lowe, 2004). 
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The frequency of sampling in the space and scale domains is determined by studying a range of 

sampling frequencies. As a result, Lowe (2004) chooses to use 3 scale samples per octave, and 

ς = 1.6 in the image domain. 

B. Accurate Keypoint Localization 

All the keypoint candidates are located at the central sample point. However, the matching 

accuracy and stability would be highly improved if the location of the maximum was 

interpolated by 3D quadratic fitting, proposed by Brwon and Lowe (2002). Shift the origin to the 

sample point, then the scale-space fuction, D x, y, ς  is expanded by Taylor expansion up to the 

quadratic terms as 

D 𝐱 = D +
∂DT

∂𝐱
𝐱 +

1

2
𝐱T ∂2D

∂2𝐱2 𝐱,    (4-4) 

where D and its derivatives are evaluated at the sample point and x = (x, y, ς)
T
 is the offset from 

this point. Taking the derivative of D 𝐱  with respect to x gives the location of the extrema, 𝐱  

𝐱 = −
∂2D−1

∂𝐱2

∂D

∂𝐱
.     (4-5) 

Add this final offset, 𝐱 , to the location of its sample point to get the location of the extrema. 

Because of the strong response along edges by the DOG function, an additional threshold on the 

ratio of principal curvatures is set to eliminate the edge keypoints. 
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C. Orientation assignment 

In order to achieve rotation invariance, a consistent orientation of each keypoint is calculated 

based on local image properties. At the selected scale of the location of keypoint, compute the 

gradient magnitude, m(x, y), and orientation, θ(x, y), for each image sample L(x, y) in a region 

of the keypoint, as Figure 4-4 shows, 

m x, y =   L x + 1, y − L x − 1, y  
2

+  L x, y + 1 − L x, y − 1  
2
,  (4-6) 

θ x, y = tan−1  L x, y + 1 − L x, y − 1   L x + 1, y − L x − 1, y     . (4-7) 

Then, an orientation histogram was established for each keypoint. The orientation histogram is 

weighted by m(x, y) and a Gaussian-weighted circular window. After that, a dominant direction 

is selected by searching the peak in the orientation histogram. This direction is the direction of 

this keypoint. 

 

Figure 4 - 4 The computation of the histograms of the gradient magnitude and orientation at each 

image sample point in a region around the keypoint location (Lowe, 2004). 
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D. The local image descriptor 

Now we have the location, scale, and orientation for each keypoint. The next step is to form a 

descriptor for the keypoint which is highly distinctive and as invariant as possible to illumination 

and 3D viewpoint. Lowe (2004) proposed that a 4×4 array of histograms with 8 orientation bins 

in each achieved the best results, not the 2×2 array as shown in Figure 4-4. Therefore, each 

keypoint descriptor contains 4×4×8 = 128 feature elements.  

In order to achieve illumination invariance, the vector is normalized to unit length to reduce the 

effects of contrast change. For non-linear illumination changes, first threshold the unit feature 

values no larger than 0.2 and then renormalize. 

4.1.2.2 RANdom SAmple Consensus (RANSAC) 

RANSAC has proven to be a robust technique for outlier removal, even in the presence of large 

numbers of incorrect matches (Hartley and Zisserman, 2004). This paradigm is particularly 

applicable to the feature matching problem because local features detected by SIFT would often 

make mistakes. 

RANSAC proposed by Fischler and Bolles (1981) is a paradigm for fitting a model to 

experimental data, rather than an interpretation of sensed data in terms of a set of predefined 

models. The later optimizes the fit of a model to all of the presented data based on smoothing 

assumption in its parameter estimation problem, which has no internal mechanisms for detecting 
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and rejecting gross errors. Or it uses as much of the data as possible to obtain an initial solution 

and then single out one gross error in heuristics if the smoothing assumption does not hold.  

However, RANSAC is very different from the conventional smoothing techniques, capable of 

smoothing data that contain a significant percentage of gross errors. The workflow of RANSAC 

is (shown as Figure 4-5): 

 

Figure 4 - 5 The workflow of RANSAC. 

a) Given a set of data points P, randomly elect a subset S1 of n data points. This n is the 

minimum data points required by the selected model to instantiate its free parameters. 

b) Instantiate the model M1 using the subset S1. 

Data Points P 

Randomly Select 

a Subset S1 

Instantiate the Model M1 

Determine the Subset S1* 

(Consensus Set of S1) 

If #(S1*) > t 

Use S1* to Compute a 

New Model M1* 

Y 

If #(Trials) > pd 

N 
Y 

N 

Use S1* to Compute the 

Model or Terminate in Failure 
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c) Determine the subset S1
*
, called the consensus set of S1, in P which are within some error 

tolerance of the instantiated model M1. 

d) Check the number of points in the subset S1
*
. If it is greater than some threshold t, then use 

S1
*
 to compute a new model M1

*
.  

e) Or check the number of trials. If the trial number is smaller than a threshold pd, go back to a) 

to select a new subset S2 randomly. 

f) Or solve the model with the largest consensus set found, or terminate in failure. 

The model in this project is taken from the computer vision community (Nilosek and Salvaggio, 

2010). For the two images looking at the same object from two different views, a point in one 

image will correspond to a line in the other image, in the following relationship: 

Fx1 = l2.      (4-8) 

Here F is the 3×3 fundamental matrix,  x1 is a homogeneous point in image 1, and l2 is the 

epipolar line in image 2. And the corresponding point in image 2 lies on the epipolar line as 

x2
Tl2 = 0.     (4-9) 

So the relationship of the two correspondence points with the fundamental matrix would be  

x2
TFx1 = 0.     (4-10) 

Any two matching features from SIFT must obey this equation.  
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4.1.2.3 Fundamental Matrix 

In order to obtain 3D information from images taken from different views, there are only two 

approaches. The first one is to compute the 3× 4 projection matrix which relates pixel 

coordinates to 3D coordinates. However, it needs to know the internal and external geometry of 

both the two cameras and the rigid displacement between them, which is not always possible. 

The other approach, using projective information, only requires the relationship between the 

different viewpoints. This relationship is called the Fundamental matrix (Luong and Faugeras, 

1996).  

A. The Projective Model 

Considering a pinhole camera, the model performs a perspective projection of an object point M 

onto a pixel m in the retinal plane though the optical center C. The optical axis goes though C 

and is perpendicular to the retinal plane at point c. In the orthonormal system of the retinal plane, 

called normalized coordinates, the center at c is (c, u, v) in another 3D orthonormal system of 

coordinates centered at the optical center C. The two axes of the 3D coordinate are parallel to the 

retinal ones and the third one is parallel to the optical axis (C, x, y, z). The relationship between 

the coordinates, m and M, in these two systems of coordinates is 

 
U
V
S
 =  

1 0 0 0
0 1 0 0
0 0 1 0

  

X
Y
Z
T

 .    (4-11) 
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Here U, V and S are the homogeneous coordinates of the pixel m and X, Y, Z, T are the 

homogeneous coordinates of the point M. In a matrix form: 

𝐦 = 𝐏 𝐌,     (4-12) 

where 𝐏  is the 3×4 projection matrix. So the relationship between the world coordinates and the 

pixel coordinates is linear projective, which is independent of the choice of the coordinate 

systems.  

Since the homogeneous representation of camera center C satisfies the equation  

 𝐏 𝐂 = 𝟎.     (4-13) 

If we decompose 𝐏  as [Pp], and decompose 𝐂  as [C
T
 1]

T
, the camera center C is 

𝐂 = −𝐏−1𝐩.     (4-14) 

B. The Epipolar Geometry and the Fundamental Matrix 

Consider two images taken by two cameras looking at the same scene, as Figure 4-6 shows. They 

are both linear projections. 

In Figure 4-6, C and C’ are the optical centers of the first and second cameras, respectively. 

Project the line <C, C’> to the first image R in a point e, and to the second image R’ in a point e’. 

These two points e and e’ are the epipoles. All the lines in the first image through e and in the 

second image through e’ are epipolar lines. In stereovision, for a point m in the first retina, its 
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corresponding point m’ in the second retina would lie on its epipolar line l’m，and vice versa. 

The relationship between the point m and its projection l’m  is projective linear. 

 

Figure 4 - 6 The epipolar geometry (Luong and Faugeras, 1996). 

In the case of uncalibrated cameras, define a 3×3 Fundamental matrix F to describe relationship 

of m and  𝐥’m , we have 

 𝐥’m = 𝐅𝐦.     (4-15) 

And the corresponding point m’ lies on the line  𝐥’m , then 

𝐦’T𝐅𝐦 = 0.     (4-16) 

By reversing the role of the two images, we have 
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𝐦T𝐅T𝐦’ = 0.     (4-17) 

The epipole is the project the optical center C of the first camera into the second camera: 

𝐞’ = 𝐏 ’  −𝐏−1𝐩
1

 = 𝐩’ − 𝐏’𝐏−1𝐩.   (4-18) 

And the point of infinity of <C, M> projected by the second camera is 

𝐏 ’  𝐏
−1𝐦
0

 = 𝐏’𝐏−1𝐦.    (4-19) 

So the epipolar line of m of the first retina is obtained by taking the cross-product of epipole and 

the point of infinity of <C, M>: 

𝐥’m =  𝐩’ − 𝐏’𝐏−1𝐩 × 𝐏’𝐏−1𝐦 =  𝐩’ − 𝐏’𝐏−𝟏𝐩 ×𝐏’𝐏−1𝐦 . (4-20) 

Hence, the Fundamental matrix represented by the perspective projection, 𝐏 , in the two-cameras 

case is 

𝐅 =  𝐩’ − 𝐏’𝐏−1𝐩 ×𝐏’𝐏−1.    (4-21) 

4.1.2.4 Sparse Bundle Adjustment (SBA) 

In the RIT 3D workflow, SBA (Lourakis and Argyros, 2004) is an essential step to compute and 

optimize the camera parameters and 3D coordinates in the scene, because of a large number of 

unknowns contributing to the minimized reprojection error. It is an advanced version of Bundle 

Adjustment (BA) (Triggs et al., 2000) with low computational costs. 
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A. Bundle Adjustment (BA) 

BA has been commonly used in the field of photogrammetry in last decade. It is a technique to 

obtain a reconstruction by refining the 3D structure and the intrinsic and extrinsic parameters of 

cameras simultaneously. 

BA minimizes the reprojection error between the observed and predicted image points by using a 

non-linear least squares algorithm named Levenberg-Marquardt (LM). LM linearizes the 

function to be minimized in the neighborhood of the current estimate iteratively, which is 

computationally very demanding when there are many parameters. Fortunately, the matrix in the 

linear systems involved has a sparse block structure. Therefore, a lower computational cost 

strategy can be used by taking advantage of the zeroes pattern. 

B. The Levenberg-Marquardt (LM) Algorithm 

The LM algorithm is a standard technique for non-linear least-squares problems. It iteratively 

minimizes the sum of squares of non-linear real-valued functions with multi variants. LM 

behaves like a combination of steepest descent and the Gauss-Newton method. The pseudo code 

of complete LM algorithm is in Figure 4-7. For details, the interested reader is referred to 

(Lourakis and Argyros, 2004) for more comprehensive treatments. 

C. Sparse Bundle Adjustment (SBA) 

In order to deal with the problem of bundle adjustment efficiently, the LM algorithm is 

developed to a large extent based on the presentation regarding SBA.  
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Figure 4 - 7 The pseudo code of the complete LM algorithm (Lourakis and Argyros, 2004). 

Assume that n 3D points are seen in m images with different viewpoints. xij is the projection of 

the i-th point on image j. BA was implemented to find the set of parameters, including intrinsic 

and extrinsic matrices for cameras, to most accurately predict the locations of the observed n 

Input: A vector function f: ℛm → ℛn  with n ≥ m, a measurement vector 𝐱 ∈  ℛn  and an 

initial parameters estimate 𝐩0 ∈  ℛm . 

Output: A vector 𝐩+ ∈  ℛm  minimizing  𝐱 − f 𝐩  2. 

Algorithm: 

k := 0; v := 2; p := 𝐩0; 

𝐀 ≔ 𝐉T𝐉; ϵp ≔ 𝐱 − f 𝐩 ;  𝐠 ≔ 𝐉Tϵp ; 

stop ≔   𝐠 ∞ ≤ ε1 ;  μ ≔ τ ∗ maxi=1,⋯,m Aii ; 

while (not stop) and (k < kmax) 

 k := k+1; 

 repeat 

   

 

if   δp ≤ ε2 𝐩   

 stop := true; 

else 

 𝐩new ≔ 𝐩 + δp ; 

 ρ ≔   ϵp 
2

−  𝐱 − f 𝐩new   2 /  δp
T μδp + 𝐠   

 if ρ > 0 

  p = pnew; 

    𝐀 ≔ 𝐉T𝐉; ϵp ≔ 𝐱 − f 𝐩 ;  𝐠 ≔ 𝐉Tϵp ; 

    Stop ≔   𝐠 ∞ ≤ ε1 ; 

    μ ≔ μ ∗ max  
1

3
, 1 −  2ρ − 1 3 ; ν ≔ 2; 

   else 

    μ ≔ μ ∗ ν;  ν ≔ 2 ∗ ν; 
   endif 

  endif 

 until (ρ > 0) or (stop) 

endwhile 

Solve  𝐀 + μ𝐈 δ𝐩 = 𝐠; 
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points from m available images. If aj represents the parameters of camera j, and bi represents the 

3D point i, the reprojection error would be minimized by BA as 

min𝐚j ,𝐛i
  d 𝐐 𝐚j , 𝐛i , 𝐱ij 

2m
j=1

n
i=1 ,    (4-22) 

where 𝐐 𝐚j , 𝐛i  denotes the predicted projection of point i on image j, and d(x, y) is the 

Euclidean distance between the inhomogeneous image points represented by x and y. If κ and λ 

are the dimensions of each aj and bi, respectively, the total number of minimization parameters is 

mκ + nλ. 

Let 𝐏 =  𝐚1
T , ⋯ , 𝐚m

T , 𝐛1
T , ⋯ , 𝐛n

T T, 𝐏 ∈ ℛM  describes all parameters of m projection matrices and 

n 3D points, 𝐗 =  𝐱11
T , ⋯ , 𝐱1m

T , 𝐱21
T , ⋯ , 𝐱2m

T , ⋯ , 𝐱n1
T , ⋯ , 𝐱nm

T T , 𝐗 ∈ ℛN  represents the 

measured image point coordinates across all cameras, and 𝐗  generated from a function  𝐗 = f(𝐏) 

as 𝐗 =  𝐱 11
T , ⋯ , 𝐱 1m

T , 𝐱 21
T , ⋯ , 𝐱 2m

T , ⋯ , 𝐱 n1
T , ⋯ , 𝐱 nm

T 
T

defines estimated measure with 

𝐱 ij =  𝐐 𝐚j , 𝐛i . Therefore, BA is minimizing the squared Mahalanobis distance ϵT 𝐗
−1ϵ with 

ϵ = 𝐗 − 𝐗  over P, which could be solved by using LM algorithm to iteratively solve the 

weighted normal equations 

𝐉T 𝐗
−1𝐉δ = 𝐉T 𝐗

−1ϵ,     (4-23) 

where J is the Jacobian of f and δ is the desired update to the parameter vector P. The normal 

equations in Equation (4-23) have a regular sparse block structure which results from the lack of 

interaction between parameters of different cameras and different 3D points.  
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Suppose there are n=4 points visible in m=3 images, then the measured vector of image point 

coordinates is 𝐗 =  𝐱11
T , 𝐱12

T , 𝐱13
T , 𝐱21

T , 𝐱22
T , 𝐱23

T , 𝐱31
T , 𝐱32

T , 𝐱33
T , 𝐱41

T , 𝐱42
T , 𝐱43

T ,  T , and 

the parameter vector is 𝐏 =  𝐚1
T , 𝐚2

T , 𝐚3
T , 𝐛1

T , 𝐛2
T , 𝐛3

T , 𝐛4
T T . Let Aij and Bij denote 

∂𝐱 ij

∂𝐚j
 and 

∂𝐱 ij

∂𝐛i
, 

respectively, the Jacobian J is  

∂𝐗

∂𝐏
=
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.  (4-24) 

And let the covariance matrix is 

 𝐗 = diag( x11 ,  x12 ,  x13 ,  x21 ,  x22 ,  x23 ,  x31 ,  x32 ,  x33 ,  x41 ,  x42 ,  x43). (4-25) 

The Equation (4-23) becomes 
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, (4-26) 

with 𝐔j =  𝐀ij
T4

i=1  𝐗ij

−1𝐀ij , Vi =  𝐁ij
T3

j=1  𝐗ij

−1𝐁ij , 𝐖ij = 𝐀ij
T 𝐗ij

−1𝐁ij , ϵaj
=  𝐀ij

T4
i=1  𝐗ij

−1ϵij , 

and ϵb i
=  𝐁ij

T3
j=1  𝐗ij

−1ϵij . 

Equation (4-26) can be expressed as 

 
𝐔∗ 𝐖
𝐖T 𝐕∗  

δa

δb
 =  

ϵa

ϵb
 ,    (6-27) 

and multiply it by the block matrix 

 𝐈 −𝐖𝐕∗−1

𝟎 𝐈
 .     (4-28) 

The result is  

 𝐔∗ − 𝐖𝐕∗−1𝐖T 𝟎
𝐖T 𝐕∗

  
δa

δb
 =  

ϵa − 𝐖𝐕∗−1ϵb

ϵb
 .   (4-29) 

Noting that the top right block of the left hand matrix is zero, δa  can be determined by 

 𝐔∗ − 𝐖𝐕∗−1𝐖T δa = ϵa − 𝐖𝐕∗−1ϵb .   (4-30) 
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Input: The current parameter vector partitioned into m camera parameter vectors aj and n 

3D point parameter vectors bi, a function Q employing the aj and bi to compute the 

predicted projections 𝐱 ij  of the i-th point on the j-th image, the observed image point 

locations xij and a damping term μ for LM. 

Output: The solution δ to the normal equations involved in LM-based bundle adjustment. 

Algorithm: 

 Compute the derivative matrices Aij ≔
∂x ij

∂aj
=

∂Q aj ,b i 

∂aj
, Bij ≔

∂x ij

∂b i
=

∂Q aj ,b i 

∂b i
 

 and the error vectors ϵij ≔ xij − x ij , 

 where I and j assume values in {1, …, n} and {1, …, m} respectively. 

 

 Compute the following auxiliary variables: 

  Uj ≔  Aij
T  Aij

−1
xiji         Vi ≔  Bij

T  Bij
−1
xijj         Wij ≔ Aij

T  Bij
−1
xij

 

  ϵaj
≔  Aij

T  ϵij
−1
xiji         ϵb i

≔  Bij
T  ϵij

−1
xijj  

 

 Augment Uj and Vi  by adding μ to their diagonals to yield Uj
∗ and Vi

∗. 

 

 Compute Yij ≔ Wij Vi
∗−1

. 

 

 Compute δa  from 𝐒 δa1

T ,  δa2

T , ⋯ , δam

T 
T

=  e1
T ,  e2

T , ⋯ , em
T T, 

 where S is a matrix consisting of m × m blocks; block jk is defined by  

 Sjk = δjk  Uj
∗ −  Yij Wik

T
i , where δjk  is Kronecker’s delta 

 and  

 ej = ϵaj
−  Yijϵb ii . 

 

 Compute each δb i
 from the equation δb i

= Vi
∗−1

 ϵb i
−  Wij

Tδajj  . 

 

 Form δ as  δa
T ,  δb

T 
T
. 

 

Figure 4 - 8 The pseudo code of algorithm for solving the sparse normal equations (Lourakis and 

Argyros, 2004). 

Afterword, ϵb  can be computed by 

𝐕∗δb = ϵb − 𝐖Tδa .     (4-31) 
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All of the above solution could be directly generalized to arbitrary n and m. The general 

procedure is summarized in Figure 4-8, which can be embedded into the LM algorithm at the 

point indicated by the rectangular box in Figure 4-7, realizing a complete SBA algorithm. 

4.2 First Modification – Affine Scale-Invariant Feature Transform 

(ASIFT) 

In the RIT 3D workflow, SIFT is used to detect feature descriptors from the aerial nadir images. 

However, this project is trying to extract point cloud from oblique images, with much more 

affine transformations in the images from the different views. Therefore a better algorithm 

should be used to find feature points on oblique images, which are distinguished and could be 

matched easily with higher accuracy. Morel and Yu (2009) proposed an affine invariant 

algorithm which an extension of the SIFT method. 

 

Figure 4 - 9 Initial modified workflow with ASIFT to detect the features. 

Feature Detection (ASIFT) 

Feature Matching (RANSAC) 

Camera and Sparse Scene Geometry 

Reconstruction and optimization (SBA) 

3D Point Cloud Extraction (PMVS) 
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4.2.1 The Workflow after the First Modification 

After the first modification, the workflow is as Figure 4-9 shows. In the new workflow, ASIFT, 

instead of SIFT, is used to detect the keypoints. The feature points detected by ASIFT are not 

only invariant to scale, rotation, translation, and illumination but also invariant to affine 

transformation.  

The other three steps are the same as the RIT 3D workflow. It applies RANSAC to match the 

keypoints between all the images and remove outliers, and it implements Bundler to compute 

and optimize the camera parameters and 3D coordinates. At last, PMVS is used to reproject 

image pixels back to the 3D world.  

4.2.2 Affine Scale-Invariant Feature Transform (ASIFT) Algorithm 

In stereo matching, oblique images taken by different cameras from different viewpoints contain 

significant deformation. Figure 4-10 shows the large deformation possible with a slight change 

of the camera orientation, although both two images are taken from cameras viewing the same 

direction.  

ASIFT estimates not only scale but also camera axis orientation parameters, latitude and 

longitude angles, and then normalizes rotation and translation. It is an affine invariant extension 

of SIFT, by covering all the possible orientations for the camera, and then use SIFT to detect the 

keypoints.  
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Figure 4 - 10 Large deformation of the same building in the images taken from cameras with a 

slight orientation change 

4.2.2.1 Affine Camera Model and Tilts 

As illustrated by Figure 4-11, the digital image acquisition of a flat object is 

𝐮 = 𝐒1G1𝐀𝐓u0,     (4-32) 

where u is a digital image, u0 is an infinite resolution frontal view of the flat object, T is a plane 

translation, A is a planar projective map, G1 is Gaussian convolution modeling the optical blur, 

and S1 is the standard sampling operator. More generally, the apparent deformation of a solid 

object coursed by a change of camera position can be locally approximated by affine transforms.  

Morel and Yu (2009) mentioned a theorem that any affine map A =  
a b
c d

  with a strictly 

positive determinant which is not a similarity has a unique decomposition 
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Figure 4 - 11 The projective camera model (Morel and Yu, 2009) 

A = HλR1 ψ TtR2 ϕ = λ  
cos ψ − sin ψ
sin ψ cos ψ

  
t 0
0 1

  
cos ϕ −sin ϕ
sin ϕ cos ϕ

 , (4-33) 

where zoom parameter λ > 0, λt is the determinant of A, Ri are rotations, ϕ ∈ [0, π), and Tt  is a 

tilt, namely a diagonal matrix with first eigenvalue t > 1 and the second one equal to 1. 

Figure 4-12 is showing the decomposition of the affine map via the theorem. Assume the camera 

is far away from the scene and starts from a frontal view. In the observation hemisphere, the 

angle ϕ is called longitude, and θ = arccos⁡(1/t) is latitude. The camera can rotate with the 

angle ψ around its optical axis. Also, it can move forward or backward as described by zoom 

parameter λ. 
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Figure 4 - 12 Geometric interpretation of the decomposition (Morel and Yu, 2009). 

4.2.2.2 Algorithm steps 

ASIFT first estimates all distortions caused by possible variation of the camera orientations and 

then uses SIFT to finish the keypoints detection, outlined in Figure 4-13. That means it estimates 

three parameters: the scale, the camera longitude angle and the latitude angle and normalizes the 

other three: the two translation parameters and the rotation angle. 

 

Figure 4 - 13 Overview of the ASIFT algorithm (Morel and Yu, 2009). 

ASIFT proceeds by the following steps: 
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1. Considering all the possible longitude ϕ and latitude θ of the camera orientation from a 

frontal position, transform each image to estimate the affine distortions. The images are 

rotated by an angle ϕ and tilted with parameter t =  
1

cos θ
 . The tilt is a directional t-sampling 

in digital images, convoluting by a Gaussian with standard deviation c t2 − 1, where c = 

0.8. 

2. A finite and small number of latitude and longitude angles are considered. However, these 

angles are well sampled to ensure to keep as close as possible to all possible views. Sample 

the latitude angle θ so that the associated tilts follow a geometric series 1, a, a2, ⋯ , an , with 

a =  2, and n goes up to 5 or more. Consequently, transition tilts between different images 

goes up to 32. Sample the longitude angle ϕ  for each tilt follow an arithmetic series 

0,
b

t
, ⋯ ,

kb

t
, with b ≈ 72° and k is the lat integer when 

kb

t
< 180 . On the observation 

hemisphere, the sampling of the parametersθ = arccos
1

t
 and ϕ is illustrated by Figure 4-14. 

 

Figure 4 - 14 The sampling of the parametersθ = arccos
1

t
 and ϕ (Morel and Yu, 2009). 



 

 

40 

3. Lastly, implement SIFT (detailed in Section 4.1.2.1) to compute the features of all estimated 

images. Select the best pair with the largest amount correspondences. 

4.3 Second Modification - Semi-Global Matching (SGM) 

The point cloud from PMVS is too sparse. SGM is a better algorithm when dealing with 

photogrammetry problems (Gerke, 2009). It exploits the so-called epipolar constraint which 

reduces the search space for matches to a 1D problem.  

4.3.1 The Workflow after the Second Modification 

After the second modification, the workflow is changed as Figure 4-15 shows. 

 

Figure 4 - 15 The workflow after the second modification using SGM algorithm for dense stereo 

matching 

 

Feature Detection (ASIFT) 

Feature Matching (RANSAC) 

Camera and Sparse Scene Geometry 

Reconstruction and optimization (SBA) 

3D Point Cloud Extraction (SGM) 
Disparity Computation (SGM) 

3D Dense Point Cloud 

Image Rectification 
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The modified workflow uses the camera parameters from SBA to rectify the images, and then 

computes the disparity map on the rectified images. At last, reproject each pixel in the image 

back to the 3D world based on the disparity map to realize a very dense 3D point cloud. 

4.3.2 Image Rectification 

Rectification is the essential step before applying the matching algorithm. In rectified images the 

epipolar lines are parallel to the x-axis of the image, which simplifies the epipolar constraint to 

the same line. 

 

Figure 4 - 16 The comparison of different coordinate systems in Bundler and OpenCV. 

In this project, a function named stereoRectify in an Open Source Computer Vision (OpenCV, 

2013) library is used to rectify the images. It requires the internal and external matrices of 

cameras as the inputs, and fortunately, Bundler gives these parameters. However there are some 

differences between Bundler (Snavely, 2006) and OpenCV (Kolaric, 2007) coordinate systems, 

as Figure 4-16 shows.  
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Assume a pinhole camera model is used. In the Bundler coordinate system, a 3D world 

coordinate, 𝐗B
W , is projected by a camera with rotation matrix 𝐑B  and translation matrix 𝐓B  to a 

camera coordinate, 𝐗B
C : 

𝐗B
C = 𝐑B𝐗B

W + 𝐓B .     (4-34) 

Convert the world coordinate, 𝐗O
W , from OpenCV back to Bundler coordinate system: 

𝐗B
W = 𝐑w𝐗O

W .      (4-35) 

Here 𝐑w  is the rotation matrix of world coordinate system from OpenCV to Bundler, which is 

180 degree rotation around x-axis. And convert the camera coordinate, 𝐗O
C , from OpenCV back 

to Bundler coordinate system: 

𝐗B
C = 𝐑C𝐗O

C .      (4-36) 

Here, 𝐑C  is the rotation matrix of camera coordinate system from OpenCV to Bundler, which is 

also 180 degree rotation around x-axis. Substituting 𝐗B
W  and 𝐗B

C  by equations (4-35) and (4-36), 

respectively, equation (4-34) becomes  

𝐑C𝐗O
C = 𝐑B𝐑w𝐗O

W + 𝐓B .     (4-37) 

Now, in the OpenCV coordinate system, the camera projective is described by 

𝐗O
C = 𝐑C

−1𝐑B𝐑w𝐗O
W + 𝐑C

−1𝐓B .    (4-38) 

The new rotation matrix 𝐑O  and translation matrix  𝐓O  in OpenCV coordinates is 
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𝐑O = 𝐑C
−1𝐑B𝐑w ,     (4-39) 

𝐓O = 𝐑C
−1𝐓B .      (4-40) 

Then for function stereoRectify, the rotation matrix and translation matrix between the 

coordinate systems of the first and the second cameras are 

𝐑 = 𝐑2𝐑1
−1 = 𝐑C

−1𝐑2B𝐑1B
−1𝐑C     (4-41) 

𝐓 = 𝐓2 − 𝐑𝐓1 = 𝐑C
−1𝐓2B − 𝐑C

−1𝐑2B𝐑1B
−1𝐓1B    (4-42) 

Since the original coordinate of image coordinate system of OpenCV is the top left corner, the 

principle point now is (w/2, h/2).  

4.3.3 Semi-Global Matching (SGM) Algorithm 

Dense stereo matching is often difficult due to occlusions, object boundaries, and low or 

repetitive textures. Scharstein and Szeliski (2002) separate most matching methods into four 

steps: matching cost computation, cost aggregation, disparity computation/optimization, and 

disparity refinement. Hirschmuller (2008) introduced a new way based on Mutual Information (MI) 

for handling complex radiometric relationships between images, to realize a pixelwise matching 

cost calculation. He proposed an approximate global, 2D smoothness constraint by combining 

many 1D constrains in the cost aggregation step. 
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4.3.3.1 Pixelwise Matching Cost Calculation 

The matching cost is calculated for a pixel p in the base image from its intensity Ibp and the 

suspected correspondence Imq with q = ebm(p, d) in the match image. For rectified images, with 

the match images on the right of the base image, the epipolar line ebm(p, d) = [px – d, py]
T
 with d 

as disparity.  

The matching cost based on MI is derived from the entropy H of two images and their joint 

entropy, which are calculated from the probability distributions P of the intensities in the 

associated images. 

MII1 ,I2
= HI1

+ HI2
− HI1 ,I2

,    (4-43) 

HI = −  PI i log PI i di
1

0
,    (4-44) 

HI1 ,I2
= −   PI1 ,I2

 i1, i2 log PI1 ,I2
 i1, i2 di1di2

1

0

1

0
.  (4-45) 

The better the images are registered, the lower the joint entropy HI1 ,I2
, the higher the value of MI.  

In order to use pixelwise matching cost, the joint entropy HI1 ,I2
 is expended via Taylor expansion 

into a sum over pixels (Kim et al., 2003). After warping the matching image according to the 

disparity image D by fD(Im ), the joint entropy HI1 ,I2
 is 

HI1 ,I2
=  hI1 ,I2

 I1p , I2p p ,    (4-46) 

hI1 ,I2
 i, k = −

1

n
log  PI1 ,I2

 i, k ⨂g i, k  ⊗ g i, k .   (4-47) 
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Here, PI1 ,I2
 is the joint probability distribution of corresponding intensities, n is the total number 

of corresponding pixels, and ⨂g i, k  implies convolution with a 2D Gaussian with a small 

kernel (i.e. 7×7). Along the same expansion of joint entropy, the entropy of the two images is 

HI =  hI Ip p ,     (4-48) 

hI i = −
1

n
log PI i ⨂g i  ⊗ g i ,   (4-49) 

with PI1
 i =  PI1 ,I2

(i, k)k , PI2
 k =  PI1 ,I2

(i, k)i . Then MI is  

MII1 ,I2
=  miI1 ,I2

 I1p , I2p p ,    (4-50) 

miI1 ,I2
 i, k = hI1

 i + hI2
 k − hI1 ,I2

 i, k .   (4-51) 

A look-up table of MI is built up. So, the pixelwise matching cost based on MI is 

CMI  p, d = −miIb ,fD (Im ) Ibp , Imq  .   (4-52) 

Well registered images have high MI, which results in lower cost.  

In this thesis, the cost was normalized to 32bit float that the max position becomes 1.0 and the 

min position becomes 0.0, suggested by Matthias Heinrichs (2007).  

A disparity map is required for warping Im before probability calculation. Kim et al. (2003) 

suggested an iterative solution that a final disparity map could be calculated after a rather low 

(e.g. 3) number of iterations with a random disparity map as a start. This is because that even a 
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wrong disparity map could give a good estimation of the probability distribution P when the 

number of pixels is high enough. However, the computational time would be very high 

unnecessarily. Hirschmuller (2008) proposed a fast way through a hierarchical calculation. He 

suggested to run three iterations with a random disparity map as the initial disparity at a 

resolution of 1/16, and then recursively use the (up-scaled) disparity image calculated at half 

resolution as the initial disparity, backing to the original resolution gradually. Theoretically, the 

runtime would be just 14 percent slower than the runtime of one iteration at the original 

resolution, ignoring the overhead of MI calculation and image scaling. 

4.3.3.2 Cost Aggregation 

Due to noise, an additional constraint is needed to smooth and penalize changes of neighboring 

disparity.  The energy E(D) depending on the disparity map D is 

E D =   C p, Dp +  P1T  Dp − Dq = 1 q∈Np
+  P2T  Dp − Dq > 1 q∈Np

 p ,  (4-53) 

where the operator T[] is the probability distribution of corresponding intensities. It is 1 if its 

argument is true and 0 otherwise.  

The first term of Equation (4-53) is the sum of matching costs of all pixels for the disparity map 

D. The second term adds a small constraint for all pixels q within the neighborhood of p if the 

disparity changes 1 pixel, and the third term adds a larger penalty for the larger disparity changes, 

ensuring that P2 ≥ P1. In this thesis, P1 = 0.05, and P2 = [0.06, 0.8] depending on the intensity 

gradient in the original image (Heinrichs, 2007). 
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Finding the disparity map D that minimizes the energy E(D) is a global minimization in 2D. It is 

a NP-complete problem. Hirschmuller (2008) divided the 2D aggregation into 1D from all 

direction equally. Figure 4-17 shows the calculation of the aggregated cost S(p, d) for a pixel p 

and disparity d. It summarizes the costs of all 1D minimum cost paths ending in pixel p at 

disparity d.  

 

(a)    (b) 

Figure 4 - 17 The aggregation of cost through 16 paths. (a) is the minimum cost path Lr p, d , (b) 

is the 16 paths from all directions r for pixel p (Hirschmuller, 2008). 

The cost Lr 𝐩, d  along a path traversed in the direction r of the pixel p at disparity d is defined 

recursively as 

Lr 𝐩, d = C 𝐩, d             

+min  Lr 𝐩 − 𝐫, d , Lr 𝐩 − 𝐫, d − 1 + P1, Lr 𝐩 − 𝐫, d + 1 + P1, min
i

Lr 𝐩 − 𝐫, i + P2  

− mink Lr 𝐩 − 𝐫, k .         (4-54) 
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The last term is the minimum path cost of the previous pixel from the whole term. This will not 

change the actual aggregated cost but limits the upper value of Lr 𝐩, d  as well as S 𝐩, d . 

Summarizing the costs Lr  over at least 8 (and should be 16) paths r provides good coverage of 

the 2D image, as 

S 𝐩, d =  Lr 𝐩, d 𝐫 .     (4-55) 

The 8 paths are horizontal, vertical and diagonal, while the 16 paths are 8 paths adding one step 

horizontal, one step vertical and one step diagonal. 

4.3.3.3 Disparity Computation 

For each pixel p, select the disparity d that corresponds to the minimum sum of cost. So the 

disparity map corresponding to the base image Ib is Db = mind Sb 𝐩, d . Switch the roles of base 

image and match image, we can get Dm = mind Sm  emb  𝐪, d , d . In order to obtain sub-pixel 

estimation, a parabolic curve was fitted to minimum, the next higher and lower disparity, and the 

position of the minimum of the curve is calculated as the sub-pixel matching disparity.  

After filtering both disparity maps by a median filter with a small window, i.e. 3×3, to remove 

outliers, the disparity map is determined by a consistency check 

D𝐩 =  
Db𝐩        if  Db𝐩 − Dm𝐪 ≤ 1

Dinv                        otherwise
 ,   (4-56) 

with 𝐪 = ebm  𝐩, Db𝐩 . This consistency check ensures unique mappings. 
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4.3.3.4 The Algorithm Steps 

The SGM algorithm’s workflow in the work done by Hirschmuller (2008) is as Figure 4-18 

shows. 

 

Figure 4 - 18 The workflow of SGM algorithm (Hirschmuller, 2008). 

Here are some key steps for coding hinted by Heinrichs (2007): 

a) Building the Probability map: Initialize a 256x256 array P(Ib, Im) with the value of ONE 

(this helps avoid log(0) later on). Checking each pixel p in the base image, if it has a valid 

correspondence q in the match image with a knowing disparity (a random number in the first 

iteration), increase P(Ibp, Imq) by one. After going through all the pixels, the probability map 

is the array P divided by the total number of P. 

b) Compute the entropies according to Equation (4-46) and (4-48). 

c) Build up a look-up table for MI according to Equation (4-50) and normalize it. 

d) Determining the Cost Matrix: Initiate a M×N×D matrix C(p, q, d) if the images are the 

size of M×N and the disparity range is D. Checking each pixel p in the base image with a 
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valid correspondence q in the match image when disparity is d, give C(p, q, d) the value 

MI(Ibp, Imq) from the MI look-up table. 

e) Cost aggregation: Take from left to right horizontally as an example. Initial a matrix S with 

the same size as cost matrix C with all 0 values for storing the sum of cost, and a buffer 

minC with the same size as the height of the image for storing the minimum costs of the 

certain rows. For each row in the first column, copy the value from the cost matrix C to the 

matrix S for all disparity values, and store the minimum cost of each pixel in the buffer 

minC. On the next column, aggregate the cost as Equation (4-53) does and replace the 

minimum cost at the end.  Do so for all columns. After finishing the first path, repeat this 

cost aggregation steps to all the other 15 paths: horizontal, vertical, diagonal and one step 

horizontal or vertical and one step diagonal. 

f) Determining disparity dmin for each pixel with minimum value in the sum of cost matrix S. 

Compute the minimum disparity on a parabolic curve fitted by minimum, the next higher 

and lower values. And then filtered the disparity map by a medium filter. This is the 

disparity map Db corresponding to the base image. 

g) Alternate the role of the base image and the match image and repeat steps from a) to f) to 

calculate the disparity map Dm corresponding to the match image.  

h) Check the consistency via Equation (4-55). 
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4.3.3.5 Disparity Refinement 

The disparity map may still have some errors and invalid values. So disparity refinement steps 

are needed. These include removal of peaks and discontinuity preserving interpolation.  

For peak removal, the disparity map is segmented by allowing one pixel varying within one 

segment, considering 4 connected neighbors. The disparity segments with the size smaller than a 

threshold are set to invalid.  

Due to consistency check or peak filtering, some pixels on the disparity map are set to invalid. In 

order to interpolate the holes while at the same time preserve the discontinuity, the invalid 

disparities are classified into two classes: occlusions and mismatches first. Then interpolate the 

occlusions by the background, while interpolate the mismatches by all neighboring pixels. 

For each invalid disparity dik, find the nearest valid disparities above dia, below dib, left dlk and 

right drk, and their correspondent segment indexes Sik, Sia, Sib, Slk, Srk. The disparity dik is then 

determined by the following interpolation equations (Hirschmuller, 2003). 

dik =  
dh +dv

2

min dh , dv .
           

 if Sh = Sv

 if Sh ≠ Sv

 ,   (4-57) 

with 

dh =  
 drk −dlk   i−l 

r−l
+ dlk       

min dlk , drk      
  
 if Slk = Srk ,
 if Slk ≠ Srk .

    (4-57a) 
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dv =  

 dib −dia   k−a 

b−a
+ dia       

min dia , dib      
   

 if Sit = Sib ,
 if Sia ≠ Sib .

    (4-57b) 

Sh =  
Slk     if dlk < drk ,
Srk      if dlk ≥ drk .

     (4-57c) 

Sv =  
Sia     if dia < dib ,
Sib      if dia ≥ dib .

     (4-57d) 

4.3.3.6 Processing of Large Images 

Due to the large temporary memory requirement for storing the pixelwise matching cost matrix 

and aggregated cost matrix, larger images, such as the Pictometry images, should be divided into 

several tiles. The tiles should have overlapping areas to avoid mismatches near tile borders. In 

this thesis, the tile size was chose as 1000 rows by image width, and the overlap is 200 rows. 

After computing all the tiles, a weighted mean of disparities from all tiles at overlapping areas is 

calculated, shown as Figure 4-19.  

 

Figure 4 - 19 Merging all tiles by calculating a weighted mean at overlapping areas 

(Hirschmuller, 2008). 

. 
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In the left 25% of the overlapping area of tile Ti ant tile Tk, only the disparity from Ti is 

considered. In the middle 50% of the overlapping area, a weighted mean of disparities from both 

tiles is calculated. In the right 25% of the overlapping area, only the disparity from Tk is 

considered. In this thesis, the overlap area is 200 pixels, and only center 100 pixels are 

considered for disparity merging. 

4.3.4 Dense Point Cloud Projection from Disparity Map 

Stereo vision recovers object’s 3D information based on disparity and triangulation (Zou and Li, 

2010). Once the disparity map has been computed by stereo matching, basic photogrammetry (as 

Figure 4-20 shows) can be used to calculate the 3D coordinates for each valid pixel, whose value 

is larger than 0 in the disparity map.  

 

Figure 4 - 20 The model used for calculating the 3D coordinates in basic photogrammetry 

(Nilosek and Salvaggio, 2010). 
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In Figure 4-20, B is the baseline between the two images, f is the focal length, the subscripts l 

and r refer to the left and right images, respectively (Nilosek and Salvaggio, 2010), and Zc is the 

distance of 3D point away from the camera. If moving the right part to the left, ∆x represents the 

x displacement of the stereo image pair. Then through the similarity of triangles: triangle abc is 

similar to triangle ade, the coordinate, Zc, can be calculated by 

Zc =
f∗B

∆x
.     (4-58) 

Zou and Li (2010) used a reproject matrix, Q, from the output of rectification function in 

OpenCV to compute 3D coordinates. Q matrix, gives all the photogrammetry information needed 

for reprojection. If the stereo images were placed parallel to the x axis, the Q matrix is 

Q =

 

 
 
 
 

x

xx

x

y

x

T

cc

T

f

c

c

'
1

00

000

010

001







 

 
 
 
 

,    (4-59) 

where, cx  and cy  are the principal point coordinates in the x and y axis, respectively, in the left 

image after rectification, c’x  is the x principal point coordinate in the right image, f is the focal 

length of the left camera, and Tx is the baseline of stereo images.  

For a valid pixel (x, y) with disparity d, the homogeneous coordinates (X, Y, Z, W) for 3D point 

are computed by 



 

 

55 

 

X
Y
Z
W

 = Q  

x
y
d
1

 =

 

 
 

x − cx

y − cy

f
−d+cx −c’x

Tx  

 
 

.   (4-60) 

Finally, the object coordinates are decided as X/W, Y/W, Z/W. They are 

X =
Tx  x−cx  

−d+cx −c’x
,     (4-61) 

Y =
Tx  y−cy  

−d+cx −c’x
,     (4-62) 

Z =
Tx f

−d+cx −c’x
.     (4-63) 

4.4 Third Modification - Noise Removal 

There will be some noise definitely on the point cloud due to errors in the keypoints detected by 

SIFT, wrong matching by RANSAC, errors arising in the SBA optimization step, or incorrect 

disparity computed by SGM. These outliers will complicate the estimation of local point cloud 

characteristics such as surface normals or curvature changes, which may cause point cloud 

registration failures. So noise removal is an essential step after point cloud extraction. In this 

thesis, two noise removal methods were tested and compared in the point cloud space. They are 

statistical removal and radius outlier removal, provided by the Point Cloud Library (PCL, 2013). 

And for the SGM only, another noise removal method, bilateral filter, was tested on the disparity 

map. 
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Figure 4 - 21 The workflow after the third modification with noise removal. 

4.4.1 The Workflow after the Third Modification 

After the third modification, the workflow is as Figure 4-21 shows. In the modified workflow, a 

noise removal step is added at last to remove extraneous points from the extracted dense point 

cloud. 

4.4.2 Noise Removal Methods 

4.4.2.1 Statistical Removal 

The statistical removal method performs a statistical analysis on a neighborhood of each point. It 

assumes that the distribution of point-to-neighbor distances in the input dataset is a Gaussian 

distribution with a mean and a standard deviation. For each point, the mean distance from it to all 
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its neighbors is calculated. The point would be trimmed from the dataset if the mean distance is 

outside the threshold defined the standard deviation. 

 

Figure 4 - 22 The diagram of the statistical removal method (Wikipedia). 

Figure 4-22 shows the diagram of Statistical Removal. In Figure 4-22, the mean distances of all 

points to their neighbors fall in a Gaussian distribution, as blue area shows. Then set a threshold 

shown as the orange dash line. The points with the mean distance within the threshold are inliers, 

others are outliers. 

4.4.2.2 Radius Outlier Removal 

The radius outlier removal method counts the number of points within a certain radius of a given 

point. If it is lower than some threshold, that point would be removed as an outlier, shown as in 

Figure 4-23. 
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Figure 4 - 23 The diagram of the radius outlier removal method (PCL, 2013). 

In Figure 4-23, a circle (a spherical in 3D point cloud) is set to each point with radius d and the 

center at that point. Count the points within the circle (the spherical in 3D point cloud), such as 

zero for the yellow point, four for the blue point, and one for the green point. If the threshold is 2, 

then the yellow point and blue point are outliers while the blue point is an inlier. 

4.4.2.3 Bilateral Filter 

A bilateral filter is an edge-preserving and noise reducing smoothing filter. The average weights 

of this filter combine geometric closeness and photometric similarity from nearby pixels of each 

pixel in the processing image. Here, bilateral filter was applied to the disparity map, and the 

photometric similarity is the disparity closeness. 

A lowpass spatial domain filter applied to a multiband image f(x) produces a multiband response 

image as follows 
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    h x =
1

kd  x 
 f ξ c ξ dξ

∞

−∞
    (4-64) 

where c(ξ, x) is a measure of geometric closeness between the neighborhood centre x and a 

nearby point ξ. The normalization factor kd(x) is given by 

kd x =  c ξ, x dξ
∞

−∞
    (4-65) 

The range (brightness) domain filtering is carried out similarly as  

h x =
1

ks  x 
 f ξ s f ξ , f x  dξ

∞

−∞
    (4-66) 

where s(f(ξ), f(x)) measures the photometric (brightness) similarity between the pixel at the 

neighborhood centre and that of a nearby point ξ. The normalization factor in this case is  

ks x =  s f ξ , f x  dξ
∞

−∞
     (4-67) 

Bilateral filtering simultaneously combines the spatial and range domain filters 

h x =
1

k x 
 f ξ c ξ, x s f ξ , f x  dξ

∞

−∞
   (4-68) 

where the normalization factor is  

k x =  c ξ, x s f ξ , f x  dξ
∞

−∞
    (4-69) 

 Bilateral filtering replaces the pixel value at x with an average of similar and nearby pixel values. 

In smooth regions, pixel values in a small neighborhood are similar to each other and the 
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bilateral filter averages away the small differences between pixel values caused by noise. For 

sharp edges, good filtering behavior is achieved at the boundaries due to the closeness 

component, and edges are preserved at the same time due to the range component.   

Gaussian filter is the most common implementation of bilateral filtering. It is applied for both the 

closeness, c(ξ, x), and the similarity, s(f(ξ), f(x)) functions. For the closeness function we have 

c ξ, x = e
−

1

2
 

d ξ ,x 

ς d
 

2

     (4-70) 

where d(ξ, x) is the Euclidian distance between x and  ξ 

d ξ, x = d ξ − x =∥ ξ − x ∥    (4-71) 

Analogously we have the similarity function 

s ξ, x = e
−

1

2
 
δ f ξ ,f x  

ςr
 

2

    (4-72) 

where δ(f(ξ), f(x)) is the Euclidean distance between two intensity values f(ξ) and f(x), namely 

δ f ξ , f x  = δ f ξ − f x  =∥ f ξ − f x ∥  (4-73) 

which in the disparity image case simply involve disparity values. 

The standard deviation, σd in the closeness filtering is chosen based on the desired amount of 

low-pass filtering. A large σd covers more distant image locations, thus blurs more. The standard 
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deviation, σr in the range filtering is chosen to achieve the desired amount of combination of 

pixel values. Pixels with value difference smaller than σr are mixed together.  
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5 Results 

5.1 Results of the Previous Work 

In order to reduce the execution time during initial testing, a small region around the Carlson 

building of RIT was cut out from the original Pictometry images. The size of the small region is 

1000×1000 pixels (shown as Figure 5-1(a)), out of 3248× 4872 pixels in the original images. 

Figure 5-1(b) gives the result of ten North-viewing oblique images (as Figure 3-2(a) shows) from 

the RIT 3D workflow.  

  

(a)                                                                        (b) 

Figure 5-1 (a) is the small region around Imaging Science Building in the size of 1000×1000 

pixels. (b) is the point cloud of 10 North-viewing small region images 
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The RIT 3D workflow gives a good result, 34,358 vertices in total. On the visible part from 

North-viewing images, a sparse point cloud of building roofs and walls are presented. 

5.2 Results of the First Modification – ASIFT 

ASIFT is an affine invariant extension of SIFT. It finds out many more keypoints and then 

results in more matches in oblique images when there is large deformation in the images viewing 

the same scene. As compared in Figure 5-2, ASIFT gives 85 matches while SIFT finds nothing 

when the deformation is as Figure 5-2(a) shows. 

 

Figure 5-2 The comparison of ASIFT and SIFT to find the correspondences in oblique images. (a) 

is the image pair. (b) is the correspondences computed by ASIFT and SIFT: left of (b) is the 

result of ASIFT, right of (b) is the result of SIFT. 
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After modifying the first part of the workflow from SIFT to ASIFT, the same ten small regions 

of North-viewing images were processed by the modified workflow. Figure 5-3 compares the 

results. The modified ASIFT workflow contains 44,640 vertices, almost 30% more than the 

vertices from the SIFT workflow. This better result demonstrates that ASIFT is a better 

algorithm in finding keypoints with higher accuracy.  

 

 (a)    (b) 

Figure 5-3 The point cloud of ten small regions of North-viewing Pictometry images. (a) is the 

result of ASIFT workflow (44640 vertices), (b) is the result of SIFT workflow (34358 vertices). 

5.2.1 Results of Original Size Images 

However, if you zoom in to check each wall on the buildings, no matter the point cloud from 

SIFT or ASIFT workflow, you will find out they are not vertical to the ground (shown as Figure 
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5-4). The reason is that Bundler assumes the principle point is in the center of each image. So 

image cutting gives the system wrong coordinates of principle point, and furthermore wrong 

estimation of the camera parameters, which fools the PMVS in computing the 3D point clouds. 

 

(a)      (b) 

Figure 5-4 The errors on the walls in both point clouds. (a) is the point cloud from ASIFT 

workflow, (b) is the point cloud form SIFT workflow 

Using the original images, the point clouds from the same ten original Pictometry oblique images 

are shown in Figure 5-5. The point cloud covers more regions because the original images cover 

a larger region. Comparison of the results from ASIFT workflow and from SIFT workflow 

reveals that the point cloud from ASIFT workflow covers more regions, especially in the top 

right of the figures, and also contains 40% more vertices than the SIFT workflow. These results 

confirm again that ASIFT is better than SIFT in dealing with the oblique images. 
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From the zoom image in Figure 5-6, all the walls are vertical to the ground. After going back to 

the original size, it minimizes the error brought by the error estimation of the principle point in 

Bundler. 

   

(a)     (b) 

Figure 5-5 The point clouds of original size images. (a) is the result from ASIFT workflow 

(506,084 vertices), (b) is the result from SIFT workflow (357,702 vertices). 

 

Figure 5-6 The vertical walls after going back to the original size images. 
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5.2.2 Results of Focal Length Fixation 

Although the walls are now vertical, there still are some fatal errors on the details of the walls for 

either the SIFT or ASIFT result. These errors are part of the walls floating outside the building, 

marked as red points in Figure 5-7.  

 

 

The walls are floating because of the optimization of SBA. Although SBA could compute and 

optimize the camera parameters, it does not guarantee to give the correct focal lengths. Table 5-1 

shows the difference of focal lengths after optimization compared to the exact ones, which are 

also presented in Figure 5-8. The small red circles represent input focal lengths in Bundler, while 

the green circles represent the output focal lengths. Obviously, the trend of output focal lengths 

is similar to the actual focal lengths (the small blue circles), but they are not identical. The 

difference would bring errors on the walls. 

Figure 5-7 The floating walls marked by red points. 
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Table 5-1 Focal lengths for the ten North-viewing images after SBA. 

Images Actual F Input F Output F 

N1 11423 

11423 

11505 

N2 11434 11439 

N3 11423 11579 

N4 11473 11496 

N5 11483 11563 

N6 11423 11522 

N7 11473 11530 

N8 11483 11571 

N9 11434 11475 

N10 11423 11530 

 

 

. 
Figure 5-8 The diagram of the input and output focal lengths of Bundler, comparing to the actual 

focal length. 
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Table 5-2 Different output focal lengths with different values for constrain_focal_weight. 

Images Actual F Input F 
Output F of Diff. constrain_focal_weight 

1.0e-4 1.0e6 1.0e12 1.0e24 

N1 11423 11423 11506 11423 11423 11423 

N2 11434 11434 11441 11434 11434 11434 

N3 11423 11423 11579 11503 11502 11423 

N4 11473 11473 11479 11473 11473 11473 

N5 11483 11483 11563 11483 11483 11483 

N6 11423 11423 11521 11423 11423 11423 

N7 11473 11473 1512 11473 11473 11473 

N8 11483 11483 11570 11483 11483 11483 

N9 11434 11434 11473 11434 11434 11434 

N10 11423 11423 11527 11423 11423 11423 

 

Table 5-3 The vertices decrease when the value of constrain_focal_weight goes up. 

constrain_focal_weight 

1.0e-4 1.0e6 1.0e12 1.0e24 

    

506,774 vertices 517,026 vertices 514, 334 vertices 440,595 vertices 
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(a)      (b) 

 

(c)      (d) 

 

 

 

One solution for removing these floating walls is to use the actual focal length as the input focal 

length and constraining the variance of the focal length during the optimization process. 

Figure 5-9 Wall errors decrease when the value of parameter constrain_focal_weight increases. (a), 

(b), (c) and (d) are the point clouds of constrain_focal_weight with the value of 1.0e-4, 1.0e6, 

1.0e12 and 1.0e24, respectively. 
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Fortunately, there is a constraint parameter in Bundler, named constrain_focal_weight. The 

greater the value of this parameter, the harder for Bundler to change the focal lengths when 

optimizing the camera parameters and 3D coordinates. After giving the Bundler the actual focal 

length for each image, with different values for constrain_focal_weight, the output focal lengths 

are shown in Table 5-2. 

When the value of constrain_focal_weight goes up, the output focal lengths are getting more and 

more close to the actual ones. They are identical to the actual focal lengths when the parameter 

constrain_focal_weight equals to 1.0e24. Although the total vertices of the point clouds decrease 

when constrain_focal_weight increase, as Table 5-3 shows, the errors on the walls of buildings 

are gradually corrected as the focal lengths getting closer to the actual ones, as Figure 5-9 shows. 

In Figure 5-9, the floating walls are marked by orange ellipses. When constrain_focal_weight 

reaches the value of 1.0e24, no floating walls are in the point cloud. 

5.3 Results of the Second Modification – SGM 

The ASIFT workflow gives us a good point cloud. However, it is insufficient for finding features, 

like 3D keypoints for 3D registration, or building roof borders for modeling. As Figure 5-10 

shows, the points are insufficient for roof extraction, since the borders are unclear enough. 
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So a much more dense point cloud is desired for the future research. In this project, SGM is 

tested for extracting a much more dense point cloud from oblique images. Before SGM 

implementation, the images should be rectified. 

5.3.1 Results of Image Rectification 

Converting the camera parameters, like rotation and translation matrix, from SBA coordinate 

system to OpenCV coordinate system, the rectification result of two North-viewing Pictometry 

images (shown as Figure 5-11(a) and (b)) are shown in Figure 5-11(c). 

After rectification, the epipolar lines are parallel to the x-axis of the images. The same features 

on different images of the stereo pair now have the same y coordinates. This result reduces the 

search space for matches to a 1D problem. For the same features, it only needs to consider the 

shift of x- axis. The closer the distance from the feature to the camera, the larger the shift in x-

axis. As Figure 5-12 demonstrates, the blue dot is closer to the camera than the orange dot and 

has larger x shift. 

Figure 5-10 Sparse point cloud extracted by ASIFT workflow. 
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(a)      (b)  

 

(c) 

Figure 5-11 Image rectification result. (a) and (b) is the left and right images for rectification. (c) 

is the rectification result. 

5.3.2 Results of Calculation of Disparity Maps 

A function named SGBM (Semi-Global Block Matching) embedded in OpenCV is chosen to 

compute the disparity map from rectified image pairs. It is a simple version of SGM, and 

computes the disparity map in a block size. Figure 5-13 demonstrates the result from the 

Tsukuba images. 
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(a)    (b)   (c) 

Figure 5-13 The disparity maps of Tsukuba images by SGBM function embedded in OpenCV. (a) 

is the image, (b) is the ground truth, (c) is the disparity map. 

Comparing to the ground truth, the result mainly reveals the depth information well, like the 

lamp is brightest of all because it is closest to the camera, and the shelf is darkest due to it is 

Figure 5-12 The diagram of disparity shift of features with different distance to the camera. 
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farthest from the camera. That depth information also shows in the disparity map computed from 

the rectified toys images (Figure 5-14). 

 

(a)    (b) 

Figure 5-14 The disparity maps of toys images by SGBM function embedded in OpenCV. (a) is 

the images after rectification, (b) is the disparity map. 

The disparity map of one pair of Pictometry oblique images, computed by SGBM in OpenCV, 

shows in Figure 5-15. We also can easily see the depth information from it. 

 

Figure 5-15 The disparity map of Pictometry oblique images computed by SGBM in OpenCV. 
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5.3.3 Results of Dense Point Cloud from Disparity Maps 

The similarity of triangles in basic photogrammetry is used to compute the 3D coordinates of 

each valid pixel. Figure 5-16 gives the results of dense point cloud of toys images. Comparing it 

to the point cloud extracted from the original workflow (shown in Figure 5-17), the former 

(4,896,467 vertices) is much denser than the later (336,684 vertices), not to mention the former 

uses only two images, while the later uses 56 images. The second modification would increase 

the possibility of exacting keypoints for 3D registration because of much denser point cloud. 

 

 

Figure 5-16 The dense point clouds of toys images from different view angles. 
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(a)      (b) 

Figure 5-17 The comparison of the point clouds extracted by the original workflow and the 

workflow of the second modification. (a) is the point cloud from the second modification. (b) is 

the point cloud from the original workflow. 

Applying the second modified workflow to Pictometry images, the dense point cloud computed 

from SGBM disparity map contains a lot of noise, shown as Figure 5-18. After adding a bilateral 

filter (window size: 30, ςd = 30, and ςr = 1.5) to the disparity map, the noise is highly reduced, 

but the buildings were twisted. 
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(a)      (b)  

Figure 5-18 The dense point cloud of Pictometry images from different view angles. (a) is the 

point cloud before bilateral filtering. (b) is the point cloud after bilateral filtering. 

In order to find the reason of failure, three tests were done in this thesis. 

1) The ratio of the baseline to the camera height 

The base of this pair of Pictometry images is only 144 pixels, while the flight height is almost 

1400m. The low ratio of the baseline to the camera height might be a problem, because errors 

would be brought in during the projection step if the ratio is low enough.  

In order to check the effect of different disparity ranges on the accuracy of disparity maps, a pair 

of toys images with a very low baseline of 95 pixels is tested. The result shows in Figure 5-19. 

Comparing to the point cloud with the baseline of 186 pixels, it confirms that low ratio of the 



 

 

79 

baseline to the camera height will emphasize the error and noise. And apparently, the baseline 

should be not too large because enough overlapping area is need.  

 

(a)      (b) 

Figure 5-19 The dense point cloud extracted from toys images with different baseline. (a) is 

extracted from image pair with lower disparity range, (b) is extracted from image pair with 

higher disparity range. 

2) The ratio of the building height to the camera height 

The ratio of the building height to the camera height might be another reason, since it is much 

lower in the toys images. In order to discuss the effect of the ratio of building height to the flight 

height, some images of Mega and Lego blocks are tested and compared. In Figure 5-20, it is 

obvious that the dense point cloud extracted from Mega block images has lower noise than the 

dense point cloud extracted from Lego block images, from which may be concluded that a lower 

ratio of building height to the flight height would lead to more noise in the dense point cloud.  
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(a)      (b) 

Figure 5-20 The dense point clouds. (a) is from Mega blocks, (b) is from Lego blocks. 

3) The approach for disparity map computation 

SGBM embedded in OpenCV is not the original SGM proposed by Hirschmuller (2008). There 

are some differences between these two approaches, as shown in Table 5-4. The cost calculation 

of original SGM is based on mutual information, while in OpenCV it is based on the Birchfield-

Tomasi sub-pixel metric. The cost is aggregated from 8 or 16 directions in the original SGM, but 

only 5 or 8 directions in SGBM. The disparity maps of the test Tsukuba images computed by 

both SGM and SGBM are shown in Figure 5-21. 
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Table 5-4 The comparison of the original SGM and SGBM in OpenCV. 

 
Original SGM SGBM in OpenCV 

Color Image No Yes 

Cost Function Mutual information Birchfield-Tomasi sub-pixel metric 

Cost Aggregation 8 or 16 directions 5 or 8 directions 

Matched Block Size 1 1 … 11 

 

 

(a)    (b)   (c)   (d) 

Figure 5-21 The disparity maps of Tsukuba images by both SGM and SGBM approaches. (a) is 

the image, (b) is the ground truth, (c) is the result from SGBM, (d) is the result from SGM. 

Obviously, the result by SGM is better than the result by SGBM. The SGM result has higher 

accuracy, better edge and border response and more smoothness in the area with the same 

disparity. It is the same when applying the two approaches to the rectified toys images, shown in 

Figure 5-22.  
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(a)    (b)    (c) 

Figure 5-22 The disparity maps of toys images by both SGM and SGBM approaches. (a) is the 

rectified image, (b) is the result from SGBM, and (c) is the result from SGM. 

In Pictometry oblique images, some factors cannot be changed, such as the building height or the 

flight height. The things we can do are finding image pairs with large baseline and using original 

SGM proposed by Hirschmuller.  Another image pair with baseline of 1504 pixels was tried.  

Since the original SGM is a memory consumption algorithm, Pictometry images are divided into 

several tiles for disparity computation, as Section 4.3.3.6 described. And all disparity sub-maps 

are merged together before projection. In this thesis, the overlap is 200 pixels, and tile size is 

1000 rows by all the cols. Figure 5-23 shows the results of one tile. The SGM result is better than 

SGBM result with more valid pixels, and hence it has better border response.  

The point clouds of this image pair is compared in Figure 5-24. Obviously, the point cloud 

extracted from SGM algorithm is denser than the one from SGBM class in OpenCV, and also it 

contains more wall points in the viewable direction. 
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Figure 5-23 The disparity maps of Pictometry images by both SGM and SGBM approaches. (a) 

is the images after rectification, (b) is the results from SGBM, and (c) is the results from SGM. 

  

(a)      (b)    

Figure 5-24 The point cloud projected from the disparity map computed by SGM. (a) is the result 

by SGBM, (b) is the result by SGM. 

5.4 Results of the Third Modification - Noise Removal 

In the point cloud from the first modification, Figure 5-25(a), many extraneous points are 

floating besides the walls and roofs. And in the dense point cloud from SGM, invalid points exist 

(a) (c) 

(b) 
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through the ray of light (Figure 5-25(b)). These noise points would bring confusion in further 

processing steps such as surface extraction, roof measurement, and 3D feature detection. So 

noise removal step is needed. 

 

(a)       (b) 

Figure 5-25 Noise in the point cloud. (a) shows the extraneous points floating besides the walls 

and roofs, (b) shows invalid points exist as rays of light. 

Two noise removal methods: the statistical noise removal method and the radius noise removal 

method are tested and compared in this thesis. Figure 5-26 gives the results. After noise removal, 

walls and roofs are much clearer in both results. For comparison, the same situations are set, 

such as the same number of neighbors and almost the same vertices after noise removal by 

adjusting the second parameters. No significant difference is detected in details in the point cloud 

of North-viewing images, as Figure 5-27 shows. 
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 (a) 

  

 (b) 

   

(c) 

Figure 5-26 The results of noise removal. (a) is the point cloud with noise, (b) is the result of 

statistical removal method, (c) is the result of radius outlier removal method. 

     

(a)      (b) 

Figure 5-27 The comparison of the details of the two noise removal methods. (a) is the detail of 

the statistical removal method, (b) is the detail of the radius outlier removal method. 
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However, the point clouds of west and vertical images are much sparser than the North-viewing 

images because they were generated by just a few images. More vertices are removed in sparse 

areas by the radius outlier removal method than by the statistical removal method, even if they 

are correct points. The significant areas are marked by orange ellipses in Figure 5-28. So, the 

statistical noise removal method is better than the radius outlier noise removal method. 

 

(a)      (b) 

 

(c)      (d) 

Figure 5-28 The noise removal results in sparse areas. (a) and (b) are the results of statistical 

removal method and radius outlier removal, respectively, in West-viewing point cloud, (c) and (d) 

are the results in vertical point cloud. 
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Applying statistical noise removal method to the dense point cloud from SGM, the result is 

shown in Figure 5-29. After noise removal, the noise on the light rays is almost removed, both 

between the buildings and down the earth. 

 

Figure 5-29 Dense point cloud after noise removal by statistical removal method. (a) is the point 

cloud with noise, (b) is the point cloud after noise removing by statistical removal method. 

5.5 Accuracy Assessment 

An ideal way for accuracy assessment is comparing the imagery-derived point cloud to LiDAR 

data, if we assume LiDAR data is the ground truth. However, 3D point cloud registration is 

(a) 

(b) 
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another challenge in the field, and also, most of the point clouds extracted in this thesis do not 

have corresponding LiDAR data. So, as a simple way, only the points from flat surfaces are 

selected for accuracy assessment, such as the subsets of points from flat roof, or flat ground. The 

accuracy is defined as the flatness of the points from a plane. For a better comparison of the 

accuracy of point clouds from the old workflow to the modified workflow, the point clouds from 

City Hall are selected, since they have dense point clouds from both workflows. 

After selecting the subset of points within a flat surface, a plane is fitted to the points by 

RANSAC. The error is quantified as Mean Squared Error (MSE): 

MSE =
  pi−pi  2N

i=1

N
     (5-1) 

Here, pi is the coordinate of  point in the subset, pi  is the projected coordinate of point pi to the 

fitted plane,  ∙ 2  is the Euclidian distance of the two points, and N is the total points in the 

subset. 

The selected corresponding planes from the City Hall point clouds are shown as Figure 5-30. For 

the up plane, 239 points are selected from the point cloud extracted by the original workflow, 

while 5,579 points are selected from the point cloud by the modified workflow. And for the 

down plan, 373 points are selected from the point cloud extracted by the original workflow, 

while 10,953 points are selected from the point cloud by the modified workflow.  
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After fitting by RANSAC with the same parameters, the inliers and outliers for each subset 

points are shown in Figure 5-31. The units of the point coordinates are unknown, since the 

camera parameters are estimated by Bunlder.  

 

(a)    (b)    (c) 

Figure 5-30 The point subsets from the point clouds extracted by the original workflow and the 

modified workflow. (a) are the corresponding image parts, (b) are the point subsets from the 

point clouds extracted by the original workflow, (b) are the point subsets from the point clouds 

extracted by the modified workflow. 
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MSE = 9.21 × 10−6; 

 

(1a) 

 

(1b) 

 

Figure 5-31 The inliers and 

outliers for each subset points 

after fitting by RANSAC with 

the same parameters. (1a) is the 

RANSAC results for the up 

plane (original workflow). (1b) is 

the error histogram in Euclidian 

distance for the up plane 

(original workflow). 
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MSE = 5.53 × 10−5; 

(2a) 

 

(2b) 

 

Figure 5-31 (Cont'd) The inliers 

and outliers for each subset 

points after fitting by RANSAC 

with the same parameters. (2a) is 

the RANSAC results for the 

down plane (original workflow). 

(2b) is the error histogram in 

Euclidian distance for the down 

plane (original workflow). 
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MSE = 3.34 × 10−6; 

(3a) 

 

(3b) 

 

Figure 5-31 (Cont'd) The inliers 

and outliers for each subset 

points after fitting by RANSAC 

with the same parameters. (3a) is 

the RANSAC results for the up 

plane (modified workflow). (3b) 

is the error histogram in 

Euclidian distance for the up 

plane (modified workflow). 
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MSE = 4.16 × 10−6; 

(4a) 

 

(4b) 

 

Figure 5-31 (Cont'd) The inliers 

and outliers for each subset 

points after fitting by RANSAC 

with the same parameters. (4a) is 

the RANSAC results for the 

down plane (modified 

workflow). (4b) is the error 

histogram in Euclidian distance 

for the down plane (modified 

workflow). 
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In the figures, the green points are inliers while the red points are outliers. We can see, the point 

cloud subsets from the modified workflow are much denser than the point cloud subsets from the 

original workflow. And the inliers ratios of the point subsets from the modified workflow, 0.70 

and 0.68 (3884/(3884+1695) and 7460/(7430+3493)), are also higher than the ratios of point 

subsets from the original workflow, 0.59 and 0.47 (142/(142+97) and 177/(177+196)), 

respectively. Most importantly, the MSEs of the point subsets from the modified workflow, 

3.34 × 10−6 and 4.16 × 10−6, are slightly lower than the MSEs of the point subsets from the 

original workflow, 9.21 × 10−6  and 5.53 × 10−5 , respectively. With the error histograms, we 

can conclude that the point subsets from the modified workflow are more flat than the ones from 

the original workflow. 
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6 Conclusion 

Oblique images taken from different view directions contain more building facade information 

than nadir images. The availability of oblique aerial images brings the possibility to extract dense 

point clouds with both roof points and wall points automatically. A more dense point cloud is 

desired for 3D point cloud registration, surface detection, and block model creation.  

In this thesis, based on an earlier developed RIT workflow, three modifications are proposed and 

tested for extracting a dense point cloud from oblique images automatically. The first 

modification is to replace the first part of the workflow from SIFT to ASIFT. The result reveals 

that this modified workflow extracts 40% more vertices than the RIT workflow from Pictometry 

oblique images. Then, floating walls are corrected by fixing the focal lengths for each image 

individually.  

The second modification is implementing SGM to do dense stereo matching and disparity map 

computation. Then, we project the disparity map back to 3D point cloud by using the basic 

photogrammetry model and triangular similarity. Initially, the SGBM function imbedded in 

OpenCV was used to compute the disparity map. The comparison of the point cloud extracted by 

SGM to the point cloud by the original workflow shows that SGM could give a much more 

dense point cloud. However, since the dense point cloud extracted from Pictometry oblique 

images contains too much noise to remove even by a bilateral filter on the disparity map, three 

tests were made. The testing results show that, firstly, the ratio of the baseline to the camera 

height should be in a reasonable range, since that too small of a ratio would enlarge the errors in 



 

 

96 

projection and too large a ratio would reduce the overlapping area. Secondly, a low ratio of the 

building height to the camera height would also bring noise to the dense point cloud. Also, the 

approach for disparity map computation should be the original SGM proposed by Hirschmuller 

(2008), not the SGBM in OpenCV, since SGM gives a better result with higher accuracy, better 

edge and border response and more smoothness in the areas with the same disparity. After these 

discussions, another pair of Pictometry oblique images was selected, and the point cloud as dense 

as expected with clear border response. 

The third modification is noise removal. Two methods are tested and compared. The result 

shows that the two methods are the same in dense point areas, while the statistical removal 

method has better results in the sparse areas.  

To evaluate the modified workflow, an accuracy assessment is made in the end. From the point 

clouds extracted by the original workflow and the modified workflow, respectively, point subsets 

from two flat areas are selected. By fitting planes with RANSAC, the Mean Squared Errors 

(MSEs) of the points to the fitted planes are compared, respectively. The point subsets from the 

modified workflow have higher percentages of inliers and lower MSEs than the ones from the 

original workflow, respectively.  
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7 Future Work 

In this thesis, a successful attempt is made to extract dense point clouds from oblique images 

automatically. Starting from the previous work done by RIT researchers, three modifications 

were proposed and tested. The results demonstrated in Section 5 shows that the dense point cloud 

extracted by the modified workflow is much denser than the one from the original workflow, and 

it has slightly higher accuracy on flat surfaces. 

Since the point cloud extraction failed for some Pictometry image pairs, three possible reasons 

were discussed. The discussion shows that the SGM algorithm is sensitive to the ratio of the 

baseline to the camera height and the ratio of the building height to the camera height. However, 

in this thesis, we did not determine what ranges of these two ratios are best. So in the future, 

research should be pursued on how sensitive these two ratios would be and their best ranges in 

processing oblique images, especially airborne oblique images such as Pictometry oblique 

images. 

From in Table 5-2 in Section 5.2.2 we can see that only one camera’s focal length was not fixed 

when constrain_focal_weight was set to 1.0e6. It might indicate that the keypoints computed 

from that unfixed image are not good enough for adjusting in bundler. That could be used to 

eliminate bad images. 

In the future, a better way should be used to assess the accuracy of the dense point cloud, such as 

comparing it to a corresponded LIDAR data. For experimental assessment, the Digital Imaging 
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and Remote Sensing Image Generation (DIRSIG) Model (DIRSIG, 2013), developed by the 

Digital Imaging and Remote Sensing Laboratory at Rochester Institute of Technology, is a 

perfect model for practicing and testing. It produces passive single-band, multi-spectral or hyper-

spectral imagery from the visible through the thermal infrared region of the electromagnetic 

spectrum with camera information, and it also has a very mature active laser (LIDAR) capability 

and an evolving active RF (RADAR) capability. By using the data provided by the DIRSIG 

Model, we can check the accuracy of estimated camera parameters and the accuracy of the dense 

point cloud. 

Also, since 3D modeling is more and more popular nowadays, in cameras (3D camera) or in cell 

phones in the future, the time and memory required should be within a reasonable range, or even 

better, realizable with real time processing. However, the SGM is a time and memory consuming 

algorithm. It would be better if a faster and more memory efficient version could be implemented 

in the future.  
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