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Abstract

This dissertation presents a novel technique based on Maximization of Mutual Information
(MMI) and multi-resolution to design an algorithm for automatic registration of multi-
sensor images captured by various airborne cameras. In contrast to conventional methods
that extract and employ feature points, MMI-based algorithms utilize the mutual infor-
mation found between two given images to compute the registration parameters. These,
in turn, are then utilized to perform multi-sensor registration for remote sensing images.
The results indicate that the proposed algorithms are very effective in registering infra-
red images taken at three different wavelengths with a high resolution visual image of a
given scene. The MMI technique has proven to be very robust with images acquired with
the Wild Airborne Sensor Program (WASP) multi-sensor instrument. This dissertation
also shows how wavelet based techniques can be used in a multi-resolution analysis frame-
work to significantly increase computational efficiency for images captured at different
resolutions.

The fundamental result of this thesis is the technique of using features in the images
to enhance the robustness, accuracy and speed of MMI registration. This is done by using
features to focus MMI on places that are rich in information. The new algorithm smoothly
integrates with MMI and avoids any need for feature-matching, and then the applications
of such extensions are studied. The first extension is the registration of cartographic maps
and image datum, which is very important for map updating and change detection. This
is a difficult problem because map features such as roads and buildings may be mis-located
and features extracted from images may not correspond to map features. Nonetheless, it is
possible to obtain a general global registration of maps and images by applying statistical
techniques to map and image features. To solve the map-to-image registration problem this
research extends the MMI technique through a focus-of-attention mechanism that forces
MMI to utilize correspondences that have a high probability of being information rich.
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The gradient-based parameter search and exhaustive parameter search methods are also
compared. Both qualitative and quantitative analysis are used to assess the registration
accuracy.

Another difficult application is the fusion of the LIDAR elevation or intensity data
with imagery. Such applications are even more challenging when automated registrations
algorithms are needed. To improve the registration robustness, a salient area extraction
algorithm is developed to overcome the distortion in the airborne and satellite images
from different sensors. This extension combines the SIFT and Harris feature detection
algorithms with MMI and the Harris corner label map to address difficult multi-modal
registration problems through a combination of selection and focus-of-attention mecha-
nisms together with mutual information. This two-step approach overcomes the above
problems and provides a good initialization for the final step of the registration process.
Experimental results are provided that demonstrate a variety of mapping applications
including multi-modal IR imagery, map and image registration and image and LIDAR
registration.
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Chapter 1

Introduction

During the last twenty years with the development of high-speed digital image processing,

there are more and more applications in remote sensing, computer vision and medical

imaging. Those applications bring forward a requirement for accurate and efficient image

registration which is a necessary pre-treatment for processes that combine multiple images.

Image fusion enables the extraction of the information about scene objects that can’t be

gotten from any single image. In remote sensing, image registration is applied for multi-

spectral classification, monitoring the weather and integrating the information from the

geographic information systems (GIS) [1–3]; In medical imaging, registration helps doctors

combine computer tomography (CT) and nuclear magnetic resonance (NMR) images to

achieve better analysis of the disease area and treatment verification [4–6]; In cartography,

registration is used for map updating and environment monitoring [7].

Image registration is the process of overlaying two or more images of the same scene

taken at different times, under different lighting conditions, from different viewpoints

and/or by different sensors [8]. These overlapping images can detect the difference between

the two images (moving object detection [9,10]), stack information in 3D medical imaging

1
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[4, 11] [12] and reveal the relationship between the two images [13]. This combination of

the raw data from various sources is the critical step for many modern analysis methods

(PCA [14], ICA [15] and multi-spectral classifications etc. [16]).

The core problem for image registration is to project the raw images into a common

coordinate system to enable image analysis that is based on multiple views of the same

scene.

1.1 A classification of image registration

Image registration falls into four categories based on acquisition [8]:

• Different location (Multi-view) registration

The raw data for registration are the images of the same region taken from different

viewpoints. The aim is to mosaic the images [17–19] or do stereo image construction

[20–23].

• Different time (Multi-temporal) registration

The raw data for registration are the images of the same region taken at different

times or under different conditions [24,25]. This registration task is to evaluate the

change that happened in the target region [26, 27]. This technology is widely used

in the environment monitoring and surveillance systems [28–30].

• Different sensor or multi-model

The raw data for registration are the images of the same region taken from differ-

ent sensors. This kind of image registration has received more and more attention

recently especially in medical image processing [31–33] and remote sensing [34–36].

In medical image, the multi-modal image registration can overlap the photos from



CHAPTER 1. INTRODUCTION 3

X-ray, CT or MRI and give doctor detailed information about the patient’s dis-

ease [37–39]. In remote sensing this technology is useful in combining panchromatic

and hyper-spectral images [1, 40].

• Scene to model registration

This registration is not between real images but a registration between the real image

and a model of certain scene objects [38]. The model is based on previous knowledge:

in medical imaging, the model could be a digital representation of anatomy [41];

while in remote sensing the model could be the GIS data or a map [42, 43]. This

registration is one of the most difficult applications but very valuable for medical

diagnosis, specimen classification and map updating [44].

A general block diagram of image registration processing is shown in Figure 1.1.

Figure 1.1: Blockchart for the image registration

The above introduction has shown the complexity of the image registration: it includes

various images and the various degradations. This diversity makes it impossible to design

a universal method working on all registration applications. There is a trade-off between

the design for specific conditions and the design for general applications. To meet the

different requirements, various registration algorithms have been designed. Currently the

majority of the registration algorithms could be divided into the following three categories:
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• Feature-based registration

Control points (CP) are extracted from the image and used to estimate the param-

eters of the transformation by minimizing a measure of the residual matching error.

Most current registration algorithms belongs to this kind of algorithm [45].

• Region-based or area-based registration

This registration method uses a measure of similarity of two images. The reference

image acts as template and the transformation parameters are adjusted to reach the

maximum similarity.

• Statistic-based registration

This registration is achieved by measuring common information between the refer-

ence and target images. It doesn’t directly use the intensity values but is based

instead on statistical information hidden in the probability distributions. This is a

critical difference with the region-based registration algorithm.

All three types of registration have real applications in practice. In chapter 2 detailed

summary about current image registration algorithms will be presented.

1.2 Objective

The object of this research is to construct an automatic (or semi-automatic) multi-modal

registration algorithm for generic kinds of applications. The direct application of this

research is for the WASP system, which is composed of three infra-red cameras and one

high-resolution visual camera. It will be shown that the algorithm is able to address such

challenging application as image matching to maps, GIS data and LIDAR derived images.

These applications cover all four registration categories: multi-view (images from serial
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frames of one flight line); multi-temporal (images between two flight lines); multi-model

(registration between the WASP bands); and image to model registration (airborne images

with map or GIS data).

The external and internal distortion introduced by the geometric deformation, radiant

blur and the variance among the airborne images from different sensors leads to challenging

requirements for algorithm robustness. In these applications the registration system should

not only be capable of handling the modal difference but also the noise and distortion,

which may be hard to predict or estimate. In some extreme cases, manual processing is

necessary, but the goal is to reduce human intervention as much as possible.

Due to the large volume of raw data, remote sensing applications require high effi-

ciency as well as automatic or semi-automatic operation to minimize human workload.

An important goal of this research is to improve the efficiency and robustness of registra-

tion algorithms to facilitate automated processing with the challenging kinds of images

described above. The basic requirements for the proposed registration system are:

• The registration algorithm must be suitable for different registration applications,

especially for the multi-modal image registration.

• The registration algorithm must be robust to noise, geometric distortion and minor

lens radial distortion.

• The registration algorithm should be efficient enough to deal with large datum.

Human intervention should be limited by enabling the automatic (or semi-automatic)

processing.

• The algorithm structure must be extensible to fit various applications. The compo-

nents of the algorithm should be flexible to meet the different requirements.
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1.3 Organization

The focus of this thesis is providing an alternative solution that meets the above require-

ments. The proposed algorithm has the following features:

• The algorithm is based on MMI methods, which are able to register multi-modal

images.

• The extensions to the MMI algorithm improve the robustness to noise, and reduce

effects of geometric distortion and minor lens radial distortion.

• The deploying of pyramid coarse-to-fine methods and classification of the images

with Harris corner labeling instead of pixel intensity reduces processing time by sig-

nificant factor.

• The framework of the algorithm is modular. Each block of the algorithm is for

different applications.

The details of the proposed algorithm will be described below. Chapter 2 introduces

the background; Chapter 3 describes the MMI application to WASP remote sensing image

registration and discusses the search algorithm for registration. Chapter 4 introduces the

Harris corner detector and the corresponding feature enhanced MMI (FE-MMI) algorithm;

Chapter 5 discusses the robustness and performance accuracy of the MMI and FE-MMI

registration algorithms, and demonstrates registration between a label image and a real

image; Chapter 6 analyzes the performance via a sample set; Chapter 7 covers the SIFT

improved registration algorithm by localizing the best part for registration; Chapter 8 dis-



CHAPTER 1. INTRODUCTION 7

cusses experimental in real applications and analyzes the algorithm performance; Chapter

9 summarizes the thesis and describes the future work.



Chapter 2

Background

In this chapter we will review the current popular image registration algorithms. The inter-

est in automatic registration is associated with the rapid development of image acquisition

devices and the corresponding rapid growth in the size of image archives. According to

the database of the Institute of Science Information (ISI), more than 1500 papers were

published on image registration [8] and many registration methods were proposed for the

diversity of images and variety of applications in computer vision, medical imaging and

remote sensing. As mentioned in the first chapter, those algorithms generally can fall into

three categories. The following section is the brief summary of registration algorithms.

2.1 The Classification of Registration Algorithms

2.1.1 Feature-based Algorithm

This registration algorithm is based on the extraction of salient features from the floating

and reference images. Salient features could be regions [46, 47], lines [48–50] or corner

points [51, 52]. They should be distinct, spread throughout the image and efficiently

8
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detectable in both images. The corresponding registration algorithm is based on the

assumption that features are stable and fixed at positions in both images. The majority

of the feature-based algorithm include the following four steps [8]:

Figure 2.1: The Blockchart for the Feature-based Algorithm

• Feature detection: This step extracts the feature points by various filters or descrip-

tors. The feature sets could be region boundaries [53], road or bank curves [54],

building edges or intersection corners [13]. It has to be decided what kind of fea-

tures are easy to detect, and what physical characteristic that both the sensed and

reference images have in common. The feature sets in the floating and reference

images should be comparable with respect to their invariance and position accuracy.

A common problem is that the images do not exactly cover the same region because

of view-point motion or object occlusion. The number of common elements of the

feature sets must be sufficiently high to overcome changes in image geometry, lens

radial distortion and additive noise, and the feature points should cover the whole

image to overcome object occlusion or other unexpected changes. Good feature de-

scriptors should be invariant to the assumed degradations and noise, and should be

unique enough for the future processing [5, 55,56].

• Feature matching: This step builds the relationship between the feature point sets

from the reference and floating images. The establishment of the correspondence is

based on the various feature descriptors and similarity measures [26]. The matching

step is highly dependent on which invariant property is associated with the extracted
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feature points. One common error-causing factor is incorrect feature detection or

image degradation [57]. Another is physical dissimilarity due to the different image

conditions or different spectral sensitivities of the sensor. The matching step should

be able to distinguish different features in the presence of image distortion and

degradation as well as being stable so as not to be influenced by feature variations

and additive noise [27,58].

• Model estimation: This step decides the type and parameters that are needed for the

mapping function. The parameters are computed from the feature pairs from the

correspondences built in feature matching. An appropriate mapping model should

be robust with respect to the expected distortion and noise [10, 59]. In addition,

the accuracy of the feature detection, the reliability of the feature matching and

the required approximation error have to be considered. We will introduce the

registration model being used in the following section.

• Resample and Transformation: After the mapping function and corresponding pa-

rameters have been found, the floating image is transformed to the coordinate system

of the reference image. Resampling and interpolation are necessary to get the val-

ues of non-integer coordinates. The choice of the appropriate resampling technique

depends on the accuracy requirements. In many cases nearest-neighbor or bilin-

ear interpolation are sufficient. On the other hand, the bicubic interpolation [60],

quadratic interpolation [61] and spline interpolation [62,63] are designed for the more

precise requirements. There is the trade-off between the accuracy and the computa-

tion complexity [64, 65]. That is a common step for all registration algorithms and

is not emphasis of this thesis.



CHAPTER 2. BACKGROUND 11

In summary, the feature-based methods are often used in applications where the images

contain enough details that are distinctive and easy to detect. These methods have been

widely applied in remote sensing (towns, rivers, forests and etc.), computer vision (objects,

facilities and etc.) and cartography (roads, buildings and etc.). However, if the image is

not rich in detail, or the detail is unsharp and hard to detect, one may resort to area-

based algorithms [66]. The area-based registration algorithms also have wide application

in medical imaging, which often lacks distinctive objects [67,68]. This is the leading reason

for area-based methods, which can work well on single modalities even if the features are

unreliable. The applicability of area-based and feature-based methods for images with

different contrast and sharpness are discussed in [69]. On the other hand, both feature-

based and area-based algorithm face big challenges for multi-model image or image-to-

model registration due to the different sensors’ characteristics (such as MRI, CT, X-ray in

medical imagery or hyper-spectral image in remote sensing etc.), which is the motivation

for the development of the statistic-based algorithm.

2.1.2 Area-based Algorithms

Area-based methods, sometimes called correlation-like methods or template matching, do

not need the step of feature detection. Instead of extracting the salient points or areas,

these methods merge the feature detection and matching processes and then estimate the

parameters. The correspondences are calculated using a predefined-size window or even

the whole image. The classical area-based methods, like cross-correlation or the Fourier

transform, are based on matching of image intensities [70,71].

• Correlation-like methods

The commonly used area-based registration method is the normalized cross-correlation
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(CC). The definition of CC is:

CC(i, j) =
∑

W (W −E(W ))(I(i,j) −E(I(i,j)))√∑
W (W − E(W ))2

√∑
(i,j) (I(i,j) − E(I(i,j)))2

(2.1)

where W is the reference image and I is the floating image. Although classical CC-

based registration can exactly align translated images only, it can also work well

with the slight rotation or scaling application.

To meet the requirement of more complicated geometrical deformation, one may

extend the typical CC algorithm to the generalized CC version. One computes the

CC for each assumed geometric transformation of the floating and reference image

window [72] instead of the translation only transform. Berthilsson extended the CC

algorithm to affinely deformed images in this manner [73] and Simper proposed use of

a divide and conquer system with the CC technique for registering images that differ

by perspective changes as well as changes due to the lens imperfections [74]. Because

the CC algorithm uses image patches or even the whole image to calculate the

optimization, it’s more robust to the partial occlusion and additive noise. However,

the computing-consumption grows rapidly with the predefined window size and the

number of independent transform parameters.

Another simple CC-like algorithm is sequential similarity detection algorithm (SSDA)

[75]. This method uses a sequential search approach to save computation. It accu-

mulates the sum of absolute difference of the image intensity and applies a threshold

criterion. If the difference is higher than the threshold the corresponding parameter

will be rejected. In [76], the sum of squared difference similarity measure was used

for iterative estimation of perspective deformation.
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• Fourier Methods:

Another kind of region-based registration algorithm is built on Fourier transform.

This algorithm is prefered for applications that have a limitations on computing

time. The algorithm has good performance on the images corrupted by frequency-

dependent noise. The Fourier methods exploit the Fourier representation of the

image in the frequency domain. The spatial shift is proportional to the phase change

[71]. It computes the cross-power spectrum of the floating and reference images and

searches for the peak value to find the shift. [24].

F (f)F (g)∗

|F (f)F (g)∗| = e2πi(ux0+vy0) (2.2)

where f and g represent the floating and reference images.

FFT registration algorithm shows robust performance on the frequency dependent

noise and non-uniformities caused by the illumination disturbances. Computation

time is saved, especially for the large image.

Phase correlation [77] is a type of FFT registration while a change of image scale is

also present, the images can be registered using the combination of polar-log mapping

of the spectral magnitude and phase correlation by Fourier-Mellin transformation

[78, 79]. The applications of the extended algorithm in remote sensing and medical

imaging are described in [78]. Wolberg [76] presented a method to register affinely

distorted images by means of phase correlation and log-polar mapping.

The area-based method uses a metric to measure the similarity of the images with-

out extracting features explicitly and the above study demonstrated the effective

and robust performance. However, there are three main drawbacks of the area-

based methods: one is the flatness of the similarity measure maxima; another is the
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computation complexity, with Fourier-based methods showing a big improvement in

computing time compared with the correlation-like methods [77] [79]; the third draw-

back is the difficulty in handling modality-dependent intensity variations [80]. The

leading algorithm for multi-modal image registration is the following statistic-based

algorithm [81].

2.1.3 Statistic-based algorithms

In contrast with typical region-based algorithms, such as the correlation-like algorithm or

Fourier algorithms, statistic-based algorithms achieve registration based on the statistical

information contained in the pixels between the floating image and reference image. In

some literature the statistic-based algorithm is classified into the region-based algorithm.

These algorithms randomly sample the images and extract the feature from the sample

pixels, (the most direct feature is the intensity, but it’s not only limited to the pixel inten-

sity, we will discuss that at following chapter) then build feature pairs that are determined

by a choice of registration parameters. The statistical information is then calculated over

the samples for each choice of parameters [33]. The common statistic-based algorithm

measure the similarity by calculating the mutual information between the two images.

Greater mutual information usually means a better registration result. [82, 83].

The statistic-based algorithms avoid the step of feature point matching, which is the

key problem with the use of feature-based algorithm for multi-modal images. In com-

parison with the other region-based algorithms, the registration is not directly relative

to the pixel character. This improves the algorithms’ robustness to the image variation

from different sensors. The statistic-based algorithm has shown the powerful capability to

handle multi-modal image registration in medical imaging processing [84, 85] and remote

sensing [86–88].
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The above section introduced the techniques that often are used for registration. The

following section will briefly cover another critical factor for successful registration: the

registration model. A good registration model will make the floating image overlap the

reference image as closing as possible. It not only includes the mathematical rule to project

the floating image to the reference image, but also the consideration of the transform com-

plexity. For example, it can tell us how many feature pairs are needed to solve the linear

function for the model’s parameters. Usually the good estimation of the transformation

model is based on prior knowledge.

2.2 Registration Model Estimation and Transformation

The registration model is the critical step to achieve registration. Generally the regis-

tration model estimation is composed of two steps: the first step is the transformation

function choice: This step decides which registration model should be used and what pa-

rameters need to be estimated. The appropriate mapping function must correspond well

with the assumed geometric deformation of the floating image, to the method of image ac-

quisition and to the required accuracy of the registration; the second step is the estimation

of the appropriate parameter values for the transform function.

There are a lot of transformation models and they have success in different applica-

tions. According to the region used for the registration, those algorithms can be divided

into global mapping models and local mapping models. In global models, the mapping

functions use Control Points (CPs for feature-based algorithm) [45, 89, 90] or even the

whole images (area-based algorithm) [46,91,92] to estimate the mapping function param-

eter set and apply that mapping function into the entire image; on the other hand, the

local model treats the image as jigsaw puzzle and finds an individual mapping function

for each patch. The local model works well for the complicated image registration and is
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widely used in medical imaging [93]. However, the local mapping function technique needs

pre-processing and tessellation of the image, usually by triangulation, ands need an extra

step to mosaic and blend the borders of different patches [94–96].

2.2.1 Linear model mapping

The global model being most frequently used is the perspective model. The planar pro-

jective linear transformation in our real world could be defined as non-singular three by

three matrices:




x′

y′

z′




=




h11 h12 h13

h21 h22 h23

h31 h32 h33







x

y

z




(2.3)

The transformation matrix has nine elements and eight degree of freedom. That eight

degrees of freedom can represent the translation, rotation and perspective distortion in

homogeneous coordinates. The task of the registration is to measure the similarity of

invariant features and then extract those coefficients from the two images [97–99].

The major considerations for registration are efficiency and accuracy. Those are de-

termined by the number of degrees of freedom (d.o.f) of the transformation matrix H in

Equation 2.3. The transformation can be described by four levels related to the freedom

factors:

• The most general transformation is projective, where the H matrix has 8 d.o.f. In this

kind of transformation, the concurrency, collinearity, order of contact (intersection,

tangency, inflection, etc.), and cross ratio are invariant.

• If the vanish point keeps on the infinite plane, the transformation reduced to affine,

which has 6 d.o.f. Under this transformation, the parallelism, ratio of areas, ratio of
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lengths on parallel lines (e.g midpoints), linear combinations of vectors (centroids)

are invariant factors for registration. The transformation matrix can be represented

as: 


h11 h12 tx

h21 h22 ty

0 0 1




Where h11, h12, h21 and h22 represent the skew of the image; tx and ty contain the

shift information.

• Further, if the transformation can keep the ratios of lengths and angles invariant,the

matrix is a 4 d.o.f similarity matrix. The transformation matrix is then:




s cos θ s sin θ tx

−s sin θ s cos θ ty

0 0 1




The skew in the affine matrix is reduced to a zoom parameter s and rotation angle

θ. The four d.o.f are zoom, rotation, translation on X and translation on Y .

• At last, if the zoom is restricted, the transformation is Euclidean, the simplest

transformation. The transformation matrix is 3 d.o.f.

The registration processing is to find the combination of those parameters that meet

the acceptance threshold while maintaining efficiency. The more d.o.fs that are used, the

more computation that is needed. For some applications and imaging conditions some

parameters will be known or fixed. According to the properties of WASP airborne system,

the similarity transformation is used in most application in this thesis.
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2.2.2 Non-linear model mapping

Another estimation method for the projective transformation is based on inhomogeneous

coordinates. By selecting a section of the image corresponding to a planar section of the

world, the matching pairs between the image plane (x, y) and the world plane (x′, y′) are

built and the transformation model are estimated as [100–102] :

x′ = x′1
x′3

= h11x+h12y+h13

h31x+h32y+h33
y′ = x′2

x′3
= h21x+h22y+h23

h31x+h32y+h33
(2.4)

Each point correspondence can generate two equations for the elements of H, then four

point correspondences can build eight linear equations of H, which is enough to solve for

H matrix.

x′(h11x + h12y + h13) = h31x + h32y + h33

y′(h21x + h22y + h23) = h31x + h32y + h33

(2.5)

The projective deformation is introduced by a pinhole camera because the optical axis

is not always perpendicular to the scene [8]. The only restriction for the points to build

the correspondence is that no three points are collinear [21]. Another non-linear model is

using the second or high-order polynomial function to solve the slight deformation in the

image 2.6 [44, 103, 104]. Because the number of available matching pairs for registration

are more than four, the optimization method can use the error minimization method to

estimate the registration parameters.

x′ = a0 + a1x + a2y + a3x
2 + a4y

2 + a5xy + · · ·
y′ = b0 + b1x + b2y + b3x

2 + b4y
2 + b5xy + · · ·

(2.6)
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2.3 Summary of Registration Algorithms

In summary, Table 2.1 provides a comparison for image registration algorithms.

Table 2.1: The comparison of Image Registration Algorithm
Multi-modal image Robust to noise Efficiency Local mapping

and deformation support
Feature-based algorithm Low Low High Medium
Area-based Algorithm Low High Low Low

Fourier-based Algorithm Medium Medium Low Low
MI-based Algorithm High High Low Low

Local Mapping Model Low Medium Low High

The above discussion shows the capabilities of different registration algorithms. Multi-

modal image registration is necessary for WASP system, which feature-based and area-

based methods are not dependable for. MMI-based algorithms are the best choice for

WASP remote sensed-image registration due to the good performance on the multi-modal

image registration. The first step in this research is to apply the MMI techniques to the

images from the three WASP IR sensors. These images exhibit extreme conditions and

enable us to understand the limitation of the standard MMI registration methods.

A potential problem related to conventional MMI-based registration algorithm is the

performance of robustness. Meanwhile, efficiency limits its use in real-time applications.

A previous research combines the gradient feature to build high dimension vector to in-

crease the capture range [105]. However, the extension of high-order mutual information

deteriorate the efficiency performance.

This paper address the efficiency issue by combining a multi-resolution algorithm and

various search algorithms to speed the processing. This approach has achieved a reduction

in processing time of about 90% for WASP image registration.

In addition to efficiency improvement, this research improves the robustness perfor-
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mance of MMI-based algorithms. The new extension could work for map-to-image regis-

tration of map updating application, which the conventional MMI-based algorithm always

failed.

This research combines MMI-algorithm with spatial features to gain higher robustness

and reliability. The spatial feature detector is applied on map and airborne images and

the area rich in structure information, such as roads and buildings, are utilized by MMI

algorithm. The robustness and accuracy of MI-based algorithm are highly improved.

Another extension for MMI algorithm is the fusion of the LIDAR elevation or intensity

data with imagery, which is an extremely difficult registration application. The robustness

of registration algorithm is highly improved by the use of salient areas, which can be

extracted by the SIFT algorithm. The use of salient region pairs extends the local mapping

capability of the MMI algorithm, overcomes the negative effects of high distortion or

high noise and improves the registration algorithm robustness. Experimental results are

provided in the following chapters that demonstrate a variety of mapping applications

including multi-modal IR imagery, map and image registration and image and LIDAR

registration.



Chapter 3

Proposed Mutual Information

Algorithm

This chapter discusses the application and improvement of MMI-based image registration

algorithms for remote sensing image. Satellites, aircraft, and other remote sensing sys-

tems continuously capture a tremendous volume of data using a variety of sensors and

modalities. These include low and high resolution still/video cameras in the visual spec-

trum, multi-spectral cameras using a variety of infra-red wavelengths, radar systems, and

LIDAR. The sensors typically run at various capture rates, possess significant differences

in resolution capabilities, and are not cross-registered spatially.

Data fusion from different sensors can provide better knowledge about the target and

background but this also brings a big challenge for spatial registration of the images. The

vast disparity in capture rates, resolution and spectral capabilities coupled with the lack

of automatic and effective registration algorithms places the majority of the burden on

human observers to analyze and exploit the data. Analysis by human observers is quite

laborious, prone to errors and oversights, expensive, and time consuming, if not infeasible,

21
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given the continuously rising volume of data. Hence, the need for sophisticated systems

capable of automatically registering multi-modal images, and exploiting their inherent

information for a variety of applications (e.g. scene modeling, material analysis, etc.).

Conventional feature matching techniques often require manual intervention to improve

the accuracy and reduce the computational complexity of the search space. Area-based

methods [106] that utilize correlation [107] have been used to register single modality im-

ages, but are often ineffective in handling multi-modal images due to the scene-dependent

deference in intensity in images from different sensors. They are also computationally

expensive in cases where translations, rotations and scale variations are allowed.

Building the model between the different sensors has proven difficult because this need

to build a good model for each sensor. A possible approach is to design a registration

algorithm that is independent of pixel intensity. Viola introduced a new registration

technique based on the Maximization of Mutual Information (MMI) between images [108].

This algorithm builds the registration on the statistical information associated with pixel

intensity between sets of pixels [68] [37]. Its effectiveness and superiority to correlation

based methods have been demonstrated on medical imagery [86], [109]. This advantage is

already used to process remote sensing image [86,88].

3.1 MMI Algorithm

The information contained in the image is a pixel-wise measurement that relies on the

image’s pixel intensity distribution. Let A be a discrete random variable with values ai,

i = 1, 2, . . . ,m and probability PA(ai). The entropy of A is defined as:

E[A] = −
m∑

i=1

PA(ai) log2 PA(ai) (3.1)
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Let B be a second random variable with values bj , j = 1, 2, . . . , n. Its entropy H(B) is

calculated in the same manner. The joint entropy E(A, B) is:

E(A,B) = −
m∑

i=1

n∑

j=1

PAB(ai, bj) log2 PAB(ai, bj) (3.2)

If A and B are statistically independent then PAB(ai, bj) = PB(ai)PB(bj) for all (i,j),

and it follows immediately that:

E(A,B) = E(A) + E(B) (3.3)

It is readily shown that maximum entropy is reached with statistically independent random

variables. The mutual information is the difference between the maximum possible and

actual joint entropy. That is:

I(A,B) = E(A) + E(B)− E(A,B) (3.4)

The mutual information can be scaled by the summation value of E(A) and E(B):

R(A,B) =
I(A,B)

E(A) + E(B)
(3.5)

In this application, the random variables A and B correspond to the brightness values

of the two images that are to be registered. Let X =[x1,x2,...,xn] represent a set of pixel

locations in image A and let A(xi) denote the brightness value at position xi. The samples

can be used to construct a histogram hA(A(X)) and to estimate entropy E(A). These can

use the same approach to estimate E(B). However, as will be seen later, these entropies

are never actually needed in the matching algorithm.

Let T be a spatial transform and let Y = T (X) be a set of locations in image B.
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Then B(Y ) = B(T (X)) is a set of samples of B and [A(X), B(T (X))] is a set of sample

pairs from images A and B associated with the transform T . The goal is to find the

transform that provides the best spatial match of the images. Conventional MMI searches

for the transform that provides the maximum value of the mutual information between the

samples sets. An estimate Î(A, B) of the mutual information can be computed by finding

the histogram hAB(A(X), B(T (X))), which, after normalization, is an approximation to

PAB. The transformation can be estimated by T̂ = arg max
T

Î(A(x), B(T (x))) or T̂ =

arg max
T

R̂(A(x), B(T (x))).

For a fixed set X of samples, E(A(X)) will be a constant, and will therefore not be of

interest in searching for a maximum. Although the sample set will vary with the choice of

T, it is reasonable to assume that the statistics of the image samples B(Y ) will not change

in a systematic or significant manner during the search. If this turns out to be untrue

then it is a simple matter to calculate hB(B(Y )) and include the estimate of E(Y ) in the

calculation. One can generally omit it in favor of reducing the number of calculations. If

one assumes that E(B(Y )) is constant, then maximizing I(A(X), B(T (X))) is equivalent

to minimizing E(A(X), B(T (X))) over the range of parameters in the transformation T .

The following is a simple illustration for the mutual information between the images

in two bands. Figure 3.1(a) is a common RGB three-band image. The Figure 3.1(b) is

the joint histogram. The joint histogram distribution is very sharp. However, shifting the

green band ruins the RGB picture, shown in the Figure 3.1(c). The corresponding joint

histogram is changed to Figure 3.1(d), the distribution is very random like noise. The

entropy in Figure 3.1(b) is much lower than the entropy in Figure 3.1(d).

The above estimates are based entirely upon the histogram, which, in turn, is deter-

mined by the set X and the mapping T . Therefore, one is led to consider ways to choose

a good sample set. It’s important to consider which qualities of the sample set are im-
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(a) (b) (c) (d)

Figure 3.1: The illustration of mutual information analysis between the images from dif-
ferent bands: (a) and (b) are original RGB image and the joint histogram between the
red band and green band, the joint entropy E(A, B) is 9.916; (c) and (d) represent the
ruined RGB images and corresponding changed joint histogram, the joint entropy E(A,B)
is 14.898.

portant. Let T ∗ be the transformation that maximizes I and let T̂ be the transformation

that maximizes Î. Since the goal is to find T ∗, one wants to choose the samples such

that T̂ = T ∗ and ensure that the value of Î is sensitive to variations in T . We are not

actually concerned with making an accurate estimate of the mutual information. The

primary requirement is to have the information peak produced by the estimate have the

same parameter-space location as the true peak. These considerations lead us to select

locations for the set X that fall on or near edges and corners in image A. This will pro-

vide a histogram that is skewed away from the true probability distribution, but it will

tend to increase the sensitivity to parameter variation. This topic will be discussed in the

following chapter.

3.2 Efficiency Improvement

Remote sensing applications tend to produce large quantities of raw data and to put

forward challenging requirements for the computation efficiency. The efficiency is an im-

portant factor that one has to consider when designing a registration algorithm. The

conventional MMI algorithm is computation-intensive which is a limitation for use in re-



CHAPTER 3. PROPOSED MUTUAL INFORMATION ALGORITHM 26

mote sensing. Two steps in the algorithm require the most computation: the first is the

search for the best parameter values for registration and the second is the calculation of the

mutual information of data sets. To speed the parameter search, exhaustive and gradient

search methods are investigated. The wavelet pyramid is built to achieve coarse-to-fine

analysis, which can reduce both the computation for mutual information and parameter

searching.

3.2.1 Search Method

In this section, exhaustive search and gradient search methods are tested. The efficiency

improvement of the gradient search algorithm is discussed and analyzed for the WASP

system. The Figure 3.2 is the flowchart for the two search methods. The samples are

randomly chosen from the reference image, and the corresponding positions in floating

image is decided by the transformation. Then the joint histogram is measured for each

transformation parameters.

The search process can be structured as either exhaustive or gradient search. Exhaus-

tive search tries all of the values of all parameters while gradient search tries to find a

search path to the optimum set of parameter sets.

Exhaustive search

The most straightforward parameter search method is exhaustive search. The parameters

construct the space and each parameter can be looked at as a dimension in the space. The

exhaustive parameter search has to cover the entire space with resolution that depends

on the desired resolution, or bin size. A small bin size provides more accurate resolution;

however, it requires more computation time.



CHAPTER 3. PROPOSED MUTUAL INFORMATION ALGORITHM 27

(a) (b)

Figure 3.2: (a) The flowchart for the exhaustive search; (b) the flowchart for the gradient
search.

Gradient search

To reduce the computation required in the exhaustive search, the alternative method of

gradient search is used. Estimating the probability density function by Parzen window,

the estimation for derivative of the mutual information can be expressed as [108]:

d̃I
dT = 1

NB

∑
xi∈B

∑
xj∈A

(vi − vj)T [Wu(vi, vj)ψ−1
v −Wuv(wi, wj)ψ−1

vv ] d
dT (vi − vj)

Wv(ui, vj) = gψv (vi−vj)∑
xk∈A

gψv (vi−vk)
Wuv(wi, wj) = gψuv (wi−wj)∑

xk∈A

gψuv (wi−wk)

(3.6)

u is the reference image while v is the floating image that needs to be registered, w is

joint intensity [u, v]. Given different transformation models, the derivative for each model

is different. In the following example, the use of gradient search with translation, rotation

and scaling is illustrated, which together comprise the elements of affine transformations.
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The new parameters vector on the gradient-search path is required by gradient feedback

T ′ = T − λ dI
dT , which is iterated till the maximal I is located. λ is the search step size.

• Translation

The corresponding transformation matrix is defined as: T =




1 0 tx

0 1 ty

0 0 1




So the

derivative is:

d
dT v(x′, y′) = d

dT v(x + tx, y + ty)

= [ d
dtx

v(x + tx, y + ty) d
dty

v(x + tx, y + ty) ]

= [ dv
dx′ × dx′

dtx
dv
dy′ × dy′

dty
] = [ dv

dx′
dv
dy′

]

(3.7)

• Rotation

The corresponding transformation matrix is defined as: T =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1




,

So the derivative can be expressed as:

d
dT v(x′, y′) = d

dθv(cos θ × x− sin θ × y, sin θ × x + cos θ × y)

= dv
dx′ × dx′

dθ + dv
dy′ × dy′

dθ

= − dv
dx′ (sin θ × x + cos θ × y) + dv

dy′ (cos θ × x− sin θ × y)

(3.8)

• Scale, rotation & translation

The scale matrix is : T =




s 0 0

0 s 0

0 0 1




, the derivative on the scale s is:
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d
dT v(x′, y′) = d

dsv(s× x, s× y) =

dv
dx′ × dx′

ds + dv
dy′ × dy′

ds = − dv
dx′ × s + dv

dy′ × s
(3.9)

The above steps show the derivative for translation, rotation and scale parameters

separately. But in real application the conditions can be combined:

d = dSdRdT =




s 0 0

0 s 0

0 0 1



∗




cos θ − sin θ 0

sin θ cos θ 0

0 0 1



∗




1 0 tx

0 1 ty

0 0 1




(3.10)

In this complicated case the derivative for the transformation parameter is:

dv

dT
=




dv
ds

dv
dθ

dv
dtx

dv
dty




=




dv
dx′ (cos θ × x− sin θ × y) + dv

dy′ (sin θ × x + cos θ × y)

− dv
dx′ (sin θ × x + cos θ × y)s + dv

dy′ (cos θ × x− sin θ × y)s

dv
dx′

dv
dy′




(3.11)

The following is a simple example for the comparison of exhaustive and gradient search.

The sample images are shown in Figure 3.3(a). Figure 3.3(b) displays the parameter search

surface created by the exhaustive search. There are only translation between the model

image (top left image) and the floating image(top right image), then the position of the

peak indicates the optimum X and Y coordinates for registration. The Figure 3.3(c) shows

the gradient search track to the best parameter set of translation and rotation (bottom

right image).
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(a) (b) (c)

Figure 3.3: a) Sample Example (128 × 128) b)Exhaustive Searching Surface c) Gradient
searching curve

The following table shows the comparison of exhaustive searching and gradient search-

ing:

Table 3.1: The simple comparison of time and computation consumption
Translation Translation & Rotation

Points searched Time Consumed Points searched Time Consumed (s)
Gradient Search 18 4.84s 90 18.48s

Exhaustive Search 3721 6.72s 26047 48.094s

From the experiment results (shown in Table 3.1), it can be seen that the gradient

search and exhaustive search both can reach the correct registration result. Because of

smaller number of points required for search, the gradient algorithm needs fewer steps than

exhaustive search. However, the gradient search need extra computation on calculating

the gradient to get the new search point.

3.2.2 Wavelet pyramid

Pyramid processing is a type of multi-scale signal processing developed for the computer

vision, image processing and signal processing, in which a signal or an image is subject to
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repeated smoothing and subsampling [110] [111]. The coarse-to-fine procedure divides the

parameter search into two parts: the first part is the search in the higher layer to reach the

coarse parameter estimate; The second is the search around the coarse parameter estimate

in the following lower layer to reach finer results. The corresponding computation is only

relative to the search windows size and pyramid height.

With the coarse-to-fine procedure, the image size is reduced by the pyramid height.

The required computation can be adjusted by system capability instead of the input data.

The bigger the original image size is, the higher pyramid could be built therefore the more

computation could be saved.

Another efficiency improvement is from reduction of the sample points for the mutual

information calculation. The biggest part of the mutual information calculation is done

between the small images on the high layer of the pyramid, where the dimensions are

much smaller than the original size. Fewer sample points are needed to compute the

mutual information. If the sample ratio is fixed, then the sample points in the 3rd layer

is only 1/16 and in the 2nd layer only 1/4 compared to the registration on original image.

Therefore the computation and corresponding hardware burden are reduced.

The block diagram of the proposed wavelet-based MMI image registration algorithm

is shown in the following figure:

Figure 3.4: Block Diagram of the wavelet based MMI registration algorithm
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3.3 Experiments & Results

In this section the performance of MMI algorithm with multi-resolution will be demon-

strated. The first part will test the MMI algorithm performance on multi-modal image

registration, then the efficiency will be compared in the following part.

3.3.1 MMI Algorithm Registration on WASP Image

The images utilized are captured by the WASP system which employs three IR cameras

and a high-resolution visible camera. The specifications of the system are shown in the

table 3.2. (http://lias.cis.rit.edu/projects/wasp)

Table 3.2: WASP camera description
SWIR MWIR LWIR VNIR

Bandwidth 0.9-1.7 µm 3-5 µm 8-9.2 µm 0.4-0.9 µm RGB
Resolution 640×510 640×510 640×510 2048×2048

Figure 3.5: WASP’s infrared cameras cover three different ranges of the infrared spectrum

The images from the different IR bands provide spectral information that can be used

for fire detection as well as for other kinds of environmental data gathering. The images

are difficult to register spatially because of the differences in intensity variations. The

short-wave band depends mainly on reflected light while the long-wave band depends

upon the thermal values across the scene, and the medium-wave band is a combination.
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The different pixel intensity variations with temperature emissivity and reflectivity provide

a challenge for registration by conventional feature-based and correlation algorithms.

Intra-band Image Registration

This section tests the MMI-based algorithm’s performance on the registration of images

from same band. The images shown in Figure 3.6(a) and Figure 3.6(b) represent the short-

wave IR band of serial frames taken 4 seconds apart from the WASP system. Figure 3.6(c)

shows the mutual information distribution along the parameter space and the registration

result is shown in the Figure 3.6(d).

(a) (b) (c) (d)

Figure 3.6: The registration for the short-wave band WASP image: (a) and (b) are serial
short wave band image; (c) is the search surface: X and Y coordinates are the shift on X
and Y directions and the mutual information is shown the value on Z; (d) represent the
registration result.

Section 3.1 describe how the mutual information can be measured by a joint histogram.

The left side of Figure 3.7 shows the 2D joint probability and the corresponding compact-

ness is displayed on the right. Each row represents one parameter set. Observe that

parameter set #2 (the optimum set) demonstrates that the 2D joint probability is the

most compact and has the highest mutual information.
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Figure 3.7: The 2D Joint Probability for Different Parameter Sets. Each row represents the
2D joint histogram (left) and contour projection (medium) for a parameter sets. The right
column is the mutual information for each parameter. The smaller the joint distribution
area, the more joint probability is shown, which is the higher and compacter distribution.

Inter-band Image Registration

This section will demonstrate the effectiveness of the proposed algorithm in registering

multi-modal imagery acquired by the WASP system using the three IR bands in Table 3.2

above. The images from different IR bands provide spectral information that can be used

for fire detection as well as for other kinds of environmental data gathering. The images are

difficult to register spatially because of the differences in intensity variations. The short-

wave band depends mainly on reflected light while the long-wave band depends upon

the thermal values across the scene, and the medium-wave band is a combination. The

different pixel intensity variations with temperature and reflectivity provide a challenge

for registration by conventional feature-based and correlation algorithms. The short-wave,

medium-wave and long-wave IR images are shown in Figure 3.8(a), (b) and (c) respectively.

Due to the sensors’ resolution difference, the scale is an important factor for successful



CHAPTER 3. PROPOSED MUTUAL INFORMATION ALGORITHM 35

registration. The addition of the scale parameter increases the dimensionality of the search

space, which increases the computation cost.

To find the best scale value, the original images are interpolated for each scale. The

peak value of the mutual information on translation and rotation are searched, then the

one with highest mutual information are founded to decide the best parameter set.

The results computed by our algorithm are shown in Figure 3.8(d) and displayed in

Table 3.3, where the short-wave band was utilized as the reference one. The table shows

the scale for medium-wave image is 1.13 while 1.12 scale for long-wave band image (short-

wave band image is reference image and the size is fixed). Interpolation processing is

required to build the ’bigger’ medium-wave and long-wave band image. Then translation

parameters are searched for the scaled image.

Table 3.3: Inter-band Registration Results
Scale Shift on X Shift on Y

Medium-wave band 1.13 19.0 32.0
Long-wave band 1.12 6.0 36.0

The visible band (see Table 3.2) is 2048×2048 as compared to the IR bands which are

640×512 in resolution. This makes registering the visible band to the IR bands much more

difficult. Figure 3.9(b) shows the corresponding visible band for the IR images shown in

Figure 3.8. The results of our registration algorithm for the visible and short wave band

are shown in Figure 3.9(c). With the visible high resolution image, one can reach the

super-resolution for IR band, which is very valuable for the information extraction and

analysis.

The above experiments shows the validity of MMI-based algorithm on intra-band im-

age and inter-band image registration. The figure 3.6 (d), 3.8 (d) and 3.9 (c) show the

overlapping images. The registration results match the requirement in accuracy. Next
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(a) (b) (c)

(d) (e)

Figure 3.8: Inter-band Registration Example: (a), (b) and (c) are short-wave band image,
medium-wave band image and long-wave band image from left to right successively; (d)
is the simple flowchart for parameter search; (e) is the semi-color registration result.

(a) (b) (c)

Figure 3.9: IR and Visible Band Registration
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section will study how to speed the processing and improve the efficiency.

3.3.2 Efficiency Improvement

The efficiency improvement of our algorithm will be demonstrated in this section. First

the coarse-to-fine algorithm is analyzed and then the exhaustive search and gradient search

are compared.

Pyramid Algorithm

In this section the performance of coarse-to-fine search will be tested on WASP single

band images. The images in Figure 3.10(a) and Figure 3.10(b) which represent the short-

wave IR band images. Figure 3.10(c) shows the first 2 levels of the wavelet decomposition,

while Figure 3.10(d) displays the parameter search from “coarse” to “fine”. The registered

images are overlaid (See Figure 3.10(e)) to indicate the degree of accuracy obtained by

the proposed approach. Noted in this example, only translation is considered as the

registration parameter.

This example shows the pyramid and compare the computation for search w/o coarse-

to-fine processing. The images of size M x N are decomposed by using a wavelet-based

pyramid [112]. The number of layers in the pyramid is defined as L. The registration

is then performed on the ’coarse’ set of images and refined as one navigates the wavelet

pyramid from the ’coarse’ to the ’fine’ layer. The initial search window is selected as M/4

by N/4. The parameters computed at each layer are passed onto the higher resolution

layer thereby providing an accurate initialization for the registration process at the new

layer. The search window size is set to decide the search area in new layer.

In this experiment, the window size was selected as K1 = K2 = 16. S1 represents the

number of search iterations directly at the highest resolution layer while S2 encompasses



CHAPTER 3. PROPOSED MUTUAL INFORMATION ALGORITHM 38

(a) (b)

(c) (d)

(e)

Figure 3.10: Coarse to fine Registration Example: (a) and (b) represent two sequential
frames, (c) wavelet decomposition of frame shown in Fig 2a, (d) MMI parameter search
spaces, the coarse-to-fine search space are shown from the top left image to the bottom
right image, (e) Overlaid registered images.
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the number of iterations through the wavelet pyramid as described above. Hence, the

computational reduction for an image of size M = 640 by N = 510 (the size of WASP IR

images), with a pyramid decomposition of L = 3 is:

η =
S2

S1
=

1787
20400

= 8.75%

where

S1 =
M

4
· N

4
=

640× 510
16

= 20400

and

S2 =
M

4× 2(L−1)
· N

4× 2(L−1)
+ (L− 1) · (K1 ·K2) = 1787

In this sample, about 92% the search iterations are saved.

Exhaustive Search vs. Gradient Search

This section compares the gradient search and exhaustive search performance in the WASP

images. This sample is more complicated because the transformation parameter set in-

cludes both translation and rotation. The experiment is illustrated in the Figure 3.11.

Table 3.4 shows the registration result with exhaustive search and gradient search.

Rotation increases the search complexity which in turn increases number of operations

especially for exhaustive search. The Figure 3.11(d) shows the search surface along the

rotation angle in exhaustive search: each search surface is for a special rotation angle and

the X, Y coordinates represent the shift on X and Y directions; the step size of the angle

search is 0.5. The search surface shows that registration has the best result under the

rotation angle Θ = 1.0. The Figure 3.11(c) shows the gradient search points. The Figure

3.11(c) shows the conversion step of gradient search. In this example the gradient search

saves about 40% time relative to exhaustive search.
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(a) (b) (c)

(d) (e)

Figure 3.11: WASP Image Registration Example: (a) and (b) represent two sequential
frames, (c) Gradient search curve, (d) Exhaustive searching space on different rotation,
(e) Overlaid registered images

Table 3.4: Experiment Result for Gradient & Exhaustive Search
X Axis (pix) Y Axis (pix) Rotation (degree) Time Consumed

Gradient Search 18.84 239.7 0.88 72.422s
Exhaustive Search 20 235 1.0 115.45s
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This examples shows the efficiency improvement of gradient search on exhaustive

search. However, the shortcoming is robustness. The registration of multi-modal im-

ages is a difficult task. Usually the ’bumpy’ search surfaces make the gradient search easy

to be trapped into local minimum, which will cause the registration fail. Taking those

factors into account, this thesis uses the exhaustive search in most cases.

3.4 Summary

This chapter described a wavelet based MMI algorithm for effectively and efficiently reg-

istering multi-modal images. The algorithm is capable of handling a wide variety of

translations and practical scale variations by searching the parameter space in order to

maximize mutual information. Two different search algorithms are discussed. The re-

sults indicate that both search algorithms are feasible for registering IR and visual images

and robust at multiple resolutions. Compared to exhaustive search, the gradient search

method is more efficient. However, the gradient search relies more on the starting point,

appropriate step interval and the image quality. The use of wavelet pyramid provides a

significant savings in computational efficiency while maintaining equivalent accuracy. The

results indicate that the MMI method is feasible for registering IR and visual images and

robust at multiple resolutions.



Chapter 4

Proposed Feature Enhanced MMI

Algorithm

Although MMI is a powerful method for multi-modal image registration, there are still

some problems for infrared image registration:

• The robustness of the algorithm is questionable. Experiments show it often fails in

the registration of infrared images due to the a resulting flat search surface (Figure

4.1 (c)).

(a) (b) (c)

Figure 4.1: An example of flat search surface

• Usually remote sensing applications produce a huge volume of raw data from airborne

42
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or satellite images. The corresponding efficiency requirement is difficult to meet with

MMI due to it’s computational intensity.

The above two problems become obstacles to applying the conventional MMI algorithm

to remote sensing registration. The technique described in this chapter encompasses a

set of related algorithms for multi-modal image registration to solve those problems. It

includes two basic steps: the first responds to spatial features and the second step uses

them to efficiently compute the MMI registration. The enhanced algorithm flowchart is

shown in Figure 4.2.

Figure 4.2: Flowchart for the HCL-Based MI registration

Extended from the flowchart in 3.4 on the page 31, the new algorithm adds a feature-

extracting module. The image pixels are classified and labeled in this step. The following

processing is based on the label instead of original pixel intensity.

In this implementation, the Harris corner detector was used to extract the feature

information because it is fast and translation and rotation invariant. However, it can be

replaced by other feature detectors, if that is a designer’s preference. The wavelet pyramid

algorithm is integrated to achieve multi-resolution for computation efficiency. To further

improve the algorithm efficiency, the Harris Corner Label (HCL) map can be used for

MMI calculation in place of the original images. This will be described in detail later.
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The robustness of the MMI algorithm for multi-modal image registration is based on

the statistical relationships between corresponding sets of pixels. Some spatial features,

such as edges and corners, are rich in information and good candidates for point sets for

statistical analysis. The key point of the proposed algorithm is to utilize feature detection

as a focus-of-attention mechanism to improve the robustness and efficiency of MMI.

The Harris filter conveniently provides a label map with three levels: [0,1,2] which are

associated with background (no corner or edge), edge, and corner, respectively, at each

pixel location. Similar classification can be done with a variety of detectors and it is likely

that other detectors would give similar results. The three-level label map can be used in

place of an image for the purpose of matching. With suitable Harris threshold settings, it

tends to provide a less noisy parameter search surface than is available with the original

images.

4.1 Harris Corner Detector

The Harris corner detector is a popular interest-point detector due to its strong invariance

to translation, rotation and illumination variation with relative tolerance of image noise

[113]. It utilizes the average gradient c(x,y) computed over a small region w as follows:

c(x, y) =
∑
w

[S(xi, yi)− S(xi + ∆x, yi + ∆y)]2 (4.1)

where (x, y) is the location and S(x, y) represents the intensity of the corresponding pixel.

This can be expressed in matrix form as:

c(x, y) ≈ dTM(x, y)d (4.2)
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where d = [∆x,∆y]T .

M =




∑
w

(Sx(xi, yi))2
∑
w

Sx(xi, yi)Iy(xi, yi)

∑
w

Sx(xi, yi)Iy(xi, yi)
∑
w

(Sy(xi, yi))2




Sx(xi, yi) = S(xi, yi)−S(xi+∆x, yi) and Sy(xi, yi) = S(xi, yi)−S(xi, yi+∆y) are gradient

measure. Based on the relationship between the eigenvalues of the matrix M(x,y), the

pixels is classified into the three categories [0,1,2]: (Shown in Figure 4.3)

• If λ1 and λ2 are both are small, then the local area is relatively smooth.

• If one eigenvalue is large and the other is small it means the local auto-correlation

function is ridge shaped and the local shift only happens in one direction which

indicates an edge.

• If both eigenvalues are large, so the local auto-correlation function is sharply peaked,

this indicates a corner.

Figure 4.3: Illustration for Harris Corner Label Categories
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The feature-enhanced MMI (FE-MMI) algorithm uses the label information to identify

pixels located on edges and corners and gives them priority in choosing the sample loca-

tions. This has the effect of incorporating spatial information into the selection of data for

the MMI calculations while avoiding the difficulty of maintaining an explicit description

of spatial data. The labels can either be used to guide the sampling of the image data

or sampling of a filtered image. It was found that the label image itself can be used as

a surrogate for the original image in the registration process. This reduces the range of

histogram values and the sensitivity to image noise.

(a) (b)

Figure 4.4: The WASP Airborne Image and the Corresponding Harris Corner Label Map-
ping

The Harris corner detector is a good choice as a focus-of-attention device for this

approach to MMI registration. Other focus-of-attention methods were tried such as typical

edge detection, but it was found that the HCL map provides more robust performance

with MMI because the Harris detector provides a richer set of pixels that can be used

in the MMI computation. This can be seen in Figure 4.5 which compares a HCL map

with a conventional Canny edge map. The edge map is so sparse that the MMI algorithm

has problems with pull-in range (Figure 4.5 (b)). Furthermore, the edge position itself is

somewhat sensitive to relocation between images and maps. The Harris detector can be

set to provide a broader edge and this reduces that problem. The Harris corner detector
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was found to be less sensitive to feature relocation across the image and maps. Another

important advantage is the threshold can be adjusted for different applications.

(a) (b)

Figure 4.5: Comparison between the HCL Mapping and Edge Mapping

4.2 Harris corner label directed MMI

This section will discuss the relationships between the traditional MMI method and the

FE-MMI algorithm and illustrate the reason that FE-MMI algorithm improves robustness.

Suppose that Sr and Sf are the intensity domains for the reference and floating images

respectively, and the Hr and Hf are their corresponding Harris Corner Label (HCL) map

images. The use of spatial information can improve the conventional MMI convergence

range and accuracy [105]. The high dimension mutual information can be constructed by

integrating the Harris corner label:

MI(Sf ,Hf , Sr,Hr) =
∑

Sf ,Hf ,Sr,Hr

p(Sf ,Hf , Sr, Hr) log2
p(Sf ,Hf ,Sr,Hr)

p(Sf ,Hf )p(Sr,Hr) (4.3)

The probability p(Sr,Hr, Sf ,Hf ) over the sampling set can be approximated by the

4D joint histogram h(Sr,Hr, Sf ,Hf ), and the probability distribution p(Sr,Hr, Sf ,Hf )
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can be approximated as:

p(Sf ,Hf , Sr,Hr) =
h(Sf ,Hf , Sr,Hr)∑

Sf ,Hf ,Sr,Hr

h(Sf ,Hf , Sr,Hr)
(4.4)

the similar approximation can be achieved on p(Sf , Hf ) and p(Sr,Hr):

p(Sf , Hf ) = h(Sf ,Hf )∑
If ,Hf

h(Sf ,Hf )
p(Sr,Hr) = h(Sr,Hr)∑

Ir,Hr
h(Sr,Hr)

The above equation provides good estimation for the 4D mutual information. However,

one disadvantage of the 4D mutual information is huge computation requirements. To

speed the calculation, we express the 4D mutual information as:

MI(Sf ,Hf , Sr,Hr) =
∑

Sf ,Hf ,Sr,Hr

p(Sf ,Hf , Sr,Hr) log2
p(Sf ,Hf ,Sr,Hr)

p(Sf ,Hf )p(Sr,Hr)

= E(Hf ) + E(Sf |Hf ) + E(Hr) + E(Sr|Hr)− {E(Hf ,Hr) + E(Sf , Sr|Hf ,Hr)}
= MI(Hf ,Hr) + O(Sf ,Hf , Sr,Hr) where

(4.5)

O(Sf ,Hf , Sr,Hr) = E(Sf |Hf ) + E(Sr|Hr)− E(Sf , Sr|Hf ,Hr)

The derivation shows the 4D mutual information is composed of two items: the mutual

information between the Harris corner label mappings and the remaining terms. The

experiments show the MI of the Harris corner label is dominant (Figure 4.6), and that

the HCL maps provide effective image registration with MMI. The sampling is done using

direction from the HCL labels.

The use of the HCL maps for registration reduces the range of required histogram bins

that are required, which can speed the MI calculation significantly.

To compare the sensitivity of different scaled mutual information, one method is to
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(a) (b) (c)

Figure 4.6: The Illustration for Equation 13, x and y axis are the shift parameters: (a)
Normalized 4D high dimensional mutual information; (b) Normalized Mutual information
between the Harris Corner Label Maps; (c) Normalized Conditional Entropy of pixel
intensity.

use the kurtosis to measure the sharpness of each scaled search surface. The sharper the

search surface is, the higher the kurtosis [114], which represents more confidence in the

registration result. Table 4.1 shows the mutual information kurtosis of Harris corner label

Table 4.1: The comparison of Mutual Information
MI(Sf ,Hf , Sr,Hr) MI(Sf , Sr) MI(Hf ,Hr)

Kurtosis 7.756 6.646 15.33

is about double of that of the original pixel intensity, that means the mutual information

between the Harris corner label maps is more effective for registration, which can be shown

as the sharper peak in the search surface (Figure 4.6(b)).

Edge descriptors are the important composition for human visual registration and the

FE-MMI algorithm simulates that procedure. Note that to increase the capture range,

the Harris corner detector can give us both edge and corner candidate pixels instead of

only the corner pixels. For conventional feature-based algorithm, increasing candidate

points leads to more search time for matching pairs and reduces the efficiency drastically.

But, for the FE-MMI algorithm, it can improve registration’s smoothness and makes the

algorithm more robust with very small efficiency reduction.
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4.3 Scene and Map Registration

The purpose for the FE-MMI algorithm is the registration between regular scene images,

including different wavelengths. The effectiveness of registration with HCL maps leads

to the idea of a way to register images and graphic maps, which is a necessary step in

image-to-map conflation and very valuable for updating and correcting maps and for the

use of map information in image understanding systems. Automated tools for image-to-

map registration are therefore of substantial interest for a variety of civilian and military

applications. This problem has certain peculiarities that make it more challenging: (a)

map features such as roads and buildings may be mis-located; (b) features extracted from

images may not correspond to map features; (c) maps contain symbolic information that is

not a part of the imagery; (d) maps and images have very different backgrounds, textures

and colorations and these have little or no correlation. It was found that the FE-MMI

technique can address these difficult problems through the use of a focus-of-attention

mechanism based on conventional feature detection that is used to select pixels with high

mutual information content in the image to build the MMI calculation with graphic maps.

The realization that a MMI calculation on the label maps was robust and efficient led

to experiments with mapping of images to actual cartographic maps. The block diagram of

the FE-MMI registration for scene and label image is shown in Figure 4.7. It is robust and

reasonably efficient, depending on the extent of the required parameter search. Results

below show that this can be an effective technique and a separate method for cartographic

maps.

The following discussion presents some experiments involving image-map registration.

The reference image is a map and the floating image is an airborne image. The interior dif-

ferences between image and map details such as road width, building shape and labels will

produce mis-located features and present serious problems for conventional feature-based
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Figure 4.7: Flowchart for the Scene and Map MI registration

algorithms. Conventional cross-correlation methods fail because the statistical correla-

tion between the pixel values for images and maps lack consistency. These differences are

shown in Figures 4.8(a) and (b) on the page 52.

Although there are many differences, it is also obvious that the map and image share

the same structure, which is the key requirement for using the Harris corner detector

to extract the spatial information (Figure 4.8(c) & (d)). The results computed by the

FE-MMI algorithm are shown in Figure 4.8(f)

Another experiment was the registration of the satellite image to a map of the RIT cam-

pus. The map is from the RIT website (http://facilities.rit.edu/campus/maps/general/general.pdf )

and the images are from Google satellite image.

The experimental results show that the proposed HCL enhanced MMI algorithm pro-

vide an alternative efficient and effective way for map-image registration.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Map-Image Registration Example: (a) and (b) represent map and image; (c)
and (d) is the Harris Corner Label Mapping for (a) and (b); (e) is the FE- MMI parameter
search function ; (f) Overlaid registered images
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(a) (b)

(c)

Figure 4.9: RIT Campus Registration Result



CHAPTER 4. PROPOSED FEATURE ENHANCED MMI ALGORITHM 54

4.4 Summary

This chapter described a novel feature-enhanced MMI algorithm to improve the registra-

tion effectively. The results indicate that the techniques are useful for registering maps

and images at multiple resolutions. The main assumption is that the maps and images

include enough similar structure information for registration. If the Harris corner detector

cannot extract enough information-rich data from the image, or the spatial information

from images cannot match that in the map, the accuracy and stability will decline.

Because of the lack of the ground truth data or matching control points between the

maps and images, it is difficult to measure the registration accuracy. The next chapter

will discuss the robustness and accuracy evaluation of the registration result.



Chapter 5

Performance Analysis of Proposed

Algorithms

The previous chapter introduced the feature enhanced MMI algorithm and its applica-

tion to registration between real images and scene vs. cartographic maps. Experimental

results show the improvement of the robustness of the algorithm. This chapter will com-

pare FE-MMI with conventional MMI algorithms and analyze their robustness in detail.

Another important consideration is the accuracy of the registration results. To measure

the accuracy performance both qualitative and a quantitative analysis for the FE-MMI

algorithm are presented.

With the improvement of robustness, the FE-MMI algorithm will be tested for the

registration of graphic images. It is common for graphic images to contain features that

do not appear in images, such as labels and symbols, shapes of things like buildings that do

not actually match the images, and features such as roads that are somewhat mislocated.

These variations present very difficult problems for accuracy analysis. It’s impossible

to build a complete accurate sample pair for accuracy analysis, see Figures 5.6 and 5.8.

55
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Although there is a large difference in brightness, coloration and texture, it is obvious

that graphic images and scenes share the same general structure. Under this condition

it’s reasonable to use qualitative analysis to measure accuracy.

5.1 Robust Performance Analysis

This section will describe an experiment that challenges the robustness of the registration

algorithm and presents a case where the conventional MMI algorithm fails but the FE-

MMI algorithm succeeds. An experiment will then be described that utilizes real-world

multi-modal imagery gathered with the four-camera WASP sensor. Finally, an analysis of

the relative computational effort of the FE-MMI and traditional MMI algorithms will be

discussed.

5.1.1 Experiment to Test Robustness

This experiment compares the performance of the conventional MMI registration algorithm

and the feature enhanced MMI algorithm on a pair of synthetic images at different noise

levels to simulate data from two different noisy sensors with different spectral responses

(Figure 5.1(a)-(b)). The image in Figure 5.1(c) has a constant background, and the

object is covered with spatially independent random pixel noise with a normal distribution.

The image in Figure 5.1(d) has a reversal in contrast of the structure of Figure 5.1(c).

Both the conventional MMI and the FE-MMI algorithms have no difficulty registering

the original images, Figure 5.1(e)-(f). However, the conventional MMI algorithm fails to

register Figures 5.1(c)-(d). Note that when they are aligned, every pixel is random in one

image and constant in the other, making every pixel in one image statistically independent

of its counterpart in the other image. Any misalignment leads to overlaps of like regions.

Overlaps of random pixel areas maintain pair-wise independence, causing the entropy to
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be high for all shift positions. Conventional MMI is expected to fail this test and it

does [115]. Figure 5.1(g) shows the MMI surface as a function of horizontal and vertical

shift that is achieved with Figure 5.1(c)-(d).FE-MMI registration has good performance on

both the noisy images as well as on the noiseless pair. Although the pixel intensity inside

the region is random, there is useful information at the object edges which the algorithm

is able to extract. Focusing on these pixels enables MMI to detect misalignments. From

Figure 5.1(h), it could be seen that even though the noise causes a ”bump” in the FE-MMI

search surface, the peak value is still very clear and easy to locate.

It is expected that the performance of both algorithms will deteriorate as more noise is

added. To test this, 100 registration runs were conducted with each algorithm at several

noise levels. Table 5.1 shows the percent of successful registrations for each algorithm

with a range of noise levels. In each pair, the standard deviation of white noise varied

from 1% to 9%. The performance of the traditional MMI algorithm falls off rapidly as

noise is added, while the decline of FE-MMI algorithm is much slower because the edge

information is more stable than the individual pixel intensity. This is shown in Figure 5.2

Table 5.1: Correct ratio for FE-MMI and MMI algorithm on synthetic image registration
Noise Level Rate for FE-MMI Rate for MMI
0 (no noise) 100% 100%

1% 100% 56%
2% 93% 38%
3% 95% 31%
4% 96% 27%
5% 95% 15%
6% 89% 9%
7% 83% 9%
8% 89% 5%
9% 79% 7%
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(a) (c)

(b) (d)

(e) (g)

(f) (h)

Figure 5.1: Noised image registration Example: (a) and (b) are original image; (c) and
(d) represent two noised images, (e) and (f) show the search surface for for two images
without noise level; (g) and (h) shows the searching surface for conventional MMI and
FE-MMI registration algorithm.
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Figure 5.2: Bar Graph for Correct ratio of Table 5.1

5.1.2 Experiments on IR images

This section will analyze the robustness improvement in the registration of the images

of real scenes using synthetic IR images that were generated using DIRSIG [116, 117].

Simulated images provide accurate ground truth data which is usually lacking in the real

airborne images. This enables the evaluation of algorithm performance.

Synthetic images such as those shown in Figure 5.3 were used. These images simulate

640 × 510 IR images of WASP system (Chapter 3.3.1 on page 32). The simulated image

hold 10 time the number of pixels on each dimension to enable the evaluation of accuracy

at a sub-pixel level.

The floating images were rotated by an angle in the range of [-10, 10] degrees and

translated from [50, 150] WASP pixels in x and y directions in this experiment. The

registration algorithms were run 100 times each for various levels of noise that was added

to each image.

Both translation and rotation error were calculated relative to the ground truth. The

registration is a success if both translation on x and y axes and rotation error are below

2 pixels of simulated image and 2 degrees, respectively. The results are shown in the
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following chart and table:

Figure 5.3: The Synthetic Noised IR images

(a) (b)

Figure 5.4: Bar Graph for Correct ratio vs. noise level for FE-MMI and MMI algorithm
on WASP image registration: (a) Intra-band registration with SW band; (b) Inter-band
registration between SW & MW band

The result shows clearly that the FE-MMI is more robust than the conventional MMI.

Although the success rate for both algorithms is reduced with increasing noise, the FE-

MMI algorithm outperformed the traditional MMI algorithm at all noise levels. The

registration accuracy can be measured by the means and standard deviations of rotation
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Rate for Rate for Rate for Rate for
Noise Level FE-MMI MMI FE-MMI MMI
0 (no noise) 100% 100% 100% 100%

2% 95% 85% 93% 87%
4% 90% 75% 90% 83%
6% 85% 80% 81% 80%
8% 85% 75% 81% 75%
10% 80% 75% 80% 71%
12% 75% 75% 75% 71%
14% 75% 60% 79% 60%
16% 75% 65% 75% 65%
18% 70% 60% 75% 63%

i ii

Table 5.2: Correct ratio for FE-MMI and MMI algorithm on WASP image registration: i):
the left two columns are the correct ratio for FE-MMI and MMI algorithm on shortwave
band image registration; ii) the right two columns are the correct ratio for FE-MMI and
MMI algorithm on image registration

error and shift error. The Table 5.3 shows comparison results (the better is shown in

bold face). In most cases, the registration accuracy and stability are improved. Both

algorithms generally achieved sub-pixel accuracy.

5.2 Registration Accuracy Analysis

Another important consideration is the accuracy of the registration results. To measure

the accuracy performance both a qualitative and a quantitative analysis for the enhanced

MMI algorithm are presented.

5.2.1 Accuracy Analysis Method

The registration accuracy can be evaluated by qualitative and quantitative analysis. Qual-

itative analysis measures the sharpness of the peak value of the mutual information as the

parameters are varied. This method is especially useful for multi-modal images that lack
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Table 5.3: Means and standard deviations of errors for the success result of FE-MMI and
MMI algorithm on WASP image registration. (Bold black represents the better results.)

i: Result from MMI Algorithm
Noise level Rotation X Y
0 (no noise) 0.05± 0.23 0.75± 0.23 0.5± 0.26

2% 0.1± 0.09 0.3± 0.75 0.3 ± 0.75
4% 0.7± 0.16 0.35± 0.76 0.35± 0.36
6% 0 ± 0 0.50± 0.76 0.55± 0.76
8% 0.15± 0.73 0.50± 0.76 0.35± 0.36
10% 0.05± 0.05 0.55± 0.7 0.5± 0.76
12% 0.05 ± 0.05 0.65± 0.33 0.3±0.75
14% 0.15± 0.13 0.65± 0.76 0.75± 0.30
16% 0 ± 0.05 0.65 ± 0.73 0.55 ± 0.75
18% 0.13± 0.15 0.35 ± 0.76 0.6± 0.75
ii: Result from HCL-MMI Algorithm

Noise level Rotation X Y
0 (no noise) 0 ± 0 0.3 ± 0.23 0.3 ± 0.27

2% 0 ± 0 0.25 ± 19 0.35 ± 0.73
4% 0 ± 0 0.25 ± 0.19 0.35 ± 0.26
6% 0.15 ± 0.13 0.35 ± 0.73 0.35 ± 0.36
8% 0 ± 0 0.35 ± 0.7 0.35 ± 0.23
10% 0 ± 0 0.50 ± 0.73 0.35 ± 0.73
12% 0.1 ± 0.09 0.6 ± 0.75 0.3 ± 0.75
14% 0.1 ± 0.09 0.35 ± 0.77 0.3 ± 0.75
16% 0.1 ± 0.09 0.65 ± 0.73 0.6 ± 0.35
18% 0 ± 0 0.5 ± 0.13 0.3 ± 0.75
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accurate ground truth data. On the other hand, for maps or GIS images with high spatial

accuracy, one can take advantage of the available location data to provide a quantitative

analysis. It is also possible to test the algorithm with a variety of simulated imagery

for which ground truth is automatically available to provide a quantitative assessment of

performance.

Qualitative analysis

A straightforward measure of the registration sensitivity to parameter variation is the

sharpness of the peak value in the scaled search surface over the transformation parameters.

A measure of the search surface’s sharpness is provided by the kurtosis of the distribution,

where larger kurtosis represents a sharper peak. Experiments show that the kurtosis

provides a good measure of sharpness for the non-Gaussian distributions, especially for

the Generalized Gaussian distribution [118].

(a) (b)

Figure 5.5: The sharpness of the search surface with low and high kurtosis: (a) search
surface with kurtosis = 2.96; (b) search surface with kurtosis = 17.55.

The definition of kurtosis is:

k =
n

n∑
i=1

(xi − x̄)4

(
n∑

i=1
(xi − x̄)2)2
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Experiments use kurtosis to measure whether the data are peaked or flat relative to

the normal distribution. If the kurtosis is high the peak tends to be sharp, whereas low

kurtosis indicates a distribution with a flat top instead of distinct peak. This measurement

works well and more reliably than simple variance.

Quantitative analysis

Quantitative analysis of registration accuracy is often difficult because of the lack of ac-

curate ground truth data, especially from the multi-modal imagery. When it is available,

a GIS image can provide accurate ground truth data. The registration error can be

calculated by comparing points in the GIS image to the corresponding points in the trans-

formed images. In these experiments the ground truth points and corresponding image

were picked manually, but this could potentially be replaced by an automatic algorithm.

A mean squared geometrical error can be measured as:

e =
√

1
N

∑

N

||G− T (I)||2

Where G is the sample set in reference image (GIS image), I is the set of corresponding

points in the floating image and T is the geometrical transformation. A geometrical

registration error can be estimated by the Euclidian distance between sample sets from

two images.

5.2.2 Accuracy Analysis Example

This section shows two examples of registration between sensor images and graphic images.

The sensor image is an airborne remote sensing image while the graphic image is a map in

the first experiment and a GIS model in the second experiment. The matching algorithm
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for these experiments was found to be consistent, accurate and robust.

Map vs. Image Registration

Image-to-map registration can be used for change detection and map revision. The fact

that changes are expected means that the registration method must not fail when a portion

of the data is in disagreement. To illustrate this application, a map from Google Maps

and an image that was taken perhaps a year later were registered using the enhanced MMI

method. The results are shown in Figure 5.7. The change in a road position that was

made before the image was taken is evident. A road-following algorithm would be readily

able to pick up this change between the registered image and map.

(a) (b)

(c) (d)

Figure 5.6: Map-to-Image Registration Example: (a) and (b) represent map and image;
(c) is the HCL- MMI parameter search function ; (d) Overlaid registered images
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(a) (b)

(c) (d)

Figure 5.7: Map update Example: (a) and (b) represent map and image; (c) is the FE-
MMI parameter search function ; (d) Overlaid registered images
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The sensitivity of the enhanced MMI algorithm for the two examples above is quantified

by the variance and kurtosis values.

Table 5.4: The kurtosis of search surface
Variance Kurtosis

Example 1 0.0471 2.624
Example 2 0.0211 3.761

The variance and kurtosis analysis show that the sensitivity of the calculation is higher

in the second example, which matches the visual observation: the search surface of example

2 has the sharper peak. The sharp peak in Figure 5.7(c) compared to the flatter surface

in Figure 5.6(c) is indicated by the respective kurtosis values. It is also notable that both

surfaces have a rather rough quality, which indicates that caution must be used in how

the parameter search is implemented. Gradient-based techniques failed on these examples

but exhaustive search implemented through a resolution pyramid succeeded.

The main limitation for this algorithm is the need for the maps and images to include

enough similar structure information to permit a statistical measure of correspondence.

If there is not enough detail in the map or if the feature detector cannot extract enough

information-rich data from the image then accuracy and stability both decline.

GIS vs. Image Registration

Another valuable application of this algorithm is automated image-to-GIS registration. An

image can be formed from GIS data and then registered by the FE-MMI technique. An

automated registration tool can be used to locate in an image objects that are described

by models, for example. An example is shown in Figure 5.8, where an image of a group

of buildings was formed from GIS data and registered to a remote sensing image. Note

that this was done on a small portion of a much larger image. This technique could be
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extended to provide a search method for known shapes within an image, and could provide

a statistics-based target finding or recognition algorithm.

To evaluate the quality of the registration for this example, a number of matching

points on prominent features were manually extracted from the GIS image and scene

image and the GIS image was set as fixed image and the real image as the floating image.

The transformation was applied and the registration error was measured using Euclidean

distance.

Table 5.5: Registration Results
Registration Result Rotation X Y Mean Error

Feature point based algorithm -1.15 -10.5 -5.10 3.64 pix
FE-MMI based algorithm -1.5 -10 -8 3.18 pix

To compare the results presented with other registration algorithms, the prominent

point sets were randomly divided into two parts: the first part was for registration and

the second was for accuracy testing. The optimization method to find the registration

parameters were set to minimize the Euclidian distance between the first part of feature

sets from the GIS image and transformed floating image. Then the registration parameter

was applied to the second part of feature sets to measure the registration accuracy. To

minimize the random noise effect, both registration algorithms were run 100 times. The

mean value of registration parameters and registration error are in Table 5.5 on page 68.

The quantitative analysis in Table 5.5 shows the difference of the results from two

algorithms are a half degree difference on rotation and and about two pixels difference on

shifting. It is doubtful that the objects in these images can be placed with more accuracy.

Automatic processing makes it possible to handle large images efficiently and effectively,

and will enable a high-speed registration workflow.
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(a) (b)

(c) (d)

Figure 5.8: Image-to-GIS registration example: (a) An airborne image from region of
Atlanta, GA showing buildings and roads; (b) GIS map taken from Google Earth; (c) The
FE-MMI search surface, which shows a sharp peak at the parameter values that provide
the best transformation; (d) A composite image produced by overlaying the registered
map and image.
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5.3 Computational Effort

This section compares computation effort between conventional MMI and FE-MMI. Con-

ventional MMI registration uses a set of points X that are distributed randomly over the

image. The samples are used to construct the joint histogram of data values between

the images. The registration process looks for a transformation that minimizes the joint

entropy of the histogram constructed from A(X) and B(T (X)). The computational effort

depends upon the number of samples N , the histogram bins K and the number of steps S

used in the parameter search process. Since the computational effort is in direct propor-

tion to the number of samples and the number of bins required in the joint histogram, the

computational cost to the samples and histogram bins are O(N) and O(K2). The total

computation needed is:

O(T ) = O(N) ·O(K2) ·O(S)

The FE-MMI algorithm improves the efficiency three ways. (i) In conventional MMI the

samples are taken uniformly across the images. The sample grid must be small enough

to ensure the capture of a sufficient number of points with high information value. This

algorithm reduces the computation requirement by selecting the information-rich pixels

that then reduces the sample size. In the following experiment, the number of samples

per image can be reduced by 80% without loss of registration accuracy. (ii) The label

maps, rather than the original imagery, can also be used in the mutual information cal-

culation. In the HCL maps, the pixels on background, edges and corners are denoted by

classification values 0, 1, 2. This removes most of the background variation but preserves

essential information about the location of the edges and corners. The reduction of the

number of histogram bins from 256 (for typical byte-scale normalized images) to 3 enables

the 2D histogram of sample values to be reduced from 2562 to 32. This can save sub-
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stantial memory and computing time. (iii) A pyramid approach can be used to enable a

hierarchical search for the optimum parameter values. An approximate registration can be

accomplished by using larger steps in parameter values with lower-resolution images. The

value for maximum entropy at low-resolution was used as the starting point for a refined

search at the next higher resolution. The Harr wavelet [119] was used to build a pyramid

and have found that the pyramid algorithm leads to about 90% reduction in the volume

of search region without accuracy loss comparing with the exhaustive search [120].

Taken together, the three steps described above can reduce the computing time by 90%.

For the intra-band registration, the rotation and shift, and scale plus shift for inter-band

registration were measured. The running time for a typical registration was reduced from

2 minutes to about 10 seconds. The following table is the comparison of time consumption:

(The running environment is P4 2.0GHz 1G RAM, IDL 6.0)

Table 5.6: Time Consuming for HCL-MMI and MMI algorithm on WASP image registra-
tion

Shortwave band vs. Shortwave band vs. Shortwave band vs.
Shortwave band Middle-wave band Long-wave band

HCL-MMI 8.78(s) 10.79 (s) 10.86(s)
MMI 103(s) 117(s) 115(s)

This improvement is significant and may enable the proposed algorithm to be suitable

for serial image registration in near real-time applications.

5.4 Summary

This chapter analyze the efficiency, accuracy and robustness of the registration algorithms.

The experiments show efficiency is improved by using features to select information-rich

areas, by using the classification label image to reduce the joint histogram calculation, and

using pyramid techniques to achieve coarse-to-fine analysis. The reduction in computing
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time is not done at the expense of registration accuracy.



Chapter 6

Validation Analysis of Sample Sets

The previous chapter introduced the application of conventional MMI algorithm on WASP

images and the extension, FE-HCL algorithm. The performance in the registration appli-

cation is analyzed. The improvement of the FE-MMI is through the focusing of the MMI

process on information-rich pixels. However, one problem for FE-MMI still exists: the reg-

istration results are not always stable. This instability will make the registration results

very unreliable in some extreme conditions. The reason for unstable performance is ran-

dom sample selection. All pixels are treated the same and samples are randomly selected

from the whole image. This chapter will provided a more effective method based on the

focus-of-attention features to construct the sample sets for MMI registration. Comparing

with the random selection, fewer samples are needed without any loss of the registration

performance.

6.1 The Analysis of Sample Set Validation

Good sample sets should improve the the robustness, accuracy and efficiency performance

of the registration algorithm. In chapter 4, the Harris corner detector is used to divide
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the pixels into the information-rich area and flat region, and this classification is effective

in improving the MMI registration algorithm as shown in Chapter 5. It is straightforward

to bring forward this question: Can the Harris corner detector help to select the samples?

Or in other words, if only the pixels rich-information are selected, is the sample set better

than random selection?

(a) (c) (e)

(b) (d) (f)

Figure 6.1: Experiments to test special sample set: (a) and (b) are original images; (c)
and (d) are the Harris corner label map, the gray part is the information-rich area and the
black part is the flat region; (e) and (f) are the well-aligned and misaligned registration
results.

A simple experiment is designed to test this idea: the Figure 6.1 (a) and (b) are the

images of a line in solid background and the reversed foreground and background. Figure

6.1(b) is shifted down-left from the Figure 6.1(a). The Figure 6.1(c) and (d) show the

information-rich area and the flat region by the classification of Harris corner detector. A

special sample set only from the information-rich area was built and tested by registration.
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As Figure 6.2 shows, the mutual information of this special sample makes FE-MMI algo-

rithm fail on this registration. The search surface is very flat (Figure 6.2). The Table 6.3

shows the mutual information reaches a maximum using both well-aligned (Figure 6.1(f))

and misaligned images (Figure 6.1 (e)). The reason is that all pairs fall into the [1,0] when

mis-aligned and [1,1] when well-aligned, however, the joint entropy stays the same because

it is the summation of the total distribution of the pairs without distinguishing the single

pair probability. To build an effective sample set needs a complicated analysis.

Figure 6.2: The search surface of the registration between sample set X and Y

Table 6.1: The joint histogram of well-aligned and mis-aligned between sample set X and
Y

[0,0] [0,1] [1,0] [1,1] H(X,Y )
Well Aligned 0 0 142 0 0
Mis Aligned 0 0 0 142 0

The question is simplified for Harris Corner Label map. The Harris corner label in-

cludes three values [0,1,2] and value [1,2] could be merged to represent the information-rich

region. The sample set X from Figure 6.1 (a) consist of two subsets: u (0 value points)

and v (1 value points), while the corresponding subsets Y in Figure 6.1(b)is u′ and v′.
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The mutual information is expressed in Chapter 3 as:

I(A(X), B(Y )) = H(A(X)) + H(B(T (X)))−H(A(X), B(T (X))) (6.1)

With the two-value sample set, the last term could be represented as:

H(A(X), B(Y )) = −[P (u, u′) log P (u, u′)+P (u, v′) log P (u, v′)+P (v, u′) log P (v, u′)+P (v, v′) log P (v, v′)]

where P (u, v′) could be calculated by P (u) ·P (v′|u) (Bayes theorem), the H(A(X), B(Y ))

could be expressed as:

H(A(X), B(Y )) = −[P (u) · log P (u) + P (v) · log P (v)+

P (u) · (P (u′|u) · log P (u′|u) + P (v′|u) · log P (v′|u))+

P (v) · (P (u′|v) · log P (u′|v) + P (v′|v) · log P (v′|v))]

The conditional entropy is defined as:

H(Y |u) = P (u′|u) · log P (u′|u) + P (v′|u) · log P (v′|u)

H(Y |v) = P (u′|v) · log P (u′|v) + P (v′|v) · log P (v′|v)

The final expression of H(A(X), B(Y )) is:

H(A(X), B(Y )) = H(A(X)) + P (u) ·H(Y |u) + P (v) ·H(Y |v) (6.2)

Combining equations 6.1 and 6.2, the mutual information of two images is:

I(A(X), B(Y )) = H(B(Y ))− [P (u) ·H(Y |u) + P (v) ·H(Y |v)] (6.3)
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Equation 6.4 demonstrates mutual information is positive proportion to the entropy in

subsets Y and the conditional entropy has negative effect. The good sample sets should

make the mutual information detect the subtle parameter change promptly, which requires

mutual information has enough space to reflect the change of the parameter set. The

following is the detailed analysis of the results of applying equation 6.4 to the two value

sample sets.

Table 6.2: The relationship between sample set X and Y
P (u) u → u′ u → v′

α β 1− β

P (v) v → u′ v → v′

1− α γ 1− γ

α is the ratio of u in sample X, while β is the ratio u in X projected to u′ and γ is

the ratio v in X being projected to v′. From the Table 6.2, the composition of sample Y

may be derived easily:

Table 6.3: The composition of the sample set Y
u′ v′

αβ + (1− α)(1− γ) α(1− β) + (1− α)γ

With the Table 6.3, the three terms of equation 6.4 may be calculated as:

H(Y ) = −[{αβ + (1− α)(1− γ)} · log{αβ + (1− α)(1− γ)}+
{α(1− β) + (1− α)γ} · log{α(1− β) + (1− α)γ}]

H(Y |u) = −[β log β + (1− β) log(1− β)]

H(Y |v) = −[γ log γ + (1− γ) log(1− γ)]
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First some extreme condition will be discussed:

• β = γ = 0 or β = γ = 1. The corresponding H(Y |u) and H(Y |v) are equal to 0.

Under this condition, the mutual information is:

I = −[α log α + (1− α) log(1− α)]

The mutual information I reaches the maximal value log 2 when α = 1
2 . This result

is instructive to the experiment discussed in chapter 5 section 5.1.1.

• β = γ. H(Y |u) is equal to H(Y |v) under this condition and can be treated as

the constant. The mutual information I ∝ H(Y ). It is known in statistic theory

that the H(Y ) get maximized when u′ and v′ take half to half. From the table 6.3,

P (u′) = P (v′).

αβ + 1− α− γ + αγ = α− αβ + γ − αγ (6.4)

α = 1
2 where β = γ. In this case, joint entropy is:

H(A(X), B(Y )) = log 2 +
1
2
· (H(Y |u) + H(Y |v))

• The general case will be discussed here. The α should maximize H(Y ) without any

special knowledge about β and γ. Continuing the discussion in equation 6.4, the

best α value is:

α =
1
2

2γ − 1
β + γ − 1

The above shows how to choose a two-value sample set effectively in theory. Unfortu-

nately, in practice it’s typically not possible to use this method, since one rarely knows β

and γ accurately. Fortunately the difference between β and γ is small if the sample sets
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are big enough. In most application it could be assumed as the same and the error of the

approximation could be ignored. This analysis is easily extended to multi-value sample

sets.

6.2 Experimental Results

Previous section analyzed the effective method to construct the sample set. In brief

the good sample sets should have the maximal entropy. This section will present the

application in registration experiments. Let’s come back the experiment in section 6.1

first and compare the registration result.

The original images for registration are the Figure 6.1 (a) and (b) on page 74. The

information-rich area takes about 8% of the whole image (Shown in Figure 6.1 (c) and

(d)). The left column and right column of Figure 6.2 are the comparison for different

sample sets and each row is of different sample ratio. Both sample sets work well at 8%

sample ratio. When the sample ratio is below 2%, the registration result from the sample

set randomly selected becomes unstable and registration fails. However, the registration

performance of the optimized sample set remains stable even at the sample ratio 0.5%.

Next search surfaces of the sample sets with different entropy are compared under a

fixed sample ratio. Figure 6.1 (a) and (b) are still used as original images. The size of

sample sets are limited to 1% of the whole image. The registration on small sample set is

more sensitive to the entropy change. The ratio between the pixels from the information-

rich area and flat region is varied from 10% to 90%.

Figure 6.4 shows the registration results of sample sets with different entropy under

the 1% sample ratio. Experiment shows that both too few and too many pixels from

information-rich area or flat region harm the registration stability. The information-rich

area and flat region can be regarded as a kind of classification. The registration is very
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Sample set randomly selected Optimized sample set
Sample ratio: 8%

(a) (b)
Sample ratio: 2%

(c) (d)
Sample ratio: 0.5%

(e) (f)

Figure 6.3: The comparison of the registration result of Figure 6.1(a) and (b) by different
sample sets. The Figure (a) (c) and (e) in left column are the search surfaces of the
sample set randomly selected while the figure (b) (d) and (f) in right column are the
search surfaces of the optimized sample set. Each row represents different sample ratio:
(a) and (b): sample ratio is the 8%; (c) and (d): sample ratio is the 2%; (e) and (f) sample
ratio is the 0.5%.
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The comparison of sample sets with different entropy

10% information-rich pixels 30% information-rich pixels

50% information-rich pixels 70% information-rich pixels

90% information-rich pixels 100% information-rich pixels

Figure 6.4: The comparison of the registration result of Figure 6.1(a) and (b) by sample
sets with different entropy.
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unstable and fails at 90% samples from one category. The registration results are better

with more balance between the sample pixels from two categories. This result is valuable

for constructing effective sample sets because it is very rare for the information-rich area

and the flat region to each take half in a real application.

The following experiment tests the performance on WASP image. The Figure 6.5(a)

and (b) are the WASP short-wave images and the Figure 6.5(c) and (d) are the Harris

corner label images. Almost 12% of the points are in the information-rich area. In previous

experiment, the left column is the search surface of the randomly selected sample set and

the right is for the optimized sample set.

The Figure 6.5 (e)-(j) represent the comparison of registration result of two sample sets

in different sample ratio. The experiment result shows the performance of the optimized

sample set is better than the random one. The registration could be achieved with fewer

sample points, which is an effective method to improve efficiency.

6.3 Summary

The traditional MMI algorithm select sample sets randomly from the original image. It

is easy to show cases in which the registration result is unstable. This chapter describes

a method to optimize the sample set. With the classification by Harris corner detector,

the sample set is optimized by maximizing the entropy of the Harris corner label. The

experiment shows the registration stability is improved with fewer sample points.
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(a) (b)

(c) (d)
Sample set randomly selected Optimized sample set

Sample ratio: 5%

(e) (f)
Sample ratio: 1%

(g) (h)
Sample ratio: 0.5%

(i) (j)

Figure 6.5: The comparison of the registration result of the WASP short wave band by
different sample sets: (a) and (b) are the original images; (c) and (d) are the corresponding
Harris Corner label map. The left column are the search surfaces of the sample set
randomly selected while the right column are the search surfaces of the optimized sample
set. Each row represents different sample ratio: (e) and (f): sample ratio is the 5%; (g)
and (h): sample ratio is the 1%; (i) and (j) sample ratio is the 0.5%.



Chapter 7

Registration Area Selection

In previous chapters, the success of enhanced mutual-information techniques in registering

multi-modal remote sensing imagery was reported [120]. The enhancement is provided

by the use of Harris feature detection [113] to locate places that are likely to have high

information content, and then these locations are used in the MMI process. This improved

the speed and robustness of the algorithm for a variety of airborne image registration tasks.

In [121], it was shown that the Harris feature map, which is an image with three brightness

values, could be used as an element in MMI image registration. The result is a robust

registration tool with reduced computing time.

However, one problem for the algorithm is that the area for mutual information calcula-

tion is based on the whole image. In most conditions this can provide enough information

for registration. However, in the application of remote sensing image registration, the

following condition may arise:

• The area of overlap between the images may be small and in unknown locations.

Samples taken from non-overlap regions can dominate the statistical analysis and

lead to registration failure.

84
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• Different parts of the images provide better registration information due to noise,

illumination conditions and sensor characteristics. Some areas like forest and grass

are highly textured but statistically uniform, while other areas that include build-

ings or roads are more useful. Areas in each image that have good potential for

registration are called salient areas.

• The distribution of the noise, illumination conditions and variance caused by sen-

sor characters are not constant in the whole image. Some parts are more similar

than other parts and registration based on similar areas has potential improving the

registration.

These problems could be relieved by an initialization procedure. A common condition

is that the image quality is poor for registration in remote sensing applications because

of extreme illumination changes. A reasonable assumption is that registration will be im-

proved by only using the overlap or salient areas that include more local object information

or less noise. To use this strategy, image segmentation can be done after initialization pro-

cedure.

This chapter will further extend the approach of using feature detection to bootstrap

the MMI algorithm to achieve robust and efficient performance in the registration of

imagery with diverse characteristics. By combining the SIFT algorithm [122] with an

MMI analysis to find regions in the two images that are likely candidates for matching,

the salient areas in each image can be identified and then each possible pairing between the

images can be analyzed to find salient area matches. Harris feature detection with MMI

on the candidate regions can then be used to determine the parameters of the transform

for matching. This two-step approach overcomes the above problems and provides a good

initialization for the final step of the registration process.

The following sections will introduce the extension in detail. Section 7.2 discusses
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salient area extraction by the combination of SIFT and local entropy. Section 7.3 discusses

experimental tests. The results are analyzed in Section 7.4.

7.1 Salient Region Extraction

A salient region is a small part of an image that is noticeable because it has a high density

of features. Spatial information such as shape, size and structure can be measured to find

the coarse matches of similar regions and then registration can be refined by additional

processing. It has been found that a multi-scale approach to region matching to be effective

because it facilitates comparisons between images from modalities with different spatial

resolutions. In this algorithm the scale invariant feature transform (SIFT) was used to

identify salient regions.

7.1.1 Scale-Invariant Feature Transform

The scale-invariant feature transform (SIFT) was used by David Lowe in 1999 [123] to

detect local features in images. The key point of the SIFT algorithm is it makes use of the

local extrema in the intensity domain, which is difficult to obtain from edge detectors or

corner detectors. Such extrema points are the points of interest because they can provide

important information about regions. These regions are the potential salient regions for

our registration.

The SIFT algorithm convolves the image with Gaussian filters at different scales, and

then takes the difference of successive Gaussian-blurred images. The maxima/minima of

the Different of Gaussian (DOG) that occur at multiple scales are the extracted keypoints.

The DOG of the image could be defined as:

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ) (7.1)
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where L(x, y, kσ) is the Laplacian of Gaussian, which is the original image I(x, y) convolved

with the Gaussian blur G(x, y, kσ) at scale kσ:

L(x, y, kσ) = G(x, y, kσ) ∗ I(x, y)

The DOG image comes from the different Gaussian-blurred images at scale kiσ and kjσ.

In practice the Gaussian blur functions are grouped by octave, and each octave corresponds

to doubling the value of σ. The k value is selected so a fixed number of convolved images

per octave are obtained. The difference-of-Gaussian (DOG) is calculated from adjacent

Gaussian-blurred images per octave.

The local extrema points detection are taken with respect to both space and scale.

This is done by comparing each pixel in the DOG image with it’s eight neighbors at the

same scale and nine corresponding pixels in each of the neighboring scales. Thus, the pixel

will be the compared with the nearest 26 neighbors in scale-space volume. If the pixel

value is a maximum or minimum value among all compared pixels, it is a candidate key

point. Figure 7.1 illustrate SIFT points extraction.

7.1.2 SIFT Application in salient Region Extraction

The SIFT algorithm locates points of interest for further processing. These points may

signal the presence of objects or parts of objects in the image domain. A characteristic of

SIFT feature points is scale, shift and rotation invariance.

The SIFT algorithm can be used to find candidate locations that are rich in informa-

tion. This is done by shifting a rectangular region over the SIFT image and counting the

SIFT points in the rectangle at each position. Regions with the highest count are regions

of interest. The entropy in the high-interest regions is then calculated, and the regions
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Figure 7.1: The illustration for SIFT algorithm

with the highest entropy are selected. These salient regions are then used in the next stage

of processing. It is the combination of SIFT point density and high entropy that identifies

salient regions. More SIFT feature points and higher entropy increase the possibility that

a region contains valuable spatial information for the MMI registration algorithm. The

SIFT process finds stable features, such as the buildings, cross-sections and landmarks,

etc., and high entropy indicates that the region has enough intensity variation for a good

MMI calculation.

After salient regions being extracted, then the next step is building salient region pair

between images. These matching pair in this algorithm is built for the region. The num-

ber of salient regions is much less than the number of point candidates used in traditional

feature-based algorithm. This property limit the time consumption to estimate the pa-

rameters effectively, which is main disadvantage of traditional feature-matching algorithm.

An example of salient region location is shown in Figure 7.4. A short-wave IR image is

shown in (a). The SIFT point extrema are highlighted in (b). A Harris corner label image
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is shown in (c) and a SIFT point density map is shown in (d). The entropy is calculated in

(c) for the regions with high point density in (d). The salient regions are locations where

the entropy, weighted by the point density, exceeds a threshold. These are shown in (e).

The HCL image is used in the entropy calculation because it is faster and consistent with

the HCL image use in the following registration process. The entropy calculation could as

well be done on the original image.

7.2 Image Registration by Salient Region

There are three stages to the registration process for a pair of images. The first stage

identifies salient regions in each image. This is done independently on the two images.

The second stage finds matching salient regions between the two images. This provides a

rough match and constrains the search space for the parameters of the match transform.

The third stage refines the match by applying label-enhanced MMI to the paired salient

regions and, optionally, to the overlap regions of the full images. The first stage processing

has been described in above section 7.1. It is simply applied to both images.

7.2.1 Stage 2: Salient Region Matching

The second stage requires a metric for the match of salient regions. It was found that an

effective comparison can be made by computing the MMI surface between each possible

pair of salient regions and then evaluating the kurtosis of the MMI surface. This will be

illustrated with an example.

The two infrared images shown in Figure 7.3 (a-b) are successive images from the

WASP airborne sensor. These images have both high and low detail regions. The first

stage of the registration process produced the salient regions that are outlined in (c-d).

Note that the some regions are likely to be found in both images, but they may be shifted,
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(a) (b)

(c) (d)

(e)

Figure 7.2: The salient region extraction: (a) An airborne image from WASP short wave
band; (b) The SIFT points; (c) The distribution of local entropy; (d)The SIFT points
distribution ; (e) The extracted best salient region.
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and other regions are found in only one of the images.

(a) (b)

(c) (d)

Figure 7.3: Experiment on WASP short wave band image: a) and (b) An airborne image
from WASP short wave band; (c) and (d) The extracted salient region.

The MMI algorithm is then run on each pair of salient regions. This produces a MMI

surface map for each pair, from which the kurtosis can be calculated. Five salient regions

were found in Figure 7.3(c) and four in 7.3(d). The kurtosis for each pair is shown in

Figure 7.5. The matching salient regions have a much higher kurtosis, as indicated by the

highlighted values.

The MMI process also produces estimates of the transformation parameters between

the matched regions, from which an initial estimate of the transformation can be produced.
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If consistent parameter estimates are produced by two or more pairs then confidence in

good matches is increased. If there were many match options, a RANSAC approach [124]

could be used to find a good set of initial transform parameters.

6.15 2.37 1.21 4.57

4.85 37.34 6.16 4.33

2.12 5.43 32.87 3.74

5.28 4.66 4.13 27.56

3.32 3.58 2.94 4.11

Figure 7.4: The kurtosis of the registration between the salient region pairs.

Table 7.1: Image registration parameters from the salient region pairs.
Shift on X (Pixels) Shift on Y (Pixels)

Match Pair1 8.0 105
Match Pair2 9.0 103
Match Pair3 10 105
Match Pair4 11 103

The MMI search surfaces for the matched pairs from Figure 7.4 are shown in Figure

7.5. The kurtosis of each search surface corresponds to the highlighted value in Figure 7.4,
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(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

Figure 7.5: The registration pairs between the salient region: (a)-(d) The salient region
in the Figure 7.3(a); (e)-(h) The corresponding pair in the Figure 7.3(b), (i)-(l) The
corresponding search surface for each pair.
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and it is seen that surfaces with a more pronounced peak have higher values for kurtosis.

7.2.2 Stage 2: Transform Parameters Estimation

If one or more salient region matches are obtained then the registration process can proceed

to the third stage. The approximate transform parameters produced by the second stage

can be used to identify the overlap regions of the images. The search region for refined

transform parameters can be confined to a small volume in parameter space and the

search can be carried out using a variety of MMI techniques. One option is to simply use

conventional MMI between the images in the overlap region. However, it is more efficient

and robust to use feature-enhanced MMI based on the Harris corner detector.The floating

image can be either the original or the HCL map. These techniques were described in [120].

7.3 Experimental Results

This section will describe two experiments for registration of imagery. The first experi-

ment uses infrared images from two different bands and the second uses a LIDAR image

produced from intensity and elevation data with a cartographic map. The first experiment

is challenging because the features appear quite differently in the two bands. The second

is very challenging because both images are essentially derived products from other data

to which arbitrary coloring and markup has been applied.

7.3.1 Registration of Multi-band IR

Two images produced by the WASP airborne sensing system are shown in Figure 7.6 (a)

& (b). It is evident that the short wave image shows buildings or roads in more detail

while the medium wave image is more sensitive to the temperature variation. The first
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stage of processing has identified the salient regions shown in Figure 7.6 (c) & (d). While

the regions are not identical, it can be seen that there is at least on matching pair.

(a) (b)

(c) (d)

Figure 7.6: Experiment on WASP short wave band image and media wave band image:
(a) and (b) An airborne image from WASP medium wave band and short wave band; (c)
and (d) The extracted salient region.

The search for matching regions was carried out by the second stage of processing.

Since there are four salient regions in each image, there are sixteen pairs to be tested. The

test results are shown in Figure 7.7, where the kurtosis test finds one pair match. and the

Figure 7.8 is the best match pair from the Figure 7.6 (c) & (d)

Based on the results from above matching pair, the two corresponding region from the

middle-wave band image can be extracted, then the registration on those two pairs can be
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1.33 1.37 3.21 3.75

3.58 3.45 1.64 3.44

1.12 17.64 2.78 2.47

2.58 3.46 0.75 2.65

4.23 3.44 4.29 1.14

Figure 7.7: The kurtosis value of the registration between the salient region pairs.

(a) (b) (c)

Figure 7.8: Salient region registration on short wave band image and long medium band
image: (a) Salient region in short wave band; (b)Salient region in medium wave band; (c)
Registration search surface. (Kurtosis = 17.64).
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completed (shown in the Figure 7.9) and individual parameter set can be obtained from

each pair. All registration parameter sets were averaged and the registration error was

reduced in theory. This method has special benefit for the applications without ground-

truth data.

(a) (b) (c)

(d) (e) (f)

Figure 7.9: The registration pairs between the short wave band image and medium wave
band image: a() and (d) The salient region in the Figure 7.6(d); (b) & (e) The corre-
sponding region in medium-wave band image; (c) is the search surface of (a) and (b); (f)
is the the search surface of (d) and (e).

7.3.2 LIDAR to Map Registration

This experiment is the registration of an image derived from LIDAR point cloud data and

a cartographic map. The results demonstrate a method that can be extended to the task

of fusing LIDAR data with imagery from various sources. The map image was chosen to

demonstrate the method on a challenging problem. It has application in its own right as a

method for relating archival maps to LIDAR collections for the purpose of map updating.

The LIDAR image was constructed from the point cloud by combining elevation (Fig-
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ure 7.16 (a)) and intensity data (b). The result is a composite rasterized LIDAR image

(CRLI) (c). We seek to register this image to a map such as that shown in (d). We can

use any of the three LIDAR image products in the registration algorithm.

(a) (b)

(c) (d)

Figure 7.10: (a) Range image; (b)Intensity image; (c) CLRI image; (d) Campus map.

Maps are diagrams that show roads, buildings and symbolic information. The idea is to

register these and similar images using the FE-MMI algorithm as well as with conventional

MMI. All of the attempts were unsuccessful because of the large variation in texture and

the incidental labeling in the map data. While it would be possible to construct special

filters that use custom techniques on such images, the goal is to find a more general-purpose

approach. The top row of Figure 11 shows an example of registration results using MMI

for the map image with the CLRI image. The MMI search surface is very noisy without

any indication of a peak. Use of the elevation with a map image using conventional MMI
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is shown in the bottom row. There is a slight indication of a registration peak, but it is

very noisy and broad.

(a) (b) (c)

(d) (e) (f)

Figure 7.11: MMI registration result

Next attempt was to register the LIDAR and map images using the salient region

method. The Figure 7.12 (c)&(d) shows the salient regions extracted with the SIFT

algorithm. The two images do not have identical salient regions, but there is one that the

two images share. The preliminary registration is achieved using this pair.

The initial registration result provided by matching salient regions can be used as the

start point for stage 3. It was found that the best results were obtained using the elevation

image shown in Figure 7.12. The search surface was now focused in the parameter space

provided by the initial registration and is shown in Figure 7.14(c)) .

7.3.3 Performance Analysis

Assuming that the first two stages of the process provide a good starting point for the final

registration step, one can expect to have a better chance for a good result. The quality of
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(a) (b)

(c) (d)

Figure 7.12: Registration on LADAR image and Map: a) Ladar image; b)Campus map;
(c) and (d) The extracted salient region.
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0.13 2.20 1.23 1.67 2.79

0.63 3.74 1.41 2.84 2.82

4.51 0.92 8.89 3.78 3.57

1.49 4.67 1.76 3.91 1.29

3.83 1.82 5.91 2.59 4.75

Figure 7.13: The kurtosis value of the registration between the salient region pairs.

(a) (b) (c) (d)

Figure 7.14: Salient region registration on short wave band image and long medium band
image: (a) Salient region in map; (b)Salient region in Ladar image; (c) Registration result;
(d) Registration search surface.
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the final result will depend upon the characteristics of the algorithm used in stage 3. In

this paper we are emphasizing the use of combined SIFT and MMI algorithms in stages 1

and 2 to provide a good starting point for the final registration and are not concentrating

on refinement of the final step. This is an area where a number of algorithms can be used.

In this section a conventional MMI algorithm and a feature enhanced MMI algorithm

were used for the final registration step. One can compare the results to those obtained

by manual registration as an indication of the performance of the system.

(a) (b) (c)

(d)

Figure 7.15: The refined registration result: (a) the height information in the LIDAR
image Figure 7.12(a); (b) The campus map; (c) The corresponding search surface for each
pair; (d) The overlapping image.

From the overlapping image (Figure 7.15(d)), it can be seen the alignment of the

building 7A and 7B is reasonable, while there is the some registration error around the

building 76. Although we don’t have ground truth data, in this registration case we can
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select a building corner to make the quantitative error estimation. The error of building

77 area are in the Table 7.2. A mean squared geometrical error can be computed as:

e =
√

1
N

∑

N

||G− T (I)||2

Where N is the number of sample points. The average geometrical error is about 9.4

pixels. A visual comparison can be seen in Figure 7.16.

Now the problem of quality evaluation of the registration is examined. Because of the

lack of ground truth data, one alternative measurement is the comparison with manual

registration. The feature pairs was selected manually and randomly divided into two parts:

the first part is for registration and the second is for accuracy testing. The optimization

method is to find the registration parameter set to minimize the Euclidian error, and then

apply the registration parameters to the second part of the feature sets to measure the

registration accuracy. A total of 100 repetitions were run for both registration algorithms,

using different points selected randomly on each run, to get the average value. The average

registration error was 7.3 pixels, which is a little better than the SIFT enhanced MMI

algorithm. Comparing the registration results in Figure 7.16, both results were not perfect

due to the difference in the image and map.

Table 7.2: The comparison of image registration result.
Rotation Shift on X (Pixels) Shift on Y (Pixels)

Automatical Registration 0 37 -51
Manual Registration -0.20 41 -45

The SIFT algorithm is the method to extract the salient region in this research. The

proposed region extraction algorithm provide an alternative way to improve MMI/FE-

MMI registration algorithm. Note that the algorithm is very flexible and one can choose

proper method to make the full use of the information to fit different applications.
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(a) (b)

Figure 7.16: The comparison of registration result: (a) The registration result from SIFT-
MMI algorithm; (d) The manual registration by feature points.

7.4 Summary

This chapter described a novel salient region extraction for FE-MMI algorithm that com-

bine the SIFT points and the local region entropy selection. The algorithm enables the

FE-MMI algorithm to be applied on salient region, then the SIFT points density can be

used to estimate the spatial information stability. Then information/entropy threshold

of local region is measured to guaranty there is enough information for MMI registra-

tion, which can estimate the confidence for registration. The FE-MMI registration can be

readily followed by salient region step to find the parameters.

The main limitation is in the assumption that at least one salient region will overlap

and the registration pair can be built. In worst case the whole image can be used as

the salient image. In these applications the algorithm can fall back to the conventional

method.



Chapter 8

Experiments and Analysis

The previous chapters introduced the MMI-based registration algorithm and improvements

for multi-modal image registration. This section presents experiments that compose con-

ventional and improved MMI registration algorithms in real applications. Some parts of

the experiments have been already used to demonstrate the algorithm in the previous

chapters. In this section the complete experiments will be described.

8.1 Experiment I: Conventional MMI on WASP Images Reg-

istration

The first experiment is to test the conventional MMI-based registration algorithm on

WASP multi-band images. The experiment contains nine WASP frames and each frame

includes the short, medium and long wave band images 8.1. The registration tests both

inter-band and intra-band parts. Part of results were shown in chapter 3 to demonstrate

the flowchart and describe the MMI method. Note that Figure 8.1 shows that the short-

wave images rotated 180o relative to the medium-wave and long-wave band image due to

105
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the camera positions in the WASP system. This kind of error must be corrected in the

pre-processing procedure.

Inter-band registration is used to overlap the different bands in each frame. Table 8.2

is the inter-band registration results. The short-wave band acts as reference image and the

medium-wave and long-wave bands are registered to it. The parameters of scale and shift

on X and Y are measured. The experiment shows the registration results from each frame

are almost fixed because they depend primarily on the relative position and orientation of

the cameras. The mean value of the results could be used as the internal parameters for

WASP camera system to speed the registration.

The short-wave band is most sensitive to the grass/forest area. The short wave band

is put into the green band because it contains more texture detail. The medium and long

wave band are more sensitive to the thermal distribution and they tend to highlight build-

ings and roads. The image in Figure 8.2 are in pseudo-color and have been constructed

by nine WASP frames.

Another test of registration is intra-band image registration between the short-wave

band image from different frames.

This experiment shows MMI algorithm works on intra-band and inter-band registration

in most condition. Combined results from inter-band and intra-band registration can be

used to build a mosaic image. This is shown in Figure 8.2.

8.2 Experiment II: FE-MMI algorithm on wild fire image

registration

The last section demonstrates that the conventional MMI algorithm is a powerful method

for multi-modal image registration. The MMI algorithm worked well with most WASP
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WASP Frames:
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Figure 8.1: The comparison of the WASP frames. It includes three bands: short-wave,
medium-wave and long-wave band.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.2: WASP Inter-band registration Experiment: a) - i) are overlapping three-band
images for each WASP frame.
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Table 8.1: Inter-band registration results of WASP frames. (High-light black represents
mean values).

i: Result of short-wave band vs. medium-wave band
Frame Scale X Y

1 1.12 18 33
2 1.12 16 33
3 1.12 16 32
4 1.12 18 33
5 1.12 17 34
6 1.12 16 32
7 1.12 17 31
8 1.12 17 32
9 1.12 17 33

Mean 1.12 17 33
ii: Result of short-wave band vs. long-wave band

Frame Scale X Y
1 1.12 5 40
2 1.12 5 40
3 1.12 5 39
4 1.12 4 41
5 1.12 5 40
6 1.12 5 40
7 1.12 6 40
8 1.12 5 40
9 1.12 5 40

Mean 1.12 5 40

Table 8.2: Intra-band registration results for short-wave band.
Frame Rotation X Y
1 vs. 2 0 -10 -104
2 vs. 3 0 0 -112
3 vs. 4 0 -82 -121
4 vs. 5 -1.5 21 -235
5 vs. 6 -0.5 29 -249
6 vs. 7 0.5 7 -255
7 vs. 8 1.0 -30 -239
8 vs. 9 1.0 -30 -240
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Figure 8.3: The mosaic image of the WASP frames

image registration tasks. However, in some experiments, the image difference are subtle

especially in pixel intensity distribution (Shown in Figure 8.4).

(a) (b)

Figure 8.4: (a) & (b) are two serial images.

The performance of conventional MMI registration algorithm will decline because the

mutual information between the sample sets couldn’t reflect that change. Experiment

shows that the ratio of accurate registration of MMI algorithm falls below 50%. Some

registration failures of MMI algorithm are shown in Figure 8.6 on page 114.

To improve the registration, the research in this thesis extends the traditional MMI

algorithm in two ways: First, extracting the spatial features by using the Harris corner

detector; Second, achieving the MMI-based registration on the Harris corner label. The
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Wild Fire Frames:

Frame 2086-2089

Frame 2090-2093

Frame 2094-2097

Frame 2098-2101

Frame 2102-2105
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Frame 2106-2109

Frame 2110-2113

Frame 2114-2117

Frame 2118-2121

Figure 8.5: The wild fire frames. Noted that the contrast is adjusted for presentation.
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Frame 2086 vs. 2087 Frame 2087 vs. 2088 Frame 2090 vs. 2091

Frame 2094 vs. 2095 Frame 2099 vs. 2100

Figure 8.6: The registration failures of conventional MMI algorithm on wild fire image
registration.

spatial features share more similarity and the mutual information registration is more

robust. (discussed in page 49 in Chapter 4.

Another important enhancement is the optimization of the sample sets (discussed in

Chapter 6). The sample sets is not randomly selected and the sample set is optimized by

maximizing the entropy. Then the region of rich-in-information could be used fully and

the stability of registration is highly improved.

This experiment uses kurtosis to measure the registration quality (Chapter 5). The

80% kurtosis value is above 10. Those registration are achieved with high quality. Table

8.3 shows only two examples of registration kurtosis for the frame 2108 vs. 2109 and the

frame 2113 vs. 2114 below 5, which is the threshold for registration acceptance. The ratio

of correct registration is about 94%. This experiment result demonstrate the improvement

of FE-MMI algorithm over conventional MMI algorithm.
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Frame 2086 vs. 2087 Frame 2087 vs. 2088

Frame 2088 vs. 2089 Frame 2089 vs. 2090

Frame 2090 vs. 2091 Frame 2091 vs. 2092

Frame 2092 vs. 2093 Frame 2093 vs. 2094

Frame 2094 vs. 2095 Frame 2095 vs. 2096

Figure 8.7: The performance of FE-MMI on wild fire image registration: the left is the
overlapping image and the right is the search surface
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Table 8.3: The registration results for wild fire images.
Frame Rotation X Y Kurtosis

2086 vs. 2087 -2 -9 35 41.17
2087 vs. 2088 1.5 3 38 7.825
2088 vs. 2089 -2.5 -4 32 12.25
2089 vs. 2090 2.5 8 74 9.71
2090 vs. 2091 -2.5 2 44 34.39
2091 vs. 2092 2.5 -2 28 27.52
2092 vs. 2093 0 8 31 32.38
2093 vs. 2094 -2.5 -3 33 35.15
2094 vs. 2095 0 -7 29 39.82
2095 vs. 2096 0 -14 32 31.93
2096 vs. 2097 1 -15 24 36.43
2097 vs. 2098 0 2 27 40.20
2098 vs. 2099 0 -2 36 24.078
2099 vs. 2100 0 4 32 36.82
2100 vs. 2101 0 -7 33 37.97
2101 vs. 2102 2.5 0 32 34.69
2102 vs. 2103 -1.5 5 34 40.97
2103 vs. 2104 -2.5 1 23 39.02
2104 vs. 2105 1.5 -4 31 40.02
2105 vs. 2106 2.5 -1 18 41.16
2106 vs. 2107 -2 8 41 38.86
2107 vs. 2108 2.5 -24 13 6.28
2108 vs. 2109 -2.5 23 31 4.58
2109 vs. 2110 -2.5 -26 30 26.97
2110 vs. 2111 2.5 -2 25 24.12
2111 vs. 2112 -2.5 -7 34 41.67
2112 vs. 2113 0 -44 17 39.46
2113 vs. 2114 2 10 29 2.77
2114 vs. 2115 2.5 30 24 7.11
2115 vs. 2116 0 0 34 32.79
2116 vs. 2117 -1.5 2 31 39.5
2117 vs. 2118 1 -26 20 49.04
2118 vs. 2119 1.5 -43 26 6.66
2119 vs. 2120 1.5 15 34 27.56
2120 vs. 2121 0 -20 19 37.09
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8.3 Experiment III: SIFT enhanced MMI on wild fire Image

registration

The difference of pixel intensity in different band is the inspiration for us to choose the

MMI-based registration algorithm. As described before, due to different sensitivity, each

sensor responds to scene elements in different ways, which affects the histogram distribu-

tion and degrades the conventional MMI performance. On the other hand, the noise will

increase the fake corner points and augment the failure possibility of FE-MMI registration

algorithm. For example, the Figure 8.8 shows three bands for wild fire images. The short

wave band is brighter and catches more terrain detail; the medium band is more sensitive

to thermal variation and the part of fire is very clear; the long wave band is very sensitive

to thermal variation either, but still catches some terrain information in the dark areas.

These variations will blur the statistical relationship between the pixel intensity, which is

the base for the MMI-based registration. Meanwhile, the information-rich areas are dif-

ferent due to the sensor difference. Some regions will not match a counterpart in another

band and will act like noise to harm the registration.

Short wave band Medium wave band Long wave band

Figure 8.8: The example of the various sensitivity of different sensors

Under such difficult conditions, the method can be improved by relating regions with
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common characteristics. A salient region detection and matching method is needed to

find the matching pair. It has been found that Scale-invariant Feature Transform (SIFT)

can be used to identify potential salient regions. A further region selection is provided by

the region with enough spatial entropy. Then the registration is tested for each pair. The

pairs for all salient regions that pass above tests are selected. The transform parameters

for these pairs are used to initiate the registration for whole image.

Short wave band Medium wave band Long wave band

Figure 8.9: The salient region of the three bands

The Figure 8.10 shows the HCL maps of the best salient region pairs and corresponding

search surface for each pair. The Table 8.4 shows the kurtosis value for each pair. All three

search surfaces are capable of finding the parameters although the kurtosis of short-wave

band and mid-wave band is much lower than other two. The Table shows the translation

on X and Y directions for each pair.

Table 8.4: The kurtosis of the salient region pairs
Short vs. Medium Medium vs. Long Short vs. Long

Kurtosis 5.23 14.72 25.57

The best match parameters for whole image can be calculated with the center of salient

regions and the registration parameters for each pair of salient region. In this example,

the long wave band image is chosen as reference image because the registration of long-
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Figure 8.10: The salient region pair with best registration

Table 8.5: The translation on X & Y coordinators of each pair
Short vs. Medium Medium vs. Long Short vs. Long

Shift on X -15 13 -3
Shift on Y 7 -6 0
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wave band image with short-wave and medium-wave band images both get better kurtosis

value. The Table 8.6 shows the final parameters for three bands and the corresponding

registration result for each band is in Figure 8.11.

Short wave band vs. Medium wave band Short wave band vs. Long wave band

Figure 8.11: The registration result for between two bands

Table 8.6: The translation parameters for registration
Medium vs. Long Short vs. Long

Shift on X -9 3
Shift on Y -16 33

Most of the fire regions overlapped. But, due to the sensors’ differences, the alignment

of the border isn’t perfect, which make the images a little fuzzy. That’s more obvious in

overlapping image of the short vs. long wave band image. The final registration result is

shown in Figure 8.12.

8.4 Experiment IV: The Registration Between a LWIR Im-

age and Scene.

The most difficult registration task is the registration between the LWIR image and the

scene image. LWIR image is more sensitive to thermal variation than the visible image.
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Figure 8.12: The overlapping image of three bands

The registration is valuable for assessing wildfire damage to forest and structures. The

potential problems that can cause mis-registration are:

• The fire line is the good feature region for the long wave band image registration.

However, it will cause disturbance of the registration because there is the lack of the

corresponding information in the base image.

• Parts of rivers and roads are covered by the tree overhang and this increases the

difficulty of registering the images with those features.

• The base image is full of forest texture which increases the risk of extracting invalid

feature areas which decreases the robustness of the registration algorithm.

The above is a big challenge for automatic registration algorithms, and all automatic

registration algorithms failed in these extreme cases in our experiments. To achieve the

correct registration, manual pre-processing may be used to highlight such regions. The

manual pre-pressing includes two steps: first we build the mask to eliminate the fire area.
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This step is to get rid of the effect of the change caused by wild fire; the second step is to

build the mask to help to locate valid information in the base image. This is in the spirit

of using focus-of-attention to guide the MMI algorithm, albeit in the case with manual

help.

This experiment shows that registration can be achieved by highlighting with a mask

(Figure 8.13g)). Although in our experiment the mask was built manually, it could be

generated automatically with the GIS data information.

8.5 Experiment V: The counterexample of FE-MMI algo-

rithm.

The previous discussion and experiment shows the general improvement of FE-MMI al-

gorithm on the traditional MMI algorithm. But under some special condition, MMI algo-

rithm has better performance. The Figure 8.14 (a) and (b) are medium-wave and long-

wave band images. The images are first to be corrected for radial distortion. Note that,

there is a lot of vertical streaks in the medium-wave band, which leads to fake edge/corner

areas. This will cause the HCL-MMI algorithm fail on registration.

Conventional MMI algorithm works better under such conditions. The mid-wave band

image (Figure 8.14 (b)) is set as reference while long-wave band (Figure 8.14 (b) green)

floating image. The rotation is 1 degree. The shift in X orientation is 24 pixels (to right)

and 14 pixels down in Y direction. The registration result is shown in RGB color image,

in which the mid-wave image is put into Red band while long-wave image being in Green

band. The yellow regions represent the overlapping area while the green areas and red

spots mean the unmatched areas (Shown by the brown arrows). The parameter search

surface is shown in Figure 8.15(b). Due to the internal inter-band difference, the MMI
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 8.13: LWIR image registration: (a) & (b) represent original base image and mask;
c) is corresponding Harris corner label map we used for registration; (d) & (e) are the
LWIR image and mask; (f) is the Harris corner label map of (e); (g) is the registration
result of (c) and (f); (h) is the overlap of base image and LWIR image by the registration
parameter from (g)
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Long wave band Medium wave band

Figure 8.14: The long-wave and medium-wave band of wild fire

registration result is acceptable.

Overlapping image MMI search surface

Figure 8.15: The long-wave and medium-wave band of wild fire. Notice the vertical streaks
in the mid-wave band.

8.6 Summary

This chapter discusses the advantages and shortcomings of the conventional MMI, FE-

MMI and SIFT improved MMI registration algorithms for real remote sensing applications.

The MMI algorithm is a powerful tool for multi-band registration. FE-MMI is a good

method if the Harris corner detector can extract information-rich areas correctly. SIFT

enhanced MMI improves the registration by selecting regions with similar characteristics

with sufficient detail.

There is no conflict among the three algorithms and one can be converted to the other
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easily. If the pixel intensity is used as a feature, FE-MMI is converted to conventional

MMI. SIFT enhanced MMI is in the middle of the feature-based algorithm and statistical-

based algorithm. The window-size is a critical factor for SIFT enhancement. If the window

size is reduced to one pixel, the algorithm becomes the common feature-based algorithm;

on the other hand, the algorithm will be conventional MMI if the whole image is the salient

region. The choice can be decided to match the application and achieved the parameter

adjustment.



Chapter 9

Conclusions & Future Research

This dissertation provides a solution for multi-modal airborne image registration. The

MMI algorithm was originally designed for medical image registration. It developed and

introduced a similarity measurement based on statistical information (probability) make

it useful for multi-modal image registration because it can successfully avoid the negative

effects of inter-modality intensity variation. The experimental results demonstrates that

the MMI-based algorithm works on the registration of the infra-red images from different

bands in WASP system.

However, the experiments also show that performance robustness, accuracy and effi-

ciency need to be improved. False registration cases are common in flat search regions,

and the registration error is often more than one or two pixels. The slow speed of MMI is

another limitation. Solving those weaknesses is the motivation for our future research.

The previous versions of the MMI algorithm treat each point equally and select the

samples randomly. However, from our visual experience, the points located on the edges

or corners should play a more important role in registration. Those points contain more

spatial information and should be emphasized for registration. The algorithm is improved

126
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this by focus-of-attention mechanism that selects rich-information locations for processing.

Images can be divided into three categories with Harris corner detector.

There are best sample sets be constructed based on these classes. Furthermore it was

found that synthetic images formed by the classification labels can be used effectively for

the MMI registration, which leads to a significant increase in efficiency.

Another important extension is conversion of the MMI algorithm from the global based

to local based. Conventional MMI chooses the sample set randomly across the whole

image. The samples from non-overlap areas or high noise areas will impair the statistical

relationship of between the two sample sets. That negative effect is eliminated or relieved

by building the registration on extracted salient regions. Usually more than one salient

region is extracted from each image, and the parameters from the best match pair are

chosen as the starting point for further refinement. This initial registration can then be

improved by a finer MMI search over a limited parameter space.

9.1 Conclusions

To sum up above discussion, we can draw the conclusion:

• MMI algorithm is able to register many examples of multi-modal image. The statis-

tical relationship is a powerful similarity measurement;

• If mutual information for registration is changed from the pixel intensity to the

spatial information (structure distribution) produced by classification with Harris

corner detector, there is a substantial increase of robustness and accuracy;

• The measurement of the mutual information based on spatial features makes scene-

and-graphic registration possible;
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• The sample sets can be optimized by including the most information (maximizing

the entropy), which can improve the performance in the same sample ratio, or reduce

the sample ratio without the loss of accuracy;

• The salient region extraction converts the global region based algorithm to local

region based. Such conversion is valuable for the registration when there are occlu-

sions, noisy areas or low-overlap images;

• The calculation time can be greatly reduced by the applying the pyramid coarse-to-

fine method and using classification images extracted from Harris corner detection

instead of original pixel intensity. This is valuable for processing large data sets;

• The algorithm framework is modular. Each step could be applied to specific appli-

cation requirements.

9.2 Limitation and Future Research

The main limitation of the proposed algorithm is in the assumption that the images

include enough structure information for registration. If the Harris corner detector cannot

identify enough information-rich pixels in the image, accuracy and stability will decline

significantly. In this case, this technique may be extended with other feature detectors,

which may be of interest in some applications, or “fall back” to the conventional MMI

approach.

To keep the the generality of the algorithm, the common Harris Corner detector is

chosen as classification filter in our research. However, the algorithm performance could

be improved by application-specific filter design.

The algorithm can be adapted to a ”pipeline” structure, which would be useful in

applications such as real-time processing with moving platforms. The pipeline structure
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was not investigated here, but would be a natural extension in such applications.



Chapter 10

Publications

• MMI-based algorithm application on WASP image

X. Fan, H. Rhody and E. Saber, ’Automatic Registration of Multi-Sensor Airborne
Imagery’, presented at the AIPR, Washington DC, 2005 [125].

• The study of search method

X. Fan, H. Rhody and E. Saber, ”A Comparison of Exhaustive Search vs. Gradient
Search for Automatic Imagery Registration Based on MMI”, presented at the WNYIP
Workshop IEEE, Rochester, NY, 2006 [120].

• The extension of feature enhanced MMI algorithm

X. Fan, H. Rhody and E. Saber, ”A Harris Corner Label Enhanced MMI Algo-
rithm for Multi-Model Airborne Image Registration”, 2nd International Conference
on Computer Vision Theory and Applications, Barcelona, 8-11 March, 2007 [126].

X. Fan, H. Rhody and E. Saber, ”An Algorithm for Automated Registration of Maps
and Images Based on Feature Detection and Mutual Information”, Electronic Image,
SPIE/ISIT, San Jose, 27-30 Jan. 2008 [127].

• The analysis of registration performance

X. Fan, H. Rhody and E. Saber, ”A novel feature enhanced mmi based registration
algorithm for automated maps and images”, in 2008 IEEE International Geoscience
& Remote Sensing Symposium, (Boston, MA), July 2008 [121].

X. Fan, H. Rhody and E. Saber, ”A spatial feature enhanced MMI Algorithm for
multi-modal wild-fire image registration”, presented at the AIPR, Washington DC,
2008 [128].

• The sift improved FE-HCL algorithm

130
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X. Fan, H. Rhody, ”The Novel Improvement for the HCL-MMI Multi-Modal Image
Registration by SIFT Algorithm”, Accepted and will be presented in IEEE Western
NY image processing workshop at Sept. 27, 2009 [129].

• Journal Paper

X. Fan, H. Rhody and E. Saber, ”A spatial feature enhanced MMI algorithm for
multi-modal airborne registration” IEEE, Transaction in Geo-science and remote
sensing, submitted at 2008 and accepted at 2009 [130].

S.R. Lach, J.P. Kerekes, and X. Fan, ”Fusion of Multiple Image Types for the
Creation of Radiometrically-Accurate Synthetic Scenes,” Journal of Applied Remote
Sensing, vol. 3, 033501, DOI: 10.1117/1.3075896, January 2009 [131].
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