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Abstract

A new algorithm, optimized land surface temperature and emissivity retrieval (OL-

STER), is presented to compensate for atmospheric effects and retrieve land surface tem-

perature (LST) and emissivity from airborne thermal infrared hyperspectral data. The

OLSTER algorithm is designed to retrieve properties of bothnatural and man-made ma-

terials. Multi-directional or multi-temporal observations are not required, and the scenes

do not have to be dominated by blackbody features.

The OLSTER algorithm consists of a preprocessing step, an iterative search for near-

blackbody pixels, and an iterative constrained optimization loop. The preprocessing step

provides initial estimates of LST per pixel and the atmospheric parameters of trans-

mittance and upwelling radiance for the entire image. Pixels that are under- or over-

compensated by the estimated atmospheric parameters are classi�ed as near-blackbody

and lower emissivity pixels, respectively. A constrained optimization of the atmospheric

parameters using generalized reduced gradients on the near-blackbody pixels ensures

physical results. The downwelling radiance is estimated from the upwelling radiance

by applying a look-up table of coef�cients based on a polynomial regression of radiative
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transfer model runs for the same sensor altitude. The LST andemissivity per pixel are

retrieved simultaneously using the well established ISSTES algorithm.

The OLSTER algorithm retrieves land surface temperatures within about§ 1.0 K,

and emissivities within about§ 0.01 based on numerical simulation and validation work

comparing results from sensor data with ground truth measurements. The OLSTER al-

gorithm is currently one of only a few algorithms available that have been documented to

retrieve accurate land surface temperatures and absolute land surface spectral emissivities

from passive airborne hyperspectral LWIR sensor imagery.
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Chapter 1

Introduction

The retrieval of land surface temperature (LST) and land surface emissivity (LSE) from

airborne passive hyperspectral sensors for the purpose of producing LST, LSE, and ma-

terial classi�cation maps is an ongoing area of research in remote sensing. Remote sens-

ing allows for measurements of surface temperature on a regional or global scale. An

airborne sensor measures the surface-leaving radiance modi�ed by the atmosphere in dif-

ferent spectral channels. The surface parameter retrievaluses the thermal infrared (TIR)

spectral region, which contains useful information about the emissive and thermal prop-

erties of the land surface. A desirable goal is to retrieve LST to better than 1 K, and LSE

values to within§ 0.01.

LST retrieval is a dif�cult problem compared to retrieving sea surface temperatures

(SST). The variable emissivity of the land presents certaindif�culties. There are also

problems associated with making a representative measurement of the land surface tem-

perature. Daytime surface temperatures can vary by more than 10 K in just a few cen-

timeters, and on a sunny afternoon temperatures can change by more than 1 K in less than

a minute (Prata et al., 1995).
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LST is an important parameter for modeling surface-atmosphere processes such as

energy transfer. It is an indication of the equilibrium thermodynamic state resulting from

the energy balance of the �uxes between the atmosphere, surface, and the subsurface soil

(Schmugge et al., 2002). The LST distribution can be used as input for modeling and

predicting climate change at various scales and can providea constraint on model predic-

tions. LST applications in environmental studies include the energy and water exchange

between the atmosphere and the surface, vegetation monitoring and discrimination, frost

detection and forecasting, monitoring water-stress in crops, and evapotranspiration. LST

is sensitive to vegetation and soil moisture, and can be usedto detect long-term land sur-

face changes (Dash et al., 2002). One of the most important potential applications of LST

retrieved from satellite data is to validate and improve global meteorological models (Wan

et al., 2002).

LSE contains information about the structure and composition of the Earth's surface.

The LSE gives the ef�ciency of the surface for transmitting the radiant energy into the at-

mosphere. LSE depends on the composition, surface roughness, and physical parameters

of the surface, such as moisture content. In addition, the emissivity generally will vary

with wavelength for natural surfaces (Schmugge et al., 2002). LSE provides useful in-

formation for geological studies because silicate materials in rocks and soils have various

spectral shapes in emissivity (Tonooka, 2001). In the 8 to 12¹ m atmospheric window,

mineral groups such as silicates, carbonates, sulfates, and phosphates have spectral fea-

tures related to the fundamental vibrational frequencies of their interatomic bonds. These

features are known as reststrahlen bands, and can be used to identify a mineral sample.

LSE also can be used to discriminate senescent vegetation (Wan et al., 2002). Estimation

of emissivity is trivial for heavily vegetated surfaces since the emissivity is relatively uni-

form and close to one. For arid lands with sparse vegetation,the problem is more dif�cult
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because the emissivity of the exposed soils and rocks is highly variable (Schmugge et al.,

2002). Lack of knowledge of LSE introduces an LST error, which can be de�ned as the

difference of LST retrieved at the actual LSE and at² = 1. For a LSE of 0.98 and a ground

height of 0 km, the error on the LST retrieved using a single-channel method ranges from

0.2 K to 1.2 K for mid-latitude summer and from 0.8 K to 1.4 K formid-latitude winter

conditions (Dash et al., 2002). The LST error increases withdecreasing emissivities, e.g.

for ² = 0.93 and a ground height of 0.5 km the LST error ranges from 0.8 K to 3.4 K for

mid-latitude summer and from 2.8 K to 4.8 K for mid-latitude winter (Dash et al., 2002).

Methods for LSE determination either aim for relative or absolute emissivity. The rela-

tive methods retrieve the spectral shape/ratio of emissivities, while the absolute methods

depend on critical assumptions (Dash et al., 2002).

The radiative energy emitted by the Earth's surface interacts with the atmosphere.

In the TIR region (8 to 14¹ m), the interactions consist mainly of absorption and re-

emission by the atmospheric gases. The absorbing gases include water vapor (H2O),

carbon dioxide (CO2), ozone (O3), CFCs, and aerosols (Prata et al., 1995). Water vapor

is the principal absorber for these wavelengths. Other gases, such as ionospheric O3 and

CO2, vary slowly. CO2 is evenly distributed in the atmosphere, and tropospheric O3 is

of local importance only (Dash et al., 2002). The effect of �xed gases can be considered

as constant at a global scale and small compared to the water vapor effect (Prata et al.,

1995). In the case of clear-sky conditions, aerosol absorption and scattering is negligible

and generally ignored (Prata et al., 1995). The transmission corresponding to aerosol

absorption and scattering in the TIR is in the range of 0.95-0.98, unless volcanic eruptions

strongly change the aerosol distribution.

Temperature and water vapor pro�les in the atmosphere are two critical parameters

for estimating the total atmospheric absorption and radiation. The size of the atmospheric
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effects varies both with the water vapor content and the vertical pro�les of temperature

and pressure (Prata et al., 1995). The distributions of temperature and radiatively active

gases in the atmosphere control atmospheric absorption andradiation. The distributions

can vary signi�cantly with time and location (Gu et al., 2000).

The absorption by water vapor is due to the absorption lines and also due to the contin-

uum. The water vapor continuum is probably due to the effectsof the far wings of strong

absorption lines and to the presence of water vapor dimers (H2O)2 or polymers (Prata

et al., 1995). Water vapor is largely concentrated near the surface-atmosphere boundaries

(Gu et al., 2000).

The atmospheric transmittances vary with the total water vapor amount (Prata et al.,

1995). Typical values of the transmittance due to water vapor vary from about 0.95 for dry

atmospheres to 0.3-0.4 for humid atmospheres. This is due tothe large variability of the

total column of water vapor and the strong dependence on humidity of the continuum ab-

sorption mechanism (Prata et al., 1995). Water vapor is poorly mixed and varies on short

time-scales (Dash et al., 2002). Radiosondes are useful for collecting the temperature and

water-vapor pro�les and other information about the state of the atmosphere (Dash et al.,

2002). However, radiosonde data is only applicable when synchronized with the imaging

sensor in location and time.

The estimation of the surface-leaving radiance from the at-sensor radiance of an air-

borne sensor requires atmospheric compensation. The surface-leaving radiance, also re-

ferred to as the at-surface radiance, includes the surface-emitted radiance and the surface-

re�ected downwelling radiance. In order to retrieve the surface temperature and emissiv-

ity from the surface-leaving radiance, a separation of the surface emissivity and surface

temperature terms is required. A warm, humid atmosphere represents a dif�cult case

for the general temperature/emissivity separation (TES) problem due to the low atmo-
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spheric transmittance and high atmospheric emission effects (Ingram and Muse, 2001).

The at-sensor radiance for a cold surface under a warm atmosphere is dominated by the

upwelling radiance and re�ected downwelling radiance. Errors in the atmospheric com-

pensation spectra will be ampli�ed for these dif�cult conditions.

A problem is properly posed if the solution satis�es the following requirements: (1)

the solution must exist (existence); (2) the solution must be uniquely determined by the

data (uniqueness); and (3) the solution must depend continuously on the data (stability)

(Liang, 2000). The TES problem is ill-posed because a sensorwith N spectral channels

hasN values of spectral radiance withN +1 unknowns;N emissivities (one per channel)

plus one surface temperature (Li et al., 1999). There is no unique solution unless addi-

tional independent information is added to constrain the extra degree of freedom (Li et al.,

1999).

Additional information comes from measurements, such as humidity data and ra-

diosonde data, the use of empirical equations, and physicallimits on the solution. This

has led to the development of algorithms that differ according to the assumptions that

they make (Schmugge et al., 2002). Many atmospheric compensation algorithms ignore

surface-emissivity, or assign a constant value of emissivity to all pixels in the dataset.

This may not be a realistic approximation for natural surfaces.

In addition to being underdetermined, the radiative transfer equation (RTE) is also

nonlinear. The main sources of the nonlinearity in the RTE are: 1) the temperature de-

pendence of the atmospheric transmission, 2) the dependence of transmission on absorber

concentration, 3) temperature dependence of the Planck function, 4) wavelength depen-

dence of the Planck function across a spectral band, 5) wavelength dependence of the

Planck function between spectral bands, and 6) nonlinear constraints (Wan and Li, 1997).

The approach in this research uses an optimization loop and constraint functions to
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overcome the ill-posed retrieval problem. The algorithm accounts for downwelling radi-

ance, and can be applied to both man-made and natural surfaces. Ancillary data such as

a radiosonde pro�le are not required. The next section describes the speci�c goals of the

research and of the LST/LSE retrieval algorithm.

1.1 Objectives

The goal of this research is to develop and test an algorithm for atmospheric compensation

and surface parameter retrieval of land surface temperature and land surface emissivity

using airborne hyperspectral TIR radiance imagery. The desired accuracy is a temperature

estimation within§ 1 K and retrieved emissivity values within§ 0.01.

The approach is a hybrid algorithm using data-driven methods and physics-based

modeling. The atmospheric compensation accounts for downwelling radiance. An op-

timization approach is used to ensure physical results and to minimize the impact of non-

unique and unstable solutions due to sensor noise and artifacts. Empirical relationships

are avoided where possible, and surface materials are not limited to natural objects or to

materials from a database. Ancillary sounding data is not required, and image registration

issues associated with multi-directional and multi-temporal methods are avoided.

A sensitivity analysis of the model parameters, such as sensor noise and altitude, is

used to determine the strengths and weaknesses of the retrieval algorithm, as well as for

providing insight for improvements. Validation of the approach was performed using sen-

sor data with corresponding ground truth measurements. Results from a comparison with

other algorithms in the literature are also presented. The next chapter provides a review of

the governing equations and current algorithms available for atmospheric compensation

and temperature and emissivity separation.
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Background

The temperature measured by a radiometer (radiometric temperature) is proportional to

the temperature measured by a thermometer (thermodynamic temperature) for homoge-

neous isothermal surfaces (Dash et al., 2002). In certain cases, it is not possible to com-

pare the thermodynamic temperature with the radiometric temperature. The land surface

is composed of different materials with various geometriesthat complicate radiometric

temperature estimation (Dash et al., 2002). When a radiometric temperature measure-

ment is made over inhomogeneous or structured surfaces, thelocation of the point mea-

surement for thermodynamic temperature is not clearly de�ned. Radiometric temperature

measurements are more useful than thermodynamic temperatures for estimating the tem-

perature of complex surfaces such as vegetation canopies. If the emissivity of the surface

is unknown, then the radiometric temperature will not be accurate.

In remote sensing, land surface temperature (LST) is de�nedas the ensemble direc-

tional radiometric surface temperature corresponding to the instantaneous �eld-of-view of

the sensor (Norman and Becker, 1995). The ensemble represents the bulk contribution of

an inhomogeneous pixel. LST depends on the distribution of temperature and emissivity
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within a pixel, the spectral channel of measurement, and theviewing angle.

The directional emissivity for opaque objects at thermal equilibrium at a speci�c

wavelength,̧ , is related to the hemispherical-directional re�ectance by Kirchhoff's Law

" (µ; Á; ¸) = 1 ¡ r (µ; Á; ¸) ; (2.1)

whereµ is the zenith angle andÁ is the azimuth angle (Norman and Becker, 1995). The

hemispherical emissivity for a wavelength bandi is then de�ned as

" i =
1
¼

Z 2¼

0

Z ¼=2

0
" i (µ; Á) sinµcosµdµdÁ: (2.2)

The land surface emissivity (LSE) can be approximated with the bihemispherical thermal

re�ectance using

" i
»= 1 ¡ r i (2.3)

and assuming a Lambertian surface and that" i varies only slightly with wavelength (Nor-

man and Becker, 1995).

2.1 Governing Equations

The spectral radiance emitted by a blackbody surface is related to its temperature by the

Planck function( W
m2 sr ¹m ),

Lbb(T; ¸ ) =
C1

¼¸5
1

eC2=¸T ¡ 1
; (2.4)
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where
C1 = 3:74151£ 10¡ 16(Wm2) = 2 ¼hc2 �rst radiation constant;

C2 = 0:0143879(m K ) = hc=k second radiation constant;

¸ (¹m ) wavelength;

T(K ) temperature;

h = 6:626076£ 10¡ 34(Js) Planck's constant;

c = 2:99792458£ 108(m=s) speed of light;

k = 1:380658£ 10¡ 23(J=K ) Boltzmann's constant.

Given a blackbody radiance measurement, equation 2.4 can besolved for a brightness

temperature vector, de�ned as

TB (Lbb; ¸ ) =
C2

¸ ln
³

C1
¼¸5L bb

+ 1
´ : (2.5)

The brightness temperature is the equivalent temperature required for a blackbody to emit

a given radiance and is a function of wavelength.

The at-sensor radiance for an image pixel is given by the radiative transfer equation

(RTE) (Dash et al., 2002),

L i =
Z ¸ 2

¸ 1

f i (¸ )" (¸ )Lbb(Ts; ¸ )¿(¸ ) d¸ +
Z ps

p=0

Z ¸ 2

¸ 1

f i (¸ )Lbb(Tp; ¸ )
d¿
dp

d¸ dp

+
Z 2¼

Á=0

Z ¼=2

µ=0

Z ¸ 2

¸ 1

(1 ¡ "(¸ ))
¼

f i (¸ )Ld(¸; µ; Á)¿(¸ ) cosµsinµd¸ dµdÁ;(2.6)
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where

i channel;

f i normalized channel response function;

µ zenith angle;

Á azimuth angle;

¸ 1; ¸ 2 spectral range of the channel;

Ld downwelling radiance;

p; ps pressure, and pressure at the surface;

Ts; Tp surface temperature and air temperature at pressure p.

The �rst term in the RTE is the radiance emitted by the surface, the second term is

the upwelling radiance from the atmosphere, and the last term is the surface re�ected

radiance. In the thermal infrared, the RTE assumes that the atmosphere is at local ther-

modynamic equilibrium, that the surface is Lambertian, andthat there is no scattering

(Dash et al., 2002). The RTE can be simpli�ed by writing the Planck function for a given

channel as

Lbb i (T) =
Z ¸ 2

¸ 1

f i (¸ )Lbb(T; ¸ ) d¸: (2.7)

The downward hemispherical irradiance is given by

E #
hem i =

Z 2¼

Á=0

Z ¼=2

µ=0
Ld(¸ ) cosµsinµdµdÁ: (2.8)

After integrating over the channel response and applying the mean value theorem for

integrals, the RTE can be expressed as equations 2.9 and 2.10,
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Lobs i = " i ¿i (µ)Lbb i (Ts) + Lu i (µ) +
1 ¡ " i

¼
¿i (µ)E #

hem i ; (2.9)

Lobs i = " i ¿i (µ)Lbb i (Ts) + Lu i (µ) + (1 ¡ " i )¿i (µ)Ld i : (2.10)

The surface-leaving radiance here is de�ned as

L surf i (x) = " i (x)Lbb i (Ts(x)) + [1 ¡ " i (x)] Ld i (x); (2.11)

wherex is pixel location. The at-sensor observed spectral radiance is modeled by the

modi�ed RTE,

Lobs i (x) = L surf i (x)¿i (x) + Lu i (x); (2.12)

where¿i (x) is the atmospheric transmittance along the sensor's line ofsight (LOS) and

Lu i (x) is the upwelling atmospheric radiance along the LOS. Both equations 2.11 and

2.12 assume that there are no mixed pixels in the TIR data.

2.2 Algorithms in the literature

The following is a brief review of the algorithms in the literature. These algorithms ad-

dress speci�c retrieval problems such as atmospheric compensation and temperature/emissivity

separation, and some address both as an end-to-end solution. Each algorithm has its ad-

vantages and disadvantages, mostly based on the assumptions made to overcome the ill-

posed nature of the surface parameter retrieval problem.
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2.2.1 In-Scene Atmospheric Compensation

The In-Scene Atmospheric Compensation (ISAC) algorithm (Young et al., 2002) esti-

mates the relative atmospheric transmittance and upwelling radiance spectra directly from

the TIR image data. The relative atmospheric transmittanceand upwelling radiance spec-

tra are scaled to absolute values using the transmittance and upwelling radiance from a

radiative transfer model at a reference channel. The radiative transfer equation can be lin-

earized by assuming blackbody features in the TIR image. With ²(x; ¸ ) ¼ 1, the surface-

leaving radiance can be approximated asL surf (x; ¸ ) ¼ Lbb(T(x); ¸ ). The blackbody

assumption effectively means that ISAC ignores downwelling radiance.

ISAC assumes that the atmosphere is spatially uniform over the sensor's �eld of view

(FOV). After substituting the approximate surface-leaving radiance into equation 2.12

and removing the spatial dependence of the atmospheric parameters, the RTE for the

ISAC algorithm can be de�ned as

Lobs(¸ ) »= ¿(¸ )Lbb(T; ¸ ) + Lu(¸ ): (2.13)

The steps in the ISAC algorithm are given in Table 2.1. The �rst step converts the ob-

served radiance at the sensor to brightness temperature using the inverse Planck function,

implemented as a numerical version of equation 2.5 over the sensor bandpass. The un-

compensated observed radiance spectrum plotted as brightness temperature per pixel will

exhibit spectral structure caused by the atmosphere and surface spectral emissivity. It is

likely that at¸ m , the wavelength where the maximum brightness temperature occurs for a

given pixel," (¸ m ) and¿(¸ m ) are close to unity, andLu(¸ m ) is close to zero (Young et al.,

2002). A common reference channel for all pixels,¸ r , is selected to avoid inconsistencies

in the de�nition of the atmospheric compensation parameters. The spectral channel with
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Table 2.1: ISAC algorithm

1. Compute the brightness temperature spectrum
per pixel,TB (Lobs(x; ¸ ); ¸ ).

2. Select a reference channel,¸ r , de�ned as the spectral channel with
the most maximum brightness temperatures.

3. EstimateT̂s(x) per pixel usingTB (Lobs(x; ¸ r ); ¸ r ).
4. Compute the Planck radiance per pixel,L̂BB (T̂s(x); ¸ ).
5. Estimate thê¿(¸ ) andL̂u(¸ ) spectra withLobs(¸ ) versusL̂BB (¸ )

linear regressions �tted to the top of each scatter plot, with
¿̂(¸ ) = slope, and̂Lu(¸ ) = intercept. Only the pixels with a maximum
brightness temperature at¸ r are included in the scatter plot.

6. The relative atmospheric spectra are scaled to absolute spectra
using the 11.7¹ m water absorption band.

7. Fit a line to the top of a scatter plot of the mean water band
absorptance versus the total mean band radiance, and searcha
MODTRAN LUT for a match on band averages and
rescalê¿(¸ ) andL̂u(¸ ).
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Figure 2.1: An illustration of a scatter plot of the observedradiance versus Planck radi-
ance per wavelength used to estimate the atmospheric parameters (Borel, 2003)

the most occurrences of¸ m is de�ned aş r .

The surface temperaturêTs(x) per pixel is estimated usingTB (Lobs(x; ¸ r ); ¸ r ), and

the Planck radiance per pixel is approximated byL̂BB (T̂s(x); ¸ ). A scatter plot of the ob-

served radiance versus the estimated Planck radiance is created for each spectral channel

using only the “most-hits” pixels wherȩm = ¸ r . An illustration of the observed radiance

versus estimated Planck radiance scatter plot is shown in Figure 2.1. Limiting the scatter

plot to the “most-hits” pixels is required because it is possible for low emissivity pixels

to lie above the expected location of blackbody pixels in theupper edge of the cluster in

the scatter plots due to a biased estimate ofT̂s(x) that underestimates the Planck radiance

(Young et al., 2002).

The ¿̂(¸ ) andL̂u(¸ ) values are estimated as the slope and intercept of the line �tted

to the points in the scatter plot for each spectral channel. The estimated̂¿(¸ ) andL̂u(¸ )

atmospheric compensation spectra may be unphysical, especially with negative values

for the estimated upwelling radiance and values higher thanone for the estimated atmo-
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spheric transmittance. The unphysical values for the relative compensation spectra are the

result of errors in the estimated̂Ts(x) andL̂BB (T̂s(x); ¸ ) caused by values of"(¸ r ) < 1,

¿(¸ r ) < 1, andLu(¸ m ) > 0.

There are three empirical methods available for rescaling the estimated relative at-

mospheric spectra based on radiative transfer modeling of the atmosphere. One method

uses radiosonde data as input into MODTRAN and adjusts¿̂(¸ ) andL̂u(¸ ) to match the

MODTRAN transmittance and radiance at a speci�c wavelength.Alternatively, generic

atmospheric pro�les can be used instead of radiosonde data.Another method uses the

11.7¹ m water absorption band. The line averages of transmittanceand upwelling radi-

ance describing the effect of line absorption in the water band is obtained by a line �t to a

scatter plot of the average radiance depression due to line absorption versus the total mean

band radiance for all pixels. The line averages of transmittance and upwelling radiance is

related to the band averages of the total transmission and upwelling radiance by searching

a table of MODTRAN calculated line, continuum, and total transmittance spectra, as well

as total upwelling radiance. The MODTRAN calculations vary the temperature and water

vapor concentration in US 1976 standard model by a factor of ten (Young et al., 2002).

The ISAC algorithm avoids the direct use of spectra from radiative transfer codes as

the atmospheric compensation spectra. The data-driven approach used by the ISAC algo-

rithm has the advantage of being insensitive to errors in thesensor's spectral calibration.

Spectral miscalibration issues can amplify instead of eliminate the atmospheric effects,

resulting in unsmooth brightness temperature and emissivity spectra (Young et al., 2002).

The linearization of the RTE requires that the scenes be dominated by blackbody

features such as water or vegetation. In addition, a spread in surface temperatures is also

required to avoid a noisy regression of the atmospheric compensation spectra. ISAC does

not account for the re�ected downwelling atmospheric radiance.
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2.2.2 Autonomous Atmospheric Compensation

The Autonomous Atmospheric Compensation (AAC) algorithm (Guet al., 2000), uses

the 11.73¹ m water absorption band to calculate two index parameters, the transmittance

ratio and the upwelling radiance difference between the strong and weak absorption chan-

nels. The index parameters are then used to estimate the atmospheric transmittance and

upwelling radiance spectra for separating the atmosphericand surface radiation. AAC

uses the image data near the water band as input for the radiative transfer model. The

assumptions in AAC include a spatially homogenous local atmosphere over a spatially

variable land surface and that the surface-leaving radiance spectra are smoother than the

atmospheric radiation and absorption spectra.

The ratio of the surface-leaving radiance at wavelengths¸ 1 and¸ 2 is a result of rear-

ranging equation 2.12 to give,

L surf (x; ¸ 1)
L surf (x; ¸ 2)

¿(x; ¸ 1)
¿(x; ¸ 2)

=
Lobs(x; ¸ 1) ¡ Lu(x; ¸ 1)
Lobs(x; ¸ 2) ¡ Lu(x; ¸ 2)

: (2.14)

Solving for the at-sensor observed radiance at¸ 1 gives

Lobs(x; ¸ 1) =
L surf (x; ¸ 1)
L surf (x; ¸ 2)

¿(x; ¸ 1)
¿(x; ¸ 2)

Lobs(x; ¸ 2) + Lu(x; ¸ 1)

¡
L surf (x; ¸ 1)
L surf (x; ¸ 2)

¿(x; ¸ 1)
¿(x; ¸ 2)

Lu(x; ¸ 2):
(2.15)

When the wavelengthş1 and¸ 2 are close to each other, with one of the wavelengths in an

atmospheric absorption band and the other outside the band,the surface-leaving radiance

difference betweeņ1 and¸ 2 can be small and neglected compared to the difference for

the¿ andLu variables (Gu et al., 2000). The¸ 1 and¸ 2 are relabeled aşs and¸ w , with ¸ s

as the center wavelength in a strong absorption band and¸ w in a weak absorption band.
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Figure 2.2: Emissivity spectra from the ASTER spectral library. The emissivity values
are relatively close to one with less spectral variability near the 11.73¹ m water band
compared to other wavelengths (Gu et al., 2000).

The 11.73¹ m water absorption band, where the emissivity of most natural materials are

smooth and close to unity, is used in the AAC algorithm. An example for various natural

surface materials is shown in Figure 2.2.

Neglecting the surface-leaving radiance difference and relabeling¸ 1 and¸ 2 as¸ s and

¸ w , equation 2.15 now becomes

Lobs(x; ¸ s) =
¿(x; ¸ s)
¿(x; ¸ w)

Lobs(x; ¸ w) + Lu(x; ¸ s)

¡
¿(x; ¸ s)
¿(x; ¸ w)

Lu(x; ¸ w):
(2.16)

The atmospheric index parameters transmittance ratio (T r) and path radiance difference
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Table 2.2: AAC algorithm

1. De�ne the weak and strong absorption channels.
2. Run radiative transfer models to derive the coef�cients C(¸ ).
3. Divide the image into pixel blocks. The atmosphere is assumed to be

spatially homogeneous in each block.
4. For each pixel block, estimate Tr and Pd with equation 2.18.
5. For each pixel block, estimatê¿(¸ ) andL̂u(¸ ) with equation 2.19.
6. Compensate each pixel block for the atmosphere.

(Pd) measure the strength of the 11.73¹ m water absorption band, and are de�ned as

T r =
¿(x; ¸ S)
¿(x; ¸ W )

(2.17a)

Pd = Lu(x; ¸ S) ¡ T rL u(x; ¸ W ): (2.17b)

The linear regression model becomes

Lobs(x; ¸ s) = T r L obs(x; ¸ w) + Pd: (2.18)

An empirical function used to solve for atmospheric transmittance and path radiance

spectra using Tr and Pd is given by

y(¸ ) =
3X

i =1

3X

j =1

Cij (¸ )T r i ¡ 1Pdj ¡ 1; (2.19)

wherey is either transmittance or upwelling radiance andC(¸ ) are wavelength-dependent

coef�cients. The steps in the AAC algorithm are given in Table 2.2.

The AAC algorithm requires that the surface materials have asmooth and high emis-

sivity near the water absorption band. In general, this assumption works well for most
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natural surfaces. The downwelling radiance is ignored in AAC. Another source of error

in applying the AAC algorithm is the uncertainty in the instrument's spectral calibration.

The radiative transfer model spectra require a resampling into instrument spectra which

are used directly as the atmospheric compensation spectra.An error in the spectral lo-

cation, bandwidth and �lter shape of the sensor will result in errors in the atmospheric

compensation. In general, the AAC spectra results are not assmooth as the results ob-

tained from the ISAC algorithm.

2.2.3 ASTER's TES

The temperature/emissivity separation (TES) algorithm designed for the Advanced Space-

borne Thermal Emission and Re�ection Radiometer (ASTER) thermal infrared (TIR)

scanner aboard NASA's Earth Observing System, Terra (EOS-AM1), produces land sur-

face temperature and emissivity images (Gillespie et al., 1998). ASTER has �ve bands in

the TIR window. The input images for the TES algorithm are surface-leaving radiance,

already compensated for atmospheric transmittance and upwelling radiance, and down-

welling radiance from the ASTER standard product AST09. TheTES algorithm consists

of three modules that are adapted from previous temperatureand emissivity techniques.

The �rst module is the normalized emissivity method (NEM), used to estimate emissivi-

ties, iteratively remove re�ected downwelling radiance, and estimate surface temperatures

by assuming a maximum emissivity value. The ratio module (RAT) calculates emissiv-

ity ratios using the NEM temperatures. These emissivity ratios, called¯ spectra by the

TES authors, resemble the shape of the actual emissivities but not the amplitude. The

amplitude is estimated in the maximum-minimum relative emissivity difference (MMD)

module by using an empirical relationship between the minimum emissivity and the emis-

sivity's maximum-minimum difference for a library of laboratory re�ectance spectra con-
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Figure 2.3: TES algorithm (Gillespie et al., 1998)

verted to equivalent emissivity (Gillespie et al., 1998). The MMD algorithm is similar

to the alpha-derived emissivity method (ADE), which uses anempirical relationship be-

tween the mean emissivity and the variance of the alpha-residual emissivities instead. A

�owchart of the TES algorithm is shown in Figure 2.3.

The maximum emissivity,"max , in the NEM module is assumed to be 0.99 (Gille-

spie et al., 1998). The surface-emitted radiance,R(x; ¸ ), is estimated by subtracting the

re�ected downwelling radiance from the surface-leaving radiance,

R(x; ¸ ) ´ " (x; ¸ )Lbb(T(x); ¸ ) = L surf (x; ¸ ) ¡ (1 ¡ "max ) Ld(x; ¸ ): (2.20)

The NEM temperature,Ts(x), is de�ned as the maximum brightness temperature over

all bands. The NEM temperature is used to calculate the apparent NEM emissivity by
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dividing the surface-leaving radiance by the blackbody radiance atTs(x),

"N (x; ¸ ) =
R(x; ¸ )

Lbb(Ts(x); ¸ )
: (2.21)

The estimated surface-emitted radiance,R(x; ¸ ), is updated by replacing the maximum

assumed emissivity with the apparent NEM emissivity,

R(x; ¸ ) = L surf (x; ¸ ) ¡ (1 ¡ "N (x; ¸ )) Ld(x; ¸ ): (2.22)

The NEM module iteratively removes the re�ected downwelling radiance by re�ning

its estimates of emissivity and temperature. The iterations continue until the change in

R(x; ¸ ) is less than some threshold or the number of iterations exceeds a limit.

The ratio module of TES simply computes the relative emissivity, ¯ (x; ¸ ), by dividing

each NEM emissivity by its average. The last step is the MMD module which scales the

¯ (x; ¸ ) relative emissivities to absolute emissivities. An empirical relationship predicts

the minimum emissivity,"min, from the maximum-minimum relative emissivity difference

(MMD),

MMD(x) = ¯ (x; ¸ ) jmax ¡ ¯ (x; ¸ ) jmin ; (2.23)

and estimates the absolute emissivity with

"(x; ¸ ) = ¯ (x; ¸ )
µ

"min

¯ (x; ¸ ) jmin

¶
: (2.24)

The "min and MMD relationship was established using a library of 86 laboratory re-

�ectance spectra of rocks, soils, vegetation, snow and water (Gillespie et al., 1998). The

re�ectance spectra were converted to equivalent emissivity by Kirchhoff's law and resam-

pled with the ASTER sensor response. Then the"min data from the library were plotted
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Figure 2.4: MMD and minimum emissivity relationship (Gillespie et al., 1998)

versus the MMD values, shown in Figure 2.4. The relationshipfollows an empirical

power law,

"min = 0:994¡ 0:687¤ MMD 0:737: (2.25)

Minimum emissivity is used in the TES algorithm as opposed tothe mean emissivity due

to a higher correlation and less scatter about the regression line. MMD is used to measure

spectral complexity due to its simplicity, although using variance reduces sensitivity to

measurement error for near-blackbody surfaces (Gillespieet al., 1998). The"min versus

MMD regression generally works well for natural surfaces only.

The TES algorithm is designed to recover temperatures to within 1.5 K and emissivi-

ties to 0.015 (Gillespie et al., 1998). The performance of the TES algorithm in general is

related to the scatter about the"min - MMD regression line and the input surface-leaving

radiance compensated for the atmospheric transmittance and upwelling radiance. The

NEM module requires more iterations for the apparent emissivity to converge for lower

emissivity surfaces, and may even diverge with each iteration. The emissivities never
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converge for a low emissivity surface if the sky and ground temperatures are the same

(Gillespie et al., 1998).

2.2.4 ISSTES and ARTEMISS

The iterative spectrally smooth temperature-emissivity separation (ISSTES) algorithm

(Borel, 1998) retrieves emissivity spectra based on the spectral smoothness assumption.

The surface emissivity spectrum of solids is comparativelysmoother than the emissivity

spectra of atmospheric gases in the TIR window. The spectralfeatures of solids are usu-

ally wider than for gases. The width of a spectral feature is inversely proportional to the

lifetimes of excited states. Solids have short lifetimes because the excited states are easily

disrupted by thermal motions in the lattice crystal. Gases have longer lifetimes of excited

states with their isolated molecules, and have narrower spectral features than solids. This

approach requires the use of hyperspectral sensors to resolve the spectral features.

The ISSTES algorithm creates an ensemble of estimated emissivity spectra by varying

the surface temperature over a small range about an estimated temperature. An example

of the ensemble of emissivity spectra is shown in Figure 2.5.The emissivity for a given

pixel is de�ned as

" (¸ ) =
Lobs (¸ ) ¡ Lu (¸ ) ¡ ¿(¸ ) Ld (¸ )
¿(¸ ) Lbb(¸; T s) ¡ ¿(¸ ) Ld (¸ )

: (2.26)

The temperature that produces the smoothest emissivity spectrum is chosen as the surface

temperature estimate. Adjusting the temperature in equation 2.26 effectively balances

the atmospheric emission lines in the upwelling radiance with the emission lines in the

downwelling radiance (Bower et al., 1999). A measure of spectral smoothness, S, is

de�ned by

S =
N ¡ 1X

i =2

½
" i ¡

" i ¡ 1 + " i + " i +1

3

¾2

; (2.27)
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Figure 2.5: The ISSTES algorithm estimates the surface temperature based on the spectral
smoothness of the retrieved emissivity. (Ingram and Muse, 2001)

wherei is the spectral channel (Ingram and Muse, 2001). The ISSTES algorithm attempts

to minimize the smoothness measure by varying the temperature.

An evaluation of the sensitivity of the ISSTES algorithm to algorithmic and measure-

ment errors is available in the literature (Ingram and Muse,2001). A general error model

was used to quantify algorithmic, measurement, and parameter error. The vectorsX and

Y are the temperature and emissivity state vector and the observed spectral radiance vec-

tor, respectively, and are de�ned as

X =

0

B
B
B
B
B
B
@

t

"1

:

"n

1

C
C
C
C
C
C
A

; (2.28)
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and Y =

0

B
B
B
B
B
B
@

L1

L2

:

Ln

1

C
C
C
C
C
C
A

: (2.29)

The forward model of the radiative transfer equation is the function Fb , whereb is a

vector of the atmospheric compensation parameters,

Fb (X ) = Y : (2.30)

An approximate inverse,G b̂ , to the forward model inverts a noisy observed radiance

vectorY + ´ to an estimated temperature and emissivity vectorX̂ , whereb̂ is a vector of

estimated atmospheric compensation parameters and´ is the measurement error,

G b̂ (Y + ´ ) = X̂ : (2.31)

The estimated temperature and emissivity error is given by

X̂ ¡ X = G b̂ (Fb (X ) + ´ ) ¡ X : (2.32)

After adding zero to the right-hand side of equation 2.32 ([Gb (Fb (X )) ¡ Gb (Fb (X ))]

and[Gb (Fb (X ) + ´ ) ¡ Gb (Fb (X ) + ´ )]), and rearranging the terms, the general error
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model de�ned in terms of algorithmic, measurement, and parameter error is written as

X̂ ¡ X = [ Gb (Fb (X )) ¡ X ] +

: : : algorithmic error

[Gb (Fb (X ) + ´ ) ¡ Gb (Fb (X ))] +

: : : measurement error

[G b̂ (Fb (X ) + ´ ) ¡ Gb (Fb (X ) + ´ )]

: : : parameter error:

(2.33)

The algorithmic error for ISSTES is the retrieval error for radiance measurements and

atmospheric parameters that are error-free. The measurement error is the retrieval error

due to the observed radiance with added noise. The parametererror is the retrieval error

due to the estimated atmospheric compensation parametersb and measurement noise.

The sensitivity of the ISSTES algorithm has only been evaluated for the algorithmic and

the measurement error in the literature (Ingram and Muse, 2001).

The source of the algorithmic error is the smoothness assumption. The ISSTES al-

gorithm was applied to 246 emissivity spectra from the JohnsHopkins University (JHU)

spectral library resampled for a SEBASS sensor. Only one material, a marble/limestone

sample, was found to have a signi�cant algorithmic error of 3.43 K for temperature and

a maximum emissivity error of 0.086 (Ingram and Muse, 2001).A histogram of the

algorithmic error for temperature versus altitude is shownin Figure 2.6, and for emis-

sivity in Figure 2.7. Both of the histograms exclude the marble/limestone sample. The

histogram's spread in temperature error increases with altitude up to 2 km due to the

increasing atmospheric effects, with similar results for the emissivity error.

An analytical model and a Monte Carlo simulation were used to estimate the standard
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Figure 2.6: Histogram of algorithmic error in ISSTES for temperature error (-0.2 to 0.2
K) versus altitude (0-10 km) (Ingram and Muse, 2001)

Figure 2.7: Histogram of algorithmic error in ISSTES for emissivity error (0 - 0.002)
versus altitude (0-10 km) (Ingram and Muse, 2001)
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deviation and bias for temperature and emissivity errors due to noise (Ingram and Muse,

2001). The results for temperature retrieval are shown in Figures 2.8 and 2.9. For ISSTES

to retrieve approximately unbiased temperatures, the instrument noise levels should be be-

low 1 ¹ W/cm2/sr/¹ m. The SEBASS sensor has a noise level of 0.6¹ W/cm2/sr/¹ m, giving

a standard deviation of surface temperature of 0.18 K and a bias of 0.03 K (Ingram and

Muse, 2001). The results for emissivity error show an increase in the magnitude of both

the standard deviation and bias for wavelength regions witha relatively lower atmospheric

transmittance, due to a loss of signal caused by increased atmospheric absorption (Ingram

and Muse, 2001). Although the exact spectra were used for atmospheric compensation,

the small errors in the retrieved temperatures resulted in small residual atmospheric fea-

tures of water vapor, carbon dioxide, and ozone in the retrieved emissivity (Ingram and

Muse, 2001).

When the atmospheric water vapor and temperature pro�les areknown, the atmo-

spheric terms can be calculated with an accuracy limited by the radiative transfer model

and the accuracy of the coef�cients of the water vapor continuum and band absorptions

(Wan and Li, 1997). However, temperature and water vapor pro�les synchronized with

the TIR image in both location and time may not be available. The alternative is to use

a database of radiative transfer code runs to model the atmosphere. The automatic re-

trieval of temperature and emissivity using spectral smoothness (ARTEMISS) algorithm

is a hybrid algorithm for atmospheric compensation based onthe direct use of a database

of MODTRAN runs as the compensation spectra (Borel, 2003). TheISAC results are

used to select candidate atmospheric parameters from a look-up table (LUT) of MOD-

TRAN atmospheric transmittance, upwelling radiance and downwelling radiance results

for thousands of atmospheric conditions. The search is based on minimizing the spectral

angle between the ISAC estimated transmittance and the MODTRAN LUT transmittance
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Figure 2.8: (a) Standard deviation of the estimated surfacetemperature using ISSTES (b)
Bias of the estimated surface temperature using ISSTES (Ingram and Muse, 2001)
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Figure 2.9: (a) Standard deviation of the estimated surfaceemissivity using ISSTES (b)
Bias of the estimated surface emissivity using ISSTES (Ingram and Muse, 2001)
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results. ISSTES is then run on each candidate atmosphere fora number of randomly cho-

sen test pixels, and the candidate atmosphere with the smoothest ISSTES result is chosen.

The atmospheric parameters from the chosen MODTRAN LUT are directly used to com-

pensate the atmosphere and ISSTES is applied to all pixels toretrieve temperature and

emissivity (Borel, 2003).

The ARTEMISS and OLSTER algorithms are currently the only ones in the literature

that perform both atmospheric compensation and temperature and emissivity separation.

The ARTEMISS algorithm is simple and fast, as well as applicable to both man-made

and natural surface materials. However, the use of MODTRAN spectra directly as the

compensation spectra may result in nonsmooth emissivity spectra due to spectral and

radiometric calibration errors and sensor noise. In addition, published results using the

ARTEMISS algorithm have been for synthetic data only.

2.2.5 ASSET

The automated separation of surface emissivity and temperature (ASSET) algorithm is

a TES algorithm (Hayashi and Sharp, 2002). ASSET requires a separate input of atmo-

spheric compensation parameters, as well as a library of material emissivities. For each

image pixel, the algorithm computes N temperature vectors for N emissivities in the li-

brary. The emissivity that results in a retrieved temperature vector that is most invariant

with wavelength is chosen, using standard deviation of the temperature vector as the cri-

terion. The estimated temperature of the pixel is the mean ofthe temperature vector. The

emissivity of the pixel is updated using the pixel temperature, and may differ from the

library emissivity due to noise, mixed pixels, natural spectral variability, and inadequate

atmospheric compensation (Hayashi and Sharp, 2002). The authors of ASSET point out

that over or underestimating the magnitude of the emissivity introduces a slope into the
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temperature vector due to the changing shape of the Planck function at different tem-

peratures. This provides a potential method to improve the temperature and emissivity

estimation.

2.2.6 Estimating Downwelling Radiance

The estimation of downwelling radiance is probably the mostdif�cult part of the atmo-

spheric compensation and surface parameter retrieval process. In order to estimate the

downwelling radiance, the emissivities need to be determined. However, it is the emissiv-

ities, along with the LSTs, that the retrieval process is solving for. Rather than trying to

directly estimate the downwelling radiance using a scene-derived method, it is more prac-

tical to use physics-based modeling to arrive at the estimate. The ARTEMISS algorithm

applies a LUT of atmospheric spectra generated using MODTRAN. Another approach for

estimating the downwelling radiance is based on expressingthe downwelling radiance as

a function of upwelling radiance. The method used by (Tonooka, 2001) in the gray-pixel

(GP) algorithm is described below. The downwelling radiance is estimated as a quadratic

function of the upwelling radiance at nadir view for each channeli using

L#
i = ai + bi L

"
i + ci L

" 2
i : (2.34)

The regression coef�cientsai ; bi ; and ci were determined using regression analysis of

964 atmospheric pro�les. The root mean square errors (RMSEs)of the downwelling

radiance estimated using equation 2.34 for ASTER's TIR channels 10 to 14 are 0.064,

0.038, 0.021, 0.031, and 0.034 W/m2/sr/¹ m, respectively (Tonooka, 2001). A quadratic

function is used to help account for nonlinearity. For view angles at other than nadir, the

upwelling radiance at nadir view can be calculated from the estimated transmittance and
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Figure 2.10: Downwelling radiance versus upwelling radiance for a SEBASS band at
9.07170¹ m.

upwelling radiance with

L "
i (µ = 0) »= L "

i (µ)
1 ¡ ¿i (µ)cosµ

1 ¡ ¿i (µ)
; (2.35)

assuming that the mean temperature is independent ofµ (Tonooka, 2001).

As a simple test of the upwelling radiance to downwelling radiance relationship for

this dissertation, 726 MODTRAN simulations were run using six standard MODTRAN

atmospheric pro�les, and 11 scaling variations of both ozone and water vapor. A plot of

the downwelling radiance versus the upwelling radiance value for a particular SEBASS

resampled band is shown in Figure 2.10. Second-degree polynomials were �tted for each

band, and the coef�cients were stored in a LUT. In practice, adifferent set of coef�cients

needs to be determined for a given sensor altitude.



2.2 Algorithms in the literature 52

2.2.7 Summary of the reviewed algorithms

A summary of the reviewed algorithms is given in Table 2.3. Ofthe atmospheric com-

pensation and hybrid algorithms reviewed (ISAC, AAC, and ARTEMISS), the ISAC al-

gorithm is the simplest and most widely applicable algorithm. The ISAC algorithm uses a

data-derived approach, AAC is model-based, and ARTEMISS isa hybrid algorithm which

uses the results from ISAC to select from a library of model-based results. The AAC algo-

rithm offers no signi�cant advantage over the ISAC algorithm, and it is more sensitive to

spectral miscalibration issues. The main advantage of the ARTEMISS algorithm is that it

accounts forLd(¸ ). However, as a result of using radiative transfer model results directly

as the compensation spectra, it is sensitive to sensor noiseand artifacts. The disadvantage

of neglectingLd(¸ ) in the ISAC algorithm may be overcome by the use of aLd(¸ ) LUT

as described in the GP algorithm. The error in estimatingLd(¸ ) from Lu(¸ ) at the edges

of the TIR window and in the ozone region may be minimized by additional LUTs that

vary the ozone and water vapor amounts in the radiative transfer modeling.

The approach for temperature/emissivity separation in ASTER's TES algorithm re-

lies heavily on an empirical relationship that is limited tonatural materials. The ASSET

algorithm assumes that the materials in the scene are well represented by a library of

emissivity spectra, and does not account for the spatial scaling issue between laboratory

measurements and sensor data. The ISSTES algorithm is fast and simple, and like all the

temperature/emissivity separation algorithms, it requires accurate atmospheric compen-

sation spectra.

The approach presented in the next chapter is based on a hybrid of the ISAC, IS-

STES, andLd(¸ ) LUT algorithms. A modi�cation to the ISAC algorithm is needed to

address the requirement that the image is dominated by blackbody features, and an it-

erative framework is necessary to adjust the initial estimated compensation spectra and
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remove the blackbody assumption.
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Table 2.3: Summary of the reviewed hyperspectral algorithms

Algorithm Advantages Disadvantages
ISAC Data-derived approach for

estimating¿(¸ ), Lu(¸ ), and
LST ² insensitive to sensor
calibration issues² produces
smooth brightness tempera-
ture spectra

Requires an image dominated by black-
bodies with a spread in LSTs² neglects
Ld(¸ ) ² assumes a spatially homoge-
neous atmosphere over the sensor FOV

AAC Model-based approach for
estimating¿(¸ ) andLu(¸ )

Sensitive to sensor calibration issues²
requires surface materials with a smooth
and high emissivity near the water ab-
sorption band² neglectsLd(¸ ) ² as-
sumes a spatially homogeneous atmo-
sphere over local regions

ARTEMISS Performs both atmospheric
compensation and T/E sepa-
ration ² accounts forLd(¸ )
² fast and simple

Uses radiative transfer model results di-
rectly as the compensation spectra² sen-
sitive to sensor noise and artifacts² as-
sumes a spatially homogeneous atmo-
sphere over the sensor FOV

Ld(¸ ) LUT Model-based estimation of
Ld(¸ ) from Lu(¸ )

Large computational and storage over-
head² separate LUT required for each
sensor altitude² dif�cult to estimate
Ld(¸ ) in ozone and WV absorption re-
gions

ASTER's
TES

Simultaneous estimation of
LST and LSE

MMD empirical relationship not appli-
cable to man-made surfaces² assumes
atmospherically compensated data and
availableLd(¸ ) estimate

ASSET Based on a simple assump-
tion of �at brightness tem-
perature spectra using a li-
brary of material emissivi-
ties

Spatial scaling issue between labora-
tory emissivity measurements and sen-
sor data² assumes the materials in the
scene are well represented by the emis-
sivity library ² assumes atmospherically
compensated data

ISSTESS Simultaneous estimation of
LST and LSE² data-driven
approach² fast and simple

Errors in the estimated atmospheric
spectra directly affect the smoothness
assumption² assumes atmospheric com-
pensation spectra are available



Chapter 3

Approach

3.1 Issues with current algorithms

The current algorithms in the literature can be classi�ed into three categories: atmospheric

compensation (ISAC, AAC), temperature / emissivity separation (ASTER TES, ISSTES,

ASSET), and hybrid end-to-end algorithms (ARTEMISS). The atmospheric compensa-

tion techniques reviewed do not account for downwelling radiance. An empirical rela-

tionship based on radiative transfer modeling is used to scale relative values to absolute

atmospheric transmittance and upwelling radiance (ISAC) orto estimate the atmospheric

terms from the transmittance ratio and path radiance difference (AAC). ISAC requires a

scene dominated by near-blackbody features, and any errorscaused by the unaccounted

re�ected downwelling term will carry over to the retrieved atmospheric terms (Young

et al., 2002). AAC requires a scene with surfaces that have a smooth and high emissivity

near the water absorption band. This assumption means that AAC does not work well for

man-made surfaces.

All of the reviewed temperature / emissivity separation algorithms assume that the at-
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Figure 3.1: ISSTES for a stressing case,4 Ts = 2 K.

mosphere has been compensated for already by using the surface-leaving radiance as their

input. The performance of ASTER's TES algorithm depends largely on the empirical re-

lationship between the minimum emissivity and its maximum-minimum difference. This

relationship does not apply to man-made surfaces. The smoothness assumption is used

in both ISSTES and ASSET, but in different ways. ISSTES is an iterative search for the

smoothest retrieved emissivity related to varying the LST estimate, while ASSET applies

a library of spectral emissivities to each pixel and assignsit the emissivity corresponding

to the smoothest brightness temperature vector. The ISSTESalgorithm is a simple and

effective approach for temperature / emissivity separation. However, like the rest of the

algorithms in this category, its performance is limited by the accuracy of the atmospheric

compensation performed externally. An example of the effects of improper atmospheric

compensation on the ISSTES algorithm is shown in Figure 3.1.The family of curves

represents a variation of the LST estimate by 2 K. When the estimated atmospheric pa-
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rameters are incorrect, the ISSTES algorithm may fail. In this case, none of the possible

ISSTES emissivities are correct as they contain residual atmospheric effects. While the

emissivities may be spectrally smoothed using polishing orother methods, the computed

spectral smoothness for a given temperature may not correspond to the correct LST.

The ISSTES algorithm is used in ARTEMISS for temperature / emissivity separation,

and its performance will be limited by the accuracy of the atmospheric compensation.

The ARTEMISS approach to atmospheric compensation uses a radiative transfer code

(RTC). The main advantage of RTCs is that a wide variety of conditions can be simulated

by varying the atmospheric conditions (Prata et al., 1995).The disadvantage is that the

characterization of the instrument's spectral �lter function must be accurate. A spectral

misregistration can amplify the effects of the atmosphere on the surface emission spec-

trum. The results are model dependent and are based on correlations that may not exist

in the atmosphere (Young et al., 2002). The accuracy of RTCs islimited by assumptions

used to calculate line parameters. Some molecular absorption line parameters are still

not precisely known, and not all of the molecular species aretaken into account by the

models. CFCs are rarely taken into account because no detaileddescription is available

(Prata et al., 1995). A precise calculation of the radiativetransfer requires an accurate

knowledge of the atmospheric structure.

3.2 Assumptions

In order to regularize the retrieval problem, it is necessary to simplify the problem and

constrain the parameters with some assumptions. These assumptions are summarized in

Table 3.1.

In addition to theN spectral emissivities plus one surface temperature to solve for
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Table 3.1: Assumptions in the approach

² Spatially homogeneous atmosphere over the image
² The estimated atmospheric compensation spectra is only applicable

to the same image used to derive them
² Solar contribution is negligible in the TIR
² No clouds in the image, or a cloud mask is available
² No emission sources re�ected into line of sight

(such as clouds, buildings, trees)
² Flat surface (geometrical effects of the surface and elevation are ignored)
² Lambertian surface
² Near-nadir sensor viewing angle (view angle· 30 ±)
² Near-blackbody features are available in the image,

with a spread in surface temperatures
² No mixed pixels
² The mean value of the¿(¸ )Ld(¸ ) term in the RTE is approximated by

the product of the mean values of¿(¸ ) andLd(¸ )

per pixel withN spectral measurements, the atmospheric compensation spectra must also

be estimated. This effectively means that4N + 1 values must be solved per pixel given

N spectral measurements. The assumption of a spatially homogeneous atmosphere over

the image allows the same atmospheric spectra¿(¸ ), Lu(¸ ), andLd(¸ ) to be applied to

every pixel in the image. This assumption greatly reduces the number of values to solve

for. The appropriateness of the assumption will depend on the atmospheric stability over

the sensor FOV. A non-uniform atmosphere may require a segmentation of the image into

locally uniform atmospheric regions similar to the approach used in the AAC algorithm.

However, the resulting LST and LSE maps may exhibit arti�cial discontinuities around

the borders of the segments. Each image segment may also havea smaller range of surface

temperatures that increases the dif�culty of estimating the atmospheric spectra.

The estimated atmospheric spectra¿(¸ ), Lu(¸ ), andLd(¸ ) are representative of the
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atmosphere only for the image data from which they were derived. The primary objective

of the retrieval algorithm is to estimate the land surface parameters of temperature and

emissivity. The estimated atmospheric spectra are intended only to compensate for atmo-

spheric effects as necessary for the model to �t the observedradiance data. In other words,

the estimated atmospheric spectra may not necessarily agree with a radiative transfer code

result using real atmospheric pro�le soundings for the sameimage data.

In the 8 - 14¹ m TIR spectral region, the surface emitted radiance dominates the solar

re�ected component. The RTE used in the retrieval model is simpli�ed by neglecting the

solar component. Scattering effects are also neglected, assuming no volcanic eruptions

are nearby.

The assumption of a cloud-free sky is important for land surface parameter retrieval

in the TIR. In addition to violating the assumption of a spatially homogeneous atmo-

sphere over the image, clouds are also a source of radiation that can be re�ected from the

land surface towards the sensor. The retrieval model does not account for other emission

sources, such as buildings or trees, that are re�ected into the sensor line of sight in order

to avoid complex geometric modeling speci�c to each image. The impact of neglecting

emission sources that are re�ected towards the sensor depends on the temperature of the

source and the emissivity of the re�ecting surface. The retrieval error will be largest for

sources that are hotter than the surrounding land surface re�ecting off a low emissivity

surface into the sensor line of sight.

A �at land surface is assumed to avoid complex geometric modeling when noa priori

information is available on the surface structure and elevation. It is assumed that the at-

mospheric path difference due to a change in elevation within the image is negligible, or

that the image can be segmented into regions of constant elevation. Plowed �elds, forest

canopies, and sloped surfaces are some examples of where a �at surface assumption may
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Figure 3.2: The angular variation of emissivity for variousmaterials in the TIR. (Sobrino
et al., 1998)

fail. The retrieved emissivities from these surfaces may not match laboratory measure-

ments (leaf measurements for a forest canopy), or even the retrieved emissivity for the

same material in the image with a different geometric structure. However, the estimated

effective emissivity may be useful enough for material classi�cation.

The RTE model assumes that the land surface is �at and opaque,and that it approx-

imates a Lambertian re�ector of the downwelling radiance. The Lambertian assumption

simpli�es the model by avoiding geometric calculations. The assumption does not hold

for surfaces such as dry grass, yellow loamy sand, slate stone shingle, and white marble

(Dash et al., 2002). The emissivities for most materials in the TIR have a decreasing

trend with increasing view angles. The angular dependence of the surface emissivity for

various materials in the 8 - 14¹ m spectral window is shown in Figure 3.2. In general,

the Lambertian assumption for surfaces is valid for near-nadir conditions (view angle·

30 ±).

The assumption that blackbody features (emissivities withlittle spectral contrast and
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values from about 0.97 to 1.00) are available in the image data is useful for regularizing

the retrieval problem. The assumption simpli�es the estimation of the atmospheric¿(¸ )

andLu(¸ ) spectra using the image pixels where the re�ected downwelling radiance com-

ponent is minimal by linearizing the RTE. A suf�cient spreadin surface temperatures is

required to avoid an unstable linear regression when estimating the atmospheric¿(¸ ) and

Lu(¸ ) spectra. Compared to the ISAC algorithm, the retrieval modelused here does not

require that blackbody features dominate the image becausethe downwelling radiance

and emissivity values are eventually estimated for each pixel.

Spectrally pure image pixels are assumed in the absence of sub-pixel temperature and

emissivity information. The effect of mixed pixels will depend on the sensor resolution

and the variability of the land surface. Finally, the mean value of the¿(¸ )Ld(¸ ) term

in the RTE is approximated by the product of the mean values of¿(¸ ) andLd(¸ ). The

high degree of correlation between the¿(¸ ) andLd(¸ ) spectra, along with the spectral

resolution of a hyperspectral sensor that may not be able to resolve the atmospheric ab-

sorption or emission lines, combine to affect the accuracy of the approximation (Young

et al., 2002). The error in the approximation has not been quanti�ed for the ¿(¸ )Ld(¸ )

term.

3.3 Approach (OLSTER)

In general, solutions to the retrieval of surface parameters can be non-unique and unstable.

Non-unique solutions occur when different combinations ofthe surface and atmospheric

parameters produce the same observation. The direct approach to surface parameter re-

trieval is not practical given the ill-posed nature of the problem. Solving for the exact

solution in the presence of measurement noise can lead to unstable solutions. Instead, a
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Figure 3.3: The main steps of the OLSTER algorithm

set of possible solutions should be determined, and constraints can be applied to obtain the

optimal solution. The approach developed here, optimized land surface temperature and

emissivity retrieval (OLSTER), uses an iterative techniqueto solve the nonlinear retrieval

problem. The OLSTER algorithm introduces a new method for �nding near-blackbody

pixels based on scene-derived methods, and also an iterative method for retrieving surface

parameters using constrained optimization. Unlike the temperature / emissivity separation

methods in the literature, this approach does not assume that perfect atmospheric compen-

sation has been performed during preprocessing, and does not require spectral polishing of

retrieved emissivities. The main steps include initialization, a search for near-blackbody

pixels, and an iterative constrained optimization, shown in Figure 3.3. The following

subsections provide more detail on each of the steps in the OLSTER approach.

3.3.1 Initialization

The initialization step of the OLSTER algorithm is based on the ISAC algorithm. An in-

scene approach is appropriate at this starting point given the lack of knowledge of surface
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and atmospheric parameters. The purpose of this step is to provide an initial estimate of

the atmospheric transmittance and upwelling radiance. Thedetails of the initialization

step are given in Table 3.2.

The �rst step is to convert observed radiance (Lobs) to brightness temperature. The

most–hits band or reference wavelength is de�ned as the bandwith the highest brightness

temperature total for all pixels. The brightness temperature at the reference wavelength is

the initial LST estimate for each pixel. The LST estimate is used to calculate the Planck

blackbody radiance (Lbb) per pixel. A least-squares regression of Lobs versus Lbb for each

band is performed, with the slope and intercept as the initial estimates for unscaled at-

mospheric transmittance and upwelling radiance, respectively. Only the pixels with a

maximum brightness temperature at the reference wavelength are included in the scatter

plot.

The departure from the ISAC approach here is that a linear least-squares regression is

used instead of �tting a line to the upper edge of each Lobs vs. Lbb scatter plot. The points

at the top edge of the scatter plot may not necessarily represent near-blackbody pixels if

there are large errors in the estimated LST which leads to a large error in the calculated

Lbb.

The ISAC algorithm also assumes a scene dominated by blackbody pixels. The ISAC

atmospheric parameter results for image data with scenes that do not meet this assumption

will provide a poor starting point for the OLSTER algorithm.A solution for this case is

to remove low-emissivity pixels (step 3 in Table 3.2) beforeestimation of the atmospheric

parameters. The low-emissivity pixels are determined using the shape and range of values

of the mean-removed brightness temperatures. Near-blackbody pixels are assumed to

have a relatively �at mean-removed brightness temperature, and therefore pixels with a

range of mean-removed brightness temperature values greater than the median for the
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image are removed. In general, determining whether or not a scene requires this step

is dif�cult. In practice, the OLSTER algorithm should run the image data for both cases

sequentially and compare the �nal objective function values at the end to determine which

case to use.

Another difference from the ISAC algorithm is that the atmospheric parameters are

not scaled based on MODTRAN runs, radiosonde data, or water vapor absorption bands.

The estimated transmittance is rescaled to have values smaller than one using

¿̂(¸ ) =
¿̂0(¸ )

¿̂0(¸ ) jmax
0:999; (3.1)

and the estimated upwelling radiance is iteratively rescaled to have nonnegative values

using

L̂u(¸ ) = L̂0
u(¸ ) +

µ
abs(L̂0

u(¸ ) jmin )

max(L̂0
u(¸ ) janti ¡ corr ) + 1

¶
L̂0

u(¸ ) janti ¡ corr ; (3.2a)

L̂0
u(¸ ) janti ¡ corr = 1 ¡

L̂0
u(¸ )

L̂0
u(¸ ) jmax

; (3.2b)

where terms with a prime represent unscaled estimates, and where max denotes the max-

imum value over all spectral channels.

The spectral scaling equations were modi�ed from (Young et al., 2002), but do not

scale to known values for a single spectral band or the water vapor absorption band. The

scaling approach that is used here rescales the atmosphericparameters if necessary to en-

sure physical values. The atmospheric parameters are then further re�ned in an iterative

optimization step described later in subsection 3.3.4. Thescaling value of 0.999 in equa-

tion 3.1 was chosen based on the requirement of a maximum atmospheric transmittance

value of one and to avoid a slow convergence in the optimization step. The iterative addi-
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Table 3.2: Initialization of the OLSTER algorithm

1. Compute the brightness temperature spectrum per pixel,TB (Lobs(x; ¸ ); ¸ )
2. EstimateT̂s(x) per pixel usingTB (Lobs(x; ¸ ); ¸ ) jmax

3. Remove low-emissivity pixels using the shape ofTB (Lobs(x; ¸ ); ¸ ) , if necessary
4. Compute the Planck radiance per pixel,L̂BB (T̂s(x); ¸ )
5. Estimate thê¿(¸ ) andL̂u(¸ ) spectra viaLobs(¸ ) versusL̂BB (¸ )

linear regressions;^¿(¸ ) = slope, and̂Lu(¸ ) = intercept
6. Rescalê¿(¸ ) andL̂u(¸ ) to be physical, if necessary

tion of the anti-correlated estimated upwelling radiance (equation 3.2b) to the estimated

upwelling radiance in equation 3.2a primarily adjusts low upwelling radiance values. The

anti-correlated estimated upwelling radiance is similar to the estimated atmospheric trans-

mittance. This approach is preferred to adding a constant bias to the estimated upwelling

radiance, which may reduce the estimated transmittance values in later steps if a large

bias is required for a nonnegative upwelling radiance estimate.

3.3.2 Search for near-blackbody pixels

The estimation of the atmospheric transmittance and upwelling radiance is complicated

by the re�ected downwelling radiance term in the radiative transfer equation and by the

attenuation of the surface emitted radiance by emissivity.However, for near-blackbody

pixels, the re�ected downwelling radiance is small compared to the at-sensor radiance,

and the surface emitted radiance is closely approximated byLbb. These two properties

motivate the search for the near-blackbody pixels to improve the estimation of the atmo-

spheric parameters.

This step of the approach simply classi�es the image pixels as either near-blackbody

or lower-emissivity pixels recursively until a stopping condition is satis�ed. The details
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of this step are given in Table 3.3. The spectral shape of Lobs, compensated with the

estimated atmospheric transmittance and upwelling radiance and converted to brightness

temperature, is key to the classi�cation. Ideally, the brightness temperature should be

spectrally �at for every pixel if the estimated atmosphericparameters are correct and if the

spectral emissivities were all constant and equal to one. Inpractice, the result of the atmo-

spheric compensation is that some pixels are overcompensated, and some undercompen-

sated. The pixels that are best compensated have emissivities that approximate the mean

emissivity value of the scene, and are characterized by a relatively �at, mean-removed,

atmospherically compensated brightness temperature,TB ( L obs (x;¸ )¡ L̂ u (¸ )
¿̂(¸ ) ; ¸ ). Since the

initialization step assumes blackbody pixels, the atmospheric parameters from the least-

squares regression on the scatter plots of Lobs versus Lbb will compensate the pixels with

the mean scene emissivity best. An example of this is shown inFigure 3.4. A test image

of 1000 pixels with a temperature range of 270 K to 310 K and graybody emissivities

from 0.9 to 1 was created to test the search for near-blackbody pixels. After estimating

the atmospheric transmittance and upwelling radiance in the initialization step, the ob-

served radiance was compensated with the estimated atmospheric parameters, converted

to brightness temperature and its mean subtracted. A randomsample of seven pixels from

the test image was chosen for display purposes. The mean-removed spectral brightness

temperature that is �at with values near zero is for a graybody emissivity of about 0.95.

The near-blackbody pixels have a concave down shape, and thegraybody pixels with an

emissivity of about 0.9 have a concave up shape. The approachused to determine the

concavity of each mean-removed, atmospherically compensated brightness temperature

is to take its second derivative with respect to the wavelength of each spectral channel,

and then average the second derivative values over all the bands.

Classi�cation of near-blackbody pixels based on concavity in one iteration is not
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Table 3.3: Method for classifying near-blackbody and lower-emissivity pixels

1. CompensateLobs(x; ¸ ) with ¿̂(¸ ) andL̂u(¸ ) from the modi�ed ISAC

algorithm and convert to brightness temperature,TB ( L obs (x;¸ )¡ L̂ u (¸ )
¿̂(¸ ) ; ¸ )

2. Compute the concavity and correlation with¿̂(¸ ) metrics
on the mean-removed brightness temperatures

3. Classify pixels with positive correlation and negative concavity metrics as
near-blackbody pixels, and the remaining pixels as low-emissivity

4. Update theT̂s(x) and L̂BB (T̂s(x); ¸ ) for the near-blackbody pixels with
T̂s(x) set equal to the maximum compensated brightness temperature,
TB ( L obs (x;¸ )¡ L̂ u (¸ )

¿̂(¸ ) ; ¸ )

5. Update thê¿(¸ ) andL̂u(¸ ) spectra usingLobs(¸ ) versusL̂BB (T̂s(x); ¸ ) linear
regressions on the near-blackbody pixels

6. Go to step 1 until the stopping conditions are satis�ed

Figure 3.4: Mean-removedTB ( L obs (x;¸ )¡ L̂ u (¸ )
¿̂(¸ ) ; ¸ ) spectra for graybody pixels with emis-

sivities from 0.9 to 1.0. The blackbody pixels have a concavedown spectra, the low
emissivity pixels are concave up, and the pixels with an emissivity of 0.95 are spectrally
�at.
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straightforward. A plot of mean emissivity, averaged over 8- 14 ¹ m, versus concavity

of the mean-removed brightness temperature after atmospheric compensation for gray-

body pixels is shown in Figure 3.5. The pixels with the scene average emissivity of 0.95

roughly have zero concavity. The higher emissivity pixels are more scattered due to errors

in the estimated LSTs and atmospheric parameters. Instead of classifying near-blackbody

pixels, the low emissivity pixels should be removed from theworking set of pixels itera-

tively. Pixels with a positive concavity are classi�ed as lower-emissivity pixels, and the

rest are near-blackbody pixels. Then the LSTs of the near-blackbody pixels are updated

by using the atmospheric parameter estimates,¿̂(¸ ) andL̂u(¸ ), for compensation (step

4 in Table 3.3). This updates Lbb for estimating the atmospheric parameters in a modi-

�ed ISAC step, and the process repeats until a certain numberof near-blackbody pixels

remain. The iterations should be stopped when there are no further changes in the esti-

mated atmospheric parameters orT̂s, the range of̂Ts values is determined to be too small,

or when a certain percentage of the total pixels in the TIR image remain. The current

implementation stops the iterative search when less than ten percent of the total number

of pixels in the image remain in the near-blackbody pixels set. In general, the shape of the

mean emissivity versus brightness temperature concavity scatter plot remains the same

for each iteration, except that the range of emissivities isreduced for each iteration.

In addition to the concavity metric used to classify near-blackbody and lower-emissivity

pixels, another metric based on the correlation between theestimated atmospheric trans-

mittance and the spectral brightness temperature can be used. It is similar to concavity in

that it classi�es the pixels based on the spectral shape of the spectral brightness temper-

ature. Since the low emissivity pixels have an atmospherically compensated and mean-

removed spectral brightness temperature with a concave up shape, a negative correlation

between the estimated atmospheric transmittance and the spectral brightness temperature
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Figure 3.5: Emissivity value vs. concavity that is used to iteratively remove the lower-
emissivity emissivity pixels (positive concavity).
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Figure 3.6: Graybody emissivity versus correlation with¿̂(¸ ).

can be used to classify lower-emissivity pixels. An examplefor the graybody emissivity

synthetic scene is shown in Figure 3.6. The approach in the OLSTER algorithm uses both

concavity and correlation metrics to classify the image pixels. Pixels with both positive

correlation and negative concavity metrics are classi�ed as near-blackbody pixels, and

the remaining pixels are classi�ed as low-emissivity. The use of both metrics allows for a

more robust classi�cation than is possible with only a single metric.

The search for near-blackbody pixels was also tested using emissivities from the

ASTER spectral library instead of graybodies. A synthetic image was created with 11,850

pixels and LSTs from 260K to 320K. A plot of the average emissivity over the LWIR

window versus concavity of the mean-removed brightness temperature after atmospheric

compensation is shown in Figure 3.7. A similar plot for average emissivity over the LWIR

window versus the correlation with the estimated atmospheric transmittance is shown in
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Figure 3.8. The following describes both �gures. All 11,850pixels are plotted in the

upper left. At each iteration, all pixels with a positive concavity and a negative corre-

lation are classi�ed as lower-emissivity pixels. After oneiteration, the number of near-

blackbody pixels was reduced to 5,898, shown in the upper right plot. The rest of the

pixels were labeled as lower-emissivity pixels. The next iteration reduced the number

of near-blackbody pixels to 1,661, shown in the lower left plot, and the last iteration had

1,080 near-blackbody pixels, shown in the lower right plot.A further iteration reduced the

number of near-blackbody pixels to 380, and is not shown. Thepixels classi�ed as lower-

emissivity at each iteration were generally the same using either concavity or correlation,

except for about four or �ve pixels, for this particular testimage.

Even for perfect blackbody pixels, the estimated atmospheric transmittance and up-

welling radiance will not be correct unless the transmittance is one and the upwelling

radiance is zero for at least one band. Any in�uence from the atmosphere will result in

an error in the estimation of LST when the observed radiance is converted to brightness

temperature. This in turn leads to inaccuracies inLbb used to estimate the atmospheric pa-

rameters in the regression. A constrained optimization approach that includes the down-

welling radiance is used to overcome this problem.

3.3.3 Downwelling radiance

Plots of downwelling radiance versus upwelling radiance for six bands are shown in Fig-

ure 3.11. The effect of ozone variation is seen for the band at9.44¹ m. A separation of the

six default MODTRAN atmospheres is seen for the band at 7.90¹ m, and for other bands

at the edge of the LWIR window, which are not shown. A separate LUT for each model

atmosphere is used to avoid errors in predicting downwelling radiance from upwelling

radiance.
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Figure 3.7: Search for near-blackbody pixels on ASTER's spectral library of emissivities
using concavity.
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Figure 3.8: Search for near-blackbody pixels on ASTER's spectral library of emissivities
using correlation witĥ¿(¸ ).
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Six downwelling radiance lookup tables for the sensor altitude of 2km and nadir view

were created for the synthetic image with ASTER library emissivities. The estimated

physically-scaled upwelling radiance for the near-blackbody pixels are used to estimate

downwelling radiance via stored LUTs of regression coef�cients. Each LUT was used

to predict a downwelling radiance, and the RTE was solved foremissivity on the near-

blackbody pixels. The selection of one of the six LUTs to use is based on the maximum

to minimum difference of the estimated emissivities ["̂ (x; ¸ ) jmax - "̂ (x; ¸ ) jmin ]. The

LUT resulting in the smallest maximum to minimum differencefor the near-blackbody

pixels is chosen.

OLSTER is currently using sixty six downwelling radiance lookup tables for the sen-

sor altitudes of 2, 6, and 10km at nadir view. There are elevenozone and eleven water

vapor scaling factors from 0.4 to 2.4 in 0.2 increments used to vary the ozone and water

vapor amounts. The locations of the radiosonde launches areshown in Figure 3.9, and

the range of temperature and water vapor values are shown in Figure 3.10. Worldwide

radiosonde data and the MODTRAN default pro�les are used to create the LUTs. The

range of corresponding upwelling radiance values are also stored with the LUTs, and are

used to select a set of LUTs. The set is further reduced to �ve LUTs by computing the cor-

responding emissivity spectra for each LUT and selecting the �ve LUTs with the smallest

maximum to minimum difference for the near-blackbody pixels. Each of the �ve LUTs

will be tested sequentially in the optimization loop beforeselecting the �nal LUT.

3.3.4 Optimization of the atmospheric parameters

After predicting the downwelling radiance using the LUT of regression coef�cients, ini-

tial estimates of the atmospheric parameters are available. The remaining parameter to

estimate is the spectral emissivity per pixel. The RTE can besolved for emissivity using
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Figure 3.9: Location of radiosonde launches (Hernandez-Baquero, 2000).
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Figure 3.10: Range of temperature and water vapor values for the radiosondes.
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Figure 3.11: Downwelling radiance versus upwelling radiance (W/m2/sr/¹ m) for the in-
dicated bands.

the LSTs estimated from brightness temperature, which willresult in values close to one.

This is expected because blackbody surfaces have been assumed so far. A procedure is

required to adjust the atmospheric parameters in order to move away from the blackbody

assumption. The method used in this approach is to iteratively optimize the atmospheric

transmittance and upwelling radiance. After each optimization, the estimates for down-

welling radiance, LST, and emissivity are updated. Each iteration is required to return

values that are physically possible and the process is stopped when no further progress is

made.

A literature search for an optimization tool that maintainsfeasibility and allows for

nonlinear constraints led to a class of algorithms known as nonlinear programming (NLP).

In particular, the generalized reduced gradients (GRG) method is appropriate for the opti-

mization of atmospheric parameters. GRG is comparable to theSimplex method of linear
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programming if the problem and constraints are linear, and similar to a gradient search for

an unconstrained problem. The GRG method is useful for the surface parameter retrieval

problem because it can handle nonlinear functions, allows boundary values to be de�ned

for the parameter values, and is widely available. One version of the algorithm (Lasdon

et al., 1978), has been implemented as the Constrainedminimum function in IDL 6.1

(Research Systems, 2005).

Generalized reduced gradients

The generalized reduced gradients algorithm is an iterative direct search method that

solves for the optimal solution of a given model or problem while satisfying any given

constraint equations. Each iteration in the GRG search reduces the value of the objective

function. One advantage of the GRG algorithm for nonlinear problems is that the vari-

ables are continuously adjusted during the search to satisfy the constraints. This ensures

that the �nal point is feasible, even if the algorithm stops before reaching the optimal

solution (Luenberger, 1973).

The GRG algorithm was developed by Abadie and Carpentier at Electricite de France

in 1969 as an extension to Wolfe's reduced gradient method (Abadie and Carpentier,

1969). The GRG algorithm generalizes the reduced gradient method to allow for a non-

linear objective function and nonlinear constraints. Nonlinear programming algorithms,

including GRG, have been used for optimization of nonlinear networks, such as electric

power �ow, as well as for economic planning (Lasdon and D.Waren, 1980).

The basic idea of GRG is that the problem is linearized about aninitial feasible point

in a reduced space using the �rst-order terms of a Taylor series expansion. The problem

variables are partitioned into basic variables and not-basic variables, with the number

of basic variables equal to the number of constraints. The constraint equations are then
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Table 3.4: A basic GRG algorithm

1. Initialization: de�ne optimization parameters,
start from a feasible solution

2. Compute the Jacobian of the constraints
3. Partition the variables into basic and not-basic variables
4. Compute the reduced gradient
5. Stop if the current point is optimal
6. Use the reduced gradient to �nd a search direction
7. Perform a linesearch to �nd a new solution and restore feasibility
8. Update the solution with the result of the linesearch

Go to step 2

solved for the basic variables in terms of the not-basic variables. This reduces the model

problem to an optimization problem of the not-basic variables. The objective function

is now a function of the not-basic variables only. The searchdirection for the solution is

derived from the reduced gradient. A line search is performed along the constraint surface

by changing the not-basic variables in the negative direction of the reduced gradient and

then adjusting the basic variables to maintain feasibility. GRG solves the original problem

by generating a sequence of reduced problems. The main stepsof the GRG algorithm are

given in Table 3.4.

Step1 The GRG optimization is initialized by de�ning the optimization parameters.

These parameters are the convergence tolerance (² stop orepstop ), the feasibility toler-

ance (epfeas ), and the number of consecutive iterations (nstop ). The default values

for these parameters are provided in Table 3.5. When the optimality conditions are sat-

is�ed to within epstop in step 5 of the GRG algorithm, the current point is considered

optimal and the algorithm is stopped. The algorithm is also stopped if the change in the

objective function is stalled for overnstop iterations. Theepfeas parameter is used in
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Table 3.5: GRG Notation

Variable Value or de�nition
m number of constraints
n number of variables
n ¡ m degrees of freedom of the system, also the reduced set

of variables
X n -dimensional vector of the variables
g m-dimensional vector of the constraint functions
gm+1 (X ) objective function
xb , y , s basic variables, feasible, dependent ,m uncon-

strained, implicitly determined by the independent
variables, state or solution variables

xnb, x , d not-basic variables, independent, reduced set ofn¡ m
decision variables, to be divided intoxn andxs

xn nonbasic variables, the not-basic variables at one of
their bounds

xs superbasic variables to be changed, not-basic vari-
ables between bounds, independent variables of the
reduced problem

ds search direction for the superbasic variables
J Jacobian matrix of the constraints
B , @g=@y basis matrix from the columns ofJ , nonsingularm £

m
¸ , ¼, p Lagrange multipliers
F (x) reduced objective function
OF , @f=@xnb reduced gradients
epstop , ² stopping or convergence tolerance (default =10¡ 4)
nstop consecutive iteration counter (default = 3)
epfeas feasibility tolerance (default =10¡ 4)
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step 7 of the GRG algorithm. During the feasibility restoration, the equality constraints

may not always be satis�ed exactly, andepfeas is used to de�ne an acceptable toler-

ance. The notation used for the GRG algorithm by different authors in the literature is

often incongruous. The GRG notation used here is summarized in Table 3.5, and closely

follows that of (Lasdon et al., 1978) and (Papalambros and Wilde, 2000).

After de�ning the optimization parameters, the GRG algorithm starts with an initial

solution vector,X̂ , that is feasible, and preferably close to the optimal point. If any

constraints are not feasible, a phase I procedure is startedand the objective function is

replaced with the sum of the violated constraints. Otherwise the GRG algorithm enters

a phase II procedure (optimization) with a feasible solution and continues. The phase I

procedure attempts to �nd a feasible point by solving an auxiliary piecewise linear pro-

gramming problem (Windward Technologies and Optimal Methods, 1997). The value of

the objective function after a phase I procedure is usually larger (worse) than the initial

starting point, but it will be a feasible point. The details of a phase I procedure will not be

presented. The general optimization problem is stated as:

minimize gm+1 (X ); (3.3a)

subject to 0 · gi (X ) · ub(n + i ); i = 1; 2; : : : ; m; (3.3b)

lb(i ) · X i · ub(i ); i = 1; 2; : : : ; n: (3.3c)

Then-dimensional vectorX represents then variables that are being optimized, and

the gi functions are assumed differentiable. There arem constraints andgm+1 is the

objective function.

The problem needs to be restated because GRG only deals with equalities. The in-

equality constraints in equations 3.3b and 3.3c are converted to equality constraints by
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addingm slack variables, one for each of them constraints. The optimization problem

with equality constraints is stated as:

minimize gm+1 (X ); (3.4a)

subject to gi (X ) ¡ X n+ i = 0; i = 1; 2; : : : ; m; (3.4b)

lb(i ) · X i · ub(i ); i = 1; 2; : : : ; n + m; (3.4c)

lb(i ) = ub(i ) = 0 ; i = 1; 2; : : : ; n; (3.4d)

lb(i ) = 0 ; i = n + 1; n + 2; : : : ; n + m: (3.4e)

The �rst n elements inX are the variables that are being optimized, and the variables

X n+1 ; : : : ; X n+ m are the new slack variables for the constraints. The values of the slack

variables are greater than or equal to zero.

Step2 The next step is to compute the Jacobian of the constraints,J . The Jacobian is a

matrix of the partial derivatives of the constraints with respect to the variables, and it is

de�ned as:

J ,

2

6
6
6
4

@g1=@x1; : : : ; @g1=@xn
...

...
...

@gm=@x1; : : : ; @gm=@xn

3

7
7
7
5

=
@g
@x

: (3.5)

An approximation to the Jacobian matrix can be obtained using �nite differencing. The

Jacobian matrix needs to be evaluated for the current solution at each iteration.

Step3 The original problem, equation 3.3, is simpli�ed to a reduced problem about̂X

by partitioning the variables. The solution̂X satis�es the constraints in equation 3.3. The

columns of the Jacobian matrix are partitioned into basic and not-basic portions,
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J = [ B; N ]; (3.6a)

X̂ = ( xb; xnb); (3.6b)

whereB is a submatrix of sizem £ m,

B =
µ

@g
@xb

¶
: (3.7)

The variables are partitioned by selectingm basic variables so that the basis matrixB is

nonsingular (invertible) at̂X . The remainingn ¡ m variables are labeled not-basic.

There are many possible choices for the set of basic variables. The basic variables

should not be close to their bounds in order to avoid an early termination of the linesearch

in step 7 (Lasdon and Smith, 1992). The basis matrix is required to be nonsingular be-

cause its inverse is used to compute the reduced gradient in the next step, as well as to

maintain feasibility in step 7. The basis matrix should alsobe well conditioned, meaning

that a small change in the matrix produces a small change in the solution. This is impor-

tant because the inverse of a well conditioned matrix does not amplify estimation error.

This improves the accuracy in solution for the Lagrange multipliers in step 4 and in the

Newton iteration of the linesearch in step 7 (Lasdon and Smith, 1992). The basis selection

procedure is based on complete pivoting.

The GRG algorithm uses the binding constraints to solve for the basic variables in

terms of the remaining variables. The binding constraint functions are written as

gi (xb; xnb) = 0 ; i = 1; 2; : : : ; m: (3.8)
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A constraintgi is binding (holds as an equality) if it is within a tolerance² of its bounds,

jgi ¡ ub(n + i )j < ² or jgi ¡ lb(n + i )j < ²: (3.9)

The constraint equations can be used to eliminate the basic variables by solving equa-

tion 3.8 in terms ofxnb. This reduces the objective function to a function of the not-basic

variables only,

gm+1
¡
xb(xnb); xnb

¢
= F (xnb) ´ F (x); (3.10)

and the original problem is now unconstrained:

minimize F (x);

subject to l· x · u:
(3.11)

Step4 The partial derivative of the reduced objective function with respect tox is called

the reduced gradient,OF . The reduced gradient provides the direction to search for an

improvement to the current solution in step 6 of the GRG algorithm. By de�nition, the

reduced gradient values for basic variables are zero (Windward Technologies and Optimal

Methods, 1997). The derivation of the reduced gradient starts by expanding equation 3.10

in a Taylor series aboutx and including only the �rst-order terms,

@F
@x

dxnb =
@gm+1

@xb
dxb +

@gm+1

@xnb
dxnb: (3.12)

Similarly, equation 3.8 is approximated by a �rst-order Taylor series expansion

@g
@xb

dxb +
@g

@xnb
dxnb = 0; (3.13)
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and rewritten using equation 3.7 as,

Bdxb +
@g

@xnb
dxnb = 0: (3.14)

Equation 3.14 is solved for dxnb,

dxb = ¡ B ¡ 1 @g
@xnb

dxnb; (3.15)

and substituted into equation 3.12,

@F
@x

dxnb = ¡
@gm+1

@xb
B ¡ 1 @g

@xnb
dxnb +

@gm+1

@xnb
dxnb: (3.16)

Finally, the expression for the reduced gradientOF is obtained by eliminating dxnb from

equation 3.16,
@F
@x

=
@gm+1

@xnb
¡

@gm+1

@xb
B ¡ 1 @g

@xnb
: (3.17)

The reduced gradient can also be expressed as

@F
@x

=
@gm+1

@xnb
¡ ¸

@g
@xnb

; (3.18)

where¸ is the Lagrange multiplier,

¸ =
@gm+1

@xb
B ¡ 1: (3.19)

Step5 The GRG algorithm performs two tests on the currentX̂ to determine if it is op-

timal. The �rst test evaluates the Karush-Kuhn-Tucker (KKT) optimality conditions. The

second test checks the progress of the objective function and determines if it has stalled.

If the KKT conditions are satis�ed to within theepstop tolerance, or if the fractional
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change in the objective function is less thanepstop for nstop consecutive iterations,

then the currentX̂ is considered optimal and the GRG algorithm stops. Otherwise, a

search direction is generated and GRG starts a one dimensional search for a new solution.

The KKT criteria de�ne the necessary optimality conditions. The KKT conditions

apply to the general nonlinearly constrained problem,

minimize f (x); (3.20a)

subject to h(x) = 0 (equality constraints); (3.20b)

g(x) · 0 (inequality constraints): (3.20c)

The Lagrangian for the optimality condition at a solution point x is written as

¤( x; ¸; ¹ ) = f (x) +
X

i

¸ i hi (x) +
X

j

¹ j gj (x); (3.21)

and the KKT �rst-order conditions are

O¤( x; ¸; ¹ ) = Of (x) +
X

i

¸ i Ohi (x) +
X

j

¹ j Ogj (x) = 0 ; (3.22a)

8i; ¹ i ¸ 0; (3.22b)
X

j

¹ j gj (x) = 0 : (3.22c)

The partial derivative with respect tox of the gradient of the Lagrangian, equation 3.22a,

states that at the optimal solution pointp, ¡ Of (p) is entirely contained in the subspace

spanned by theOgi (p) normals and theOhj (p) normals. The partial derivatives with re-

spect to the multiplierş and¹ states that the constraints must be satis�ed at the optimal

point. For the inequality constraints, the gradient of the objective function,Of , must
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point towards the feasible side of the inequality constraints. This condition is satis�ed by

restricting the sign of the multiplier¹ to be positive in equation 3.22b. The complemen-

tary slackness condition, equation 3.22c, states that¹ j = 0 for inactive constraints (when

gj (x) < 0).

Step6 The computation of a search direction,ds, requires the selection of the variables

to be adjusted, the superbasic variables, as well as the direction of change for the su-

perbasic variables. The not-basic variables,xnb, are divided into superbasic variablesxs

and nonbasic variablesxn . The not-basic variables which are at one of their bounds are

labeled nonbasic variables, and the not-basic variables that are between their bounds are

labeled as superbasic variables.

The search direction is computed as

ds = ¡
µ

@F2

@x2

¶ ¡ 1 @F
@x

= ¡ H ¡ 1OF: (3.23)

In practice, the inverse Hessian matrix in equation 3.23 is approximated using a quasi-

Newton method based on the Broyden-Fletcher-Goldfarb-Shanno update formula.

Step7 The �nal step in the GRG algorithm is the linesearch alongds to minimize the

reduced objective function. The problem is stated as

min
®> 0

F (x̂ + ®ds): (3.24)

A list of positive values for® is chosen to bracket the local minimum ofF (x̂ + ®ds)

approximately. In order to evaluate the reduced objective function for each®, the basic
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variablesxb need to be determined by solving the constraint equations

gi (xb; x̂ + ®ds) = 0 ; i = 1; 2; : : : ; m: (3.25)

The system is solved using Newton's method using the inversebasis matrixB ¡ 1. The

return to the constraint surface may not be exact. Instead, the constraint equations are

satis�ed to within a feasibility tolerance,epfeas . If an estimated basic variable reaches

a bound, then that variable becomes a nonbasic variable. A basis change occurs and a

superbasic variable becomes basic.

The line search operates by doubling the initial step size until a local minimum of the

reduced objective function is bracketed. Then the step sizeis reduced until an improved

minimum is found (Lasdon et al., 1978). The new solutionX̂ is set tox̂ + ®ds and the

GRG algorithm returns to step 2.

An illustration of GRG's linesearch and return to feasibility is shown in Figure 3.12.

In this example, there are three variables and one constraint, so the value ofn equals three

and the value ofm equals one. The variables are represented by the axesx1; x2; andx3,

and the constraint is represented by the surfaceh = 0. According to the partitioning

rules in step 3,m of the variables are made basic (labeleds1 in Figure 3.12 for state or

solution variable) andn ¡ m of the variables are not-basic (labeledd1 andd2 for decision

variables).

The linesearch adjusts the current solutionxk towardsx0
k+1 by moving along the tan-

gent to the constraint surface atxk . This is accomplished by adjusting the not-basic vari-

able vector fromdk to dk +1 in thed1; d2 plane and then adjusting the basic variable vector

dxb (labeled@s0k+1 in Figure 3.12) according to equation 3.15. This is a return to feasibil-

ity to satisfy the equality constraint to within theepfeas tolerance. An additional move

from the pointx0
k+1 to xk+1 on the constraint surface is needed for a nonlinear constraint.
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Figure 3.12: A GRG example for three variables (x1, x2, and x3) and one nonlinear
constraint, (surfaceh = 0) (Papalambros and Wilde, 2000).
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Optimization approach

The GRG algorithm for the surface parameter retrieval problem was implemented using

the IDL function Constrainedmin (Research Systems, 2005). The variables to be adjusted

are either the transmittance and upwelling radiance scaling factors in the initial GRG

loop (used with equations 3.1 and 3.2a), or the estimated atmospheric transmittance and

upwelling radiance for each band in the �nal GRG loop. The upper and lower bounds for

the variables and the constraints are listed in Table 3.6. The determination of the values for

the bounds is balanced by the need to return a physical solution while avoiding constraints

that are too strict which results in an early termination of the GRG optimization. Bounds

which are too loose can signi�cantly increase the computation time. One way to avoid

this is to update the bounds at the beginning of each iteration using the minimum and

maximum values of the estimated variables and constraints,plus or minus a tolerance as

listed in Table 3.6.

The objective function to be minimized is based on the spectral smoothness of each

near-blackbody emissivity. The equation for the objectivefunction is

F =
nBB ¡ 1X

i =0

("̂ ¸;i js:dev) ["̂ ¸;i jmax ¡ "̂ ¸;i jmin ] ; (3.26)

where"̂ ¸;i is thei th near-blackbody emissivity witḩ bands. The values for̂" ¸;i are com-

puted by solving the radiative transfer equation for emissivity using equation 2.26. The

objective function multiplies the difference between the largest and the smallest value of

each"̂ ¸;i by its sample standard deviation over all spectral bands andsums the computed

values over all near-blackbody pixels. The de�nition of spectral smoothness used in the

objective function is different than the spectral smoothness de�ned in the ISSTES algo-

rithm, equation 2.27. For the objective function, the idealshape of each near-blackbody
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Table 3.6: Parameters and boundary values for GRG optimization.

Variable Value or de�nition

X̂ array of the variables to be optimized; the number of array
elements is two for the �rst GRG loop using scaling factors
[X̂ ScaleT r ; X̂ ScaleLu ], or twice the number of sensor channels for the
�nal GRG loop [X̂ T r ; X̂ Lu ]

X̂ ScaleT r atmospheric transmittance scaling factor
[the larger of

¡
¿̂(¸ ) jmax ¡ 0:1

¢
and 0.5]· X̂ ScaleT r · [the smaller

of
¡
¿̂(¸ ) jmax +0:005

¢
and 0.9999 ]

X̂ ScaleLu upwelling radiance scaling factor

abs
¡ L̂ u (¸ )jmin

¿̂(¸ )jmax

¢
· X̂ ScaleLu · abs

¡ L̂ u (¸ )jmin
¿̂(¸ )jmax

¢
+ 1

X̂ T r atmospheric transmittance
0.01· X̂ T r · [the smaller of

¡
¿̂(¸ ) jmax +0:005

¢
and 0.9999 ]

X̂ Lu upwelling radiance ( Wm¡ 2sr¡ 1¹ m¡ 1)
[the larger of

¡
L̂u(¸ ) jmin ¡ 0:001

¢
and 0.01 ]· X̂ Lu · 9.00

X̂ Ld downwelling radiance regression coef�cient (ai term only in equa-
tion 2.34)
-0.1(X̂ Ld ) · X̂ Ld · 0.05(X̂ Ld )

Gbnd Upper and lower bounds for the constraint functions
ĝLd downwelling radiance bounds

0.02· ĝLd · 10.00 ( Wm¡ 2sr¡ 1¹ m¡ 1)
ĝ" nBB bounds on the near-blackbody emissivities

[the larger of
¡
"̂ (¸ ) jmin ¡ 0:01

¢
and 0.90]· ĝ" nBB · [the smaller of¡

" (¸ ) jmax +0:005
¢

and 1]
F objective function,

based on the spectral smoothness of each estimated"nBB and
summed over the working set of near-blackbody pixels
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Figure 3.13: Objective function values for three sample emissivities.

emissivity is both spectrally smooth and �at. The objectivefunction values for three sam-

ple emissivity spectra are shown in Figure 3.13. The emissivity spectra at the top has

the smallest range of values and a relatively small standarddeviation, so it has the lowest

objective function value. In practice, the objective function values are summed over all

the near-blackbody pixels according to equation 3.26.

The �owchart in Figure 3.14 shows the approach used to retrieve the surface param-

eters. The initial GRG loop adjusts the atmospheric parameter scaling factors. This step

is designed to determine which of the �ve downwelling radiance LUTs to use (each LUT

case is run sequentially) based on the maximum to minimum difference of the estimated

emissivities as described in subsection 3.3.3. More importantly, adjusting the atmospheric
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Figure 3.14: OLSTER �owchart.
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parameters using scaling factors allows the �nal GRG loop to primarily optimize the spec-

tral shape of the atmospheric parameters rather than both shape and absolute value. The

initial GRG loop using scaling factors should provide the �nal GRG loop with a better

starting point and allow it to converge faster. The steps in the initial and �nal GRG loops

are listed in Tables 3.7 and 3.8, respectively.

Table 3.7: Steps in the initial GRG loop.

For each of the �veL̂d(¸ ) LUTs on the working set of pixels,
1. Adjust[X̂ ScaleT r ; X̂ ScaleLu ] scaling factors using GRG
2. EstimateT̂s and"̂(x; ¸ ) using ISSTES
3. Recompute the atmospheric compensation spectra using a Lobs vs. Lsurf

linear regression per spectral channel
4. Go to step 1 and repeat for one more iteration if the objective function

value has decreased

The optimization of the atmospheric transmittance and upwelling radiance in both

initial and �nal GRG loops is performed on the near-blackbodyset of pixels. In order

to reduce the computational memory requirement for the �nalGRG loop (which has

to optimize twice the number of sensor channel variables instead of two scaling fac-

tors), one hundred of the near-blackbody pixels with a spectrally-�at estimated emissivity

(["̂ (x; ¸ ) jmax - "̂ (x; ¸ ) jmin ] < 0.05) are randomly selected as the working set of pixels.

The input for the GRG optimization includes the parameters shown in Table 3.6, the

default values ofepstop andnstop shown in Table 3.5, and a line search limit vari-

able,limser , which terminates the GRG optimization after one thousand searches. The

constraint equations estimate the downwelling radiance using the adjusted upwelling ra-

diance and the downwelling LUT, and then determine the maximum and minimum emis-

sivity values of the near-blackbody pixels. At the end of theGRG optimization, if the
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Table 3.8: Steps in the �nal GRG loop (on the working set of pixels).

1. Adjust[X̂ T r ; X̂ Lu ] using GRG
2. AdjustX̂ Ld using GRG
3. Adjust[X̂ T r ; X̂ Lu ] using GRG
4. EstimateT̂s and"̂(x; ¸ ) using ISSTES
5. Recompute the atmospheric compensation spectra using a Lobs vs. Lsurf

linear regression per spectral channel
6. Go to step 1 if the objective function value has decreased (limit of 4

iterations)

value of the objective function increases or if GRG fails to converge, the atmospheric

parameters are reset to their values prior to the optimization. Otherwise, the result of the

GRG optimization is a new estimate of the atmospheric parameters, as well as an initial

estimate of the working set of near-blackbody emissivities. The remaining parameter in

the radiative transfer equation that was not adjusted in theoptimization is LST.

The LSTs and emissivities of the working set of near-blackbody pixels are simultane-

ously adjusted using the ISSTES algorithm. Equation 2.26 issolved for spectral emissiv-

ity for each pixel from the working set using an ensemble of temperature values about the

current LST estimate and the GRG-adjusted atmospheric parameters. The temperature

corresponding to the most spectrally-smooth emissivity becomes the new LST estimate

for that pixel.

The next step is to re�ne the atmospheric parameters that were adjusted in the GRG

optimization. This step is especially important in the �nalGRG loop since thê¿(¸ ),

L̂u(¸ ), andL̂d(¸ ) parameters were allowed to vary independently from one bandto an-

other during the GRG optimization. The adjusted GRG atmospheric parameters may

exhibit small spectral “spikes” that are the direct result of using an objective function

that attempts to retrieve spectrally-�at and smooth near-blackbody emissivities. A linear
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regression of the observed radiance versus the surface-leaving radiance for the working

set of pixels is used to produce a re�ned estimate for each band of the atmospheric pa-

rameters. The surface-leaving radiance values are determined by equation 2.11 using the

estimated emissivity and LST for the working set of pixels aswell asL̂d(¸ ). Re�nement

of the GRG atmospheric parameters in general will cause the estimated working set of

near-blackbody emissivities to become unsmooth and even unphysical. This is actually a

useful result because it provides new points for adjusting the working set of LSTs using

the ISSTES algorithm. An iterative approach is used for boththe initial and �nal GRG

loops to adjust the current solution towards the optimal solution. The purpose of the �rst

iteration is to nudge the atmospheric parameters away from ablackbody pixel assumption,

while additional iterations are required to reach an optimal solution for the parameters.

The GRG algorithm can only locate the nearest local optimum solution from the start-

ing point while satisfying the constraint equations. Finding the global optimum requires

running the algorithm from multiple starting points and determining if the different start-

ing points converge around the same feasible solution. Whilethis does not guarantee a

global optimum, it does provide more con�dence for a global solution (Windward Tech-

nologies and Optimal Methods, 1997).

The optimization problem needs to be properly scaled by keeping the values of the

constraint functions and variables within three orders of magnitude of each other. This is

important because the GRG algorithm assumes that the objective function is equally sen-

sitive to each variable or constraint (Singh and Sarkar, 1992). The GRG algorithm is also

affected by scaling issues from the accumulation of roundoff error (Frontline Systems,

2000). The values of the constraint functions and variablesshould be large enough so that

the computational errors on the order of the value ofepstop are not signi�cant (Wind-

ward Technologies and Optimal Methods, 1997). The range of variables in the surface
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parameter retrieval optimization problem are given in Table 3.6.

For both the initial and �nal GRG loops, the stopping condition is when no further

progress is made in reducing the GRG objective function. If a new iteration results in an

objective function that is larger than the one from the previous iteration, the optimized

variables from the new iteration are discarded and the savedvariables from the previous

iteration are returned. A limit is also placed on the number of allowed iterations to prevent

a runaway process. Two iterations are allowed for the initial GRG loop to adjust scaling

factors, and the �nal GRG loop is limited to four iterations.

The �nal step is to run the ISSTES algorithm on all the pixels from the image to

estimate LSTs and emissivities. The LST and LSE results are the �nal products of the

OLSTER algorithm. The LST and LSE results are saved to disk, along with the estimated

atmospheric parameters, the index or locations of the near-blackbody pixels, the �lenames

that were opened by OLSTER, and the GRG log �les.

3.4 Summary of the approach

A summary of the approach is given in Table 3.9. The OLSTER algorithm performs atmo-

spheric compensation and surface temperature and emissivity retrieval on hyperspectral

TIR imagery. An iterative approach is used to update initialparameter estimates based on

the classi�cation of near-blackbody pixels. A model-basedLu(¸ ) to Ld(¸ ) LUT and GRG

optimization are used to gradually remove the blackbody assumption. Physical values for

the estimated parameters are maintained by rescaling the atmospheric compensation spec-

tra if necessary and by the boundary values on the GRG constraint functions.

The OLSTER algorithm is based on the ISAC,Lu(¸ ) to Ld(¸ ) LUT, and ISSTES algo-

rithms. The new components introduced in OLSTER include a search for near-blackbody



3.4 Summary of the approach 98

Table 3.9: Summary of OLSTER

Key features: ² Iterative approach to atmospheric compensation
² GRG optimization used to account forLd(¸ ) and gradually

remove the blackbody assumption
² Direct use of radiative transfer model results as

compensation spectra is avoided
² Implemented in IDL
² Automated

Based on: ² ISAC algorithm for the initial estimation of¿(¸ ), Lu(¸ ),
and LST

² GP algorithm'sLu(¸ ) to Ld(¸ ) LUT
² ISSTES algorithm for temperature/emissivity separation

Novel approach: ² Search for near-blackbody pixels based on compensated
brightness temperature

² GRG optimization of the atmospheric compensation spectra

pixels, and GRG optimization of the atmospheric compensation spectra. OLSTER is

coded in IDL and does not require a user to stop the iterations. The next chapter describes

the experiments used to test (as well as to debug) the OLSTER IDL program on both

simulated data and real image data.



Chapter 4

Experiment

The OLSTER algorithm as described in the previous chapter has been implemented in

IDL. Currently, the IDL program consists of nine procedures and functions that are com-

piled and run from the command line using a batch �le. The required inputs for running

the program include the at-sensor hyperspectral radiance image, the sensor's spectral re-

sponse function, the sensor altitude, and the downwelling radiance LUT corresponding

to the sensor altitude. The program provides a status updatewhich includes the num-

ber of near-blackbody pixels, range of the estimated LSTs and emissivities, the selected

L̂d(¸ ) LUT, the value of the objective function and run time. In addition, a report �le is

generated at the end of each GRG optimization. The �le recordsthe values of important

parameters such as the objective function, step size, number of infeasible constraints, and

the norm of the reduced gradient for each iteration. The values of these parameters are

useful for monitoring the progress of the optimization and to determine if the optimization

was performed correctly or if the solution is degenerate.
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4.1 Initial test scene

A hyperspectral radiance image was created to test and debugthe IDL program. The

test image does not contain any spatial features. Instead, the image is simply an array of

surface parameters propagated through a uniform atmosphere. The surface emissivities

used in the image include rocks, soils, water, vegetation, and man-made materials from

the ASTER spectral library (ASTER, 1999). A total of 395 materials were selected from

the spectral library. The values for the LSTs were generatedby randomly assigning three

different temperatures, from 260 K to 320 K, to each material. Then each of the temper-

atures were randomly varied by up to§ 0.5 K, creating ten temperature values. In all,

there are thirty temperatures for each material, for a totalof 11,850 pixels. The surface is

assumed to be �at and opaque.

The values for the atmospheric parameters were generated using the MODerate spec-

tral resolution atmospheric TRANsmittance algorithm version 4, MODTRAN4 (Berk

et al., 1999). The radiosonde data used in the MODTRAN simulation is an atmospheric

pro�le over Southern California, obtained from the NOAA Forecast Systems Laboratory

(FSL) database (FSL, 2005). The sensor altitude in MODTRAN was set to 2 km, with a

nadir viewing angle, and the results from the atmospheric band model radiation transport

code were resampled to 128 SEBASS sensor bands.

The values for the surface parameters and the resampled atmospheric parameters

were substituted into the radiative transfer equation to generate the at-sensor radiance

for 11,850 pixels. The image has no added noise or sensor artifacts for this initial test,

and each pixel is spectrally pure. The atmosphere is assumedto be spatially uniform and

cloud-free over the image.

The upwelling radiance to downwelling radiance LUT in the OLSTER algorithm is

based on MODTRAN runs for a sensor altitude of 2 km. There are eleven variations
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of the scaling factors of the vertical water vapor column andof the vertical ozone col-

umn for each of the six standard reference atmospheric pro�les available in MODTRAN,

giving a total of 726 MODTRAN runs. The scaling factors vary from 0.5 to 1.5 in incre-

ments of 0.1, and multiply the default values of water vapor column and ozone column

in MODTRAN. In order to avoid values of relative humidity above 100%, MODTRAN

redistributes the water number density at each pro�le altitude to other levels as necessary

(Berk et al., 1999). The upwelling and downwelling radiance MODTRAN results were

resampled to the SEBASS sensor bands. The LUT consists of regression coef�cients for

each standard reference atmosphere in MODTRAN as described in section 2.2.6.

The search for near-blackbody pixels selects 380 pixels from this image, and at the

end of the optimization loop, the number increases to about 1500 pixels with a minimum

emissivity of 0.97 or more. At the start of the optimization loop, the atmospheric pa-

rameterŝ¿(¸ ) andL̂u(¸ ) are near their upper and lower bounds, respectively. After each

iteration of the optimization loop, the values of at least one of the¿̂(¸ ) andL̂u(¸ ) param-

eters move further away from those bounds. The value of the objective function usually

decreases after each iteration. On very few occasions, the value increases or GRG fails to

�nd a feasible solution. In general, after OLSTER resets theatmospheric parameters to

the previous feasible values, the objective function continues to decrease in value.

The OLSTER algorithm selects a downwelling radiance LUT to use for each itera-

tion of the optimization loop. The LUTs that were usually selected are the Mid-Latitude

Summer ( MLS,45± North Latitude) and Sub-Arctic Summer ( SAS,60± North Latitude).

While the LUT selection based on the MLS reference atmospherein MODTRAN4 made

sense given that the atmospheric pro�le for the test image was from the FSL database for

Southern California, the selection of the SAS LUT was initially unexpected. In practice,

the most appropriate downwelling radiance LUT may not be selected, especially for the
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�rst few iterations of the optimization loop, in order to satisfy the constraints.

While multiple starting points for the GRG optimization have not yet been imple-

mented in OLSTER, the selection of the working set of pixels from the near-blackbody

set (section 3.3.4) generates slightly different startingpoints for each run of the retrieval

algorithm. In general, running the entire algorithm numerous times with different pixels

in the working set produced similar results for the retrieved parameters.

The processing time on the test image is about �ve hours on a Sun Blade 1000 running

SunOS 5.9 with 1024 MB of memory. The preprocessing steps andthe search for near-

blackbody pixels are completed in less than 10 minutes, while the �nal GRG optimization

loop accounts for the rest of the processing time. The processing time primarily depends

on the number of variables to optimize, which affects the size of the Jacobian matrix that

must be evaluated for the current solution at each iteration.

Initially, the termination status report from the GRG optimization did not return the

ideal status that the KKT conditions are satis�ed to within theepstop tolerance. Instead,

the termination status reported was:

Noisy and nonsmooth function values,

possible singularity or error in the function evaluations.

A closer look at the GRG report �le shows a steady decrease in the value of the objective

function for about the �rst twenty �ve line searches. Then the optimization appears to be

stalled with only fractional decreases in the value of the objective function for the next

one hundred twenty �ve line searches. The step size taken wasincrementally smaller for

these line searches. The GRG termination status and the report �le indicate that addi-

tional work is needed on the objective function and proper scaling of parameter values.

The objective function, equation 3.26, balances the requirement that the near-blackbody

emissivities need to be both spectrally smooth and �at. Thisnonlinearity in the objective
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function may be the cause of the noisy and nonsmooth values after each adjustment of

the GRG variables. Another possible cause of this termination status is improper scaling

of the variables. While the variables are within three ordersof magnitude, it is possible

that the values are not large enough to avoid computational roundoff error on the order

of the value of theepstop tolerance. The bene�ts of achieving the ideal termination

status include increased con�dence in the solution values and reduced processing time by

avoiding stalled iterations with very small step sizes.

The current approach that is used in the �nal GRG optimizationloop limits the num-

ber of line searches to avoid a stalled state. The limit is currently set to the number of

spectral channels in the dataset. Each iteration of the optimization loop �rst adjusts the

atmospheric transmittance and upwelling radiance values per spectral channel, then ad-

justs the regression coef�cients per spectral channel to estimate the downwelling radiance,

and �nally readjusts the transmittance and upwelling radiance values. This optimization

approach works well for the initial test scene, as well as thesynthetic test scenes and real

sensor data that are described in the next few sections.

4.2 Synthetic test data

A set of synthetic test data was created for the purpose of characterizing the sensitiv-

ity of the OLSTER, ARTEMISS, and ISSTES algorithms to sensor noise, altitude, and

spectral miscalibration. Additional synthetic test data was created to test scene – speci�c

conditions for the special cases of night temperatures as well as a desert environment.

The sensor observed radiance value per pixel for the synthetic test data set was com-

puted using equation 2.12. A material was selected from the ASTER spectral emissivity

library (ASTER, 1999) and assigned a surface temperature. The atmospheric transmit-
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tance, upwelling radiance, and downwelling radiance were computed by MODTRAN (Berk

et al., 1999) using an atmospheric radiosonde pro�le from the FSL database (FSL, 2005),

and resampled to 128 SEBASS sensor bands.

The sensor altitude for each case was set to 2km, 6km, and 10km, except for the sensor

spectral miscalibration study, which was performed for a sensor altitude of 2km. A total

of 357 materials from the ASTER spectral library were included. Water and vegetation

materials (except for dry grass) were excluded for the desert case, leaving 345 materials.

Surface temperature values were 24.5± C § 20, and 20 C± § 4 for water and vegetation

pixels. Temperatures for the night case were from 9 to 14± C. Each synthetic test image

contains 19,200 pixels.

Analysis of the sensitivity of the algorithms to sensor noise was performed by adding

spectrally correlated noise derived from SEBASS imagery tothe synthetic test images.

The procedure is outlined in Table 4.1. A comparison of the covariance matrices of the

estimated and synthetic correlated noise is shown in Figure4.1. Structured noise (vertical

striping) is not modeled by this process (Peterson et al., 2004). Structured noise is band

speci�c and spatially varying.

The sensor spectral miscalibration study was performed fora sensor altitude of 2km

and sensor spectral response shifts of§ 25, 12.5, 6.25, and 3.125 nm (uniform shifts for

all channels). This is equivalent to physical movement of the position of a dispersion

grating in a sensor system during launch or maintenance.

The OLSTER run times for all the cases were approximately 5 to6 hours on a Sun

Blade 1000 running SunOS 5.9 with 1024 MB of memory. The ARTEMISS run times

were about forty minutes on the same computer with a databaseof 7,975 MODTRAN

atmospheric LUT entries.
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Table 4.1: Process for adding spectrally correlated noise.Modi�ed from (Peterson et al.,
2004).

1. Select a uniform region of interest (ROI) (center pond in Figure 4.3)
2. Minimum noise fraction (MNF) forward transform the ROI
3. Select and keep bands with eigenvalues greater than 2 (46 bands out of 128)
4. Inverse MNF transform the selected bands
5. Obtain the zero mean dark scan estimate (DSE) by subtracting the inverse MNF

result from the image ROI
6. Perform a principal components analysis (PCA) on the DSE todecorrelate, save

PCA statistics
7. Create a synthetic noise cube of the same image dimensions as the synthetic

scene by using the standard deviation of each PC to generate synthetic Gaussian
distributed noise

8. Perform an inverse PCA on the synthetic noise cube using thesaved statistics of
forward PCA in order to correlate the noise spectrally

9. Add noise directly to the synthetic image band by band

(a) Input covariance matrix
of the estimated dark scan

(b) Output synthetic covari-
ance matrix

Figure 4.1: Covariance matrices of the estimated and synthetic correlated noise.
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Figure 4.2: AHI data.

4.3 AHI data

The Airborne Hyperspectral Imager (AHI) sensor (Lucey et al., 1998) is a helicopter –

borne LWIR hyperspectral imager from 7.5 to 11.5¹ m in 256 spectral bands. The sensor

was designed to detect buried landmines from the air.

AHI data taken over a chemical plant in Texas on April 19, 2004was available for

processing in OLSTER. The chemical plant is shown in Figure 4.2. There is no ground

truth available for this data, but the sensor altitude was 1524 m. For this study, 200 bands

were selected from the 256 bands, and were binned down to 50 bands to improve the

signal to noise ratio. The 2 km sensor altitude downwelling radiance LUT was used for

the OLSTER algorithm.
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Figure 4.3: SEBASS image over an industrial area.

4.4 SEBASS data

Hyperspectral imagery from the Spatially Enhanced Broadband Array Spectrograph Sys-

tem (SEBASS) sensor (Kirkland et al., 2002) was available for two locations, an industrial

scene, and the Megacollect scene near Rochester, NY. The SEBASS sensor is a line scan-

ner that operates in the LWIR from 7.5 to 13.6¹ m.

4.4.1 Industrial scene

The SEBASS image of an unidenti�ed industrial area is shown in Figure 4.3. No ground

truth information is available for this image. The sensor altitude is also unknown. The

6 km sensor altitude downwelling radiance LUT was used for the OLSTER algorithm.
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Figure 4.4: Targets for the Megacollect scene near Rochester, NY. Imaged using RIT's
WASP sensor. (Raqueno et al., 2005)

4.4.2 Rochester scene

The other SEBASS image was taken on June 7, 2004, around 10:35am local time at a

sensor altitude of 1,043 m, as part of the RIT DIRS Megacollect (Raqueno et al., 2005).

Two 25 ft x 25 ft canvas calibration tarps, one gray and one black, are included in the

scene. A small heated thermal target, located just north of the large calibration tarps,

consists of a heating coil element weaved back and forth across a styrofoam slab, and

covered with black roo�ng material.

This data set also contains collected ground truth for the calibration tarps and the ther-

mal target. The layout of the targets is shown in Figure 4.4. Temperature measurements

are available from multiple contact thermocouples and a staring IR radiometer. Emissivity

measurements were made with a D&P Instruments model 102F.
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4.5 Experiment summary

An initial experiment designed to test and debug the OLSTER IDL program was cre-

ated using a synthetic test image with no added noise or sensor artifacts. The test image

contains a wide range of surface temperatures and emissivity spectra from the ASTER

spectral library. A second set of synthetic test images was created to evaluate the sen-

sitivity of the OLSTER, ARTEMISS, and ISSTES algorithms to sensor noise, spectral

miscalibration, sensor altitude, night temperatures, anda desert environment.

LWIR data is available from two different hyperspectral sensors, AHI and SEBASS.

The SEBASS Megacollect scene is accompanied by ground truthmeasurements of surface

temperature and emissivity for three targets, and is important for the validation of the

OLSTER algorithm. The results of the experiments are presented in the next chapter.



Chapter 5

Results

5.1 Initial test scene

The numerical simulation of the initial test scene using theOLSTER algorithm produced

reasonable results for the atmospheric and surface parameters. Feasible values for the

retrieved parameters were ensured in part by the GRG optimization constraints. There are

no large discontinuities or spikes in the atmospheric parameters or the retrieved emissivi-

ties, and the overall spectral shapes of the atmospheric parameters are correctly estimated

by the retrieved values.

The retrieved̂¿(¸ ) is shown in Figure 5.1 along with the truth values. The valuesfor

the retrieved̂¿(¸ ) are slightly higher over all the bands than the truth values,with an error

of less than 0.003. The error plot for¿̂(¸ ) is shown in Figure 5.2. The error is not uniform

over all bands, with a spectral shape semi-correlated to theestimated transmittance itself.

The percent error for the retrieved¿̂(¸ ) is shown in Figure 5.3, with errors less than about

0.3 %.

The retrievedL̂u(¸ ) values in Figure 5.4 are lower than the truth values. The absolute
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value of the error is less than 0.04W/m2/sr/¹ m. The error in Figure 5.4 appears to be

highly correlated to the estimated upwelling radiance itself. The normalized percent error

(normalized by dividingL̂u(¸ ) andLu(¸ ) by Lu(¸ ) jmax ) is shown in Figure 5.3.

The spectral shape of both the transmittance and upwelling radiance retrieval error

changes very little from the start of the optimization loop to the �nal iteration. The ma-

jor difference between the iterations is the bias error. This is important because it shows

that the GRG optimization could not completely eliminate theatmospheric compensa-

tion errors, and suggests that the downwelling radiance LUTwas inappropriate or that

the LST estimates were not accurate enough for the optimization, or both. The retrieval

error is minimal at the edges of the LWIR window in Figures 5.2 and 5.4. However, in

the context of the change in bias with each iteration, the transmittance and upwelling ra-

diance error may be more correctly interpreted as having a positive bias of about 0.003

for the transmittance error, and a negative bias of about 0.035 W/m2/sr/¹ m for the up-

welling radiance, with the largest estimation error at the edges of the LWIR window for

both estimation errors. A positive transmittance bias of 0.003 corresponds to a change in

brightness temperature of approximately + 0.18 K, and a negative upwelling radiance bias

of 0.035W/m2/sr/¹ m corresponds to a change in brightness temperature of approximately

- 0.22 K. These equivalent errors in brightness temperatureassume a surface temperature

of about 300 K, an emissivity of one, wavelength at 10¹ m, and a blackbody radiance of

about 9.5W/m2/sr/¹ m.

The retrievedL̂d(¸ ) is shown in Figure 5.7. In general, the spectral shape of the down-

welling radiance in the image is very well approximated. Figure 5.8 shows almost no bias

in theL̂d(¸ ) error. However, there are large errors in the 9.5 – 10.3¹ m region and at the

edges of the LWIR window below 8.2¹ m and above 13.0¹ m. The errors are about an

order of magnitude higher compared to the upwelling radiance retrieval error. The error
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Figure 5.1: Retrieved transmittance (black) and truth (blue) spectra.

Figure 5.2: Retrieved atmospheric transmittance error.
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Figure 5.3: Retrieved atmospheric transmittance percent error.

Figure 5.4: Retrieved upwelling radiance (black) and truth (blue) spectra.
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Figure 5.5: Retrieved upwelling radiance error.

Figure 5.6: Retrieved upwelling radiance normalized percent error.
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Figure 5.7: The retrieved downwelling radiance (black) andtruth (blue) spectra.

in the 9.5 – 10.3¹ m region is most likely related to ozone concentration, while the error

at the edges of the LWIR window are related to water vapor concentration. The second-

order polynomial coef�cients used in the downwelling radiance LUT have dif�culty en-

compassing the entire range of ozone and water vapor concentration variations, as shown

in Figure 3.11 for their respective spectral regions. Variations of only the reference atmo-

spheric pro�les in MODTRAN4 may not be suf�cient for creatinga general downwelling

radiance LUT. TheL̂d(¸ ) normalized percent error is shown in Figure 5.9, with errors

generally less than about 2 % outside of the ozone region. Theeffect of theL̂d(¸ ) error

will depend on the surface emissivity. A downwelling radiance bias of§ 0.1W/m2/sr/¹ m

corresponds to a change in brightness temperature of approximately§ 0.06 K, assuming

a surface temperature of about 300 K, an emissivity of 0.9, and wavelength at 10¹ m.

The LST estimation error for the set of near-blackbody pixels is shown in Figure 5.10.

The retrieved temperatures are higher than the truth values, with errors less than 0.25 K.
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Figure 5.8: Retrieved downwelling radiance error.

Figure 5.9: Retrieved downwelling radiance normalized percent error.
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Figure 5.10: LST error with respect to actual surface temperature for the near-blackbody
pixels.

With the exception of a few localized clusters of LST estimation errors, the LST error is

inversely proportional to the increase in the actual surface temperature. The likely expla-

nation is that even for near-blackbody pixels, a higher surface temperature increases the

surface emitted radiance contribution to the at-sensor radiance, resulting in an improved

LST estimate. The clusters of LST estimation errors higher than the general trend are

from the last addition to the near-blackbody pixels after the �nal iteration of the optimiza-

tion loop. Simply restated, these pixels were not part of theGRG optimization, but rather

low-emissivity pixels that were reclassi�ed as near-blackbody at the end of the OLSTER

algorithm because their minimum emissivity values are greater than 0.97.

The LST estimation error for the set of lower-emissivity pixels is shown in Fig-

ure 5.11. Most of the LST estimates for the low-emissivity pixels are too high. The

scatter plot shows a noticeable increase in LST error as the minimum emissivity value
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Figure 5.11: LST error with respect to the minimum library emissivity values for lower-
emissivity pixels (black) and near-blackbody pixels (blue).

decreases. The various metal targets with a minimum emissivity less than 0.2 have a large

range of LST error from about 2 to 28 K. The large range of LST error for the metal

targets may be related to the downwelling radiance error, which has a large in�uence on

very low emissivity pixels. The low emissivity pixels are also less sensitive to a change

in the estimated LST compared to a pixel with a higher emissivity due to the re�ected

downwelling radiance term dominating the sensor reaching radiance. This makes the es-

timation of LST very dif�cult for the ISSTES algorithm on lowemissivity pixels. The

LST error is mostly within 2 K for targets with a minimum emissivity above 0.60, shown

in Figure 5.12.

Figure 5.13 shows the mean and standard deviation errors forthe estimated near-

blackbody emissivities. The mean error is less than 0.001 over the LWIR window. The

standard deviation at each band is about§ 0.001, with larger errors at the edges of the
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Figure 5.12: LST error for lower-emissivity pixels (black)and near-blackbody pixels
(blue), excluding the metal surfaces. The standard deviation is indicated by the dashed
lines.

LWIR window. A random sample of the estimated near-blackbodyemissivities is shown

in Figure 5.14. In general, the spectral shapes of the emissivities are correct, with some

bias errors.

The retrieval error for the lower emissivity pixels in Figure 5.15 is much larger than

for the near-blackbody pixels, with a mean bias of about -0.005 and a standard deviation

of about§ 0.015 over most of the LWIR window. There are noticeable errors around the

ozone absorption band and at the edges of the LWIR window that are associated with the

downwelling radiance LUT. A few of the retrieved emissivities are shown in Figures 5.16

and 5.17. In general, the spectral shapes of the ASTER library emissivities are well

approximated. However, in Figure 5.16 there are a few retrieved emissivities with errors

where the atmospheric parameters were over-compensated and the LST overestimated.
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Figure 5.13: The mean (solid) and standard deviation (dashed) emissivity error for near-
blackbody pixels.

Figure 5.14: Retrieved emissivity (black) and truth (blue) for three random pixels from
the near-blackbody set.
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Figure 5.15: The mean (solid) and standard deviation (dashed) emissivity error for lower-
emissivity pixels.

Again, these errors are more obvious at the edges of the LWIR window and around the

ozone absorption band.

The results from a spectral angle mapper (SAM) classi�cation on the retrieved emis-

sivities are shown in Figure 5.18. The SAM classi�cation measures the spectral angle in

radians between each retrieved emissivity vector and a corresponding reference emissivity

vector in the spectral library according to

® = cos¡ 1

µ
t ¢r

ktk ¢ krk

¶
; (5.1)

wheret is the test spectrum andr is the reference spectrum. A small® value indicates

high spectral similarity. The pattern of the classi�cationerror is similar to the LST error

plots, with large errors for the low emissivity metals. Excluding the metals, the retrieved
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Figure 5.16: Retrieved emissivity (black) and truth (blue) for seven random pixels from
the lower-emissivity set.

Figure 5.17: Retrieved emissivity (black) and truth (blue) for seven random pixels from
the lower-emissivity set.
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emissivities are spectrally similar to the reference emissivities in the ASTER library and

are well within the ENVI default classi�cation threshold of0.10 radians. The classi�ca-

tion threshold is noted here for the purpose of providing a reference only. In practice, the

SAM classi�cation threshold is user-adjusted.

The range of emissivity values for this initial test scene isin general more complex

than what would be expected for an actual scene from an airborne sensor, where metal

surfaces will have a higher emissivity due to weathering, surface roughness and contami-

nation with natural materials (dust and dirt). Also, the range of simulated LSTs in this test

scene is very broad and generally unrealistic (260 K to 320 K). A wide range of emissivity

values and surface temperatures were selected for the initial test scene in order to deter-

mine potential limitations of the OLSTER algorithm. The results in the next section are

from synthetic scenes with a smaller range of surface temperatures and have emissivity

values higher than 0.6 to better represent actual scenes.

5.2 Synthetic test scene

The results for the synthetic test scenes are presented in this section in the form of LST,

LSE, and SAM error plots. The mean error and standard deviation are shown for the no

noise added, 3000:1 SNR, 1000:1 SNR, 500:1 SNR, 100:1 SNR, night temperatures (cold

surface), and desert (no water or vegetation) cases. The errors at sensor altitudes of 2 km,

6 km, and 10 km are shown for each case.

5.2.1 OLSTER results

The OLSTER retrieved LST errors for the synthetic test scenes are shown in Figure 5.19.

OLSTER LST errors are within about 1 K down to a SNR level of 500:1. Errors increase
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Figure 5.18: Spectral angle in radians between retrieved emissivities and library emis-
sivities. The lower-emissivity pixels are in black, and thenear-blackbody pixels are in
blue.

for the desert case, night temperatures, and a SNR of 100:1. The desert case represents

a violation of the OLSTER algorithm's assumption of some near – blackbody pixels in

each scene. The poor starting point for the atmospheric parameters for the desert case is

dif�cult to overcome using the GRG optimization.

The OLSTER retrieved LSE errors for the synthetic test scenes are shown in Fig-

ure 5.20. OLSTER LSE errors are within about 0.01 down to a SNRlevel of 1000:1. The

SAM results, shown in Figure 5.21, represent the spectral angle between the retrieved

LSE and the actual emissivity for the synthetic scenes. SAM values of less than 0.01

radians generally result in the correct material identi�cation. This level is achieved for a

SNR of at least 500:1.

Higher values for atmospheric transmittance at lower sensor altitudes provides a better
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Figure 5.19: OLSTER retrieved LST error.

Figure 5.20: OLSTER retrieved LSE error.
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Figure 5.21: OLSTER retrieved SAM error.

SNR for the surface emitted radiance, which should result insmaller errors at lower sensor

altitudes. This is not necessarily the case with the data – driven OLSTER algorithm,

which selected different sets of near – blackbody pixels at each sensor altitude for the

same test case. These different starting points lead to the varied results in the sensitivity

to the sensor altitude. The 2 km sensor altitude, 500:1 SNR case in particular included a

large number of low-emissivity pixels into the set of near – blackbody pixels. The data –

driven approach also has dif�culties with night temperatures, where the signal from the

upwelling and re�ected downwelling radiance from a potentially warmer atmosphere will

dominate the signal from the surface emitted radiance. A night radiosonde pro�le was

not available for the synthetic test scene. The bottom layerof the FSL radiosonde pro�le

used for the test scene is about 10 K warmer than the simulatednight LSTs.
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5.2.2 ARTEMISS results

The atmospheric parameter database of MODTRAN results for the ARTEMISS algorithm

used in this study contains 66 radiosonde pro�les (MODTRAN provided, FSL, SSEC, and

NAST-I databases) with 11 water vapor (WV) and 11 ozone scaling variations, for a total

of 7,986 LUT entries. The entries with a WV scaling factor of 1 (no scaling) from the

FSL radiosonde used to generate the synthetic scenes were removed from the LUT for the

ARTEMISS test, leaving 7,975 LUT entries available for ARTEMISS.

The ISSTES results in the next subsection represent the bestpossible results for

ARTEMISS, in which the actual MODTRAN atmosphere is selectedfor every run. In

practice, the ARTEMISS results should lie somewhere between the results presented in

this subsection and the ISSTES results, depending on the size and variability of the atmo-

spheric parameter database of MODTRAN results and how well the actual atmosphere in

a scene can be represented by a given database.

The ARTEMISS LST results, shown in Figure 5.22, exceed an error of 5 K for all

cases. However, the LST error does not increase with higher levels of added noise, even

down to 100:1 SNR. With the exception of the 100:1 SNR case at 2 km and for the night

scene, the LST errors are generally smaller for a lower sensor altitude. The ARTEMISS

LSE errors, shown in Figure 5.23, follows the same pattern with LSE error of 0.1 or higher

for all cases.

The SAM values for the ARTEMISS results in Figure 5.24 show a large spectral angle

of 0.02 radians or more for all cases, representing poor material identi�cation results using

a SAM classi�er. The ARTEMISS results overall suggest the potential for small LST and

LSE mean errors, regardless of the sensor SNR, if the atmospheric parameter database of

MODTRAN results contains a very close match to the actual atmospheric parameters.

A repeat of the ARTEMISS experiment was performed without excluding any entries
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Figure 5.22: ARTEMISS retrieved LST error.

Figure 5.23: ARTEMISS retrieved LSE error.
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Figure 5.24: ARTEMISS retrieved SAM error.

from the TLD database. This experiment represents an ideal case for the ARTEMISS

algorithm when the actual atmospheric properties for the scene are modeled and included

in the TLD database. The results are shown in Figures 5.25, 5.26, and 5.27. The LST,

LSE and SAM error results are much lower than for the excludedLUT case, with mean

LST errors of about 1K, mean LSE errors of less than 0.02, and SAM values of less

than 0.01 radians for all test cases except the simulated night (cold surface) case and

the 1 km 100:1 SNR case. It should be noted that ARTEMISS did not select the exact

atmospheric compensation spectra from the MODTRAN TLD database. In general, the

correct radiosonde was selected, with an incorrect ozone scaling of 1.2 instead of 1.0 (no

scaling). The large errors for the simulated night (cold surface) case and the 1 km 100:1

SNR case are caused by a poor ISAC estimate of the atmospherictransmittance in the

selection of candidates from the TLD database.
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Figure 5.25: ARTEMISS retrieved LST error. The ARTEMISS TLDdatabase includes
the atmospheric spectra used to generate the synthetic scenes.

Figure 5.26: ARTEMISS retrieved LSE error. The ARTEMISS TLDdatabase includes
the atmospheric spectra used to generate the synthetic scenes.
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Figure 5.27: ARTEMISS retrieved SAM error. The ARTEMISS TLDdatabase includes
the atmospheric spectra used to generate the synthetic scenes.

5.2.3 ISSTES results

The ISSTES results represent the best case for the ARTEMISS and OLSTER algorithms

of a perfect atmospheric compensation. A near perfect atmospheric compensation would

require selecting an entry in the atmospheric parameter LUTthat exactly matches the

actual atmosphere for ARTEMISS, and an ideal starting pointand optimization by OL-

STER.

The ISSTES LST errors in Figure 5.28 are all well under 1 K. A comparison of the

desert case (no water or vegetation) with the no noise case shows an increase in LST

errors with lower emissivities in a scene. The ISSTES algorithm is relatively insensitive

to sensor noise and night temperatures, and a general trend of smaller LST errors with a

lower sensor altitude is observed. The ISSTES LSE errors in Figure 5.29 are about 0.01 or
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Figure 5.28: ISSTES retrieved LST error.

smaller for all cases. The SAM results in Figure 5.30 are all well under the ideal threshold

of 0.01 radians.
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Figure 5.29: ISSTES retrieved LSE error.

Figure 5.30: ISSTES retrieved SAM error.
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Figure 5.31: Spectral miscalibration LST error.

5.2.4 Spectral miscalibration results

The LST and LSE errors for the 2 km sensor spectral miscalibration study are shown in

Figures 5.31 and 5.32, respectively. OLSTER errors are muchlower than for the ARTE-

MISS or ISSTES algorithms. OLSTER is capable of retrieving LSTs to within 1 K, with

the exception of spectral shifts of+ 3.125 nm and§ 25 nm. The smallest LST error

using ARTEMISS is 3.45 K at a spectral shift of+ 3.125 nm. The lowest LSE error using

OLSTER is 0.01 at+ 6.25 nm and+ 12.5 nm spectral shifts.

The SAM results, shown in Figure 5.33, are within about 0.01 radians for OLSTER
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except for the+ 25 nm spectral shift. The SAM classi�er should be able to correctly

identify materials given the small spectral angle between the OLSTER retrieved LSE and

the spectral library.

Errors for all algorithms appear to be speci�c for a given spectral shift. A small shift

does not always produce smaller errors than a larger shift. The algorithm results depend

on whether a shift in the spectral response of the sensor occurs at a particular edge of an

atmospheric spectral feature. The ARTEMISS results are thesame for both the full TLD

database and the partial TLD database, with the exception ofthe zero shift (no spectral

miscalibration) case.

The OLSTER and ARTEMISS algorithms in general outperform the ISSTES algo-

rithm for the sensor spectral miscalibration case. The primary goal of the OLSTER and

ARTEMISS algorithms is to retrieve accurate land surface parameters, which requires

an accurate compensation of the atmospheric parameters. However, for data with sensor

spectral miscalibration issues, the optimal atmospheric compensation spectra to use may

not match the physical atmospheric parameters that may be measured by a radiosonde

pro�le over the scene. The OLSTER and ARTEMISS algorithms are effectively absorb-

ing the spectral miscalibration errors in the atmospheric compensation spectra. The opti-

mization of the atmospheric compensation spectra per spectral channel allows OLSTER

to achieve better LST and LSE results than ARTEMISS.
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Figure 5.32: Spectral miscalibration LSE error.
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Figure 5.33: Spectral miscalibration SAM error.
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5.3 AHI data

The OLSTER results for the AHI data are shown in Figure 5.34. While no ground truth

information is available for this image, the test on the AHI data demonstrates that the

OLSTER algorithm can be applied to various sensor data.

The LST results in Figure 5.34(a) in general show relativelycooler surface temper-

atures for the canal and pipes, and hotter temperatures for the buildings and roofs. The

minimum emissivity value of about 0.98 for the canal is appropriate. The sensor noise

is apparent in the minimum emissivity results in Figure 5.34(b). The SAM results in

Figure 5.34(c) are mostly within 0.01 radians.

A region with a minimum emissivity value of 0.65 and a SAM value of 0.02 radians

is visible in Figures 5.34(b) and 5.34(c). The spatial shapeof the region suggests that it

could be a plume. The retrieved emissivity spectra (not shown) for the pixels in this region

have a general shape of the estimated atmospheric transmittance for the entire scene with

some additional spectral structure in the 9 – 10¹ m region. However, the binned spectral

bands (from 256 bands to 50) can not resolve sharp spectral features to compare with

known gases.
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(a) LST map (b) Minimum
emissivity per
pixel

(c) SAM map
comparing the
OLSTER results
to the ASTER
spectral library

Figure 5.34: OLSTER results for the AHI data.
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5.4 SEBASS data

5.4.1 Industrial scene

The sequence of images in Figure 5.35 shows the pixels classi�ed as near – blackbody

pixels at various steps in the OLSTER algorithm. The �rst step in Figure 5.35(a) shows

the pixels that the modi�ed ISAC algorithm selected based onthe range of values over the

LWIR window for each pixel. Pixels with a range less than the median for all image pixels

are shown in red. This modi�cation to the ISAC algorithm is required for this image since

high emissivity pixels do not dominate this desert industrial scene. The �rst step correctly

selected the pond pixels. It also incorrectly selected pixels in the industrial area in what

appears to be shadow areas.

The second step in the selection of near – blackbody pixels uses both the correlation

with ¿̂(¸ ) and the concavity metrics as described in subsection 3.3.2.This step correctly

removed most of the low emissivity pixels in the industrial area, as well as some pixels in

the center and right ponds, as shown in Figure 5.35(b). The pixels in the ponds that were

removed may be affected by the sensor structured noise pattern along the scan track.

The �nal step eliminates low emissivity pixels from the set of near – blackbody pixels

based on the initial LSE estimates. This step removed all of the low emissivity pixels in

the industrial area, as shown in Figure 5.35(c). Additionalpond pixels were also removed,

which are also associated with the sensor structured noise pattern along the scan track.

The OLSTER retrieved atmospheric transmittance, upwelling radiance, and down-

welling radiance spectra are shown in Figures 5.36, 5.37, and 5.38, respectively. The

general shape and values of the atmospheric compensation spectra appear comparable to

a MODTRAN run for a Mid-Latitude Summer pro�le. However, the spectra are not as

smooth as expected, particularly around 8.8¹ m and in the spectral regions from 12.2 –
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(a) ISAC step (b) Classi�ed us-
ing both correla-
tion and concav-
ity metrics

(c) Classi�ed us-
ing the initial LSE
estimates

Figure 5.35: OLSTER classi�cation of near-blackbody pixels.
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Figure 5.36: OLSTER retrieved transmittance for the industrial SEBASS scene.

12.8¹ m and from 13.2 –13.6¹ m.

The OLSTER retrieved LST maps are shown in Figure 5.39. Ground truth temper-

atures are not available for this scene. The water ponds and shadow areas are relatively

cooler than the rest of the scene, while some of the buildingsand an area on the right side

are the hottest. A vertical line can be seen on the left side ofthe LST map along the scan

track, which is caused by structured sensor noise.

A segment of the LST map is shown in Figure 5.39(b). The displayed temperatures

are thresholded at 300 K in order to view the thermal structure of the ponds. The left pond

has LSTs that are warmer along the bottom edge. This warm pondappears to �ow into

the cooler center pond. The �ow pattern can be seen as it enters the center pond.

The right pond contains a hot source at a point on the bottom left side of the pond.

The warm water from the hot source does not appear to �ow alongthe edge as it does in

the left pond, but rather it diffuses over the entire pond. This suggests that the right pond
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Figure 5.37: OLSTER retrieved upwelling radiance for the industrial SEBASS scene.

Figure 5.38: OLSTER retrieved downwelling radiance for theindustrial SEBASS scene.
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is enclosed and does not �ow into another pond. However, the entire pond is not visible

in the SEBASS image and no ground truth is available to verifythis claim.

The minimum emissivity map and SAM results are shown in Figure 5.40. The min-

imum emissivity per pixel over the LWIR of the left pond and most of the center pond

is higher than 0.96 and is appropriate for water. However, the upper right portion of the

center pond and all of the pixels in the right pond have a minimum emissivity that is low

for water. This appears to be caused by structured sensor noise, as a spatial region of

larger errors along the scan track (vertical) on the right edges of the minimum emissivity

and SAM maps can be seen. A column of low emissivity values on the left side of the

minimum emissivity map is also visible and corresponds to the same line that is visible in

the LST map.

The SAM values are mostly within 0.01 radians for most of the image, especially for

the ponds and other natural surfaces. SAM values of less than0.01 radians generally

indicate a good match between the OLSTER LSE and the spectralemissivity from the

ASTER library. Most of the spectral library is comprised of natural materials.

The SAM classi�cation maps for four material classes are shown in Figure 5.41. Pix-

els with a SAM value of less than 0.01 radians for a particularclass are shown in yellow.

The ponds were correctly classi�ed as water, except for the right edge of the right pond.

Again, this is mostly due to the sensor noise issue along the right edge of the image. Some

pixels in the industrial area were also classi�ed as water.

Hornfels, a type of rock used as construction aggregate, wasidenti�ed along what ap-

pears to be a road at the bottom of the scene, as well as on rooftops. The pixels identi�ed

as paint are scattered around the scene but are mostly concentrated on top of some struc-

tures in the industrial area. Asphalt roo�ng shingle is identi�ed as the primary material

of a large building. Shingle is also identi�ed on smaller sections of other roofs in the
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(a) LST map (b) Portion of the LST map. Dis-
played temperatures are limited to 300
K.

Figure 5.39: OLSTER LST maps for the industrial SEBASS imagery.
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(a) Minimum emissivity per pixel (b) Map of the SAM values

Figure 5.40: OLSTER results for the industrial SEBASS imagery.
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industrial area.

The locations of seven pixels in the SEBASS industrial sceneare labeled in Fig-

ure 5.42. The LST and LSE results for these pixels are shown inFigures 5.43 – 5.49.

The OLSTER LSE, cubic spline smoothed LSE, and the emissivity of the best match in

the ASTER spectral library are shown for each pixel, along with the retrieved LST value.

A cubic spline smoothing �t (Choi, 2002; Gao et al., 1998) to the OLSTER LSE is

included in each plot for display purposes to facilitate thecomparison with the library

emissivity. The recommended tension value to use is in the range of 20 to 40. However,

these tension values smooth over some important spectral features, particularly around

the 8.6¹ m region of some silicates. A tension value of 3 is used for these plots. Overall,

the spectral shape and values of the OLSTER LSEs and their corresponding best match in

the library are similar, and the identi�cation of these materials in the scene is reasonable.
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(a) Water (b) Hornfels (c) Paint (d) Shingle

Figure 5.41: SAM classi�cation of the OLSTER LSE results using the ASTER spectral
library.



5.4 SEBASS data 149

Figure 5.42: Locations of the selected points A through G forthe LSE comparison.
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Figure 5.43: OLSTER retrieved LSE (black line) for point A, identi�ed as distilled water
(red line) with a temperature of 297.3 K. The blue line is a cubic spline smoothed �t of
the OLSTER LSE.

Figure 5.44: OLSTER retrieved LSE (black line) for point B, identi�ed as sea foam (red
line) with a temperature of 294.1 K. The blue line is a cubic spline smoothed �t of the
OLSTER LSE.



5.4 SEBASS data 151

Figure 5.45: OLSTER retrieved LSE (black line) for point C, identi�ed as construction
concrete (red line) with a temperature of 300.7 K. The blue line is a cubic spline smoothed
�t of the OLSTER LSE.

Figure 5.46: OLSTER retrieved LSE (black line) for point D, identi�ed as a copper metal
(red line) with a temperature of 303.1 K. The blue line is a cubic spline smoothed �t of
the OLSTER LSE.
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Figure 5.47: OLSTER retrieved LSE (black line) for point E, identi�ed as basalt (red
line) with a temperature of 296.9 K. The blue line is a cubic spline smoothed �t of the
OLSTER LSE.

Figure 5.48: OLSTER retrieved LSE (black line) for point F, identi�ed as limestone (red
line) with a temperature of 300.5 K. The blue line is a cubic spline smoothed �t of the
OLSTER LSE.



5.4 SEBASS data 153

Figure 5.49: OLSTER retrieved LSE (black line) for point G, identi�ed as rhyolite (red
line) with a temperature of 303.9 K. The blue line is a cubic spline smoothed �t of the
OLSTER LSE.
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Figure 5.50: OLSTER LST map for the Rochester SEBASS data.

5.4.2 Rochester scene

The OLSTER retrieved LST map for the SEBASS Megacollect scene near Rochester, NY

is shown in Figure 5.50. The large calibration tarps and thermal target are located in

the center of the LST map. The tarps, thermal target, cars andvarious other calibration

targets are the hottest pixels in the scene. The OLSTER estimated atmospheric compen-

sation spectra are shown in Figures 5.51, 5.52, and 5.53. Theshape and values of the

atmospheric transmittance and upwelling radiance in general are similar to MODTRAN

values for a Mid-Latitude Summer pro�le.

A plot of the OLSTER LST mean, minimum, and maximum values from regions of

interest (ROIs) for the three calibrations targets is shownin Figure 5.54. The OLSTER

results are compared to groundtruth measurements from eight individual sensors (up to

three contact thermocouples (TC) on each canvas tarp, and a staring IR radiometer for

each target). A contact TC on the thermal target malfunctioned, and is not shown in the

plot. The east – right contact TC for the black tarp was found to be disconnected at the

end of the collect, and is also not shown in the plot. The uneven solar heating due to the
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Figure 5.51: OLSTER retrieved transmittance for the Rochester SEBASS scene.

Figure 5.52: OLSTER retrieved upwelling radiance for the Rochester SEBASS scene.
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Figure 5.53: OLSTER retrieved downwelling radiance for theRochester SEBASS scene.

irregular surface of the canvas tarps is one explanation forthe variability in the contact

TC measurements.

Overall, the range of OLSTER LST values are within 1 K for mostof the ground

measurements. However, the OLSTER minimum, maximum, and mean LST values for

the gray tarp ROI are higher than the ground measurements by about 0.5 K to 3 K.

The OLSTER LSE results are shown in Figures 5.55, 5.56, and 5.57. In general, the

OLSTER LSE results match the D&P Instruments model 102F measured emissivities in

the 8.5 – 12.5¹ m region. At the edges of the LWIR window, the OLSTER LSE results

display some residual atmospheric features.
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Figure 5.54: OLSTER retrieved LST compared to ground truth for the Rochester SEBASS
scene.

Figure 5.55: OLSTER retrieved LSE (black line) for the blackcanvas tarp and the mea-
sured ground truth emissivity (blue line).



5.4 SEBASS data 158

Figure 5.56: OLSTER retrieved LSE (black line) for the gray canvas tarp and the mea-
sured ground truth emissivity (blue line).

Figure 5.57: OLSTER retrieved LSE (black line) for the rubber thermal target and the
measured ground truth emissivity (blue line).
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5.5 Discussion

In the initial test of the OLSTER algorithm, the overall spectral shapes of the estimated

atmospheric compensation spectra are correct with no discontinuities. The errors in the

estimated atmospheric compensation spectra are primarilybias errors and errors associ-

ated with the ozone and water vapor absorption regions.

The results for the LST retrieval showed an expected increase in LST error with lower

surface temperatures and lower emissivity values. The mostly overestimated LSTs corre-

spond to underestimated emissivity values. The spectral shapes of the emissivity spectra

are generally correct, with an increase in bias errors and artifacts in the ozone absorption

region and at the edges of the TIR window as emissivity valuesdecrease.

The sensitivity analysis study using the synthetic test scenes demonstrate OLSTER's

ability to retrieve LSTs to within about 1 K and LSEs to withinabout 0.01 for a SNR of at

least 500:1 (spectrally correlated noise only) for scenes with some blackbody pixels and

thermal contrast. OLSTER is also relatively less sensitiveto sensor spectral miscalibra-

tion issues compared to the ARTEMISS algorithm, with LSTs within about 2 K and LSEs

to within about 0.04 for most of the spectral shifts.

The ARTEMISS results depend on the size and variability of its atmospheric database,

and how well the database can model the scene's atmosphere. The database used in this

study may be too small. A larger database should improve the ARTEMISS results, limited

by the performance of ISSTES. ARTEMISS is relatively insensitive to sensor spectrally

correlated noise, since it does not use a data – driven approach. However, it is very

sensitive to sensor spectral miscalibration issues.

An ARTEMISS experiment that included the actual atmospheric parameters for the

scene in the TLD database shows an improvement in the results. However, ARTEMISS

was not able to select the correct atmospheric compensationspectra for the scene. For
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most cases, ARTEMISS selected the same FSL radiosonde pro�le with a different ozone

scaling factor. A comparison of the ARTEMISS results using the full TLD database with

the ISSTES results shows how a small change in the ozone scaling (a scaling factor of

1.2 instead of 1.0 for all cases except for the cold surface and 100:1 SNR at 2 km) can

lead to an increase in the LST and LSE retrieved errors. Modi�cations to the algorithm's

selection of candidate atmospheres, currently using ISAC, and the ARTEMISS spectral

smoothness function may lead to improved results.

While ground truth information is not available for the SEBASS industrial scene, the

LST maps and material ID maps appear to be reasonable. The LSEresults compared to

emissivities from the ASTER spectral library show a good atmospheric compensation in

general. OLSTER initially failed with unphysical values for the atmospheric parameters.

An inspection of the industrial scene showed that the �rst column consisted of very low

radiance values, possibly used for sensor calibration. Theresults presented in this chapter

were obtained by ignoring the �rst column.

The ARTEMISS algorithm was also applied to the SEBASS industrial and Megacol-

lect scenes with poor results (not shown). The ARTEMISS estimated emissivities are

too low with a maximum emissivity of less than 0.5 for most bands, and the estimated

surface temperatures are too high with a bias of at least 25 K.The ARTEMISS results

show that the MODTRAN generated TLD atmospheric database of 7,986 entries from

global radiosonde pro�les does not contain enough variability to perform atmospheric

compensation for any given scene. In general, the ARTEMISS algorithm will be limited

by the size and variability of its TLD database for real sensor data. Validation work for

the ARTEMISS algorithm on sensor data was not found in the literature review. How-

ever, good results using an upgraded version of ARTEMISS have been claimed, based on

unpublished results (Borel, 2007).
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The SEBASS Megacollect validation of the OLSTER algorithm demonstrates a LST

retrieval within about 1 K for the black tarp and the thermal target, and within 1 K to

3 K for the gray tarp. The comparison of the OLSTER retrieved LST and ground sensor

measured temperatures for the large tarps shows the dif�culty associated with making a

representative ground sensor measurement of a rough surface with uneven solar heating

due to projected area effects. The LSE retrieval is within about 0.01 over the 8.5 – 13

¹ m spectral region for the canvas tarps. The LSE error at the edges of the LWIR window

are a result of residual atmospheric features that have not been completely compensated

for. In general, the spectral shape of the OLSTER retrieved emissivities match the ground

truth measurements well with very little bias error. The conclusions and future work are

presented in the next chapter.



Chapter 6

Conclusions

A new algorithm was developed for atmospheric compensationand surface parameter re-

trieval of hyperspectral TIR images. The OLSTER algorithm accounts for downwelling

radiance and can retrieve the emissivities from both natural and man-made materials. The

main steps in the algorithm include a preprocessing step, aniterative search for near-

blackbody pixels ("(¸ ) ¼ 1), and a constrained optimization of the atmospheric parame-

ters.

The preprocessing step simpli�es the retrieval problem with a blackbody assumption

to provide initial estimates of the atmospheric parameters, ¿̂(¸ ) andL̂u(¸ ), and surface

temperatures. The estimated parameters are re�ned during the search for near-blackbody

pixels by performing linear regressions on the pixels that best satisfy the blackbody as-

sumption. Finally, the blackbody assumption is relaxed, and the remaining terms in the

RTE are solved for. The downwelling radiance,L̂d(¸ ), is estimated from̂Lu(¸ ) using a

LUT of regression coef�cients. The temperature,T̂s(x), and emissivity,̂" (x; ¸ ), estimates

are retrieved using the ISSTES algorithm with a modi�ed spectral smoothness function.

The atmospheric parameters are then optimized in a GRG iterative loop that minimizes
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the spectral smoothness measure of the"(¸ ) ¼ 1 pixels while satisfying constraints that

ensure physical results.

A TIR initial test image was created with surface materials from the ASTER spectral

library, with a range of emissivities from about 0.15 to 1.0,and a range of LSTs from

260 K to 320 K. The test image contains 11,850 spectrally purepixels. The search for

near-blackbody pixels selects 380 pixels in four iterations, and the optimization loop is

completed in eight iterations. The spectral shapes of the atmospheric parameters are re-

trieved accurately, in general, with a maximum transmittance error of + 0.003, a maximum

upwelling radiance error of - 0.03 W
m2sr¹m , and a maximum downwelling radiance error

of - 0.3 W
m2sr¹m . The errors for LST are mostly within 2 K for surfaces with a minimum

emissivity of 0.5 or higher, and within 0.3 K for the near-blackbody pixels. However,

accurate LST retrieval on very low emissivity ("(¸ ) ¼ 0.15) metal surfaces was dif�cult,

with errors from - 2 K to about + 30 K. The spectral shape of the retrieved emissivities

generally matched the materials in the spectral library, with larger errors for lower emis-

sivity values, particularly in the ozone absorption spectral region and at the edges of the

TIR window. The emissivities were mostly underestimated, which corresponds to the

mostly positive bias for the LST estimates.

Results from the initial test led to improvements in OLSTER's processing speed and

memory requirements, adaptive GRG constraints, and an expanded downwelling radi-

ance LUT. The computational memory requirement is directlyrelated to the number of

variables that are adjusted in GRG. The approach of using a vector of ¿̂(¸ ) andL̂u(¸ )

variables requires a large Jacobian matrix that must be evaluated for each iteration of the

GRG algorithm. Scaling factors for̂¿(¸ ), L̂u(¸ ), andL̂d(¸ ) are the GRG input variables

for the initial GRG step. With only three variables to adjust,the number of constraints are

also reduced to fewer than two. An initial GRG optimization ofthe scaling factors before
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the �nal GRG optimization per band generally reduces the convergence time. Adaptive

GRG constraints relax the bounds in the initial iteration of the optimization loop if GRG

fails to converge. The constraints are then tightened to promote a faster convergence. An

expanded LUT uses additional model atmospheres generated using radiosonde data and

a greater range of ozone and water vapor variations. The expanded LUT also required a

new process to select the best LUT entry for OLSTER to use. TheOLSTER IDL code

does not require user inputs during processing. However, a cloud mask and removal of

bad columns and noisy bands may be required in preprocessing.

A sensitivity analysis of the sensor altitude, noise, and spectral miscalibration was

performed. Special cases of a desert environment and a nightcase were also tested. OL-

STER is capable of retrieving LSTs to within about 1 K and LSEsto within about 0.01

for a SNR of at least 500:1 for scenes with some blackbody pixels and thermal contrast.

OLSTER is also relatively less sensitive to sensor spectralmiscalibration issues compared

to the ARTEMISS algorithm, with LSTs within about 2 K and LSEsto within about 0.04

for most of the spectral shifts.

A validation of the approach using TIR hyperspectral imagery from the AHI and SE-

BASS sensors with ground truth for the Megacollect scene wasperformed. The OLSTER

algorithm retrieved LSTs to within about 1 K for the black tarp and the thermal target,

and within 1 K to 3 K for the gray tarp. The LSE retrieval is within about 0.01 over the

8.5 – 13¹ m spectral region for the canvas tarps. The OLSTER algorithmis currently one

of only a few algorithms available that have been documentedto retrieve accurate land

surface temperatures and absolute land surface spectral emissivities from passive airborne

hyperspectral LWIR sensor imagery.
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6.1 Future Work

The main areas for future work include implementing multiple starting points in OL-

STER, a repeat of the night scene simulation, continued validation of the OLSTER al-

gorithm using new sensor data with corresponding ground truth measurements, and an

analysis of the size and variability of the atmospheric database required for ARTEMISS.

Multiple starting points in OLSTER may be able to improve theretrieval results for the

desert and night temperature cases. For example, OLSTER atmospheric compensation

results for an adjacent scene may be applied to a desert �ightline to provide OLSTER

with a different starting point. The night scene simulationshould be repeated using both

cold surface temperatures and an atmosphere modeled using anight radiosonde pro�le.

The validation of the OLSTER algorithm should continue as additional sensor data with

ground truth measurements are made available.
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Appendix A

Requirements for running OLSTER

The OLSTER algorithm is coded in the Interactive Data Language (IDL) version 6.1.

The minimum requirement for running OLSTER is IDL version 5.1, which includes the

ConstrainedMin function for GRG optimization. Access to the radiative transfer code

MODTRAN4 is needed to generate a LUT of upwelling radiance to downwelling radi-

ance regression coef�cients for the appropriate sensor altitude. The upwelling radiance

and downwelling radiance values need to be resampled using the sensor's spectral re-

sponse function before computing the regression coef�cients. A database of atmospheric

radiosonde pro�les with global coverage is required for theMODTRAN runs.

The input data for OLSTER includes a LWIR hyperspectral radiance image (nadir or

near-nadir viewing angle), the sensor spectral response, apre-computed LUT of upwelling

radiance to downwelling radiance regression coef�cients,and the sensor altitude. It is

necessary to remove any bad data lines and areas with clouds from the image before

running OLSTER to avoid violating the algorithm's assumptions. After compiling the

program �les and selecting the �lenames for the input data, the OLSTER code requires

no additional user inputs. The OLSTER code provides useful information for monitoring
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its progress, such as the number of near-blackbody pixels selected, previous and current

objective function values, GRG inform values, and the minimum and maximum values of

the atmospheric compensation spectra, LST and spectral LSEpreliminary estimates. The

output results from OLSTER includes the atmospheric compensation spectra, estimated

LST per pixel, and estimated spectral LSE per pixel.



Appendix B

Determining if OLSTER results are

reasonable

In the absence of ground truth surface temperature and emissivity measurements, other

methods are available to determine if the results from OLSTER are reasonable in a qual-

itative sense. The methods involve an analysis of the OLSTERretrieved LST and LSE

products, the atmospheric compensation spectra, and the GRGoptimization inform values

and objective function results.

A map of the OLSTER retrieved LST per pixel should be examinedto determine if

the values are reasonable given the location of the image scene, the time of day, and

scene content. The OLSTER retrieved spectral LSE should contain a minimal amount

of residual atmospheric features that have not been compensated for. The sharp spectral

signatures correspond to atmospheric absorption or emission features, such as the 11.7¹ m

water vapor absorption feature, the 9.6¹ m region for ozone, and water vapor and carbon

dioxide features at both edges of the LWIR window.

Image areas containing water pixels should have high emissivity values, generally
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higher than 0.96. Healthy vegetation should have emissivities greater than 0.9. It is

useful to display the minimum emissivity over all sensor channels per pixel, as shown

in Figure 5.40(a) for the industrial SEBASS image. A map of the minimum emissivity

per pixel may show unexpected spatial patterns for a given class of surface materials that

can correspond to structured sensor noise, sensor radiometric calibration issues, and non-

uniform regions of atmospheric compensation.

The OLSTER retrieved spectral LSE can also be compared to a spectral database of

material emissivities, such as the ASTER spectral library.A classi�er, such as the spectral

angle mapper, can report the best match in the database per pixel and how close the match

is. Displaying the results with a user adjusted threshold ofclassi�cation, as shown in

Figure 5.40(b) for industrial SEBASS data, may reveal underlying issues with the surface

parameter retrieval.

Another useful way to display the OLSTER retrieved emissivities is to plot the spectral

emissivities for all pixels on a single graph. Most natural materials have emissivities

greater than 0.9, and an overplot of all the LSEs may help determine if they are biased

or have residual atmospheric compensation errors. Also, when there are no LSE values

greater than 0.9, it may be an indication of bias errors in theatmospheric compensation

spectra, in particular the atmospheric transmittance.

The spectral shape and values of the atmospheric compensation spectra can be com-

pared to reference atmospheric transmittance, upwelling radiance, and downwelling radi-

ance spectra generated using MODTRAN with default pro�les oruser de�ned radiosonde

pro�les. Large errors in the shape of the atmospheric compensation spectra should also

correspond to similar spectral shape errors in the retrieved emissivities.

Finally, the objective function values and GRG inform valuesat each iteration of the

GRG optimization loop can be used to examine the convergence of the optimization step.
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The objective function value should decrease at each iteration. If progress appears to be

slow or stalled, the solution may be at a local minimum which requires a different starting

point.



Appendix C

Things to try if OLSTER is not working

for you

The results of the OLSTER algorithm are generally dependenton the spectral shape of

the atmospheric compensation spectra from the initialization step. Bias errors are easy to

overcome in the initial optimization loop using atmospheric scaling factors. Errors in the

spectral shape of the atmospheric compensation spectra maybe caused by an improper

selection of near-blackbody pixels, sensor noise and calibration issues, and a non-uniform

atmosphere over the entire image. The locations of the near-blackbody pixels should cor-

respond to water and vegetation pixels, in general. Image segmentation or masking may

be required to remove areas of the image that are incorrectlyclassi�ed as near-blackbody

pixels due to sensor noise issues or low thermal contrast. Noisy data lines along the sen-

sor's scan track and dead pixels or lines should also be removed from the data set. The

OLSTER algorithm assumes a nadir or near-nadir sensor viewing angle. Data columns

along the edges of the scan track may need to be removed for sensor data with a large

�eld of view (FOV) or with optical vignetting issues.
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In addition to removing some pixels from the image data, it may also be necessary to

remove some spectral bands from the data, especially at the edges of the LWIR window.

For example, the GRG optimization constraints or the objective function may encounter

dif�culties at only a few particular bands that prevent the convergence to a better solution.

Identifying and removing a few bands will facilitate further progress in the optimization

step without resorting to a modi�cation of the constraint functions or the objective func-

tion for a speci�c image.

Finally, multiple starting points using OLSTER results from adjacent scenes may be

useful for scenes with few high emissivity pixels, low thermal contrast, or noisy data. The

OLSTER atmospheric compensation spectra from another scene can be used instead of

the initialization step (modi�ed ISAC step) in OLSTER.



Appendix D

Known issues

The OLSTER algorithm was designed to be widely applicable with minimal user inputs

during processing. The optimization constraints, objective function, thresholds for the

correlation and concavity metrics, and stopping criteria for iteration loops worked well

for the synthetic test data, the AHI sensor data and the SEBASS sensor data. The prepro-

cessing used for the AHI data involved spectrally binning 256 sensor channels down to

50 channels to improve the SNR. The industrial SEBASS scene required the removal of

the �rst spatial data column, which contained the same radiance value for each spectral

channel for every pixel in the column and may be an undocumented sensor calibration

line or bad data. The Rochester Megacollect SEBASS scene required the removal of the

�rst ten and last ten spatial data columns from the image due to sensor noise issues.

One known issue remains regarding the modi�cation of the ISAC algorithm in the

initialization step of OLSTER. The modi�cation was designedfor scenes that are not

dominated by high emissivity pixels that the ISAC algorithmrequires. The modi�cation

removes pixels with a large range in brightness temperaturevalues compared to the me-

dian range for all pixels. The modi�cation works well for most scenes, but may remove
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too many pixels in some cases. The remaining pixels in these cases may have little thermal

contrast, and it may be better to avoid removing pixels in theinitialization step. Unfor-

tunately, it is not clear which case applies to a given scene before running OLSTER. The

current approach is to run OLSTER for both cases (with and without the modi�cation to

the ISAC algorithm) up to the start of the �nal GRG optimization loop. The case with the

lower objective function value continues to the �nal optimization step.


