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Abstract

Because of the low-expense high-efficient image collection process and the rich 3D and
texture information presented in the images, a combined use of 2D airborne nadir and
oblique images to reconstruct 3D geometric scene has a promising market for future
commercial usage like urban planning or first responders. The methodology introduced
in this thesis provides a feasible way towards fully automated 3D city modeling from

oblique and nadir airborne imagery.

In this thesis, the difficulty of matching 2D images with large disparity is avoided by

grouping the images first and applying the 3D registration afterward. The procedure



starts with the extraction of point clouds using a modified version of the RIT 3D
Extraction Workflow. Then the point clouds are refined by noise removal and surface
smoothing processes. Since the point clouds extracted from different image groups use
independent coordinate systems, there are translation, rotation and scale differences
existing. To figure out these differences, 3D keypoints and their features are extracted.
For each pair of point clouds, an initial alignment and a more accurate registration are
applied in succession. The final transform matrix presents the parameters describing the

translation, rotation and scale requirements.

The methodology presented in the thesis has been shown to behave well for test data. The
robustness of this method is discussed by adding artificial noise to the test data. For
Pictometry oblique aerial imagery, the initial alignment provides a rough alignment result,
which contains a larger offset compared to that of test data because of the low quality of
the point clouds themselves, but it can be further refined through the final optimization.
The accuracy of the final registration result is evaluated by comparing it to the result

obtained from manual selection of matched points.

Using the method introduced, point clouds extracted from different image groups could
be combined with each other to build a more complete point cloud, or be used as a
complement to existing point clouds extracted from other sources. This research will both

improve the state of the art of 3D city modeling and inspire new ideas in related fields.

II



Acknowledgement

Foremost, | would like to express my sincere gratitude to my advisor Prof. John Kerekes
for his continuous support of my MS study and research, his patience, motivation,
enthusiasm, and immense knowledge. He helped me in all the time of research and
writing of this thesis. Without his persistent guidance this dissertation would not have
been possible.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Carl
Salvaggio and Prof. David Messinger for their insightful comments, and hard questions,
which encouraged me to make continuous progress throughout the research.

My sincere thanks also go to Nina Raqueno and Michael Richardson. Nina helped me to
access more pre-processed Pictometry imagery as well as the meta data. Michael offered
me the chance to better understand the research using simulated building models and
muti-view images.

I also thank Stephen Schultz and Yandong Wang from Pictometry. They not only provide
me with a chance to work on such an exciting project, but also enlighten me with ideas
from an industry point of view.

I thank Prof. Harvey Rhody, Erin Ontiveros, David Nilosek and Kate Salvaggio. They help
me with the usage and modifying of the RIT 3D Extraction Workflow and the
understanding of epipolar geometry and photogrammetry.

Also I thank the other two students Jie Zhang and Ming Li, who also work on Pictometry
data. The cooperation with them gave me a better understanding of the other parts
involved in the entire 3D modeling. We discussed possible methods and solved the
problems we met together all the time.

Last but not the least, I would like to thank Shaohui Sun and Lei Hu, who helped me out
with many difficulties I met in coding.

I11






Contents

F2X0 T3 T o I
AcKNOwledgement..........iiencneniiniiniinniisnincesenetseessessssasssaesssses s saes 11
@0 1< 1 1N i
LiSt Of FIGUTES ..uuuveeeiiiiiiiiiiiiiittntteccccctnnnnninnnececce s sssanssee e e s s s sssssans iv
1 INErOAUCHON...ccciiiiiiiiiiiriiiieete e ssssssssssssssssssssssasssssssasasaanes 1
1.1 IMOTIVALION. ...ttt ettt ettt st e s b e saneesnee s 1
1.2 ODJECLIVES....c.veeieiieieeieeeee ettt ettt ettt se et e st e s bt e st e tesbesseeneeneans 3
1.3 Layout of the TRESIS ......ccevivirieieieeceee e 5
P 5 7 Vel (<8 (0110 1 1 P 6
2.1 3D MOdEING......oiiiiieiieieeee e 6
201 CAE@GOTIES..ccuuiiiiiiriiteiteeite et ettt e et et s bt e st e st e e sat e s bt e s bt e saseesateenneesanee 6
2.1.2  Structure from MOtION .......cceeeivieeiiiieieceee ettt e 7
2.1.3  Presentation of 3D Models.........ccooeeiiiiiiiieiieeeeeeeeeee e 9
2.0.4  APPHCAIONS .uveiiiiiiiiiieeee ettt 10
2.2 3D Building Models........cocooieiiiiiiieeeeeeeee e 1
2.21  Unique CharaCteriStiCS . ......cooiverierierienieeieieiesieeteee e se e te e ve et eeneens 1
2.2.2  MaJOr StePS..cueiiiiieiiieete ettt 12
2.2.3 Current Research and Problems...........cccccovevieiiieciicieciceceeeeeeeee, 13
2.2.4 ODblique IMAgeTry ....ccceccieieiieiieieieieeeeee ettt 18



31 DAttt sttt et et ae b aeenes 21
3.1.1  Pictometry Imaging SyStem.......c.ccocuiirieinieinienieeeieeeieesteeiee e 21
3..2  RIT Campus IMages.......ccovueeeiiiiiiiiieeiieeeeeeeeeeeeee e 23
313 Meta Data. oo e 25
3.2 Proposed Method ..........coovuiiiiiiiiiiceeeeeee e 25
3.3 Algorithms and Implementation.............cceceeeeviniininiienieneceeeeee e 28
3.3.1 2D Feature MatChing..........cooceeoieieniinieieieeceeeeee e 28
3.3.2 3D Point Cloud EXtraction ........c.ccceeeuieriieiiiesieeieeeeeeesieesee e eee e eaesenens 36
3.3.3  Cloud Refinement.........ccueevieieeeieiieciieiecece e 41
3.3.4 3D Feature EXtraction .........cccccceeeiiiiiiiiiiniieceiieeeeee et 46
3.3.5 3D ReIStration .....cccceeiuieiiiiiiiiiiieeieeeeee e 55
4 Results and DiSCUSSION ...ccuuueeeiiiiiiieennniiiernieeeenneeeeeeeeeeeeennssssseeseeesnnssssssssseees 61
41 TeStING DAta.....cooiiiiiiiiieeee ettt 61
411 NO Scale DIfference ........ccoveeveeeieeciieeiieeeee ettt 62
4.1.2  With Scale Difference..........cccoeuevieoieiiieiiieieeeeceeceeeee e 65
413 WIth NOISE ..oouiiiieiieeeeee ettt e enae s 66
4.2 Pictometry Data.....c.cooueiiiiiiiieieeteeeeeeee e 68
4.21  IMAGe GrOUPING ....cccveeriiiriieiiieiteette ettt ettt et et sieeesreessbeesanees 68
4.2.2 Modification of the RIT 3D Workflow ..........cceevevuieiiecieiiciecieeeee 70
4.2.3  Original Point Clouds extracted............cccceverereerienienieeeieieseeeeee e 72

ii



4.2.4 Refined Point Clouds........ccocovvieeiieiiieciiieieeeeeeeieeectee et 75

4.2.5 3D KeYPOINES...ooiuiiiiiiiiiiiieeceeeee et 79
4.2.6  Point with Unique FPFH........cccoooiiiiiiiee e 8o
4.2.7 Initial AlIGNMENT ...oooviiiriiiiiiiieeeee e 81
4.2.8  Final AlIGNMENt ......cc.oouivuiiieiiiieieieiee ettt 83
4.2.9 Compare to Manual Registration ............ccccceveeeeeienienenieeseneseeeieen 84
5 CONCIUSION ccuuueeiiiiiiiiiiieiieiieeeieeeeeeeeieeeeeeetennnesseeeeeeeeennsssssssssseesnnnssssssssssesennes 86
5.1 SUMMATY Of WOTK ...t 86
5.2 Contribution to the field...........cceeviieiieiiieieeeeee e 87
5.3 LiMITtAtiONS ..eeuiiieiiiieieiiee ettt ettt et e et e e s bt e e st e e saeaesssneaessneesnnsaennns 88
5.4 FULUTE WOTK. ..ottt saeseaeans 90
REFEI@IICE ....eeveeeeeieieiieiieiceeeeeeeeeteneeeeeeeeeeeennnsssessseseeennnsssssssssesennnsssssssssssennnnes 92
APPENAIX (Ct COAR) uuuruinrrurrrnrannrneneenneessssesssnssssssssssssssssssssssssssssssssssssssssssssasssssssssss 94

iii



List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

2-1 GEOMELTY Of tWO VIBWS.....cuuiuuiiicieieicieiieteiete e eaesebe ettt 7
2-2 Image-based 3D modeling..........cccoovuririeiiiininineee e 8
2-3 Stanford bunny and its 3D models..........ccoeuriiiiiinininiree e 10
2-4 Textured building modeling procedure.............cococeueeiirinnnreeiereeeeee, 13
2-5 3D reconstruction of the Colosseum from tourist photographes.................... 15
2-6 3D reconstruction of Van Lare from nadir remote images...........cccoceceeenenee 16
2-7 Different views of the Omeda Sky Building..........c.ccceceeerinnnreeeirriene, 17
2-8 Comparison of nadir and oblique iMages...........ccccevururueueeneninrinieeeeeerrens 19
3-1 The Pictometry camera SeNSOT SYSEM.......c.cvueueuerrereuererrereeresrereseeesseseneeesennens 22
3-2 Pictometry imagery of RIT campus area..........cococeeeeeeueeucuercrennenenenenceeecnenes 24
3-3 Main steps for 3D point extraction and matching...........ccccceeevvrreecenenenenne. 26
3-4 Scale space extrema deteCtion.........cccceceevirireririeueeiririeieeee et 29
3-5 SIFT Keypoint d@SCIIPLOT......ccvueueueueuiiieieireeieieetete et eseseesesenes 32
3-6 Corresponding keypoints extracted from two images using SIFT................ 32
3-7 Camera motion INterpretation.........ov e ererieererenereereneeereseeeeeseeeeseneenes 34
3-8 The idea of ASIFT algorithm........cccccccoivvinirieeiieee e 34
3-9 Corresponding keypoints extracted from two images using ASIFT......35
3-10 Epipolar GEOMELIY......oooviviviiiciiecciciciete ettt 37

v



Fig. 3-11 Statistical outlier removal.........ccocccoeeiiiiiirnnr e 42

Fig. 3-12 Radius outlier removal..........ccoooeveoeieiiiiiiininrsr e 43
Fig. 3-13 MLS projection procedure.............coovvrenereeeeucucuereieininineietseseseseeeesesesesenenes 44
Fig. 3-14 Normal EStimation.........cccevureeeririneneneccieeieieieieieieisssesese e eeesesesesesesesesenen 46
Fig. 3-15 Before and after downsampling of 3D table data..........ccccceevevrereeicincnennnnee 47
Fig. 3-16 3D SIFT KeYPOINLS.....coeririeieiiiiirieieieieeeerteteteie ettt seeae 47
Fig.3-17 INflUENCE T@GIOM.....cucuiiiiiiieieiee ettt 50
Fig.3-18 PFH of points on different surfaces...........coceoeoevervreeeieeenennnineeeeeeree e 51
Fig. 3-19 FPFH of points on different surfaces..........cccccoeueuernnnnnnnncnccccccceene 53
Fig. 4-13D Chef data......oooeeieecccccccccicice et 60
Fig. 4-2 Point with persistent features (in red).........cccceovrerereirnireeinneneeereeereeens 61
Fig. 4-3 Initial alignment reSult.........coovieriiiiiiciiii e 62
Fig. 4-4 FPFH of corresponding POINtSs.........cccccceeririrerieueueenininieieieieeecnesieeee e eeeseseenes 63
Fig. 4-5 Comparison of initial alignment and final registration results.................... 64
Fig. 4-6 Registration result for clouds with different scale.........cccccceeurrrnnnnnccnce. 65
Fig. 4-7 Registration result with shifting noise presence...........ccccecevrrrrnnnncnnee 66
Fig. 4-8 The reconstruction results of using different image groups............ccceue..... 68
Fig. 4-9 The reconstruction results before and after modification.........c..c.c.ceceeuccee. 70
Fig. 4-10 Point clouds extracted from the “modified workflow”...........cccccceuvurnerunnenee 71
Fig. 4-11 Different views of the point clouds.........ccccovriririrrnenncncnccccceeeeeccees 72
Fig. 4-12 Point clouds shown in the same coordinate system............ccccceceeerurreuenennnee. 73



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

4-13 Sub-clouds used for regiStration...........ceceeeeeriririereieeererrree e 74
4-14 Noise 1€mMOVAl TESULL.......cocveveirieieiieceee e 75
4-15 Surface SMOOthing reSult.........ccoceiviviririeieiie s 76
4-16 Nadir point cloud before and after refinement............ccceceueueeererrirrrrenenenens 77
4-17 Normals of the POINtS.......cccccivirieiririeeicee e 78
4-18 3D SIFT keypoints selected..........cccoourivririeeeieeiieiinreeeee s 78
4-19 Points with unique FPFH (shown in blue).......cccccoceeevivvinieceeeeeceeeeen 79
4-20 Corresponding points selected...........ccoveeeeueeueieceeeieienrre e 8o
4-21 FPFH of correSponding POINtS..........ccccceevireriereeerinininieieeeeeseseeeeeeeeseseseenes 81
4-22 Result of initial alignment..........cccoeeiiriririnieeeie s 81
4-23 Result of final alignment...........coeeueeiininirinieecce e 82
4-24 Registration based on corresponding points selected manually................ 83

vi



Chapter1

Introduction

3D city modeling has become a hot research topic in the last decade. This
technology has been widely used in various areas like visualization, urban planning,
first responders, visual military, and even insurance (Notargiacomo, 2012). The
generation of highly accurate large scale 3D scenes is, however, a time-consuming
process which usually depends or partially depends on manual work. Fully

automatic modeling is still a developing field.

1.1 Motivation

A popular computer vision technique to build a 3D model is extracting “structure
from motion” of a calibrated camera with respect to a target. Combining this
computer vision technique with photogrammetry and applying them to the
geographic scenes makes it feasible to build a 3D city model from 2D imagery
automatically. The earliest images are obtained from ground-based photography.
These images could provide every detail of the buildings, but the collection process

takes a long time and the contents of the images are largely limited to facade



information. Nowadays, most conventional images are taken from much further
distances, using a spaceborne or airborne platform in a quasi-vertical perspective.
With this remote sensing viewpoint, images could be acquired in a relatively short
time period, while covering a much larger area. There are also limitations, that
although the nature of nadir imagery makes the registration process easier, it
trades off limited viewing of structures under roofs, especially when occlusion
happens. In this case, a new data type is needed to keep the remote sensing
advantages and to alleviate its limitations, and airborne oblique imagery might be

the one to solve the problem.

However, due to the nature of oblique imagery, it is difficult to match images
taken from different viewing directions or integrate them with other information
like traditional nadir images. An alternative method is to build a 3D point cloud
for each group of images taken from the same viewing direction. Then these point
clouds could be combined with each other to build a more complete point cloud

using a 3D registration method.

The methodology introduced in this thesis will improve the state of the art of 3D
city modeling and inspire new ideas in related fields. Using 2D airborne oblique
images to reconstruct 3D scenes has a promising market for future commercial
usage in various areas. The usage of oblique images can overcome the limitation

of traditional vertical images. More detailed structures of the side facets can be



better represented even when occlusion happens. Besides providing more
complete information, it makes faster response possible compared to the ground-
based method and costs much less expense than using images taken by satellite or
data generated by LiDAR. In addition, the oblique images captured from different
directions are ideal for generating building texture, based on further research in
surface identification. The 3D registration method proposed avoids the difficulty of
2D registration originating from projective distortion. It provides an automatic
way to integrate point clouds extracted from different image collections. It can also
be used to improve the existing models by adding additional parts extracted from

other sources.

1.2 Objectives

The research in this thesis has two main aspects: (1) Extract dense point clouds
from oblique and nadir airborne images and refine them. (2) Extract 3D features
and implement automatic 3D registration for different point clouds with partial

overlap.

The research begins with dividing multi-view Pictometry imagery

(http://pictometry.com/) into different groups to reduce the disparity between

images because of the projective distortion. For each group, the geometry

extraction process is based on the modification of the RIT 3D Extraction Workflow



(http://dirsapps.cis.rit.edu/3d-workflow/index.html), which obtains better 2D

keypoint extraction and matching especially for oblique images.

The original point clouds reconstructed by the workflow are quite noisy. Some
noise points are sparse points spreading all over the space, while some are floating
miscalculated clusters. They need to be eliminated using different methods
respectively. So far, since these point clouds are extracted from different image
groups, they are represented in independent coordinate systems. 3D matching is

needed before integrating them.

The 3D registration procedure is based on a robust 3D feature extraction. We need
to find a method to simplify the calculation by extracting 3D keypoints from the
huge point clouds. We also need to find a suitable way to describe the features of
the keypoints efficiently. The 3D registration can be achieved by two alignment
steps. The initial alignment should obtain a rough matching of the point clouds by
an approximate estimation of the translation, rotation and scale difference. After
that, a more accurate registration process is used to optimize the result. The
output transformation matrix consists of the parameters for scale, rotation and
translation changes. Since the ground truth of the primary data set studied is
unknown., another test data set will be used instead to estimate the robustness of

our method under noisy condition. The accuracy of the final registration result can



be evaluated by comparing it to the compound point cloud obtained from manual

selection of corresponding points.

1.3 Layout of the Thesis

The second section of the thesis provides a brief instruction to 3D city modeling. It
starts with the concept of 3D modeling, includes the characteristics of 3D building

models, and ends with a literature review of current research in this field.

The third section introduces the data used in this project and the general
methodology. A detailed statement of related algorithms is present in this chapter,
including the original point cloud extraction, the point cloud refinement, and the

3D registration.

The fourth section presents results the author has obtained for both the test data
and Pictometry data step by step. The robustness and accuracy of the methodology

is also discussed in this section.

The last section of the thesis summarizes the work of the research. The limitations

of the work are listed. The plans for the future research are suggested in the end.



Chapter 2

Background

2.1 3D Modeling

3D modeling is the process of developing a mathematical representation of the
three-dimensional characteristic of a certain object. The product of the 3D
modeling process is called a 3D model. It simulates the original object using a
collection of points, or points connected by various geometric entities such as lines,
triangles, or curved surfaces in 3D space. A 3D model can be created manually,
algorithmically, or by scanning. To display a 3D model, we can use two-
dimensional image sequences through a 3D rendering process in computer, or

physically represent it using 3D printing devices.

2.1.1 Categories

Generally, most 3D models fall into two categories, solid models and boundary
models. Solid models are defined by the volume of the object. These models are

more closely related to realistic objects, but difficult to build. These models are



mostly used for non-visual simulations for some specialized applications, such as
medical investigation, ray tracing and engineering simulation. On the contrary,
boundary models are defined only by the surface of the object. These models are
more popular for commercial usage and much easier to work with. Nowadays,
boundary models have become an important part of video game and film designs
to build virtual scenes. In this thesis, we aim to build boundary models for

buildings using an image-based 3D exaction method.

2.1.2 Structure from Motion

Fig. 2-1 Geometry of two views

A popular technology to generate a 3D model for a real object is to extract
“Structure from Motion”. It refers to the process of finding the 3D structure of an

object by analyzing the local motion signals over time. In Fig. 2-1, two photos A



and B are taken for the interested point X from different directions respectively.
Draw a line passing through the camera center C, and the corresponding image x.
Similarly, draw another line passing through C’, x’. Then two lines will intersect
right at the point X. That is to say, we can track the original position of X from the
position of its images x, x’ in two different photos and the corresponding cameras
C, C'. The calculation is based on epipolar geometry (Hartley, 2004), which will be

introduced in detail in the next chapter.

For a more complicated real object, the 3D model reconstruction is achieved by
manual or automatic analysis of the corresponding points in 2D images acquired
by two or more cameras in a similar way. The points generated in 3D space reflect
the depth information of objects present in the scene. Fig. 2-2 shows an example
of image-based 3d modeling. The 2D images are selected from the Middlebury

“Dino” data set. The images are taken by a fixed camera while the object spins.

3D model

2D photos of an object

Fig. 2-2 Image-based 3D modeling (http://vision.middlebury.edu/mview/data/)




2.1.3 Presentation of 3D Models

The original point cloud extracted from the images consists of isolated points,
while the final model should use points with continuous coordinates to fully
describe every part of the object. Three popular ways to represent the final 3D

model are shown below:

*  Polygonal modeling (See Fig. 2-3(b)): Vertices are connected by line segments
to form a polygonal mesh. The majority of 3D models today are built as
textured polygonal models. They are very flexible and can be rendered quickly
by computers. However, since polygons are planar, it can only approximate

curved surfaces using many polygons.

*  Curve modeling (See Fig. 2-3(c)): Surfaces are defined by curves influenced by
control points. Increasing the weight for a point will pull the curve closer to

that point.

*  Sculpt modeling (See Fig. 2-3(d)): Using software to manipulate (push, pull,
smooth, grab, pinch, etc.) a digital object as if it were made of a real-life
substance, such as clay. It can be realize by displacement, volumetric, or

dynamic tessellation and allows for very artistic exploration.
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(c) Curve model (d) Sculpted model

Fig. 2-3 Stanford bunny and its 3D models,

http://graphics.stanford.edu/data/3Dscanrep/

2.1.4 Applications

Today, 3D models are used in a wide variety of fields. The medical industry uses
detailed models to simulate real organs. The movie industry uses them as

characters and objects for animated and real-life motion pictures. The video game
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industry uses them as basic assets for game design. The chemical industry uses
them as highly detailed models of chemical compounds. The architecture industry
uses them to demonstrate proposed buildings and landscapes. The engineering
community uses them as designs of new devices, vehicles and structures. In recent
decades the earth science community has started to construct 3D geological
models as a standard practice. In addition, online marketplaces for 3D contents
allow individual artists to sell contents that they have created, and companies can
save money by buying pre-made models instead of paying an employee more to

create one from scratch.

2.2 3D Building Models

3D building modeling has been an active research area in digital photogrammetry
for a decade and a number of methods and systems have been developed for
creating 3D city models from digital images and other auxiliary data automatically

or semi-automatically.

2.2.1 Unique Characteristics

Different from extracting 3D model from a single object, 3D city modeling has its
unique characteristics. Most buildings are designed with simple geometry shapes,
consisting of straight edges, rectangular facades, planar or smooth surfaces. The

walls are usually built vertically, while most roofs are built horizontally. The



12

majority of the surface textures are several common materials. These
characteristics can simplify the modeling process. But there are also some
challenges for building reconstruction: more complicated environments lead to
more noise; non-rigid objects like people or trees need to be ignored; shadows are
always changing and bring difficulty in 2d registration. Repeated patterns may lead
to failure. Local terrain needs to be considered. The final result needs to be

presented in the world coordinate system.

2.2.2 Major Steps

As shown in Fig. 2-4, generating 3D city models involves many steps, including the
point cloud extraction, filtering, segmentation, surface reconstruction and texture
fitting. These steps can be divided into two major aspects which are creation of
building models and adding textures to the building models. Various methods
have been developed for creating building models from digital images
automatically or semi-automatically. Since digital aerial images and LiDAR data
supplement each other, accurate and reliable building extraction can be achieved
ideally by fusing digital images and LiDAR data (You, 2011). Adding texture to the
created building models makes 3D models more realistic. Different approaches
have been developed to create building textures automatically from aerial vertical

and oblique images.
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Initial point Filtering Segmentation Surface Model fitting
cloud data reconstruction

£= | BUILDINGS

Fig. 2-4 Textured building modeling procedure (http://pointclouds.org/)

2.2.3 Current Research and Problems

In recent years 3D city models have been used for many applications such as:

*  To visualize the cities for various purposes (e.g. virtual tours, visual military).
« In navigation or intelligent transportation systems.

*  Build viewshed for urban planning.

+  First responders or insurance estimation.

Techniques for 3D digitizing and modeling have been rapidly advancing over the
past few years although most focus on single objects or specific applications. The
ability to capture details and the degree of automation vary widely from one
approach to another. One can safely say that there is no single approach that
works for all types of environments and at the same time is fully automated and
satisfies the requirements of every application. Automatically creating
geometrically correct and complete 3D models of complex environments remains a

difficult problem.
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The most straightforward way to obtain 3D information is using LiDAR. Modern
LiDAR systems are capable of receiving multiple returns with some penetrating
vegetation, and thus, it can even reduce the effect of occlusions by combining the
information from different returns. However, a problem with extraction of
building models from LiDAR data is that the extracted models may not be very
accurate because of point spacing, scanning angle, the performance of line
extraction algorithm, etc. Therefore, building models derived from LiDAR data
need to be refined, in order to create accurate 3D city models (Wang, 2008). To
correct building models, they are projected back on the vertical image triangulated

with accurate ground control points.

Although 3D data can be acquired using LiDAR systems directly, it can cost too
much since it requires expensive devices and large memory. Compared to LiDAR,

extracting 3D models from 2D images are more popular for commercial usage.

The community photo collections based 3D city reconstruction involves a series of
state-of-the-art algorithms. In “Building Rome in a Day” (Agarwal, 2009) a parallel
distributed system was suggested. It downloads millions of images from the web,
matches them, computes the pose of the cameras that captured these images, and
forms the 3D structure of the city automatically in one day. A huge community
photo collection guarantees a detailed dense point cloud. As shown in Fig.2-5, the

result model shows not only the detailed scene outside the building, but also the
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decorations from the inside, which is ideal for photo tourism for the famous sites.

Fig. 2-5 3D reconstruction of the Colosseum from tourist photographs,

(http://grail.cs.washington.edu/rome/)

The community photo collection is a powerful type of image dataset. The images
provide incredibly comprehensive information, but such a detailed result is not
necessary for large scale 3D mapping. The extremely dense point clouds generated
are computationally expensive and need large memory. Another problem is that
these images have extreme variability, having been taken by numerous
photographers from a myriad viewpoint with varying lighting and appearance, and
often with significant occlusions and clutter. A third problem is that these photos
limit the results to only places of interest. For a more general mapping demand, or

where conditions make the ground-based photo impossible, like first responders
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after a disaster, we need a well planed data collection method that uses limited

time and memory to obtain enough information for any target.

Fig. 2-6 3D reconstruction of Van Lare from nadir remote images (Nilosek, 2009)

Instead of community photo collection, the remotely sensed images use much
smaller but well planed image collections to generate 3D models for any target
area at a much larger scale. Well planed nadir image collections shorten the entire
processing time by using less images and making the photogrammetry easier.
Since remote images are taken from a much further distance, the resolution may

not be as good as those of ground-based photos. But the resulting models still



17

preserve the general geometry of buildings. Fig. 2-6 shows a 3D model of the Van
Lare area (lower row), near Rochester, New York, derived from 5 nadir WASP
images (upper row) by RIT researchers (Nilosek, 2009). The preliminary 3d point
cloud of this model is extracted using a modified version of Agarwal’s workflow,

which will be introduced in details in the following chapter.

(a) Side view (b) Satellite view from Google Map
Fig. 2-7 Different views of the Omeda Sky Building,

http://en.wikipedia.org/wiki/Umeda_Sky Building

The results using only nadir remote imagery describe the roof tops well but have
limited information about the side facets. Accordingly, a major problem with
automatic approaches is that the extraction may fail when occlusions occur in the
images. As shown in Fig. 2-7 (a), it is easy to tell that the blue building has an open
structure under the roof from the side views. But there is no clue of this structure

from the nadir views (as shown in Fig.2-7 (b)). If we try to extract a 3D model for
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this building but only use vertical images, the correct structure will definitely be
missed. In this case, a new data type is needed to inherit the advantage and
alleviate the limitation of nadir imagery. Airborne oblique imagery might be the

one to solve this problem.

2.2.4 Oblique Imagery

Oblique images exhibit rich 3D like information of objects on the ground. So they
could be used with nadir images for creation of detailed 3D city models.
Furthermore, oblique images have advantages compared to vertical images in
creating building textures (Frueh, 2004). They provide a better side view of

building facades.

However, because of the nature of oblique imagery, it is difficult to match images
taken from different viewing directions or integrate them with other information
like the traditional nadir images. As shown in Fig. 2-8(a), the disparity between
two nadir images is small, so it is not too hard for registration. But for oblique
images (see Fig. 2-8(b)), because of the projective distortion, the disparity is huge.
The scale is not constant in oblique images. The top level has a much lower
resolution than the bottom level. And the shapes of facets, angles between edges,
and neighbors in the scene change all the time. As a result, the features of images

from different viewing direction are pretty hard to be matched to each other.
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An alternative method is to build a 3D point cloud for each group of oblique
images taken from the same viewing direction. Then these point clouds could be
combined with each other into a complete point cloud through a 3D registration
method. They could also be used as a complement of point clouds extracted from

nadir imagery or other source like LiDAR scanned data.

Thus, the work in this thesis has two main aspects: (1) Extract dense point cloud
from oblique images automatically; (2) Implement automatic 3D registration to
different point clouds with partial overlap. This research provides a practical
approach to automatically reconstruct 3D building models with airborne oblique
imagery, which has a promising market for future commercial usage in various
areas like virtual tourism, navigation system, urban planning, visual military, and
even insurance. The usage of oblique images for 3D city modeling can break the
limitation of traditional vertical images. It not only preserves more detailed
structure of the buildings compared to the nadir imagery, but also makes faster
response possible compared to the ground-based method, and costs much less
expense than using images taken by satellite or LIDAR scanning. Furthermore, the
oblique images captured from different directions are ideal for generating building
texture, based on further research in the 3D key feature extraction and surface
identification. The 3D registration method proposed can also be used to improve

the existing models by adding additional parts extracted from different sources.



Chapter 3

Methodology

In this thesis, we aim to apply the muti-view Pictometry airborne imagery to the
extraction of a 3D scene of the RIT campus area. This process includes two main
steps: 3D point cloud extraction and registration. The former involves 2D feature
matching, sparse 3D point cloud extraction, dense point cloud reconstruction, and
cloud refinement. The latter one involves 3D feature extraction, initial alignment
and final registration. The theoretical basis of each part is stated in detail in this

chapter.

3.1 Data

3.1.1 Pictometry Imaging System

At Pictometry International Corporation (http://pictometry.com/), a medium

format digital imaging system has been well developed. It has been widely used for
acquisitions of both vertical and oblique digital images. As shown in Fig. 3-1, this
imaging system consists of five digital cameras, an integrated unit of Global

Positioning System (GPS) and Inertial Measurement Unit (IMU), and a flight

21
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management system. Each camera has a CCD array with about 4.9k x 3.2k pixels.
The five digital cameras are arranged in such a way that one of them looks straight
down and the other four of them look into forward, backward, left and right
directions respectively at a certain viewing angle (= 40°). The camera in the
vertical direction captures high-resolution vertical images and the other four
acquire oblique images at different view directions at the same time. The onboard
GPS and IMU provide an accurate position and attitude of each sensor at the
exposure time, thus the images produced by Pictometry imaging system are

directly geo-referenced images.

Fig. 3-1 Pictometry camera sensor systems (Lemmens, 2007)

Like traditional aerial images, vertical images provide vertical views of the terrain
surfaces, while oblique images show the side views of objects on the ground, like

buildings. Vertical images can be used for creation of accurate large scale ortho
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photos and oblique images can be utilized for visualization, measurement and 3D
modeling. Up to now, more than 50 Pictometry imaging systems have been
developed in the USA and tens of systems are being used around the world. These
images have been widely used in various applications such as public safety, tax
assessment, urban planning, 3D city modeling, etc. The flight management system
is a flight planning software which determines flight lines, control image overlaps,
etc. before and during the flight for both vertical and oblique images. In order to
better use and visualize both oblique and ortho images, a software package called
Electronic Field Study (EFS) has been developed at Pictometry. Both vertical and
oblique images can be easily viewed in EFS, and spatial measurements such as
distance and height of objects on the ground can be easily performed on both
oblique and vertical images. The results can be exported into ArcGIS (a geographic
information system) directly to update the existing geo-spatial information in the

database.

3.1.2 RIT Campus Images

There are two kinds of Pictometry airborne imagery with different resolutions.

They are called neighborhood imagery and community imagery respectively.

The neighborhood imagery is taken at the altitude of around 4500 feet. Fig. 3-2(a)

shows an example of the neighborhood images taken over the same area from five



24

(b) Community image

Fig. 3-2 Pictometry imagery of RIT campus area

different viewing directions. These 8bit color images have the resolution of 4872 X

3248 pixels, and are stored in “.psi” format. The oblique images are taken at a focal

length of around 8smm with a resolution of around o.55 feet/pixel and 60%
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overlap, while the orthogonal images are taken at a focal length of around 65mm
with a resolution of around 0.46 feet/pixel and 30% overlap. The focal plane is

36.053 mm wide X 24.035 mm high.

The community imagery is taken using the same system, but at a higher altitude.
As shown in Fig. 3-2(b), these images have a larger scale than the neighborhood

images. For this project, only the neighborhood imagery is used.

3.1.3 Meta Data

There is a “.txt” file provided along with the each image. It includes the following
additional information about the image:

*  Creation Date & viewing direction

*  Per pixel resolution

*  GPS coordinates of four shot corners

* Camera location, altitude and average Elevation

* Camera pitch, roll and azimuth angle

*  Focal length and focal Plane size

*  Principal point offset

3.2 Proposed Method

The main steps of the proposed method for 3D Point matching are shown in the



26

following chart in Fig. 3-3.
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Fig. 3-3 Main steps for 3D point extraction and matching
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The research will begin with building several 3D point clouds. The multi-view
imagery provided by Pictometry International Corporation is divided into different
groups according to the viewing direction. For each group, the geometry
extraction process is based on a modified version of the RIT 3D Extraction
Workflow. First, it uses the Affine Scale Invariant Feature Transform (ASIFT,
Morel, 2009) algorithm for the 2D feature extraction. Then the RANdom SAmple
Consensus (RANSAC, Fischler, 1981) is used to match the keypoints. After that, the
Bundler calculates the camera parameters and reconstructs the sparse scene using
Sparse Bundle Adjustment (SBA, Lourakis, 2004). Finally, the Patch-Based Multi-
View Stereo (PMVS, Furukawa, 2007) is used to reconstruct a dense scene. The

resulting point clouds are presented in independent coordinate systems.

The next step is to refine the original point clouds generated by the above
workflow. The clouds here are quite noisy. First, a Statistical Outlier Removal
(SOR) method is used to eliminate the sparse noise spreading all over the space.
Then, a Radius Outlier Removal (ROR) method is used to further remove the
remained miscalculated floating clusters. In the end, a Moving Least Square (MLS)
method is used to smooth the surface. These filters are from the Point Cloud

Library (PCL, http://pointclouds.org/documentation).

The last step is to perform the 3D registration for each refined point cloud pair.

First, the original clouds are downsized for faster processing. Then the 3D SIFT
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method is used to extract 3D keypoints from the point clouds, and the Fast Point
Feature Histograms (FPFH, Rusu, 2009) method is used to describe the features of
the keypoints. A multi-scale feature persistence analysis process is performed to
find the points that have unique features. The preliminary registration uses the
sample consensus method to find point pairs with similar features from those
points and achieve a rough alignment. Once the initial positions of the point
clouds are well estimated, the Iterative Closest Points (ICP, Zhang, 1993) algorithm
will be used to obtain a more exact registration. The resulting transformation
matrix contains the information of scale, rotation and translation changes. Using

the same 3D registration method, more point clouds can be combined together.

3.3 Algorithms and Implementation

3.3.1 2D Feature Matching

3.3.1.1 Affine Scale Invariant Feature Transform

As mentioned in chapter 2.1.2, the 3D geometry extraction from multi-view
imagery is based on accurately matching of 2D features. There are many state-of-
the-art algorithms that could be used to detect and describe features in an image.
All of these algorithms are translation invariant. Some are also rotation invariant,
like the Harris corner point detector (Harris, 1988). Some are even invariant to
changes of scale, like Hessian-Laplace region detector (Mikolajczyk, 2004). Some

are designed to be affine invariant, like edge detector (Tuytelaars, 2004) and



29

maximally stable extremal regions (MSER, Matas, 2004). Among these methods,
the scale invariant feature transform (SIFT, Lowe, 2004) is proved to be robust to
scaling and rotation changes, and partially invariant to illumination and viewpoint
changes. By adding two parameters, its updated form affine-SIFT (ASIFT, Morel,
2009) becomes fully affine invariant. Since we aim to find corresponding features
between images taken from different positions at different time, we choose ASIFT

for the feature extraction.

Scale ﬁ >’@—>
(next ﬁ ﬁ

octave)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

(a) Octave of scale space (b) Local neighbors

Fig. 3-4 Scale-space extrema detection (Lowe, 2004)

1. Scale Invariant Feature Transform
The Scale Invariant Feature Transform (SIFT) algorithm is currently one of the

most popular feature detectors used to provide reliable matching between
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different views of a scene. The method mainly includes the following 4 steps:

i) Detect the scale-space extrema.

As shown in Fig. 3-4(a), according to Eq. 3-1~3-3, for each octave of scale space, the
initial image I(x, y) is repeatedly convolved with Gaussians G(x,y, o) to produce
the set of scale space images L(x,y, o) shown on the left. Adjacent Gaussian images
are subtracted to produce the difference-of-Gaussian images D(x, y, o) on the right.

After each octave, the Gaussian image is down-sampled and the process repeated.

L(X,y, O-) = G(X,y, O-) * I(X,y) (3'1)

L o-(x*+y?)/20°
2102

G(x,y,0) = (3-2)

D(x,y,0) = (G(x,y,ko) — G(x,y,0)) *1(x,y) = L(x,y,ko) — L(x,y,0) (3-3)
where ¢ is the scale parameter, k is a constant multiplicative factor. As shown in
Fig. 3-4(b), local maxima and minima of the difference-of-Gaussian images are

detected by comparing a pixel (marked with X) to its 26 neighbors in 3x3 regions

at the current and adjacent scales (marked with circles).

ii) Locate the keypoints accurately and reject poor candidates.
A detailed fit is performed to the nearby data for location, scale, and ratio of
principle curvatures. Points having low contrast or localized along an edge will be

rejected. The Taylor expansion (shift the origin to the sample point) of D is

_ op" L 1.79D
D(x)=D+ X+ oX =X (3-4)
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By take the derivative of D with respect tox = (x,y,0)T and set it to zero, the

location of the extreme X is obtained.

g=-22-% G-5)
- 0x2 0x 375

All extrema with the function value D(X) lower than the threshold will be

discarded.

10DT .

DR) =D+ —-% (3-6)

iii) Assign the orientation.

At the scale of the keypoint, the gradient magnitude m(x, y) and orientation 8(x, y)
of each image sample L(x,y) are computed by Eq. 3-7. Peaks in the orientation
histogram formed from the gradient orientations of sample points around the

keypoints correspond to dominant directions of local gradient.

m(x,y) = J(L(x+1,9) = L(x = 1,y))" + (L(x,y +1) - L(x, y = 1))’

6(x,y) = tan” ((L(x,y +1) = L(x, y = D)/ (L(x +1, ) = L(x =1, ))) (3-7)

iv) Present the descriptor.

As shown in Fig. 3-5, keypoint descriptors are created by computing the gradient
magnitude and orientation, Gaussian weighted by the pixels location surrounding
a keypoint. These samples are then accumulated into 8 bin orientation histograms,
which summarize a 4x4 sub-region. The final descriptor for a keypoint is a vector

consists of 128 elements.
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Fig. 3-5 SIFT Keypoint descriptor (Lowe, 2004)

(b) Images with project distortion (two different views)

Fig. 3-6 Corresponding keypoints extracted from two images using SIFT
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By comparing the descriptors of keypoints in two images, matched points are
found. As shown in Fig. 3-6. SIFT method is robust to translation, rotation and
scale difference between images (see Fig. 3-6(a), matched points are connected by
lines), but not to affine difference (see Fig. 3-6(b)), which exists between the

airborne images we used. So when there is bigger disparity, SIFT might fail.

2. Affine Scale Invariant Feature Transform

Because SIFT normalizes rotations and translations, and simulates all zooms out of
the query and of the search images, it is invariant for zoom, rotation and
translation, with respect to four out of the six parameters of an affine transform.
To achieve fully affined invariant image comparison, the Affine Scale Invariant
Feature Transform (ASIFT, Morel, 2009) treats the two left out parameters: the

angles defining the camera optical axis orientation.

According to Fig. 3-7, an affine map A can be expressed as

4= [cos¥ —sinp [t 0 [Coscp —sing

simp  cosyp |10 1l|singp cosp ] = ARITR() (3-8)
where ¢ and 0 are the camera viewpoint angles, i parameterizes the camera spin.
A >0, ¢ €[0,180°), R(1p)denotes the planar rotation with angle 1, and T; is called
the tilt. The absolute tilt t is defined as t = f/cos6. If the absolute tilt of another

image from different view is marked as t ", then the transition tilt is defined as

T=t'/t (3-9)
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Fig. 3-7 Camera motion(Morel, 2009) Fig. 3-8 The idea of ASIFT (Morel, 2009)

As described in Fig. 3-8, ASIFT algorithm is based on the comparison of many pair

of rotated and tilted images obtained from A and B by SIFT. It mainly includes:

i) Transform each image by simulating many possible affine distortions caused by
the change of camera optical axis orientation from a frontal position. The
distortions depend on the longitude ¢ and the latitude 8. The images undergo ¢-

rotations followed by tilts t.

ii) These rotations and tilts are performed for a finite and small number of ¢ and 6.
The sampling steps of these parameters ensures that the simulated images keep

close to any other possible view generated by values of ¢ and 6.

iii) All simulated images are compared by SIFT. Since SIFT normalizes the
translation of the camera parallel to its focal plane and the rotation of the camera
around its optical axis, but simulates the scale change, all six camera parameters

are either normalized or simulated by ASIFT. So the descriptor of ASIFT keypoints
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is similar to that of SIFT, which consists of 128 vectors.

Fig. 3-9 Corresponding keypoints extracted from two images using ASIFT

As shown in Fig. 3-9, ASIFT does obtain a better result than SIFT (see Fig. 3-6).
There are much more correct matched points found between this image pair when

the affine distortion is considered.

3.3.1.2 RANdom SAmple Consensus

A huge number of keypoints could be extracted from ASIFT. We need to find an
efficient way to find the correct correspondences and eliminate the bad ones.
Unlike that of conventional smoothing techniques, RANdom SAmple Consensus
(RANSAC, Fishler, 1981) procedure uses as small initial data set as feasible and
enlarges this set with consistent data when possible, rather than using as much of
the data as possible to obtain an initial solution and then attempting to eliminate

the invalid data points. The main steps of RANSAC are shown as follows:
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i) Given a model that requires a minimum of n data points to determine its free
parameters and a set of points P (the number of points in P is greater than n),
randomly select a subset S1 of n points from P and estimate the instantiated
model M1. Determine the consensus set S1* (subset of P) that are within some

error tolerance of M 1.

ii) If the number of points in S1* is greater than some threshold t, use S1* to
compute a new model M1*. Otherwise, randomly select a new subset S2 and

repeat the above process.

iii) After some predetermined number of iteration, if no consensus set includes
more members than t, terminate in failure. Otherwise, solve the model with the
largest consensus set found.

In this thesis, the target model is set according to epipolar geometry to find the

correct corresponding pairs.

3.3.2 3D Point Cloud Extraction

3.3.2.1 Epipolar Geometry

The epipolar geometry is the basis of stereo reconstruction. The geometry between
two views is essentially the geometry of the intersection of the image planes with

the pencil of planes having the baseline as axis. The baseline is the line joining the
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camera centres. The epipole is the point of intersection of the baseline with the
image plane. An epipolar plane is a plane containing the baseline. An epipolar line

is the intersection of an epipolar plane with the image plane.

Fig. 3-10 Epipolar geometry (Hartley, 2004)

1. Fundamental Matrix
As shown in Fig. 3-10, a point x in one image is transferred via the plane m to a
matching point x’ in the other image. The epipolar line ['through x' is obtained by
joining x’ to the epipole e’. In symbols one may write

' = Fx (3-10)
where F is a 3x3 homogenous matrix (Luong, 1996), called the Fundamental
Matrix. It satisfies the condition that for any pair of corresponding points x < x’

xTFx =0 (3-11)

So, for a given point, the preliminary match point must lie along the epipolar line
in order for it to be valid. That is to say, the matches that do not fit this epipolar

constraint described by Eq. 3-11 are then eliminated.
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Even with the presence of several outliers, these relationships can be utilized in
concert with RANSAC to develop a robust Fundamental Matrix. Once this is
accomplished, the Fundamental Matrix can then be used to constrain the ASIFT
match set to remove most outliers. Unfortunately, it is possible that an erroneous
set of correspondences may still fulfill the Fundamental Matrix constraints, so

additional constraints may be required to further cull the data.

2. Camera Matrix
The ray back-projected from point x in an image by camera matrix P to point X in
the world coordinate system is obtained by solving

PX = x (3-12)
where P = K[R]|t]. K is the camera calibration matrix, containing the internal
camera parameters, focal length f and the coordinates of principal point (p,p,)).
t = —RC, R is the rotation matrix, C is the camera center. The parameters

contained in R and C are called the external camera parameters.

3.3.2.2 Bundler

The Bundle Adjustment (BA, Triggs, 2000) algorithm is almost invariably used as
the last steps of every feature-based structure and motion estimation vision
algorithm to obtain 3D structure and viewing parameters. Its name refers to the

bundles of light rays originating from each 3D feature and converging on each
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camera center, which are adjusted optimally with respect to both structure and
viewing parameters under certain assumptions regarding the noise pertaining to
the observed image features. It amounts to minimizing the re-projection error
between the observed and predicted image points, which can be achieved using

the Levenberg-Marquardt (LM, More, 1978) method.

By iteratively linearizing the function to be minimized in the neighborhood of the
current estimate, LM involves the solution of linear systems known as the normal
equations. These equations are solved repeatedly and LM can be computationally
demanding. Consider the sparse block structure of the normal equation matrix
owing to the lack of interaction among parameters for different 3D points and
cameras, Lourakis (2004) developed a tailored sparse variant of LM. The so-called
Sparse Bundle Adjustment (SBA) software package explicitly takes advantage of

the normal equations zero patterns.

Bundler is a software package based on the Photo Tourism work (Snavely, 2008). It
is a structure-from-motion system for unordered image collections (for instance,
images from the Internet). Bundler takes a set of images, image features, and
image matches as input, and produces a 3D reconstruction of the camera and
scene geometry (presented in sparse point cloud) as output. The system
reconstructs the scene incrementally, a few images at a time, using a modified

version of SBA as the underlying optimization engine.
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Bundler has a number of internal parameters. The input of bundler is images,
keypoints (in SIFT style), and matches. The outputs are camera parameters and

sparse scene geometry.

3.3.2.3 Patch-Based Muti-View Software

Patch-Based Muti-View Software (PMVS, Furukawa, 2007) is a multi-view stereo
software package that takes a set of images and camera parameters and
reconstructs the 3D structure of an object or a scene (presented in dense point
cloud) visible in the images. Only rigid structures are reconstructed (i.e. the

software automatically ignores non-rigid objects such as pedestrians in front of a

building).

The software outputs a set of oriented points instead of a polygonal (or a mesh)
model, where both the 3D coordinate and the surface normal are estimated at each
oriented point. PMVS has various parameters and flags for the software in the
option file. The input files for PMVS are images and camera parameters. The

output are colored, oriented point cloud stored in ‘ .ply’ file.

3.3.2.4 RIT 3D Extraction Workflow

The RIT 3D Extraction Workflow is a packaged software developed by RIT
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researchers David Nilosek and Harvey Rhody (http://dirsapps.cis.rit.edu/3d-

workflow/index.html). It integrates SIFT, bundler and PMVS, and is coded in

Python. This workflow is designed for extracting 3D dense point cloud from nadir
images. To apply it to the Pictometry imagery, ASIFT is used instead of SIFT in this
thesis to obtain more corresponding point pairs. The focal length is also fixed at
the known value, so bundler can skip the focal length estimation, which leads to

more accurate results.

3.3.3 Cloud Refinement

The point clouds generated from PMVS are quite noisy because of the calculation
errors. The existing sparse outliers and wrong floating clusters need to be
eliminated using different methods. In the meantime, to better estimate the
feature of points in the clouds, especially for surface normals, a surface smooth

process is necessary.

3.3.3.1 Noise Removal

1. Statistical outlier removal
As shown in Fig. 3-11(a), there can be lots of sparse noise points in the cloud. These
sparse outliers of a data set can be filtered by performing a statistical analysis on

each point's neighborhood, and trimming those which do not meet a certain
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criteria (see Fig. 3-11(b)). The Statistical Outlier Removal (SOR) method is based on

the computation of the distribution of point to neighbors’ distances in the input

(a) Before removal (b) After removal

Fig. 3-11 Statistical outlier removal (Rusu, 2008)

dataset (PCL API documentation 1.7.0). For each point, the mean distance from it
to all its neighbors is computed. By assuming that the resulted distribution is
Gaussian with a mean p and a standard deviation o, all points whose average
neighbor distances are outside an interval y + « - o defined by the global distances
mean and standard deviation can be considered as outliers and trimmed from the
dataset. The value a depends on the size of the analyzed neighborhood. The
algorithms iterates through the entire input twice. During the first iteration it will
compute the average distance that each point has to its nearest k neighbors. Then,
the mean and standard deviation of all these distances are computed in order to

determine a distance threshold. During the next iteration each point will be
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classified as an inlier or outlier if its average neighbor distance is below or above
this threshold respectively.

2. Radius outlier removal
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Fig. 3-12 Radius outlier removal (PCL, 2012)

Besides the sparse point noise, there are also some misestimated small clusters
floating far away from the main cluster in the original point cloud. The point
density in the cluster is as dense as the other correct estimated points, so this kind
of noise cannot be eliminate by SOR. Radius Outlier Removal (ROR) decides
outliers in a cloud based on the number of neighbors they have (PCL API
documentation 1.7.0). If we set the search radius larger than that of the noise
cluster, the outliers will have much less neighbors than the inliers. The algorithm
iterates through the entire input once, and for each point, retrieves the number of
neighbors within a certain radius. The point will be considered an outlier if it has
too few neighbors, as determined by a certain minimum neighbor radius. As
shown in Fig. 3-12, the yellow point is definitely an outlier. If we set the threshold

at “2 neighbors”, then the green point is also an outlier.
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3.3.3.2 Surface Smoothing

The goal of 3D modeling is to render the surface of buildings. The points in the
original cloud are located around but not exactly on the “true surface”. These
errors will lead to failure in normal or curvature estimation for the surface. Moving
Least Squares (MLS) algorithm can be used to mitigate this problem by data
smoothing (PCL, 2012), which relies on the idea that the given point set implicitly

defines a surface.

Fig. 3-13 MLS projection procedure (Alexa, 2003)

MLS projects the points close to the original surface on to a new smoothed surface,
based on local maps from differential geometry. The approximation error is
bounded and can be controlled by increasing or decreasing the density of the

result point cloud. Fig. 3-13 shows the procedure of MLS. Points pi are sampled
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from the original surface and the goal is to project the purple point r near the
original surface onto a new surface that approximates the pi. First, a local reference
plane H for r is generated by minimizing a local weighted sum of square distances
of pi to H. The projection of r onto H defines its origin q (the red point). The
distance between each p; and q is used as the weight function. Let points qi be the
projection of pi onto H, and fi the heights of points p; over H. Then, the local
polynomial approximation g is obtained by minimizing a weighted least squares
error between g and fi. The blue point t shows the result of the MLS projection

procedure, which is the projection of r onto g.

3.3.3.3 Normal Estimation

Surface normals are important properties of a geometric surface. The estimation of
the normal at each point in the point cloud is based on its relationships with the
nearby k points surrounding it. This information is then used for computing
persistent features and registration. A fast and accurate estimation requires both a
method for determining the best k-neighborhood support for the query point and

a way of estimating the surface normal at the query point.

The estimated normal n of the point p can be approximated with the normal to
the k-neighborhood surface by performing PCA (Principal Component Analysis)

on the neighbors’ covariance matrix (Paully, 2002). The eigenvector corresponding
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to the smallest eigenvalue gives an estimate of n's direction. The MLESAC
(Maximum Likelihood Estimation SAmple Consensus, Torr, 2000) technique is
used to robustly estimate the best support for a plane and discard the outliers. As
shown in Fig. 3-14, the normal of a point is calculated from the normal of the plane
fitted by its neighbors. The covariance matrix from the points p; of the support
neighborhood is defined by (Rusu, 2008)

C=Xé& @i-p - @i-phi=1.k (3-13)
The eigenvector V and eigenvalue 1 is computed for C. The term §; represents the

weight for point p;

a
§ = exp (-2 G14)
If p; is outlier, §; = 1. If not, §; = —1. u is the mean distance from the query point

p to all its neighbors p;, and d; is the distance from point p to a neighbor p;.

Fig. 3-14 Normal Estimation (PCL, 2012)

3.3.4 3D Feature Extraction
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3.3.4.1 Resampling

The original point cloud consists of a large amount of points. To save the memory
and to speed up the calculation, we perform down sampling using a voxelized grid
(see Fig. 3-15). A 3D voxel grid is like a set of tiny 3D boxes. In each voxel, all the
points present will be approximated with their centroid. In this case, though the

number of points in the cloud is shrunk, most characteristics are preserved.

Fig. 3-15 Before and after downsampling of 3D table data (PCL, 2012)



Fig. 3-16 3D SIFT keypoints (Michael, 201m1)

3.3.4.2 3D SIFT Keypoints

As shown in Fig. 3-16, the 3D version of SIFT keypoint extraction is similar to that
of 2D (Michael, 2011). To blur a point in a 3D point cloud, we just find all of its
neighbors within a fixed-sized radius (based on the scale of the Gaussian) and
assign the new intensity value as the Gaussian weighted sum of that of neighbors.
Do this for all points at several blurring scales and subtract subsequent scales from

each other, a 4-dimensional D(x, y, z, ) scale space is obtained.

3.3.4.3 Fast Point Feature Histograms

As we have extracted the keypoints from the point clouds, the next step is to find a
suitable way to describe the feature of each point. As a result, corresponding

points of 2 point clouds can be found by comparing their feature. Point Feature
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Histograms (PFH, Rusu, 2008) are robust multi-dimensional features that describe
the local geometry around a certain point in 3D point cloud datasets. In this
section, we introduce the mathematical expressions of PFH, and their optimized

version, called Fast Point Feature Histograms (FPFH, Rusu, 2009).

1. Point Feature Histograms
Point Feature Histograms (PFH) are informative pose-invariant local features that

represent the underlying surface model properties at a point p . These features are
scale and pose invariant. Their computation relies on the combination of certain
geometrical relations between p ’s nearest k& neighbors. They incorporate 3D
point coordinates < x, y,z > and estimated surface normals < nx,ny,nz >, but are

extensible to the use of other properties such as curvature, 2™ order moment

invariants, etc.

For each neighboring point pair p, and p (i=j, j<i<k) in the k -
neighborhood of p and their estimated normals 7, and », (p, being the point with
a smaller angle between its associated normal and the line connecting the points),
we define u=n; = (p, = p)xu; W=UXV with the origin in p, and compute 4
features f_ that measure the angle differences between the points’ normals and

the distance vectors between them as follows:
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fo=(vomy)

fi =<uapj_pi>/upj_piu ; =XS3 fxd
f=lp,-sl s

fi= atan(<w,n.,->a<“a”j>)‘

.dx

(3-15)
where x€{0,1,2,3}, “( >” denotes the scalar product, “I_ J” denotes the floor
function, and d is the number of subdivisions of the features’ value range . For
each point-pair and its i, , index, we increment the histogram value at that index
by I, and at the end, normalize each bin with the total number of point pairs
k(k +1)/2 to achieve point density invariance. The number of histogram bins that
formed using these four geometric features is d*. If we divide each feature

definition range in 2 parts, we obtain a total of 2* =16 bins in total.

Fig.3-17(a) presents an influence region diagram of the PFH computation for a

query point p_, marked with red and placed in the middle of a circle (sphere in 3D)

with radius 7, and all its £ neighbors (points with distances smaller than the

radius ') are fully interconnected in a mesh.
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(a) PFH (Rusu, 2008) (b) FPFH (Rusu, 2009)

Fig.3-17 Influence region

The top left part of Fig.3-18 illustrates the PFH of a set of query points located on
various geometric surfaces, which are synthetically generated. The results show
that the different geometrical properties of each surface around the query point
produce unique signatures in the feature histograms space. So PFH can be used to
search corresponding for registering multiple clouds of the same model. The right
part of Fig. 3-18 presents corresponding histogram features for similar points in

two different overlapping point clouds (shown in the bottom left part of Fig. 3-18).
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Fig.3-18 PFH of points on different surfaces (Rusu, 2008)

2. Fast Point Feature Histogram

The theoretical computational complexity of the Point Feature Histogram for a
given point cloud P with n points is O(n'k?), where k is the number of neighbors
for each point p in P. Since the computation of Point Feature Histograms in dense
point neighborhoods can represent one of the major bottlenecks in the registration
framework for realtime or near realtime applications. A simplified version, Fast

Point Feature Histograms (FPFH), is used instead of PFH. It reduces the
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computational complexity of the algorithm to O(nk), while still retaining most of

the discriminative power of the PFH. The FPFH is calculated by:

i) For each query point p we compute only the relationships (see Eq. 3-15) between
itself and its neighbors inside a r radius sphere - we will call this the Simplified

Point Feature Histogram (SPFH).

ii) For each point we re-determine its k neighbors and use the neighboring SPFH

values to weight the final histogram of p (called FPFH):
FPFH(p) = SPE(p) = Tty o SPF (i) (316)

where the weight w, represents the distance between query point p and a

neighbor point py.

An influence region diagram illustrating the FPFH computation is presented in Fig.
3-17(b). For a given query point p,, we first estimate its SPFH values by creating
pairs between itself and its neighbors. We repeat this for all the points in the
dataset, and then we re-weight the SPFH values of p, using the SPFH values of its
neighbors, thus creating the FPFH for p,. As the diagram shows, some of the value
pairs will be counted twice (marked with 2 in the figure).

Recent experiments showed that presence of f, makes no significant difference,
so we only use f;, f; and f; to calculate the FPFH. A further optimization can be

pursued if we tackle the correlation in the feature histogram space. So far, the
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resulting number of histogram bins was given by g%, where q is the number of
quantums (i.e. subdivision intervals in a feature’s value range) and d is the number
of features selected (in our case: 53 = 125 bins). The resulting histograms contain
a lot of zero values, and can thus contribute to a certain degree of information
redundancy in the histogram space, as some of the subdivision cells of the cube
will never contain any values. A simplification of the above is to simply create d
separate feature histograms, one for each feature dimension, and concatenate

them together (see Fig. 3-19, there are 15 bins in total).

FPFH for different geometric surfaces (synthetic data)

here el wder pdae  dorner

r
 plane
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Fig. 3-19 FPFH of points on different surfaces (Rusu, 2009)

3. Persistent Analysis
In large datasets, the number of points with similar FPFH might be large and could
lead to ambiguous correspondences. A solution is to neglect all points with

features that are considerably dominant in the dataset and thus concentrate on



55

more prominent points, which can be achieved by performing a persistence

analysis (Rusu 2008): that is to observe which histograms are salient at each scale.

At a given scale, compute the distances from the mean FPFH of a dataset to all the
features of that dataset. This distance distribution can be approximated with a
Gaussian distribution, and using simple statistical heuristics, features whose
distances are outside the pu + - o interval can be selected as less common, where
p represents the mean FPFH, o represents the standard deviation of the distance
distribution, and f controls the width of the interval and acts as a band-stop filter
cut-off parameter. To account for density variations but also different scales, the
above is repeated over a discrete scaling interval (i.e. each point is enclosed in
spheres with varying radii and its FPFH values recomputed), and points which are
marked as unique over the entire interval are marked as persistent:

Py = UL [Pr,NPy,, ] (3-17)
where Py, represents the points which are selected as unique for radius ;. The

values of r; are selected based on the size of the features that need to be detected.

3.3.5 3D Registration
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3.3.5.1 Transformation Estimation

Let there be N corresponding points. Their coordinates in the source and target
are denoted by p = {p;} and q = {q;} respectively, i = 1,2,3 ... N. We are looking for
a transformation of the form

q, =sRp, +T +V, (3-18)

where s is the scale factor, Ris a standard 3x3 matrix, 7 is a translation vector

and V; is a noise vector. Solving for the optimal transformation [§, 8, 7] that maps

the set {p.} onto {g,} typically requires minimizing a least square error criterion:
N 2

ez =2 qi—ﬂ%pi—f
i= (3-19)

Ideally, perfect matched corresponding point clouds should have the same

centroid. So the translation 7 could be estimated from the offset between the

original centroids, which are defined by

1 &
p= N £ D;
1 N
qg=— 2 q;
N & (3-20)
The translation is found by
7-3-p (3-21)

If we move both centriods to the original, the new coordinates can be expressed by

P, =P —D

_ (3-22)
q.=9,-9
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Then Eq.3-19 can be rewritten and reduce to

2

2 _ N AP
e = E q. —SRp,
i=1
(3-23)

2

N A
= p. /5",
i=1

or

2

e = é”(l/ $)p, - Rq,

1 N N n N
= 2 . p. - 22 p."Rq, + 52 a."q.
S T= ! ! = ! ! pm ! B

S,-2D+5S, (3-24)

2
- 1
= (\/E\/E—ﬁ\/@) +2(fs,s, - D)
This is minimized with respect to the scale s when the first term is zero or when

§=,/S,/S, (Horn,1988), that is

The above result could determine the scale without knowledge of the rotation.

L | —

P, q,

) (3-25)

However, the estimation of the rotation is not affected by the choice of the value of
the scale factor. The remaining error is minimized when D is as large as possible,

which is equivalent to maximizing 7race(RH ) (Eggert, 2004), where

N
H = ch, q.
= (3-26)

If the singular value decomposition of H is given by H = UAV", then the optimal

rotation matrix that maximizes the desired trace is
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R=vU" (-27)
Eq.3-27 is called the orthogonal Procrustes problem, which can be solved using

SVD method (Schonemann, 1966).

3.3.5.2 SAmple Consensus (SAC)

The registration of a pair of 3D point clouds is easily solvable if the point to point
correspondences are perfectly known. We implemented the SAC method which
maintains the geometric relations of the correspondences without having to try all
combinations. The large numbers of correspondence candidates are sampled and

ranked quickly by employing the following scheme:

i) Select s sample points from P while making sure that their pairwise distances are

greater than a user-defined minimum distance dmin.

ii) For each of the sample points, find a list of points in Q whose histograms are
similar to the sample points’ histogram. From these, select one randomly which

will be considered that sample point’s correspondence.

iii) Compute the rigid transformation defined by the sample points and their
correspondences and compute an error metric, determined using a Huber penalty

measure Ly, for the point cloud that computes the quality of the transformation.
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1
Sef lle:ll < ¢,

Ly(e;) = 2

(3-28)
“teQlledl —t) el >t

This scheme finds a good transformation fast by looking at a very large number of
different correspondences. These three steps are repeated, and the transformation
that yielded the best error metric is stored and used to roughly align the clouds.
Finally, a non-linear local optimization is applied using a Levenberg-Marquardt
algorithm. Since SAC only considers the sample points, the initial alignment result

will not be quite accurate. A final registration is needed to optimize the result.

3.3.5.3 Iterative Closest Point

The final registration is achieved using the Iterative Closest Point (ICP, Zhang,
1994) registration, which is an efficient and reliable method for registration of free-
form curves and surface. This algorithm is based on the prior knowledge of the
initial alignment. It iteratively matches points in one set to the closest points in

the other and estimate the final registration with high accuracy.

The inputs of ICP are two frames containing m and n 3D points. The output is the

optimal motion between two frames. It aims to minimize the criterion
1
F(R,t) = S XiilRx; + t — yill? (3-29)

where N is the number of pairs, R and t is the motion rotation and translation,
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x; and y; are paring points. The procedure is:

i) Initialization: Set a value for the maximum tolerable distance in the first
iteration D2, . Every point in the first frame whose distance to its closest point in

the second frame is bigger than D2, is discarded during the first iteration.

ii) Preprocessing: a) Compute the tangent at each point of the two frames; b) Build

the k-d tree representation of the second frame.

iii) Iteration: a) Find the closest points satisfying the distance and orientation
constrains; b) Update the recovered matches through statistical analysis of
distance; ¢) Compute the motion between the two frames from the updated
matches; d) Apply the motion to all points in the first frame; e) Iteration until

convergence of the computed motion.

3.3.5.4 Point Cloud Library

The Point Cloud Library (PCL, http://www.pointclouds.org) is a large scale, open

source software for 2D/3D image and point cloud processing. It covers numerous
state-of-the-art algorithms including filtering, feature estimation, surface
reconstruction, registration, model fitting and segmentation. In this thesis, PCL is

used as an external library for C++ to manipulate the 3D point clouds.



Chapter 4
Results and Discussion

4.1 Testing Data

To test the registration method proposed in the thesis, a 3D Chef data (point
clouds) set is used. Two point clouds from this data set are shown in Fig.4-1. This
data set is scanned with the Minolta scanner and can be downloaded from

http://www.csse.uwa.edu.au/~ajmal/3Dmodeling.html.

Vertices: 63007 Vertices: 66863

(a) Cloud 1 (b) Cloud 2

Fig. 4-13D Chef data

61
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Compared to the Pictometry 3D data generated by the 3D workflow we used, the
Chef data consist of much denser 3D points, but less noise. The points in the data
locate accurately on the outline of the statue. The surface itself contents much
more complicated structures. Since the noise in the Chef data set can be ignored
and the point refinement step is skipped. We simply down sample the point clouds
by leaf size = 3.0 (i.e. the average distance d, in the result point cloud) before we

extract the FPFH for each point.

4.1.1 No Scale Difference

(a) Cloud 1 (b) Cloud 2

Fig. 4-2 Point with persistent features (shown in red)
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Fig. 4-2 shows the points before (shown in white, 5213 points and 4875 points
respectively) and after (shown in red, 424 points and 303 points respectively) the
multi-scale persistence analysis. These remained red points have unique features.
The corresponding points used later for the initial alignment will be selected from

these candidates.

500
550
500
550
q00 "

750, i

50

Fig. 4-3 Initial alignment result

(red: points in Cloud 1, blue: points in Cloud 2, black/green/cyan/magenta:

Corresponding points (*: points in Cloud 1, *: points in Cloud 2) )

The initial alignment result using the sample consensus method is shown in Fig. 4-
3. Four corresponding pairs we found are highlighted in four different colors
respectively. The two points in each corresponding pair are marked in the same

color but different shape according to which cloud it belongs to. We can see that
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these corresponding points overlap well. Based on these corresponding points, a

satisfying initial alignment is achieved.

(a) FPFH of 4 corresponding points from Cloud1
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(b) FPFH of 4 corresponding points from Cloud2
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Fig. 4-4 FPFH of corresponding points

(blue: f,, green: f,, red: f;)

The FPFH of the corresponding points are shown in Fig. 4-4. For each
corresponding pair (shown in the same column), their FPFH are quite similar to
each other, which proves that the corresponding points are selected reasonably

and correctly as expected.
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The final ICP registration result is shown in Fig. 4-5 (b). Compared with the initial
alignment result shown in Fig. 4-5 (a), the offset around the shoe in the right

(circled in red) is revised after the final registration.

(a) Initial alignment (b) Final registration

Fig. 4-5 Comparison of initial alignment and final registration results

4.1.2 With Scale Difference

As shown in Fig. 4-6, we test the algorithms under different scale differences
between input target clouds. When we use one point cloud and its rescaled point
cloud for registration, the algorithm can handle different scale ranging from 0.5~2
(scale of input scale is 1). But when different point clouds are used for registration,

this range is very narrow (0.9~1.1). To obtain a satisfying result, we should better
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set the point clouds to similar scale first. In reality, most point clouds have

preliminary information about its scale somehow, so this won't be a big problem.

(a) Original Clouds (b) Initial alignment (c) Final registration

Fig. 4-6 Registration result for clouds with different scale (scale = 1.6)

4.1.3 With Noise

To test the robustness of the method introduced, artificial noise is added to the

chef point clouds before normal and feature estimation procedure.

When sparse noise points (i.e. random points whose coordinate are uniformly
distributed in the 3d space) exist, they can be easily removed as long as they are

much less dense than the point cloud itself (i.e. d, < 0.1d,). d,, is the average
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distance between the noise points, while d; is the average distance between the

original points.

When wrong clusters (i.e. small noise clusters that has a similar density as the
original point cloud) exist, they can be removed correctly if their size is small
enough (i.e. N, < 100N, and D,, < 3Dj5;). N, is the number of points in a noise
cluster, N, is the number of points in the original cloud, D,, is the diameter of the
noise cluster, Dj; is the smallest distance from a point in the noise cluster to a

point in the original cloud.

(a) B= 0.3, success (b) B= 0.35, small offset (c) B=o.5, fail

Fig. 4-7 Registration result with shifting noise presence
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The noise that influences the final registration result significantly is the shift of
points originating from the error which always exists when we estimate their 3D
positions. The x, y, z coordinates of each points are shifted by three random values
in range [-fd,, Bd,], where Bis a control factor. With the influence of severe
shifting noise (i.e. 8 = 0.5), the details of the original surface will be lost in the
smoothing procedure, which trades off the benefit from MLS. The registration
result is shown in Fig. 4-7. We can see that a successful registration can be

achieved if § < 0.3.

4.2 Pictometry Data

4.2.1 Image Grouping

The research in this thesis is based on the application of the RIT 3D Extraction
Workflow, which is designed to reconstruct dense points from nadir images. The
imagery used in this project is provided by Pictometry, including airborne images
taken from five different viewing directions. If images of different viewing
directions are simply thrown into the original workflow, the result will be poorer

than that only using a portion of these images all in the same viewing direction.

The following results in Fig. 4-8 are extracted from sub-images of the original

Pictometry images. Each image is a 800 X 600 pixels area around the RIT Building

76 (highlighted by red circles in the point clouds).



(a) Using images of all directions (b) Using only north images

Fig. 4-8 The reconstruction results of using different image groups

The reconstruction result on the left (Fig.4-8(a)) includes 9882 points, using 28
oblique images of different directions (6 east images, 1 north images, 4 south
images, and 7 west images). When we checked the “bundler.out” file, we found
that lots of images are abandoned because of bad 2D matching results before the
PMVS process. Since they didn’t participate in the final dense point reconsruction,
the 3D information they carried is missing, leading to large blank areas in the

resulting point cloud.

The reconstruction result on the right (Fig.4-8(b)) included 23901 points, using
only 11 north images. Because every image is taken from the same direction, they
are easier to be matched. From the corresponding “bundler.out” file, most images

are used for the dense point reconstruction, except one image that covers a small
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overlap area compared to the others. As a result, the set of north images is utilized
more efficiently and the output point cloud is even better (includes much more

points) than the former.

From the above comparison, we can conclude that more comprehensive results
could be obtained by grouping the images according to the viewing direction
before the 3D extraction procedure. Actually, the name of each Pictometry image
file already includes the information about the viewing direction. It is easy to sort

these images without determining from their content.

4.2.2 Modification of the RIT 3D Workflow

Since the ASIFT algorithm can produce better matching result than the SIFT
algorithm when affine transformation exists, the SIFT part in the RIT 3D workflow
is substituted by the ASIFT. This process is realized by using the ASIFT keypoints
instead of the SIFT keypoints. That is to save the 128-digit descriptors of ASIFT
keypoints in the “SIFT style” (which means to change the original orders of these
digits to be consistent with SIFT descriptors) and use them instead of the original
“.key” files generated from SIFT. In addition, since the focal lengths of the cameras
are known, the focal length estimation procedure in bundler of the RIT 3D
Workflow is also skipped. The comparison of the results before and after these

modifications is shown in Fig. 4-9.



The point cloud shown in Fig. 4-9(a) are extracted from 1 full size north images

using the original RIT 3D Workflow, which includes 366422 points in total. The
highlighted red points present the wall of a nearby building but shift to a wrong

location. Fig. 4-9(b) shows the point cloud extracted from the same image set but



72

using the “modified workflow”, which includes 435908 points in total. In the
highlighted area, the floating wall (i.e. red points in Fig. 4-9(a)) disappears. These
points which belong to a nearby wall have moved to the correct position
(highlighted by green arrow). The whole point cloud is denser than the former one
because of the better matching of images using ASIFT. And the position of the
shifting cluster in the former point cloud is estimated correctly because the error

has been eliminated by fixing the true focal length.

4.2.3 Original Point Clouds extracted

(a) From north image set (b) From nadir image set

Fig. 4-10 Point clouds extracted from the “modified workflow”

Using the “modified workflow”, two point clouds extracted from 11 north and 9

nadir images respectively are shown in Fig. 4-10. The areas highlighted in red
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squares show the geographical overlap of two point cloud. Since two image sets
cover different geographical areas, the resulting point clouds represent scenes of

different areas also.

(d) (e) ()

Fig. 4-11 Different views of the point clouds
(a)(b)(c): North cloud; (d)(e)(f): Nadir cloud
(a)(d): Nadir view; (b)(e): North view; (c)(f): Side view

Red: Points on the facets of a same building
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Fig. 4-11 shows the different views of the point clouds extracted. From these figures,
we can see that the north cloud looks better in the north view, while the nadir
cloud looks better in the nadir view. This is because the north image set includes
more information about the north facets of buildings (e.g. the highlighted points
in 4-11(c)); as a result the extracted cloud includes more points presenting the
north facets. Similarly, the nadir image set includes more information that could
be found when viewing from top, so the extracted cloud includes more points

describing the roofs.

Fig. 4-12 Point clouds shown in the same coordinate system

(blue: north cloud, red: nadir cloud)

Since different point clouds focus more on different facets, the combination of

these point clouds will provide richer information and render the scene better. But
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these point clouds extracted from the 3D workflow use independent coordinate
systems. As shown in Fig. 4-12, there is translation, rotation and scale difference
between the point clouds. To perform a 3D registration, we need to find out the

corresponding points between two clouds and to estimate the transform matrix.

4.2.4 Refined Point Clouds

(a) North cloud (b) Nadir cloud

Fig. 4-13 Sub-clouds used for registration

To simplify the calculation, the point clouds are cut into smaller size to only
contain the areas that have overlap for the later registration process. The two point
clouds which will be used for registration are shown in Fig. 4-13. The original point
clouds here are quite noisy, especially for the nadir point cloud. As shown in Fig.

4-13, some sparse outliers distributing all over the space, some are mis-estimated
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floating point clusters, and points presenting the same surface are not exactly on
the “true surface”. With all these errors, it’s hard to extract accurate 3D features. So

the noise removal and surface smoothing are necessary.

The filtering results are shown in Fig.4-14. The Statistical Outlier Removal method
decides that a point is an inlier or outlier according to the point density of its
neighborhood, while the Radius Outlier Removal method decides according to the
size of the cluster it belonging to. The final remaining points (about 80% of the

original points) represent the real scene better without too much noise.

(a) Floating point removal (b) Wrong clusters removal

Fig. 4-14 Noise removal results (red: outliers, blue: remained points)

The surface smoothing results are shown in Fig.4-15. The re-distributed points are

concentrated around actual surfaces to better avoid wiggling borders.
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(a) Original points

(b) Re-distributed points

Fig. 4-15 Surface smoothing result

An overall view of the nadir point cloud before and after the refinement process is

shown in Fig. 4-16. We can see that most of the floating points and wrong clusters

are eliminated and the surface now is much smoother than before.

A comparison of the normal distribution before and after the refinement process is

shown in Fig. 4-17. In Fig. 4-17(a), the normals derived from the 3D workflow look

like a bunch of random vectors, while the updated normal estimation shown in Fig.

4-17(b) are much more reasonable. According to this result, we can see that the

refining procedure obtained the expecting effects. The normals of the points

estimated are closer to the true surface normals after the refinement now.



Fig. 4-16Nadir point cloud before and after refinement
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(a) Before refinement (b) After Refinement

Fig. 4-17 Normals of the points

4.2.5 3 D Keypoints

(a) Highlighted keypoints (b) 3606 keypoints for the nadir cloud

Fig. 418 3D SIFT keypoints selected
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According to the method mentioned in 3.3.4.2, 2% points of the entire clouds are
selected as keypoints according to the color distribution (See Fig. 4-18). Actually,
this keypoint extraction step is not necessary for our Pictometry data, which is not
as dense as scanned data. The number of points is already shrunk to tens of
thousands after the downsampling process. So we skipped this step here (But for a

larger data set, this step will be necessary.).

4.2.6 Point with Unique FPFH

015 02 025 03 035 04 04 05 055

(a) North cloud (b) Nadir cloud

Fig. 4-19 Points with unique FPFH (shown in blue)

Follow the algorithm introduced in 3.3.4.3, the FPFH features are calculated for the
entire point clouds under different scales, and a multi scale persistence analysis

process is performed to focus on those points with unique features. Fig. 4-19 shows
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the points remained in each point cloud after persistence analysis. There are about

one thousand unique points found for each cloud.

4.2.7 Initial Alignment

Using the method mentioned in 3.3.5.1 and 3.3.5.2, we randomly select several
samples and their nearest corresponding points to guess the transformation.
Choose the best one that produce smallest errors as the rough initial alignment
result. Here we re-scale the target cloud first (scale = 1.5) to make sure it is
comparable to the input cloud. The selected corresponding point pairs are shown

in Fig. 4-20.

Fig. 4-20 Corresponding points selected
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The FPFH of the corresponding points are shown in Fig. 4-21. We can see that the
FPFH of pair 1 match each other the best (i.e. a good match is found), while the
FPFH of pair 3 have the largest difference (i.e. this pair might not be a good match).
But it does not influence the success of initial alignment result since we are not

expecting a high accurate result in this step anyway.

120 T T T T 100

80 1

60 - y 50 y

400 1

10+ 1




Fig. 4-22 Result of initial alignment
Before
The initial alignment result is shown in Fig 4-22. In general, a rough registration is
achieved. Two point clouds have been movddeand rotated to the similar position;
but since the corresponding points are not perfect, there is still a slight shift

between them. An improvement is required for further alignment.

4.2.8 Final Alignment

Fig. 4-23 Result of final alignment

To optimize the initial alignment result, a final alignment is performed using the

ICP algorithm. The translation, rotation and scale parameters are all slightly
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modified in this step and the registration result is shown in Fig. 4-23. The points
representing the same building, highlighted in Fig.4-22, overlap better now.
Similarly, the offset between the points representing the same grass area,
highlighted in Fig. 4-23, has also disappeared after the optimization. We can see

that a more accurate result is finally achieved.

4.2.9 Compare to Manual Registration

Fig. 4-24 Registration based on corresponding points selected manually

(two point clouds are shown in pink and blue respectively)

The ground truth of the 3D points generated from Pictometry is unknown. So we
just compare the registration result to a manual registration result based on

manual selection of corresponding points. Compare the magnified details in Fig. 4-
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23 and Fig. 4-24, we can see that both result achieved satisfying accuracy. From
these figures, no offset between the point clouds is perceptible. The successful
registration of point clouds with large amount of noise generated from Pictometry

imagery proves the reliability of the method introduced in this thesis.
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Chapter 5
Conclusion

5.1 Summary of work

The research presented in this thesis suggested a practical approach to
automatically reconstruct a 3D building model from airborne oblique and nadir
imagery. The multi-view Pictometry imagery used is obtained using a calibrated
five-camera system. This set of images provides enough coverage and overlap for
building a 3D model for the RIT campus area, which includes a tilted ground floor,
buildings of different shapes and many other facilities. It is a good start for trying
to reconstruct a complicated city scene. The ASIFT and focal length control have
been used to adapt the RIT 3d point cloud extraction workflow to the Pictometry
imagery. The modified version has been tested to perform well for both nadir and
oblique images used in our research. The point cloud refinement methods used in
the research have achieved the expected results in eliminating different kinds of
noises and smoothing the surface. The 3d feature descriptors are defined based on
the innovative usage of the color information. Through the multi scale persistence
analysis, points with unique 3D FPFH feature are selected as candidates, from

which corresponding pairs for the initial sample consensus alignment are found.
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The initial alignment obtains a rough matching of two point clouds. Then a further
improved final registration using ICP is realized. Since the ground truth of the
point cloud generated is unknown, the result is only compared to that obtained
from manually registration. A Chef data set is used to test the robustness of our
method with artificial noise present. Overall, the 3D point cloud reconstruction
and matching method applied to the oblique and nadir imagery in this thesis has
reached the expectation in a limited condition. In the future research, the current
approach will be optimized and a complete 3d model with meshed surface and

texture information will be generated.

5.2 Contribution to the field

The research in this thesis presents a method to realize 3D building modeling
using multi-view imagery and combination of different point clouds. Using 2D
airborne oblique images to reconstruct 3D geographic scene has a promising
market for future commercial usage in various areas like virtual tourism,
navigation system, urban planning, visual military, and even insurance. The usage
of oblique images for 3D city modeling can break the limitation of traditional
vertical images. More detailed structures of the side facets can be better
represented even when occlusion happens. Modeling results from oblique imagery
can be used independently or integrated with existing models from other sources.
Besides providing more complete information, it makes faster response possible

compared to ground-based methods and costs much less expense than images
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taken by satellite or data generated by LiDAR. The 3D registration method
proposed can not only be used to match point clouds generated from images taken
in different viewing directions, but also to improve an existing model by adding
additional parts extracted from a different source. The 3D feature descriptors are
defined based on the innovative usage of the color information instead of normal
make the alignment possible in a noisy condition that surface normal cannot be
estimated accurately. In addition, based on further research, the surface and even
the texture of buildings can be generated from these oblique images captured from

different directions.

5.3 Limitations

The method used in this thesis is especially designed to adapt to the Pictometry

airborne imagery and has its limitations as follows:

1. Require enough geographical overlap for images

The imagery used in this project only covers the RIT campus area. Every image
covers a similar area. The geographical overlap between images is larger than 60%.
It makes sure that enough corresponding could be found between images and the
extraction of 3D point clouds is successful. It also guarantees large geographical

overlap between the point clouds generated.

2. Require enough geometrical overlap between point clouds
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The extraction of point clouds relies on proper disparity between the input images.
Since images provided by Pictometry are taken in different flights on different date,
only the nadir and north image sets lead to available point clouds suitable for later
registration. These point clouds both have a large portion of points describing the
ground scene and the roof facets. So the geometrical overlap is also larger than
60%. Our 3D feature is extract based on local structure, so if the geometrical
overlap (amount of overlapped facets) is not large enough, the registration may fail

even the geographical overlap is high.

3. The scene of RIT campus area consists of simple structures

Every buildings covered in the point clouds have unique contour outlines. Side
facets of a building are almost always surrounded by distinguishable environment.
There is no large area of high frequent patterns existing. These conditions make
the registration much easier to implement. But for a scene that covers lots of

repeated structure or buildings, the method presented in this thesis may fail.

4. The scale/density difference between the original clouds is small.

The registration method can only optimize the scale difference in a small range.
Since in most case, we have preliminary knowledge of the scale of clouds need
registration, we transform the Pictometry point clouds to similar scale by hand to

simplify the process. The density of the point clouds is also similar, which confirms
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that the neighbors of a certain point in both clouds can represent similar surface

feature correctly.

5. Only suitable for rigid registration.

Since the registration is for buildings which are fixed on the ground, we assumed
that there is no distortion between the point clouds. The registration is based on
rigid transformation. No distortion is considered. So this method may fail if it is

used for registration for point cloud including large moving object.

5.4 Future work

1. Set up ground truth for the campus model. Compare the ground truth with

our result to testify the reliability of the method presented in this thesis.

2. Utilize additional information to optimize the 3D feature. Currently, only the
color information is considered. For a more complicated model, additional
normal information may improve the accuracy of the corresponding pair

selection and produce a better registration result in the initial alignment.

3. So far, the parameters used for the processing are selected manually. Try to
select the parameters according to the characteristics of the point clouds

themselves automatically.
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Optimize the coding and make the whole process more computational

efficient.

Optimize the algorithms to overcome the limitations listed in 5.3.

Realize the one by one matching of a series of point clouds. Apply the current
method to different scenes to testify its robustness and optimize the algorithm
accordingly. Also, try to apply this method to point clouds from different

sources.

Mesh surfaces from the result point cloud and add texture information to the

point cloud to obtain the final 3D campus model.
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Appendix

C++ Code (3D point clouds processing for Pictometry data)

#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <iterator>

#include <pcl/point_types.h>

#include <pcl/io/pcd_io.h>

#include <pcl/io/ply io.h>

#include <pcl/visualization/cloud viewer.h>
#include <boost/thread/thread.hpp>
#include "pcl/visualization/pcl visualizer.h"

#include <pcl/features/normal 3d.h>

#include <pcl/filters/voxel grid.h>

#include <pcl/filters/statistical outlier removal.h>
#include <pcl/filters/radius_outlier removal.h>
#include <pcl/surface/mls.h>

#include <pcl/keypoints/sift keypoint.h>

#include <pcl/features/fpth.h>

#include <pcl/registration/ia_ransac.h>

#include <pcl/registration/icp.h>

int SimViewRGB (pcl::PointCloud<pcl::PointXYZRGB>::Ptr Cloud)
{
pcl::visualization::CloudViewer viewer ("Simple Cloud Viewer");
viewer.showCloud(Cloud);
while (!viewer.wasStopped ())
{
H

return 0;

}

int NormView (pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudRGB,pcl::PointCloud<pcl::Normal>::Ptr
Normal)
{
std::cerr<<"Show the normals...(Close the pop-out viewer to continue)"<<std::endl;
boost::shared ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer
("Normal Viewer"));
viewer->setBackgroundColor (0, 0, 0);
pcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> rgb(cloudRGB);
viewer->addPointCloud<pcl::PointXYZRGB> (cloudRGB, rgb, "sample cloud");
viewer->setPointCloudRenderingProperties (pcl::visualization::PCL VISUALIZER POINT SIZE, 3,
"sample cloud");
viewer->addPointCloudNormals<pcl::PointXYZRGB, pcl::Normal> (cloudRGB, Normal, 15, 0.05,
"normals");
while (!viewer->wasStopped())

{
}

viewer->spinOnce ();
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return 0;

}

void KeyView (pcl::PointCloud<pcl::PointXYZRGB>::Ptr Cloud, pcl::PointCloud<pcl::PointXYZRGB>::Ptr
Key)
{
int v1(0);
boost::shared ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer
("Points with persistent features"));
viewer->setBackgroundColor (0, 0, 0, v1);
/Ipcl::visualization::PointCloudColorHandlerRGBField<pcl::PointXYZRGB> rgb(Cloud);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> single colorl(Key, 255, 255,
255);
viewer->addPointCloud<pcl::PointXYZRGB>(Cloud,single colorl,"cloud",v1);
viewer->setPointCloudRenderingProperties (pcl::visualization::PCL VISUALIZER POINT SIZE, 2,
"cloud");
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> single color2(Key, 255, 0,

0);

viewer->addPointCloud<pcl::PointXYZRGB>(Key,single color2,"key",0);

viewer->setPointCloudRenderingProperties (pcl::visualization::PCL VISUALIZER POINT SIZE, 2,
llkey”);

while (!viewer->wasStopped ())

{

viewer->spinOnce (100);

}

§

pcl::PointCloud<pcl::PointXYZRGB>::Ptr VoxFilterSave(pcl::PointCloud<pcl::PointXYZRGB>::Ptr Cloud,
std::string FilterFile)
{
pcl::VoxelGrid<pcl::PointXYZRGB> vg;
vg.setlnputCloud (Cloud);
vg.setLeafSize (0.0005f, 0.0005f, 0.0005f);
pcl::PointCloud<pcl::PointXYZRGB>::Ptr Cloud out (new pcl::PointCloud<pcl::PointXYZRGB>);
vg.filter(*Cloud_out);
std::cerr<<"Dowsampled to "<< Cloud_out->points.size()<<" points"<< std::endl;

pcl::io::savePCDFile (FilterFile, *Cloud out);

std::cerr<<"Show the downsampled points...(Close the pop-out viewer to continue)"<<std::endl;
SimViewRGB(Cloud out);

return(Cloud_out);

}

pcl::PointCloud<pcl::PointXYZRGB>::Ptr SorFilterSave (pcl::PointCloud<pcl::PointXYZRGB>::Ptr Cloud,
std::string FilterFile)
{
pcl::StatisticalOutlierRemoval<pcl::PointXYZRGB> sor(true);
sor.setInputCloud(Cloud);
sor.setMeanK(50);//choose a suitable parameter manually//50-30
sor.setStddevMul Thresh(0.5);//choose a suitable parameter manually//0.5-0.8
pcl::PointCloud<pcl::PointXYZRGB>::Ptr Cloud out (new pcl::PointCloud<pcl::PointXYZRGB>);
sor.filter(*Cloud_out);
std::cerr << "Left " << Cloud_out->points.size () << " data points after SOR filter, removed
"<<sor.getRemovedIndices()->size()<< "points"<<std::endl;

pcl::io::savePCDFile (FilterFile, *Cloud out);

std::cerr<<"Show the filtered points...(Close the pop-out viewer to continue)"<<std::endl;
SimViewRGB(Cloud out);

return(Cloud_out);
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}

pcl::PointCloud<pcl::PointXYZRGB>::Ptr RorFilterSave (pcl::PointCloud<pcl::PointXYZRGB>::Ptr Cloud,
std::string FilterFile)

{

pcl::RadiusOutlierRemoval<pcl::PointX YZRGB> ror(true);

ror.setInputCloud(Cloud);

ror.setMinNeighborsInRadius(30);//choose a suitable parameter manually
ror.setRadiusSearch(0.01);//choose a suitable parameter manually
pcl::PointCloud<pcl::PointXYZRGB>::Ptr Cloud out (new pcl::PointCloud<pcl::PointXYZRGB>);
ror.filter(*Cloud_out);

std::cerr << "Left " << Cloud_out->points.size () << " data points after ROR filter, removed

"<<ror.getRemovedIndices()->size()<< "points"<<std::endl;

}

pcl::io::savePCDFile (FilterFile, *Cloud out);

std::cerr<<"Show the filtered points...(Close the pop-out viewer to continue)"<<std::endl;
SimViewRGB(Cloud out);

return(Cloud_out);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr MlsFilterSave(pcl::PointCloud<pcl::PointXYZRGB>::Ptr Cloud,
std::string FilterFile)

{

}

pcl::PointCloud<pcl::PointXYZ>::Ptr cloudXYZ (new pcl::PointCloud<pcl::PointXYZ>);
pcl::copyPointCloud(*Cloud,*cloudXYZ);

pcliisearch::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointNormal> mls_points;

pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointNormal> mls;
mls.setComputeNormals (false);

mls.setInputCloud (cloudXYZ);

mls.setPolynomialFit (true);

mls.setSearchMethod (tree);

mls.setSearchRadius (0.01);

mls.process (mls_points);

std::cerr<<"Complete surface smoothing! "<< std::endl;
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudRGB (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::copyPointCloud(*Cloud,*cloudRGB);

pcl::copyPointCloud(mls_points,*cloudRGB);

SimViewRGB(cloudRGB);

pcl::io::savePCDFile (FilterFile, *cloudRGB);

return(cloudRGB);

pcl::PointCloud<pcl::Normal>::Ptr getNormals( pcl::PointCloud<pcl::PointXYZRGB>::Ptr Cloud )

{

pcl::NormalEstimation<pcl::PointXYZRGB, pcl::Normal> norm_est;
norm_est.setInputCloud( Cloud );

norm_est.setRadiusSearch(0.005);

pcl::PointCloud<pcl::Normal>::Ptr Normals (new pcl::PointCloud<pcl::Normal>);
norm_est.compute( *Normals );

for (size_ti=0; i< Normals->points.size (); ++1)

{
if (Normals->points[i].normal z < 0)
{
Normals->points[i].normal x = -Normals->points[i].normal x;
Normals->points[i].normal y = -Normals->points[i].normal y;
Normals->points[i].normal_z = -Normals->points[i].normal z;
}
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}

std::cerr<<"Normal estimated!"<<end]l;

return(Normals);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr scaleCloud (pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudRGB,

float s)
{

}

pcl::PointCloud<pcl::Normal>::Ptr RGB2Normal (pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudRGB,

for (size ti=0; i< cloudRGB->points.size (); ++i)

{
cloudRGB->points[i].x = (cloudRGB->points[i].x)*s;
cloudRGB->points[i].y = (cloudRGB->points[i].y)*s;
cloudRGB->points[i].z = (cloudRGB->points[i].z)*s;

}

return(cloudRGB);

std::string filename)

{

}

//can not use normal2RGB+RGB2normal to return the original normal, because RGB lost sign.

pcl::PointCloud<pcl::Normal>::Ptr normal (new pcl::PointCloud<pcl::Normal>);
pcl::copyPointCloud(*cloudRGB,*normal);
for (size ti=0; i< cloudRGB->points.size (); ++1)

{
normal->points[i].normal x = float(cloudRGB->points[i].r) /255.0;
normal->points[i].normal y = float(cloudRGB->points[i].g) /255.0;
normal->points[i].normal z = float(cloudRGB->points[i].b) /255.0;

}

pcl::io::savePCDFile (filename, *normal);

return(normal);

pcl::PointCloud<pcl::PointWithScale>::Ptr getKeys (pcl::PointCloud<pcl::PointXYZRGB>::Ptr Cloud)

{

float min_scale = 0.001; //0.001

int nr_octaves = 4;

intnr_scales_per octave =4; //5

float min_contrast = 5; /7 for RGB

pcl::SIFTKeypoint<pcl::PointXYZRGB, pcl::PointWithScale> sift;
pcl::PointCloud<pcl::PointWithScale>::Ptr sifts (new pcl::PointCloud<pcl::PointWithScale>);
pcli:search::KdTree<pcl::PointXYZRGB>::Ptr tree(new

pcli:search::KdTree<pcl::PointXYZRGB> );//new API

}

pcl::PointCloud<pcl::FPFHSignature33>::Ptr getSiftPers (pcl::PointCloud<pcl::PointXYZRGB>::Ptr keys,
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudRGB,pcl::PointCloud<pcl::Normal>::Ptr normals,std::string

sift.setinputCloud(Cloud);

sift.setSearchMethod (tree);

sift.setScales(min_scale, nr_octaves, nr_scales per octave);
sift.setMinimumContrast(min_contrast);

sift.compute (*sifts);

cerr <<"Computed "<<sifts->points.size ()<<" SIFT Keypoints"<<end]l;
return(sifts);

file pers, std::string file ind, std::string file cloud)

{

pcl::FPFHEstimation<pcl::PointXYZRGB,pcl::Normal,pcl::FPFHSignature33>::Ptr FPFH (new

pcl::FPFHEstimation<pcl::PointXYZRGB,pcl::Normal, pcl::FPFHSignature33>());

FPFH->setInputCloud(keys);
FPFH->setInputNormals(normals);
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FPFH->setSearchSurface(cloudRGB);
pcli:search::KdTree<pcl::PointXYZRGB>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZRGB>);
FPFH->setSearchMethod (tree);

std::vector<float> scale; //or 12,15,18

scale.push_back(0.015);

scale.push_back(0.020);

scale.push_back(0.025);

pcl::PointCloud<pcl::FPFHSignature33>::Ptr mfps (new pcl::PointCloud<pcl::FPFHSignature33> ());
std::vector< int > ind;

pcl::MultiscaleFeaturePersistence< pcl::PointXYZRGB,pcl::FPFHSignature33 > MFP;
MFP setlnputCloud(keys);

MFP.setFeatureEstimator (FPFH);

MFP.setScalesVector (scale);

MFP.setAlpha(1.2);/miu +/- 3sigma

std::cerr<<"start determine..."<<endl;

MFP.findPersistentFeatures(*mfps,ind);

intn_p = ind.size();
std::cerr<<"Found "<<n_p<<" persistent features!"<<endl;

pcl::io::savePCDFile (file pers, *mfps);
std::ofstream f ind(file ind);
std::ostream_iterator<int> output _iterator(f ind, "\n");

std::copy(ind.begin(), ind.end(), output _iterator);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudRGBpers (new

pcl::PointCloud<pcl::PointXYZRGB>());

}

cloudRGBpers->width =n_p;

cloudRGBpers->height =1;

cloudRGBpers->is_dense = false;

cloudRGBpers->points.resize (cloudRGBpers->width * cloudRGBpers->height);
for (size ti=0;i<n_p; it++)

{
cloudRGBpers->points[i].x = keys->points[ind[i]].x;
cloudRGBpers->points[i].y = keys->points[ind[i]].y;
cloudRGBpers->points[i].z = keys->points[ind[i]].z;
H
pcl::io::savePCDFile (file_cloud, *cloudRGBpers);
return(mfps);

pcl::PointCloud<pcl::FPFHSignature33>::Ptr getPers (pcl::PointCloud<pcl::PointXYZRGB>::Ptr
cloudRGB,pcl::PointCloud<pcl::Normal>::Ptr normals,std::string file pers, std::string file ind, std::string
file cloud)

{

pcl::FPFHEstimation<pcl::PointXYZRGB,pcl::Normal,pcl::FPFHSignature33>::Ptr FPFH (new

pcl::FPFHEstimation<pcl::PointXYZRGB,pcl::Normal, pcl::FPFHSignature33>());

FPFH->setInputCloud(cloudRGB);

FPFH->setInputNormals(normals);

FPFH->setSearchSurface(cloudRGB);

pcli:search::KdTree<pcl::PointXYZRGB>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZRGB>);
FPFH->setSearchMethod (tree);

std::vector<float> scale; //or 12,15,18
scale.push_back(0.010);
scale.push_back(0.015);
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scale.push_back(0.020);
pcl::PointCloud<pcl::FPFHSignature33>::Ptr mfps (new pcl::PointCloud<pcl::FPFHSignature33> ());
std::vector< int > ind;

pcl::MultiscaleFeaturePersistence< pcl::PointXYZRGB,pcl::FPFHSignature33 > MFP;
MFP .setlnputCloud(cloudRGB);

MFP.setFeatureEstimator (FPFH);

MFP.setScalesVector (scale);

MFP.setAlpha(1.6);/miu +/- 3sigma

std::cerr<<"start determine..."<<endl;

MFP.findPersistentFeatures(*mfps,ind);

intn_p = ind.size();
std::cerr<<"Found "<<n_p<<" persistent features!"<<endl;

pcl::io::savePCDFile (file pers, *mfps);

std::ofstream f ind(file ind);
std::ostream_iterator<int> output _iterator(f ind, "\n");
std::copy(ind.begin(), ind.end(), output _iterator);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudRGBpers (new
pcl::PointCloud<pcl::PointXYZRGB>());

cloudRGBpers->width =n_p;

cloudRGBpers->height =1;

cloudRGBpers->is_dense = false;

cloudRGBpers->points.resize (cloudRGBpers->width * cloudRGBpers->height);

for (size ti=0;i<n_p; it+)

{
cloudRGBpers->points[i].x = cloudRGB->points[ind[i]].x;
cloudRGBpers->points[i].y = cloudRGB->points[ind[i]].y;
cloudRGBpers->points[i].z = cloudRGB->points[ind[i]].z;

H

pcl::io::savePCDFile (file cloud, *cloudRGBpers);

return(mfps);

int main (int argc, char** argv)

{

pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud1RGB (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud2RGB (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::io:sloadPLYFile ( "Nadir.ply", *cloud1RGB); //Load original point clouds

pcl:io:sloadPLYFile ( "North.ply", *cloud2RGB);

float s = 1.0/1.54;
cloud2RGB = scaleCloud(cloud2RGB,s);

cloud1RGB = VoxFilterSave(cloud1RGB,"vfl.pcd");//Down sampling
cloud1RGB = SorFilterSave(cloud1RGB,"sf1.pcd");//SOR filter
cloud1RGB = RorFilterSave(cloud1RGB,"rf1.pcd");//ROR filter
cloud1RGB = MisFilterSave(cloud1RGB,"mf1.pcd");//MLS smoother

cloud2RGB = VoxFilterSave(cloud2RGB,"v{2.pcd");
cloud2RGB = SorFilterSave(cloud2RGB,"sf2.pcd");
cloud2RGB = RorFilterSave(cloud2RGB,"rf2.pcd");
cloud2RGB = MisFilterSave(cloud2RGB,"mf2.pcd");
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pcl::PointCloud<pcl::Normal>::Ptr norm_rgb1 (new pcl::PointCloud<pcl::Normal>);
pcl::PointCloud<pcl::Normal>::Ptr norm_rgb2 (new pcl::PointCloud<pcl::Normal>);
norm_rgbl = RGB2Normal(cloud1RGB,"norm_rgbl.pcd");//Use color as normals
norm_rgb2 = RGB2Normal(cloud2RGB,"norm_rgb2.pcd");

pcl::PointCloud<pcl::FPFHSignature33>::Ptr featurel (new pcl::PointCloud<pcl::FPFHSignature33>);
pcl::PointCloud<pcl::FPFHSignature33>::Ptr feature2 (new pcl::PointCloud<pcl::FPFHSignature33>);
//Unique points obtained by persistence analysis for FPFH

featurel = getPers(cloud1RGB,norm_rgbl,"persl.pcd","ind1.txt","cloudRGBpers1.pcd");

feature2 = getPers(cloud2RGB,norm_rgb2,"pers2.pcd","ind2.txt","cloudRGBpers2.pcd");

pcl::PointCloud<pcl::PointXYZRGB>::Ptr key1pts (new
pcl::PointCloud<pcl::PointXYZRGB>),key2pts (new pcl::PointCloud<pcl::PointXYZRGB>);

pcl::io::sloadPCDFile ("cloudRGBpers1.pcd", *key1pts);

pcl::io::loadPCDFile ("cloudRGBpers2.pcd"”, *key2pts);

KeyView(cloud1RGB,key1pts);

KeyView(cloud2RGB,key2pts);

std::cerr<<"Start matching..."<<end];

pcl::SampleConsensuslnitial Alignment<pcl::PointX YZRGB,pcl::PointXYZRGB,pcl::FPFHSignature3
3> saclA; //Initial alignment

saclA.setMaximumlterations(1000);

saclA.setMinSampleDistance(0.001);//small is better, like voxel

saclA.setMaxCorrespondenceDistance(1);

saclA.setNumberOfSamples(4);

saclA.setCorrespondenceRandomness(10);

saclA.setInputTarget(key1pts);

saclA.setTargetFeatures(featurel);

saclA.setInputCloud(key2pts);

saclA.setSourceFeatures(feature2);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr registration_output (new
pcl::PointCloud<pcl::PointXYZRGB>);

saclA.align(*registration_output);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud2RGB new (new
pcl::PointCloud<pcl::PointXYZRGB>);

Eigen::Matrix4f transform = saclA.getFinalTransformation();

std::cerr<< "Cloud2(Input) is transformed by"<<std::endl<<transform<<endl;

std::ofstream tran("trans sac.txt");

tran<<transform<<std::endl;

transformPointCloud(*cloud2RGB, *cloud2RGB_new,transform);

pcl::io::savePCDFile ("2 sac.pcd”, *cloud2RGB _new);

pcl::PointCloud<pcl::PointXYZRGB> final = *cloud2RGB_new;

final += *cloud1RGB;

pcl::io::savePCDFile ("sac_final.pcd", final);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr finalpoints (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::io::sloadPCDFile ("sac_final.pcd", *finalpoints);
SimViewRGB(finalpoints);

std::cerr<<"Refine matching..."<<endl;
pcl::IterativeClosestPoint<pcl::PointXYZRGB, pcl::PointXYZRGB> icp; //Final ICP

icp.setInputCloud(cloud2RGB_new);

icp.setlnputTarget(cloud1RGB);

icp.setMaximumlterations(50);

icp.setMaxCorrespondenceDistance(0.2);

icp.setRANSACOutlierRejectionThreshold(0.15);//0.1 works

pcl::PointCloud<pcl::PointXYZRGB> icpFinal;

icp.align(icpFinal);

pcl::io::savePCDFile ("cloud2RGBnew icp.pcd", icpFinal);
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icpFinal += *cloud1RGB;

pcl::io::savePCDFile ("icpFinal.pcd", icpFinal);
pcl::PointCloud<pcl::PointXYZRGB>::Ptr icpfinalpoints (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::io::sloadPCDFile ("icpFinal.pcd", *icpfinalpoints);
std::cerr<<"Show the icp result:"<<endl;
SimViewRGB(icpfinalpoints);

std::cout << "has converged:" << icp.hasConverged() << " score: " <<
icp.getFitnessScore() << std::endl;

Eigen::Matrix4f tranm = icp.getFinal Transformation();

std::cout << "Transform matrix:"<< std::endl << tranm << std::endl;
std::ofstream trans("trans _icp.txt");

trans<<tranm<<std::endl;

Eigen::Matrix4f't final = transform * tranm;

std::cout << "Final Transform matrix:"<< std::endl <<t _final << std::end];
std::ofstream transf("trans_final.txt");

transf<<t final<<std::endl;

float s_final = saclA.sacScale*icp.icpScale;

cerr<<"Final Scale estimated is to be "<<s_final<<endl;

std::ofstream scales("scales.txt");
scales<<saclA.sacScale<<endl<<icp.icpScale<<endl<<s_final<<end];
float error_scale = abs(s_final - inputscale)/inputscale;

cerr<<"Scale error is "<<error_scale*100<<"%"<<endl;

system(""pause");
return (0);



