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Abstract

When tasked with accurately modeling a water body in a cold climate environment,
the complexity of the system being simulated and the numerous parameters affecting the
observable outcome pose an arduous task for any modeling effort. The task is increasingly
complicated when the body of water is serving as a cooling pond for a power plant and
can become partially frozen. The introduction of a heat effluent into the water creates
a highly dynamic system whose physical state is not only reactionary to the surrounding
environmental conditions, but the industrial facility’s operating parameters as well. Both
calibrated thermal and visible imagery offer a powerful and unique source of validation
data for these hydrodynamic modeling codes when trying to simulate these industrial
processes in cold climates. This work presents an approach which uses an evolutionary
optimization algorithm to drive the inputs of a hydrodynamic modeling code simulating
a power plant cooling pond through imagery validation. The result of this process is an
optimized set of functional parameters to the hydrodynamic model that best simulates
the observed conditions. While applied to a hydrodynamic code for this work, the process
created introduces a unique infrastructure for solving multi-dimensional, multi-system
problem sets in a modular and evolutionary framework.
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Chapter 1

Introduction

The marriage of remotely sensed imagery and three-dimensional hydrodynamic models
yields a very powerful tool for simulating and inspecting complicated water environments.
Traditionally, thermal information extracted from calibrated infrared imagery is the val-
idation data for a hydrodynamic simulation and a source of comparison for evaluating
the accuracy of the predicted environments. The complexity of the relationship between
reliable validation imagery and the modeling environment is dramatically increased in cold
climates. Water environments exposed to below freezing conditions present a challenge to
both standard thermal calibration techniques as well as traditional hydrodynamic mod-
els. Any water present can exist in several different states simultaneously within an area:
liquid water, solid ice, or snow. The thermal variation and distribution of water, ice, and
snow is dependent on the inherent physical characteristics of the body of water as well as
the meteorological conditions at any given time. It is very difficult to accurately describe
the thermal and physical parameters of such an area (also referred to as a scene) using
direct measurement techniques due to the spatially and temporally varying nature of said
parameters.

Given some preliminary knowledge of the physical parameters bounding the observed
scene, three-dimensional hydrodynamic models can calculate the energy fluxes at the ob-
served surface and provide estimations for physical parameters. However, this powerful
modeling tool can quickly become cumbersome if only limited knowledge of the environ-
mental conditions is available. Lack of environmental knowledge leads to a “guess and
check” approach in trying to select model inputs capable of generating results that ade-
quately compare to environment observations. Additionally, the spatial variation evident
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in frozen water bodies, paired with the environmental challenges introduced when operat-
ing in cold climates, creates a situation where empirically measuring all data necessary for
total model validation is a physical impossibility. With limited empirical measurements,
only so many system assumptions can be made before the accuracy of a simulation code
is questionable.

Both remote broadband thermal mapping and traditional remote sensing (VNIR) ap-
proaches, offer unique data collection capabilities for cold climate environments. Thermal
mapping techniques provide instantaneous spatial coverage of extended areas and capture
the varying thermal structure of the scene. The sensitivity of a broadband thermal sen-
sor is limited to extracting thermal radiance properties of only the scene’s surface and
sheds no light on the three-dimensional physical structure below. Additionally, access to
consistent thermal coverage of an area of interest is often not possible. Traditional VNIR
technologies capture the same instantaneous spatial coverage as a thermal sensor, often
at better spatial resolution, but cannot provide the same insight into the thermodynamic
conditions on the ground. However, airborne or space-based VNIR systems with adequate
spatial resolution are capable of observing the amount of ice coverage on a body of water
which is a valuable observable in cold climate conditions. VNIR imagery is often more
accessible and can offer more consistent observations.

The research presented here uses a genetically-inspired optimization algorithm (particle
swarm optimization [17]) to drive the selection of input parameters for a three-dimensional
hydrodynamic model (ALGE [9]) while using image-derived information for model vali-
dation. The operational goal of ALGE is to simulate a cooling pond for an industrial
facility in a cold climate environment. In order to determine the level of success the model
achieved when driven by this method, calibrated thermal imagery, airborne VNIR imagery,
and other remotely sensed imagery of the actual water body being modeled is compared
to the simulated state of the same scene. Assuming a favorable comparison, a simulation
is considered successful if the corresponding input ALGE parameters effectively model the
facility’s heat load within 10% of the true value [10]. To restrict the potential solution
inside the boundaries of physical possibilities, the solution space to be searched is defined
by physics-based estimates, derived from empirical measurements.

The employment of an optimization routine in parameter selection has the potential
to increase the simulated data’s accuracy as well as decrease the time required to produce
a quality simulation. Because the optimization is a genetic algorithm and evolutionary in
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nature, only the necessary amount of simulations will be performed to achieve a defined
goal. In comparison to a brute-force technique where every possible parameter combination
is run to create a large look-up table of simulations, a genetic algorithm conserves valuable
computational time, performing only necessary simulations until a satisfactory result is
achieved. This implementation has the potential to save hundreds of hours in simulation
time in order to achieve the same results.

The overall contributions from the presented work are listed below. Each of these
contributions are explained in detail in the following chapters.

• Developed and implemented automated calibration system for the WASP sensor
system. The implemented technique includes a flight line specific thermal radiance
calibration on a pixel-by-pixel basis.

• Created a general-use framework for model-wide optimization which uses imagery-
derived information as a validation metric. While the specific model and algorithm
used here were ALGE and PSO, the approach created can be applied to any type of
multi-dimensional system.

• Implemented an evolutionary optimization framework currently operational on a
multiple core computing cluster. The system design was intentionally created in a
modular fashion to allow the system to be applicable to other problem sets.

• Developed an approach to using temporally varying data as optimization inputs in
a way that is both feasible and simple to implement.

• Demonstrated a strong correlation between observed ice fraction and the heat load
present in a cooling pond. This correlation allows observed ice fractions to be the
only necessary validation data when optimizing the ALGE routine. The implication
of this relationship is a simple and elegant method for model validation and allows
the approach to be executed when only visible imagery is available.

• Evaluated and determined an adequate collection interval for validation imagery
observations. These results have a practical impact on the operational requirements
of an application of this technique.

• Managed and executed two winter ground-truth campaigns to support the validation
of the ice modeling capabilities added to the ALGE model. These campaigns resulted
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in a library of meteorological, plant conditional, and multi-modal image data from
both winters.

• Wrote a suite of IDL tools for interfacing with the ALGE model. These tools allow
a user to extract results from specific points in time with minimal interaction with
the raw data. Additionally, tools were created for evaluating an ALGE simulation
with imagery in a headless and automatic fashion.

• Created a set of analyzing tools to inspect the progress of a given optimization in
real-time. These tools aid the user in determining if the optimization is behaving as
expected.



Chapter 2

Objective

The ultimate goal of this work is to improve upon the accuracy of the ALGE modeling
environment when simulating industrial cooling water bodies in cold climates. The im-
provement is achieved through the use of image-derived information as validation metrics
in an intelligent and efficient manner. The intelligent manner in this case is the imple-
mentation of particle swarm optimization (PSO) to perform the input parameter selection
for ALGE. The following chapter explores how all the systems involved are necessary and
linked together to form the final process workflow. A more detailed background on each
of the systems is developed in Chapter 4.

2.1 Cooling pond basics

Cooling ponds are used by industrial facilities as a means of waste heat dissipation. The
passive nature of this method of cooling creates a very reliable system that requires no
maintenance or user interaction. A cooling pond is a body of water, either man-made
or natural, within which a facility will inject its waste heat via hot water. The system
will then replace the lost volume with cooler water from some extraction point located
at a separate position, some distance from the injection site. To maximize the cooling
efficiency of the system, the injection and intake points are often separated by some type
of division, whether it be a manmade berm or natural barrier. An ideal cooling pond will
have a large enough surface area to allow the hot effluent to cool as to close to ambient
temperature as possible.

Typically, the size of cooling ponds is designed or chosen so the body of water will
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be resistant to freezing during the colder months. By definition, there is a constant heat
injection into the body of water; provided the size of the pond is sufficiently small, the cold
weather will not be able to induce freezing. However, these ideal conditions are not always
the case. When a facility is not dispensing a large enough heat load into its pond or the
pond is too large, ice can form on the water’s surface. An ice layer acts as an insulating
blanket and reduces the surface area of open water exposed to the air. As conductive
cooling is a significantly less efficient method of cooling, when compared to convective and
evaporative, ice formation adversely affects the cooling efficiency of a pond. Any sort of
additional snow accumulation will further exacerbate the problem. As a result of all these
complexities, an already difficult environment to encapsulate in numerical models is made
even more challenging with the introduction of the cold weather phenomenology.

2.2 The big picture

While recent research has extended the ALGE model’s capability to simulate ice and
snow formation on a cooling pond [12], the problem at hand still remains complex. In
reality, when the model is applied to a real-world situation, the likelihood of having a well
characterized area with access to all meteorological, environmental, and facility operational
data is slim. However, there is a higher probability a user can access either remotely sensed
thermal or visible imagery. The imbalance in available information is what leads to the
approach implemented in this work. The methodology put forth and tested provides a
user with a process to methodically determine adequate model parameters that accurately
simulate a cooling pond in a cold environment. The workflow is developed in the next
section.

2.3 Workflow

The overall workflow for the process is as follows:

1. Collect the appropriate calibrated, empirical data for use in model validation.

• This data comes from imagery sources and data collection campaigns.

2. Designate the bounding conditions for the water body of interest based on ex-
isting knowledge about the environment. These bounding conditions include the
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bathymetry and the physical boundaries.

3. Decide which ALGE parameters are going to be variables in the optimization.

• Possibilities include the flow rate, plant temperature differential over the cor-
responding simulation time, the meteorological conditions, or all of the above.

• The choice of variable is based on which information the user has the most
confidence in versus which set is considered less reliable.

4. A PSO swarm of ALGE simulations, conforming to the the boundary and initializa-
tion conditions, is initialized on a computing cluster.

5. In the swarm, each solution (or particle) is evaluated using the validation metric to
compare the empirically known data to the offered simulated data.

6. The PSO architecture drives the selection of subsequent generations of ALGE input
parameters based on the successes and failures of previously offered configurations.

7. Optimization continues until a user-chosen convergence parameter is met or the
allotted number of PSO generations complete.

8. Depending on the outcome, either the converged solution or the best solution achieved
at the end of the swarm’s lifetime, are designated as the optimized, best set of input
parameters for ALGE to model the given environment.

2.4 Evolution of thought

Based on previous work and experience, the initial focus of this work was on the potential
dependency on thermal data as a validation source. It was hypothesized that due to the
incredibly complicated state of the cooling pond environment at any given time, insight
into the current thermodynamic conditions on the ground would be necessary to accurately
model the system. As a result, significant efforts were invested into the thermal collection
techniques surrounding the two executed ground truth campaigns, as well as thermal phe-
nomenology. These efforts included the implementation of automated calibration routines
for a broadband, airborne thermal sensor, subsequent sensitivity analysis of calibration
results, construction and deployment of autonomous buoys to monitor thermal conditions
at the ground truth site, and research into thermodynamic principles and phenomenology.
As the work evolved it became evident that the emphasis on the thermal information was
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unnecessary and attention was shifted to a more accessible and pragmatic observable: the
overall extent of the cooling pond covered with ice at given point in time. With this
modification of focus, a large portion of the collected data on the ground became imma-
terial to the final experiments. The progression to this final conclusion and the resulting
experiments is explained in the following chapters. However, the significant amount of
work that ultimately led to the final experiment and solution remains documented in the
appendices.



Chapter 3

Theory

At the core of this work is the application of an exotic optimization routine to the ALGE
model. This chapter will review the basic principles of optimization. The areas covered will
include different optimization approaches, with a focus on particle swarm optimization.
As referred to in Section 2.4, extensive research was completed on thermal phenomenology.
While not included in this chapter, the work is documented in Appendices A-D.

3.1 Optimization routines

The goal of an optimization routine is to determine the minimum or maximum of some
real function through a systematic search of a range of possible solutions. An optimization
approach becomes advantageous to a particular problem when the potential solution space
is so large that multiple results need to be compared to determine the best solution.
Two types of optimization approaches are described below: hill climbing techniques and
genetically-influenced techniques.

3.1.1 Hill climbing algorithms

Hill climbing optimization routines are forms of local search and encapsulate more tradi-
tional search techniques. In general, these approaches can be used to solve problems that
have multiple solutions. Initially a potential solution is chosen and then alterations are
made iteratively to the solution to generate a neighborhood solution. If the neighborhood
solution is better than the current solution then it becomes the new current solution. This
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process continues until the current solution cannot be improved. For example, take the
function f(x, y) = e−(x2+y2). This particular function has a single maximum value at [0, 0]
as seen in Figure 3.1. Each vertex on this plot represents a possible solution. In order
to determine the optimal maximum solution, the hill climbing routine will move through
the function, vertex to vertex, locally increasing the functional evaluation of f until it has
reached the peak.

Figure 3.1: Three dimensional graph of a simplistic function with a single maximum [25]

Hill climbing approaches are relatively simple optimization routines to implement and,
as a result, are popular choices [? ]. However, because hill climbing relies on making
discrete steps to neighboring values in the solution space, it is often possible to obtain a
locally optimal solution instead of the globally optimal solution for a complex function. As
shown in Figure 3.2, a more complex function having both a local and a global maximum
would present a challenge to this simplistic approach. In addition, any plateaus present
in a solution space would pose a problem to this search method. Because neighboring
values would be nearly indistinguishable in these areas, the algorithm will tend to wander
aimlessly inside the plateau and cease any improvement. Additionally, because these ap-
proaches are single-node methods, it can take a considerable amount of time to effectively
traverse a solution space. This characteristic becomes particularly troublesome when the
function being optimized is computationally expensive.

3.1.2 Genetic algorithms

Genetic algorithms belong to a larger class of evolutionary algorithms, all of which generate
solutions using techniques inspired by natural evolution processes such as inheritance,
mutation, selection, and crossover [20]. These approaches become advantageous when
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Figure 3.2: Three dimensional graph of a more exotic function exhibiting both a local and
global maximum [25]

the function being optimized is computationally expensive and the time to perform an
exhaustive search is not feasible. In a typical genetic algorithm, several different solutions
are instantiated in the first generation. Each solution is evaluated using a fitness function.
Based on the fitness level of the solutions in the first generation, certain solutions are
mutated or evolved in some way to form a new version of the same population. This new
generation of the population is then used for the next iteration of the algorithm and the
process repeats itself until the ideal fitness function value is achieved or the maximum
allowable generations have been created.

If this type of approach was applied to the function shown in Figure 3.1 several vertices
would originally be chosen and comprise the first generation of the algorithm. Each vertex
would be evaluated and the one yielding the largest functional value would be considered
the best solution. All or some of the solutions would then be altered to position them
at different vertices and then compared to the best solution from the previous genera-
tion. This process would complete itself when the maximum value is determined or the
maximum number of generations allowed have been created.

Generally, genetic algorithms have been developed and used without an established
theory as to why they perform well or why they fail in certain situations. As a result,
the parameters which influence the performance of a given algorithm tend to be untested
and unknown for a particular implementation. In addition, it is difficult to describe the
evolution of a given population, which leads to challenges in altering inputs for improved
performance. However, genetic algorithms perform well in solution spaces that are large,
multi-dimensional, and contain many hills and valleys. For example, a genetic algorithm
would perform well with the complex solution space presented in Figure 3.2. Unlike the hill
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climbing approach whose single investigation location can get stuck in the local maxima,
a genetic algorithm would have several solutions instantiated across the solution space.
Even if a single solution was trapped in the local maxima, there would be several other
individual solutions left to explore the remainder of the solution space.

3.2 Particle swarm optimization (PSO)

Particle swarm optimization, or PSO, is a genetic algorithm introduced by Eberhart and
Kennedy in 1995 which instantiates several solutions simultaneously to search multidimen-
sional solution spaces [17]. Inspired by the social behavior of birds, PSO mimics the flock
behavior that birds demonstrate while searching for food. If one imagines a flock of birds
circling above some location, the ultimate goal of the flock is to find food somewhere on
the ground below. If a single bird discovers food and dives to the ground, the entire flock
will shift their individual courses and follow the bird diving to the food. The behavior of
each member in the flock is influenced by both it’s own history of success and the success
of the other members of the flock.

3.2.1 Basic concepts

By extension, the flock behavior can be applied to solution optimization. In PSO, a
potential solution to a function is represented by a particle (analogous to a bird). A group
of possible solutions, or particles, is referred to as a swarm (analogous to a flock). Each
particle is defined by a set of parameters. These parameters are initially unique to each
particle and are the variables of the function to be optimized. A swarm is composed
of N particles (solutions) that each have J-number of parameters. Each ith particle,
~xi [ρ1, ρ2, ..., ρJ ] for (i = 1, ..., N), is initialized with random parameter values, bounded
by each parameter condition. The quality of each particle’s offered solution is judged
by computing a fitness function using the parameters associated with that particle. For
each iteration, or generation, the outcome of the function evaluation for each particle is
tracked. A particle’s best solution, ~Pi, is the set of parameters from that particle’s history
that have produced the best fitness function value to date. The global best solution, ~G, is
the parameter set that has produced the best functional value obtained out of the entire
population to date. Using these two parameter sets, as well as other motion parameters,
a velocity vector (Equation 3.1) for each particle is calculated.
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~vi(t+ 1) = ~vi(t) + αp(t)γp
(
~Pi − ~xi(t)

)
+ αg(t)γg

(
~G− ~ti(t)

)
(3.1)

~vi(t+ 1) current velocity vector of the ith particle
~vi(t) previous velocity vector of the ith particle
~xi(t) the position of the ith particle
αp,g(t) weighted stochastic variables between [0,1]
γp cognitive acceleration constant
γg social acceleration constant
~Pi ith’s particle personal best parameter set
~G global best parameter set achieved
i current particle
t current generation
J total number of parameters defining a particle
T total number of generations allowed
N total number of particles in a swarm

Table 3.1: PSO velocity vector equation variables

The calculated velocity vector for a particle represents the incremental changes applied
to each parameter, for a given particle, to move that particle closer to the optimum solution
in the solution space. The parameters for each particle in the next generation (t+ 1) are
calculated by adding the velocity vector to the current particle’s parameter set for the
current generation, t (t = 1, ..., T ). The position update equation is shown in Equation 3.2.
The movement of the swarm continues until all of the personal best solutions obtained by
each particle achieves a minimum or maximum functional evaluation within some margin
of error, or until the total number of generations allowed, J , have occurred.

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1) (3.2)

An example of an application of PSO in a two-dimensional solution space is shown in
Figure 3.3. This figure demonstrates how the current particle’s position,~x(t)i, it’s personal
best solution, ~Pi, and the global best solution, ~Gi, contribute to the particle’s position
in the solution space for the next generation, ~x(t + 1)i. The incorporation of the global
and personal best parameters will push all of the particles in the swarm to follow the one
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particle achieving the best answer.

~G

~Pi

~xi(t) [p1]
Current 

motion correction

Cognitive 
correction

Social 
correction

[p2] ~xi(t + 1)
[p1]
[p2]

~G
~Pi

~xi(t)

~xi(t + 1)

Parameter 1

Parameter 2

Global best solution

Personal best solution
Current position

Next position

=
=
=
=
=
=

Figure 3.3: A two dimensional representation of how an individual particle’s current tra-
jectory, personal best solution, and the global best solution all impact the position of the
same particle in the next generation.

The PSO velocity equation can be dissected into three main components, as distin-
guished in Figure 3.4. The first component is referred to as the inertia component. This
term models the tendency of a particle to continue on the same path. The second term is
the cognitive term and is sometimes referred to as the particle’s memory, self-knowledge,
or remembrance. It represents the particle’s linear attraction towards its personal best
solution achieved to date. The third term is called the social term and is sometimes re-
ferred to as the social knowledge, group knowledge, or cooperation term. It represents
the particle’s linear attraction towards the best position achieved by any particle in the
swarm.
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Figure 3.4: The velocity update equation for PSO with the individual components identi-
fied.

3.2.2 Swarm explosion

As PSO has evolved, several methods have been proposed to facilitate convergence and
combat an observed phenomena called swarm explosion. Because of the stochastic nature
inherent to the velocity calculation, research has indicated that swarms have a tendency to
diverge, sending all particles to infinity (or the solution space boundaries), if not controlled.
Swarms can be controlled by several techniques including, limiting the maximum velocity
allowed, boundary conditions, selecting appropriate acceleration constants, or an inertia
weight. There are other solutions to mitigate swarm explosion, however, for this work
these were the four methods chosen to explore [7] [? ].

A maximum velocity sets a limit on how large of a step a given particle can make in a
single iteration. This restriction prevents the velocity vector from becoming so large that
the particle takes on an uncontrollable trajectory, bouncing from one end of the solution
space to another. To prevent solution space wide oscillations, the maximum velocity is
applied to restrict the step size, as shown below.

if ~v[ρj ]i > vmax then

~v[ρj ]i = vmax

else if ~v[ρj ]i < −vmax
then

~v[ρj ]i = −vmax
end if

There are several ways to calculate this maximum velocity. Some methods have pro-
posed that the maximum velocity be set to the range of the domain you are searching
(Equation 3.3). However, for the research here, a more conservative approach was taken,
and the maximum velocity was set to 15% of the domain range[23].
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vmax = 15%
(xmax − xmin)

N
(3.3)

Boundary conditions restrict particles from escaping the solution space. Based on
user-defined dimensional limits, if a particle’s position moves outside the boundaries of
these dimensions, then it is reverted to the limit value. The logic to make this decision is
shown below [19].

if ~x[ρj ]i > x[ρj ]max then

~x[ρj ]i = x[ρj ]max
else if ~x[ρj ]i < x[ρj ]min then

~x[ρj ]i = x[ρj ]min
end if

The acceleration constants control the attraction each particle has to the best posi-
tions. Smaller values weaken the influence of the social and cognitive terms and lead to
limited particle motion. Under these conditions it will take more iterations for the particles
to reach an optima. Larger acceleration values can contribute to particle divergence and
result in the step size for a given iteration defaulting to the maximum allowable velocity,
vmax. Several studies have explored the effect these constants have on swarm behavior [6].
Previous research observed that increases in the acceleration constants cause an increased
frequency in the oscillations around a solution space’s optimal point. Additionally, when
the summation of the two acceleration constants increases beyond 4, the particle trajecto-
ries go to infinity. Based on these studies, a ceiling value of 4 is assigned to the summation
of cognitive and social acceleration constants. The nature of the problem being optimized
will dictate whether these values are held equal or are different. This decision is based on
user experience and intuition.

The final tactic for limiting the swarm is the implementation of an inertia weight,
φ(t) [23]. This parameter is a multiplier of the previous velocity, vi, in the velocity
equation. The inertia weight can be set to a constant, however having the value be a
linearly decreasing quantity allows the parameter to control the exploration of the solution
space. Initially, with the weight set to a high value (typically ≈ 1) the particles have
freedom to move through the entire space. This phase is referred to as the exploration
phase. As time progresses, this factor reduces to 0 at constant increment to decrease the
influence of the stochastic velocity and allow the swarm to focus on the personal and global
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optimas. This secondary phase is called the exploitation phase. With the addition of the
inertia weight factor, the new velocity vector changes to Equation 3.4.

~vi(t+ 1) = φ(t)~vi(t) + αpγp

(
~Pi − ~xi(t)

)
+ αgγg

(
~G− ~xi(t)

)
(3.4)

3.2.3 Example PSO Application

To illustrate how PSO works in application, a swarm was used to solve for the global
minimum of the Rastrigin function. The Rastrigin function is a non-convex function
that is typically used for performance testing optimization approaches [2]. It presents an
optimization approach with a fairly difficult challenge due to the large number of local
minima over the extent of the search space.

Figure 3.5: The two-dimensional Rastrigrin function.

The Rastrigin function shown in Figure 3.5 is defined by Equation 3.5 where A = 10
and xi ∈ [−5.12, 5.12] , yi ∈ [−5.12, 5.12]. The global minimum occurs at [x, y] = [0, 0]
where f [x, y] = 0.

f [x, y] = 2A+
(
x2 −A cos(2πx)

)
+
(
y2 −A cos(2πy)

)
(3.5)
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To solve this function, a swarm of 16 particles was generated using the same code engine
designed to implement the PSO-ALGE framework. Each particle was initially defined by
random parameter values bound by the extent of the solution space. Shown in Figure
3.6 is a 2D view of the initial swarm distribution for the Rastrigin function. Each point
represents the initial position of a particle. The parameters for a particle are the guessed
x and y values. The swarm was given 250 generations to converge to a point where every
particle’s solution was within an error margin of ±1·10−4 of 0. This determination is made
by inserting each particle’s parameter set into Equation 3.5, determining the value and
comparing it to 0. The smaller the difference between the particle’s value and 0, the better
ranked that particle becomes against the global population. It should be noted that for
the PSO-ALGE implementation the convergence condition has no known minimum like
the Rastrigrin. As a result convergence was determined to have occurred when all the
particles were within an error margin away from one another.

2D Rastigrin Function with swarm at GEN=000
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Figure 3.6: Initial swarm distribution for the Rastrigrin swarm. Each point indicates the
location of each particle in the solution space at initialization (t = 0).

The Rastrigrin swarm successfully converged on the global minimum after 225 gen-
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erations. Figures 3.7(a) through 3.9(b) show the evolution of the swarm through time
from the perspective of the personal best solution achieved by each particle. A critical
component of PSO is that while a particular particle explores the solution space, a social
and cognitive memory exists to generate a convergence condition. This behavior is an
important feature for PSO in that it ensures that a memory of good candidate solutions
are preserved while the particles are still exploring the solution space. Additionally, this
feature helps mitigate the swarm succumbing to local minimas. These plots show that as
time progresses the swarm evolves and the particles converge on the appropriate global
minimum.

2D Rastigrin Function with swarm at GEN=000
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(a) Generation 0

2D Rastigrin Function with swarm at GEN=045
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(b) Generation 45

Figure 3.7: Evolution of the Rastrigrin solutions through the lifetime of swarm population.
The population of personal best solutions are shown in black.

From the point of view of this example function, the particle/parameter relationship
and how it relates to the functional output is easily understood. When applied to the
PSO-ALGE framework, the implementation is not as straightforward. For reasons ex-
plained in Sections 5.4.1 and 5.4.2, only a single parameter is being optimized from the
ALGE perspective. However, the implementation of a temporal input averaging technique
translates the single ALGE parameter into a several parameters in the temporal dimension
from the PSO perspective.
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2D Rastigrin Function with swarm at GEN=090

-4 -2 0 2 4
X data

-4

-2

0

2

4

Y
 d

at
a

0

20

40

60

80

M
ag

ni
tu

de

(a) Generation 90

2D Rastigrin Function with swarm at GEN=135
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(b) Generation 135

Figure 3.8: Evolution of the Rastrigrin solutions through the lifetime of swarm population.
The population of personal best solutions are shown in black.

2D Rastigrin Function with swarm at GEN=180
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(a) Generation 180

2D Rastigrin Function with swarm at GEN=224
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(b) Generation 224

Figure 3.9: Evolution of the Rastrigrin solutions through the lifetime of swarm population.
The population of personal best solutions are shown in black.
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3.3 Summary

This chapter reviewed the fundamentals of the optimization technique utilized for this
work. The mathematical basis for the optimization routine, particle swarm optimization,
was explored. The next chapter will discuss, in specifics, the multiple systems which had
to be used to construct the approach utilized.





Chapter 4

Background

This chapter provides an overview of the different systems that are required to coop-
erate with one another in order to determine the validity of the developed approach.
These systems included the ALGE hydrodynamic code, Rochester Institute of Technol-
ogy’s WASP instrument, and an oblique imaging system. Enhancements and modifications
were required of all systems in order to employ them in this work. Additionally, the data
validation site is discussed.

4.1 ALGE hydrodynamic model

ALGE is a three-dimensional (3D) hydrodynamic model developed at the Savannah River
National Laboratory as part of the Multi-spectral Thermal Imager (MTI) project [11].
ALGE was developed, using thermal imagery, to simulate power plant discharge waters
into cooling lakes and other free surface water bodies (cooling canals, direct discharge to
rivers, and oceans). Situations in which ice formation occurred were not considered in
the earlier versions of the code. Originally, the inputs for ALGE, by definition, included
physical parameters which describe the three-dimensional hydrodynamic and thermody-
namic states of a body of water, the meteorological conditions at a given time, and the
cooling pond bathymetry [13]. The outputs from the ALGE model included a surface and
volume temperature distribution as well as a three-dimensional velocity flow map of the
given body of water.

Recent work has been completed to validate the extension of the ALGE model to
generate ice and snow when the water body is in a cold climate [12]. The ice and snow

23
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(a) Simulated thermal structure dur-
ing freeze-up

(b) Simulated thermal structure dur-
ing warm-up

Figure 4.1: ALGE surface temperature predictions for the Midland Cogeneration Venture
cooling pond in Midland, MI using historical weather information. Blue indicates colder
temperatures and red indicates warmer temperatures. Solid, dark blue areas represent
areas covered with well formed ice.

extension added a snow thickness parameter as an additional input into the model. As a
result of this extension, the ALGE model now also produces an ice thickness distribution.
Figure 4.1 depicts simulated surface temperature maps for a pair of ALGE model runs
for the same pond depicting the effects of varying weather conditions on the thermal
distribution observed for the surface waters. A significant difference between total amount
of ice coverage is evident with a larger portion of the pond covered by ice during the freeze-
up period. While a larger area of the pond is ice-free during a warm-up period, there is
still an almost discrete transition between the water and ice boundary layer.

The ALGE code optimizes the mass flow rate prediction for a given lake and weather
conditions by incrementally changing the power generation facility’s operating parameters.
The rate at which the thermal waste is discharged into the pond can be used in subsequent
engineering process models to predict operating power levels for the power generation site
[9]. A predicted thermal plume is produced for each combination of parameters and is
compared to the observed thermal plume image. The parameters used to produce the
thermal plume prediction that best matches the observed thermal plume are designated
as the hypothesized plant operational parameters. The comparison process is depicted
below in Figure 4.2.
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Figure 4.2: Data workflow for ALGE comparison process. A user selected combination of
inputs generated simulated ice, temperature, and flow velocities that are then compared
to calibrated thermal imagery and observed ice cover fractions for validation.

4.2 Operating ALGE

In order to execute an ALGE simulation a series of input files, which adhere to strict
FORTRAN formatting rules, need to be generated. Even though some of the information
is spatial in nature (e.g pond layout and bathymetry), these input files are limited to the
form of text files. Each of the input files required are listed below with a description.
Sample ALGE input files can be found in Appendix P.

• param.dat

– This file contains all the simulation variables that are not temporally or spatially
dependent. These variables include the number of nodes in the horizontal and
vertical directions, the total simulation time, the temporal resolution, snow
thickness, etc. The total list of variables is too long to list here and the reader
is referenced to Appendix P for a complete listing.
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• idepth.dat

– This file specifics the depth of the body of water being simulated and is laid out
as a grid of positive values. Each value represents the depth in units specified
by the user. A depth of 0 means ground level, while any other positive value is
the depth of the water column. The dimensions of the grid are dictated by the
number of nodes in both the horizontal and vertical direction, as specified by
the user in the param.dat file.

• igrid.dat

– This file specifies the layout of the body of water being simulated and is orga-
nized as a grid of positive values. A value of 1 indicates the presence of water, a
value of 0 indicates no water, a value of 7 indicates the heat discharge location,
and a value of 6 indicates the location of the fluid intake. The dimensions of
the grid are dictated by the number of nodes in both the horizontal and vertical
direction, as specified by the user in the param.dat file.

• flow.dat

– A file containing temporally varying flow rate data for the cooling pond. This is
simply a text file with as many lines required to satisfy the time requirements of
a simulation. Each line contains a single floating-point value which represents
the flow rate of the heat discharge into the cooling pond at some desired time
increment. The total number of lines is determined by dividing the total time
of simulation required by the time increment.

• deltat.dat

– A file containing the temporally varying temperature differential across the
cool water intake and hot injection points. This is simply a text file with as
many lines required to satisfy the time requirements of a simulation. Each
line contains a single floating-point value which represents the temperature
difference in degrees at some desired time increment. The total number of lines
is determined by dividing the total time of simulation required by the time
increment.
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• sfc.dat

– A file containing temporally varying surface meteorological conditions which
match the temporal resolution of the simulation. This file is a series of columns
of data. These parameters are total hours of simulation, wind direction, wind
speed, air temperature, dew point, cloud fraction, cloud height, pressure, snow
emissivity, date, and time.

• dimar.inc

– This file contains references to parameters set in the param.dat file for FOR-
TRAN array definition.

• snd.dat

– This file contains sounding data for the upper air. These variables are temper-
ature and perceptible water. ALGE expects the values in 12 hour intervals and
uses a cubic spline to generate hourly data.

• peramp.dat

– This file contains tidal forcing data (which has no variation for pond modeling).

• seadens.dat

– This file contains containing water density values as a function of temperature
and salinity.

• srsfl2.dat

– If the modeled cooling pond has a secondary mass source (such as a river or
stream), this file contains the flow data for this secondary source.

Once all of the input files are created and in one directory, the required FORTRAN files
are compiled and executed from a terminal. Feedback from the ALGE routine regarding
its progress can be viewed from the terminal or redirected to a log file as the process runs
in the background. Upon completion of the model execution, several files will have been
created containing the results. All results are stored in text files. The results contain
information about the vertical temperature profiles through the columns of water, ice
thickness and location, and the fluid velocity at a given position. Each of these output
files contains the results data organized into arrays the size of the user-defined grid. The
arrays are appended one after another with each increment of simulation time. In order
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to extract an exact time, day, or depth, the user must know the total simulation time, the
temporal resolution, and the grid size used to model the environment.

A suite of tools were created for the express purpose of interfacing with output files
produced by the ALGE model. These tools are command line scripts written in IDL that
allow a user to extract either the entire time series of resulting data or only a subset of
specific points in simulation time. The resulting data is written out as standard TIFF
image that can then be further processed. Additionally, tools were created for extracting
pertinent information from the resulting imagery, such as the ice extent for a given point
in time. All of these tools are documented in Appendix S.

4.3 RIT WASP system

RIT’s Wildfire Airborne Sensor Program (WASP) instrument, shown in Figure 4.3, is a
multiple sensor aerial mapping system with broadband coverage in the infrared and visible
spectrum. The sensor was built by the RIT Digital Imaging and Remote Sensing Labora-
tory (DIRS). WASP utilizes direct georeferencing hardware and processing techniques to
create orthorectified imagery on-the-fly as the sensor is flown over the target scene.

(a) WASP sensor head (b) WASP computer racks

Figure 4.3: WASP sensor in laboratory.
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Originally designed as a wildfire detection and mapping system, WASP was built
with three 640x512 pixel infrared cameras covering 0.9 -1.7µm, 3-5µm and 8-9.2µm; this
spectral coverage allows the use of a multispectral technique for positively detecting the
presence of a wildfire in the imaged scene. Each infrared (IR) camera has a 25 micron pixel
pitch and a lens with an approximate focal length of 25mm. The system also carries a
4000x2672 pixel RGB camera with a 9 micron pixel pitch and 50mm lens [16]. Each cam-
era’s optical system is stabilized for flight conditions and is geometrically modeled for lens
distortion, principle point offsets, and focal length. To enable the creation of orthophotos
by direct georeferencing, an Applanix POSAV-310 is utilized to record attitude informa-
tion during the mission’s flight. The Applanix’s Litton LN-200 inertial measurement unit
(IMU) is rigidly mounted to the camera frame assembly and boresight alignment angles
for each camera are applied to generate exterior orientation parameters for each exposure
station. Boresight angles for each camera are developed through a traditional bundle ad-
justment process utilizing highly-overlapped imagery, flown over a surveyed control point
field or using a custom built calibration cage [16].

All imagery and metadata from the mission flight are recorded by a rack-mounted
computer system on solid state removable media allowing for a service ceiling of at least
20,000 feet (tested) and high reliability without the use of specialized sealed hard drive
enclosures. The WASP automated data processing computer (ADP) has the ability to
orthorectify imagery on-the-fly as its collecting, utilizing real-time exterior orientation
solutions calculated by the POSAV-310 and an archived digital elevation model of the
area. Real-time generated orthophotos typically tie together acceptably for tactical appli-
cations and are absolutely accurate to about 4 meters RMS. The raw recorded data can be
further refined in a post-processing workflow directly yielding georeferenced orthophotos
absolutely accurate to better than 0.5 meters RMS [16].

4.3.1 WASP Sensor Blackbodies

The midwave infrared (MWIR) and longwave infrared (LWIR) array cameras on the WASP
system are inherently susceptible to changes in environment that manifest as radiometric
non-uniformities in the collected imagery. Most commercial IR camera systems provide
mechanisms to perform uniformity corrections in a fixed environment; these procedures
are not practical when applied to a constantly changing environment onboard an aircraft.
As part of this work, two thermoelectric plate blackbody reference sources were added to
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the system to address these issues. During a typical flight, the calibrators are moved to fill
the field-of-view of the camera and imaged at two temperatures that bracket the expected
temperatures in the scene to be mapped, typically at the beginning and end of each
flight line. Imagery and temperatures gathered during the calibration process are used to
post-process imagery from the MWIR and LWIR cameras to perform a non-uniformity
correction and calibrate the images to sensor reaching radiance. The blackbody sources
and their configuration on WASP are shown in Figures 4.4(a) and 4.4(b).

(a) Both blackbody sources (b) AutoCAD image of WASP with black-
bodies

Figure 4.4: Shown on the left in Figure 4.4(a) are the blackbody reference sources that are
mounted on the WASP sensor head. Shown on the right in Figure 4.4(b) is an AutoCAD
rendering of the WASP sensor head with the two blackbody reference sources mounted.

4.4 Ice coverage camera

The extent of ice coverage on the cooling pond was a significant parameter to observe.
Due to weather restrictions on flight feasibility during winter months, a stationary camera
system with a fisheye lens was constructed and mounted on the roof of the main power
plant facility building. A Sigma fisheye lens was mounted onto a Nikon D50 digital SLR
and used to capture a time series of the cooling pond from this high vantage point. This
camera system was capable of producing a 180◦ FOV image of the cooling pond in a single
exposure. The methodology used to extract the ice extent from the resulting distorted
images is described in Section 5.1.3.
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4.5 Data validation site

The Midland Cogeneration Venture (MCV) in Midland, MI was chosen as the validation
site for this research. MCV is a gas-fired power and steam cogeneration facility. The plant
operates with a baseline power load of 200 MW to supply steam to a nearby industrial
facility and has the ability to spike to 1500 MW based on grid demands. The facility
uses both cooling towers and a cooling pond to serve its cooling requirements. The waste
heat injected into the cooling pond ranges from 200 to 500 MW. The cooling pond is a
man-made water body and covers an area of 3.7 km2 (880 acres). The average depth of
the pond is approximately 30 feet, with a large reserve reservoir near the cold water intake
at a depth of 60 ft. Figure 4.5 is an aerial image of the MCV facility.

Figure 4.5: Aerial view of MCV facility and cooling pond. Power facility is located on
the northern end of the pond with a concrete berm separating the hot out flow on the left
from the cold intake on the right.

This particular site satisfied a unique set of conditions that proved to create an ideal
area of study. In order to collect the appropriate validation data for the ALGE ice forma-
tion modification, the site was required to freeze during the winter. Typically, industrial
cooling ponds are designed to be immune to freezing in an effort of maximize the cooling
efficiency of the pond. When ice forms on the surface of the pond it leads to conductively-
driven cooling, a significantly slower cooling process than convective heat loss. However,
MCV was originally intended as a nuclear power plant and would have required a large
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cooling pond to be able to effectively cool the proposed amount of rejected waste heat in
the pond. Due to lack of funds, regulatory issues, and construction problems, the plant
was converted to a gas-fired plant after 85% of the original construction had been com-
pleted - including the construction of the cooling pond. Because the power load generated
by the gas-fired plant is significantly lower than the projected power load of the nuclear
plant, the waste heat entering the pond is not significant enough to maintain an ice-free
body of water during the winter months.

4.6 Summary

This chapter reviewed the three different systems that will be merged together to execute
the implemented approach aimed at improving the modeling of a cold climate environment.
These systems included the imagery collection platform, hydrodynamic modeling code, and
the ice coverage camera system. Additionally, the ground site chosen for model validation
was identified. The next chapter will discuss the methodology which implemented all these
systems to complete this research.



Chapter 5

Methodology

The following chapter will walk through the data collection campaigns and the steps
taken to build the PSO-ALGE architecture. Each of the systems used for the ground
truth campaign are outlined as well as their exploitation. Extensive work was performed
to investigate how to appropriately evaluate an ALGE simulation and compare simulation
results to actual observations. The PSO architecture and how ALGE was implemented to
run within the RIT Research Computing (See Appendix Q.2.

5.1 Data collection

A large scale, multi-year data collection campaign was executed in order to accomplish the
validation of the ALGE ice and snow extension. These campaigns yielded a database of
seven ground-truthed, calibrated, thermal datasets of the power plant facility in Midland,
MI. These aerial data sets provided some of the empirical data to be used for the opti-
mization’s functional evaluation. Data campaigns were carried out across two winters from
November of 2008 to April of 2010. The collected ground-based data was used to calibrate
the acquired thermal imagery. When weather became a limiting factor in flying the WASP
sensor, digital aerial images of the pond were acquired using a Canon DSLR camera by a
pilot in the Midland, MI area. The stationary camera system that was mounted on the
roof of the main power plant facility building continuously monitored the ice extent across
the pond. These ancillary images proved indispensable for fortifying the ice coverage data
set. Additionally, sets of buoys were designed, built, deployed, determined to have failed,
re-designed, and deployed again over the course of the two winters. While the original
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purpose of the buoys was to continually collect data on the thermal conditions in the
cooling pond, the results from these systems collected over both winters were not used in
the final workflow. However, the experience in managing these assets led to many insights
into quality measurement taking in extreme weather conditions. Appendices I.1 and I.2
describe these systems and their modifications.

5.1.1 Autonomous weather station

A single weather station was located near the hot water injection point at the power
plant. The weather station was constructed entirely from Campbell Scientific products
and remained unchanged throughout both winters except for the addition of a second solar
panel during the 2009-2010 winter. A Campbell Scientific CR3000 datalogger queried all
individual weather modules at 30-second intervals and recorded averages or instantaneous
values, depending on the module, at five-minute intervals. All recorded data was stored
into data files that were transmitted twice daily (noon and midnight) via a cellular modem
imbedded in the system. Data recorded by the weather station included air temperature,
relative humidity, precipitation amount, wind speed, wind direction, shortwave irradiance,
longwave irradiance, and barometric pressure. The constructed weather station is shown
in Figure 5.1.

Figure 5.1: Weather station constructed on the northern shore of the MCV cooling pond
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5.1.2 Manual ground truth collection

Due to the strong dependence of ground truth collection on favorable weather conditions,
a RIT ground team was stationed in Midland, MI at all times for the duration of the
2008-2009 experiment period. During the first winter all ground truth measurements were
made from an airboat in order to minimize the chance of any personnel injury on thin ice
regions of the lake. The airboat offered the unique ability to not only maneuver on water
but also on ice. In lieu of making ice and snow measurements from the boat, transects of
data were also collected by walking onto the ice from the shore of the cooling pond.

(a) (b)

Figure 5.2: Photos from ground truth campaign. Figure 5.2(a) shows a team member
measuring water temperatures with a thermistor. Figure 5.2(b) shows the airboat used
for data collection.

During the second winter data campaign, the RIT ground team traveled between RIT
and Midland when weather permitted. Due to more reliable buoy instrumentation, there
was little interaction required by the team to maintain the equipment in working order.
The team worked from a pontoon boat for the entirety of the winter and relied on buoy-
derived ice thickness estimations.

Data collected by the ground truth team included localized relative humidity, water
surface temperature, and bulk water temperature. All ground truth measurements were
made from a boat and were recorded immediately following the collection of aerial imagery.
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It was not advisable to collect surface temperatures concurrently with the flight due to the
thermal influence the boat would have on the surface temperatures of the exposed water. It
was assumed there was approximately a one-hour window following the imagery collection
where any collected surface temperatures were valid. Bulk temperature measurements
were made with both a contact thermistor mounted on a styrofoam float and an Omega
HH41 temperature probe. Surface temperatures were observed using both an Omega
OS36 infrared radiometer and a Heitronics KT19.82 infrared radiometer. Positioning
information was recorded using a handheld Garmin E-Trax GPS and localized weather
data (i.e. relative humidity and wind speed) was collected using a handheld Kestrel 4000
weather meter.

5.1.3 Ice cover estimation

To facilitate the collection of ice extent data, irregardless of flight conditions, a camera sys-
tem was designed and installed on the roof of the main power plant facility building. This
system incorporated the use of a fisheye lens to capture a 180◦ FOV image of the cooling
pond in a single exposure. The resulting images had geometrical distortions introduced
by the lens. To acquire the necessary parameters to remove the geometric lens distortion,
a calibration cage maintained by the DIRS research group at RIT was imaged. A block
bundle adjustment was performed to solve for focal length, symmetric radial distortion,
and de-centering distortion. The results of this adjustment were applied to the rooftop
images using a program written in IDL. Each pixel was transformed onto a new grid based
on the distortion coefficients. The image was then interpolated back onto a regular grid
using a radial basis function [4]. An example of this process is shown in Figure 5.3. The
pixels in the distortion free image that contain ice or water were identified by hand using
the ROI tool within ENVI as shown by Figure 5.4.

In order to determine the area of each pixel from the undistorted image, the location of
the horizon needed to be found in each image. The distance from the center of the image
to the horizon was found using edge detection. A region of interest (ROI) is drawn which
contains the horizon. Within this region a “rake” of vertical lines are created. The points
which contain the strongest falling edge (from bright sky to dark horizon) were found and
then used to find the horizontal best fit line as well as the angle of the line relative to the
x-axis. This process was implemented in the Labview environment. The geometry of the
image and its content are shown in Figure 5.5(a).
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(a) Original from roof-top. (b) After de-fish process

Figure 5.3: Original image captured from roof-top with processed version with geometrical
distortions from fisheye lens removed. It should be noted that pixels near the edges of
image begin to exhibit correction errors. This is due to low point density of calibration
grid at the edge of the FOV.

Figure 5.4: Ice and water pixels have been identified with two different ROI’s. Water is
tagged as blue, ice as red.

To convert each pixel into a unit of area three things needed to be known: the height of
the camera relative to the pond surface (H ′), the focal length of the lens (f), and the true
depression angle (θ). The true depression angle was measured from the camera’s optical
axis to the true horizon line. The geometry is shown in Figure 5.5(b).

H ′ was found by comparing the height of the building to the pond surface using a
hand-held GPS unit. The focal length was an output of the lens correction routine. The
true depression angle, θ, was calculated using equations and a process described by Wolf
[27]. Once H ′ and θ were found, these parameters were used to rotate and translate the
image so that the center/origin of the image aligned with true horizon and was parallel to
the x-axis. For each pixel the lengths along the vertical (∆y) and horizontal (∆x) sides



38 CHAPTER 5. Methodology

X 

Y 

O 

K’ 

Horizon 

Tangent Line 

(a) Horizon geometry

θ′

True horizon 

Apparent horizon 

dθ

Focal Length 

H’ 

Image Plane 

(b) Side-view geometry

Figure 5.5: Tangent line needed for calculations of scale shown in 5.5(a). Length OK ′

and the angle of the tangent line relative to the X-axis are needed. Side view of principle
plane of the oblique photograph shown in 5.5(b).

were calculated in pixel units from two of the image’s corners. Both lengths (∆x, ∆y)
were projected into the world plane and translated into arbitrary world coordinates (see
Equations 5.2 and 5.3). It should be noted that the pixel shape was distorted from a square
into a polygon. However, since the camera height was small relative to most airborne
scenarios, the error introduced into the area calculation was assumed to be negligible.
The area was now found by Equation 5.1.

A = ∆X ·∆Y (5.1)
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∆X = ∆x
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cos2θ

)
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In order to determine the accuracy of this implemented approach, two data sets rep-
resenting the best and worst case scenarios were compared. The results extracted using
the oblique images were compared to ice cover estimation values calculated from overhead
nadir imagery captured by the WASP system on the same days and are show in Table
5.2. Images collected on 24 February 2009 show most of the pond uniformly covered in
ice and therefore allows the user to create accurate ROIs in both the nadir and oblique
images; this data set represents the “best case scenario”. Imagery collected on 4 March
2009 illustrates a variable ice distribution on the lake surface. This type of ice distribution
is difficult to distinguish in the oblique imagery as the majority of the exposed water is
obscured by the perspective and represents a “worst case scenario”. Figure 5.6 shows each
day used in the comparison as both an oblique image, a nadir LWIR image, and a nadir
LWIR image with the open water ROI selected.

Date Image Type Total Area [acres] Water Area [%] Ice Area [%]

02/24/09
Oblique 853.570 7.62 92.34
Nadir 853.810 9.28 90.71

Difference 0.02% 1.76 1.63

03/04/09
Oblique 853.722 52.01 47.99
Nadir 854.182 43.71 56.29

Difference 0.05% 8.3 8.3

Table 5.1: Pond Area Comparison (oblique vs. nadir)

Indicated by the results in Table 5.2, the approach performed well. For the ideal
conditions occurring on the 24th of February, both the open water and ice coverage es-
timations derived from the oblique imagery deviated from the same estimations derived
from nadir imagery by 1.76% and 1.63%, respectively. Calculations performed on data
from the “worse case scenario” day, the 4th of March, still only show a percentage dif-
ference of 8.3% for both calculations. Considering the approach used, the small errors in
estimation were considered more than acceptable and this technique was used to collect
ice cover estimations.
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(a) 2/24/09 - Oblique (b) 2/24/09 - Nadir LWIR (c) 2/24/09 - Nadir LWIR with
open water ROI

(d) 3/04/09 - Oblique (e) 3/04/09 - Nadir LWIR (f) 3/04/09 - Nadir LWIR with
open water ROI

Figure 5.6: Images used in comparison and error metric calculations. Left-most image
shows de-fished fisheye images. Middle images show nadir captured LWIR images used to
select the open water ROIs for error comparison.

5.1.4 Calibration of WASP imagery

An ad-hoc calibration technique was chosen for the thermal calibration of WASP flights
over the MCV site. A review of this type of method is in Appedendix B.2. A detailed
description of the how this technique was implemented for this application is in Appendix
E. It should be noted that this technique could have been applied in a way as to skip
the conversion of digital counts to radiance space. The implication of that choice being
there would be a direct relationship established to measured ground temperature and the
digital count observed at the sensor. The removal of a radiance conversion from the process
would reduce the amount of calculated error in the calculated temperatures. However, in
the interest of implementing a sensor-based radiance calibration that would increase the
abilities of the WASP sensor to perform other data acquisition campaigns, a process was
put in place to produced calibrated sensor-reaching radiance images. The code written to
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accomplish the calibration can be found in Appendix R.

5.2 Evaluation of ALGE simulations

To determine the validity of an ALGE calculated simulation, the surface temperature
distributions and ice coverage estimations generated by ALGE needed to be compared
against calibrated LWIR data collected by the WASP sensor as well as ground and aerial-
based observations of ice coverage (categorized as image-derived information). In order
to fully implement this comparison, a metric was developed to determine the quality of a
given simulation output when compared to the image-derived information.

In previous optimization approaches, the RMS (root mean squared) error was calcu-
lated using every point in the water body in both the simulated and actual imagery [14].
This metric produced a single RMS value for a given comparison between a simulation
and an actual image. However, the current version of ALGE has been extended to be
operational in cold-climate conditions. As a result, ice and snow can occupy portions of
a simulated body of water. The introduction of ice and snow into the scene removes the
possibility of an image-to-image direct comparison because of the emissivity differences
introduced by the ice and snow. In order to derive a comparison metric, a new, modified
RMS solution was proposed and compared to a standard RMS solution. Both approaches
are applied to thermal and ice coverage data to evaluate the model’s ability to produce
valid surface temperature distribution estimations and valid ice coverage estimations. For
each calibrated thermal image a collection of geo-referenced temperature points are col-
lected from each acquired thermal image to serve as the collection of observed thermal
measurements. Ice coverage values were derived from all possible imagery sources and
served as the collection of observed ice coverage values.

5.2.1 Root Mean Squared Error (RMSE)

The equation to calculate the RMS error for a set of observed (Oi) and expected (Ei)
values is shown below in Equation 5.4 where N is the total number of samples. A RMS
error value can also be normalized, RMSnorm, by dividing the quantity by the range of
observed values, shown in Equation 5.5. The resulting value will range from 0 to 1 and
represent the amount of residual variance in the data set. The lower the normalized RMS
value, the less residual variance in the set and the better the simulated values match the
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observed values.

RMS =

√∑N
i=0 (Ei −Oi)2

N
(5.4)

RMSnorm =
RMS

Omax −Omin
(5.5)

While a normalized RMS error value will indicate the level of relative variance that a
given simulation has as compared to other simulations, the value itself is susceptible to
outliers in the observed population. If an extreme value exists on either end of the observed
range, the denominator in the RMSnorm calculation becomes large and reduces the range
distribution of calculated normalized RMS values. Also, since there is no restriction on
the data sets using this metric, it is possible the denominator could be calculated as zero.

5.2.2 Modified Root Mean Squared Error (M-RMSE)

Similar to a standard RMS error calculation, the described quantity uses the difference
between the expected and observed values of a model to determine how well the given
model describes the observed behavior of a system. This technique was developed and
tested specifically for this work under the motivation to avoid a situation where the quan-
tity would have a denominator of 0. The new metric is shown in Equation 5.6 where
Ei(Equation 5.7) and Oi(Equation 5.8) represent the de-meaned, N-element time series
for both the expected and observed values, respectively.

RMSmod =
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2
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)
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i=0

(
E

2
i +O

2
i

) (5.6)

Ei = Ei −
∑
Ei
N

(5.7)

Oi = Oi −
∑
Oi
N

(5.8)

The modifications to the standard RMS calculation to produce Equation 5.6 bounds
the possible values for RMSmod between -1 and

√
2. In addition, RMSmod can never

have a denominator equal to 0, unless the time series being examined are both zero at all
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elements. It is important to note that the middle term in the numerator of Equation 5.6
represents the correlation coefficient for the two sets. If the observed and expected data
is uncorrelated, the numerator reduces to the denominator and produces a metric value
of 1. If the two data sets are perfectly correlated then the entire quantity reduces to 0.

5.2.3 Application to data sets

Data was collected over two winters and has produced 7 quality, calibrated thermal images
of the Midland Cogeneration Venture (MCV) cooling pond. In addition there are 14 days
during the first winter and 25 days during the second winter where the percentage of the
total ice coverage was observed either from aerial imagery or from stationary imagery
collected using a roof-mounted camera. Because the goal of the ALGE simulation is to
accurately model the conditions of a given environment throughout the entire winter, a
given simulation will be compared to all data collected within a winter. For example, if the
ALGE model is run for the 2008-2009 winter season, water comparisons will be made for
each day simulated that correspond to a day for which there exists observation data (i.e.
the 3 days worth of calibrated thermal imagery collected during that winter). In addition,
the modeled ice coverage will be compared at 14 simulation days that correspond to the
dates of collection for the observed ice coverage data.

Data Type Winter 2008-2009 Winter 2009-2010

Imagery

16 February 2009 12 February 2010 (day)
24 February 2009 12 February 2010 (night)

4 March 2009 4 March 2010 (day)
4 March 2010 (night)

Ice Fraction 14 days 25 days

Temperature Pts. 2900 over 4 days 1324 over 4 days

Table 5.2: Overview of data sets for both winter collection campaigns

Two different calculations were performed for each modeled winter: one for the water
temperature distributions and one for the ice coverages. These calculations were repeated
using both the standard RMSE and the modified-RMSE metrics. The two parameters
that were used to determine the validity of a given simulation are as follows:

1. the ALGE-modeled temperature distribution at the water surface compared to the
observed temperature distribution of the pond by the LWIR sensor, and
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2. the ALGE-modeled percentage of total lake area that is covered with ice compared to
the observed percentage of ice coverage observed by the WASP sensor, ground-based
observations, and aerial handheld observations.

5.2.4 Metric calculation for water temperature

For a given simulation, the observed data set, Owater, was a set of temperatures for each
comparison day and is defined in Equation 5.9, where K was the total number of points
in the set. Each set was comprised of temperatures chosen based on pre-determined
geographical coordinates. Similarly, the expected data set, Ewater (defined in Equation
5.10), was a set of temperatures extracted from the simulated thermal imagery at the same
geographical locations on the same day as the corresponding thermal imagery was acquired.
The set of pre-determined coordinates were generated using tools within ENVI to extract
point information from the thermal imagery. The set for the first winter contained a total
of 2900 points collected from all 3 LWIR images. The set for the second winter contained
a total of 1324 points collected from all 4 LWIR images. Each set of points was chosen to
exclude any locations where ice is observed in the WASP imagery. Figure 5.7 shows an
example data set with the selected temperature points.

Figure 5.7: WASP image collected 10 March 2010 with collected temperature points over-
laid.
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Owater = [Tobs,1, Tobs,2, Tobs,3, . . . , Tobs,K ] (5.9)

Ewater = [Test,1, Test,2, Test,3, . . . , Test,K ] (5.10)

With these data set definitions, the de-meaned versions were calculated as follows
(Equations 5.11 and 5.12).

O
′
water = Owater −

∑K
k=0Owater,k

K
(5.11)

E
′
water = Ewater −

∑K
k=0Ewater,k

K
(5.12)

The modified-RMS metric, RMSmod,water is calculated was shown in Equation 5.13.
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√√√√√
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The standard RMS metric, RMSnorm,water was calculated as shown in Equation 5.15.
The standard RMS calculation did not use the de-meaned version of the expected and
observed datasets.

RMSwater =

√∑K
k=0 (Ewater,k −Owater,k)2

K
(5.14)

RMSnorm,water =
RMSwater

Owater,max −Owater,min
(5.15)

5.2.5 Metric calculation for ice coverage

To apply the metric to ice coverage, the observed data set, Oice, was a the set of ice cov-
erage percentages observed either from handheld aerial, mounted aerial, or roof camera
imagery throughout the winter. The expected data set, Eice, was the modeled ice cover-
age percentages from the ALGE simulation that correspond to the observation days. J

represented the total number of point sets in the population.
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Oice = [Pobs,1, Pobs,2, Pobs,3, . . . , Pobs,J ] (5.16)

Eice = [Pest,1, Pest,2, Pest,3, . . . , Pest,J ] (5.17)

With these data set definitions, the de-meaned versions are calculated as follows (Equa-
tions 5.18 and 5.19).

O
′
ice = Oice −

∑J
j=0Oice,j

J
(5.18)

E
′
ice = Eice −

∑J
j=0Eice,j

J
(5.19)

The modified RMS metric, RMSmod,ice is calculated as shown in Equation 5.20.
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The standard RMS metric, RMSnorm,ice is calculated as shown in Equation 5.22.
The standard RMS calculation does not use the de-meaned version of the expected and
observed datasets.

RMSice =

√∑J
j=0 (Eice,j −Oice,j)2

J
(5.21)

RMSnorm,ice =
RMSice

Oice,max −Oice,min
(5.22)

5.2.6 RMS Metric comparison

The impact of both the observed parameters (temperature conditions and ice coverages) on
the overall thermodynamic environment was investigated in order to evaluate both metrics’
responses to changes in the parameters. A simulation was completed using known plant
operational data, observed meteorological data, and a simple snow coverage model (10 cm
blanket) for the 2008-2009 winter. The resulting simulated ice fractions demonstrated a
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reasonable correlation with measured ice fractions as shown in Figure 5.8.

Figure 5.8: Comparison of simulated and measured ice fractions using measured environ-
mental and plant data from the 2008-2009 winter.

Because of this demonstrated correlation, confidence was given to the simulated data,
allowing it to be used for further investigation of metric behavior. The waste heat load
from the plant was varied for additional simulations to determine the relationship between
simulated ice fraction and the heat load being injected into the cooling lake. The heat
load, Q, was varied at levels of 0%, 50%, 150%, 200%, 250%, and 300% of the measured
load. Both RMS metrics were calculated for the ice fraction and surface temperature data
resulting from the different simulations. Figures 5.9 and 5.10 show the results from the
2008-2009 and 2009-2010 season simulation data, respectively.
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(a) Water comparison

(b) Ice comparison

Figure 5.9: Metric sensitivity to 2008-2009 data set. RMSmod,ice and RMSmod,water
represent the metric data using the modified RMS method while RMSnorm,ice and
RMSnorm,water represent the metric data using the traditional RMS calculation.
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(a) Water comparison

(b) Ice comparison

Figure 5.10: Metric sensitivity to 2009-2010 data set. RMSmod,ice and RMSmod,water
represent the metric data using the modified RMS method while RMSnorm,ice and
RMSnorm,water represent the metric data using the traditional RMS calculation.
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An ideal metric response to each data set would show the lowest metric value occurring
at the 100% waste heat load level and produce increasingly higher values as the waste
heat load is increased from this baseline value. Additionally, it would be expected that
the simulation at 50% waste heat load would produce a worse simulation than the 100%
level simulation and thus would have a higher metric value. From the results displayed in
Figures 5.9 and 5.10, one can see this behavior is observed to an extent, however, neither
metric performs ideally. In both seasons, however, the traditional RMS metric was more
aligned with the expected result.

Based on the observed metric results for simulations completed at different waste heat
loads, the traditional RMS metric performed slightly better than the modified RMS metric.
As a result, this metric approach was implemented in evaluating a given simulation during
the optimization process.

5.2.7 Metric combination

The two resulting metric values, for ice fraction and surface temperature, separately quan-
tify how the model compared to both the observed temperature conditions and ice cover-
ages. In order to implement this functional evaluation into an optimization routine, either
these two values need to be combined into a single value or only one value needs to be
chosen to be representative of the accuracy of a simulation. A simple linear combination is
proposed in the event both metrics are required to describe the accuracy of a simulation.
This linear combination is shown in Equation 5.23, where α and 1−α represent weighting
factors.

Rtotal = (α)RMSwater + (1− α)RMSice (5.23)

5.2.8 Metric weighting

The average ice coverage for each simulation was calculated and compared to the corre-
sponding average waste heat load for the simulation duration. This comparison is shown
in Figure 5.11. Additionally, for each simulation performed at different waste heat levels,
the average water temperature was compared to the average air temperature via a dif-
ferencing function. This temperature difference was compared to the average waste heat
load simulated in the cooling pond. This comparison is shown in Figure 5.12.
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Figure 5.11: Comparison of average simulated ice fraction to waste heat load. Each point
represents the average simulated ice fraction for an entire winter simulation.

Figure 5.12: Comparison of average difference between average water temperature and air
temperature to waste heat load. Each point represents the average difference between the
two temperature values for an entire winter simulation.
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The observed relationships between the average waste heat load into the body of
water and the two parameters are both nearly linear, while exhibiting an almost quadratic
behavior at the tail. However, the relationships are inversely related to one another. From
a physical standpoint, this inverse correlation is expected. As the average temperature of
the water being injected into the pond increases with an increased waste heat load, the ice
would recede further from the injection point in the pond, producing a positive correlation
between waste heat and temperature and a negative correlation between waste heat and
ice fraction.

As a result, it can be concluded that insight into both the thermal distribution and ice
coverage parameters for a particular simulation are of equal importance when evaluating
a simulation. The same level of confidence can be drawn from a simulation comparison
performed by examining either the temperature distribution or the ice fractional coverage,
or a straight combination of them where both parameters are equally weighted.

5.3 Correlation between ice extent and heat load

While the implementation of a PSO-driven ALGE model represents the majority of the
work in this document, it is important to remember that the main ambition of the ALGE
model is to model the thermodynamic conditions of a cooling pond to an acceptable level
of accuracy in cold climate conditions. The confidence in this accuracy and the resulting
ALGE outputs ultimately yield the information necessary to infer the current working
conditions of a power plant facility. From this perspective the insight gained and described
in Section 5.2.8, as well as work presented in Garrett et al. [12], are significant.

Upon completion and validation of the cold climate extension to ALGE, Garrett et
al.[12] investigated the relationship between the average heat load injected into a cooling
pond and the resulting average ice coverage over the simulated winter time periods. The
data collected at the Midland site was used to execute 5 simulations where meteorological
conditions were held constant. The heat load, Q, that the model injected into the cooling
pond was varied from 0%, 50%, 100%, 200%, and 300% and generated synthetic data for
the ice coverage at these different conditions. Figure 5.13 shows the temporal variation in
ice coverage for the duration of simulation time for each heat load condition.

As indicated in Figure 5.13, when the heat load is brought to 0% the cooling pond
maintains a constant ice coverage for the majority of the winter as expected. Conversely,
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Figure 9 compares computed time series of ice cover for 5 simulations:  baseline case with measured (100%) heat load 
(Q) from Midland power plant and 10 cm of snow cover, and same conditions but with 50%, 200%, 300% and 0% of 
heat load (Q).  When there was no heat load (Q=0), the lake stayed completely ice covered during the entire winter 
season. Increasing Q to 300% greatly reduced the average amount of ice cover, but significant ice cover of about 50% 
was predicted during the coldest weather in January. 
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Fig. 9. Sensitivity of ice coverage to rate of heat discharge (Q) to lake. Q ranges from 0% of actual heat load to 50%, 

1000%, 200% and 300% of Q.  

These results are summarized in Figure 10, which plots the relationship between Q and average ice cover. For the period 
from December 1, 2008 to March 22, 2009 the baseline simulation (Q = 100% of actual heat load) average ice cover is 
56%. The 0% Q simulation produced an average ice cover of 96%, a 50% Q simulation produced an average ice cover of 
75%; 200% Q simulation produced an average of 20% and 300% Q dropped the average ice cover down to 6%.. 
Simulated ice cover thus ranges from near zero to almost 100% for the entire winter season when the heat load is varied 
by a factor of three.  
 
The response of the simulated ice cover to the change in Q is large enough to indicate that average ice cover is a fairly 
robust indicator of average power. The relationship is also nearly linear. These results suggest that although ice 
formation and melting on a power plant cooling lake in a cold climate is a highly nonlinear combined 3-D hydrodynamic 
and thermodynamic problem, the relationship between average ice cover and Q and weather is fairly simple and nearly 
linear.  The simplicity of the feedback between ice cover and Q may be attributable to the negative feedback loop 
between heat transfer from the lake to the atmosphere and ice cover. Ice drastically reduces evaporative and sensible heat 
losses from the lake surface to the air. So, as ice cover increases, the lake’s ability to lose heat rapidly decreases, which 
drives the lake temperature up. As ice cover decreases, heat losses increase, which drops the lake temperature and 
prevents further decreases in ice cover. This feedback thus tends to stabilize the ice-cover at some intermediate value 
between ice-free and completely ice covered. This feedback may also explain why the simulated ice cover is fairly 
unresponsive to changes in snow cover (see Figure 3), i.e. snow cover affects only the ice-covered part of the lake, 
where heat transfer is small even without snow. For the period from December 1, 2008 to March 6, 2009 the average 
heat flux from the parts of the lake with no ice cover was 5.6 times larger than the average heat flux from the ice-covered 
parts of the lake. Thus, even though on the average 56% of the lake was covered by ice during the winter, the ice-
covered part of the lake contributed only a small fraction of the total heat loss, and so its sensitivity to the insulating 
effect of snow cover was greatly reduced. The stabilizing negative feedback described here between ice-cover and heat 
loss from the lake surface is similar to a stabilizing feedback that has been postulated for Arctic Ocean ice cover11. 
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Figure 5.13: Comparison of temporal ice fractional coverage for each heat load condition.

when the heat load was set to 300% the cooling pond stayed relatively ice free, with the
exception of a very cold period of time during the middle of winter. The relationship
between the average heat load and the average ice fractional coverage is shown in Figure
5.14.

The nearly linear connection demonstrated between the heat load and ice coverage
further indicates that the ice coverage is generally a robust indicator of the average power
being generated by the power facility for the duration of the winter. Garrett et al. [12] go
on to attribute this simple correlation to the negative feedback loop that exists between
the heat transfer from the lake to the atmosphere and the ice cover, despite the highly non-
linear 3-D thermodynamic and hydrodynamic relationship used to describe the melting
and freezing. In combination with the Section 5.2.8 results, these results support the
position that the ice fraction is a valid observable for model performance validation due
to the linear relationship between that and heat load.

It is because of this established linearity that the ice fractional coverage is used as
the sole driving validation parameter in the PSO-ALGE simulations. This conclusion has
interesting repercussions for the practical application of this work. Because the ability of
a simulation to accurately model a given environment can equally be evaluated by either
comparing thermal data or observed ice fractional coverage, the presence of quality thermal
image data is not necessarily required to assess the validity of a simulation. Therefore, the
model may be evaluated when the only data available is visible imagery. It is important to
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Fig. 10. Average simulated ice cover over MCV cooling lake as a function of Q.  

 
 
The 5 instrumented buoys RIT deployed at different locations on the Midland cooling lake measured profiles of water 
and ice temperature that can be compared to ALGE simulations. Since these are point measurements (unlike the ice 
coverage, which is an integral quantity), the degree to which these data are representative of the part of the lake that they 
were located in is unknown. RIT found that the automated method for measuring ice thickness at Shiva and Surya 
stations often differed from hand measurements by 30 to 40%. The Shiva station was located fairly close to the cooling 
water intake, which is the coldest and iciest part of the lake. Figure 11 compares the time series of measured ice 
thicknesses at Shiva to the results of 4 simulations which used different combinations of 3 or 10 cm snow depth and 
empirical or one dimensional longwave radiation transfer 1D LWIR) models. The simulations that used 3 cm of snow 
produced the best agreement with measurements earlier in the time series but did worse than the simulations that used 10 
cm of snow late in the simulations. Based on these results, it appears that simulated ice thickness is more sensitive to 
snow cover than the ice area, although the greater uncertainty of the automated ice thickness measurements and the fact 
that these are point measurements (rather than area-integrated) makes this conclusion more tentative. Unlike the ice 
cover results, the simulated ice thicknesses were not sensitive to the type of downwelling thermal radiation model. 
 
Figure 11 shows that there was a sudden decrease in measured and simulated ice thickness at Shiva around February 
9. This event was the result of a sudden increase air temperature from below freezing to about 5°C that was 
accompanied by strong winds. The strong winds increase the rate of transfer heat from the air to the ice surface, thus 
speeding the rate of melting. If the wind direction is from the warmer part of the lake to the colder (ice-covered) part 
of the lake, then a second mechanism acts to increase the rate of melting. In this situation, the winds increase the 
speed of the current that carries above freezing water underneath the ice. During the period from February 7 to 10, 
above-freezing air temperatures combined with strong winds to cause melting from above and below the ice layer. 
As a result, the measured ice thickness dropped to zero, and all 4 simulations predicted much thinner or no ice. 
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Figure 5.14: Comparison of average heat load and average ice fractional coverage for each
heat load condition.

note however, that this assumption assumes some knowledge of the temperature differential
between the intake and output point of the cooling pond. For these experiments, this
information was measured and known. For the proposed application to work in absence
of thermal data, the temperature differential would have to be an optimized parameter.

5.4 Application of PSO to ALGE

In a traditional ALGE implementation, a user sets up a single simulation using input
files, executes the code, and allows the simulation to run. The results produced from the
simulation are compared to validation data derived from an image source (or sources).
Depending on how well the model performed, the original input parameters are either
accepted or changed. In an effort to create a more systematic and efficient approach in
validating an ALGE simulation, PSO was applied to the parameter selection for the ALGE
model. ALGE simulations were instantiated to run for simulation times representing entire
winters. Inside the particle swarm optimization (PSO) paradigm, some input parameters
for an ALGE simulation were generated via the evolutionary optimization process and
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some were pulled from constant parameter sets. Simulations were evaluated using real data
that, due to the environmental challenges of cold weather data collection, was collected at
sparse and irregular intervals.

5.4.1 Optimizing parameter choice

In order to determine which ALGE input parameters contained the uncertainty that
needed to be reduced via PSO optimization, all inputs were examined. The possibilities
included the meteorological conditions, the plant operation parameters, or both. There
are challenges and limitations to all three choices, as well as different ways of approaching
how to optimize the parameters.

As meteorological conditions are temporal in nature, they can be extremely variable
and difficult to model. If a parameterized function exists which can model these conditions,
then the variables defining this function become the parameters of each particle. The
bounding values for these parameters are generated by the physical limitations on the
environment. If there is not a functional basis that describes the meteorological variation,
a scaling parameter has to be used to increase or decrease an entire time series of data by
a defined multiplier. For example, one could say they want to vary the air temperature
and wind speed within a range ±15% from a baseline approximated time series of those
variables. The parameters to be optimized in the PSO scheme would be the two scalar
weights for both weather variables. The solution space would be bound by ±15%.

The plant parameter inputs to the ALGE model are also temporal. These inputs in-
clude the temperature differential across the injection and intake sites in the pond, as well
as the flow rate of the effluent used to dissipate heat into the cooling pond. When exam-
ining an entire winter, at hourly simulation intervals, these inputs become approximately
a 2,600-element time series with each value representing either the flow rate or temper-
ature differential at a given point in simulation time (24 hours/day x 108 days/winter).
Similar to the meteorological conditions, if these inputs can be modeled using some type
of parameter-driven function, the number of these parameters become the dimensionality
of the solution space. However if these variables are inherently related to one another,
then modeling them accurately requires this correlation to be accounted for, resulting in
an arduous task.
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5.4.2 Temporal input averaging

In an already complex modeling environment, the PSO engine was only allowed to control
a single parameter for a given simulation, the temporal flow rate for the modeled cooling
pond’s heated effluent. For clarity, it is important to highlight that while the flow rate
is in fact a single parameter from the perspective of the ALGE model, it is not a single-
dimensional parameter from the PSO perspective. For ALGE the flow rate is an array
of values representing the time series of flow rates for the desired amount of simulation
time. For example if a simulation was created to run for 300 hours of simulation time
the input expected by the ALGE model would be a text file containing 300 values, each
one representing the flow rate per hour. Thus, the flow rate is a single input parameter
for ALGE. Inside the PSO paradigm, the flow rate is a multi-dimensional parameter that
defines a particle. The flow rate cannot be represented by a single value; it is a temporal
series of data. Given the example mentioned previously, if nothing is done to either
parameterize or distill the flow rate, each particle in the swarm would be defined by 300
parameters (or flow rate values), one for each hour of simulation time. Because a particle’s
dimensionality is analogous to the dimensionality of the solution space, it is clear that a
reduction in dimensionality would be advantageous.

In order to simplify the solution space, as well as create more comprehensible results,
an averaging technique was implemented to reduce the number of parameters required
to describe the temporal flow rate or temperature differential. The high temporal reso-
lution input data was downsampled and averaged in the process. Figure 5.15 is a plot
demonstrating the temporal averaging technique. The data plotted in black are the flow
rate fluctuations actually occurring in a cooling pond for the duration of a winter and is
the 2,600-element time series referred to previously. The red line represents the average
flow rate, calculated every 144 simulation hours. The averaging process reduces what was
possibly a 2,600-dimensional space to a 20-dimensional space. With this shift, the swarm
of particles that would be created would be defined by only 20 parameters, versus 2,600.
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Figure 5.15: High resolution flow rate (black) plotted with the average flow rate (red)
using an approximate 6-day window. This average flow rate plotted here is not a re-
sult of the PSO process. This data is included to help illustrate the temporal averaging
implementation and implications.

The time interval for averaging is determined by the characteristics of the problem set.
A balance must be met between the number of parameters to optimize versus an adequate
windowing to accurately represent the fluctuating flow rate. An increase in the number of
windows used increases the dimensionality of the solution space to be searched. If too few
windows are chosen, the averaged flow rate will not accurately reflect the actual conditions
of the cooling pond and will yield poor simulation results. The balance was reached using
user experience and intuition.

Once a window size is determined, the average flow rate is calculated over the amount
of time contained within the average window and then assigned to each temporal point
contained within that window. Each flow rate value, repeated for the entirety of a step
(or window) in the plot, becomes a parameter for a given particle. For this particular
example, the total amount of simulation time, divided into 144 hour increments, yields 20
different averaging windows (or steps). A particle for this application would be defined
by 20 parameters, each of whose value would represent the flow rate at the corresponding
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windowed time. Each iteration of a particle would have different values assigned to each
of the 20 averaging windows derived from the success of the particle in its previous history
and the swarm’s overall history. A similar method can be applied to the temperature
differential across a cooling pond. For the test cases, the meteorological and temperature
differentials were held constant at their observed values.

5.4.3 Convergence condition

To determine the validity of an ALGE simulation, the ice coverage estimations generated
by ALGE were compared to ground and aerial-based image observations of ice coverage.
The exclusion of the temperature comparisons from the swarm processes is supported
in Sections 5.2.8 and 5.3. Originally, a swarm was considered to have converged if all
of the personal best solutions achieved by each particle produced a metric value within
±1 · 10−4 of the best globally achieved RMS value. However, upon inspection of the
progress of each swarm, it was decided that this original goal, considering the problem
set being attempted, was a far too aggressive convergence parameter. The constraints for
convergence were relaxed to allow convergence to be declared once all the best particle
solutions achieved metric evaluations within ±1 · 10−2 of the global best.

5.4.4 Implementation of PSO-ALGE on computing cluster

Because of the parallel nature of PSO, the workflow to perform the optimization process
was implemented on a high performance computing cluster. Process drivers were con-
structed to initiate ALGE runs as swarms of particles (See Appendix Q.2). For example,
a swarm of 16 particles in this application would take the form of 16 separate ALGE
runs, each initialized on a different processing node of the computing cluster. Each one
of the ALGE simulations would be initialized with input parameters that were randomly
selected based on the bounding parameters of the solution space. Each of the 16 simula-
tions would complete and then be evaluated using the functional metric. The simulation
which produces the closest match to the observed data, as determined by the metric, is
designated the global best solution in the whole swarm. For the first generation, every
solution represents its own personal best solution. Based on the positions in the solution
space of the globally best achieved solution and the swarm’s personal best solutions, the
velocity vectors are calculated using Equation 3.1. The velocity vector is added to each
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solution’s current position in the solution space to create the next generation of input
parameters.
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Figure 5.16: Graphical representation of the PSO optimized ALGE algorithm as imple-
mented on a computing cluster

5.5 Summary

This chapter walked the reader through the methodology applied to implement a PSO-
driven ALGE optimization. The acquisition of all empirical data and the instruments
used were detailed. In order to evaluate the success of a given ALGE simulation, a new
approach to validation was developed to account for the ice formation now possible in the
cold climate environment. Using the developed metric as the functional evaluation, ALGE
was implemented using a PSO architecture on a high performance computing cluster. A
custom set of analysis tools were created to process the results and interface with the PSO
algorithm. The next chapter will outline the test cases created to pilot this methodology
by applying it to real and synthetic data sets.





Chapter 6

Results

This section presents the results from the PSO optimization of ALGE. The optimization
was tested for both the 2008-2009 and 2009-2010 winter data sets, as well as shorter
simulation times to investigate the required validation interval and the swarm approach
repeatability.

6.1 Initial optimization results

With each swarm there is a plethora of data produced that needs to be distilled to de-
termine the success or failure of the simulations produced. An ideal success for a swarm
would be for all solutions (or particles) to produce an average flow rate that matches the
actual measured flow rate. A simulated flow rate that matches the observed average would
produce simulated ice fractions that demonstrate high correlation with observed values.

Each of the swarms consisted of 16 different particles, or ALGE simulations, whose
parameters were the windowed flow rate averages for the corresponding winter. A particle
in a generation represents a set of flow rate parameters for a single ALGE simulation.
Each particle had 20 parameters, each parameter is the flow rate for a segment of 144
simulation hours (approximately a week). For both winters, this definition resulted in a
20-dimensional solution space bound by an upper and lower limit of 25.0 m3

s and 8.0 m3

s ,
respectively. These bounds were determined based on user interaction with the data set.
In future applications these values would be characteristic of the problem set being solved.
Each swarm was initialized to allow for up to 250 generations to be processed.

The ice fraction data that was used for the simulations of both the 2008-2009 and

61
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2009-2010 winters is shown in Table 6.1. Duplicate days represent multiple observations
recorded at different times for the given date.

Winters 2008-2009 Winter 2009-2010

Date Ice Fraction Date Ice Fraction Date Ice Fraction

12/18/08 0.72 12/18/09 0.33 02/07/10 0.76

01/15/09 0.90 12/21/09 0.32 02/08/10 0.77

01/26/09 0.75 12/24/09 0.44 02/11/10 0.65

02/02/09 0.52 12/30/09 0.34 02/11/10 0.66

02/03/09 0.69 01/07/10 0.94 02/11/10 0.66

02/04/09 0.59 01/10/10 0.94 02/12/10 0.63

02/05/09 0.75 01/12/10 0.87 02/15/10 0.65

02/06/09 0.67 01/15/10 0.74 02/18/10 0.54

02/09/09 0.44 01/18/10 0.41 02/23/10 0.46

02/10/09 0.44 01/21/10 0.59 02/28/10 0.22

02/16/09 0.00 01/23/10 0.39 03/04/10 0.17

02/24/09 0.91 01/27/10 0.32 03/04/10 0.17

02/25/09 0.71 01/30/10 0.42 03/04/10 0.12

03/04/09 0.56

03/13/09 0.00

Table 6.1: Observed ice fraction values for both the 2009-2009 and 2009-2010 winters

Using the ice metric evaluation, the 2008-2009 swarm converged after 18 generations
and ran a total of 288 ALGE simulations. While actual individual computational time
varied depending on the computing resource acquired for a given simulation, the average
ALGE simulation required 7 hours to complete. To generate the results, approximately
2,016 hours of cumulative computational time were required, or 84 days. However, due
to the parallel nature of PSO, 16 simulations were running simultaneously at any given
time. The actual processing time was 126 hours, or 5.25 days. Analogously, the 2009-2010
swarm converged after 47 generations and ran a total of 752 ALGE simulations. These
simulations represent 5,264 hours of cumulative computational time, or 219 days. Under
the parallel processing paradigm, the actual processing time was approximately 329 hours,
or 13 days.



6.1. Initial optimization results 63

6.1.1 Winter 2008-2009 Results

Shown in Table 6.2 are the simulated ice fraction results from the best achieving particle
during it’s initial and final generation for the 2008-2009 swarm. These ice fractions are
compared to the observed values and evaluated using a standard RMS metric at each
generation. The last row of the table shows the initial and final RMS calculation for this
particular particle in these generations. The metric values behaved as expected. The
swarm was designed to converge on a solution producing the lowest metric value out
of the entire population. However, the improvement in correlation between the initial
optimization-driven ice fractions and the final values was small.

Date Observed Initial Final

12/18/08 0.72 0.84 0.75

01/15/09 0.90 0.90 0.96

01/26/09 0.75 0.91 0.88

02/02/09 0.52 0.69 0.62

02/03/09 0.69 0.73 0.67

02/04/09 0.59 0.79 0.70

02/05/09 0.75 0.88 0.83

02/06/09 0.67 0.83 0.78

02/09/09 0.44 0.52 0.53

02/10/09 0.44 0.50 0.45

02/16/09 0.00 0.12 0.22

02/24/09 0.91 0.95 0.98

02/25/09 0.71 0.66 0.84

03/04/09 0.56 0.66 0.67

03/13/09 0.00 0.00 0.00

RMS Metric Value 0.126 0.111

Table 6.2: Simulated ice fractions from the best achieving particle’s initial and final gen-
erations for the 2008-2009 winter.

The reason for the small gain made by the optimization is evident when one examines
where the swarm began and where it finished. The linear correlation between the simulated
ice fractions and observed values, shown in Figure 6.1, were calculated for both the first
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and final solutions. It is evident that the swarm did not converge on a significantly better
solution because the initial solution was randomly initialized to a relatively good solution.
The initial solution produced ice fractions that had high correlation with the observed
values. The swarm did not have a lot of error to reduce in the solution. Additionally,
despite having a very low RMS value for both the initial and final states of the simulation,
the resulting “optimized” flow rate was a very poor candidate solution.

(a) Initial simulation ice fractions (b) Final simulation ice fractions

Figure 6.1: Correlation between the observed and simulated ice fractions for the best
particle in the first and final generations of the 2008-2009 winter simulations.

An ideal solution will produce an average flow rate that mirrors the average flow rate
observed. Figure 6.2 shows two plots illustrating the average flow rate used to produce the
first and final simulations for the best particle. As indicated by these plots, there is little,
to no, similarity between the true averaged flow rate and the swarm produced flow rates,
despite the low RMS values when comparing the simulated and observed ice fractions.
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(a) Initial simulation flow rate (b) Final simulation flow rate

Figure 6.2: Comparison of the averaged flow rate used to produce both the initial and
final simulations for the swarm’s best solution. The true average, derived from known
plant parameters, is shown in blue while the swarm results are shown in red. And ideal
solution would produce an averaged flow rate matching the true average.

6.1.2 Winter 2009-2010 Results

Shown in Table 6.3 are the simulated ice fraction results from the best achieving particle
during it’s initial and final generation for the 2009-2010 swarm. These ice fractions are
compared to the observed values and evaluated using a standard RMS metric at each
generation. The last row of the table shows the initial and final RMS calculation for
this particular particle in these generations. Once again, only a small gain was made
by the optimization. From the linear correlation between the simulated ice fractions and
observed values, shown in Figure 6.3, it is evident that the swarm did not converge on
a significantly better solution. The optimized solution did not offer much improvement
over the initial, randomized solution. Again, an ideal solution will produce an average
flow rate that mirrors the average flow rate observed. Below, in Figure 6.4, are two plots
showing the flow rate used to produce the first and final simulations for the best particle.
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As indicated by these plots, there is little, to no, similarity between the true averaged flow
rate and the swarm produced flow rates.

Date Observed Initial Final Date Observed Initial Final

12/18/09 0.33 0.53 0.47 02/07/10 0.76 0.89 0.79
12/21/09 0.32 0.36 0.36 02/08/10 0.77 0.96 0.87
12/24/09 0.44 0.30 0.34 02/11/10 0.65 0.83 0.61
12/30/09 0.34 0.94 0.65 02/11/10 0.66 0.86 0.56
01/07/10 0.94 0.79 0.71 02/11/10 0.66 0.78 0.51
01/10/10 0.94 0.91 0.96 02/12/10 0.63 0.79 0.48
01/12/10 0.87 0.80 0.90 02/15/10 0.60 0.69 0.37
01/15/10 0.74 0.61 0.67 02/18/10 0.54 0.63 0.26
01/18/10 0.41 0.57 0.56 02/23/10 0.46 0.47 0.11
01/21/10 0.59 0.59 0.54 02/28/10 0.22 0.41 0.11
01/23/10 0.39 0.78 0.68 03/04/10 0.17 0.35 0.09
01/27/10 0.32 0.61 0.36 03/04/10 0.17 0.34 0.63
01/30/10 0.42 0.96 0.82 03/04/10 0.12 0.32 0.58

RMS Metric Value INITIAL: 0.276 FINAL: 0.172

Table 6.3: Simulated ice fractions from the best achieving particle’s initial and final gen-
erations for the 2009-2010 winter.

(a) Initial simulation ice fractions (b) Final simulation ice fractions

Figure 6.3: Correlation between the observed and simulated ice fractions for the best
particle in the first and final generations of the 2009-2010 winter simulations.
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(a) Initial simulation flow rate (b) Final simulation flow rate

Figure 6.4: Comparison of the averaged flow rate used to produce both he initial and final
simulations for the swarm’s best solution during the 2009-2010 winter. The true average,
derived from known plant parameters, is shown in blue while the swarm results are shown
in red. And ideal solution would produce an averaged flow rate matching the true average.

6.1.3 Overall conclusions from initial simulations

When one examines how all the particles in the 2008-2009 and 2009-2010 swarms behaved,
all the particles did converge to similar solutions while reducing the convergence parameter.
Shown in Figures 6.5 and 6.6 are comparison plots illustrating all the particle flow rates
for each swarm from both the beginning and end of the swarm’s life for the respective
winters. Each individual red line is a single particle’s flow rate. The entire swarm of
particle-specific flow rates are overlaid on top of one another other to demonstrate the
initial spread in the data and the convergence to approximately the same flow rate. The
true average flow rate is shown in blue. The initial generation of flow rates for both
winters’ swarms spanned the entire range of possible flow rates and were random. As the
swarms progressed, the solutions in each swarm converged to similar averaged flow rates,
but not the true averages. If these swarms were to have performed perfectly, all of the
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plotted red lines would have laid nearly, if not directly, on top of the blue average lines.
The demonstrated behavior indicates that the swarms are performing as expected, but
the model results being produced were not adequate.

(a) Initial simulation flow rate (b) Final simulation flow rate

Figure 6.5: Comparison of all the flow rates used to produce both the initial and final
simulations for the entire swarm during the 2008-2009 winter. The true average, derived
from known plant parameters, is shown in blue while the swarm results are shown in red.
And ideal solution would have all the swarm produced flow rates converging to match the
true average flow rate.

A theory was formed that the inability of the PSO-ALGE system to converge on rea-
sonable solutions using these swarms was tied to the initialization of the swarm and the
downstream impacts on the thermodynamic conditions being modeled. The initialization
states potentially hindered the swarm’s ability to recover to a reasonable flow rate solution
through the evolution of the population because the starting flow rates were so erratic.
The radical change from one temporal averaging window to the next in the initial flows
imply that the flow rate of heated water effluent from the power plant changed dramati-
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(a) Initial simulation flow rate (b) Final simulation flow rate

Figure 6.6: Comparison of all the flow rates used to produce both the initial and final
simulations for the entire swarm during the 2009-2010 winter. The true average, derived
from known plant parameters, is shown in blue while the swarm results are shown in red.
And ideal solution would have all the swarm produced flow rates converging to match the
true average flow rate.

cally after being held constant for a considerable amount of time. Not only was the change
dramatic, but it spanned the entire range of possible flow rates. While in reality the power
plant being modeled did have rapid fluctuations in flow rate, the total range of flow rates
was much smaller and the fluctuations were on an hourly scale. The true average rate did
not fluctuate wildly or widely. The swarms were initialized in states that did not mimic
true ground conditions and created difficult and potentially unstable thermodynamic con-
ditions. Additionally, the possible range of flow rates averaged to approximately the true
average flow rate in the cooling pond. Because of the work completed by Garrett et al
[12] and described in Section 5.2.8 that demonstrated the strong correlation between sim-
ulated ice fraction and average seasonal heat load, the average answer from these erratic
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flow rates would still generate an ice correlation with a relatively low RMS error.

6.2 Swarm initialization impact

In order to investigate the theory that the swarm initialization conditions had a significant
impact on the overall outcome, a 2009-2010 swarm was re-run under different start-up
conditions. The initial flow rates were forced to conform to a distribution of lower mean
and markedly smaller variance. The hypothesis supporting this decision was that a more
controlled initialization state would allow each of the particle’s candidate ALGE solutions
to spin up to a reasonable thermodynamic state without introducing a memory issue into
the ice formation that would ultimately be hard to recover from. Shown in Figure 6.7 are
the initialization states for each particle in the re-run swarm.

0 500 1000 1500 2000
Time [hours]

0

10

20

30

40

F
lo

w
 r

at
e 

[m
3 /s

]

True Flow
True Average
Swarm Flows
Swarm Average

(a) Initial simulation flow rates
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(b) Final simulation flow rates

Figure 6.7: Initial and final flow rate distribution for the trial swarms for the 2009-2010
data set. This swarm was initialized at a lower mean flow rate and a smaller variance to
help mitigate the initialization failures of the previous full winter simulations.

Both of these swarms converged to successful solutions and performed noticeably better
than initial simulations. Shown in Figure 6.8 are the differences in linear correlation
between the simulated and observed ice fractions for the initial and final swarms under
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the new start up conditions.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure 6.8: Comparison of initial and final ice fraction correlations for the re-run 2009-
2010 swarm. This swarm was initialized at a lower mean flow rate and a smaller variance
to help mitigate the initialization failures of the previous full winter simulations.

As seen in these results, the initialization states were significantly different than the
original swarm attempts. All initial flow rates were forced to a mean of approximately 8
m3

s with a variance of approximately 1 m3

s . This average flow rate was significantly lower
than the true known average, denoted by the dotted blue line in Figure 6.7. The final
converged solution, while not identical to the known flow rate, produced an average flow
rate within approximately 12%. An adequate solution is required to be within 10% of
the true value [10].

6.3 Sparse validation data theory

A second trial was run to investigate the effect of sparser validation data on the overall
performance of the swarm and the quality of the simulations produced. For this applica-
tion, the time interval between validation data points is analogous to the time difference
between image acquisitions. Using the same setup conditions implemented for the pre-
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vious re-run 2009-2010 data set, a second re-run trial swarm was created using a subset
of the validation data. The use of the subsetted validation data set created a condition
where there were extended periods of time between collection intervals. While the time
between collection points for the original dataset varied from 1 hour to a few days, this
subsetted data set was forced to have a minimum of 12 days in between validations points.
The resulting flow rates and ice fraction correlations are shown in Figures 6.9 and 6.10,
respectively.
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Figure 6.9: Initial and final flow rate distribution for the trial swarms for the 2009-2010
data set with a sparser validation data set.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure 6.10: Comparison of initial and final ice fraction correlations for the sparse valida-
tion data swarm.

As seen in Figure 6.10, the swarm was able to converge onto a solution that produced
good ice fraction correlations. However, the average flow rates (shown in Figure 6.9) that
generated those good correlations deviated from the true average flow rate by approxi-
mately 29%. The deviation from the implied performance from the metric and the actual
performance indicated by the average flow rate is potential evidence of a “breaking point”
in the metric. The ramifications of a “breaking point” translate to an insensitivity in the
metric to detect a convergence failure at a given validation interval. The effect of this
observation was the creation of a sparse validation data theory to describe the potential
limitation of the approach as a practical application. This finding was not unexpected.

Insight into the existence of a metric weakness would be valuable due to the likelihood
of intermittent data collection in real world operations. In the full winter swarm imple-
mentations, each windowed average flow rate is allowed to vary throughout the duration
of a simulation, irregardless of the presence of observation values. An assumption is made
that the flow rate at a point in time prior to and after the validation point is bound by the
governing thermodynamic equations and laws inherent to the ALGE model. While this
assumption most likely holds true for a system with very little or gradual variation, it may
not remain true for a dynamic system that can change rapidly on an hourly time scale with
sparse validation data sets. The full winter ALGE simulations were composed of approx-
imately 2,600 hours worth of simulation time. While environmental and thermodynamic
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properties changed at the hourly rates, each winter simulation was supplied 20-30 points
in time, collected at inconsistent intervals, to validate the model state. Given the high
variability in the plant operating parameters, there was a desire to analyze the conditions
where the temporal interval between validation data points was sparse and whether it
would allow for too much freedom in parameter optimization of a highly dynamic system.

6.3.1 Sparse validation data experiment

An experimental approach was designed and executed to determine the effect of sparse
image validation data. To reduce as much uncertainty as possible, shorter simulations
were created using both collected and manipulated plant and meteorological conditions.
The sparse validation theory was tested by measuring a swarm’s ability to converge to a
solution at varying validation intervals under constant flow rate conditions. The validation
interval refers to the simulation time allowed to lapse between two points in the simulation
period where the simulated ice fraction is compared to the image-derived, observed ice
fraction. Again, in reality this validation data is derived from acquired imagery and the
validation interval refers to the time lapse between collection. For these experiments,
the image-derived observations were replaced with simulated ice fractions. Constant flow
rate conditions imply that the flow rate of the simulated facility was held constant for
the duration of the simulation. The meteorological conditions act as the only influencing
factor on ice formation.

Nine swarms were started using the same initial conditions, however, the validation
intervals were varied from every 1 hour to every 576 hours (24 days). The original exper-
imental design did not anticipate the requirement to explore validation intervals beyond
72-hours and resulted in a limiting simulation duration of two weeks. Preliminary results
indicated a need to investigate longer validation intervals and as a result an additional
constant flow rate condition simulation was created. For the first simulation, the heat
effluent flow rate was held at a constant 20.7m

3

s and the air temperature was manipu-
lated to induce two “melt and freeze” periods over a two week timeframe in December
of 2008. The second constant flow rate condition simulation was constructed, using the
same constant 20.7m

3

s flow rate, however it spanned four weeks of simulation time during
February 2009. Additionally, the air temperature was not manipulated to force “melt and
freeze” periods during longer the simulation. The hourly ice fractions resulting from the
simulations were treated as the observed ice fractions, or truth, and replaced the actual
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acquired image-derived ice fractions for the PSO attempts. It was assumed that at more
condensed validation intervals, the PSO approach would perform better. Similar to the
full winter simulations, the temporal averaging technique was employed to limit the di-
mension of the solution space for each swarm. To avoid the random initialization of the
first swarm solutions to good solutions, starting flow rates for all instances were forced to
have a significantly lower mean rates.

6.3.2 Sparse validation data results

Shown in Figures 6.11-6.19 are the differences in the linear correlations of observed and
simulated ice fractions for both the initial and final solutions generated by the PSO swarms
for each of the different validation intervals. The red plotted line and the associated
correlation data overlaid in the plot are derived from the correlation between the simulated
and observed data. The green dotted line is a perfect one-to-one line with a zero intercept.
These two lines are displayed to illustrate that while the correlation can be high for a data
set, it does not necessarily mean a one-to-one correspondence. The only variation is the
validation interval used in the convergence metric, which would represent the collection
interval between image observations.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure 6.11: Comparison of initial and final ice fraction correlations for the 1-hour valida-
tion interval.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure 6.12: Comparison of initial and final ice fraction correlations for the 12-hour vali-
dation interval.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure 6.13: Comparison of initial and final ice fraction correlations for the 24-hour (1
day) validation interval.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure 6.14: Comparison of initial and final ice fraction correlations for the 48-hour (2
day) validation interval.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure 6.15: Comparison of initial and final ice fraction correlations for the 72-hour (3
day) validation interval.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure 6.16: Comparison of initial and final ice fraction correlations for the 120-hour (5
day) validation interval.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure 6.17: Comparison of initial and final ice fraction correlations for the 168-hour (7
day) validation interval.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure 6.18: Comparison of initial and final ice fraction correlations for the 288-hour (12
day) validation interval.
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(a) Initial ice fraction correlation

R
2
 = 1.000

y = 0.21

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

S
im

ul
at

ed
 Ic

e 
F

ra
ct

io
ns

Data correlation
One-to-one line

(b) Final ice coverage correlation

Figure 6.19: Comparison of initial and final ice fraction correlations for the 576-hour (24
day) validation interval.

Each of the validation intervals perform satisfactory under the constant flow rate con-
ditions, however, the convergence metric alone does not indicate how successfully a given
swarm performed. Shown in Figures 6.20-6.28 are comparisons between the initial and
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final swarm flow rates produced for each validation interval.
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(a) Initial flow rates
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(b) Final flow rates

Figure 6.20: Swarm flow rates for constant flow rate conditions and 1-hour validation
interval.
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(a) Initial flow rates
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(b) Final flow rates

Figure 6.21: Swarm flow rates for constant flow rate conditions and 12-hour validation
interval.
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(a) Initial flow rates
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(b) Final flow rates

Figure 6.22: Swarm flow rates for constant flow rate conditions and 24-hour (1 day)
validation interval.
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(a) Initial flow rates
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(b) Final flow rates

Figure 6.23: Swarm flow rates for constant flow rate conditions and 48-hour (2 day)
validation interval.
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(a) Initial flow rates
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(b) Final flow rates

Figure 6.24: Swarm flow rates for constant flow rate conditions and 72-hour (3 day)
validation interval.
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(a) Initial flow rates
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(b) Final flow rates

Figure 6.25: Swarm flow rates for constant flow rate conditions and 120-hour (5 day)
validation interval.
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(a) Initial flow rates
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(b) Final flow rates

Figure 6.26: Swarm flow rates for constant flow rate conditions and 168-hour (7 day)
validation interval.
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(b) Final flow rates

Figure 6.27: Swarm flow rates for constant flow rate conditions and 288-hour (12 day)
validation interval.
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(b) Final flow rates

Figure 6.28: Swarm flow rates for constant flow rate conditions and 576-hour (24 day)
validation interval.

As the validation interval grows, the average converged swarm flow rates drifts from
the true average flow rate, beginning at the 288-hour (12 day) interval. The dispersion
pattern in the data, away from the true, desired average, is directly related to the freedom
allowed to the flow rate as the validation interval became larger. Segments of the flow
rate that remain unchecked for longer periods of simulation time are susceptible to larger
variance due to the randomness inherent in the PSO process. The natural randomness of
PSO allows a swarm to adequately search a large solution space. However, if a parameter
has no data for comparison and is only weakly related or responsive to the behavior of
neighboring parameters, then it will merely behave randomly. Because parameters in this
application are actual flow rates, this randomness, and its associated increase with lack of
validation, directly affect the ice formation and ultimately the outcome of the candidate
solution.

It is reasonable to assume that there are bounds within which the validation interval
can shift and the resulting flow rates will remain restricted by the thermodynamic and fluid
dynamic rules imposed by the ALGE model. Shown in the data presented above in Figures
6.11-6.28 and Table 6.4, that this boundary occurs between the 168- and 288-hour (7-12
days) intervals. At the 1-hour through the 168-hour (7 day) intervals, the convergence
metric and the resulting flow rates all behaved as expected and produced satisfactory ice
coverage fractions and simulation flow rates. These simulations were considered to have
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Validation Interval [Hours] Initial Corr. Final Corr. Initial RMS Final RMS

1 0.623 1.000 0.760 0.005
12 0.715 0.988 0.665 0.006

24 (1 day) 0.689 0.999 0.673 0.017
48 (2 days) 0.704 0.997 0.660 0.049
72 (3 days) 0.717 1.000 0.847 0.020
120 (5 days) 0.790 1.000 0.631 0.022
168 (7 days) 1.000 1.000 0.558 0.034
288 (12 days) 0.681 0.926 0.626 0.306
576 (24 days) 1.000 1.000 0.904 0.418

Table 6.4: Ice coverage correlation values and RMS error metrics between the simulated
and observed ice fractions. These values are representative of the initial and final states
of the converged solutions.

behaved as expected because the resulting simulated average flow rates were within an
acceptable amount of error from the true average. At the 288-hour (12 day) and 576-hour
(24 day) intervals, the solutions converged onto average flow rates that are significantly
displaced from the true average flow rates. While the RMS metric values for these last
two intervals continue to indicate that the swarms had produced adequate simulation
parameters, the yielded flow rates had larger variance and no longer recreated the true
average flow rates within an acceptable margin of error. An argument can be made that
the “breaking point” of this approach actually is dependent on the acceptable error in
the flow rate estimation. However, the observed variation in flow rate at this boundary
point, coupled with the fact that the metric was insensitive to the poorer results, further
illustrates that the “breaking point’‘ occurs between the aforementioned hourly intervals.
Additionally, this corroborates the observed results from the subsetted full winter run
discussed in Section 6.2 and shown in Figures 6.9 and 6.10. The simulated data used to
generate those results had a validation set with an interval minimum of 12 days between
data points and resulted in less than adequate flow rate estimates.

6.4 Swarm Repeatability

The randomness inherent to the PSO process generated a question as to the repeatability
of a swarm. In order to determine if the initialization conditions of a given swarm could
be relied upon to create the same convergence parameters repeatedly, the 12-hour interval
swarm, under constant flow rate conditions, was repeated 12 times. The initial and final
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RMS error values between simulated and observed ice fractions for each swarm repetition
is shown below in Table 6.5.

Swarm Num. Initial Final Num. of Gens.

1 0.706 1.000 98
2 0.715 1.000 98
3 0.711 1.000 98
4 0.710 1.000 98
5 0.691 1.000 98
6 0.715 0.988 31
7 0.698 0.998 26
8 0.705 1.000 22
9 0.698 0.997 19
10 0.704 0.999 29
11 0.726 1.000 20
12 0.711 0.998 16

Table 6.5: Initial and final RMS error between simulated and observed ice fractions for
the repeatability swarms. The number of generations indicates the number of swarm
generations required to achieve convergence.

Each swarm instance was able to successfully converge onto accurate ice coverage esti-
mates. It can be seen that the first group of swarms took considerably longer to converge
(98 generations versus 20-30). The discrepancy between these convergence times was the
result of an aggressive convergence condition for the first few swarms. Initially the swarms
1-5 were run and only allowed to converge if all of the personal best solutions achieved by
each particle produced a metric value within ±1 · 10−4 of the best globally achieved RMS
value. This was a mistake during the setup of the swarms for reasons addressed in Section
5.4.3. The constraints for convergence were relaxed to allow convergence to be declared
once all of the best particle solutions achieved metric evaluations within ±1 · 10−2 of the
global best for swarms 6-12. With this difference taken into account, these results indicate
that the swarm results are reliable and repeatable. For completeness, the accompanying
flow rate and ice coverage correlation plots are included in Appendix O.

6.5 Summary

This chapter presented results from several different experiments aimed at exploring the
effectiveness and limitations of the PSO-ALGE architecture. Original results indicated
that satisfactory results had a dependency on the initialization parameters the swarm
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conditions. Subsequent swarm runs led to an investigation into the impact varying valida-
tion intervals had on simulation performance and accuracy. These investigations yielded
the identification of a “breaking point” at which the data collection interval becomes too
wide to expect adequate simulation results. Additionally the repeatability of a swarm
applied to ALGE was tested and determined to be reliable.





Chapter 7

Summary and Conclusions

The ultimate motivation for the work presented here was to improve the accuracy of the
ALGE thermodynamic model when modeling cooling ponds in cold climates through the
introduction of a novel parameter optimization technique, particle swarm optimization.
The introduction of cold climate environmental possibilities (ice and snow) creates a very
complex environment to both model and measure. The employed optimization technique
used image-derived observables to drive the evolution of the candidate solutions to final
solutions. The final workflow built to achieve this goal involved an implementation of a
PSO-driven ALGE modeling environment running on a computing cluster.

In support of this effort, a two-year data campaign was planned, managed, and exe-
cuted to collect a database of observations that would be useful for several facets of the
effort. In order to accomplish the data campaigns several hardware systems were either
improved or designed and built from scratch for deployment at the data validation site in
Midland, MI. The WASP sensor was upgraded to include on-board blackbodies for calibra-
tion needs. A large effort was undertaken to create a calibration workflow for the WASP
sensor’s MWIR and LWIR channels. The resulting tool set provides users with automated
and headless command-line tools for producing radiance images for both channels, cali-
brated on a pixel-by-pixel basis. In-water buoys, a weather station, and a roof-mounted
oblique imaging system were designed, deployed, and maintained at the collection site. A
methodology was created for extracting ice conditions from pond imagery acquired by the
oblique imaging system.

With the collection of all the various data sources, a PSO-ALGE architecture was
created and stood up on RIT’s Research Computing Cluster to run ALGE using all the
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collected data. The resulting system is a combination of IDL and bash scripts which ex-
ecute a fully parallelized, file-based, PSO application for the ALGE model. In order to
interface with the swarm of ALGE simulations both during execution and after conver-
gence, another set of tools was created for monitoring swarm performance while actively
running, as well as processing the final swarm results down to a series of plots, images, and
text reports. These tools allow the user to not only execute an ALGE instance from the
command line, but also to determine mid-swarm if the evolution of the potential solutions
is reasonable and to analyze final results.

Prior to executing full ALGE swarms inside the cluster framework, an appropriate
fitness metric had to be identified that would determine if a particular set of simulation
parameters were performing better or worse than previous attempts. The two potential
observables that could serve as validation data were the thermal distribution in the open
water areas of the cooling pond or the amount of ice coverage present on the body of water.
Initially, because of the complex thermodynamic conditions present in the environment, it
was thought that thermal data would be a required observable. However, after experiments
described in this work and supported by work by Garrett et al.[12], it was determined
that ice coverage is an effective indicator of current plant operating conditions. This
outcome by itself was a significant finding. The removal of the thermal data from collection
requirements alleviates the need for a thermal imaging system to monitor a site of interest.
As a result, a visible imaging system can be used and generate adequate validation data.
However, this assumption requires either a priori knowledge of the temperature differential
between the cooling pond intake and outflow points or the addition of this differential as
an optimizing parameter.

Upon completion of all the processing tools, functional metrics, and data collection,
several experiments were completed to determine the effectiveness and limitations of the
PSO-ALGE approach. It was determined, that given a reasonable initialization state,
PSO could adequately drive ALGE simulations to an appropriate flow rate solution. In
order to marry the PSO approach to the ALGE model, a new method was developed
for incorporating flow rate data as optimization inputs using temporally-based window
averaging. After analyzing initial swarm results, it became of interest to determine if the
interval between imagery collection times, or validation data intervals, would affect the
sensitivity of the metric. It was found that this “breaking point” occurred at approximately
12 days. This interval helps define the concept of operations for a functional use of this
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technique for a real world application. Additionally, the repeatability of these swarm
results were investigated and determined to be excellent. A swarm was initialized 12 times
with the same start up parameters. All 12 instances converged on the correct solution.

7.1 Recommendations for future work

The effort and results described in this work do not answer all the questions related to
trying to effectively model a complex simulation such as the one outlined here. There
are several areas that warrent recommendations for further work. These areas and their
associated suggestions are listed below.

• Particle Swarm Optimization: Because of the nature of PSO and the lack of
theoretical basis as to why it is able to converge to solutions in these complex solution
spaces, it would be worthwhile to investigate further tuning of the PSO operational
parameters. Values chosen for the parameters were taken from literature where they
were documented as successful for other problem sets. It is possible these values
could be tuned to produce faster convergence rates or better flow rate estimates.

• Temporal Inputs for Optimization: The temporal averaging technique created
and implemented helped distill a large solution space into a manageable size, while
reflecting the real world limitations of a priori information available to a user. It
would have been much simpler to infer a baseline temporal flow rate and have a mul-
tiplicative factor be the optimized parameter. However, in real world applications,
there would be no baseline flow rate estimate and its variations, more than likely,
wouldn’t be multiplicative. It would be useful to investigate the development of a
parameterize model for a facility flow rate that were driven by the actual function of
the plant. For example, if a power plant’s power production rate was correlated to
weather events (cold winters influence heating usage, hot summers influence amount
of A/C use) then perhaps a model could be developed that incorporated these trends.
If such a model was created, the variables controlling it’s evaluation would become
the optimization parameters that define the PSO particle.

• Optimization parameters: The only variable investigated for this work was the
flow rate. It would be worthwhile to apply the same approach to the meteorological
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conditions, temperature differential on the ground, and the ice material and radiative
properties.

• Observable ice extent: Only the amount of ice coverage was used as an input
parameter to the process. It would be interesting to investigate whether the ALGE
model was not only accurately modeling the amount of ice present on the pond, but
where in the pond the ice was forming.
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Appendix A

Radiation propagation in the

thermal region

In order to remotely retrieve the temperature of a desired target, the radiant energy
emitted from a target needs to be observed by a sensor that is sensitive in the thermal
infrared region of the electromagnetic spectrum. Energy collected at the sensor focal
plane is a combination of several sources, including the radiant energy originating from
the target itself, the surrounding environment, and the atmosphere between the sensor
and the ground plane. In order to extract a particular target’s absolute temperature, the
observed signal needs to be deconstructed into its contributing parts and analyzed. The
retrieval of a target’s absolute temperature is a difficult task due to the complex nature
and interdependencies of the contributing elements in the total observed energy signal.
The following section reviews the concepts behind the physical properties and observables
in the thermal infrared region of the electro-magnetic spectrum [22].

A.1 Self-emittance

The amount of energy present within a material is described by a material’s temperature.
Every material on earth sits at a temperature greater than absolute zero and will radiate
and absorb energy within its environment in an attempt to reach thermodynamic equilib-
rium with its surroundings. The amount of energy radiated or absorbed by said material
during interactions with its environment is a function of both the material’s temperature,
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T, and emissivity, ε.

A.2 Planck’s equation

An ideal material or surface is characterized as a blackbody when it absorbs and re-emits
radiation at all wavelengths with perfect efficiency. Derived by Max Planck [21], the Planck
blackbody radiation equation describes the spectral radiance, LBB(λ, T ), emitted from a
blackbody radiator into a solid angle about the blackbody’s surface. Planck’s equation is
defined as

LBB(λ, T ) =
2hc2

λ5

1

e
hc
λkT − 1

[
W

m2srµm

]
, (A.1)

h Planck’s constant 6.6256 · 10−34 [J · s]
c speed of light in vacuum 2.9979 · 108 [m/s]
k Boltzmann constant 1.3807 · 10−23 [J/K]
λ wavelength of emission [µm]
T absolute temperature [K].

Table A.1: Equation variables and constants for Planck’s equation

Investigation of the equation terms shows that the radiance emitted by a blackbody
is dependent on both the wavelength of emission as well as the target temperature. If
the temperature of a blackbody was set to several fixed values, a family of blackbody
curves would result. When plotted comparatively (Figure A.1), it is clear that as the
temperature of a material increases, the radiance emitted by the material increases and
the peak wavelength shifts towards shorter wavelengths.

Upon further analysis of a family of blackbody curves, it is demonstrated that a Planck-
ian energy distribution is a well-behaved function and has only one maximum value. Solv-
ing for the zero-point of the first derivative of a distribution produces the wavelength
at which the blackbody emits the maximum amount of radiant energy. Referred to as
Wien’s displacement law, this particular solution describes the relationship between an
object’s temperature and the wavelength at which the object exhibits maximum radiance.
Mathematically speaking, as an object’s temperature increases, the overall shape of the
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Figure A.1: Blackbody energy distributions for blackbodies sitting at 5800K, 3000K, and
300K. A solar spectra is compared to the energy distribution of a blackbody sitting at
5800K [22].

energy distribution remains the same, however, the peak wavelength for emittance is dis-
placed on the plot towards shorter wavelengths. The mathematical expression for Wein’s
displacement law is shown below in Equation A.2, where A = 2897.768 [µmK],

λpeak =
A

T
[µm] . (A.2)

Earth-based materials have an average temperature of 300 K. Through an application
of Wein’s law, the resulting peak wavelength for radiant emission is in the longwave infrared
region of the spectrum, approximately 10µm. This peak wavelength is advantageously
located in the middle of an atmospheric transmission window (Figure A.2) and has dictated
the development of thermal sensors using materials sensitive to radiant emission in the
8− 14µm range.

A.3 Emissivity

Materials exist in nature that behave similarly to blackbodies, but not identically. In
order to describe how blackbody-like a material is, a ratio is calculated to compare the
actual spectral emission from an object at a particular temperature to that of a perfect
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Figure A.2: Atmospheric transmission spectrum. Regions of the atmosphere exhibiting
0% transmission are optically opaque because the corresponding molecule absorbs energy
at the specified wavelengths. [26].

blackbody’s spectral emission at the same temperature. This ratio is called the material’s
emissivity, ε(λ), and is shown in equation A.3.

ε(λ) =
L(λ, T )
LBB(λ, T )

(A.3)

The resulting value is a unitless number with a value from 0 to 1. A perfect blackbody
would have an emissivity of 1 and be a perfect emitter and absorber at a given temperature.
Materials that exhibit emissivity values less than 1 and maintain the same value across
all spectral regions are described as graybodies. Selective radiators have a wavelength-
dependent emissivity [22].

A.4 Conservation of energy and Kirchoff’s law

Emissivity is a material-dependent property. Similarly, absorbtivity, transmittance, and
reflectivity, are properties which describe how a given material interacts with energy in
its environment. All these properties are intrinsic to the material. Incoming irradiance,
Ei, that falls incident on an object is transformed with respect to these three material
properties. It is this alteration that distinguishes one material from another [22].

The absorbtivity, α(λ), of a material describes the material’s ability to turn incident
energy into an alternative form of energy, Ea (i.e. thermal or kinetic energy). This
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property is described using a ratio of incoming radiant energy to the produced alternative
energy (Equation A.4).

α(λ) =
Ea
Ei

(A.4)

A material’s reflectivity, r(λ), describes the ability of the material to change the direc-
tion of incident radiant energy and send it back into the above hemisphere. Reflectivity
is described as the ratio of incoming irradiance to the irradiance leaving the material’s
surface, Er (Equation A.5).

r(λ) =
Er
Ei

(A.5)

The transmittance, τ(λ), of a material is defined as the capability of the material to
allow energy to propagate through itself. Mathematically this property is represented by
the ratio of incoming irradiance to the irradiance leaving the opposite side of the material,
Et (equation A.6).

τ(λ) =
Et
Ei

(A.6)

By the law of conservation of energy, when radiant energy comes in contact with
an object, it is either absorbed, transmitted, or reflected. The unitless quantities of
absorbtivity α(λ), transmittance τ(λ), and reflectivity r(λ), must sum to unity to satisfy
this condition (Equation A.7).

α(λ) + r(λ) + τ(λ) = 1 (A.7)

Kirchoff’s Law states that, by definition, the absorbtivity of a material is equal to
the emissivity when the material is at thermal equilibrium [24]. In practical terms this
statement declares that good absorbers are also good emitters and the absorbtivity term
in Equation A.7 can be substituted with emissivity as shown in Equation A.8.

ε(λ) + r(λ) + τ(λ) = 1 (A.8)

Furthermore, a blackbody would exhibit zero transmission and zero reflectivity of
incident energy due to the defining characteristic that all energy absorbed is then re-
emitted. Therefore, for a blackbody the transmittance is zero and Equation A.8 is reduced
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to Equation A.9.

ε(λ) = 1 (A.9)

A.5 Atmospheric and background effects

Similar to objects on the ground whose temperature is of interest, all matter between or
near the object and sensor (i.e. the air column and background objects) will sit at an
absolute temperature above zero and therefore will emit energy. As a result, the collected
energy at the focal plane is a combination of several sources of energy taking different
paths to enter the sensor. Figure A.3 illustrates all self-emissive sources and their related
path to the sensor within a scene, including the target itself [22].

Figure A.3: Thermal energy paths from potential sources of interest. Path A photons are
photons emitted by the atmosphere and radiated directly into the sensor. Path B photons
are emitted from some background object, fall onto the target, and are then reflected back
towards the sensor. Path C photons are photons emitted by the target of interest. Path
D photons are emitted by the atmosphere, towards the target, reflect of its surface, and
are collected at the sensor.

Radiance emitting from the target of interest, or energy traveling along path C, is the
most important source of radiance. Photons traveling along path B are emitted from some
background object, fall onto the target, and are then reflected back towards the sensor.
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These photons are grouped into the background radiance component. The atmosphere
also emits photons, some of which are radiated directly into the sensor (path A). This
radiant component is referred to as the upwelling radiance. Photons traveling along path
D, which are emitted from the atmosphere, towards the target, reflect off its surface, and
are collected at the sensor. This radiant component is referred to as the downwelling
radiance.

A.6 Atmospheric transmission

As radiant energy travels through the atmosphere from the target to the sensor, some
energy from the self-emissive sources will be lost due to absorption and scattering. The
total effect of these two phenomena is modeled by the total atmospheric transmission.

Component molecules of the atmosphere absorb a fraction of the radiant energy and
translate it into another form of energy (i.e. thermal energy). The amount of energy
a layer of atmosphere can absorb is dependent on the atmospheric constituents, their
associated concentrations, temperature, and pressure and is calculated using Equation
A.10 [15].

τ(λ) = e−C(λ)αmz (A.10)

Equation A.10 represents the atmospheric transmission in terms of concentration-depth
absorption. The absorption cross-section, C(λ)α, is the effective size of a molecule to the
photon flux at that wavelength. Additionally, m is the number density or number of
molecules per unit volume and z is the path length.

Energy is scattered when it is forced out of the propagating beam of energy through in-
teraction with molecules it encounters along its path of travel. Scattering is classified into
three types: Rayleigh scattering, Mie scattering, and nonselective scattering. Rayleigh
scattering describes an event where an energy wave interacts with spherical particles sig-
nificantly smaller than the wavelength of the incident flux. Mie scattering occurs when
the wavelength of the incident flux is the same order of magnitude in size of the particles.
Nonselective scattering occurs when the wavelength of the incident flux is significantly
smaller than the size of the particles.

All specified types of transmission loss sum together to produce a total value for
transmission for a given atmosphere, shown in Equation A.11.
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τ(λ) = e−(β(λ)α+β(λ)r+β(λ)m+β(λ)ns)z = e−(β(λ)ext)z (A.11)

β(λ)α fractional amount of energy lost due to absorption per unit length
β(λ)r fractional amount of energy lost due to Rayleigh scattering
β(λ)m fractional amount of energy lost due to Mie scattering
β(λ)ns fractional amount of energy lost due to Nonselective scattering
β(λ)ext summation of all scattering and absorption coefficients
z path length of propagating beam

Table A.2: Equation variables for total transmission

In Equation A.11 the variables represent the following physical parameters: β(λ)α is
the fractional amount of energy lost due to absorption per unit length, β(λ)r is the frac-
tional amount of energy lost due to Rayleigh scattering, β(λ)m is the fractional amount of
energy lost due to Mie scattering, β(λ)ns is the fractional amount of energy lost due to non-
selective scattering, β(λ)ext is the summation of all scattering and absorption coefficients,
and z is the path length of propagating beam.

In the thermal region of the spectrum (8-14 µm) scattering is negligible and the cal-
culation for total transmission is reduced to the expression shown below in Equation A.12
under clear sky conditions.

τ(λ) = e−β(λ)αz (A.12)

This simplified relationship demonstrates that the atmospheric transmission in the
thermal region under clear sky conditions is exclusively dependent on atmospheric ab-
sorption. This assumption breaks down when the atmosphere is hazy, filled with aerosols,
or contains lots of moisture. Under those conditions a more rigorous atmospheric modeling
tool, like MODTRAN, would be the appropriate approach to determine the atmospheric
transmission [18].

A.7 Sensor-reaching radiance

In order to calculate the total sensor-reaching radiance, all potential self-emissive sources
in the scene need to be accounted for, as well as the impact of atmospheric constituents
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on the detected radiance. Based on previous discussion, the radiance leaving the target is
approximated using Planck’s equation and the material’s emissivity. This signal combines
with the upwelled, downwelled, and background radiance terms (described in Section
A.5) to form the observed sensor-reaching radiance. Mathematically, this combination is
expressed below in Equation A.13.

Lλ = (ελLBB + F (1− ελ)Ld + (1− F )(1− ελ)Lb)τλ + Lu (A.13)

ελ target spectral emissivity
LBB total radiance emitted by blackbody at temperature T
F fraction of above hemisphere observable by the target
1− ελ target spectral reflectivity
τλ total atmospheric spectral transmission
Ld downwelling self emitted radiance from sky dome
Lb background self emitted radiance falling on target
Lu upwelling self emitted radiance from atmosphere

Table A.3: Sensor-reaching radiance equation variables

Note, the 1− ελ term is equivalent to the target’s reflectivity as developed in Section
A.4 via Kirchoff’s Law. In Equation A.13 the variables represent the following: ελ is the
target spectral emissivity, LBB is the total radiance emitted by blackbody at temperature
T , F is the fraction of the sky observable by the target, 1 − ελ is the target spectral
reflectivity, τλ is the total atmospheric spectral transmission, Ld is the downwelling self-
emitted radiance from sky dome, Lb is the background self-emitted radiance falling on
target, and Lu is the upwelling self-emitted radiance from atmosphere.





Appendix B

Temperature retrieval methods

As discussed previously in Section A, radiance signals detected at the sensor are a com-
bination of several sources within and outside of the sensor’s field-of-view. Buried inside
the observed radiant energy is information regarding a target’s temperature. In order
to validate any sensor-reaching radiance signal, a calibration method needs to be imple-
mented which translates the sensor-acquired digital counts into sensor-reaching radiance
and ultimately the material’s apparent or absolute temperature. Calibration methods will
either use in-scene targets consisting of known material characteristics or sensor-mounted
blackbody calibration targets. Any method executed must take into account atmospheric
contributions and material emissivity effects in order to derive an absolute material tem-
perature.

B.1 Atmospheric compensation

Atmospheric compensation methods remove the effects of the atmospheric on an acquired
radiance image. A modification is performed on the radiance signal observed at the sensor
to compensate for both atmospheric transmission losses and upwelling radiance contribu-
tions. Unless additional steps are taken to account for surface emissivity and material
surface properties, atmospheric compensation will only deliver apparent surface temper-
ature instead of absolute temperature (i.e the temperature associated with the surface
leaving radiance).
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B.2 Correlation with ground-based measurements

The simplest method to derive absolute temperature from a radiance image is through
the correlation of remotely observed data with ground-based measurements. While the
resulting calibration is conceptually easy, this approach is labor intensive and prone to
error due to the difficulty of obtaining simultaneous overhead and ground measurements
without significantly interfering with the system being measured. This method does not
make an attempt to perform any sort of atmospheric compensation, but instead aims to
derive a functional relationship between the remotely sensed radiance and the parameter
of interest, in this case temperature. This functional relationship will take the form shown
in Equation B.1, where Y is the parameter of interest and DC1 . . . DCN are observed
values at the different spectral bands of the sensor.

Y = f(DC1, DC2, . . . , DCN ) (B.1)

Generally, when there is no knowledge of the relationship between the parameter and
the observed signal, a large amount of data is required to produce a functional regression
form which successfully minimizes the residual error for the function and maintains a
robust, constrained solution. The required amount of collected ground-based data points
would be extremely large and need to coincide with image acquisition. These requirements
make the task of successfully collecting enough data daunting. However, if given some
knowledge about the environment and parameters being observed, an assumption can be
made that the relationship between the observed signal and the parameter of interest is
linear, a simple linear regression can be formed.

When this simpler approach is applied, several basic malleable equations fall out of
the process. For temperature retrieval, the observed digital counts are first regressed
against radiance observed from calibration targets. Assuming that the calibration targets
emitted radiance values bracket the observed scene temperatures adequately, the resulting
regression coefficients (mR and bR in Equation B.2) are used to translate a raw digital
count image into a radiance image. The choice of adequate targets to bracket a scene
thermally is significant in that it insures that your linear assumption between radiance
and temperature will hold across the range of temperatures being observed.

DC = f(L) = mRL+ bR (B.2)
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Next ground-based temperature measurements are correlated with their corresponding
image-based radiance values to perform a second regression. The resulting coefficients (mT

and bT in Equation B.3) from the second regression are then used to translate the radiance
image into apparent ground temperatures.

L = f(T ) = mTT + bT (B.3)

Equation B.2 and B.3 can be combined to form the overall functional relationship
between the observed digital count at the sensor and the ground temperature, shown in
Equation B.4. Until further steps are made to take into account surface emissivity effects,
the ground temperatures will not be absolute.

DC = mR (mTT + bT ) + bR (B.4)

A drawback to this approach is the lack of flexibility in the derived solutions. One is
essentially avoiding performing a true atmospheric compensation technique by assuming
the atmospheric affects can be accounted for by a linear regression. Because of this as-
sumption, the derived linear coefficients will be unique to the collection conditions and
environment and will only be valid for the single data set. Additionally, the assumption
is made that not only is the detector’s response linear with radiance, but the observed ra-
diance values are linearly related to temperature. Given the highly non-linear behavior of
the Planck equation, care needs to be take that within the spectral and thermal ranges of
interest, the Planck equation does behave linearly. This behavior can be demonstrated by
calculating the Plank equation using the ranges desired as well as verifying the relationship
via any data collected.

B.3 Ground-based temperature measurement

The following approach aims calculate the atmospheric calibration values, τ and Lu, when
calibrating a thermal scene using collected ground truth. The difference between this
method and the previous is this technique allows for more flexibility in the number of
in-scene targets, assuming the emissivities of the varying targets are well characterized.
Essentially, the radiance values observed by a calibrated sensor can be regressed against
the measured emitted radiance from ground targets at some temperature. By choosing
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targets that behave as blackbodies, the governing Equation A.13, is reduced to Equation
B.5 where L is the sensor-observed radiance, τ is the atmospheric transmission, and Lu is
the upwelling radiance.

L = LT τ + Lu (B.5)

When applying this simplified equation to this ground truth technique, the atmospheric
transmission and upwelling radiance are captured in the gain (m = τ) and bias (b =
Lu) calculated by the regression. In order to apply the calculated coefficients to other
materials in the scene (assuming they are gray bodies with known emissivities), the slope
and intercept of the regression absorb the residual error introduced by the target emissivity
and down welled radiance, shown in Equation B.6 where L is the sensor-observed radiance,
ε is the target emissivity, τ is the atmospheric transmission, Ld is the downwelling radiance,
and Lu is the upwelling radiance.

L = LT ετ + τrLd + Lu (B.6)

Equation B.6 can be rearranged into Equation B.7 and the regression relationship is
evident. The quantity ετ is the contained in the gain and the quantity τrLd + Lu is
contained in the bias.

L = (ετ)LT + (τrLd + Lu) (B.7)



Appendix C

Direct temperature retrieval

When measuring temperature, the true challenge is to derive a material’s absolute tem-
perature without influencing the temperature with the measurement itself. There are
two different methods of measuring temperature: contact and non-contact measurements.
Contact measurements rely on making physical contact with the target of interest and is
usually accomplished with a device such as a thermistor or thermocouple. Non-contact
measurements rely on the same principles that allow emitted radiance to be observed from
either aerial or satellite platforms. Non-contact devices, such as infrared radiometers, are
simple single detector instruments that observe the radiance being emitted by the target
in the longwave infrared region of the spectrum. The measurement is usually at close
range to minimize atmospheric effects in the observed signal.

C.1 Contact vs. non-contact methods

Any type of contact measurement inherently interacts with the material surface being
measured and induces an energy flow across the interface between the material and the
instrument. Essentially, a contact device will measure its own temperature once it has
reached thermal equilibrium with the target. By being in contact with the material, the
contributors of error in measurement are limited to the material and the instrument.

When observing the temperature of a material via non-contact methods, there is no
influence of the instrument on the material, but the phenomenon being observed is dif-
ferent. As discussed in Section A, energy being emitted by a target is related to the
target’s temperature through Planck’s equation and is not directly measurable by remote
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techniques. Therefore, additional processing must be performed on non-contact measure-
ments to derive the target’s temperature. Many commercially available instruments (e.g.
Heitronics KT19.82 and Omega OS36 radiometers) will perform this task for the user,
however, many times the process implemented is somewhat of a black box with the user
having little insight into how the target emissivity and the spectral response of the detector
are being handled.

C.2 Skin temperature effects

The surface temperature at an air-water interface is not a trivial measurement. Significant
temperature measurement differences arise when an observation is made using a contact
device at some depth in the water column below the surface (referred to as Tbulk) and
when the surface is observed by a non-contact radiometer (referred to as Tskin). The
reason for the difference is directly related to the energy transfer mechanisms at work
at the interface. In the top 10-100µm of the interface the energy fluxes are dominated
by molecular conduction. A positive temperature gradient with depth, referred to as the
“cool skin effect”, across the molecular layer is required to maintain the net heat flux in
the direction from the water to the air.

The temperature-depth profile of a given water column will be strongly dependent on
the amount of solar flux falling on the surface and the wind speed. As wind blows across
a body of water the surface is cooled by the convective forces. As wind speed increases it
will dominate any influence of solar flux and lead to a more thermally mixed near-surface
layer. In contrast, light to no wind conditions allow the solar heating to dominate and
induce a large thermal stratification through the water column as a function of depth.
Figure C.1 shows the difference between idealized temperature-depth profiles for different
wind conditions.

Generally speaking, the net flux will always move in the direction from the water to the
air because of net radiation losses of a warmer water body to a colder sky. It is possible,
however, that with high solar loading on an interface and minimal wind (less than 1 m/s),
the cool skin effect can be overcome to produce either no skin effect or a warm skin effect.
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Figure C.1: Idealized temperature profiles of the near-surface layer of a water body. Blue
line represents the temperature profile of a body water during the day in low wind con-
ditions. The purple, dotted line represents the temperature profile of the same body of
water during the night or day in strong wind conditions.





Appendix D

Error propagation

No measurement device or experimentalist is perfect and will inject an error into any
measured quantity. In order to quantify the error introduced by a particular individ-
ual measurement, the total standard error is calculated. The total standard error in a
measurement, σm, is determined by taking the root sum square of the accuracy, σi, and
precision, σp, metrics for the measurement. The precision of a measurement describes its
repeatability and the accuracy of a measurement describes how closely an instrument can
match a value determined to be truth. The calculation for the total standard error is show
below in Equation D.1 [22].

σm =
√(

σ2
p + σ2

i

)
(D.1)

For a particular process, where the desired parameter can be described using a gen-
eral governing equation, a simple expression (derived by Beers [5]) can be used to derive
contributions for each single source of error to the total measurement error. The depen-
dent variable Y is calculated using a functional form with N independent variables Xi as
inputs, shown in Equation D.2.

Y = f(X1, X2, . . . , XN ) (D.2)

The standard error in Y , σY , is expressed as the following relationship of individual
input variable errors, σXi .
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σY =

[(
δY

δX1
σX1

)2

+
(
δY

δX2
σX2

)2

+ · · ·+
(
δY

δXN
σXN

)2
] 1

2

(D.3)

When the input variables, Xi, are correlated, however, the total error calculation must
take into account the dependency between the various input parameters. This compen-
sation is accomplished by including, ρxy, the correlation coefficient between each pair of
variables [5]. Below, the formula shown in Equation D.4 is calculating the variance, σ2

Y ,
in the function Y and is related to the standard error through the square root.

σ2
Y =
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σX1
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(
δY
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)2
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(
δY
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σXN

)2

+
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2ρij

(
δY

δXi

)(
δY

δXj

)
σXiσXj (D.4)



Appendix E

WASP sensor calibration

E.1 Digital counts to radiance

Raw data from both the LWIR and MWIR detectors on WASP are written out as 14-bit
ITTVIS ENVI format images. In order to minimize projection effects and preserve the
radiometric integrity of the raw data contained in these images, the conversion from digital
number to radiance units is performed prior to the georeferencing process. Additionally,
due to significant non-uniformity across the LWIR focal plane and variable readout gain
visible in the MWIR focal plane, each image is calibrated to sensor-reaching radiance on
a pixel-by-pixel basis.

For most aerial collections, blackbody imagery is collected at the beginning and end
of each flight line. Each reference source is driven to either a hot or cold set point and
moved to fill the field of view for both sensors simultaneously. The hot and cold set points
are chosen to adequately bracket the scene’s thermal content of interest. After the first
reference source imagery collection (at either a hot or cold set point), the blackbodies
are driven to the opposite end of the thermal range during the imagery acquisition over
the scene, and then re-introduced into the field-of-view while the aircraft is making a
turn. Figure E.1 is a conceptual example for how this type of imagery collection scheme
is implemented.

Each collection of reference source imagery is temporally averaged to reduce noise
during collection. Prior to any radiometric calculation, an analysis is performed to identify
and interpolate any dead pixels on the detector’s focal plane. It is assumed that 0.05%
of the total number of pixels are dead or misbehaving. Using the histogram statistics
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Figure E.1: Flight line collection scheme for blackbody imagery collection during flight.
Green squares represent frames over the area of interest. Red and blue squares represent
frames acquired while the blackbody is in the field of view of the LWIR detector and set
to a hot and cold set point, respectively.

for a given average blackbody image, the top 0.025% and bottom 0.025% of pixels are
designated as dead pixels and are filled with a bi-linear interpolation of neighboring pixel
values.

Given the known spectral emissivity of the blackbody material, ε(λ), the spectral
response of each of the WASP thermal cameras, R(λ), and the measured temperature of
the blackbody during image acquisition, the total radiance emitted by the reference source
and detected by the WASP detector, L, is determined by integrating the Planck blackbody
equation over the spectral range of the WASP detector. This calculation is performed for
both the hot- and cold-averaged blackbody images.

Lhot =
∫

λ
LBB,THOT (λ)R(λ)ε(λ) (E.1)

Lcold =
∫

λ
LBB,TCOLD(λ)R(λ)ε(λ) (E.2)

Because the WASP LWIR detector response is linear with radiance, for each flight, the
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digital count values at every pixel for both the hot- and cold-averaged blackbody images
is related to the calculated total emitted radiance from the reference sources using a linear
regression model. Due to the fact that the set points for the reference sources were chosen
based on the thermal content of target scene, the gain (mR) and bias (bR) calculated for
each pixel will generate an apparent sensor reaching radiance value for any given digital
count acquired while imaging the scene (Figure E.2).

Lappi,j = mRi,jDCi,j + bRi,j (E.3)

The end result of this process are gain and bias masks for each flight line. These
masks are applied to each image acquired during a flight line to convert the raw data
into apparent sensor reaching radiance. Following this conversion, image tiles are geo-
referenced and stitched together to create a single image mosaic encompassing the entire
scene of interest.

E.2 Radiance to temperature

In order to compensate for atmospheric effects and correlate to apparent ground tempera-
ture, georeferenced ground truth measurements of the target (water surface) were collected.
Both skin and bulk temperature measurements of the water were recorded, however, the
skin temperature measurements were used for calibration efforts. The choice to use only
skin temperature measurements was made because a skin temperature model would have
needed to be implemented to convert bulk measurements to surface measurements. None
of the models researched adequately handled the highly dynamic environment observed
on the cooling pond.

Using the map coordinates associated with each measurement, the corresponding cal-
culated radiance value was extracted from the georeferenced, sensor-reaching radiance
mosaic. It was assumed that over the range of temperatures investigated and using the
WASP system, the relationship between sensor-reaching radiance and target temperature
was linear. To confirm that not only a linear relationship was maintained over the entire
thermal range, but also over the smaller range of actual target temperatures, the total
theoretical emitted radiance for a water target at a given temperature, as observed by the
WASP LWIR detector, was calculated. The relationship between temperature and radi-
ance is demonstrated below in Figure E.4. It should be noted that when fit with a linear
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Figure E.2: Digital count to radiance conversion depicting the linear relationship assumed
between the digital counts recorded at each pixel and the apparent radiance emitted from
the blackbody at each temperature set point.

model, the gain and bias remain relatively unchanged for both the full thermal range and
the subset.
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Figure E.3: Relationship between radiance and temperature for entire range possible scene
temperatures as well as a fitted linear model.

Figure E.4: Relationship between radiance and temperature for subset of thermal range
of possible scene temperatures as well as a fitted linear model.
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The calibrated, ground-collected, skin temperature measurements were then compared
to the corresponding sensor-reaching radiance values. All radiance values are corrected
for the water target emissivity (εwater = 0.987) as shown in Equation E.4.

Lobs =
Lapp
εwater

(E.4)

Based on the aforementioned linear relationship assumption, a linear model was fit to
the radiance-temperature data pairs, producing a gain (mT ) and bias (bT ) that is used to
convert from sensor-reaching apparent radiance to the ground temperature of water at a
given location. This relationship is shown in Equation E.5.

Tobs = mTLobs + bT (E.5)

The gain and bias are single values that are only valid for the particular data campaign
they were collected for and the corresponding thermal imagery. The relationship between
the radiance temperature pairs is depicted in Figure E.5. It is important to note that all
derived ground temperatures are only valid for water.

Figure E.5: Graphic depicting apparent sensor-reaching radiance to temperature con-
version. Each point, both shown spatially in the image domains and graphically in the
plot, represent points on the ground where geo-located temperature measurements were
recorded. The relationship between the calculated sensor-reaching radiance at these points
and their corresponding temperatures measured on the ground is then fit with a linear
model.

Using both Equation E.3 and Equation E.5, a governing equation can be produced
for the entire digital count to ground observed temperature conversion process (Equation
E.6).
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Lobsi,j = mRi,jDCi,j + bRi,j

Tobs = mTLobs + bT

Tobsi,j = mT [mRi,jDCi,j + bRi,j ] + bT (E.6)





Appendix F

Ground instrument calibration

An additional step was taken to calibrate the instrument-acquired measurements to actual
temperature using instrument calibration data acquired in the field. A Heitronics KT19.82
radiometer and Omega OS36 radiometer were used to collect skin temperature measure-
ments for the results presented. Calibration points were collected using a portable Omega
blackbody calibration source that was driven to temperatures that thermally bracketed the
water targets to be measured. A linear model, Equation F.1, was used to generate a gain
(mC) and bias (bC) to be used to convert observed temperatures to absolute temperatures.

Tobs = mCTabs + bC (F.1)

Field instruments (Heitronics KT19.82 radiometer and Omega OS36 radiometer) were
calibrated in the field using a portable blackbody radiative source. Shown in Figure F.1 are
the calibration curves resulting from the in-field calibration. All on-board instrumentation
built into the buoys was calibrated, pre-deployment, using controlled thermal conditions
in the laboratory.
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Figure F.1: Calibration plot for skin temperature retrieval instruments generated by data
collected in the field using a blackbody thermal source.



Appendix G

WASP sensor sensitivity analysis

The entire process of conversion from digital number to absolute ground temperature can
be described using a single governing equation (Equation G.1) based on all the linear
regression models used to determine the final temperature. The process to develop Equa-
tion G.1 is shown below. Because the conversion from digital count to sensor-reaching
radiance was performed on a pixel-by-pixel basis, a temperature is derived for every pixel
using a unique gain (mR) and bias (bR). All variables are considered independent and
uncorrelated.

Tobsi,j = mT [mRi,jDC + bRi,j ] + bT

Tobs = mCTabs + bC

mCTabs + bC = mT [mRDC + bR] + bT

Tabsi,j =
mTmRi,jDCi,j +mT bRi,j + bT − bC

mC
(G.1)

Applying Equation D.4 to Equation G.1 produces the formula (Equation G.2) for
determining the variance in a produced temperature map of the water on a pixel-by-pixel
basis. The variables are independent and uncorrelated so the last term in Equation D.4
can be ignored. The final error measure will have the same units as the governing equation
(temperature, K). It is important to note that because the temperature is calculated on a
pixel-by-pixel basis, a error will be calculated for every pixel, generating a corresponding
error map for each temperature map.
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(G.2)

Each of the error terms in Equation G.2 are calculated from various sources and meth-
ods. A method called bootstrapping is used to calculate the linear regression used in
both the radiance to temperature conversion (Equation E.5) and the ground instrument
calibration (Equation F.1). Bootstrapping is a method of calculating the properties of
a statistical estimator (e.g. variance) by measuring those properties from approximating
distributions [8]. The approximating distributions are created from replicating the sam-
ple distribution shape’s through a sampling with replacement technique. Each one of the
approximate distributions are referred to as a bootstrap sample. The estimator of interest
is calculated for each bootstrap sample. Additionally, with this increase data the variance
of the estimators can be determined. This method is used to determine the variance in
both the gain and bias of the calculation. This method was implemented using an existing
routine, written in IDL. This function calculated the values for σ2

mT
, σb2T

, σ2
mC

and σ2
bC

.

Both σ2
mRi,j

and σ2
bRi,j

have values of 0 because of how the variables whose variance they
represent was calculated. For each pixel a single hot value and single cold value are used
to produce the pixel’s gain and bias for is conversion to radiance space. Because this linear
fit is based on only two points, instead of a series, there is no error in the calculation. In
order to calculate the variance in the raw WASP image, σDCi,j , the variance is calculated
for each pixel. During the averaging of the blackbody images for calibration, the standard
deviation is calculated for each pixel. Figure G.1 illustrates this process.
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Figure G.1: Graphic illustrating the calculation of the variance terms for each pixel. The
variances are calculated for each pixel using the average of each series of blackbody images.
These calculated variances are then regressed against their corresponding digital counts
to determine the variance gain and bias masks.

These standard deviation images are calculated for both the hot and cold averaging
processes. Using the average blackbody images as independent variables, a linear re-
gression is calculated between the digital counts in the images and their corresponding
standard deviations. The results of this regression are a gain and bias to calculate a
standard deviation image from a raw WASP image. Because the blackbody averaging is
accomplished with every flight line, this technique has the ability to absorb any error from
non-uniformities that may arise after prolonged operation.





Appendix H

Imagery Calibration

Two sets of data, that were calibrated using the aforementioned process (Sections 5.1.4 and
G). Both data sets were acquired at night, however the water surface temperature data
acquired during the 11 February 2010 collect was measured using the Heitronics KT19.82
radiometer while the data acquired during the 4 March 2010 collect was measured using
the Omega OS36 radiometer. Each data set was processed to generate both temperature
maps (Figure H.1 and Figure H.2) and error maps. Derived temperatures are only valid
for water and each pixel’s error is designated by the corresponding per-pixel error map.
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Figure H.1: Calibrated temperature map for the 11 February 2010 night collect created
using the implemented calibration technique. Temperature is reported in Celsius.

Figure H.2: Calibrated temperature map for the 4 March 2010 night collect created using
the implemented calibration technique. Temperature is reported in Celsius.
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Date Mean σTcal Standard
deviation in σTcal

02/11/10 0.94 0.02

03/04/10 0.50 0.01

Table H.1: Statistics from uniform area of generated error maps

Shown in Table ?? are the mean-calculated standard deviations for a section of ap-
proximately uniform temperature water as well as the amount of variation about that
calculated standard deviation. The data collected during the 4 March 2010 collection
has a distinctly better accuracy which is directly attributable to quality of ground truth
collected and the atmospheric homogeneity.

Figure H.3: Radiance to ground temperature calibration model for the 11 February 2010
night collect. Each point represents a geo-located temperature measurement and its cor-
responding sensor-reaching radiance.

Figure H.3 and Figure H.4 show the collected surface temperatures for each day plotted
against the corresponding radiance values extracted from the sensor-reaching radiance
mosaics. It can be seen that surface temperature data collected during the 4 March 2010
collect had a stronger linear relationship to the sensor-reaching radiance than the collected
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data from the 11 February 2010 collect. Additionally, the measurements made are more
evenly distributed throughout the range of possible temperatures.

Figure H.4: Radiance to ground temperature calibration model for the 4 March 2010
night collects. Each point represents a geo-located temperature measurement and its
corresponding sensor-reaching radiance.

The notable variation between the two days’ ground data can be attributed to the
strength of the linear fit generated for the translation between sensor-reaching radiance
and ground observed temperature. The ground truth collected during the 4 March 2010
collect has a distinctly stronger linear relationship than the data collected for 11 February
2010 collect. As the linear fit between sensor-reaching radiance and ground observed
temperature weakens, the error terms attributed to the linear model, σmT and σbT , grow
and as a result increase the magnitude of the derived standard deviation.

This strong dependence on well fit ground truth data can be expected due to the
linear assumption made regarding the relationship between radiance and temperature for
a given target. Under that assumption, the atmospheric affects are believed to have a
uniform, homogeneous affect on the emitted radiance from a given target; an affect that
can accounted for by a simple gain and bias. As soon as the atmosphere between the WASP
cameras and water surface becomes more spatially variant, this assumption deteriorates.
For the particular environment observed for this research, the linear assumption does not
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consistently hold true. The body of water being observed has a highly varying thermal
structure that produces a localized boundary layer micro-climate. In addition, the lake is
accompanied by cooling towers, positioned on shore, which introduce a significant amount
of moisture into the atmosphere. The presence of these phenomena are directly influencing
the atmospheric make-up of the air column above the pond and can lead to a distinctly
complicated radiometric environment.





Appendix I

Autonomous in-situ measurements

I.1 Winter 2008-2009

The data campaign for the winter of 2008-2009 was segmented into two major branches:
the aerial data collection and the ground truth collection. While the aerial data collection
has a single node of collection, the ground truth collection was a multi-faceted venture
involving both manual and automatic measurements of water surface temperature, ice
thickness, and weather conditions. Five buoys were deployed in the cooling lake of the
Midland Cogeneration Venture (MCV), while a weather station was constructed on the
shore. The buoys, as well as the weather station, took automatic measurements of various
parameters of interest and transmitted the data on daily intervals via cellular modems.
In addition to the constant monitoring provided by the buoys, manual, high-density sur-
face temperature measurements and ice thickness measurements were taken immediately
following imagery collects. Flights were attempted on a weekly interval, as weather per-
mitted. Five identical buoys were deployed within the lake. Each buoy was equipped with
a Campbell Scientific CR1000 datalogger to perform all data acquisition as well as control
all telecommunications and GPS monitoring. The internal components of a constructed
buoy is shown below in Figure I.1(a).

The CR1000 monitored two different deployments of thermocouples used to measure
the temperature profile of the water and ice thickness. The temperature profile thermo-
couples were attached to the mooring chain at one-foot increments and were queried by
the datalogger at 30-second intervals. Every five minutes an average temperature value
at each thermocouple was calculated and recorded. The second set of thermocouples was
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(a) Internal buoy components (b) Ice thickness probe

Figure I.1: Inside of buoy containing datalogger, multiplexors, GPS units, battery, and
cellular modem shown in I.1(a). Ice thickness probe (long, black pole) mounted on side of
buoy shown in I.1(b)

attached to a metal pole, at approximately 1-inch increments, beginning at the base of the
buoy. These high-density thermocouples measured the temperature of either water or ice
every 30 seconds with an average temperature recorded every five minutes. In addition to
the main measurement systems on the buoys, twelve Tidbit dataloggers were attached to
the chain of each buoy to serve as a backup temperature measurement system. Notable
problems from the 2008-2009 winter season included: power failures, communication fail-
ures, challenging accessibility issues for maintenance, lack of insight into the actual 3-axis
positioning of a given buoy, and lack of a backup system for collected data.

I.2 Winter 2009-2010

Following the challenges of the 2008-2009 collection efforts, a massive overhaul and re-
engineering of the deployable buoy monitoring systems was completed. While the basic
construction of the buoys remained unchanged, in order to combat the system failures
mentioned in Section 5.1.2, modifications were made to the buoy design as well as the
controlling software. A comparison between the two design approaches are shown in
Figure J.1 The internal components of a newly designed and constructed buoy is shown
above in Figure I.4(a). A compact flash memory card was installed on each buoy to serve
as a backup should there be a communication failure. In addition, an accelerometer was
added to report on the 3-axis orientation of a given buoy. This additional information
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(a) Buoy floating in open wa-
ter

(b) Buoy embedded in ice and snow

Figure I.2: Buoys in both open water and iced conditions while deployed in the MCV
cooling pond during the 2008-2009 winter collection season.

provided insight into the angle at which a buoy was oriented should it become frozen in
the ice. The angle at which a buoy freezes directly affects the position of any thermocouple
on the ice profiler and, by association, the derived location of an ice/water boundary.

In addition to a dynamic mooring chain assembly, the float size and buoyancy rating
was increased from 200 lbs buoyancy to 700 lbs buoyancy to increase the platform’s resis-
tance to freezing at non-horizontal angles. To address power failure issues, a 12-watt solar
panel was mounted to the top of the environmental enclosure and the battery location
was moved to an external mount point, shown in Figure I.4(b). Each weatherproof box
containing all electrical components was permanently sealed shut to prevent any water
seepage. In case of software failures mid-winter, the capability to manually turn on the
modem was added via a physical toggle switch on the antenna. This added functionality
allowed the software and firmware on the datalogger to be modified via a wireless internet
connection and alleviated the need to access the datalogger while deployed. Figure I.5
shows the buoys successfully deployed in the MCV cooling pond [3].
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(a) Buoy design from 2008-2009 winter (b) Buoy design from 2009-2010 winter

Figure I.3: Comparison of buoy design differences between the 2008-2009 and 2009-2010
winter collection seasons.
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(a) Internal buoy components (b) Externally mounted solar panel

Figure I.4: Newly designed buoys in the RIT laboratory

Figure I.5: Newly designed buoys afloat in MCV cooling pond
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Ice thickness probes

Five identical buoys were deployed within the lake. Each buoy is equipped with a Camp-
bell Scientific CR1000 datalogger to perform all data acquisition as well as control all
telecommunications and GPS monitoring. The internal components of a constructed buoy
is show below in figure J.1(a).

(a) Internal buoy components (b) Ice thickness probe

Figure J.1: Inside of buoy containing datalogger, multiplexors, GPS units, battery, and
cellular modem shown in J.1(a). Ice thickness probe (long, black pole) mounted on side
of buoy shown in J.1(b)

The CR1000 data loggers built into the buoys monitored two different deployments
of thermocouples used to measure the temperature profile of the water and ice thickness.
The temperature profile thermocouples were attached to the mooring chain at one-foot
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increments and were queried by the datalogger at 30-second intervals. Every five minutes
an average temperature value at each thermocouple was calculated and recorded. The
second set of thermocouples was attached to a metal pole, at approximately 1-inch incre-
ments, beginning at the base of the buoy. These high-density thermocouples measured the
temperature of either water or ice every 30 seconds with an average temperature recorded
every five minutes. In addition to the main measurement systems on the buoys, twelve
Tidbit dataloggers are attached to the chain of each buoy to serve as a backup temperature
measurement system.

Attached to each deployed buoy was an ice thickness probe consisting of 46 evenly-
spaced thermocouples. Temperatures were recorded at each thermocouple and associated
to their position relative to the top of the probe. Although designed so the first ther-
mocouple would be approximately at water level, the actual location of this data point
relative to the ice surface varied based on freezing conditions. The overall thickness of ice
(if present) was determined by assuming any thermocouples registering temperatures of
0◦ or below were imbedded in ice. It was understood that this method of ice thickness
determination would have larger errors during the freeze and melt periods. In figure J.1(b)
the ice-thickness probe can be seen attached to the side of the buoy.

In order to determine the validity of this method ice holes were periodically drilled
in close proximity to buoys that had been frozen in ice and the true thickness of the ice
was measured. An ice thickness value is obtained from recorded buoy data through visual
inspection of the thermocouple output. Below in figure J.2 are four examples of plotted ice
probe output. Figures J.2(a) and J.2(b) show the depth versus temperature recorded for
the same buoy, Shiva, on two different days. Figures J.2(c) and J.2(d) shows the analogous
information for a second buoy, Surya. It is important to note that on buoy Surya there
was an inoperable thermocouple at the 17 inch mark.

From visual inspection it is assumed that the first visible inflection point marks the first
ice (or snow) interface with air. The second inflection point is designated the ice/water
interface. The difference between these two points is calculated as the ice thickness. The
images in figure J.2 show the inflection points occuring at values higher than 0◦. Due
to manually observed and measured ice thickness values it is known that these plots do
correspond to probes imbedded in ice. It is possible that the skew in temperature is a
calibration issue with the thermocouples. In table J.1 the comparison between manually
and automatically measured ice thickness is shown.
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Table J.1: Measured ice thickness versus buoy-recorded ice thickness

Buoy Measured by hand [in] Recorded by buoy [in] Snow depth [in]
Shiva 1/14 7.5 12 3
Shiva 2/3 11 16 0

Surya 1/14 9 9 4.5
Surya 2/3 13 8 2

There are several factors that could be responsible for the difference between manually
measured and buoy observed ice thickness values. The buoy observed values are inferred
from the thermocouple readouts at a specific time of the day. It has been observed that
if the recorded thermocouple plots are viewed as a series of time-based frames in an
animation the inflection points for the two surfaces are better defined and appear as
almost stationary points around which the bordering temperatures fluctuate. Performing
a time series analysis to extract the interface points might lead to more accurate total
thickness measurements. The presence of snow could also influence the thermocouple
readings, particularly in windy conditions. Finally, it is not guaranteed that the buoys
will freeze parallel to the water surface. As a result of this misaligned freezing the assumed
depth resolution of the ice probe is no longer valid and the angle of the imbedded probe
would have to be known to accurately extract the true depths of each thermocouple.
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(a) Shiva buoy 1/14. (b) Shiva buoy 2/3

(c) Surya buoy 1/14 (d) Surya buoy 2/3

Figure J.2: Plotted thermocouple output from ice thickness probe.



Appendix K

Skin temperature experiment

In an effort to investigate different water surface temperature measurement techniques for
use on the ground during data campaigns, two different measurement techniques were in-
vestigated in the laboratory. The goal of the experiment was to determine which technique
would resolve the skin temperature effect the best. An assumption was made that under
the conditions created in the lab a skin temperature effect would manifests itself. The
first method used a thermistor in contact with the water’s surface. The thermistor was
mounted on a piece of styrofoam in an attempt to place the contact face of the thermistor
right at the water’s surface, shown in Figure K.1(a).

(a) Thermistor/float apparatus mea-
suring water surface

(b) Radiometer measuring surface tem-
perature

Figure K.1: Experimental set up for skin temperature observations

The second used a radiometer to remotely sense the water skin temperature. The
radiometer (Omega OS136) was held by hand approximately an inch from the water’s
surface, shown in Figure K.1(b). A high-precision mercury thermometer was used to

147



148 CHAPTER K. Skin temperature experiment

measure the bulk water temperature. A temperature controlled water bath was used as
the experiment environment and the measurements were carried out in an indoor lab over
two days. There was an unintentional 7◦C change in ambient temperature conditions
in the lab over the two day period. The water temperature was varied from 4 − 30◦C
in 2◦C increments. At each temperature increment the radiometer recorded three surface
temperatures while the thermistor measured the surface and bulk temperature, three times
each. The thermistor measured the bulk temperature by being submerged into the water
bath. Each measurement was repeated for turbulent and calm water conditions.

Figure K.2: Resulting temperature differentials in turbulent water conditions. The red line
represents the difference between the surface temperature observed by the radiometer and
the measured bulk water temperature. The green and purple lines indicate the differences
between the thermistor and the two bulk measurements.
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Figure K.3: Resulting temperature differentials in turbulent water conditions. The red line
represents the difference between the surface temperature observed by the radiometer and
the measured bulk water temperature. The green and purple lines indicate the differences
between the thermistor and the two bulk measurements.

The results shown in Figure K.2 are the calculated temperature differences while mea-
suring in turbulent water conditions. Because the difference in measurements were so
small relative to the overall range of the experiment, the disparity between the types of
measurement techniques are more easily resolvable by examining their temperature differ-
entials. Each plotted line represented the difference between two measured quantities. For
example, the red line is showing the difference between the temperature observed by the
radiometer and the bulk temperature measured by the mercury thermometer. The posi-
tive temperature gradient between these two measurement series is the skin temperature
effect. Comparatively, the green and purple lines are the results from the thermistor mea-
surements. As one can see, the difference between the thermistor’s surface temperature
measurement and the bulk temperature measurement (green line) are nearly nonexistent.
Additionally, the difference between the two thermistor readings (purple line), one at the
surface and one submerged, are essentially zero. These results indicates that weather the
thermistor is at the surface or submerged, it is measuring the same quantity. Figure K.3



150 CHAPTER K. Skin temperature experiment

shows the same experimental results as Figure K.2, however these measurements were
collected under calm water conditions. As evident by these results, the thermistor still
fails to capture the skin temperature effect while the radiometer is successful.

The results from the skin temperature experiment demonstrate the thermistor tech-
nique’s inability to measure true water surface temperature. For future ground truth data
campaigns, the radiometer approach was the preferred method for measurement collection.



Appendix L

On-board blackbody calibration

The blackbody sources were calibrated separately inside a walk-in cooler with thermal
controls. The overall ambient temperature of the cooler was set at approximately 5◦C.
Because this temperature could fluctuate ±10◦C, depending on the external temperature,
dew point, and how often the cooler was entered, the ambient temperature was constantly
monitored. The blackbody source, which fills the LWIR detector’s field-of-view during
flight, was placed on a table inside the cooler and driven from a temperature of 40◦C to
0◦C at 5◦C increments. The surface temperature of the blackbody was measured using an
Exergen infrared contact radiometer at five locations. The location layout and numbering
scheme is depicted below in Figure L.1.

Figure L.1: Depiction of measurement locations on the surface of the LWIR blackbody
source

The temperatures measured at the surface by the Exergen were compared to the tem-
perature set by the WASP control software. The results were plotted to show the overall
difference between the blackbody set point and the average of the five position measure-
ments. The average plot is shown in Figure L.2 as well as the plotted difference between
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the set point and average measured surface temperature. Because the difference between
the set point and measured surface temperature is small compared to the range of tem-
peratures measured, the actual difference is better visualized in Figure L.3.

Figure L.2: Average blackbody spatial temperature compared to set point. LWIR-t (red
line) represents the set point line while LWIR (blue line) represents the measured surface
temperature
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Figure L.3: Average difference between blackbody set point and measured surface tem-
perature for the longwave thermal blackbody

In addition, the measurements were compared separately, based on their spatial loca-
tion, to the blackbody set point, to determine if there were any biases across the plane of
the blackbody plate. Both plots are shown below in Figure L.4.
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Figure L.4: Comparison of spatial location measurements to the blackbody set point

Overall the average bias fluctuates between ±0.5◦C, except for at the 0◦C point where
the bias jumps to 1.5◦C. This large jump is most likely due to the dew point being reached
inside the cooler chamber and condensation forming on the blackbody surface. Spatially,
all locations tend to trend in the same direction and exhibit the same behavior. It was
concluded that spatially the blackbody plate is consistent and demonstrates no spatial
dependency on radiance. In addition, the margin of error introduced by the blackbody
process is approximately ±0.5◦C.
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Appendix M

Differential Equations: Sensitivity

Analysis
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Skin Temperature Model

Discussed below is a proposed model for deriving the skin temperature of a body of
water. The goal of this work is to develop and test a physics-based approach to modeling
the interaction between an atmospheric mixture and a body of water. This approach is
directly applicable to sea surface temperature modeling and is intended to provide a more
accurate method of skin temperature extraction from bulk temperature and meteorological
measurements. Previous models generally focus on two types of methods for predicting
skin temperatures: skin thickness derivation and surface renewal. Both methods have
shown to be accurate under limiting weather conditions. However, in the presence of high
winds, extreme temperatures, and cloud cover these models break down and deviate from
one another. In contrast to previous methods, the approach of this work is to examine the
system from a first principles point of view and solve the energy, mass, and momentum
balances across the system by obeying the conservation of mass, energy, and momentum.
The proposed model seeks to perform on par or better than the previous models for ideal
conditions as well as modeling skin temperature in non-deal conditions within a defined
degree of uncertainty.

Previous models have typically been used in ocean temperature extraction applications.
Errors reported by the reviewed models range from 0.1 − 0.5◦C for oceanic applications.
It is important to realize that from a big picture point of view this error is most likely
acceptable. A final predicted value is only ever as accurate as the least accurate component
in the system. For ocean applications both atmospheric modeling and satellite observations
will probably contribute a larger uncertainty to the final predictions relative to the modeled
skin temperatures uncertainty. However, with the advent of more and more airborne IR
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platforms, the proposed model’s accuracy yields a benefit. Higher resolution systems,
operated at low altitudes, provide the capability to detect high frequency changes in
surface temperature as well as implications of localized weather phenomena. In addition,
capturing imagery at low altitudes reduces the amount of atmospheric modeling required
as well as the uncertainty it introduces. The improved accuracy and ability to predict
implications of meteorological fluctuations on skin temperature make the proposed model
more suited and advantageous for localized water modeling applications.

N.1 Energy flux through control volumes

In order to simplify the initial analysis, a very basic system is constructed. The system is
defined as three control volumes1 stacked on top of one another. The construction of the
system is depicted in figure N.1.

Figure N.1: System definition: Control volume boundaries are defined by dotted lines.

For the sake of simplified analysis, the sides of the control volumes in all directions,
except for vertical, are considered adiabatic. It is assumed that no chemical reactions are

1A control volume is defined as a fixed volume in space through which mass and fluid can flow
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taking place in any of the control volumes and kinetic and potential energy variations are
ignored.

The first control volume (CVgas) is filled with a mixture of dry air of an assumed
composition and water vapor. The dry air/water vapor mixture, referred to as the gas in
the future, is at pressure Pgas and temperature Tgas. It is assumed the gaseous mixture
behaves as an ideal, non-compressible gas and is optically thin (τ = 1.0). The mixture
is analyzed using molar balances to allow for a simplified evaluation using gas equations-
of-state, phase equilibrium constraints, and the ideal gas law. The total number of moles
of water vapor and moles of dry air are defined as nvap and nair, respectively. Therefore,
the total number of moles, ngas, initially present within CVgas is the summation of two
constituents, shown in equation N.1.

ngas = nvap + nair (N.1)

The second control volume (CVskin) encompasses the interfacial region between the
gaseous mixture and pure water and is infinitesimally thin. The defined region is comprised
of only its top surface in contact with the gaseous mixture and its bottom surface in contact
with the liquid. Due to this definition, the number of moles of substance is inconsequential.

The third control volume (CVbulk) contains only pure water, referred to as the liquid
in the future, and is at pressure Pliq and temperature Tskin. The total number of moles
of liquid, nliq, is constant and infinite.

Any energy entering into a control volume is assumed positive while any energy leaving
a control volume is assumed negative. Work done on a control volume is assumed positive
and any work done by a control volume is assumed negative.

To predict the temperature of the skin control volume, independent differential equa-
tions will be produced from constructing the equations of state for all three volumes.
These equations of state will be functionally dependent on measurable and derivable con-
ditions. Each equation is solved simultaneously while stepping through time to produce a
predicted value for skin temperature. Appropriate seed values for the unknown values in
each equation must be chosen based on a process TBD.
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N.2 Control Volume 1: Dry air-water vapor mixture

Due to the inability to measure the molar ratios of each gas constituent in the final
application directly, a method is developed to calculate these values from measurable
quantities. In order to determine the percentage of the two constituents present in the
mixture, molar fractions are determined using the measured relative humidity and an
application of Raoult’s Law.

Relative humidity, ω, describes the amount of water vapor present in a gaseous mixture
of air and water and is defined as the ratio of the partial pressure of water vapor in the
mixture, Pvap, to the saturated vapor pressure of water at the given temperature, P satvap.
Normally this value is given as a percentage and is expressed below in equation N.2.

ω =
(
Pvap
P satvap

)
× 100% (N.2)

Raoult’s Law is the equilibrium equation used for ideal gases and states that the vapor
pressure of an ideal solution is dependent on the vapor pressure of each chemical component
and the mole fraction of the component present in the solution. The mole fraction of a
constituent is a value of expressing the composition of a mixture and is defined as the ratio
of the amount of a constituent to the total amount of substance in the system. Applied
to the mixture in CVgas, the molar fractions for both the air and water vapor are defined
in equations N.3 and N.4, respectively.

yair =
nair

nair + nvap
=
nair
ngas

(N.3)

yvap =
nvap

nair + nvap
=
nvap
ngas

(N.4)

For the given mixture, Raoult’s Law dictates that product of the partial pressure
of a constituent will be equal to the mixture pressure, Pgas, and the molar fraction of
each constituent. The assumption is made that the constituents are pure and have mole
fractions equal to 1 in the liquid phase. Therefore the product of the mixture pressure
and a constituent mole fraction will be equal to the vapor pressure of each constituent at
the given temperature, Tgas, as shown in equations N.5 and N.6.
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Pair = Pgasyair = P ∗air

∣∣∣
Tgas
⇒ yair =

P ∗air

∣∣∣
Tgas

Pgas
(N.5)

Pvap = Pgasyvap = P ∗vap

∣∣∣
Tgas
⇒ yvap =

P ∗vap

∣∣∣
Tgas

Pgas
(N.6)

Combining equations N.3 and N.5 produces the relationship between nvap, its related
pressures, and the nair shown in equation N.7.

nvap =
P ∗vap
Pgas

(nvap + nair)

⇒ nvap

(
1−

P ∗vap
Pgas

)
=
P ∗vap
Pgas

nair

⇒ nvap =

P ∗vap
Pgas

nair

1− P ∗vap
Pgas

(N.7)

Through the ideal gas law, the derived expression for the number of moles of vapor,
nvap is used to generate a relation with the number of moles of air, nair. The ideal gas law,
shown in equation N.8, describes the relationship of a gas’s state to its pressure, volume,
and temperature.

PgasVgas = ngasRT (N.8)

Equation N.8 can be rearranged to calculate the number of moles of air present in
a given volume of gas. Using this relationship, and substituting equation N.7 for nvap,
an equation for nair (equation N.9) is produced. The derivation of this relation is shown
below.
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PgasVgas = (nair + nvap)RT∞

⇒ nair + nvap =
PgasVgas
RT∞

⇒
P ∗vap
Pgas

nair

1− P ∗vap
Pgas

+ nair =
PgasVgas
RT∞

⇒ nair


1 +

P ∗vap
Pgas

1− P ∗vap
Pgas


 =

PgasVgas
RT∞

⇒ nair =
PgasVgas

RT∞

[
1 +

P∗vap
Pgas

1−P
∗
vap
Pgas

] (N.9)

The value for P ∗vap is equal to Pvap from the measured relative humidity (equation
N.2) through Raoult’s Law. The size of CVgas can be dictated by the application and
environment which is being modeled. Therefore the number of moles of both constituents
become functions of the defined volume, Vgas.

CVgas shares boundaries with CVskin and the air column above. All other boundaries
are currently ignored due to assumptions. If it is desired to include the air column in
the overall the system analysis, the optical transmission and physical properties of said
volume need to be modeled externally (i.e. MODTRAN) and then married to CVskin. For
consistency, the air column possible above CVgas will be referred to as the atmospheric
control volume (CVatm).

It is assumed that the amount of air molecules present in the defined volume remains
constant. Therefore, the rate of change of the air mass is zero, as shown below in equation
N.10

dnair
dt

= 0 (N.10)

Due to the shared boundary with the water volume interface, a change in the amount
of water vapor within CVgas can be induced through either evaporation or condensation
at this interface. If the air column above CVgas is incorporated then there can also be
mass transport across the upper shared boundary. The rate of change in the number of
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water vapor moles in the mixture is equal to the rate of water vapor molecules entering
CVgas minus the rate of water vapor molecules leaving CVgas as shown in equation N.11.
If there is no interaction with atmosphere then the second term in equation N.11 goes to
zero, as shown in equation N.12

dnvap
dt

= ṅskin→gas − ṅgas→atm (N.11)

dnvap
dt

= ṅskin→gas (N.12)

The rate of change of internal energy of CVgas is dictated by several phenomenon. En-
ergy entering the control volume includes irradiance from CVatm, QI:in, energy associated
with mass evaporating from CVskin, Qevap, energy introduced by convection of the mix-
ture over the water surface, Qconv, and emissive energy from water surface, QE:in. Energy
leaving CVgas includes irradiance into CVskin from CVgas, QI:out, water vapor escaping to
CVatm, Qvap, and emissive energy from CVgas to CVatm, QE:out. Figure N.2 depicts all
the incoming energy sources and outgoing energy sinks for CVgas.

The overall governing energy balance, shown in equation N.13, can be reduced to a
simplified form by making several assumptions.

d

dt

(
nvapŪvap + nairŪair

)
= (QI:in −QI:out) + (QE:in −QE:out)

+ Qconvskin→gas +Qevapskin→gas

− Qvapgas→atm (N.13)

Based on the system definition, it was assumed that CVgas was an optically thin volume
of gas having perfect transmission (τ = 1.0). Therefore QI:in = QI:out and both terms
drop from equation N.13. By the same reasoning both of the emissive terms will be equal,
QE:in = QE:out, and can be dropped from the equation. Applying the above assumptions
and expanding the remaining terms produces the following equation, equation N.14.
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Figure N.2: Incoming and outgoing energy sources for CVgas

d

dt

(
nvapŪvap + nairŪair

)
= ĥ (Tskin − Tgas)

+ ṅvapskin→gas (Hskin +KEskin + PEskin)

− ṅvapgas→atm (Hgas +KEgas + PEgas) (N.14)

Due to another initial assumption that kinetic and potential energy variations will be
ignored, both of these terms drop from both mass transfer rate equations. In addition
the left side of the equation can be expanded and simplified. For a gas assumed ideal,
specific internal energy depends on only temperature, therefore the specific heat cv is also
a function of only temperature, as shown in equation N.15.

cv =
(
δu

δT

)

v

→ cv =
du

dT
(N.15)

Applying the above mentioned simplifications produces the following expression for
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the energy balance in CVgas.

dnvap
dt

dŪvap
dt

+
dnair
dt

dŪair
dt

= ĥ (Tskin − Tgas)

+ ṅvapskin→gas (Hskin)

− ṅvapgas→atm (Hgas)
dnvap
dt

CvvapdTgas

dt
+
dnair
dt

CvairdTgas
dt

= ĥ (Tskin − Tgas)

+ ṅvapskin→gas (Hskin)

− ṅvapgas→atm (Hgas)
dTgas
dt

(
ṅvapCvvap + ṅairCvair

)
= ĥ (Tskin − Tgas)

+ ṅvapskin→gas (Hskin)

− ṅvapgas→atm (Hgas)

(N.16)

N.3 Control Volume 2: Gas/water interface

It is assumed that the mass remains constant within CVskin and therefore any mass en-
tering the volume must exit the volume by conservation of mass. Because the water is
the only substance capable in this system to cross into CVskin, the mass balance is simple
to analyze. Mass entering the interfacial region from the water volume below must exit
CVskin as vapor through the process of evaporation. The evaporation term leaving CVskin
is identical to the evaporation term entering CVgas in the energy and mass balances. It is
important to note that the mass transfer across the CVgas/CVskin boundary is negative.
This negation indicates the direction of movement is from CVskin into CVgas. If the envi-
ronment were to dictate vapor from the CVgas is condensing onto CVskin the phenomenon
change would be induced by reversing the signs in equation N.21. By extension, it can be
concluded that a reversal of the evaporation process would indicate the renewal of water
molecules from the bulk volume to the skin would be reversed under these conditions.
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dnliq
dt

= −ṅskin→gas − ṅbulk→skin
0 = −ṅskin→gas − ṅbulk→skin

−ṅskin→gas = ṅbulk→skin (N.17)

The rate of change of internal energy of CVskin is dictated by several phenomenon.
Energy entering the control volume includes irradiance which passed through CVatm, QI:in,
conductive energy from the control volume of water below, Qcond, and energy associated
with mass brought up from CVbulk to renew evaporated vapor molecules, Qrenew. Energy
leaving CVskin includes energy emitted into CVgas, QE:out, energy convectively removed
by the gas above, Qconv, and energy associated from water molecules evaporating at the
top boundary of CVskin into CVgas, Qevap. The figure below, figure N.3, depicts all the
incoming energy sources and outgoing energy sinks.

Figure N.3: Incoming and outgoing energy sources for control volume skin

Similar to the energy balance for CVgas, the energy balance for CVskin can be simplified.
The overall energy balance is shown below in equation N.18
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d

dt
(mliqUliq) = QI:in −QE:in −Qconvskin→gas

− Qevapskin→gas +Qrenewbulk→skin +Qcondbulk→skin (N.18)

Expansion of the terms in the overall energy balance yields the following results. To
reduce redundancy, the kinetic and potential energies have been removed from the evap-
oration renewal terms.

ṁliq
dUliq
dt

= QI:in −QE:in

− ĥgas (Tskin − Tgas)

− ṁskin→gas (hskin)

+ ṁbulk→skin (hbulk)

+
kbulk
dzTbulk

(Tskin − Tbulk) (N.19)

It is important to note that if condensation was occurring the term for evaporation,
−ṁskin→gas (hskin), would be replaced with +ṁgas→skin (hvap). In addition, similar to
the ideal gas assumption, when a liquid is idealized it is assumed to be incompressible
and its specific internal energy depends only on temperature. Therefore, the specific heat
of the liquid will also only depend on temperature, as depicted in equation N.15. This
assumption simplifies equation N.19 to equation N.20.

ṁliqCv(Tbulk) = QI:in −QE:in

− ĥgas (Tskin − Tgas)

− ṁskin→gas (hskin)

+ ṁbulk→skin (hbulk)

+
kbulk
dzTbulk

(Tskin − Tbulk) (N.20)
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N.4 Control Volume 3: Pure water

The final control volume, CVbulk, is comprised of only water and is assumed to maintain a
constant mass. Molecules leaving the control volume via evaporation are replaced by water
molecules brought up from the water located below the bulk volume. By conservation of
mass, both the rate of evaporation from the volume and the rate of renewal of molecules
into the volume must be equal.

dnliq
dt

= 0

= ṅrenew − ṅevap
ṅ∞→bulk = ṅbulk→skin (N.21)

The rate of change of internal energy within CVliq is dictated by the removal of energy
via conduction with the skin volume, Qcond, and any energy brought in through the renewal
process and then removed via evaporation, Qrenew. The figure below, figure N.4, depicts
all the incoming energy sources and outgoing energy sinks.

Figure N.4: Incoming and outgoing energy sources for control volume liquid
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The overall energy balance for CVliq is shown below in equation N.22.

d

dt
(Uliq) = Qrenew −Qevap −Qcond

= ṅ∞→bulkh∞ − ṅbulk→skinhbulk −
kliq

dzTbulk
(Tskin − Tbulk)

= ṅbulk→skin (h∞ − hbulk)−
kliq

dzTbulk
(Tskin − Tbulk)

= ṅbulk→skin [cv (T∞ − Tbulk)]−
kliq

dzTbulk
(Tskin − Tbulk) (N.22)





Appendix O

Swarm Repeatability Results

The data presented below is the full data set to support Table 6.5.
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(a) Initial ice fraction correlation
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Figure O.1: Comparison of initial and final ice fraction correlations for the Trial 1.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure O.2: Comparison of initial and final ice fraction correlations for the Trial 2.
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Figure O.3: Comparison of initial and final ice fraction correlations for the Trial 3.
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Figure O.4: Comparison of initial and final ice fraction correlations for the Trial 4.
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(a) Initial ice fraction correlation
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Figure O.5: Comparison of initial and final ice fraction correlations for the Trial 5.
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Figure O.6: Comparison of initial and final ice fraction correlations for the Trial 6.
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Figure O.7: Comparison of initial and final ice fraction correlations for the Trial 7.
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(a) Initial ice fraction correlation
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Figure O.8: Comparison of initial and final ice fraction correlations for the Trial 8.
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(a) Initial ice fraction correlation
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Figure O.9: Comparison of initial and final ice fraction correlations for the Trial 9.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure O.10: Comparison of initial and final ice fraction correlations for the Trial 10.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure O.11: Comparison of initial and final ice fraction correlations for the Trial 11.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure O.12: Comparison of initial and final ice fraction correlations for the Trial 12.
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Figure O.13: Swarm flow rates for Trial 1.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure O.14: Swarm flow rates for Trial 2.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure O.15: Swarm flow rates for Trial 3.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure O.16: Swarm flow rates for Trial 4.
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(a) Initial ice fraction correlation
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Figure O.17: Swarm flow rates for Trial 5.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure O.18: Swarm flow rates for Trial 6.
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(a) Initial ice fraction correlation
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Figure O.19: Swarm flow rates for Trial 7.
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(a) Initial ice fraction correlation
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(b) Final ice coverage correlation

Figure O.20: Swarm flow rates for Trial 8.
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(a) Initial ice fraction correlation
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Figure O.21: Swarm flow rates for Trial 9.



182 CHAPTER O. Swarm Repeatability Results

0 100 200 300
Time [hours]

0

10

20

30

40
F

lo
w

 r
at

e 
[m

3 /s
]

True Flow
Swarm Flows
Swarm Average

(a) Initial ice fraction correlation
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Figure O.22: Swarm flow rates for Trial 10.
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Figure O.23: Swarm flow rates for Trial 11.
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Figure O.24: Swarm flow rates for Trial 12.





Appendix P

ALGE input files

Below are samples of all the ALGE input files used for this application. It should be noted
that some of the files are not included in their entirety due to their length. This section is
intended to offer examples of the files formats and the data that is expected in the various
inputs.

P.1 param.dat

42.5
DX (GRID SPACING IN X-DIR IN M)
42.5
DY (GRID SPACING IN Y-DIR IN M)
0.5
dz (vertical resolution, m)
0.0
TIME (START TIME, LOCAL, HOURS)
2820.01
TMAX (TOTAL RUN TIME, HOURS)
43.6
RLAT (LATITUDE, DEGREES
-84.25
RLON (LONGITUDE, DEGREES)
336.0
DAY (JULIAN DAY)
0.001
Z0 (ROUGHNESS, METERS)
0.001
z0m (marsh roughness length, m)
0.5
TBIN (BOUNDARY INFLOW TEMP DEG C)

185
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0.5
TBOUT (BOUNDARY OUTFLOW TEMP DEG C)
3.0
TSRS (MASS SOURCE TEMP, DEG C)
20.7
SRSFL (MASS SOURCE, M**3/S)
20.7
SNKFL (MASS SINK, M**3/S)
180.0
XAX (ANGLE OF +X AXIS FROM NORTH, DEG)
3600.0
PINT (PRINT INTERVAL IN SECONDS)
10.
ZREF (REFERENCE HEIGHT FOR TURBULENT SURFACE LAYER, METERS)
0.0
dzdx
0.0
dzdy
0.2
tsmlt (multiplier for Courant limit)
0.1
dtinit (initial timestep in seconds)
0.0
uinit
0.0
vinit
0.0
sinit (initial salinity over entire domain)
5
ihtn (# timesteps between calls to heat transfer subroutines)
39
NX (# OF NODES IN X-DIR)
71
NY (# OF NODES IN Y-DIR)
0
INDG (SWITCH FOR USE OF NUDGING DATA, 0=OFF, 1=ON)
1
lsrs (grid level of mass source counting down from surface)
1
ihttr (flag for heat transfer functions, 0=off, 1=on)
1
itmpsrc (flag for outfall temp. 0 = fixed, 1 = delta-t, deg C)
10
irhmx (max. # 2-D surface wave loops per 3-D loop)
1
idatsrs2 (# hours of second mass source data (m**3/s))
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0
irestart (flag for restart option, 0 = no, 1 = yes)
1
ikopt (flag for Yamada TKE mixing (0), or molecular viscosity (1))
0
isal (flag for fresh (0) or salt (1) water)
1
iflow (flag for time-dependent (1) or steady-state primary mass source (0))
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P.2 idepth.dat

00000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000044444444400000000000000000000000
00000000000000000000000000000000000000048888888884000000000000000000000
00000000000000000000000000000000044444404888888888840000000000000000000
00000000000000000000000000000000048888404888888888888400000000000000000
00000000000000000000000000000000048888840488888888888884400000000000000
00000000000000000000000000000000488888884048888888888888840000000000000
00000000000004444444444444444444488888888404888888888888888400000000000
00000000000448888888888888888888888888888840488888888888888844000000000
00000000004488888888888888888888888888888884048888888888888888840000000
00000000044888888888888888888888888888888888404888888888888888840000000
00000000488888888888888888888888888888888884404888888888888888884000000
00000004888888888888888888888888888888884440048888888888888888884000000
00000448888888888888888888888888888884440004488888888888888888884000000
00004888888888888888888888888888884440004448888888888888888888888400000
00048888888888888888888888888844440004448888888888888888888888888400000
00048888888888888888888888844400004448888888888888888888888888888400000
00048888888888888888888884400044448888888888888888888888888888888840000
00048888888888888888888840044488888888888888888888888888888888888840000
00048888888888888888888844488888888888888888888888888888888888888840000
00048888888888888888888888888888888888888888888888888888888888888884000
00488888888888888888888888888888888888888888888888888888888888888884000
00048888888888888888888888888888888888888888888888888888888888888884000
00048888888888888888888888888888888888888888888888888888888888888888400
00048888888888888888888888888888888888888888888888888888888888888888400
00048888888888888888888888888888888888888888888888888888888888888888400
00048888888888888888888888888888888888888888888888888888888888888888400
00488888888888888888888888888888888888888888888888888888888888888888840
00048888888888888888888888888888888888888888888888888888888888888888840
00048888888888888888888888888888888888888888888888888888888888888888840
00048888888888888888888888888888888888888888888888888888888888888888840
00048888888888888888888888888888888888888888888888888888888888888888840
00048888888888888888888888888888888888888888888888888888888888888888840
00488888888888888888888888888888888888888888888888888888888888888888840
00048888888888888888888888888888888888888888888888888888888888888888840
00048888888888888888888888888888888888888888888888888888888888888888840
00044444444444444444444444444444444444444444444444444444444444444444440
00000000000000000000000000000000000000000000000000000000000000000000000
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P.3 igrid.dat
00000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000011166611100000000000000000000000
00000000000000000000000000000000000000011111111111000000000000000000000
00000000000000000000000000000000017771101111111111110000000000000000000
00000000000000000000000000000000011111101111111111111100000000000000000
00000000000000000000000000000000011111110111111111111111100000000000000
00000000000000000000000000000000111111111011111111111111110000000000000
00000000000001111111111111111111111111111101111111111111111100000000000
00000000000111111111111111111111111111111110111111111111111111000000000
00000000001111111111111111111111111111111111011111111111111111110000000
00000000011111111111111111111111111111111111101111111111111111110000000
00000000111111111111111111111111111111111111101111111111111111111000000
00000001111111111111111111111111111111111110011111111111111111111000000
00000111111111111111111111111111111111110001111111111111111111111000000
00001111111111111111111111111111111110001111111111111111111111111100000
00011111111111111111111111111111110001111111111111111111111111111100000
00011111111111111111111111111100001111111111111111111111111111111100000
00011111111111111111111111100011111111111111111111111111111111111110000
00011111111111111111111110011111111111111111111111111111111111111110000
00011111111111111111111111111111111111111111111111111111111111111110000
00011111111111111111111111111111111111111111111111111111111111111111000
00111111111111111111111111111111111111111111111111111111111111111111000
00011111111111111111111111111111111111111111111111111111111111111111000
00011111111111111111111111111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111111111111111111111111100
00111111111111111111111111111111111111111111111111111111111111111111110
00011111111111111111111111111111111111111111111111111111111111111111110
00011111111111111111111111111111111111111111111111111111111111111111110
00011111111111111111111111111111111111111111111111111111111111111111110
00011111111111111111111111111111111111111111111111111111111111111111110
00011111111111111111111111111111111111111111111111111111111111111111110
00111111111111111111111111111111111111111111111111111111111111111111110
00011111111111111111111111111111111111111111111111111111111111111111110
00011111111111111111111111111111111111111111111111111111111111111111110
00011111111111111111111111111111111111111111111111111111111111111111110
00000000000000000000000000000000000000000000000000000000000000000000000
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P.4 flow.dat

Each row of data represents an hour of simulation time. The flow file requires an entry
for each hour being simulated. The example below is only a small sample and is meant as
an example only.

20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.697431
20.699955
20.468378
20.705003
21.038802
21.088651
20.869694
20.937211
21.084865
21.105057
21.025551
20.924591
20.725826
20.57691
20.622342
20.566183
20.470271
20.565552
20.617294
20.752959
20.705634
20.636855
20.643796
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P.5 deltat.dat

Each row of data represents an hour of simulation time. The deltaT file requires an entry
for each hour being simulated. The example below is only a small sample and is meant as
an example only.

4.07268
4.07268
4.07268
4.07268
4.07268
4.07268
4.07268
4.07268
4.07268
4.07268
4.07268
4.07268
4.07268
4.07268
4.07268
4.07268
4.07268
3.91797
3.91797
3.91797
3.91797
3.91797
3.91797
3.91797
3.91797
3.91797
3.91797
3.91797
3.91797
3.91797
3.91797
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P.6 sfc.dat

Each row of data represents an hour of simulation time. The sfc file requires an entry for
each hour being simulated. The example below is only a small sample and is meant as an
example only.

2900
6 10 1.54 1 1 1 0.15 987.47 0.03 12/1/2008 5:00
7 10 2.57 1 1 1 0.15 986.8 0.03 12/1/2008 6:00
8 10 2.06 1 1 1 0.15 986.8 0.03 12/1/2008 7:00
9 0 0.5 1 1 0.75 0.15 986.8 0.03 12/1/2008 7:59
10 330 1.54 1 1 0.75 0.15 986.46 0.03 12/1/2008 9:00
11 330 2.57 1 0 0.375 0.21 986.46 0.03 12/1/2008 10:00
12 340 1.54 1 -1 0.75 0.39 987.14 0.03 12/1/2008 10:59
13 330 2.06 0 -1 0.75 0.33 988.15 0.03 12/1/2008 12:00
14 310 3.09 0 -1 0.375 0.3 988.83 0.03 12/1/2008 13:00
15 320 3.09 0 -1 0.375 0.36 989.17 0.03 12/1/2008 13:59
16 310 3.09 0 -2 1 1.5 990.86 0.03 12/1/2008 15:00
17 310 3.6 0 -2 0.375 0.48 991.2 0.03 12/1/2008 16:00
18 310 3.6 -1 -3 0.375 0.51 992.55 0.03 12/1/2008 16:59
19 300 4.12 -1 -2 0.375 1.17 993.57 0.03 12/1/2008 18:00
20 290 3.09 -1 -3 0.375 0.54 994.59 0.03 12/1/2008 19:00
21 260 3.09 -1 -2 1 0.36 996.28 0.03 12/1/2008 19:59
22 270 3.6 -1 -2 0.75 0.39 996.96 0.03 12/1/2008 21:00

P.7 dimar.inc

c input array dimar.inc
c fixed dimensions, set with parameter statements
c nxa = nodes in x-dir
c nya = nodes in y-dir
c nza = nodes in z-dir
c nmet = hours of meteorological data
c nsra = hours of time series output to be stored
c ndta = hours of delta-T data
c nba = # of nodes at boundary with inflow or outflow

parameter (nxa =39)
parameter (nya =71)
parameter (nza = 9)
parameter (nmet = 10000)
parameter (nsra = 10000)
parameter (ndta = 10000)
parameter (nba = 500)
parameter (nsr = 500)
parameter (nsn = 500)
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P.8 snd.dat

11,3012
1 0.00081 0.33402 0.50812 0.52535 0.52545 0.52555 0.52565 0.52575 0.52585 0.52595 0.52605
2 0.00081 0.32935 0.49983 0.52111 0.52121 0.52131 0.52141 0.52151 0.52161 0.52171 0.52181
3 0.00081 0.32468 0.49155 0.51686 0.51696 0.51706 0.51716 0.51726 0.51736 0.51746 0.51756
4 0.00080 0.32002 0.48327 0.51262 0.51392 0.51402 0.51412 0.51422 0.51432 0.51442 0.51452
5 0.00080 0.31535 0.47498 0.50838 0.51488 0.51498 0.51508 0.51518 0.51528 0.51538 0.51548
6 0.00080 0.31068 0.46670 0.50413 0.51585 0.51595 0.51605 0.51615 0.51625 0.51635 0.51645
7 0.00080 0.30602 0.45841 0.49989 0.51681 0.51691 0.51701 0.51711 0.51721 0.51731 0.51741
8 0.00079 0.30135 0.45013 0.49565 0.51778 0.51788 0.51798 0.51808 0.51818 0.51828 0.51838
9 0.00079 0.29668 0.44184 0.49140 0.51874 0.51884 0.51894 0.51904 0.51914 0.51924 0.51934
10 0.00079 0.29202 0.43356 0.48716 0.51971 0.51981 0.51991 0.52001 0.52011 0.52021 0.52031
11 0.00078 0.28735 0.42528 0.48292 0.52068 0.52078 0.52088 0.52098 0.52108 0.52118 0.52128
12 0.00078 0.28268 0.41699 0.47868 0.52164 0.52350 0.52360 0.52370 0.52380 0.52390 0.52400
13 0.00079 0.28756 0.42224 0.49055 0.54084 0.54717 0.54727 0.54737 0.54747 0.54757 0.54767
14 0.00079 0.29249 0.42704 0.50094 0.55749 0.56744 0.56754 0.56764 0.56774 0.56784 0.56794
15 0.00080 0.29742 0.43184 0.51133 0.57414 0.58770 0.58780 0.58790 0.58800 0.58810 0.58820
16 0.00080 0.30235 0.43665 0.52173 0.59080 0.60797 0.60807 0.60817 0.60827 0.60837 0.60847
17 0.00081 0.30728 0.44145 0.53212 0.60745 0.62824 0.62834 0.62844 0.62854 0.62864 0.62874
18 0.00082 0.31221 0.44625 0.54251 0.62410 0.64850 0.64860 0.64870 0.64880 0.64890 0.64900
19 0.00082 0.31714 0.45106 0.55291 0.64075 0.66877 0.66887 0.66897 0.66907 0.66917 0.66927
20 0.00083 0.32207 0.45586 0.56330 0.65740 0.68904 0.68914 0.68924 0.68934 0.68944 0.68954

P.9 peramp.dat
1664
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
6.0 0.0
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P.10 seadens.dat
.99974 1.00015 1.00056 1.00097 1.00138 1.00179 1.00220
1.00261 1.00302 1.00343 1.00384 1.00425 1.00466 1.00507
1.00548 1.00588 1.00629 1.00670 1.00711 1.00751 1.00792
1.00833 1.00874 1.00914 1.00955 1.00996 1.01037 1.01077
1.01118 1.01159
1.01199 1.01240 1.01280 1.01321 1.01361 1.01402 1.01442
1.01483 1.01523 1.01564 1.01604 1.01645 1.01685 1.01726
1.01766 1.01807 1.01847 1.01888 1.01928 1.01969 1.02009
1.02050 1.02090 1.02131 1.02171 1.02212 1.02252 1.02293
1.02333 1.02374 1.02414 1.02455 1.02495 1.02536 1.02577
1.02617 1.02658 1.02698 1.02739 1.02779 1.02820 1.02861
1.02901 1.02942 1.02983

P.11 srsfl2.dat

For this application there was now second source so this file only contained a single value,
1.0.



Appendix Q

Computing cluster submission

scripts

The work documented was performed on Rochester Institute of Technology’s Research
Computing (RC) computing cluster. RC maintains a ’condominium’ cluster consisting
of shares purchased by researchers. Each node has 32-64 cores with AMD Opteron 2.2
GHz or AMD Interlagos 2.6 ”bulldozer” processors and 128-256 GB of memory. There
are currently over 250 cores in the cluster. Each node is interconnected with 10 Gigabit
ethernet. The head node is connected with 10 Gigabit ethernet to the campus backbone.
Aside from local scratch space, the filesystems are NSF mounted from the research com-
puting fileserver, a BlueArc NAS system with 70 TB of usable space. This linux cluster
is designed to run parallel computing jobs that are tightly coupled and use the MPI [1].
Through the course of this research the job management system changed from Sun Grid
Engine (SGE) to the Simple Linux Utility for Resource Management (SLURM). Two ver-
sions of submission scripts to execute PSO-ALGE on the cluster were created to operate
in the two environments.

Q.1 SLURM submission scripts

Q.1.1 config.sh

1 #!/bin/bash

2

195
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3 if [ "$BASH_SOURCE" == $0 ] ; then echo "This is a config file, you don’t run it" ;

exit 1 ; fi

4

5 ##Slurm config options##

6

7 #QoS to run in

8 SLURM_QOS="salvaggio-normal"

9 #Slurm partiton

10 SLURM_PARTITION="work"

11 #Memory requiremnt PER JOB (total, not per job step)

12 SLURM_MEMORY_REQ="1024"

13 #Runtime limit PER JOB

14 SLURM_WALLCLOCK="2:00:0"

15

16 ##Job Options##

17

18 #A prefix for all the log files, job names etc. Spaces are bad.

19 JOB_NAME=’2W12’

20 #How many generations the job will run for (how deep the job is)

21 TOTAL_GENERATIONS=200

22 #How many workers will run per generation (how wide the job is)

23 NUM_STEPS=24

24 #How many processors each step will consume.

25 THREADS_PER_STEP=1

26

27 #This is the script that is called for ever step. It is passed two options

28 # The first option is a number (index 0) which is the generaion

29 # The second option is a number (index 0) which is the step.

30 # Generation 5, worker 2’s run will look like "generation-step.sh 5 2"

31 STEP_WORKER_SCRIPT=’/home/mva7609/may_casterline/SLURM/two_week_runs/0809/

constant_flowrate/every_12hr/generation-step.sh’

32

33 JOB_FILE_DIRECTORY=’./jobfiles’

34 LOG_FILE_DIRECTORY=’./logs’

35 ##Swarm Options##

36

37 # dataPath = where new data is going to reside

38 # alge_constant_path = path containing all ALGE input files and ground truth data

39 # name = the job name given to each particle in the scheduler

40 alge_constant_path=’/home/mva7609/may_casterline/SLURM/two_week_runs/0809/alge_12hr/’

41 dataPath=’/home/mva7609/may_casterline/SLURM/two_week_runs/0809/constant_flowrate/

every_12hr/data/’

42 name=$JOB_NAME

43

44 # num_particles_per_gen = how many ALGE instances will run per generation

45 num_particles_per_gen=$NUM_STEPS

46
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47 # num_parameters = how many ALGE inputs that are being optimized

48 # =number of points to average the flow file to

49 # --> if only optimizing flow (weather_variable=0)

50 # --> this value is equal to the total number of points

51 # in the flow file, divided by the window size used

52 # to create the new flow array

53 # EXAMPLE: Flow file has 2900 points and user wants

54 # a flow value to be calculated every 145 points.

55 # 145 is the window size, so there will be 20

56 # entries in the flow file, representing a value

57 # approixmately every 6 days (assuming the time

58 # resolution is hourly).

59 # =8 --> if only optimizing weather (weather_variable=1)

60 # =10 --> optimizing both weather and flow (weather_variable=2)

61 num_parameters=20

62

63 # num_generations = how many generations the swarm will run for

64 num_generations=$TOTAL_GENERATIONS

65

66 # Swarm parameters

67 # error_goal --> Used to terminate the algorithm

68 # minflag

69 # =0 --> converge on score array to be within error goal of 0.0

70 # =1 --> converge on score array to be within error goal of minimum

71 # score acheived

72 # gamma1 --> cognitive acceleration, relates to particle’s personal best

73 # solution

74 # gamma2 --> social acceleration, relates to globa best solution

75 # w_start --> value of velocity at beginning

76 # w_end --> value of velocity at end

77 # w_varyfor --> the fraction of maximum iterations for with the velocity is

78 # linearly decreased

79 #

80 error_goal=0.0001

81 minflag=1

82 gamma1=2.05

83 gamma2=2.05

84 w_start=1.2

85 w_end=0.0

86 w_varyfor=0.7

87

88 # ub = upper bound

89 # lb = lower bound

90 # These bounds are the bounding condition ranges are different

91 # depending on the mode of operation.

92 #

93 # If optimizing weather or weather and plant parameters these
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94 # values represent the range of possible % changes made to the

95 # overall time series.

96 #

97 # If optimizing only flow then these bounds represent the range

98 # the flow rate is allowed to fluctuate within at any point in time.

99 #

100 # initial_fwhm = initial full width half max for the gaussian distribution

101 # of initial flow rates

102 # initial_mean = initial mean for the gaussian distribution of initial

103 # flow rates

104 #

105 ub=45.0

106 lb=1.0

107 initial_fwhm=4.0

108 initial_mean=5.0

109

110 # op_mode decides which evaluation module is run

111 # =0 --> weather parameters are considered valid and left alone, only

112 # flow is optimized

113 # =1 --> weather parameters are the only things optimized

114 # =2 --> weather and plant parameters are optimized using % change to

115 # the overall time series

116 # =3 --> a 2D, single global minimum, test function is optimized with 2

117 # parameters, x and y

118 # =4 --> every time point in a flow rate series is considered a parameter

119 # to optimize, resulting in an extrememly high dimensional solution

120 # space

121 # =5 --> evaluates a 2 week alge simulation using synthesized data as the

122 # truth set. Only optimizes flow rate every 18 hours and only evaluates

123 # ice fraction performance

124 op_mode=5

125

126 # ratio_flag = determine metric for evaluation

127 # 1 = ice only

128 # 2 = water only

129 # 3 = combination metric

130 ratio_flag=1

131

132 # metric_flag = determine metric used

133 # 1 = Modified RMS

134 # 2 = Standard RMS

135 metric_flag=2

136

137 # season = define which season of data to simulate

138 # 0 = 08/09 winter

139 # 1 = 09/10 winter

140 season=0
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Q.1.2 generation-step.sh

1 #!/bin/bash -l

2

3 #Run the job from the current working directory

4 #$ -cwd

5

6 #SBATCH -p work

7

8 #Your commands go after this line

9

10 #Source files to pull variables from

11 source ˜/.bashrc

12 source config.sh

13 ulimit -a

14 ulimit -n 4096 -u 4096

15

16 #Load IDL/ENVI binaries

17 module load envi

18 #Store first two incoming arguments as generation and particle

19 generation=$1

20 particle=$2

21 config_file=‘readlink -f config.sh‘

22 config_file="’$config_file’"

23 dataPath="’${dataPath}’"

24

25 #Push to directory containing IDL code

26 pushd /home/mva7609/may_casterline/PSO_Cluster_SLURM/

27

28 #Start IDL and pass in a set of commands

29 # 1. Compile main driving routine (pso_cluster_final_truth)

30 # 2. Compiel any dependent routines

31 # 3. Execute main routine, passing into coming arguments as well as configuration

file variables

32 # 4. Print the returned value from the execution

33 # 5. End the IDL list of compands

34 idl <<EOF

35 .compile pso_cluster_final_truth

36 resolve_all

37 value = pso_cluster(${generation}, ${particle}, ${config_file}, ${dataPath})

38 print, value

39 EOF

40 #Pop out of directory and exit

41 popd

42 echo -------

43 exit
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Q.1.3 submit-generation.sh

1 #!/bin/bash

2

3 #TODO

4 #release generation 0 upon completion

5 #have a trigger on success to cancel remaining jobs

6

7 #Pull the config then do sanity tests

8 if [ -e config.sh ] ; then source config.sh ; else echo config file missing! ; exit 1

; fi

9

10 if [ -z "$JOB_NAME" ] ; then echo "JOB_NAME not defined, this is used to prefix all

jobs and logs (it should be unique per data set)" ; exit 1 ; fi

11

12 if [ -z "$JOB_FILE_DIRECTORY" ] ; then echo JOB_FILE_DIRECTORY not defined, this is

where the job files are kept ; exit 1 ; fi

13 if [ ! -d ${JOB_FILE_DIRECTORY} ] ; then echo creating job file directory:

$JOB_FILE_DIRECTORY ; mkdir -p ${JOB_FILE_DIRECTORY} ; fi

14

15 if [ -z "$LOG_FILE_DIRECTORY" ] ; then echo "Warning: $LOG_FILE_DIRECTORY not defined

, this is where the log files are kept." ; echo "You should ctrl-c a few times

and fix this or else you may end up with lots of files in annoying places." ;

echo "You have 15 seconds." ; sleep 15 ; fi

16 if [ ! -d ${LOG_FILE_DIRECTORY} ] ; then echo "LOG_FILE_DIRECTORY $LOG_FILE_DIRECTORY

not found, creating" ; mkdir -p ${LOG_FILE_DIRECTORY} ; fi

17

18 if [ -z "$TOTAL_GENERATIONS" ] ; then echo "TOTAL_GENERATIONS not defined, this is

how many generations deep the job is." ; exit 1 ; fi

19 if [ -z "$NUM_STEPS" ] ; then echo "NUM_STEPS not defined, this is how many workers

run per generation." ; exit 1 ; fi

20 if [ -z "$THREADS_PER_STEP" ] ; then echo "THREADS_PER_STEP not defined, this is how

many processors each step requires." ; exit 1 ; fi

21 if [ -z "$STEP_WORKER_SCRIPT" ] ; then echo "STEP_WORKER_SCRIPT not defined, this is

what is run on every job step." ; exit 1 ; fi

22

23 #End sanity tests

24 ###############################################################################

25 #Below here are the loops to generate the generational job files with

26 #The steps inside them

27

28 #if any job files exit with this prefix, fail

29 if [ "$(ls jobfiles/${JOB_NAME}_*.sh 2> /dev/null)" ] ; then echo "Error, job files

exist with this prefix" ; exit 1 ; fi

30

31 #Begin Generation Loop#

32 for GENERATION in $(seq 0 $( expr ${TOTAL_GENERATIONS} - 1)) ; do
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33

34 cat << EOF >> ${JOB_FILE_DIRECTORY}/${JOB_NAME}_${GENERATION}.sh

35 #!/bin/bash -l

36 # NOTE the -l flag!

37 #

38

39 # This is an example job file for a single core CPU bound program

40 # Note that all of the following statements below that begin

41 # with #SBATCH are actually commands to the SLURM scheduler.

42 # Please copy this file to your home directory and modify it

43 # to suit your needs.

44 #

45 # If you need any help, please email rc-help@rit.edu

46 #

47

48 # Name of the job

49 #SBATCH -J ${JOB_NAME}_${GENERATION}

50

51 # Standard out and Standard Error output files

52 #SBATCH -o ${LOG_FILE_DIRECTORY}/${JOB_NAME}_${GENERATION}.stdout

53 #SBATCH -e ${LOG_FILE_DIRECTORY}/${JOB_NAME}_${GENERATION}.stderr

54

55 #Runtime Required

56 #SBATCH -t ${SLURM_WALLCLOCK}

57

58 #QOS to run under

59 #SBATCH --qos=${SLURM_QOS}

60

61 #Partition and CPUs required

62 #SBATCH -p ${SLURM_PARTITION} -n ${NUM_STEPS} -c ${THREADS_PER_STEP}

63

64 # Job memory requirements in MB

65 #SBATCH --mem=${SLURM_MEMORY_REQ}

66

67 # A check to see if this script is managed by SLURM

68 /usr/bin/env | grep SLURM_JOB_ID

69 if [ "$?" != "0" ] ; then

70 echo "Please run this script with ’sbatch <script-name>’"

71 echo "Email rc-help@rit.edu if you have any questions."

72 echo "Aborting."

73 else

74

75 EOF

76

77 #Begin Step Loop#

78 for STEPNUMBER in $(seq 0 $(expr ${NUM_STEPS} - 1) ) ; do
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79 echo "srun -n 1 -c ${THREADS_PER_STEP} -o ${LOG_FILE_DIRECTORY}/${JOB_NAME}_${

GENERATION}_${STEPNUMBER}.log ${STEP_WORKER_SCRIPT} ${GENERATION} ${STEPNUMBER}

&" >> ${JOB_FILE_DIRECTORY}/${JOB_NAME}_${GENERATION}.sh

80 done

81 #End Step Loop#

82

83 cat << EOF >> ${JOB_FILE_DIRECTORY}/${JOB_NAME}_${GENERATION}.sh

84 #wait for above jobs to finish

85 wait

86

87 #release the next generation

88 if [ "$GENERATION" -lt "$TOTAL_GENERATIONS" ] ; then

89 scontrol release \$(squeue --noheader --format "%.i,%.j" | grep ",${JOB_NAME}_$(

expr ${GENERATION} + 1 )$" | cut -f 1 -d ,)

90 fi

91

92 fi

93

94 EOF

95

96 #Lets submit the new job file

97 sbatch --hold ${JOB_FILE_DIRECTORY}/${JOB_NAME}_${GENERATION}.sh

98

99 done

100 #End Generation Loop#

Q.2 SGE submission scripts

Q.2.1 config.sh

1 #!/bin/bash

2

3 if [ "$BASH_SOURCE" == $0 ] ; then echo "This is a config file, you don’t run it" ;

exit 1 ; fi

4

5 ##Slurm config options##

6

7 #QoS to run in

8 SLURM_QOS="rc-normal"

9 #Slurm partiton

10 SLURM_PARTITION="work"

11 #Memory requiremnt PER JOB (total, not per job step)

12 SLURM_MEMORY_REQ="30"

13 #Runtime limit PER JOB

14 SLURM_WALLCLOCK="0:10:0"

15

16 ##Job Options##
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17

18 #A prefix for all the log files, job names etc. Spaces are bad.

19 JOB_PREFIX=’2WK’

20 #How many generations the job will run for (how deep the job is)

21 NUM_GENERATIONS=5

22 #How many workers will run per generation (how wide the job is)

23 NUM_STEPS=3

24 #How many processors each step will consume.

25 THREADS_PER_STEP=1

26

27 #This is the script that is called for ever step. It is passed two options

28 # The first option is a number (index 0) which is the generaion

29 # The second option is a number (index 0) which is the step.

30 # Generation 5, worker 2’s run will look like "generation-step.sh 5 2"

31 STEP_WORKER_SCRIPT="generation-step.sh"

32

33 ##Swarm Options##

34

35 # dataPath = where new data is going to reside

36 # alge_constant_path = path containing all ALGE input files and ground truth data

37 # name = the job name given to each particle in the scheduler

38 alge_constant_path=’/home/mva7609/may_casterline/SLURM/two_week_runs/alge/’

39 dataPath=’./data/’

40 name=$JOB_PREFIX

41

42 # num_particles_per_gen = how many ALGE instances will run per generation

43 num_particles_per_gen=$NUM_STEPS

44

45 # num_parameters = how many ALGE inputs that are being optimized

46 # =number of points to average the flow file to

47 # --> if only optimizing flow (weather_variable=0)

48 # --> this value is equal to the total number of points

49 # in the flow file, divided by the window size used

50 # to create the new flow array

51 # EXAMPLE: Flow file has 2900 points and user wants

52 # a flow value to be calculated every 145 points.

53 # 145 is the window size, so there will be 20

54 # entries in the flow file, representing a value

55 # approixmately every 6 days (assuming the time

56 # resolution is hourly).

57 # =8 --> if only optimizing weather (weather_variable=1)

58 # =10 --> optimizing both weather and flow (weather_variable=2)

59 num_parameters=20

60

61 # num_generations = how many generations the swarm will run for

62 #num_generations=4

63
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64 # Swarm parameters

65 # error_goal --> Used to terminate the algorithm

66 # minflag

67 # =0 --> converge on score array to be within error goal of 0.0

68 # =1 --> converge on score array to be within error goal of minimum

69 # score acheived

70 # gamma1 --> cognitive acceleration, relates to particle’s personal best

71 # solution

72 # gamma2 --> social acceleration, relates to globa best solution

73 # w_start --> value of velocity at beginning

74 # w_end --> value of velocity at end

75 # w_varyfor --> the fraction of maximum iterations for with the velocity is

76 # linearly decreased

77 #

78 error_goal=0.0001

79 minflag=0

80 gamma1=2.05

81 gamma2=2.05

82 w_start=1.2

83 w_end=0.0

84 w_varyfor=0.7

85

86 # ub = upper bound

87 # lb = lower bound

88 # These bounds are the bounding condition ranges are different

89 # depending on the mode of operation.

90 #

91 # If optimizing weather or weather and plant parameters these

92 # values represent the range of possible % changes made to the

93 # overall time series.

94 #

95 # If optimizing only flow then these bounds represent the range

96 # the flow rate is allowed to fluctuate within at any point in time.

97 #

98 # initial_fwhm = initial full width half max for the gaussian distribution

99 # of initial flow rates

100 # initial_mean = initial mean for the gaussian distribution of initial

101 # flow rates

102 #

103 ub=45.0

104 lb=1.0

105 initial_fwhm=4.0

106 initial_mean=5.0

107

108 # op_mode decides which evaluation module is run

109 # =0 --> weather parameters are considered valid and left alone, only

110 # flow is optimized
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111 # =1 --> weather parameters are the only things optimized

112 # =2 --> weather and plant parameters are optimized using % change to

113 # the overall time series

114 # =3 --> a 2D, single global minimum, test function is optimized with 2

115 # parameters, x and y

116 # =4 --> every time point in a flow rate series is considered a parameter

117 # to optimize, resulting in an extrememly high dimensional solution

118 # space

119 # =5 --> evaluates a 2 week alge simulation using synthesized data as the

120 # truth set. Only optimizes flow rate every 18 hours and only evaluates

121 # ice fraction performance

122 op_mode=5

123

124 # ratio_flag = determine metric for evaluation

125 # 1 = ice only

126 # 2 = water only

127 # 3 = combination metric

128 ratio_flag=1

129

130 # metric_flag = determine metric used

131 # 1 = Modified RMS

132 # 2 = Standard RMS

133 metric_flag=2

134

135 # season = define which season of data to simulate

136 # 0 = 08/09 winter

137 # 1 = 09/10 winter

138 season=0

Q.2.2 generation-step.sh

1 #!/bin/bash -l

2

3 #Run the job from the current working directory

4 #$ -cwd

5

6 #SBATCH -p work

7

8 #Your commands go after this line

9

10 #Source files to pull variables from

11 source ˜/.bashrc

12 source config.sh

13 ulimit -a

14 ulimit -n 4096 -u 4096

15

16 #Load IDL/ENVI binaries

17 module load envi
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18 #Store first two incoming arguments as generation and particle

19 generation=$1

20 particle=$2

21 config_file=‘readlink -f config.sh‘

22 config_file="’$config_file’"

23 dataPath="’${dataPath}’"

24

25 #Push to directory containing IDL code

26 pushd /home/mva7609/may_casterline/PSO_Cluster_SLURM/

27

28 #Start IDL and pass in a set of commands

29 # 1. Compile main driving routine (pso_cluster_final_truth)

30 # 2. Compiel any dependent routines

31 # 3. Execute main routine, passing into coming arguments as well as configuration

file variables

32 # 4. Print the returned value from the execution

33 # 5. End the IDL list of compands

34 idl <<EOF

35 .compile pso_cluster_final_truth

36 resolve_all

37 value = pso_cluster(${generation}, ${particle}, ${config_file}, ${dataPath})

38 print, value

39 EOF

40 #Pop out of directory and exit

41 popd

42 echo -------

43 exit

Q.2.3 submit-generation.sh

1 #!/bin/bash

2

3 #TODO

4 #release generation 0 upon completion

5 #have a trigger on success to cancel remaining jobs

6

7 #Pull the config then do sanity tests

8 if [ -e config.sh ] ; then source config.sh ; else echo config file missing! ; exit 1

; fi

9

10 if [ -z "$JOB_NAME" ] ; then echo "JOB_NAME not defined, this is used to prefix all

jobs and logs (it should be unique per data set)" ; exit 1 ; fi

11

12 if [ -z "$JOB_FILE_DIRECTORY" ] ; then echo JOB_FILE_DIRECTORY not defined, this is

where the job files are kept ; exit 1 ; fi

13 if [ ! -d ${JOB_FILE_DIRECTORY} ] ; then echo creating job file directory:

$JOB_FILE_DIRECTORY ; mkdir -p ${JOB_FILE_DIRECTORY} ; fi

14
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15 if [ -z "$LOG_FILE_DIRECTORY" ] ; then echo "Warning: $LOG_FILE_DIRECTORY not defined

, this is where the log files are kept." ; echo "You should ctrl-c a few times

and fix this or else you may end up with lots of files in annoying places." ;

echo "You have 15 seconds." ; sleep 15 ; fi

16 if [ ! -d ${LOG_FILE_DIRECTORY} ] ; then echo "LOG_FILE_DIRECTORY $LOG_FILE_DIRECTORY

not found, creating" ; mkdir -p ${LOG_FILE_DIRECTORY} ; fi

17

18 if [ -z "$TOTAL_GENERATIONS" ] ; then echo "TOTAL_GENERATIONS not defined, this is

how many generations deep the job is." ; exit 1 ; fi

19 if [ -z "$NUM_STEPS" ] ; then echo "NUM_STEPS not defined, this is how many workers

run per generation." ; exit 1 ; fi

20 if [ -z "$THREADS_PER_STEP" ] ; then echo "THREADS_PER_STEP not defined, this is how

many processors each step requires." ; exit 1 ; fi

21 if [ -z "$STEP_WORKER_SCRIPT" ] ; then echo "STEP_WORKER_SCRIPT not defined, this is

what is run on every job step." ; exit 1 ; fi

22

23 #End sanity tests

24 ###############################################################################

25 #Below here are the loops to generate the generational job files with

26 #The steps inside them

27

28 #if any job files exit with this prefix, fail

29 if [ "$(ls jobfiles/${JOB_NAME}_*.sh 2> /dev/null)" ] ; then echo "Error, job files

exist with this prefix" ; exit 1 ; fi

30

31 #Begin Generation Loop#

32 for GENERATION in $(seq 0 $( expr ${TOTAL_GENERATIONS} - 1)) ; do

33

34 cat << EOF >> ${JOB_FILE_DIRECTORY}/${JOB_NAME}_${GENERATION}.sh

35 #!/bin/bash -l

36 # NOTE the -l flag!

37 #

38

39 # This is an example job file for a single core CPU bound program

40 # Note that all of the following statements below that begin

41 # with #SBATCH are actually commands to the SLURM scheduler.

42 # Please copy this file to your home directory and modify it

43 # to suit your needs.

44 #

45 # If you need any help, please email rc-help@rit.edu

46 #

47

48 # Name of the job

49 #SBATCH -J ${JOB_NAME}_${GENERATION}

50

51 # Standard out and Standard Error output files

52 #SBATCH -o ${LOG_FILE_DIRECTORY}/${JOB_NAME}_${GENERATION}.stdout
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53 #SBATCH -e ${LOG_FILE_DIRECTORY}/${JOB_NAME}_${GENERATION}.stderr

54

55 #Runtime Required

56 #SBATCH -t ${SLURM_WALLCLOCK}

57

58 #QOS to run under

59 #SBATCH --qos=${SLURM_QOS}

60

61 #Partition and CPUs required

62 #SBATCH -p ${SLURM_PARTITION} -n ${NUM_STEPS} -c ${THREADS_PER_STEP}

63

64 # Job memory requirements in MB

65 #SBATCH --mem=${SLURM_MEMORY_REQ}

66

67 # A check to see if this script is managed by SLURM

68 /usr/bin/env | grep SLURM_JOB_ID

69 if [ "$?" != "0" ] ; then

70 echo "Please run this script with ’sbatch <script-name>’"

71 echo "Email rc-help@rit.edu if you have any questions."

72 echo "Aborting."

73 else

74

75 EOF

76

77 #Begin Step Loop#

78 for STEPNUMBER in $(seq 0 $(expr ${NUM_STEPS} - 1) ) ; do

79 echo "srun -n 1 -c ${THREADS_PER_STEP} -o ${LOG_FILE_DIRECTORY}/${JOB_NAME}_${

GENERATION}_${STEPNUMBER}.log ${STEP_WORKER_SCRIPT} ${GENERATION} ${STEPNUMBER}

&" >> ${JOB_FILE_DIRECTORY}/${JOB_NAME}_${GENERATION}.sh

80 done

81 #End Step Loop#

82

83 cat << EOF >> ${JOB_FILE_DIRECTORY}/${JOB_NAME}_${GENERATION}.sh

84 #wait for above jobs to finish

85 wait

86

87 #release the next generation

88 if [ "$GENERATION" -lt "$TOTAL_GENERATIONS" ] ; then

89 scontrol release \$(squeue --noheader --format "%.i,%.j" | grep ",${JOB_NAME}_$(

expr ${GENERATION} + 1 )$" | cut -f 1 -d ,)

90 fi

91

92 fi

93

94 EOF

95

96 #Lets submit the new job file
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97 sbatch --hold ${JOB_FILE_DIRECTORY}/${JOB_NAME}_${GENERATION}.sh

98

99 done

100 #End Generation Loop#





Appendix R

WASP Calibration Code

All calibration code for the WASP sensor were developed in IDL and can be run headless
through any Unix or Linux based terminal.

R.1 WASP CAL FILEHANDLER

This procedure performs the file handling for the WASP calibration process. It assumes
that inside a flight directory there are directories containing blackbody imagery as well as
scene imagery. Additionally, a log file from the black body system, bbcal_log.csv, is
also in the same directory. Using the image numbers and recorded temperatures associated
with each file number, the handler determines the appropriate bracketing hot and cold
blackbody images to use for each flight line to be calibrated in the data set. This process
is what calls the main CAL_WASP_PREPROCESSING which performs the actual processing.

1 PRO WASP_CAL_FILEHANDLER, flightlinedir
2

3 CD, flightlinedir
4 SPAWN, ’pwd’, calPath
5 tempreffile = FILE_WHICH(calPath, ’bbcal_log.csv’)
6 CD, flightlinedir
7

8

9 ; open the BB log file and read in data
10 nlines = FILE_LINES(tempreffile)
11 tempdata = FLTARR(10,nlines)
12

13 OPENR, lun, tempreffile, /GET_LUN
14 READF, lun, tempdata
15 CLOSE, lun

211
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16

17 FREE_LUN, lun
18

19 midTemp = MEAN(tempdata[3, *])
20

21 hotfixed = FIX(tempdata[0,WHERE(tempdata[3, *] GT midTemp)])
22 hotimgNumString = STRTRIM(STRING(hotfixed), 2)
23 hotsmallNumLocs = WHERE(STRLEN(hotimgNumString) LE 2)
24 IF hotsmallNumLocs[0] NE -1 THEN hotimgNumString[hotsmallNumLocs] = ’0’ +

hotimgNumString[hotsmallNumLocs]
25

26 coldfixed = FIX(tempdata[0,WHERE(tempdata[3, *] LT midTemp)])
27 coldimgNumString = STRTRIM(STRING(coldfixed), 2)
28 coldsmallNumLocs = WHERE(STRLEN(coldimgNumString) LE 2)
29 IF coldsmallNumLocs[0] NE -1 THEN coldimgNumString[coldsmallNumLocs] = ’0’ +

coldimgNumString[coldsmallNumLocs]
30

31 hotImgNames = REFORM("LWIR" + hotimgNumString + ".img")
32 print, "The Hot images are: " +hotImgNames
33 coldImgNames = REFORM("LWIR" + coldimgNumString + ".img")
34 print, "The Cold images are: " + coldImgNames
35

36 numHot = N_ELEMENTS(hotImgNames)
37 numCold = N_ELEMENTS(coldImgNames)
38 hotDirArray = STRARR(2, 2)
39 coldDirArray = STRARR(2, 2)
40 calDirArray = STRARR(2, 2)
41

42 FOR curHot=0, numHot-1 DO BEGIN
43 curPath = FILE_SEARCH(flightlinedir, hotImgNames[curHot])
44 curPath = FILE_DIRNAME(curPath)
45 curPath = FILE_BASENAME(curPath)
46 numDirs = N_ELEMENTS(hotDirArray[0, *])
47 IF hotDirArray[0, numDirs-1] EQ curPath THEN BEGIN
48 CONTINUE
49 ENDIF ELSE BEGIN
50 pathComps = STRSPLIT(curPath, "-", /EXTRACT)
51 timeString = STRING(pathComps[3]) + STRING(pathComps[4]) + STRING(pathComps[5])
52 hotDirArray = [[hotDirArray], [curPath, timeString]]
53 ENDELSE
54 ENDFOR
55

56 FOR curCold=0, numCold-1 DO BEGIN
57 curPath = FILE_SEARCH(flightlinedir, coldImgNames[curCold])
58 curPath = FILE_DIRNAME(curPath)
59 curPath = FILE_BASENAME(curPath[0])
60 numDirs = N_ELEMENTS(coldDirArray[0, *])
61 IF coldDirArray[0, numDirs-1] EQ curPath THEN BEGIN
62 CONTINUE
63 ENDIF ELSE BEGIN
64 pathComps = STRSPLIT(curPath, "-", /EXTRACT)
65 timeString = STRING(pathComps[3]) + STRING(pathComps[4]) + STRING(pathComps[5])
66 coldDirArray = [[coldDirArray], [curPath, timeString]]
67 ENDELSE
68 ENDFOR
69

70 SPAWN, ’ls’, allDirs, /NOSHELL
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71 numDirs = N_ELEMENTS(allDirs)
72 calCount = 0
73 numCalCountDirs = numDirs - (N_ELEMENTS(coldDirArray[0, *])-2) - (N_ELEMENTS(

hotDirArray[0, *])-2)
74 tempdataPTR = PTR_NEW(tempdata, /ALLOCATE_HEAP, /NO_COPY)
75 tempdata = 0
76

77 FOR curDir=0, numDirs-1 DO BEGIN
78 coldMatch = WHERE(allDirs[curDir] EQ coldDirArray[0, *])
79 hotMatch = WHERE(allDirs[curDir] EQ hotDirArray[0, *])
80 numCalDirs = N_ELEMENTS(calDirArray[0, *])
81 IF (coldMatch[0] NE -1) OR (hotMatch[0] NE -1) THEN BEGIN
82 CONTINUE
83 ENDIF ELSE BEGIN
84 calCount++
85 CD, alldirs[curdir]
86 SPAWN, ’ls’, filecount
87 IF N_ELEMENTS(filecount) LE 6 THEN BEGIN
88 CD, ’..’
89 CONTINUE
90 ENDIF
91 CD, ’..’
92 pathComps = STRSPLIT(allDirs[curDir], "-", /EXTRACT)
93 timeString = STRING(pathComps[3]) + STRING(pathComps[4]) + STRING(pathComps[5])
94 calDirArray = [[calDirArray], [allDirs[curDir], timeString]]
95

96 diffHotArray = ABS(FLOAT(calDirArray[1, numCalDirs])-FLOAT(hotDirArray[1, 2:*])
)

97 minHotDiff = MIN(ABS(FLOAT(calDirArray[1, numCalDirs]) - FLOAT(hotDirArray[1,
2:*])))

98 minHotDiffLoc = WHERE(diffHotArray EQ minHotDiff)
99 closestHotTime = hotDirArray[1, minHotDiffLoc+2]

100

101 diffColdArray = ABS(FLOAT(calDirArray[1, numCalDirs])-FLOAT(coldDirArray[1,
2:*]))

102 minColdDiff = MIN(ABS(FLOAT(calDirArray[1, numCalDirs]) - FLOAT(coldDirArray[1,
2:*])))

103 minColdDiffLoc = WHERE(diffColdArray EQ minColdDiff)
104 closestColdTime = coldDirArray[1, minColdDiffLoc+2]
105

106 coldDir = coldDirArray[0, WHERE(coldDirArray[1, *] EQ closestColdTime[0])]
107 hotDir = hotDirArray[0, WHERE(hotDirArray[1, *] EQ closestHotTime[0])]
108

109

110 PRINT, "Beginning to calibrate LWIR directory: " + allDirs[curDir] + $
111 " [" +STRCOMPRESS(STRING(calCount), /REMOVE_ALL) + $
112 "/" +STRCOMPRESS(STRING(numCalCountDirs), /REMOVE_ALL) + "]"
113 print, "Using " + coldDir[0] + " and " + HotDir[0] + " for cold and hot

calibration images"
114

115 status = CAL_WASP_PREPROCESSING(flightLineDir+coldDir[0], flightLineDir+hotDir
[0], $

116 flightLineDir+allDirs[curDir], tempdataPTR, ’
LWIR’)

117 PRINT, "Finished calibrating LWIR in directory: " + allDirs[curDir] + " $
118 [" +STRCOMPRESS(STRING(calCount), /REMOVE_ALL) + $
119 "/" +STRCOMPRESS(STRING(numCalCountDirs), /REMOVE_ALL) + "]"
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120 PRINT, "Beginning to calibrate MWIR directory: " + allDirs[curDir] + " $
121 [" +STRCOMPRESS(STRING(calCount), /REMOVE_ALL) + $
122 "/" +STRCOMPRESS(STRING(numCalCountDirs), /REMOVE_ALL) + "]"
123 status = CAL_WASP_PREPROCESSING(flightLineDir+coldDir[0], flightLineDir+hotDir

[0], $
124 flightLineDir+allDirs[curDir], tempdataPTR, ’

MWIR’)
125 PRINT, "Finished calibrating MWIR in directory: " + allDirs[curDir] + $
126 " [" +STRCOMPRESS(STRING(calCount), /REMOVE_ALL) + $
127 "/" +STRCOMPRESS(STRING(numCalCountDirs), /REMOVE_ALL) + "]"
128

129 ENDELSE
130 ENDFOR
131

132 PTR_FREE, tempdataPTR
133

134 END

R.2 CAL WASP PREPROCESSING

1 ;+
2 ; NAME:
3 ; CAL_WASP_PREPROCESS
4 ;
5 ; PURPOSE:
6 ; This procedure uses the logged BB temperatures and their corresponding timestamps

to choose the images
7 ; to calibrate the un-calibrated WASP imagery from a single flight line. The set of

both hot and cold images
8 ; are averaged to create a single hot and cold image to represent the bracketing BB

images for a given flight
9 ; line. The measured temperature of the blackbody for those corresponding images is

also averaged from the
10 ; log file. Using Planck’s equation, both blackbody image sets, and the recorded

temperatures, the raw WASP
11 ; imagery contained within each flight line is calibrated out radiance units using

WASP_THERM_COMMAND one image
12 ; at a time. The final produced image cubes are a four-banded floating point data

cube with the same dimensions
13 ; as the original raw imagery. The first band is the raw data, the second band is

the gain applied to the raw
14 ; image, the third band is the bias applied to the raw image, and the fourth band is

the final radiance image.
15 ;
16 ; CALLING SEQUENCE:
17 ; CAL_WASP_PREPROCESS
18 ;
19 ; INPUT ARGUMENT:
20 ; None
21 ;
22 ; RETURNS:
23 ; None
24 ;
25 ; INTERNAL CALLS:
26 ; OPEN_ENVI_IMG_COMMAND
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27 ; WASP_THERM_COMMAND
28 ;
29 ; OPTIONAL OUTPUT ARGUMENT:
30 ; None
31 ;
32 ; OPTIONAL INPUT KEYWORD:
33 ; None
34 ;
35 ; NOTES:
36 ; None
37 ;
38 ; WARNING:
39 ; NONe
40 ;
41 ; REVISION HISTORY:
42 ; Written M.V. Casterline, 10/8/09, RIT-DIRS
43 ;-
44

45 FUNCTION CAL_WASP_PREPROCESSING, dirColdImages, dirHotImages, dirImages, tempdataPTR,
band

46

47 COMMON calibrationBlock, coldavg, hotavg, hotStdDevArr, coldStdDevArr
48

49 IF ( !VERSION.OS_FAMILY EQ ’Windows’ ) THEN delimit=’\’ ELSE delimit=’/’
50 workingpath = FILE_DIRNAME(dirImages)
51

52 ; search the directories for all of the LWIR images to be calibrated along with the
BB shot images

53 searchPattern = STRCOMPRESS(band + ’*.img’, /REMOVE_ALL)
54 calfilelist = FILE_SEARCH(dirImages, searchPattern)
55 coldimagelist = FILE_SEARCH(dirColdImages, searchPattern)
56 hotimagelist = FILE_SEARCH(dirHotImages, searchPattern)
57

58 ; create a new directory "lwir-proc" to hold all processed image cubes
59 rawDirectory = FILE_DIRNAME(calfilelist[0])
60 calDirectory = FILE_DIRNAME(dircoldimages)
61 calDirName = STRCOMPRESS(STRLOWCASE(band)+’-proc’, /REMOVE_ALL)
62 calDirectory = calDirectory + delimit + calDirName
63 FILE_MKDIR, calDirectory
64

65 ; get the number of elements in each list
66 coldcount = N_ELEMENTS(coldimagelist)
67 hotcount = N_ELEMENTS(hotimagelist)
68 calcount = N_ELEMENTS(calfilelist)
69

70 ; the "sum" images for averaging
71 coldsum = FLOAT(0)
72 hotsum = FLOAT(0)
73

74 ; setup arrays to contain the event numbers of each of the black body shots
75 coldnum = 0
76 hotnum = 0
77

78 ; the "sum" of measured BB tempratures for averaging
79 coldthermsum = FLOAT(0)
80 hotthermsum = FLOAT(0)
81
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82 sampleImg = READ_ENVI_IMAGE(coldimagelist[0])
83 size = SIZE(sampleImg, /DIMENSIONS)
84 sampleImg = 0
85 numpix = size[0]*size[1]
86 xsize = size[0]
87 ysize = size[1]
88 coldBBcube = FLTARR(coldcount, xsize, ysize)
89 hotBBcube = FLTARR(hotcount, xsize, ysize)
90 tempdata = *tempdataPTR
91

92 IF band EQ ’LWIR’ THEN dataCol=6 ELSE dataCol=4
93

94 ; average each of the cold black body sequence images - also average the physical
thermistor measurement

95 FOR i=0, coldcount-1 DO BEGIN
96 coldBBcube[i, *, *] = READ_ENVI_IMAGE(coldimagelist[i])
97 coldsum = FLOAT(coldsum) + coldBBcube[i, *, *]
98 coldnum = STRSPLIT(FILE_BASENAME(coldimagelist[i],’.img’),band,/EXTRACT)
99 coldthermsum = FLOAT(coldthermsum) + tempdata[datacol, WHERE(tempdata[0, *] EQ

coldnum[0])]
100 ENDFOR
101

102 ; average each of the hot black body sequence images - also average the physical
thermistor measurement

103 FOR i=0,hotcount-1 DO BEGIN
104 hotBBcube[i, *, *] = READ_ENVI_IMAGE(hotimagelist[i])
105 hotsum = FLOAT(hotsum) + hotBBcube[i, *, *]
106 hotnum = STRSPLIT(FILE_BASENAME(hotimagelist[i],’.img’),band,/EXTRACT)
107 hotthermsum = FLOAT(hotthermsum) + tempdata[datacol, WHERE(tempdata[0, *] EQ

hotnum[0])]
108 ENDFOR
109

110 tempdata=0
111

112 coldavg = REFORM(FLOAT(coldsum / coldcount), numpix)
113 coldthermavg = FLOAT(coldthermsum / coldcount)
114 hotavg = REFORM(FLOAT(hotsum / hotcount), numpix)
115 hotthermavg = FLOAT(hotthermsum/hotcount)
116 hotoriginal = hotavg
117 coldoriginal = coldavg
118

119

120 coldavgcube = REFORM(REPLICATE(1, coldcount) # coldavg, coldcount, xsize, ysize)
121 hotavgcube = REFORM(REPLICATE(1, hotcount) # hotavg, hotcount, xsize, ysize)
122

123 hotVertones = REPLICATE(1, 1, hotcount)
124 hotDeMeanedCube = REFORM((hotBBcube - hotavgcube)ˆ2, hotcount, numpix)
125 hotStdDevArr = SQRT((hotdemeanedcube ## hotvertones)/(FLOAT(hotcount)-1))
126 hotStdDevArr = REFORM(hotStdDevArr, xsize, ysize)
127

128 coldVertones = REPLICATE(1, 1, coldcount)
129 coldDeMeanedCube = REFORM((coldBBcube - coldavgcube)ˆ2, coldcount, numpix)
130 coldStdDevArr = SQRT((colddemeanedcube ## coldvertones)/(FLOAT(coldcount)-1))
131 coldStdDevArr = REFORM(coldStdDevArr, xsize, ysize)
132

133 coldBBcube = 0
134 hotBBcube = 0
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135 coldsum = 0
136 hotsum = 0
137 coldthermsum = 0
138 hotthermsum = 0
139 coldavgcube = 0
140 hotavgcube = 0
141 colddemeanedcube = 0
142 hotdemeanedcube = 0
143 hotvertones = 0
144 coldvertones = 0
145

146 hotavg = REFORM(hotavg, xsize, ysize)
147 coldavg = REFORM(coldavg, xsize, ysize)
148

149 ; determine size of image window
150 windowSize = 64.0
151

152 ; determine how many segments can be created
153 numColBoxes = xsize / windowSize
154 numRowBoxes = ysize / windowSize
155

156 ; create empty array to hold head pixel mask
157 deadPixMask = INTARR(xsize, ysize)
158

159 ; create empty columns to append to final image - handles two leftmost empty
columns in every WASP image

160 coldEmptyCols = FLTARR(2, windowSize)
161 hotEmptyCols = FLTARR(2, windowSize)
162

163 FOR i=0, numColBoxes-1 DO BEGIN
164 FOR j=0, numRowBoxes-1 DO BEGIN
165

166 ; select subset of average hot and cold blackbody images
167 hotavgsub = hotavg[(i*windowSize):(i*windowSize+windowSize)-1, (j*windowSize):(

j*windowSize+windowSize)-1]
168 coldavgsub = coldavg[(i*windowSize):(i*windowSize+windowSize)-1, (j*windowSize)

:(j*windowSize+windowSize)-1]
169 subdims = SIZE(coldavgsub, /DIMENSIONS)
170 deadPixMasksub = INTARR(subdims[0], subdims[1])
171

172 ; ; calculate histogram threshod for the top and bottom 1% of digital counts
173 ; hotThresh = 0.02*MAX(hotavgsub)
174 ; coldThresh = 0.02*MAX(coldavgsub)
175 ;
176 ; ; calculate maximum and minimum digital counts allowable
177 ; hotTop = MAX(hotavgsub) - hotThresh
178 ; hotBottom = MIN(hotavgsub) + hotThresh
179 ; coldTop = MAX(coldavgsub) - coldThresh
180 ; coldBottom = MIN(coldavgsub) + coldThresh
181 ;
182 ; ; determine location of all pixels above and below the thresholds (i.e. dead

pixels)
183 ; hotOutLocs = WHERE((hotavgsub GE hotTop) OR (hotavgsub LE hotbottom),

hotOutCount)
184 ; coldOutLocs = WHERE((coldavgsub GE coldTop) OR (coldavgsub LE coldBottom),

coldOutCount)
185
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186 lowThresh = 0.0025
187 highThresh = 0.9975
188 CDFhot = TOTAL( HISTOGRAM(hotavgsub, LOCATIONS=hotLocs)/FLOAT(N_ELEMENTS(

hotavgsub)), /CUMULATIVE)
189 CDFcold = TOTAL( HISTOGRAM(coldavgsub, LOCATIONS=coldlocs)/FLOAT(N_ELEMENTS(

coldavgsub)), /CUMULATIVE)
190

191 minHotDCs = WHERE( ABS( CDFhot - lowThresh ) EQ MIN( ABS( CDFhot - lowThresh ))
, numHotMin)

192 minColdDCs = WHERE( ABS( CDFcold - lowThresh ) EQ MIN( ABS( CDFcold - lowThresh
)), numColdMin)

193

194 maxHotDCs = WHERE( ABS( CDFhot - highThresh ) EQ MIN( ABS( CDFhot - highThresh
)), numHotMax)

195 maxColdDCs = WHERE( ABS( CDFcold - highThresh ) EQ MIN( ABS( CDFcold -
highThresh )), numColdMax)

196

197 deadPixMasksub[WHERE(hotavgsub GE hotlocs[maxHotDCs[0]])] = 1.0
198 deadPixMasksub[WHERE(hotavgsub LE hotlocs[minHotDCs[numHotMin-1]])] = 1.0
199 deadPixMasksub[WHERE(coldavgsub GE coldlocs[maxColdDCs[0]])] = 1.0
200 deadPixMasksub[WHERE(coldavgsub LE coldlocs[minColdDCs[numColdMin-1]])] = 1.0
201

202 ; ; create a dead pixel mask and set each dead pixel location to 1
203 ; deadPixMasksub[hotOutLocs] = 1
204 ; deadPixMasksub[coldOutLocs] = 1
205

206 ; fill total dead pixel mask with dead pixels found in current subset
207 deadPixMask[(i*windowSize):(i*windowSize+windowSize)-1, (j*windowSize):(j*

windowSize+windowSize)-1]=deadPixMasksub
208

209 ; fill in hot and cold blackbody images with dead pixel-filled subset
210 hotavg[(i*windowSize):(i*windowSize+windowSize)-1, (j*windowSize):(j*windowSize

+windowSize)-1] = hotavgsub
211 coldavg[(i*windowSize):(i*windowSize+windowSize)-1, (j*windowSize):(j*

windowSize+windowSize)-1] = coldavgsub
212

213 ENDFOR
214 ENDFOR
215

216 deadLocs = WHERE(deadPixMask EQ 1)
217 numDead = N_ELEMENTS(deadLocs)
218

219 smoothedHot = RESAMP_DEADPIX(deadPixMask, /HOT)
220 smoothedCold = RESAMP_DEADPIX(deadPixMask, /COLD)
221

222 ; replace only known dead pixels with calculated averages
223 hotavg[deadLocs] = smoothedHot[deadLocs]
224 coldavg[deadLocs] = smoothedCold[deadLocs]
225

226 smoothedHot = 0
227 smoothedCold = 0
228

229 BBData = FLTARR(7, xsize, ysize)
230 BBData[0, *, *] = hotoriginal
231 BBData[1, *, *] = coldoriginal
232 BBData[2, *, *] = deadPixMask*255.0
233 BBData[3, *, *] = hotavg
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234 BBData[4, *, *] = coldavg
235

236 ; Convert each raw image tile into radiance units. Output is a 4-banded image cube
containing the raw tile,

237 ; the calculated gain for each pixel, the calculated bias for each pixel, and the
produced radiance image.

238 ; Write the image cube into the "lwir-proc" directory.
239 FOR i=0, calcount-1 DO BEGIN
240 preProcessedCube = WASP_THERM_COMMAND( calfilelist[i], coldthermavg[0],

hotthermavg[0], deadPixMask, band )
241 rawBaseName = FILE_BASENAME(calfilelist[i], ’.img’)
242 cubeName = calDirectory + delimit + rawBaseName + ’_PreProcCube.tif’
243 WRITE_TIFF,cubeName, preProcessedCube, /FLOAT
244 PRINT, "Done with image: " + rawBaseName + ’_PreProcCube.tif’
245 preProcessedCube = 0
246 ENDFOR
247

248 coldavg = 0
249 hotavg = 0
250 hotStdDevArr = 0
251 coldStdDevArr = 0
252 RETURN, 1
253

254 END

R.3 WASP THERM COMMAND

1 ;+
2 ; NAME:
3 ; WASP_THERM_COMMAND
4 ;
5 ; PURPOSE:
6 ; The function WASP_THERM_COMMAND is used to generate the four banded image cube

comprised of the calibrated radiance image,
7 ; the associated gains and biases used to generate the calibration, and the original

raw image tiles.
8 ;
9 ; CALLING SEQUENCE:

10 ; PREPROCESSEDCUBE = WASP_THERM_COMMAND( rawImg, coldBBImg, coldT, hotBBImg, hotT )
11 ;
12 ; INPUT ARGUMENT:
13 ; rawImg = array containing spatial information of raw imagery to be calibrated
14 ; coldBBImg = array containing spatial information of raw cold blackbody associated

with the flightline
15 ; containing the raw imagery
16 ; coldT = the measured cold temperature of the cold blackbody at the time the image

was acquired
17 ; hotBBImg = array containing spatial information of raw hot blackbody associated

with the flightline
18 ; containing the raw imagery
19 ; hotT = the measured hot temperature of the hot blackbody at the time the image was

acquired
20 ;
21 ; RETURNS:
22 ; PREPROCESSEDCUBE = four banded imaged containing the original raw image, associated

gain mask, associated
23 ; bias mask, and processed radiance image
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24 ; Band0 = rawImg
25 ; Band1 = gainImg
26 ; Band2 = biasImg
27 ; Band3 = radianceImg
28 ; Band4 = stdErrorGain
29 ; Band5 = stdErrorBias
30 ;
31 ; INTERNAL CALLS:
32 ; COMPUTE_RADIANCE
33 ; COMPUTE_SLOPE_INT
34 ;
35 ; OPTIONAL OUTPUT ARGUMENT:
36 ; None
37 ;
38 ; OPTIONAL INPUT KEYWORD:
39 ; None
40 ;
41 ; NOTES:
42 ; None
43 ;
44 ; WARNING:
45 ; None
46 ;
47 ; REVISION HISTORY:
48 ; Written M.V. Casterline, 10/8/09, RIT-DIRS
49 ;-
50

51 FUNCTION WASP_THERM_COMMAND, rawImgfile, coldT, hotT, deadPixMask, band
52

53 COMMON calibrationBlock, coldavg, hotavg, hotStdDevArr, coldStdDevArr
54

55 ; Open raw imagery and gather dimenions information
56 rawImg = READ_ENVI_IMAGE(rawImgfile)
57 rawDIMS = SIZE(rawImg, /DIMENSIONS)
58 rawImg = FLOAT(rawImg)
59 deadPixLocs = WHERE(deadPixMask EQ 1)
60

61 smoothedRaw = RESAMP_DEADPIX(deadPixMask, IMG=rawImg)
62

63 ; replace dead pixels with interpolated averages
64 rawImg[deadPixLocs] = smoothedRaw[deadPixLocs]
65

66 ; Compute the radiance emitted from the hot and cold blackbodies. Use radiance
values to derive linear fit

67 ; to convert raw digital counts to radiance values
68 radArr = COMPUTE_RADIANCE(hotT, coldT, band)
69 mask_cube = COMPUTE_SLOPE_INT(radArr[0], radArr[1])
70 error_cube = COMPUTE_STD_LININTERP()
71

72 ; Apply calculated gain and bias to the raw imagery pixel-by-pixel
73 slope_img = rawImg * mask_cube[1, *, *]
74 calRadImg = slope_img + mask_cube[0, *, *]
75

76 ; Build 6-banded image cube
77 preProcessedCube = FLTARR(6, rawdims[0], rawdims[1] )
78 preProcessedCube[0, *, *] = rawImg
79 preProcessedCube[1, *, *] = mask_cube[1, *, *]
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80 preProcessedCube[2, *, *] = mask_cube[0, *, *]
81 preProcessedCube[3, *, *] = calRadImg
82 preProcessedCube[4, *, *] = error_cube[1, *, *]
83 preProcessedCube[5, *, *] = error_cube[0, *, *]
84

85 RETURN, preProcessedCube
86

87 END

R.4 COMPUTE RADIANCE

1 ;+
2 ; NAME:
3 ; COMPUTE_RADIANCE
4 ;
5 ; PURPOSE:
6 ; The function COMPUTE_RADIANCE takes in the temperatures of the hot and cold

blackbody that
7 ; was used for the calibration images and computes the blackbody radiance via the

Planck function.
8 ; Then it takes into account the response of WASP’s LWIR sensor and applies the

sensor
9 ; response function to the blackbody radiance. Finally it integrates under the

radiance curve
10 ; to compute the total radiance in units W/mˆ2/sr/micron.
11 ;
12 ; CALLING SEQUENCE:
13 ; RADARR = COMPUTE_RADIANCE(hotT, coldT)
14 ;
15 ; INPUT ARGUMENT:
16 ; hotT = temperature of the hot blackbody
17 ; coldT = temperature of the cold blackbody
18 ;
19 ; RETURNS:
20 ; RADARR = array of calculated total radiance values, [[TotalHotRad],[TotalColdRad]]
21 ;
22 ; INTERNAL CALLS:
23 ; None
24 ;
25 ; OPTIONAL OUTPUT ARGUMENT:
26 ; None
27 ;
28 ; OPTIONAL INPUT KEYWORD:
29 ; None
30 ;
31 ; NOTES:
32 ; None
33 ;
34 ; WARNING:
35 ; Currently the sensitivity data hard-coded into this function are for the WASP LWIR

sensor as of 10/8/2009. To apply the
36 ; calibration routine to another framing device this data array either needs to be

replaced with the new sensor’s
37 ; sensitivity. In addition, the emissivity data hard-coded in are for the blackbody

material mounted on the WASP sensor
38 ; as of 10/8/2009. This array would have to be changed if the blackbody material is

replaced.
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39 ;
40 ; REVISION HISTORY:
41 ; Written M.V. Casterline, 10/8/09, RIT-DIRS
42 ;-
43

44 FUNCTION COMPUTE_RADIANCE, hotTemp, coldTemp, band
45

46 ; WASP outputs a single band image that has integrated energy from 8 - 9.2 microns.
Sixty

47 ; wavelengths and their corresponding sensitivity value from the WASP LWIR response
curve

48 ; were put into a comma delimited text file. This text file is called ’
wasp_lwir_response.csv’

49 ; and could be used in the READ_ASCII command. Currently this data as well as the BB
emissivity

50 ; is hard-coded in below.
51

52 IF band EQ ’MWIR’ THEN BEGIN
53 sensitivityArr= [[3.0, 0.56], $
54 [3.0833, 0.6], $
55 [3.1666, 0.625],$
56 [3.2499, 0.65], $
57 [3.3333, 0.675], $
58 [3.4165, 0.7], $
59 [3.5, 0.725], $
60 [3.5833, 0.775], $
61 [3.6666, 0.8], $
62 [3.7499, 0.85], $
63 [3.8333, 0.8], $
64 [3.9166, 0.83], $
65 [4.0, 0.85], $
66 [4.0833, 0.86], $
67 [4.1666, 0.875], $
68 [4.2499, 0.925], $
69 [4.3333, 0.92], $
70 [4.4166, 0.875], $
71 [4.5, 0.925], $
72 [4.5833, 0.925], $
73 [4.6666, 0.93], $
74 [4.7499, 0.95], $
75 [4.8333, 0.97], $
76 [4.9166, 0.96], $
77 [5.0, 0.95], $
78 [5.0833, 0.98], $
79 [5.1666, 1.0], $
80 [5.2499, 0.95], $
81 [5.3333, 0.85], $
82 [5.4166, 0.775], $
83 [5.5, 0.28], $
84 [5.5833, 0.04], $
85 [5.6666, 0.01], $
86 [5.7499, 0.05]]
87

88 emissivity = [0.961, 0.9609, 0.9605, 0.9612, 0.9629, $
89 0.9601, 0.9596, 0.9592, 0.9588, 0.9592, $
90 0.9595, 0.9594, 0.959, 0.9593, 0.9593, $
91 0.9574, 9.9588, 0.9591, 0.9591, 0.9594, $
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92 0.9592, 0.9591, 0.9595, 0.96, 0.96, 0.96, $
93 0.9606, 0.9609, 0.9616, 0.9621, 0.9634, $
94 0.965, 0.9695, 0.9656]
95 ENDIF ELSE BEGIN
96 sensitivityArr = [[8, 0.3775], $
97 [8.02, 0.3725], $
98 [8.04, 0.37], $
99 [8.06, 0.3675], $

100 [8.08, 0.37], $
101 [8.1, 0.37], $
102 [8.12, 0.3675], $
103 [8.14, 0.3675], $
104 [8.16, 0.3725], $
105 [8.18, 0.39], $
106 [8.2, 0.4075], $
107 [8.22, 0.4425], $
108 [8.24, 0.485], $
109 [8.26, 0.5125], $
110 [8.28, 0.56], $
111 [8.3, 0.62], $
112 [8.32, 0.65], $
113 [8.34, 0.6525], $
114 [8.36, 0.65], $
115 [8.38, 0.645], $
116 [8.4, 0.65], $
117 [8.42, 0.66], $
118 [8.44, 0.695], $
119 [8.46, 0.74], $
120 [8.48, 0.805], $
121 [8.5, 0.8475], $
122 [8.52, 0.89], $
123 [8.54, 0.925], $
124 [8.56, 0.9625], $
125 [8.58, 0.9875], $
126 [8.6, 1], $
127 [8.62, 0.9975], $
128 [8.64, 0.99], $
129 [8.66, 0.9775], $
130 [8.68, 0.9625], $
131 [8.7, 0.9575], $
132 [8.72, 0.9575], $
133 [8.74, 0.96], $
134 [8.76, 0.9575], $
135 [8.78, 0.9525], $
136 [8.8, 0.945], $
137 [8.82, 0.915], $
138 [8.84, 0.89], $
139 [8.86, 0.8625], $
140 [8.88, 0.84], $
141 [8.9, 0.82], $
142 [8.92, 0.7925], $
143 [8.94, 0.7625], $
144 [8.96, 0.7225], $
145 [8.98, 0.6825], $
146 [9, 0.645], $
147 [9.02, 0.61], $
148 [9.04, 0.585], $
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149 [9.06, 0.5625], $
150 [9.08, 0.5425], $
151 [9.1, 0.5225], $
152 [9.12, 0.505], $
153 [9.14, 0.4825], $
154 [9.16, 0.4575], $
155 [9.18, 0.4225], $
156 [9.2, 0.39]]
157

158 emissivity = [0.9778, 0.9778, 0.9773, 0.9763, 0.9759, $
159 0.9754, 0.9742, 0.9739, 0.9742, 0.9744, $
160 0.9749, 0.9754, 0.9758, $
161 0.9764, 0.9773, 0.9781, 0.9784, 0.9784, $
162 0.9782, 0.9776, 0.9763, 0.9755, 0.974, $
163 0.9731, 0.9704, 0.9691, 0.9681, 0.9669, $
164 0.9663, 0.9648, 0.9635, 0.9621, $
165 0.9596, 0.9585, 0.9571, 0.9567, 0.9562, $
166 0.9552, 0.9548, 0.9542, 0.9532, 0.9529, $
167 0.9527, 0.9533, 0.9535, 0.9532, 0.953, $
168 0.9527, 0.9525, 0.9518, 0.9518, 0.9519, $
169 0.9523, 0.9528, 0.9529, 0.953, 0.9526, $
170 0.9526, 0.9526, 0.95625, 0.9532]
171 ENDELSE
172

173 ; Section into wavelengths, sensitivity, and emissivity
174 wavelength = sensitivityArr[0, *]
175 sensitivity = sensitivityArr[1, *]
176 emissivity = TRANSPOSE(emissivity)
177

178 ; Convert blackbody temperatures that are in degrees C to Kelvin
179 tempC = coldTemp + 273.15
180 tempH = hotTemp + 273.15
181

182 ; Compute radiance values for hotTemp using wavelength array generated from
response curve chart

183 ; should be in units of W/mˆ2/sr/micron
184 c1 = 3.74515e8
185 c2 = 1.43879e4
186 w = FLOAT(wavelength)
187 tH = FLOAT(tempH)
188 tC = FLOAT(tempC)
189 radH = c1/((!PI * wˆ5) * ( EXP(c2/(w * tH)) - 1))
190

191 ; Multiply each radiance value by BB emissivity and sensor response
192 radianceHot = radH * sensitivity * emissivity
193

194 ; Need to get total radiance, so the radiance curve from the previous step is
itegrated using

195 ; built in function INT_TABULATED
196 totalRadianceHot = INT_TABULATED(wavelength, radianceHot)
197

198 ; Now repeat for cold temp
199 radC = c1/((!PI * wˆ5) * ( EXP(c2/(w * tC)) - 1))
200

201 ; Multiply each radiance value by BB emissivity and sensor response
202 radianceCold = radC * sensitivity * emissivity
203
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204 ; Calculate total radiance
205 totalRadianceCold = INT_TABULATED(wavelength, radianceCold)
206

207 RETURN, [[totalRadianceHot],[totalRadianceCold]]
208

209 END

R.5 COMPUTE SLOPE INT

1 ;+
2 ; NAME:
3 ; COMPUTE_SLOPE_INT
4 ;
5 ; PURPOSE:
6 ; The function COMPUTE_SLOPE_INT takes in the images of the hot and cold blackbody

and also
7 ; the radiance values from the function COMPUTE_RADIANCE and calculates the slope (

gain) and
8 ; y-intercept (bias) at each pixel in the cold blackbody image. The function returns

a
9 ; slope mask and a bias mask that will be used in the main procedure to calibrate a

raw
10 ; WASP LWIR image.
11 ;
12 ; CALLING SEQUENCE:
13 ; MASK_CUBE = COMPUTE_SLOPE_INT(coldBBImg, hotBBImg, coldRadiance, hotRadiance)
14 ;
15 ; INPUT ARGUMENT:
16 ; coldBBImg = average cold blackbody image
17 ; hotBBImg = average hot blackbody image
18 ; coldRadiance = calculated total radiance emmitted from the cold blackbody
19 ; hotRadiance = calculated total radiance emmitted from the hot blackbody
20 ;
21 ; RETURNS:
22 ; MASK_CUBE = Two-banded array with the same dimensions as input BB images. First

band
23 ; contains the pixel-by-pixel gain to be applied to the raw imagery,

while
24 ; the second band contains the pixel-by-pixel bias to be applied to the

raw
25 ; imagery.
26 ;
27 ; INTERNAL CALLS:
28 ; None
29 ;
30 ; OPTIONAL OUTPUT ARGUMENT:
31 ; None
32 ;
33 ; OPTIONAL INPUT KEYWORD:
34 ; None
35 ;
36 ; NOTES:
37 ; None
38 ;
39 ; WARNING:
40 ; None
41 ;
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42 ; REVISION HISTORY:
43 ; Written M.V. Casterline, 10/8/09, RIT-DIRS
44 ;-
45

46 FUNCTION COMPUTE_SLOPE_INT, radiance_hot, radiance_cold
47

48 COMMON calibrationBlock, coldavg, hotavg, hotStdDevArr, coldStdDevArr
49 ; Compute the numerator of the slope equation by subtracting radiance_cold from

radiance_hot
50 rise = radiance_hot - radiance_cold
51

52 ; Compute the denominator of the slope equation by subtracting the cold black body
image from the

53 ; hot blackbody image
54 diffImage = FLOAT(hotavg) - FLOAT(coldavg)
55

56 ;Create slope mask by computing slope equation
57 index = WHERE( diffImage EQ 0,findcount )
58 IF (findcount NE 0) THEN BEGIN
59 diffImage[index] = diffImage[index] + 0.001
60 ENDIF
61 slopeMask = FLOAT((rise / diffImage))
62

63 ;Compute the y-intercept (the bias) using cold blackbody info
64 ;ColdRadiance = (slopeMask*DC_coldBB) + bias
65 ;bias = ColdRadiance - (slopeMask * DC_coldBB)
66 biasMask = radiance_cold - (slopeMask * coldavg)
67

68 dims = SIZE(biasMask, /DIMENSIONS)
69 maskcube = FLTARR(2, dims[0], dims[1])
70

71 maskcube[0, *, *] = biasMask
72 maskcube[1, *, *] = slopeMask
73 RETURN, maskcube
74

75 END

R.6 COMPUTE STD LININTERP

1 ;+
2 ; NAME:
3 ; COMPUTE_STD_LININTERP
4 ;
5 ; PURPOSE:
6 ;
7 ;
8 ; CALLING SEQUENCE:
9 ; ERROR_CUBE = COMPUTE_STD_LININTERP( hotStdDevArr, coldStdDevArr )

10 ;
11 ; INPUT ARGUMENT:
12 ;
13 ;
14 ; RETURNS:
15 ; ERROR_CUBE =
16 ;
17 ; INTERNAL CALLS:
18 ; None
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19 ;
20 ; OPTIONAL OUTPUT ARGUMENT:
21 ; None
22 ;
23 ; OPTIONAL INPUT KEYWORD:
24 ; None
25 ;
26 ; NOTES:
27 ; None
28 ;
29 ; WARNING:
30 ; None
31 ;
32 ; REVISION HISTORY:
33 ; Written M.V. Casterline, 12/21/09, RIT-DIRS
34 ;-
35

36 FUNCTION COMPUTE_STD_LININTERP
37

38 COMMON calibrationBlock, coldavg, hotavg, hotStdDevArr, coldStdDevArr
39

40 ; Compute the numerator of the slope equation by subtracting coldStdDevArr from
hotStdDevArr

41 rise = hotStdDevArr - coldStdDevArr
42

43 ; Compute the denominator of the slope equation by subtracting the cold black body
image from the

44 ; hot blackbody image
45 diffImage = FLOAT(hotavg) - FLOAT(coldavg)
46

47 ;Create slope mask by computing slope equation
48 index = WHERE( diffImage EQ 0,findcount )
49 IF (findcount NE 0) THEN BEGIN
50 diffImage[index] = diffImage[index] + 0.001
51 ENDIF
52 slopeMask = FLOAT((rise / diffImage))
53

54 ;Compute the y-intercept (the bias) using cold blackbody info
55 ;ColdStdDev = (slopeMask*DC_coldBB) + bias
56 ;bias = ColdStdDev - (slopeMask * DC_coldBB)
57 biasMask = coldStdDevArr - (slopeMask * coldavg)
58

59 dims = SIZE(biasMask, /DIMENSIONS)
60 errorcube = FLTARR(2, dims[0], dims[1])
61

62 errorcube[0, *, *] = biasMask
63 errorcube[1, *, *] = slopeMask
64 RETURN, errorcube
65

66 END

R.7 RESAMP DEADPIX

1 FUNCTION RESAMP_DEADPIX, deadPixSub, IMG=img, HOT=hot, COLD=cold
2

3 COMMON calibrationBlock, coldavg, hotavg, hotStdDevArr, coldStdDevArr
4
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5 IF ARG_PRESENT(img) THEN BEGIN
6 ImgSub = img
7 ENDIF ELSE BEGIN
8 IF KEYWORD_SET(hot) THEN imgSub=hotavg
9 IF KEYWORD_SET(cold) THEN imgSub=coldavg

10 ENDELSE
11

12 s = SIZE(ImgSub)
13

14 ;Form the x and y grids (pixel locations)
15 ncols = s[1]
16 nrows = s[2]
17

18 xgv=((FINDGEN(ncols)-(ncols-1)/2.)) ;X grid vector
19 ygv=((FINDGEN(nrows)-(nrows-1)/2.)) ;Y grid vector
20 xcoord=REPLICATE(1,nrows)##xgv ;Grid of x values
21 ycoord=REPLICATE(1,ncols)#ygv ;Grid of y values
22

23 ;find ’bad’ pixels
24 badInd = WHERE(deadPixSub EQ 1)
25 goodInd = WHERE(deadPixSub NE 1)
26

27 ;locations of good values
28 xcoordGood = xcoord[goodInd]
29 ycoordGood = ycoord[goodInd]
30 zGood = imgSub[goodInd]
31 ;locations to interpolate
32 xcoordBad = xcoord[badInd]
33 ycoordBad = ycoord[badInd]
34

35 TRIANGULATE, xcoordGood, ycoordGood, tr
36

37 methodN = "Linear"
38 badInterp = GRIDDATA(xcoordGood,ycoordGood,zGood,XOUT=xcoordBad,YOUT=ycoordBad,

METHOD=methodN,TRIANGLES = tr)
39

40 ;put the interpolated values back into the image and display
41 imFixed = imgSub
42 imFixed[badInd] = badInterp
43

44 RETURN, imFixed
45

46 END

R.8 READ ENVI HEADER

1 ;+
2 ; :NAME:
3 ; READ_ENVI_HEADER
4 ;
5 ; :PURPOSE:
6 ; This function serves to read an ENVI header directly into
7 ; an IDL program.
8 ;
9 ; :CATEGORY:

10 ; Image Processing.
11 ;
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12 ; :CALLING SEQUENCE:
13 ; Result = READ_ENVI_HEADER( filename )
14 ;
15 ; :INPUTS:
16 ; filename:
17 ; The ENVI header filename to be read.
18 ;
19 ; :KEYWORD PARAMETERS:
20 ; NONE
21 ;
22 ; :RETURN VALUE:
23 ; A structure containing the ENVI header information from the
24 ; provided file. If any error is encountered during this process,
25 ; the scalar -1 will be returned.
26 ;
27 ; :SIDE EFFECTS:
28 ; NONE
29 ;
30 ; :MODIFICATION HISTORY:
31 ; Written by: Carl Salvaggio
32 ; July, 2009 Original code
33 ; December, 2009 Header now includes the byte order
34 ;
35 ; :DISCLAIMER:
36 ; This source code is provided "as is" and without warranties as to performance
37 ; or merchantability. The author and/or distributors of this source code may
38 ; have made statements about this source code. Any such statements do not
39 ; constitute warranties and shall not be relied on by the user in deciding
40 ; whether to use this source code.
41 ;
42 ; This source code is provided without any express or implied warranties
43 ; whatsoever. Because of the diversity of conditions and hardware under which
44 ; this source code may be used, no warranty of fitness for a particular purpose
45 ; is offered. The user is advised to test the source code thoroughly before
46 ; relying on it. The user must assume the entire risk of using the source code.
47 ;-
48

49 FUNCTION READ_ENVI_HEADER, filename
50

51 ;+
52 ; Define the header structure
53 ;-
54 header = { description:"", $
55 samples:-1L, $
56 lines:-1L, $
57 bands:-1L, $
58 header_offset:-1L, $
59 file_type:"", $
60 data_type:-1L, $
61 interleave:"", $
62 sensor_type:"", $
63 byte_order:-1L, $
64 wavelength_units:"", $
65 z_plot_range:[-1D,-1D], $
66 z_plot_titles:["",""], $
67 band_names:PTR_NEW(), $
68 wavelength:PTR_NEW() $
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69 }
70

71 ;+
72 ; Open the provided ENVI header file
73 ;-
74 OPENR, lun, filename, /GET_LUN
75

76 ;+
77 ; Read the first record and determine if this is a valid
78 ; ENVI header file
79 ;-
80 str = ""
81 READF, lun, str
82 str = STRTRIM( STRCOMPRESS( str ), 2 )
83 IF ( str NE "ENVI" ) THEN BEGIN
84 MESSAGE, "ENVI header file has an invalid format", /CONTINUE
85 RETURN, -1
86 ENDIF
87

88 ;+
89 ; Read each subsequent record until the end of file is reached
90 ;-
91 WHILE NOT EOF( lun ) DO BEGIN
92

93 READF, lun, str
94

95 ;+
96 ; If the current record does not have zero length, proceed to
97 ; parse the information for this record
98 ;-
99 IF ( STRLEN( str ) GT 0 ) THEN BEGIN

100

101 ;+
102 ; Determine if the current record is the beginning of a new
103 ; name/value pair or if it is the continuation of a multiple
104 ; line value and parse the pair appropriately
105 ;-
106 str = STRCOMPRESS( str )
107 equalPosition = STRPOS( str, "=" )
108 IF ( equalPosition GT 0 ) THEN BEGIN
109 name = STRTRIM( STRMID( str, 0, equalPosition ), 2 )
110 value = STRTRIM( STRMID( str, equalPosition+1 ), 2 )
111 multilineValue = STRTRIM( value, 2 )
112 ENDIF ELSE BEGIN
113 multilineValue = multilineValue + " " + STRTRIM( str, 2 )
114 ENDELSE
115

116 ;+
117 ; If the value is defined across multiple lines, see if both the
118 ; beginning and ending delimiters are present: if not, concatenate
119 ; the current line with the previous line and continue reading data,
120 ; otherwise, strip the delimiters and proceed to parse the completed
121 ; value
122 ;-
123 IF ( STRPOS( multilineValue, "{" ) NE -1 ) AND ( STRPOS( multilineValue, "}"

) NE -1 ) THEN BEGIN
124 multilineComplete = 1
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125 multilineValue = STRTRIM( multilineValue, 2 )
126 multilineValue = STRMID( multilineValue, 1, STRLEN( multilineValue )-2 )
127 ENDIF ELSE BEGIN
128 multilineComplete = 0
129 ENDELSE
130

131 ;+
132 ; Parse the name/value pair
133 ;-
134 CASE STRLOWCASE( name ) OF
135 "description": IF multilineComplete THEN header.description =

multilineValue
136 "samples": header.samples = LONG( value )
137 "lines": header.lines = LONG( value )
138 "bands": header.bands = LONG( value )
139 "header offset": header.header_offset = LONG( value )
140 "file type": header.file_type = value
141 "data type": header.data_type = LONG( value )
142 "interleave": header.interleave = STRLOWCASE( value )
143 "sensor type": header.sensor_type = value
144 "byte order": header.byte_order = LONG( value )
145 "wavelength units": header.wavelength_units = value
146 "z plot range": IF multilineComplete THEN header.z_plot_range = DOUBLE(

STRSPLIT( multilineValue, ",", /EXTRACT ) )
147 "z plot titles": IF multilineComplete THEN header.z_plot_titles =

STRSPLIT( multilineValue, ",", /EXTRACT )
148 "band names": IF multilineComplete THEN header.band_names = PTR_NEW(

STRSPLIT( multilineValue, ",", /EXTRACT ) )
149 "wavelength": IF multilineComplete THEN header.wavelength = PTR_NEW(

DOUBLE( STRSPLIT( multilineValue, ",", /EXTRACT ) ) )
150 ELSE:
151 ENDCASE
152

153 ENDIF
154

155 ENDWHILE
156

157 ;+
158 ; Release the current logical unit number
159 ;-
160 FREE_LUN, lun
161

162 ;+
163 ; Return the filled header structure to the calling routine
164 ;-
165 RETURN, header
166

167 END

R.9 READ ENVI IMAGE

1 ;+
2 ; :NAME:
3 ; READ_ENVI_IMAGE
4 ;
5 ; :PURPOSE:
6 ; This function serves to read an ENVI image/header directly into
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7 ; an IDL program without the need to first open that image in ENVI
8 ; and use the ENVI_* routines to do so.
9 ;

10 ; :CATEGORY:
11 ; Image Processing.
12 ;
13 ; :CALLING SEQUENCE:
14 ; Result = READ_ENVI_IMAGE( filename, HEADER=header )
15 ;
16 ; :INPUTS:
17 ; filename:
18 ; The ENVI image filename to be read.
19 ;
20 ; :KEYWORD PARAMETERS:
21 ; HEADER:
22 ; A named variable to receive a structure containing the header
23 ; data read in from the accompanying ENVI image header file.
24 ;
25 ; :RETURN VALUE:
26 ; An array containing the image data. This array will be of the
27 ; correct data type for the provided image and will appear in BIP
28 ; interleave order (bands, samples, lines). If any error is
29 ; encountered during this process, the scalar -1 will be returned.
30 ;
31 ; :SIDE EFFECTS:
32 ; NONE
33 ;
34 ; :MODIFICATION HISTORY:
35 ; Written by: Carl Salvaggio
36 ; July, 2009 Original code
37 ; December, 2009 OS family dependent swap endian added
38 ;
39 ; :DISCLAIMER:
40 ; This source code is provided "as is" and without warranties as to performance
41 ; or merchantability. The author and/or distributors of this source code may
42 ; have made statements about this source code. Any such statements do not
43 ; constitute warranties and shall not be relied on by the user in deciding
44 ; whether to use this source code.
45 ;
46 ; This source code is provided without any express or implied warranties
47 ; whatsoever. Because of the diversity of conditions and hardware under which
48 ; this source code may be used, no warranty of fitness for a particular purpose
49 ; is offered. The user is advised to test the source code thoroughly before
50 ; relying on it. The user must assume the entire risk of using the source code.
51 ;-
52

53 FUNCTION READ_ENVI_IMAGE, filename, HEADER=header
54

55 ;+
56 ; Check for existence of the provided ENVI image file
57 ;-
58 IF NOT FILE_TEST( filename ) THEN BEGIN
59 MESSAGE, "Image filename provided does not exist", /CONTINUE
60 RETURN, -1
61 ENDIF
62

63 ;+
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64 ; Check for the existence of the default ENVI header file (the ENVI
65 ; image filename plus the ".hdr" extension), if this does not exist,
66 ; then provide the user with a dialog pickfile box with which they
67 ; can locate the appropriate ENVI header file
68 ;-
69 headerFilename = FILE_DIRNAME(filename, /MARK_DIRECTORY)+FILE_BASENAME(filename,

".img") + ".hdr"
70 IF NOT FILE_TEST( headerFilename ) THEN BEGIN
71 headerFilename = DIALOG_PICKFILE( TITLE="Please select ENVI header file", $
72 PATH=FILE_DIRNAME( filename ), $
73 FILTER="*.hdr" )
74 IF ( headerFilename EQ "" ) THEN BEGIN
75 MESSAGE, "A valid ENVI header file was not provided", /CONTINUE
76 RETURN, -1
77 ENDIF
78 ENDIF
79

80 ;+
81 ; Define the header structure by reading the ENVI header file
82 ;-
83 header = READ_ENVI_HEADER( headerFilename )
84

85 ;+
86 ; Read the image data into a vector of the proper size and data
87 ; type (skip any header bytes in the image file if they are present)
88 ;-
89 originalImage = READ_BINARY( filename, $
90 DATA_DIMS=(header.bands * header.samples * header.

lines), $
91 DATA_TYPE=header.data_type, $
92 DATA_START=header.header_offset )
93

94 ;+
95 ; Reform the vector into an image array according to the interleave
96 ; type given in the header
97 ;-
98 CASE header.interleave OF
99 "bsq": originalImage = REFORM( originalImage, header.samples, header.lines,

header.bands )
100 "bil": originalImage = REFORM( originalImage, header.samples, header.bands,

header.lines )
101 "bip": originalImage = REFORM( originalImage, header.bands, header.samples,

header.lines )
102 ENDCASE
103

104 ;+
105 ; Rearrange the pixels to BIP format (bands, samples, lines)
106 ;-
107 IF ( header.interleave NE "bip" ) THEN BEGIN
108 image = MAKE_ARRAY( header.bands, header.samples, header.lines, TYPE=header.

data_type )
109 FOR band = 0, header.bands-1 DO BEGIN
110 FOR sample = 0, header.samples-1 DO BEGIN
111 FOR line = 0, header.lines-1 DO BEGIN
112 CASE header.interleave OF
113 "bsq": image[band,sample,line] = originalImage[sample,line,band]
114 "bil": image[band,sample,line] = originalImage[sample,band,line]
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115 ENDCASE
116 ENDFOR
117 ENDFOR
118 ENDFOR
119 ENDIF ELSE BEGIN
120 image = originalImage
121 ENDELSE
122

123 ;+
124 ; Eliminate any unary dimension in the image array
125 ;-
126 image = REFORM( image )
127

128 ;+
129 ; Change the endian if necessary
130 ;-
131 ; CASE header.byte_order OF
132 ; 0: IF ( !VERSION.OS_FAMILY EQ "unix" ) THEN SWAP_ENDIAN_INPLACE, image
133 ; 1: IF ( !VERSION.OS_FAMILY EQ "windows" ) THEN SWAP_ENDIAN_INPLACE, image
134 ; ELSE:
135 ; ENDCASE
136

137 ;+
138 ; Return the image to the calling routine
139 ;-
140 RETURN, image
141

142 END



Appendix S

PSO-ALGE Code

S.1 PSO CLUSTER

1 FUNCTION PSO_CLUSTER, generation, particle, config_file, dataPath
2

3 COMPILE_OPT idl2, logical_predicate
4

5 CATCH, err
6 IF err NE 0 THEN BEGIN
7 CATCH, /CANCEL
8 IF N_ELEMENTS(lun) NE 0 THEN FREE_LUN, lun
9 MESSAGE, /REISSUE

10 ENDIF
11 ; Because this function runs on a cluster, you have to restrict IDL to a single

thread.
12 ; All processing delegation is handled by the job scheduler
13 CPU, TPOOL_NTHREADS=1
14 PRINT, ’Generation#: ’ + STRING(generation)
15 PRINT, ’Particle#: ’ + STRING(particle)
16

17 generation = FIX(FLOAT(generation))
18 particle = FIX(FLOAT(particle))
19 ; IDL’s random number generator seems to have a pattern. Have noticed better

results
20 ; with system random number generator
21 SPAWN, ’echo $RANDOM’, seed
22

23 print_particle = STRING(particle, FORMAT=’(I02)’)
24 print_generation = STRING(generation, FORMAT=’(I03)’)
25 print_gen_prev = STRING((generation-1), FORMAT=’(I03)’)
26

27 ; Set up all directories
28 generation_dir = dataPath + ’generation’ + print_generation + ’/’
29 particle_dir = generation_dir + ’particle’ + print_particle + ’/’
30 generation_prev_dir = dataPath + ’generation’ + print_gen_prev + ’/’
31 analytics_path = dataPath + ’analytics/’
32 vinfo_path = analytics_path + ’vinfo/’
33 pbest_path = analytics_path + ’pbest/’
34 swarm_path = analytics_path + ’swarm/’

235
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35

36 gen_dir_exist = FILE_TEST(generation_dir, /DIRECTORY)
37 IF gen_dir_exist NE 1 THEN FILE_MKDIR, generation_dir
38

39 particle_dir_exist = FILE_TEST(particle_dir, /DIRECTORY)
40 IF particle_dir_exist NE 1 THEN FILE_MKDIR, particle_dir
41

42 ana_dir_exist = FILE_TEST(analytics_path, /DIRECTORY)
43 IF ana_dir_exist NE 1 THEN FILE_MKDIR, analytics_path
44

45 vinfo_dir_exist = FILE_TEST(vinfo_path, /DIRECTORY)
46 IF vinfo_dir_exist NE 1 THEN FILE_MKDIR, vinfo_path
47

48 pbest_dir_exist = FILE_TEST(pbest_path, /DIRECTORY)
49 IF pbest_dir_exist NE 1 THEN FILE_MKDIR, pbest_path
50

51 swarm_dir_exist = FILE_TEST(swarm_path, /DIRECTORY)
52 IF swarm_dir_exist NE 1 THEN FILE_MKDIR, swarm_path
53

54 ; Read in the configuration file and pull out all the parameters
55 ;PRINT, config_file
56 params = EXTRACT_PARAMETERS(config_file, particle_dir)
57 ;PRINT, config_file
58

59 num_particles = FLOAT(params.NUM_STEPS)
60 num_parameters = FLOAT(params.NUM_PARAMETERS)
61 num_generations = FLOAT(params.TOTAL_GENERATIONS)
62 alge_path = params.ALGE_CONSTANT_PATH
63 dataPath = params.DATAPATH
64 ub = FLOAT(params.UB)
65 lb = FLOAT(params.LB)
66 initial_fwhm = FLOAT(params.INITIAL_FWHM)
67 initial_mean = FLOAT(params.INITIAL_MEAN)
68 op_mode = FIX(params.OP_MODE)
69 ratio_flag = FIX(params.RATIO_FLAG)
70 metric_flag = FIX(params.METRIC_FLAG)
71 season = FIX(params.SEASON)
72 w_start = FLOAT(params.W_START)
73 w_end = FLOAT(params.W_END)
74 w_varyfor = FLOAT(params.W_VARYFOR)
75 error_goal = FLOAT(params.ERROR_GOAL)
76 job_name = params.JOB_NAME
77 gamma1 = FLOAT(params.GAMMA1)
78 gamma2 = FLOAT(params.GAMMA2)
79 minflag = FIX(params.MINFLAG)
80

81 ub = FLOAT(ub)
82 lb = FLOAT(lb)
83 vmax = 0.15*(ub-lb)/2.0
84

85

86 ; Check to see if success file exists. If file exists then success conditions
have been met and code is exited

87 exist = FILE_TEST(dataPath+’success.dat’)
88 IF exist EQ 1 THEN BEGIN
89 PRINT, ’SUCCESS’
90 RETURN, 200
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91 ENDIF
92

93 ; If this is the first generation and the first particle then initialize
everything

94 IF (generation EQ 0) AND (particle EQ 0) THEN BEGIN
95

96 start_fn = dataPath + ’start.dat’
97 OPENW, unit, start_fn, /GET_LUN
98 PRINTF, unit, SYSTIME(1)
99 PRINTF, unit, SYSTIME()

100 FLUSH, unit
101 FREE_LUN, unit
102

103 gbest_fn = dataPath + ’gbest.dat’
104 OPENW, unit, gbest_fn, /GET_LUN
105 PRINTF, unit, ’Beginning’
106 FLUSH, unit
107 FREE_LUN, unit
108

109 pbest_global_fn = dataPath + ’pbest_global.dat’
110 OPENW, unit, pbest_global_fn, /GET_LUN
111 FLUSH, unit
112 FREE_LUN, unit
113

114 options_fn = dataPath + ’options.dat’
115 OPENW, unit, options_fn, /GET_LUN
116 PRINTF, unit, ’Job name: ’ + STRCOMPRESS(STRING(job_name), /REMOVE_ALL)
117 PRINTF, unit, ’Number of particles: ’ + STRCOMPRESS(STRING(num_particles),

/REMOVE_ALL)
118 PRINTF, unit, ’Number of parameters: ’ + STRCOMPRESS(STRING(num_parameters)

, /REMOVE_ALL)
119 PRINTF, unit, ’Number of generations: ’ + STRCOMPRESS(STRING(

num_generations), /REMOVE_ALL)
120 PRINTF, unit, ’Error criteria: ’ + STRCOMPRESS(STRING(error_goal), /

REMOVE_ALL)
121 PRINTF, unit, ’Cognitive acceleration: ’ + STRCOMPRESS(STRING(gamma1), /

REMOVE_ALL)
122 PRINTF, unit, ’Social acclerlation: ’ + STRCOMPRESS(STRING(gamma2), /

REMOVE_ALL)
123 PRINTF, unit, ’Velocity weight at beginning: ’ + STRCOMPRESS(STRING(w_start

), /REMOVE_ALL)
124 PRINTF, unit, ’Velocity weight at end: ’ + STRCOMPRESS(STRING(w_end), /

REMOVE_ALL)
125 PRINTF, unit, ’Vary velocity weight for % of iterations: ’ + STRCOMPRESS(

STRING(w_varyfor), /REMOVE_ALL)
126 PRINTF, unit, ’Lower bound: ’ + STRCOMPRESS(STRING(lb), /REMOVE_ALL)
127 PRINTF, unit, ’Upper bound: ’ + STRCOMPRESS(STRING(ub), /REMOVE_ALL)
128 PRINTF, unit, ’Metric used: ’ + STRCOMPRESS(STRING(metric_flag), /

REMOVE_ALL)
129 PRINTF, unit, ’Ratio used: ’ + STRCOMPRESS(STRING(ratio_flag), /REMOVE_ALL)
130 PRINTF, unit, ’Season: ’ + STRCOMPRESS(STRING(season), /REMOVE_ALL)
131 PRINTF, unit, ’Operational mode: ’ + STRCOMPRESS(STRING(op_mode), /

REMOVE_ALL)
132 FLUSH, unit
133 FREE_LUN, unit
134

135 CD, generation_dir
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136 FILE_MKDIR, particle_dir
137

138 ENDIF
139

140 ; Determine if particle belongs to the first generation. If particle is from
first generation,

141 ; then need to initialize particle with boundaries defined by bounds_arr
142 IF generation EQ 0 THEN BEGIN
143 ; Initialize a velocity if in initial generation and write array to ’vstep.

dat’
144 ; Add test to see if exists, if doesn’t write, if not don’t write
145 vstep_exist = FILE_TEST(dataPath + ’vstep_000.dat’)
146 IF particle EQ 0 THEN BEGIN
147 IF vstep_exist EQ 1 THEN BEGIN
148 PRINT, "generation" + STRING(generation)
149 PRINT, "particle" + STRING(particle)
150 PRINT, "Vstep exists already and I’m particle 0"
151 RETURN, 500
152 ENDIF
153 PRINT, "First particle"
154

155 Vstep = RANDOMU(seed, num_particles, num_parameters)*vmax
156 vstep_fn = dataPath + ’vstep_000.dat’
157 OPENW, unit, vstep_fn, /GET_LUN
158 PRINTF, unit, Vstep
159 FLUSH, unit
160 FREE_LUN, unit
161 ENDIF ELSE BEGIN
162 ENDELSE
163

164 ; Define intialized particle based on mean and FWHM
165 particle_arr = FLTARR(num_parameters)
166 ;PRINT, num_parameters
167 ;HELP, particle_arr
168 PRINT, ’Calculating initial swarm’
169 FOR i=0, num_parameters -1 DO BEGIN
170 a = RANDOMU(seed)
171 particle_arr[i] = a;+1.0
172 ENDFOR
173 IF minflag NE 2 THEN BEGIN
174 initial_sigma = FLOAT(initial_fwhm)/2.35
175 particle_arr = particle_arr * initial_sigma + FLOAT(initial_mean)
176 ENDIF ELSE BEGIN
177 particle_arr = particle_arr*(ub-lb)-(0.5*(ub-lb))
178 ENDELSE
179 PRINT, ’Initial particle’
180 PRINT, particle_arr
181

182 PRINT, ’Start running alge/evaluating...’
183 ; Send particle to evaluation module for return score
184 CASE op_mode OF
185

186 0: particle_score = ALGE_EVAL_FLOW(particle_arr, alge_path,
particle_dir, ratio_flag, metric_flag, season, seed)

187

188 1: particle_score = ALGE_EVAL_WEATHER(particle_arr, alge_path,
particle_dir, ratio_flag, metric_flag, season, seed)
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189

190 2: particle_score = ALGE_EVAL_ALL(particle_arr, alge_path,
particle_dir, ratio_flag, metric_flag, season, seed)

191

192 3: particle_score = POSITION2D(particle_arr, minflag)
193

194 4: particle_score = ALGE_EVAL_FLOW_HOURLY(particle_arr, alge_path,
particle_dir, ratio_flag, metric_flag, season, seed)

195

196 5: particle_score = ALGE_EVAL_FLOW_2WEEK(particle_arr, alge_path,
particle_dir, ratio_flag, metric_flag, season, seed)

197

198 ENDCASE
199

200 ; Create particle file using naming scheme ’particle-gen#-particle#.dat
201 ; Write array of data to file [particle, particle score, PBest]
202 array_towrite = FLTARR(1, num_parameters*2+1)
203 array_towrite[0, 0:num_parameters-1] = particle_arr
204 array_towrite[0, num_parameters] = particle_score
205 array_towrite[0, num_parameters+1:num_parameters*2] = particle_arr
206 particle_fn = particle_dir + ’generation-’ + print_generation + ’particle-’

+ print_particle + ’.dat’
207 OPENW, unit, particle_fn, /GET_LUN
208 PRINTF, unit, array_towrite
209 FLUSH, unit
210 FREE_LUN, unit
211

212 PRINT, ’First generation initialized’
213 RETURN, 400
214 ENDIF
215

216 ; Find all particles from previous generation and store in string array of file
names

217 particle_files = FILE_SEARCH(generation_prev_dir, ’generation-’+ print_gen_prev
+ ’particle-*’)

218 ; Check to make sure the correct number of particles were returned, if not throw
error and exit

219 IF N_ELEMENTS(particle_files) NE num_particles THEN BEGIN
220 PRINT, "The correct number of particles was not returned"
221 RETURN, 100
222 ENDIF
223

224 ; Create array to hold all data from entire generation of particles
225 ; Each column correspondes to a particle and contains the previous particle

parameters, the previous score, and
226 ; the particle’s personal best parameter set
227 particles_data_total = FLTARR(num_particles, num_parameters*2+1)
228 particle_data = FLTARR(1, num_parameters*2+1)
229 FOR cur_particle=0, num_particles-1 DO BEGIN
230 OPENR, unit, particle_files[cur_particle], /GET_LUN
231 READF, unit, particle_data
232 particles_data_total[cur_particle, *] = particle_data
233 FLUSH, unit
234 FREE_LUN, unit
235 IF cur_particle EQ 4 THEN data_coming_in = particle_data
236 ENDFOR
237
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238 ; Extract current generation particles and store in swarm array
239 swarm = particles_data_total[*, 0:num_parameters-1]
240 score_array = particles_data_total[*, num_parameters]
241

242 ; Extract PBest parameter values and store in array
243 PBest_arr = particles_data_total[*, num_parameters+1:num_parameters*2]
244 num_parameters_str = STRING(FIX(num_parameters))
245

246 IF particle EQ 0 THEN BEGIN
247 score_fn = swarm_path + ’score_gen_’ + print_gen_prev + ’.dat’
248 swarm_fn = swarm_path + ’swarm_gen_’ + print_gen_prev + ’.dat’
249 pbest_fn = pbest_path + ’pbest_gen_’ + print_gen_prev + ’.dat’
250

251 OPENW, unit, swarm_fn, /GET_LUN
252 PRINTF, unit, ’Each column represents a parameter, while each row is a

particle’
253 PRINTF, unit, swarm, FORMAT=’(’+ num_parameters_str +’(f10.5,5x))’
254 FLUSH, unit
255 FREE_LUN, unit
256

257 OPENW, unit, score_fn, /GET_LUN
258 PRINTF, unit, ’Each row is a particle’
259 PRINTF, unit, score_array
260 FLUSH, unit
261 FREE_LUN, unit
262

263 OPENW, unit, pbest_fn, /GET_LUN
264 PRINTF, unit, ’Each column represents a parameter, while each row is a

particle’
265 PRINTF, unit, PBest_arr, FORMAT=’(’+ num_parameters_str +’(f10.5,5x))’
266 FLUSH, unit
267 FREE_LUN, unit
268

269 IF minflag EQ 1 THEN BEGIN
270 zero_loc = WHERE((score_array - MIN(score_array)) LE error_goal,

zero_count)
271 ENDIF ELSE BEGIN
272 zero_loc = WHERE((score_array - (0.0)) LE error_goal, zero_count)
273 ENDELSE
274

275 IF zero_count GE 1 THEN BEGIN
276 zero_exist = FILE_TEST(dataPath + ’converge.dat’)
277 num_zeros = STRCOMPRESS(STRING(N_ELEMENTS(zero_loc)),/REMOVE_ALL)
278 IF zero_exist EQ 1 THEN BEGIN
279 count_fn = dataPath + ’count.dat’
280 OPENR, unit, count_fn, /GET_LUN
281 READF, unit, cur_count
282 FLUSH, unit
283 FREE_LUN, unit
284

285 zero_fn = dataPath + ’converge.dat’
286 OPENU, unit, zero_fn, /GET_LUN, /APPEND
287 PRINTF, unit, STRCOMPRESS(STRING(zero_count), /REMOVE_ALL) + ’

particle(s) in generation: ’ + $
288 STRCOMPRESS(STRING(generation), /REMOVE_ALL) + ’

have achieved minimum.’
289 PRINTF, unit, ’Particle ID(s) that have acheived minimum: ’
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290 PRINTF, unit, TRANSPOSE(zero_loc), FORMAT=’(’+ num_zeros +’(i3,5x
))’

291 PRINTF, unit, ’Current minimum score(s):’
292 PRINTF, unit, TRANSPOSE(score_array[zero_loc]), FORMAT=’(’+

num_parameters_str +’(f10.5,5x))’
293 PRINTF, unit, ’Current personal best of particle(s) at minimum:’
294 PRINTF, unit, TRANSPOSE(Pbest_arr[zero_loc, *]), FORMAT=’(’+

num_parameters_str +’(f10.5,5x))’
295 FLUSH, unit
296 FREE_LUN, unit
297

298 count_fn = dataPath + ’count.dat’
299 OPENW, unit, count_fn, /GET_LUN, /APPEND
300 PRINTF, unit, zero_count
301 FLUSH, unit
302 FREE_LUN, unit
303 ENDIF ELSE BEGIN
304 count_fn = dataPath + ’count.dat’
305 OPENW, unit, count_fn, /GET_LUN, /APPEND
306 PRINTF, unit, zero_count
307 FLUSH, unit
308 FREE_LUN, unit
309

310 zero_fn = dataPath + ’converge.dat’
311 OPENW, unit, zero_fn, /GET_LUN
312 PRINTF, unit, ’Each column represents a parameter, while each row

is a particle’
313 PRINTF, unit, STRCOMPRESS(STRING(zero_count), /REMOVE_ALL) + ’

particle(s) in generation: ’ + $
314 print_generation + ’ have achieved minimum’
315 PRINTF, unit, ’Particle ID(s) that have acheived minimum: ’
316 PRINTF, unit, zero_loc, FORMAT=’(’+ num_zeros +’(i3,5x))’
317 PRINTF, unit, ’Current minimum score(s):’
318 PRINTF, unit, TRANSPOSE(score_array[zero_loc]), FORMAT=’(’+

num_parameters_str +’(f10.5,5x))’
319 PRINTF, unit, ’Current personal best of particle(s) at minimum:’
320 PRINTF, unit, TRANSPOSE(Pbest_arr[zero_loc, *]), FORMAT=’(’+

num_parameters_str +’(f10.5,5x))’
321 FLUSH, unit
322 FREE_LUN, unit
323 ENDELSE
324 ; If solution exists which satisfies overall error goal, then

optimization is complete. Write success file and exit
325 IF zero_count EQ num_particles THEN BEGIN
326 end_time = SYSTIME(1)
327 end_time_print = SYSTIME()
328 start_fn = dataPath + ’start.dat’
329 start_time = STRARR(2)
330 OPENR, unit, start_fn, /GET_LUN
331 READF, unit, start_time
332 FLUSH, unit
333 FREE_LUN, unit
334 start_time_print = start_time[1]
335

336 OPENW, unit, dataPath+’success.dat’, /GET_LUN
337 PRINTF, unit, ’Convergence by all particles in generation: ’ +

print_gen_prev
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338 PRINTF, unit, PBest_arr
339 PRINTF, unit, ’Procees began at: ’ + start_time_print
340 PRINTF, unit, ’Process converged at: ’ + end_time_print
341 FLUSH, unit
342 FREE_LUN, unit
343 RETURN, 600
344 ENDIF
345 ENDIF
346 ENDIF
347

348 ; Determine where Global best particle is located based on the score stored in
the particle data arra

349 IF minflag EQ 1 THEN BEGIN
350 Best_particle_loc = WHERE(score_array EQ MIN(score_array))
351 ENDIF ELSE BEGIN
352 Best_particle_loc = WHERE(score_array EQ MIN(score_array))
353 ENDELSE
354 Best_particle_idx = ARRAY_INDICES(score_array, Best_particle_loc)
355

356 ; Extract both the particle parameters and the score for the Global best
particle

357 Best_particle = PBest_arr[Best_particle_idx[0], *]
358 PRINT, ’BEST PARTICLE’
359 PRINT, Best_particle
360 GBest_arr = REPLICATE(1, num_particles) # Best_particle
361

362 OPENU, unit, dataPath+’gbest.dat’, /GET_LUN, /APPEND
363 PRINTF, unit, ’Particle#: ’ + STRCOMPRESS(STRING(Best_particle_loc), /REMOVE_ALL

) + ’ in generation#: ’ + print_generation $
364 + ’ with a score of: ’ + STRCOMPRESS(STRING(score_array[

best_particle_idx[0]]), /REMOVE_ALL)
365 FREE_LUN, unit
366

367 ; Determine the value of weight change
368 w_increment = (w_start - w_end)/num_generations
369 w_now =w_start - (w_increment*generation)
370

371 ; Generate random weighted stochastic variables
372

373 alpha1 = RANDOMU(seed)
374 alpha2 = RANDOMU(seed)
375

376 ; Read in previous generation VSTEP from vstep.dat file
377 ; Make file vstep-generation and then pull in individual vstep file per particle
378

379 vstep_current_fn = ’vstep_’ + print_generation
380 vstep_previous_fn = ’vstep_’ + print_gen_prev
381

382 ; If I am particle 0 then I am responsible for creating the current vstep file
383

384 IF particle EQ 0 THEN BEGIN
385 ; Otherwise, create the current vstep file by reading in the previous vstep

information
386 Vstep = FLTARR(num_particles, num_parameters)
387 vstep_fn = dataPath + ’vstep_’ + print_gen_prev + ’.dat’
388 OPENR, unit, vstep_fn, /GET_LUN
389 READF, unit, Vstep
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390 FLUSH, unit
391 FREE_LUN, unit
392

393 ; Calculate velocity
394 ; k=1.0
395 ; gamma1 = 2.05
396 ; gamma2 = 2.05
397 ; var = gamma1+gamma2
398 ; constiction_coeff = (2.0*k)/ABS(var-2.0-SQRT(var*(var-4.0)))
399

400 IF minflag EQ 2 THEN BEGIN
401 w_now= 0.729844
402 gamma1 = 1.496180
403 gamma2 = 1.496180
404 ENDIF
405

406 Vstep = w_now*Vstep + gamma1*alpha1*(PBest_arr - swarm) + gamma2*alpha2*(
GBest_arr - swarm)

407 ;Vstep = constiction_coeff*(Vstep + gamma1*alpha1*(PBest_arr - swarm) +
gamma2*alpha2*(GBest_arr - swarm))

408

409 ; Apply Vmax operator for v >Vmax
410 changeRows = WHERE(Vstep GT vmax)
411 ;IF changeRows[0] NE -1 THEN Vstep[changeRows] = vmax
412 IF changeRows[0] NE -1 THEN Vstep[changeRows] = 0.0
413

414 ; Apply Vmax operator for v < -Vmax
415 changeRows = WHERE(Vstep LT -vmax)
416 ;IF changeRows[0] NE -1 THEN Vstep[changeRows] = -vmax
417 IF changeRows[0] NE -1 THEN Vstep[changeRows] = 0.0
418

419 vstep_fn = dataPath + ’vstep_’ + print_generation + ’.dat’
420 OPENW, unit, vstep_fn, /GET_LUN
421 PRINTF, unit, Vstep
422 FLUSH, unit
423 FREE_LUN, unit
424 ; If I am not particle 0, then the vstep file should already exist
425 ENDIF ELSE BEGIN
426 vstep_current_fn = ’vstep_’ + print_generation
427 vstep_exist = FILE_TEST(dataPath + vstep_current_fn + ’.dat’)
428 WHILE vstep_exist NE 1 DO BEGIN
429 WAIT, 5
430 vstep_exist = FILE_TEST(dataPath + vstep_current_fn + ’.dat’)
431 PRINT, ’Waiting vstep to be created’
432 ENDWHILE
433

434 ;PRINT, vstep_current_fn
435 ;PRINT, vstep_previous_fn
436

437 Vstep = FLTARR(num_particles, num_parameters)
438 vstep_fn = dataPath + ’vstep_’ + print_generation + ’.dat’
439 OPENR, unit, vstep_fn, /GET_LUN
440 READF, unit, Vstep
441 FLUSH, unit
442 FREE_LUN, unit
443 ENDELSE
444
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445 ;PRINT, vstep_current_fn
446 ;PRINT, vstep_previous_fn
447

448 ; Update particle positions
449 swarm = swarm + Vstep
450

451 ; Check to see if swarm has gone outside of boundaries, if so, change those
particles to in bound

452 outofbounds_high = WHERE(swarm GE ub)
453 outofbounds_low = WHERE(swarm LE lb)
454

455 IF outofbounds_high[0] NE -1 THEN swarm[outofbounds_high] = ub
456 IF outofbounds_low[0] NE -1 THEN swarm[outofbounds_low] = lb
457

458 ; Send particle to evaluation module for return score
459 eval_particle = swarm[particle, *]
460 CASE op_mode OF
461

462 0: particle_score = ALGE_EVAL_FLOW(eval_particle, alge_path, particle_dir,
ratio_flag, metric_flag, season, seed)

463

464 1: particle_score = ALGE_EVAL_WEATHER(eval_particle, alge_path,
particle_dir, ratio_flag, metric_flag, season, seed)

465

466 2: particle_score = ALGE_EVAL_ALL(eval_particle, alge_path, particle_dir,
ratio_flag, metric_flag, season, seed)

467

468 3: particle_score = POSITION2d(eval_particle, minflag)
469

470 4: particle_score = ALGE_EVAL_FLOW_HOURLY(eval_particle, alge_path,
particle_dir, ratio_flag, metric_flag, season, seed)

471

472 5: particle_score = ALGE_EVAL_FLOW_2WEEK(eval_particle, alge_path,
particle_dir, ratio_flag, metric_flag, season, seed)

473

474 ENDCASE
475

476 previous_score = score_array[particle]
477

478 IF particle EQ 0 THEN BEGIN
479 OPENU, unit, dataPath + ’pbest_global.dat’, /APPEND, /GET_LUN
480 PRINTF, unit, previous_score
481 FLUSH, unit
482 FREE_LUN, unit
483 ENDIF
484

485 ; Determine if new particle score is better than personal best score. Write
particle parameters, returned score,

486 ; and particle’s personal best parameter values to next generation particle file
.

487 IF previous_score LT particle_score THEN BEGIN
488 PBest_towrite = PBest_arr[particle, *]
489 score_towrite = previous_score
490 ENDIF ELSE BEGIN
491 PBest_towrite = eval_particle
492 score_towrite = particle_score
493 ENDELSE
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494 array_towrite = FLTARR(1, num_parameters*2+1)
495 array_towrite[0, 0:num_parameters-1] = eval_particle
496 array_towrite[0, num_parameters] = score_towrite
497 array_towrite[0, num_parameters+1:num_parameters*2] = PBest_towrite
498 particle_fn = particle_dir + ’generation-’ + print_generation + ’particle-’ + $
499 print_particle + ’.dat’
500 OPENW, unit, particle_fn, /GET_LUN
501 PRINTF, unit, array_towrite
502 FLUSH, unit
503 FREE_LUN, unit
504

505 IF (generation EQ num_generations-1) AND (exist NE 1) AND (particle EQ
num_particles-1) THEN BEGIN

506

507 end_time = SYSTIME(1)
508 end_time_print = SYSTIME()
509 start_fn = dataPath + ’start.dat’
510 start_time = STRARR(2)
511 OPENR, unit, start_fn, /GET_LUN
512 READF, unit, start_time
513 FLUSH, unit
514 FREE_LUN, unit
515 start_time_print = start_time[1]
516

517 OPENW, unit, dataPath+’no_success.dat’, /GET_LUN
518 PRINTF, unit, ’Convergence not achieved by ’ + STRCOMPRESS(STRING(

generation+1), /REMOVE_ALL) + ’ generations.’
519 PRINTF, unit, ’Best swarm achieved:’
520 PRINTF, unit, PBest_arr
521 PRINTF, unit, ’With a score array of : ’
522 PRINTF, unit, score_array
523 PRINTF, unit, ’Process began at: ’ + start_time_print
524 PRINTF, unit, ’Process converged at: ’ + end_time_print
525 FLUSH, unit
526 FREE_LUN, unit
527 RETURN, 900
528

529 ENDIF
530

531

532 END

S.2 ALGE EVAL ALL

1 FUNCTION ALGE_EVAL_ALL, particle, alge_path, new_data_path, ratio_flag, metric_flag,
season, seed

2

3 ratio_array = [RANDOMU(seed), RANDOMU(seed)]
4 CASE ratio_flag OF
5 1: RETURN, ratio_array[0]
6 2: RETURN, ratio_array[1]
7 3: RETURN, 0.5*ratio_array[0]+0.5*ratio_array[1]
8 ENDCASE
9

10 CD, new_data_path
11 FILE_COPY, [’algesal’, ’*.dat’, ’dimar.inc’], alge_path
12
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13 weatherFileName = new_data_path + ’sfc.dat’
14 flowFileName = new_data_path + ’flow.dat’
15 tempFileName = new_data_path + ’deltat.dat’
16

17 windSpd_delta = particle[0]
18 windDir_delta = particle[1]
19 cloudF_delta = particle[2]
20 cloudH_delta = particle[3]
21 airT_delta = particle[4]
22 dewPt_delta = particle[5]
23 snowAlbido_delta = particle[6]
24 flow_delta = particle[7]
25 temp_delta = particle[8]
26 pressure_delta = particle[9]
27

28 ; Open meteorology file and read in weather data to string array
29 nlines = FILE_LINES(weatherFileName)
30 weather_data_str = STRARR(nlines)
31 OPENR, unit, weatherFileName, /GET_LUN
32 READF, unit, weather_data_str
33 FREE_LUN, unit
34

35 ; Open flow file and read in flow data to string array
36 nlinesF = FILE_LINES(flowFileName)
37 flow_data_str = STRARR(nlinesF)
38 OPENR, unit, flowFileName, /GET_LUN
39 READF, unit, flow_data_str
40 FREE_LUN, unit
41

42 ; Open temp file and read in temp data to string array
43 nlinesT = FILE_LINES(tempFileName)
44 temp_data_str = STRARR(nlinesT)
45 OPENR, unit, tempFileName, /GET_LUN
46 READF, unit, temp_data_str
47 FREE_LUN, unit
48

49 ; Create float arrays to hold weather data columns
50 hours_data = INTARR(nlines-1)
51 windDir_data = INTARR(nlines-1)
52 windSpd_data = FLTARR(nlines-1)
53 airT_data = INTARR(nlines-1)
54 dewPt_data = INTARR(nlines-1)
55 cloudF_data = FLTARR(nlines-1)
56 cloudH_data = FLTARR(nlines-1)
57 pressure_data = FLTARR(nlines-1)
58 snowAlbido_data = FLTARR(nlines-1)
59 date_data = STRARR(nlines-1)
60 time_data = STRARR(nlines-1)
61

62 ; Loop through string array of weather data and read columns of data into
alloted arrays

63 weather_data_str = STRCOMPRESS(weather_data_str)
64 FOR curLine=0, nlines-2 DO BEGIN
65 extracted = STRSPLIT(weather_data_str[curLine+1], ’ ’, /EXTRACT)
66 hours_data[curLine] = FIX(extracted[0])
67 windDir_data[curline] = FIX(extracted[1])
68 windSpd_data[curline] = FLOAT(extracted[2])
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69 airT_data[curline] = FIX(extracted[3])
70 dewPt_data[curline] = FIX(extracted[4])
71 cloudF_data[curline] = FLOAT(extracted[5])
72 cloudH_data[curline] = FLOAT(extracted[6])
73 pressure_data[curline] = FLOAT(extracted[7])
74 snowAlbido_data[curline] = FLOAT(extracted[8])
75 date_data[curline] = extracted[9]
76 time_data[curline] = extracted[10]
77 ENDFOR
78

79 windDir_data_new = windDir_data + windDir_data * windDir_delta
80 windSpd_data_new = windSpd_data + windSpd_data * windSpd_delta
81 airT_data_new = airT_data + airT_data * airT_delta
82 dewPt_data_new = dewPt_data + dewPt_data * dewPt_delta
83 cloudF_data_new = cloudF_data + cloudF_data * cloudF_delta
84 cloudH_data_new = cloudH_data + cloudH_data * cloudH_delta
85 pressure_data_new = pressure_data; + pressure_data * pressure_delta
86 snowAlbido_data_new = snowAlbido_data + snowAlbido_data * snowAlbido_delta
87

88 flow_data = FLOAT(flow_data_str)
89 flow_data_new = flow_data + flow_data * flow_delta
90

91 temp_data = FLOAT(temp_data_str)
92 temp_data_new = temp_data + temp_data * temp_delta
93

94 ; Apply wind direction constraint
95 ; Wind direction cannot be negative
96 negative_wd = WHERE(windDir_data_new LT 0.0, count)
97 IF count NE 0 THEN windDir_data_new[negative_wd] = 0.0
98

99 ; Apply wind speed constraint
100 ; Wind speed cannot be negative
101 negative_ws = WHERE(windSpd_data_new LT 0.0, count)
102 IF count NE 0 THEN windSpd_data_new[negative_ws] = 0.0
103

104 ; Apply dew point constraint
105 ; Dew point cannot be higher than air temperature
106 high_idx_dp = WHERE(dewPt_data_new GT airT_data_new, count)
107 IF count NE 0 THEN dewPt_data_new[high_idx_dp] = airT_data_new[high_idx_dp]
108

109 ; Apply cloud fraction constraint
110 ; Cloud fraction must be > than 0 and < 1.0
111 outofboundsHI_cf = WHERE(cloudF_data_new GT 1.0, count)
112 IF count NE 0 THEN cloudF_data_new[outofboundsHI_cf] = 1.0
113 outofboundsLO_cf = WHERE(cloudF_data_new LT 0.0, count)
114 IF count NE 0 THEN cloudF_data_new[outofboundsLO_cf] = 0.0
115

116 ; Apply snow albido constraint
117 ; Snow albido must be > than 0 and < 1.0
118 outofboundsHI_sa = WHERE(snowAlbido_data_new GT 1.0, count)
119 IF count NE 0 THEN snowAlbido_data_new[outofboundsHI_sa] = 1.0
120 outofboundsLO_sa = WHERE(snowAlbido_data_new LT 0.0, count)
121 IF count NE 0 THEN snowAlbido_data_new[outofboundsLO_sa] = 0.0
122

123 ; Apply flow constraint
124 ; Flow cannot be negative
125 negative_flow = WHERE(flow_data_new LT 0.0, count)
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126 IF count NE 0 THEN flow_data_new[negative_flow] = 0.0
127

128 ; Apply temperature difference constraint
129 ; Temperature difference across input/output cannot be negative
130 negative_temp = WHERE(temp_data_new LT 0.0, count)
131 IF count NE 0 THEN temp_data_new[negative_temp] = 0.0
132

133 sfc_newfilename = new_data_path + ’sfc.dat’
134 flow_newfilename = new_data_path + ’flow.dat’
135 temp_newfilename = new_data_path + ’deltat.dat’
136

137 OPENW, unit, sfc_newfilename, /GET_LUN
138 PRINTF, unit, weather_data_str[0]
139 FOR curLine=0L, nlines-2 DO BEGIN
140 str = STRING(STRCOMPRESS(hours_data[curline], /REMOVE_ALL)) + ’ ’ + $
141 STRING(STRCOMPRESS(windDir_data_new[curline], /REMOVE_ALL)) +

’ ’ + $
142 STRING(STRCOMPRESS(windSpd_data_new[curline], /REMOVE_ALL)) +

’ ’ + $
143 STRING(STRCOMPRESS(airT_data_new[curline], /REMOVE_ALL)) + ’

’ + $
144 STRING(STRCOMPRESS(dewPt_data_new[curline], /REMOVE_ALL)) + ’

’ + $
145 STRING(STRCOMPRESS(cloudF_data_new[curline], /REMOVE_ALL)) +

’ ’ + $
146 STRING(STRCOMPRESS(cloudH_data_new[curline], /REMOVE_ALL)) +

’ ’ + $
147 STRING(STRCOMPRESS(pressure_data_new[curline], /REMOVE_ALL))

+ ’ ’ + $
148 STRING(STRCOMPRESS(snowAlbido_data_new[curline], /REMOVE_ALL)

) + ’ ’ + $
149 STRING(STRCOMPRESS(date_data[curline], /REMOVE_ALL)) + ’ ’

+ $
150 STRING(STRCOMPRESS(time_data[curline], /REMOVE_ALL))
151 PRINTF, unit, str, FORMAT=’(a125)’
152 ENDFOR
153 FREE_LUN, unit
154

155 OPENW, unit, flow_newfilename, /GET_LUN
156 FOR curLine=0L, nlinesF-1 DO BEGIN
157 PRINTF, unit, flow_data_new[curLine]
158 ENDFOR
159 FREE_LUN, unit
160

161 OPENW, unit, temp_newfilename, /GET_LUN
162 FOR curLine=0L, nlinesT-1 DO BEGIN
163 PRINTF, unit, temp_data_new[curLine]
164 ENDFOR
165 FREE_LUN, unit
166

167 SPAWN, ’./algesal’
168

169 images_success = RUN_MAKE_ALGE_IMAGE(season, new_data_path)
170 ratio_array = RUN_METRIC_ENGINE(season, alge_path, new_data_path, metric_flag)
171

172 ;ratio_array = [RANDOMU(seed1), RANDOMU(seed2)]
173 CASE ratio_flag OF
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174 1: RETURN, ratio_array[0]
175 2: RETURN, ratio_array[1]
176 3: RETURN, 0.5*ratio_array[0]+0.5*ratio_array[1]
177 ENDCASE
178

179 END

S.3 ALGE EVAL FLOW

1 FUNCTION ALGE_EVAL_FLOW, particle, alge_path, new_data_path, ratio_flag, metric_flag,
season, seed

2

3 ; ratio_array = [RANDOMU(seed), RANDOMU(seed)]
4 ; CASE ratio_flag OF
5 ; 1: RETURN, ratio_array[0]
6 ; 2: RETURN, ratio_array[1]
7 ; 3: RETURN, 0.5*ratio_array[0]+0.5*ratio_array[1]
8 ; ENDCASE
9

10 CD, new_data_path
11 FILE_COPY, [’algesal’, ’*.dat’, ’dimar.inc’], alge_path
12

13 flowFileName = new_data_path + ’flow.dat’
14

15 ; Open flow file and read in flow data to string array
16 nlinesF = FILE_LINES(flowFileName)
17 flow_data_str = STRARR(nlinesF)
18 OPENR, unit, flowFileName, /GET_LUN
19 READF, unit, flow_data_str
20 FREE_LUN, unit
21

22 ; Each element of the particle array represents the value that needs to be
assigned to

23 ; each window segment in the flow file array. These values are randomly
generated and

24 ; influenced by the swarm. The bounds of these values are user defined in the
25 ; configuration file "configuration.sh"
26

27 num_new_pts = N_ELEMENTS(particle)
28 num_cur_pts = nlinesF
29 IF num_cur_pts MOD num_new_pts NE 0 THEN BEGIN
30 PRINT, "User hasn’t chosen an appropriate window size in the configuration

file"
31 PRINT, "for the number of entries in the flow file."
32 RETURN, 800
33 ENDIF
34 window_size = num_cur_pts/num_new_pts
35 flow_data_new = FLTARR(num_cur_pts)
36

37 FOR i=0, num_new_pts-1 DO BEGIN
38 data_block = REPLICATE(particle[i], window_size)
39 flow_data_new[i*window_size:(i+1)*window_size-1] = MEAN(data_block)
40 ENDFOR
41

42 ; Apply flow constraint
43 ; Flow cannot be negative
44 negative_flow = WHERE(flow_data_new LT 0.0, count)
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45 IF count NE 0 THEN flow_data_new[negative_flow] = 0.0
46

47 flow_newfilename = new_data_path + ’flow.dat’
48

49 OPENW, unit, flow_newfilename, /GET_LUN
50 FOR curLine=0L, nlinesF-1 DO BEGIN
51 PRINTF, unit, flow_data_new[curLine]
52 ENDFOR
53 FREE_LUN, unit
54

55 SPAWN, ’./algesal’
56

57 images_success = RUN_MAKE_ALGE_IMAGE(season, new_data_path)
58 ratio_array = RUN_METRIC_ENGINE(season, alge_path, new_data_path, metric_flag)
59

60 PRINT, ratio_array
61 CASE ratio_flag OF
62 1: RETURN, ratio_array[0]
63 2: RETURN, ratio_array[1]
64 3: RETURN, 0.5*ratio_array[0]+0.5*ratio_array[1]
65 ENDCASE
66

67 END

S.4 ALGE EVAL FLOW 2WEEK

1 FUNCTION ALGE_EVAL_FLOW_2WEEK, particle, alge_path, new_data_path, ratio_flag,
metric_flag, season, seed

2

3 ; ratio_array = [RANDOMU(seed), RANDOMU(seed)]
4 ; CASE ratio_flag OF
5 ; 1: RETURN, ratio_array[0]
6 ; 2: RETURN, ratio_array[1]
7 ; 3: RETURN, 0.5*ratio_array[0]+0.5*ratio_array[1]
8 ; ENDCASE
9

10 PRINT, ’alge path: ’ + alge_path
11 PRINT, ’data path: ’ + new_data_path
12 CD, new_data_path
13 FILE_COPY, alge_path + ’algesal’, new_data_path
14 FILE_COPY, alge_path + ’*.dat’, new_data_path
15 FILE_COPY, alge_path + ’dimar.inc’, new_data_path
16

17 flowFileName = new_data_path + ’flow.dat’
18

19 ; Open flow file and read in flow data to string array
20 nlinesF = FILE_LINES(flowFileName)
21 flow_data_str = STRARR(nlinesF)
22 OPENR, unit, flowFileName, /GET_LUN
23 READF, unit, flow_data_str
24 FREE_LUN, unit
25

26 ; Each element of the particle array represents the value that needs to be
assigned to

27 ; each window segment in the flow file array. These values are randomly
generated and

28 ; influenced by the swarm. The bounds of these values are user defined in the
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29 ; configuration file "configuration.sh"
30

31 num_new_pts = N_ELEMENTS(particle)
32 num_cur_pts = nlinesF
33 PRINT, ’num elements in particle: ’ + STRING(num_new_pts)
34 PRINT, ’num lines in flow file: ’ + STRING(num_cur_pts)
35 IF num_cur_pts MOD num_new_pts NE 0 THEN BEGIN
36 PRINT, "User hasn’t chosen an appropriate window size in the configuration

file"
37 PRINT, "for the number of entries in the flow file."
38 RETURN, 800
39 ENDIF
40 window_size = num_cur_pts/num_new_pts
41 flow_data_new = FLTARR(num_cur_pts)
42

43 FOR i=0, num_new_pts-1 DO BEGIN
44 data_block = REPLICATE(particle[i], window_size)
45 flow_data_new[i*window_size:(i+1)*window_size-1] = data_block
46 ENDFOR
47 PRINT, ’num elements in new flow file: ’ + STRING(N_ELEMENTS(flow_data_new))
48 ; Apply flow constraint
49 ; Flow cannot be negative
50 negative_flow = WHERE(flow_data_new LT 0.0, count)
51 IF count NE 0 THEN flow_data_new[negative_flow] = 0.0
52

53 flow_newfilename = new_data_path + ’flow.dat’
54

55 OPENW, unit, flow_newfilename, /GET_LUN
56 FOR curLine=0L, nlinesF-1 DO BEGIN
57 PRINTF, unit, flow_data_new[curLine]
58 ENDFOR
59 FREE_LUN, unit
60

61 SPAWN, ’./algesal’
62

63 images_success = RUN_MAKE_ALGE_IMAGE(season, new_data_path, alge_path, /ICE)
64 ; ratio_array = RUN_METRIC_ENGINE(season, alge_path, new_data_path, metric_flag)
65 ; ratio_array = READ_ALL_ALGE_DATA_ICE(alge_path, metric_flag, new_data_path)
66 ratio_ice = METRIC_ICE(alge_path, new_data_path, metric_flag)
67 ratio_array = [ratio_ice, 0]
68

69 PRINT, ratio_array
70 CASE ratio_flag OF
71 1: RETURN, ratio_array[0]
72 2: RETURN, ratio_array[1]
73 3: RETURN, 0.5*ratio_array[0]+0.5*ratio_array[1]
74 ENDCASE
75

76 END

S.5 ALGE EVAL FLOW HOURLY

1 FUNCTION ALGE_EVAL_FLOW_HOURLY, particle, alge_path, new_data_path, ratio_flag,
metric_flag, season, seed

2

3 ; ratio_array = [RANDOMU(seed), RANDOMU(seed)]
4 ; CASE ratio_flag OF
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5 ; 1: RETURN, ratio_array[0]
6 ; 2: RETURN, ratio_array[1]
7 ; 3: RETURN, 0.5*ratio_array[0]+0.5*ratio_array[1]
8 ; ENDCASE
9

10 CD, new_data_path
11 FILE_COPY, [’algesal’, ’*.dat’, ’dimar.inc’], alge_path
12

13 flowFileName = new_data_path + ’flow.dat’
14

15 ; Open flow file and read in flow data to string array
16 nlinesF = FILE_LINES(flowFileName)
17 flow_data_str = STRARR(nlinesF)
18 OPENR, unit, flowFileName, /GET_LUN
19 READF, unit, flow_data_str
20 FREE_LUN, unit
21

22 ; Apply flow constraint
23 ; Flow cannot be negative
24 negative_flow = WHERE(particle LT 0.0, count)
25 IF count NE 0 THEN particle[negative_flow] = 0.0
26

27 OPENW, unit, flowFileName, /GET_LUN
28 FOR i=0, (N_ELEMENTS(particle)-1) DO BEGIN
29 PRINTF, unit, particle[i]
30 ENDFOR
31 FREE_LUN, unit
32

33 SPAWN, ’./algesal’
34

35 images_success = RUN_MAKE_ALGE_IMAGE(season, new_data_path)
36 ratio_array = RUN_METRIC_ENGINE(season, alge_path, new_data_path, metric_flag)
37

38 PRINT, ratio_array
39 CASE ratio_flag OF
40 1: RETURN, ratio_array[0]
41 2: RETURN, ratio_array[1]
42 3: RETURN, 0.5*ratio_array[0]+0.5*ratio_array[1]
43 ENDCASE
44

45 END

S.6 ALGE EVAL WEATHER

1 FUNCTION ALGE_EVAL_WEATHER, particle, alge_path, new_data_path, ratio_flag,
metric_flag, season

2

3 CD, new_data_path
4 FILE_COPY, [’algesal’, ’*.dat’, ’dimar.inc’], alge_path
5

6 weatherFileName = new_data_path + ’sfc.dat’
7

8 windSpd_delta = particle[0]
9 windDir_delta = particle[1]

10 cloudF_delta = particle[2]
11 cloudH_delta = particle[3]
12 airT_delta = particle[4]
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13 dewPt_delta = particle[5]
14 snowAlbido_delta = particle[6]
15 pressure_delta = particle[7]
16

17 ; Open meteorology file and read in weather data to string array
18 nlines = FILE_LINES(weatherFileName)
19 weather_data_str = STRARR(nlines)
20 OPENR, unit, weatherFileName, /GET_LUN
21 READF, unit, weather_data_str
22 FREE_LUN, unit
23

24 ; Create float arrays to hold weather data columns
25 hours_data = INTARR(nlines-1)
26 windDir_data = INTARR(nlines-1)
27 windSpd_data = FLTARR(nlines-1)
28 airT_data = INTARR(nlines-1)
29 dewPt_data = INTARR(nlines-1)
30 cloudF_data = FLTARR(nlines-1)
31 cloudH_data = FLTARR(nlines-1)
32 pressure_data = FLTARR(nlines-1)
33 snowAlbido_data = FLTARR(nlines-1)
34 date_data = STRARR(nlines-1)
35 time_data = STRARR(nlines-1)
36

37 ; Loop through string array of weather data and read columns of data into
alloted arrays

38 weather_data_str = STRCOMPRESS(weather_data_str)
39 FOR curLine=0, nlines-2 DO BEGIN
40 extracted = STRSPLIT(weather_data_str[curLine+1], ’ ’, /EXTRACT)
41 hours_data[curLine] = FIX(extracted[0])
42 windDir_data[curline] = FIX(extracted[1])
43 windSpd_data[curline] = FLOAT(extracted[2])
44 airT_data[curline] = FIX(extracted[3])
45 dewPt_data[curline] = FIX(extracted[4])
46 cloudF_data[curline] = FLOAT(extracted[5])
47 cloudH_data[curline] = FLOAT(extracted[6])
48 pressure_data[curline] = FLOAT(extracted[7])
49 snowAlbido_data[curline] = FLOAT(extracted[8])
50 date_data[curline] = extracted[9]
51 time_data[curline] = extracted[10]
52 ENDFOR
53

54 windDir_data_new = windDir_data + windDir_data * windDir_delta
55 windSpd_data_new = windSpd_data + windSpd_data * windSpd_delta
56 airT_data_new = airT_data + airT_data * airT_delta
57 dewPt_data_new = dewPt_data + dewPt_data * dewPt_delta
58 cloudF_data_new = cloudF_data + cloudF_data * cloudF_delta
59 cloudH_data_new = cloudH_data + cloudH_data * cloudH_delta
60 pressure_data_new = pressure_data; + pressure_data * pressure_delta
61 snowAlbido_data_new = snowAlbido_data + snowAlbido_data * snowAlbido_delta
62

63 ; Apply wind direction constraint
64 ; Wind direction cannot be negative
65 negative_wd = WHERE(windDir_data_new LT 0.0, count)
66 IF count NE 0 THEN windDir_data_new[negative_wd] = 0.0
67

68 ; Apply wind speed constraint
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69 ; Wind speed cannot be negative
70 negative_ws = WHERE(windSpd_data_new LT 0.0, count)
71 IF count NE 0 THEN windSpd_data_new[negative_ws] = 0.0
72

73 ; Apply dew point constraint
74 ; Dew point cannot be higher than air temperature
75 high_idx_dp = WHERE(dewPt_data_new GT airT_data_new, count)
76 IF count NE 0 THEN dewPt_data_new[high_idx_dp] = airT_data_new[high_idx_dp]
77

78 ; Apply cloud fraction constraint
79 ; Cloud fraction must be > than 0 and < 1.0
80 outofboundsHI_cf = WHERE(cloudF_data_new GT 1.0, count)
81 IF count NE 0 THEN cloudF_data_new[outofboundsHI_cf] = 1.0
82 outofboundsLO_cf = WHERE(cloudF_data_new LT 0.0, count)
83 IF count NE 0 THEN cloudF_data_new[outofboundsLO_cf] = 0.0
84

85 ; Apply snow albido constraint
86 ; Snow albido must be > than 0 and < 1.0
87 outofboundsHI_sa = WHERE(snowAlbido_data_new GT 1.0, count)
88 IF count NE 0 THEN snowAlbido_data_new[outofboundsHI_sa] = 1.0
89 outofboundsLO_sa = WHERE(snowAlbido_data_new LT 0.0, count)
90 IF count NE 0 THEN snowAlbido_data_new[outofboundsLO_sa] = 0.0
91

92 sfc_newfilename = new_data_path + ’sfc.dat’
93

94 OPENW, unit, sfc_newfilename, /GET_LUN
95 PRINTF, unit, weather_data_str[0]
96 FOR curLine=0L, nlines-2 DO BEGIN
97 str = STRING(STRCOMPRESS(hours_data[curline], /REMOVE_ALL)) + ’ ’ + $
98 STRING(STRCOMPRESS(windDir_data_new[curline], /REMOVE_ALL)) +

’ ’ + $
99 STRING(STRCOMPRESS(windSpd_data_new[curline], /REMOVE_ALL)) +

’ ’ + $
100 STRING(STRCOMPRESS(airT_data_new[curline], /REMOVE_ALL)) + ’

’ + $
101 STRING(STRCOMPRESS(dewPt_data_new[curline], /REMOVE_ALL)) + ’

’ + $
102 STRING(STRCOMPRESS(cloudF_data_new[curline], /REMOVE_ALL)) +

’ ’ + $
103 STRING(STRCOMPRESS(cloudH_data_new[curline], /REMOVE_ALL)) +

’ ’ + $
104 STRING(STRCOMPRESS(pressure_data_new[curline], /REMOVE_ALL))

+ ’ ’ + $
105 STRING(STRCOMPRESS(snowAlbido_data_new[curline], /REMOVE_ALL)

) + ’ ’ + $
106 STRING(STRCOMPRESS(date_data[curline], /REMOVE_ALL)) + ’ ’

+ $
107 STRING(STRCOMPRESS(time_data[curline], /REMOVE_ALL))
108 PRINTF, unit, str, FORMAT=’(a125)’
109 ENDFOR
110 FREE_LUN, unit
111

112 SPAWN, ’./algesal’
113

114 images_success = RUN_MAKE_ALGE_IMAGE(season, new_data_path)
115 ratio_array = RUN_METRIC_ENGINE(season, alge_path, new_data_path, metric_flag)
116
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117 CASE ratio_flag OF
118 1: RETURN, ratio_array[0]
119 2: RETURN, ratio_array[1]
120 3: RETURN, 0.5*ratio_array[0]+0.5*ratio_array[1]
121 ENDCASE
122

123 END

S.7 ALGE METRIC

1 FUNCTION ALGE_METRIC, simulated, observed, metric_flag
2

3 CASE metric_flag OF
4

5 1: BEGIN
6 avg_simulated = MEAN(simulated)
7 avg_observed = MEAN(observed)
8

9 nomean_simulated = simulated - avg_simulated
10 nomean_observed = observed - avg_observed
11

12 nomean_sim2 = nomean_simulatedˆ2
13 nomean_obs2 = nomean_observedˆ2
14 sim_obs = nomean_simulated*nomean_observed
15

16 Ra_top = TOTAL(nomean_sim2-2*sim_obs+nomean_obs2)
17 Ra_bot = TOTAL(nomean_sim2+nomean_obs2)
18

19 R_a = SQRT(Ra_top/Ra_bot)
20 RETURN, R_a
21 END
22 2: BEGIN
23 diff = simulated - observed
24 diff_squared = diffˆ2
25 sum = TOTAL(diff_squared)
26 square_root = SQRT(sum/N_ELEMENTS(diff))
27 RMS_norm = square_root/(MAX(observed)-MIN(observed))
28

29 RETURN, RMS_norm
30 END
31

32 ENDCASE
33

34 END

S.8 CALC DELTA T

1 FUNCTION CALC_DELTA_T, temp_img, path, hour
2

3 sfc_file_fn = FILE_WHICH(path, ’sfc.dat’)
4 nlines_sfc = FILE_LINES(sfc_file_fn)
5 sfc = STRARR(nlines_sfc)
6 OPENR, unit, sfc_file_fn, /GET_LUN
7 READF, unit, sfc
8 FREE_LUN, unit
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9

10

11 water_nodes = WHERE(temp_img GT 273.160004, count)
12 avgT = TOTAL(temp_img[water_nodes])/count
13 extracted = STRSPLIT(sfc[hour], /EXTRACT)
14 airT = FLOAT(extracted[3]) + 273.15
15

16 IF (extracted[9] EQ ’2/11/2010’) AND (extracted [10] EQ ’16:00’) THEN BEGIN
17 PRINT, ’a’
18 ENDIF
19

20 RETURN, (avgT - airT)
21

22

23 END

S.9 CALC ICE COVERAGE

1 FUNCTION CALC_ICE_COVERAGE, ice_image, alge_path
2

3 igrid_fn = FILE_WHICH(alge_path, ’igrid.dat’)
4 command_one = ’grep 1 -o ’ + igrid_fn + ’ | wc -l’
5 command_zero = ’grep 0 -o ’ + igrid_fn + ’ | wc -l’
6 SPAWN, command_one, num_ones
7 SPAWN, command_zero, num_zeros
8

9 num_ice_nodes = WHERE(ice_image GT 0, count)
10

11 percent_coverage = FLOAT(count)/FLOAT(num_ones)
12

13 RETURN, percent_coverage
14

15

16 END

S.10 EXTRACT PARAMETERS

1 FUNCTION EXTRACT_PARAMETERS, config_file, particle_dir
2

3 FILE_COPY, config_file, particle_dir+’config.sh’, /OVERWRITE
4 CD, particle_dir
5 config = FILE_SEARCH(’config.sh’)
6

7 keys = [’alge_constant_path’, $
8 ’dataPath’, $
9 ’JOB_NAME’, $

10 ’NUM_STEPS’, $
11 ’num_parameters’, $
12 ’TOTAL_GENERATIONS’, $
13 ’error_goal’, $
14 ’minflag’, $
15 ’gamma1’, $
16 ’gamma2’, $
17 ’w_start’, $
18 ’w_end’, $
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19 ’w_varyfor’, $
20 ’ub’, $
21 ’lb’, $
22 ’initial_fwhm’, $
23 ’initial_mean’, $
24 ’op_mode’, $
25 ’ratio_flag’, $
26 ’metric_flag’, $
27 ’season’]
28 params_hash = HASH(keys)
29 path = FILE_DIRNAME(config, /MARK_DIRECTORY)
30 stripped_config = path + ’stripped.txt’
31 SPAWN, "sed ’/ˆ\#/d’ " + config + ’ >>’+ stripped_config
32 SPAWN, "sed ’/ˆ$/d’ " + stripped_config + ’ > tt’
33 SPAWN, ’mv tt ’ + stripped_config
34

35 ;HELP, stripped_config
36 ; Open config file and read in parameters to string array
37 nlinesC = FILE_LINES(stripped_config)
38 config_data = STRARR(nlinesC)
39 OPENR, unit, stripped_config, /GET_LUN
40 READF, unit, config_data
41 FREE_LUN, unit
42 ;HELP, config_data
43 FILE_DELETE, stripped_config
44

45 FOR i=1L, nlinesC[0]-1 DO BEGIN
46 cur_line = STRSPLIT(config_data[i], ’=’, /EXTRACT)
47 dequoted = STRSPLIT(cur_line[1], "’", /EXTRACT)
48 params_hash[cur_line[0]] = dequoted[0]
49 ENDFOR
50

51 params = params_hash.toStruct()
52 RETURN, params
53

54 END

S.11 EXTRACT ICE IMGS

1 FUNCTION EXTRACT_ICE_IMGS, season, path
2

3 IF season EQ 0 THEN BEGIN
4 date_arr = [[2,24,2009,12,0,0], [2,16,2009,13,0,0], [3,4,2009,13,0,0]]
5 ENDIF ELSE BEGIN
6 date_arr = [[2,11,2010,12,0,0], [2,11,2010,21,0,0], $
7 [3,4,2010,15,0,0], [3,4,2010,21,0,0]]
8 ENDELSE
9

10 s = SIZE(date_arr, /DIMENSIONS)
11 num_days = s[1]
12 ice_list = LIST()
13 FOR i=0, num_days-1 DO BEGIN
14 date = date_arr[*, i]
15 ice_img_fn = path + ’iceimg’ + STRCOMPRESS(STRING(date[0]), /REMOVE_ALL) + ’_’

+ STRCOMPRESS(STRING(date[1]), /REMOVE_ALL) + ’_’ $
16 + STRCOMPRESS(STRING(date[2]), /REMOVE_ALL) + ’_’ +

STRCOMPRESS(STRING(date[3]), /REMOVE_ALL) + ’.tif’
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17

18 ice_img = READ_TIFF(ice_img_fn)
19 ice_img = ROTATE(ice_img, 2)
20 ice_img = HIST_EQUAL(ice_img, MINV=0.0, MAXV=.4)
21 new_img = CONGRID(ice_img, 475, 261)
22 ice_list.add, new_img
23 ENDFOR
24 RETURN, ice_list
25

26 END

S.12 EXTRACT TEMP IMGS

1 FUNCTION EXTRACT_TEMP_IMGS, season, path
2

3 IF season EQ 0 THEN BEGIN
4 date_arr = [[2,24,2009,12,0,0], [2,16,2009,13,0,0], [3,4,2009,13,0,0]]
5 ENDIF ELSE BEGIN
6 date_arr = [[2,11,2010,12,0,0], [2,11,2010,21,0,0], $
7 [3,4,2010,15,0,0], [3,4,2010,21,0,0]]
8 ENDELSE
9

10 s = SIZE(date_arr, /DIMENSIONS)
11 num_days = s[1]
12 temp_list = LIST()
13 FOR i=0, num_days-1 DO BEGIN
14 date = date_arr[*, i]
15 temp_img_fn = path + ’tempimg’ + STRCOMPRESS(STRING(date[0]), /REMOVE_ALL) + ’

_’ + STRCOMPRESS(STRING(date[1]), /REMOVE_ALL) + ’_’ $
16 + STRCOMPRESS(STRING(date[2]), /REMOVE_ALL) + ’_’ +

STRCOMPRESS(STRING(date[3]), /REMOVE_ALL) + ’.tif’
17

18 temp_img = READ_TIFF(temp_img_fn)
19 temp_img = ROTATE(temp_img, 2)
20 temp_img = HIST_EQUAL(temp_img, MINV=230, MAXV=280)
21 new_img = CONGRID(temp_img, 475, 261)
22 temp_list.add, new_img
23 ENDFOR
24 RETURN, temp_list
25

26 END

S.13 LOAD WASP IMGS

1 FUNCTION LOAD_WASP_IMGS, path, season
2

3 IF season EQ 0 THEN BEGIN
4 date_arr = [[2,24,2009,12,0,0], [2,16,2009,13,0,0], [3,4,2009,13,0,0]]
5 ENDIF ELSE BEGIN
6 date_arr = [[2,11,2010,12,0,0], [2,11,2010,21,0,0], $
7 [3,4,2010,15,0,0], [3,4,2010,21,0,0]]
8 ENDELSE
9

10 s = SIZE(date_arr, /DIMENSIONS)
11 num_days = s[1]
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12 wasp_list = LIST()
13 FOR i=0, num_days-1 DO BEGIN
14 date = date_arr[*, i]
15 wasp_img_fn = path + STRCOMPRESS(STRING(date[0]), /REMOVE_ALL) + ’_’ +

STRCOMPRESS(STRING(date[1]), /REMOVE_ALL) + ’_’ $
16 + STRCOMPRESS(STRING(date[2]), /REMOVE_ALL) + ’_’ +

STRCOMPRESS(STRING(date[3]), /REMOVE_ALL) + $
17 ’_lwir_small.png’
18

19 wasp_img = READ_PNG(wasp_img_fn)
20 wasp_list.add, wasp_img
21 ENDFOR
22 RETURN, wasp_list
23 END

S.14 MAKE ALGE IMAGE

1 PRO MAKE_ALGE_IMAGE, path, date, temp_img_data, ice_img_data, $
2 params, psfc, ICE=ice, WATER=water
3

4 row_loc_below = WHERE(STRMATCH(params, ’NX (# OF NODES IN X-DIR)’) EQ 1)
5 num_rows = FLOAT(params[row_loc_below-1])
6 num_rows = num_rows[0]
7 col_loc_below = WHERE(STRMATCH(params, ’NY (# OF NODES IN Y-DIR)’) EQ 1)
8 num_cols = FLOAT(params[col_loc_below-1])
9 num_cols = num_cols[0]

10 hours_loc_below = WHERE(STRMATCH(params, ’TMAX (TOTAL RUN TIME, HOURS)’) EQ 1)
11 num_hours = FLOAT(FIX(params[hours_loc_below-1]))
12 num_hours = num_hours[0]
13

14 extracted = STRSPLIT(psfc[1], /EXTRACT)
15 first_date = extracted[9]
16 first_time = extracted[10]
17

18 first_date = FLOAT(STRSPLIT(first_date, ’/’, /EXTRACT))
19 first_time = FLOAT(STRSPLIT(first_time[0], ’:’, /EXTRACT))
20

21 IF first_date[2] EQ 8.0 THEN first_date[2]=2008.0
22 IF first_date[2] EQ 9.0 THEN first_date[2]=2009.0
23 IF first_date[2] EQ 10.0 THEN first_date[2] = 2010.0
24

25 beg_time = JULDAY(first_date[0], first_date[1], first_date[2], first_time[0],
first_time[1], 0)

26 end_time = JULDAY(date[0], date[1], date[2], date[3], date[4], date[5])
27 total_time = (end_time-beg_time)*(2.4/0.1)
28 first_line = num_rows*total_time
29 last_line = first_line + (num_rows-1)
30

31 IF KEYWORD_SET(water) THEN BEGIN
32 temp_img_fn = path + ’tempimg’ + STRCOMPRESS(STRING(date[0]), /REMOVE_ALL)

+ ’_’ + STRCOMPRESS(STRING(date[1]), /REMOVE_ALL) + ’_’ $
33 + STRCOMPRESS(STRING(date[2]), /REMOVE_ALL) + ’_’ +

STRCOMPRESS(STRING(date[3]), /REMOVE_ALL) + ’.tif’
34 temp_img_arr = FLTARR(1)
35 temp_img_arr[0] = 999.99
36

37 FOR i=first_line, last_line DO BEGIN



260 CHAPTER S. PSO-ALGE Code

38 temp_data = STRSPLIT(temp_img_data[i], /EXTRACT)
39 temp_img_arr = [temp_img_arr, temp_data]
40 ENDFOR
41 temp_img = temp_img_arr[1:*]
42 temp_img = REFORM(temp_img, num_cols, num_rows)
43 WRITE_TIFF, temp_img_fn, temp_img, /FLOAT
44 ENDIF
45

46 IF KEYWORD_SET(ice) THEN BEGIN
47 ice_img_fn = path + ’iceimg’ + STRCOMPRESS(STRING(date[0]), /REMOVE_ALL) +

’_’ + STRCOMPRESS(STRING(date[1]), /REMOVE_ALL) + ’_’ $
48 + STRCOMPRESS(STRING(date[2]), /REMOVE_ALL) + ’_’ +

STRCOMPRESS(STRING(date[3]), /REMOVE_ALL) + ’.tif’
49 ice_img_arr = FLTARR(1)
50 ice_img_arr[0] = 999.99
51

52 FOR i=first_line, last_line DO BEGIN
53 ice_data = STRSPLIT(ice_img_data[i], /EXTRACT)
54 ice_img_arr = [ice_img_arr, ice_data]
55 ENDFOR
56

57 ice_img = ice_img_arr[1:*]
58 ice_img = REFORM(ice_img, num_cols, num_rows)
59 WRITE_TIFF, ice_img_fn, ice_img, /FLOAT
60 ENDIF
61

62 END

S.15 MAKE AVG FLOWS

1 PRO MAKE_AVG_FLOWS;, flow_fn
2

3 flow_fn = DIALOG_PICKFILE()
4 nlines_flow = FILE_LINES(flow_fn)
5 flow = STRARR(nlines_flow)
6 OPENR, unit, flow_fn, /GET_LUN
7 READF, unit, flow
8 FREE_LUN, unit
9 flow = FLOAT(flow)

10

11 dir = FILE_DIRNAME(flow_fn)
12 base = FILE_BASENAME(flow_fn, ’.dat’)
13

14 num_params = 20.0
15 window_size = nlines_flow/num_params
16 flow_avg = FLTARR(nlines_flow)
17 avg_params = FLTARR(num_params)
18

19 avg_params_fn = dir + ’/’ + base + ’_avgparams.dat’
20 OPENW, unit, avg_params_fn, /GET_LUN
21 FOR i=0, num_params-1 DO BEGIN
22 data_block = MEAN(flow[i*window_size:(i+1)*window_size-1])
23 PRINTF, unit, STRING(STRCOMPRESS(data_block, /REMOVE_ALL))
24 flow_avg[i*window_size:(i+1)*window_size-1] = data_block
25 ENDFOR
26 FREE_LUN, unit
27
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28 avg_fn = dir + ’/’ + base + ’_avg.dat’
29 OPENW, unit, avg_fn, /GET_LUN
30 FOR i=0, nlines_flow-1 DO BEGIN
31 PRINTF, unit, STRING(STRCOMPRESS(flow_avg[i], /REMOVE_ALL))
32 ENDFOR
33 p = PLOT(flow_avg, ’r’, YRANGE = [-5, 8])
34 p = PLOT(flow, /OVERPLOT)
35 FREE_LUN, unit
36 END

S.16 METRIC ENGINE

1 FUNCTION METRIC_ENGINE, ALGE_cube, PTS_arr, num_days, alge_path, new_data_path,
metric_flag

2

3 ratio_ice = METRIC_ICE(alge_path, new_data_path, metric_flag)
4

5 observed = FLTARR(1)
6 simulated = FLTARR(1)
7 all_xpts = FLTARR(1)
8 all_ypts = FLTARR(1)
9

10 FOR i=0, num_days-1 DO BEGIN
11

12 ; PTS_TO_WARP is the coordinates in ALGE space that need to be warped
using an affine matrix

13 ; and then compared to their associated WASP points to calculate
difference between the ALGE and WASP imagery

14 pts_fn = PTS_arr[i]
15

16 nlines_pts = FILE_LINES(pts_fn)
17 pts_strarr = STRARR(nlines_pts)
18 OPENR, unit, pts_fn, /GET_LUN
19 READF, unit, pts_strarr
20 FREE_LUN, unit
21

22 LUT = FLTARR(3,nlines_pts)
23 FOR cur_line=0L, nlines_pts-1 DO BEGIN
24 extracted = STRSPLIT(pts_strarr[cur_line], /EXTRACT)
25 LUT[*, cur_line] = FLOAT(extracted)
26 ENDFOR
27

28 xpts = LUT[0, *]
29 ypts = LUT[1, *]
30 all_xpts = [all_xpts, REFORM(xpts)]
31 all_ypts = [all_ypts, REFORM(ypts)]
32

33 ALGE_slice = REFORM(ALGE_cube[i, *, *])
34 ALGE_slice_big = CONGRID(ALGE_slice, 4748, 2606)
35

36 observed_day = REFORM(LUT[2, *]) + 273.15
37 simulated_day= ALGE_slice_big[REFORM(LUT[0, *]), REFORM(LUT[1, *])]
38 observed = [observed, observed_day]
39 simulated = [simulated, simulated_day]
40

41 ENDFOR
42
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43 observed = observed[1:*]
44 simulated = simulated[1:*]
45 all_xpts = all_xpts[1:*]
46 all_ypts = all_ypts[1:*]
47 good_inds = WHERE(simulated NE 0.0)
48 observed = observed[good_inds]
49 simulated = simulated[good_inds]
50 all_xpts = all_xpts[good_inds]
51 all_ypts = all_ypts[good_inds]
52 num_pts = N_ELEMENTS(observed)
53

54 ratio_water = ALGE_METRIC(simulated, observed, metric_flag)
55

56 observed_str = STRING(observed)
57 simulated_str = STRING(simulated)
58

59 title_arr = [’Simulated’, ’Observed’]
60 water_ratios_fn = new_data_path + ’water_ratios.dat’
61 OPENW, unit, water_ratios_fn, /GET_LUN
62 PRINTF, unit, new_data_path
63 PRINTF, unit, ’ XPT YPT ’ + title_arr[0] + ’ ’ + title_arr[1]
64

65 FOR i=0, num_pts-1 DO BEGIN
66 PRINTF, unit, STRING(all_xpts[i]) + ’ ’ + STRING(all_ypts[i]) + ’ ’ +

STRING(simulated_str[i]) + ’ ’ + STRING(observed_str[i])
67 ENDFOR
68

69 PRINTF, unit, ’Water ratio: ’ + STRING(ratio_water)
70 FREE_LUN, unit
71

72 RETURN, [ratio_ice, ratio_water]
73

74 END

S.17 METRIC ICE

1 FUNCTION METRIC_ICE, alge_path, new_data_path, metric_flag
2

3 fraction_data_fn = FILE_WHICH(alge_path, ’ice_fraction_data.txt’)
4 param_fn = FILE_WHICH(alge_path, ’param.dat’)
5

6 nlines_iceFrac = FILE_LINES(fraction_data_fn)
7 iceFrac_strarr = STRARR(nlines_iceFrac)
8 OPENR, unit, fraction_data_fn, /GET_LUN
9 READF, unit, iceFrac_strarr

10 FREE_LUN, unit
11

12 nlines_param = FILE_LINES(param_fn)
13 params = STRARR(nlines_param)
14 OPENR, unit, param_fn, /GET_LUN
15 READF, unit, params
16 FREE_LUN, unit
17

18 row_loc_below = WHERE(STRMATCH(params, ’NX (# OF NODES IN X-DIR)’) EQ 1)
19 num_rows = FLOAT(params[row_loc_below-1])
20 num_rows = num_rows[0]
21 col_loc_below = WHERE(STRMATCH(params, ’NY (# OF NODES IN Y-DIR)’) EQ 1)
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22 num_cols = FLOAT(params[col_loc_below-1])
23 num_cols = num_cols[0]
24

25 iceFrac_arr = STRARR(5)
26 FOR cur_line=0, nlines_iceFrac-1 DO BEGIN
27 extracted = STRSPLIT(iceFrac_strarr[cur_line], /EXTRACT)
28 iceFrac_arr = [[iceFrac_arr], [extracted]]
29 ENDFOR
30

31 iceFrac_arr = iceFrac_arr[*, 1:*]
32 observed_ice_fracs = FLTARR(nlines_iceFrac)
33 simulated_ice_fracs = FLTARR(nlines_iceFrac)
34

35 FOR i=0, nlines_iceFrac-1 DO BEGIN
36 fn = ’iceimg’ + STRCOMPRESS(STRING(iceFrac_arr[0, i]), /REMOVE_ALL) + ’_’ +$
37 STRCOMPRESS(STRING(iceFrac_arr[1, i]), /REMOVE_ALL) + ’_’ +$
38 STRCOMPRESS(STRING(iceFrac_arr[2, i]), /REMOVE_ALL) + ’_’ +$
39 STRCOMPRESS(STRING(iceFrac_arr[3, i]), /REMOVE_ALL) + ’.tif’
40 ice_img_fn = new_data_path + fn
41 ice_img = READ_TIFF(ice_img_fn)
42 simulated_ice_fracs[i] = CALC_ICE_COVERAGE(ice_img, new_data_path)
43 observed_ice_fracs[i] = iceFrac_arr[4, i]
44 ENDFOR
45 ; Calculate ratio metric for ice coverage
46 ratio_ice = ALGE_METRIC(simulated_ice_fracs, observed_ice_fracs, metric_flag)
47 str_simulated = STRING(simulated_ice_fracs)
48 str_observed = STRING(observed_ice_fracs)
49 title_arr = [’Month’, ’Day’, ’Year’, ’Hour’, ’Simulated’, ’Observed’]
50 ice_ratios_fn = new_data_path + ’ice_ratios.dat’
51 OPENW, unit, ice_ratios_fn, /GET_LUN
52 PRINTF, unit, alge_path
53 PRINTF, unit, title_arr[0] + ’ ’ + title_arr[1] + ’ ’+ title_arr[2] + ’ ’ +

title_arr[3] $
54 + ’ ’ + title_arr[4] + ’ ’ + title_arr[5]
55 FOR i=0, nlines_iceFrac-1 DO BEGIN
56 PRINTF, unit, STRING(iceFrac_arr[0, i]) + ’ ’, $
57 STRING(iceFrac_arr[1, i]) + ’ ’, $
58 STRING(iceFrac_arr[2, i]) + ’ ’, $
59 STRING(iceFrac_arr[3, i]) + ’ ’, $
60 STRING(str_simulated[i]) + ’ ’, $
61 STRING(str_observed[i])
62 ENDFOR
63

64 PRINTF, unit, ’Ice ratio: ’ + STRING(ratio_ice)
65 FREE_LUN, unit
66 RETURN, ratio_ice
67

68 END

S.18 RUN MAKE ALGE IMAGE

1 FUNCTION RUN_MAKE_ALGE_IMAGE, season, new_data_path, alge_path, ICE=ice, WATER=water
2

3

4 temp_img_fn = FILE_WHICH(new_data_path, ’fort.32’)
5 ice_img_fn = FILE_WHICH(new_data_path, ’fort.53’)
6 sfc_file_fn = FILE_WHICH(new_data_path, ’sfc.dat’)
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7 param_fn = FILE_WHICH(new_data_path, ’param.dat’)
8 fraction_data_fn = FILE_WHICH(alge_path, ’ice_fraction_data.txt’)
9 ice_imgs = 0

10 temp_imgs = 0
11 ptemp_img_data = 0
12 pice_img_data = 0
13

14 IF KEYWORD_SET(water) THEN BEGIN
15 nlines_temp = FILE_LINES(temp_img_fn)
16 temp_img_data = STRARR(nlines_temp)
17 OPENR, unit, temp_img_fn, /GET_LUN
18 READF, unit, temp_img_data
19 FREE_LUN, unit
20 ptemp_img_data = PTR_NEW(temp_img_data)
21 temp_imgs = 1
22 ENDIF
23

24 IF KEYWORD_SET(ice) THEN BEGIN
25 nlines_ice = FILE_LINES(ice_img_fn)
26 ice_img_data = STRARR(nlines_ice)
27 OPENR, unit, ice_img_fn, /GET_LUN
28 READF, unit, ice_img_data
29 FREE_LUN, unit
30 pice_img_data = PTR_NEW(ice_img_data)
31 ice_imgs=1
32 ENDIF
33

34 nlines_param = FILE_LINES(param_fn)
35 params = STRARR(nlines_param)
36 OPENR, unit, param_fn, /GET_LUN
37 READF, unit, params
38 FREE_LUN, unit
39

40 nlines_iceFrac = FILE_LINES(fraction_data_fn)
41 iceFrac_strarr = STRARR(nlines_iceFrac)
42 OPENR, unit, fraction_data_fn, /GET_LUN
43 READF, unit, iceFrac_strarr
44 FREE_LUN, unit
45

46 ; Open meteorology file and read in weather data to string array
47 nlines_sfc = FILE_LINES(sfc_file_fn)
48 sfc = STRARR(nlines_sfc)
49 OPENR, unit, sfc_file_fn, /GET_LUN
50 READF, unit, sfc
51 FREE_LUN, unit
52

53 date_arr = INTARR(6, nlines_iceFrac)
54 FOR i=0, nlines_iceFrac-1 DO BEGIN
55 extracted = STRSPLIT(iceFrac_strarr[i], /EXTRACT)
56 date_arr[*, i] = [FIX(extracted[0]), $ ;month
57 FIX(extracted[1]), $ ;day
58 FIX(extracted[2]), $ ;year
59 FIX(extracted[3]), $ ;hour
60 0, $ ;minutes
61 0] ;seconds
62 ENDFOR
63
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64 s = SIZE(date_arr, /DIMENSIONS)
65 num_days = s[1]
66

67 FOR i=0, num_days-1 DO BEGIN
68 PRINT, date_arr[*, i]
69 MAKE_ALGE_IMAGE, new_data_path, $
70 date_arr[*, i], $
71 temp_img_data, $
72 ice_img_data, $
73 params, $
74 sfc, $
75 ICE=ice_imgs, $
76 WATER=temp_imgs
77

78

79 ENDFOR
80

81 IF KEYWORD_SET(water) THEN PTR_FREE, ptemp_img_data
82 IF KEYWORD_SET(ice) THEN PTR_FREE, pice_img_data
83

84 RETURN, 1
85

86 END

S.19 RUN METRIC ENGINE

1 FUNCTION RUN_METRIC_ENGINE, season, alge_path, new_data_path, metric_flag
2

3 ; Season=0 means 08/09 winter
4 ; Season=1 means 09/10 winter
5

6 IF season EQ 0 THEN BEGIN
7

8 num_days = 3
9

10 img_2_16_ALGE_FN = new_data_path + ’tempimg2_16_2009_13.tif’
11 img_2_24_ALGE_FN = new_data_path + ’tempimg2_24_2009_12.tif’
12 img_3_4_ALGE_FN = new_data_path + ’tempimg3_4_2009_13.tif’
13

14

15 img_2_16_ALGE = READ_TIFF(img_2_16_ALGE_FN)
16 img_2_24_ALGE = READ_TIFF(img_2_24_ALGE_FN)
17 img_3_4_ALGE = READ_TIFF(img_3_4_ALGE_FN)
18

19 s_alge = SIZE(img_2_16_ALGE, /DIMENSIONS)
20 num_col_alge = s_alge[0]
21 num_row_alge = s_alge[1]
22

23 ALGE_cube = FLTARR(num_days, num_col_alge, num_row_alge)
24 ALGE_cube[0, *, *] = img_2_16_ALGE
25 ALGE_cube[1, *, *] = img_2_24_ALGE
26 ALGE_cube[2, *, *] = img_3_4_ALGE
27

28 PTS_arr = [alge_path + ’02162009LUT.dat’, $
29 alge_path + ’02242009LUT.dat’, $
30 alge_path + ’03042009LUT.dat’]
31
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32

33 ENDIF ELSE BEGIN
34

35 num_days = 4
36

37 day_2_11_ALGE_FN = new_data_path + ’tempimg2_11_2010_12.tif’
38 night_2_11_ALGE_FN = new_data_path + ’tempimg2_11_2010_21.tif’
39 day_3_4_ALGE_FN = new_data_path + ’tempimg3_4_2010_16.tif’
40 night_3_4_ALGE_FN = new_data_path + ’tempimg3_4_2010_21.tif’
41

42

43 day_2_11_ALGE = READ_TIFF(day_2_11_ALGE_FN)
44 night_2_11_ALGE = READ_TIFF(night_2_11_ALGE_FN)
45 day_3_4_ALGE = READ_TIFF(day_3_4_ALGE_FN)
46 night_3_4_ALGE = READ_TIFF(night_3_4_ALGE_FN)
47

48 s_alge = SIZE(day_2_11_ALGE, /DIMENSIONS)
49 num_col_alge = s_alge[0]
50 num_row_alge = s_alge[1]
51

52 ALGE_cube = FLTARR(num_days, num_col_alge, num_row_alge)
53 ALGE_cube[0, *, *] = day_2_11_ALGE
54 ALGE_cube[1, *, *] = night_2_11_ALGE
55 ALGE_cube[2, *, *] = day_3_4_ALGE
56 ALGE_cube[3, *, *] = night_3_4_ALGE
57

58 PTS_arr = [alge_path + ’02112010_1_LUT.dat’, $
59 alge_path + ’02112010_2_LUT.dat’, $
60 alge_path + ’03042010_1_LUT.dat’, $
61 alge_path + ’03042010_1_LUT.dat’]
62

63 ENDELSE
64

65 ratio_array = METRIC_ENGINE(ALGE_cube, PTS_arr, num_days, alge_path,
new_data_path, metric_flag)

66

67 RETURN, ratio_array
68

69 END

S.20 READ ALL ALGE DATA

1 FUNCTION RUN_METRIC_ENGINE, season, alge_path, new_data_path, metric_flag
2

3 ; Season=0 means 08/09 winter
4 ; Season=1 means 09/10 winter
5

6 IF season EQ 0 THEN BEGIN
7

8 num_days = 3
9

10 img_2_16_ALGE_FN = new_data_path + ’tempimg2_16_2009_13.tif’
11 img_2_24_ALGE_FN = new_data_path + ’tempimg2_24_2009_12.tif’
12 img_3_4_ALGE_FN = new_data_path + ’tempimg3_4_2009_13.tif’
13

14

15 img_2_16_ALGE = READ_TIFF(img_2_16_ALGE_FN)
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16 img_2_24_ALGE = READ_TIFF(img_2_24_ALGE_FN)
17 img_3_4_ALGE = READ_TIFF(img_3_4_ALGE_FN)
18

19 s_alge = SIZE(img_2_16_ALGE, /DIMENSIONS)
20 num_col_alge = s_alge[0]
21 num_row_alge = s_alge[1]
22

23 ALGE_cube = FLTARR(num_days, num_col_alge, num_row_alge)
24 ALGE_cube[0, *, *] = img_2_16_ALGE
25 ALGE_cube[1, *, *] = img_2_24_ALGE
26 ALGE_cube[2, *, *] = img_3_4_ALGE
27

28 PTS_arr = [alge_path + ’02162009LUT.dat’, $
29 alge_path + ’02242009LUT.dat’, $
30 alge_path + ’03042009LUT.dat’]
31

32

33 ENDIF ELSE BEGIN
34

35 num_days = 4
36

37 day_2_11_ALGE_FN = new_data_path + ’tempimg2_11_2010_12.tif’
38 night_2_11_ALGE_FN = new_data_path + ’tempimg2_11_2010_21.tif’
39 day_3_4_ALGE_FN = new_data_path + ’tempimg3_4_2010_16.tif’
40 night_3_4_ALGE_FN = new_data_path + ’tempimg3_4_2010_21.tif’
41

42

43 day_2_11_ALGE = READ_TIFF(day_2_11_ALGE_FN)
44 night_2_11_ALGE = READ_TIFF(night_2_11_ALGE_FN)
45 day_3_4_ALGE = READ_TIFF(day_3_4_ALGE_FN)
46 night_3_4_ALGE = READ_TIFF(night_3_4_ALGE_FN)
47

48 s_alge = SIZE(day_2_11_ALGE, /DIMENSIONS)
49 num_col_alge = s_alge[0]
50 num_row_alge = s_alge[1]
51

52 ALGE_cube = FLTARR(num_days, num_col_alge, num_row_alge)
53 ALGE_cube[0, *, *] = day_2_11_ALGE
54 ALGE_cube[1, *, *] = night_2_11_ALGE
55 ALGE_cube[2, *, *] = day_3_4_ALGE
56 ALGE_cube[3, *, *] = night_3_4_ALGE
57

58 PTS_arr = [alge_path + ’02112010_1_LUT.dat’, $
59 alge_path + ’02112010_2_LUT.dat’, $
60 alge_path + ’03042010_1_LUT.dat’, $
61 alge_path + ’03042010_1_LUT.dat’]
62

63 ENDELSE
64

65 ratio_array = METRIC_ENGINE(ALGE_cube, PTS_arr, num_days, alge_path,
new_data_path, metric_flag)

66

67 RETURN, ratio_array
68

69 END





Appendix T

PSO-ALGE Analysis Tools

T.1 SWARM RESULTS

1 PRO SWARM_RESULTS, DATA_PATH=data_path, $
2 ALGE_PATH=alge_path, $
3 RES_DIR=res_dir, $
4 SEASON=season, $
5 EXTRACT=extract, $
6 RESTORE=restore, $
7 SAVE_FILE=save_file, $
8 ORIG_FLOW=orig_flow
9

10 COMPILE_OPT idl2
11

12 IF N_ELEMENTS(season) EQ 0 THEN season=0
13 IF N_ELEMENTS(res_dir) EQ 0 THEN PRINT, ’Results directory required’ && RETURN
14

15 IF KEYWORD_SET(extract) THEN BEGIN
16 IF N_ELEMENTS(data_path) EQ 0 THEN PRINT, ’Extraction requires DATA_PATH’

&& RETURN
17 IF N_ELEMENTS(alge_path) EQ 0 THEN PRINT, ’Extraction requires ALGE_PATH’

&& RETURN
18 IF N_ELEMENTS(save_file) EQ 0 THEN save_file = res_dir + ’big_data.sav’
19 RAW_DATA_EXTRACTION, ALGE_PATH=alge_path, $
20 DATA_PATH=data_path, $
21 RESULTS_DIR=results_dir, $
22 SAVE_FILE=save_file
23 RESTORE, save_file
24 ENDIF
25

26 IF KEYWORD_SET(restore) THEN RESTORE, save_file
27

28 IF KEYWORD_SET(orig_flow) THEN BEGIN
29 CD, res_dir
30 truth_fn = res_dir + ’flow.dat’
31 nlines_truth = FILE_LINES(truth_fn)
32 truth = STRARR(nlines_truth)
33 OPENR, unit, truth_fn, /GET_LUN
34 READF, unit, truth

269
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35 FREE_LUN, unit
36 truth_avg = FLOAT(truth)
37 window_size = nlines_truth/num_parameters
38

39

40 ENDIF
41

42 CD, res_dir
43 best_particle = WHERE(all_scores[num_actual_gens-1, *] EQ MIN(all_scores[

num_actual_gens-1, *]))
44 best_particle_flow = all_pbest[num_actual_gens-1, *, best_particle]
45 first_best_particle_flow = all_pbest[0, *, best_particle]
46 best_plotting = FLTARR(nlines_truth)
47 first_plotting = FLTARR(nlines_truth)
48 FOR j=0, num_parameters-1 DO BEGIN
49 block1 = REPLICATE(best_particle_flow[j], window_size)
50 block2 = REPLICATE(first_best_particle_flow[j], window_size)
51 best_plotting[j*window_size:(j+1)*window_size-1] = MEAN(block1)
52 first_plotting[j*window_size:(j+1)*window_size-1] = MEAN(block2)
53 ENDFOR
54

55 pos = [0.66,1.08]
56

57 PRINT, ’Making pbest plots’
58 pbest_plot = PLOT(truth_avg, ’2’, YRANGE=[0, ub+1], XTITLE=’Time [hours]’,

YTITLE=’Flow rate [$mˆ3/s$]’, $
59 TITLE=plot_title, DIMENSIONS=[500, 500], BUFFER=1, NAME=’Actual

Flow Avg.’)
60 pbest_plot.YRANGE = [0, ub+1]
61 pbest_plot.XRANGE = [0, N_ELEMENTS(truth_avg)-1]
62 pbest_plot.FONT_SIZE = 14
63 pbest_plot.FONT_STYLE = 0
64 pbest_plot.COLOR = ’steel blue’
65

66

67 p = PLOT(best_plotting, ’2’, COLOR=’firebrick’, OVERPLOT=pbest_plot, NAME=’
Particle Flow’)

68 l = LEGEND(TARGET=[pbest_plot, p], POSITION=pos, /NORMAL, ORIENTATION=1, $
69 LINESTYLE=0, FONT_SIZE=8, SHADOW=0, /RELATIVE)
70 fn = ’pbest_final.pdf’
71 pbest_plot.SAVE, fn, BITMAP=0, PAGE_SIZE=[5,5]
72 pbest_plot.CLOSE
73

74 pbest_1_plot = PLOT(truth_avg, ’2’, YRANGE=[0, ub+1], XTITLE=’Time [hours]’,
YTITLE=’Flow rate [$mˆ3/s$]’, $

75 TITLE=plot_title, DIMENSIONS=[500, 500], BUFFER=1, NAME=’Actual
Flow Avg.’)

76 pbest_1_plot.YRANGE = [0, ub+1]
77 pbest_1_plot.XRANGE = [0, N_ELEMENTS(truth_avg)-1]
78 pbest_1_plot.FONT_SIZE = 14
79 pbest_1_plot.FONT_STYLE = 0
80 pbest_1_plot.COLOR = ’steel blue’
81

82

83 p1 = PLOT(first_plotting, ’2’, COLOR=’firebrick’, YRANGE=[lb, ub], OVERPLOT=
pbest_1_plot, NAME=’Particle Flow’)

84 l = LEGEND(TARGET=[pbest_1_plot, p1], POSITION=pos, /NORMAL, ORIENTATION=1, $



T.1. SWARM RESULTS 271

85 LINESTYLE=0, FONT_SIZE=8, SHADOW=0, /RELATIVE)
86 fn = ’pbest_first.pdf’
87 pbest_1_plot.SAVE, fn, BITMAP=0, PAGE_SIZE=[5,5]
88 pbest_1_plot.CLOSE
89

90 ice_sim_first = FLTARR(nlines_ice_first-3)
91 ice_obs_first = FLTARR(nlines_ice_first-3)
92 ice_sim_final = FLTARR(nlines_ice_final-3)
93 ice_obs_final = FLTARR(nlines_ice_final-3)
94

95

96 FOR i=2, (nlines_ice_first-2) DO BEGIN
97 vals_ice_1 = STRSPLIT(ice_first[i], /EXTRACT)
98 ice_sim_first[i-2] = vals_ice_1[4]
99 ice_obs_first[i-2] = vals_ice_1[5]

100 vals_ice_2 = STRSPLIT(ice_final[i], /EXTRACT)
101 ice_sim_final[i-2] = vals_ice_2[4]
102 ice_obs_final[i-2] = vals_ice_2[5]
103 ENDFOR
104

105 iceP1_fn = ’ice_first_corr.pdf’
106 iceP2_fn = ’ice_final_corr.pdf’
107

108 PLOT_CORRELATIONS, ice_obs_first, ice_sim_first, iceP1_fn, /ICE
109 PLOT_CORRELATIONS, ice_obs_final, ice_sim_final, iceP2_fn, /ICE
110

111 PRINT, ’Work with swarm scores’
112 first_score_fn = ’first_scores.dat’
113 OPENW, unit, first_score_fn, /GET_LUN
114 PRINTF, unit, all_scores[0, *]
115 FREE_LUN, unit
116

117 final_score_fn = ’final_scores.dat’
118 OPENW, unit, final_score_fn, /GET_LUN
119 PRINTF, unit, all_scores[num_actual_gens-1, *]
120 FREE_LUN, unit
121

122 PRINT, ’Make first and final flow plots’
123 first_flows = REFORM(all_pbest[0, *, *])
124 final_flows = REFORM(all_pbest[num_actual_gens-1, *, *])
125

126

127

128 IF KEYWORD_SET(orig_flow) THEN BEGIN
129 PRINT, ’Make actual flow plots’
130 first_avg_fn = ’first_actual_flows.pdf’
131 final_avg_fn = ’final_actual_flows.pdf’
132 PLOT_FLOWS, first_flows, truth_avg, nlines_truth, window_size, first_avg_fn

, lb[0], ub[0], /VARIABLE
133 PLOT_FLOWS, final_flows, truth_avg, nlines_truth, window_size, final_avg_fn

, lb[0], ub[0], /VARIABLE
134

135 first_fn = ’first_flows.pdf’
136 final_fn = ’final_flows.pdf
137 PLOT_FLOWS, first_flows, truth_avg, nlines_truth, window_size, first_fn, lb

[0], ub[0], /ALL
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138 PLOT_FLOWS, final_flows, truth_avg, nlines_truth, window_size, final_fn, lb
[0], ub[0], /ALL

139

140 ENDIF ELSE BEGIN
141 PRINT, ’Make average flow plots’
142 first_avg_fn = ’first_avg_flows.pdf’
143 final_avg_fn = ’final_avg_flows.pdf’
144 PLOT_FLOWS, first_flows, truth_avg, nlines_truth, window_size, first_avg_fn

, lb[0], ub[0], /AVERAGE
145 PLOT_FLOWS, final_flows, truth_avg, nlines_truth, window_size, final_avg_fn

, lb[0], ub[0], /AVERAGE
146

147 first_fn = ’first_flows.pdf’
148 final_fn = ’final_flows.pdf
149 PLOT_FLOWS, first_flows, truth_avg, nlines_truth, window_size, first_fn, lb

[0], ub[0], /ALL
150 PLOT_FLOWS, final_flows, truth_avg, nlines_truth, window_size, final_fn, lb

[0], ub[0], /ALL
151 ENDELSE
152

153

154

155 ; PRINT, ’Making flow frames’
156 ; FILE_MKDIR, res_dir + ’flow_frames/’
157 ; CD, res_dir+’flow_frames’
158 ; FOR i=0, num_actual_gens-1 DO BEGIN
159 ; flow = REFORM(all_pbest[i, *, *])
160 ; pbest_flow = REFORM(all_pbest[i, *, best_particle])
161 ; print_gen = STRCOMPRESS(STRING(i), /REMOVE_ALL)
162 ; flow_fn = ’gen’+print_gen+’.png’
163 ; pbest_fn = ’pbest’+print_gen+’.png’
164 ; PLOT_FLOWS, flow, truth_avg, nlines_truth, window_size, flow_fn, lb[0], ub

[0]
165 ; PLOT_FLOWS, pbest_flow, truth_avg, nlines_truth, window_size, pbest_fn, lb

[0], ub[0], /SINGLE
166 ; ENDFOR
167

168 END

T.2 PLOT CORRELATIONS

1 PRO PLOT_CORRELATIONS, x, y, fn, ICE=ice, WATER=water, FLOW=flow
2

3 IF KEYWORD_SET(ice) THEN BEGIN
4 x_range = [0.0, 1.0]
5 y_range = [0.0, 1.0]
6 x_title = ’Observed Ice Fractions’
7 y_title = ’Simulated Ice Fractions’
8 ENDIF
9 IF KEYWORD_SET(water) THEN BEGIN

10 x_range = [MIN(x), MAX(x)]
11 y_range = [MIN(y), MAX(y)]
12 x_title = ’Observed Water Temperatures [K]’
13 y_title = ’Simulated Water Temperatures [K]’
14 ENDIF
15

16 IF KEYWORD_SET(flow) THEN BEGIN
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17 x_range = [MIN(x), MAX(x)]
18 y_range = [MIN(y), MAX(y)]
19 x_title = ’Observed Flow Rates [$mˆ3$/s]’
20 y_title = ’Simulated Flow Rates [$mˆ3$/s]’
21 ENDIF
22

23 pos = [0.67,0.95]
24 plot_pos = [0.52,0.45]
25

26 p1 = PLOT(x, y, ’1’, COLOR=’steel blue’, SYMBOL=’o’, LINESTYLE=6, XRANGE=x_range
, YRANGE=y_range, XTITLE=x_title, YTITLE=y_title, $

27 TITLE=plot_title, DIMENSIONS=[500, 500], BUFFER=1, FONT_SIZE=14,
FONT_STYLE=0, NAME=’Ice fractions’)

28 p1.SYM_FILLED=1
29 p1.POSITION=plot_pos
30

31 ; Calculate the Pearson correlation coefficient.
32 coefficient = CORRELATE(x, y, /DOUBLE)
33 params = LINFIT(x, y, /Double, YFIT=yfit)
34 numPerfectPts = 100.
35 x_perf = DINDGEN(numPerfectPts+ 1 ) / numPerfectPts * ( 1.00 - 0.0 ) + 0.0
36 p2 = PLOT(x, yfit, ’-2’, COLOR=’firebrick’, OVERPLOT=p1, NAME=’Data correlation’

)
37 p3 = PLOT(x_perf, (1*x_perf+0), ’--2’, COLOR=’sea green’, OVERPLOT=p1, NAME=’One

-to-one line’)
38 t2 = TEXT(0.6, 0.17, /DATA, ’$Rˆ2$ = ’ + STRING(coefficient, Format=’(F0.3)’),

FONT_STYLE=1, FONT_SIZE=10)
39 t2 = TEXT(0.6, 0.1, /DATA, ’y = ’ + STRING(params[1], Format=’(F0.2)’),

FONT_STYLE=1, FONT_SIZE=10)
40

41 l = LEGEND(TARGET=[p2, p3], POSITION=pos, /NORMAL)
42 l.POSITION = pos
43 l.LINESTYLE = 0
44 l.FONT_SIZE = 14
45 l.SHADOW = 0
46 l.ORIENTATION=0
47

48 p1.SAVE, fn, BITMAP=0, PAGE_SIZE=[5,5]
49

50 END

T.3 PLOT FLOWS

1 PRO PLOT_FLOWS, flows, truth_avg, nlines_truth, window_size, fn, lb, ub, $
2 SINGLE=single, $
3 ALL=all, $
4 AVERAGE=average, $
5 VARIABLE=variable
6

7 dims = SIZE(flows, /DIMENSIONS)
8 IF N_ELEMENTS(dims) EQ 2 THEN BEGIN
9 num_params = dims[0]

10 num_parts = dims[1]
11 ENDIF ELSE BEGIN
12 num_params = dims[0]
13 ENDELSE
14
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15 pos = [0.67,1.0]
16 plot_pos = [0.52,0.52]
17

18 p1 = PLOT(truth_avg, ’1’, YRANGE=[0, ub+1], XTITLE=’Time [hours]’, YTITLE=’Flow
rate [$mˆ3/s$]’, $

19 TITLE=plot_title, DIMENSIONS=[500, 500], BUFFER=1, NAME=’True
Flow’)

20 ax = p1.AXES
21 ax[2].MAJOR = 0
22 ax[3].MAJOR = 0
23 ax[2].MINOR = 0
24 ax[3].MINOR = 0
25 p1.YRANGE = [0, ub+1]
26 p1.XRANGE = [0, N_ELEMENTS(truth_avg)-1]
27 p1.FONT_SIZE = 14
28 p1.FONT_STYLE = 0
29 p1.POSITION = plot_pos
30 p1.COLOR = ’dark turquoise’
31

32 sim_avg = MAKE_ARRAY(nlines_truth, /FLOAT, VALUE= MEAN(flows))
33 IF KEYWORD_SET(all) THEN BEGIN
34 FOR i=0, num_parts-1 DO BEGIN
35 cur_particle = FLTARR(nlines_truth)
36 FOR j=0, num_params-1 DO BEGIN
37 cur_particle[j*window_size:(j+1)*window_size-1] = flows[j,i]
38 ENDFOR
39 p2 = PLOT(cur_particle, ’1’, OVERPLOT=p1, NAME=’Swarm Flows’)
40 p2.COLOR = ’indian red’
41 ENDFOR
42 p3 = PLOT(sim_avg, ’--2’, OVERPLOT=p1, NAME=’Swarm Average’)
43

44 truth_plot = MAKE_ARRAY(nlines_truth, /FLOAT, VALUE= MEAN(truth_avg))
45 p4 = PLOT(truth_plot, ’--2’, OVERPLOT=p1, NAME=’True Average’)
46

47 l = LEGEND(TARGET=[p1, p4, p2, p3], /NORMAL)
48 l.POSITION = pos
49 l.LINESTYLE = 0
50 l.FONT_SIZE = 14
51 l.SHADOW = 0
52

53 p2.COLOR = ’indian red’
54 p3.COLOR = ’firebrick’
55 p4.COLOR = ’steel blue’
56

57 p1.SAVE, fn, BITMAP=0, PAGE_SIZE=[5,5]
58 ENDIF
59

60 IF KEYWORD_SET(variable) THEN BEGIN
61

62 sd_arr = FLTARR(num_params)
63 avg_arr = FLTARR(num_params)
64 x_arr = FLTARR(num_params)
65 cur_particle = FLTARR(nlines_truth)
66

67 FOR i=0, num_params-1 DO BEGIN
68 param_stats = MOMENT(flows[i, *], SDEV=sd, MEAN=avg)
69 sd_arr[i] = sd
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70 avg_arr[i] = avg
71 cur_particle[i*window_size:(i+1)*window_size-1] = avg
72 x = [i*window_size,(i+1)*window_size-1]
73 x_arr[i] = MEAN(x)
74 ENDFOR
75

76 p2 = PLOT(cur_particle, ’1’, OVERPLOT=p1, NAME=’Swarm Flows’)
77 p3 = PLOT(sim_avg, ’--2’, OVERPLOT=p1, NAME=’Swarm Average’)
78 p4 = ERRORPLOT(x_arr, avg_arr, sd_arr, ’3’, OVERPLOT=p1, LINESTYLE=6)
79 p4.COLOR = ’grey’
80

81 truth_plot = MAKE_ARRAY(nlines_truth, /FLOAT, VALUE= MEAN(truth_avg))
82 p5 = PLOT(truth_plot, ’--2’, OVERPLOT=p1, NAME=’True Average’)
83

84 l = LEGEND(TARGET=[p1, p5, p2, p3], /NORMAL)
85 l.POSITION = pos
86 l.LINESTYLE = 0
87 l.FONT_SIZE = 14
88 l.SHADOW = 0
89

90 p2.COLOR = ’indian red’
91 p3.COLOR = ’firebrick’
92 p5.COLOR = ’steel blue’
93

94 p1.SAVE, fn, BITMAP=0, PAGE_SIZE=[5,5]
95

96 ENDIF
97

98 IF KEYWORD_SET(average) THEN BEGIN
99 sd_arr = FLTARR(num_params)

100 avg_arr = FLTARR(num_params)
101 x_arr = FLTARR(num_params)
102 cur_particle = FLTARR(nlines_truth)
103

104 FOR i=0, num_params-1 DO BEGIN
105 param_stats = MOMENT(flows[i, *], SDEV=sd, MEAN=avg)
106 sd_arr[i] = sd
107 avg_arr[i] = avg
108 cur_particle[i*window_size:(i+1)*window_size-1] = avg
109 x = [i*window_size,(i+1)*window_size-1]
110 x_arr[i] = MEAN(x)
111 ENDFOR
112

113 p2 = PLOT(cur_particle, ’1’, OVERPLOT=p1, NAME=’Swarm Flows’)
114 p3 = PLOT(sim_avg, ’--2’, OVERPLOT=p1, NAME=’Swarm Average’)
115 p4 = ERRORPLOT(x_arr, avg_arr, sd_arr, ’b3’, OVERPLOT=p1, LINESTYLE=6)
116

117 l = LEGEND(TARGET=[p1, p2, p3], /NORMAL)
118 l.POSITION = pos
119 l.LINESTYLE = 0
120 l.FONT_SIZE = 14
121 l.SHADOW = 0
122

123 p2.COLOR = ’indian red’
124 p3.COLOR = ’firebrick’
125 p4.COLOR = ’steel blue’
126
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127 p1.SAVE, fn, BITMAP=0, PAGE_SIZE=[5,5]
128 ENDIF
129

130 IF KEYWORD_SET(single) THEN BEGIN
131 cur_particle = FLTARR(nlines_truth)
132 FOR j=0, num_params-1 DO BEGIN
133 cur_particle[j*window_size:(j+1)*window_size-1] = flows[j]
134 ENDFOR
135 p2 = PLOT(cur_particle, ’1’, OVERPLOT=p1, NAME=’Particle Flow’)
136 p2.COLOR = ’indian red’
137

138 l = LEGEND(TARGET=[p1, p2], /NORMAL)
139 l.POSITION = pos
140 l.LINESTYLE = 0
141 l.FONT_SIZE = 14
142 l.SHADOW = 0
143

144 p1.SAVE, fn, BITMAP=0, PAGE_SIZE=[5,5]
145 ENDIF
146

147 END


