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Abstract

This works makes a compelling case for simulation as an attractive tool in
designing cutting-edge remote sensing systems to generate the sheer volume of data
required for a reasonable trade study. The generalized approach presented here allows
multimodal system designers to tailor target and sensor parameters for their particular
scenarios of interest via synthetic image generation tools, ensuring that resources are best
allocated while sensors are still in the design phase. Additionally, sensor operators can
use the customizable process showcased here to optimize image collection parameters for
existing sensors.

In the remote sensing community, polarimetric capabilities are often seen as a tool
without a widely accepted mission. This study proposes incorporating a polarimetric and
spectral sensor in a multimodal architecture to improve target detection performance in
an urban environment. Two novel multimodal fusion algorithms are proposed—one for
the pixel level, and another for the decision level. A synthetic urban scene is rendered for
355 unique combinations of illumination condition and sensor viewing geometry with the
Digital Imaging and Remote Sensing Image Generation (DIRSIG) model, and then
validated to ensure the presence of enough background clutter. The utility of polarimetric
information is shown to vary with the sun-target-sensor geometry, and the decision fusion
algorithm is shown to generally outperform the pixel fusion algorithm. The results
essentially suggest that polarimetric information may be leveraged to restore the

capabilities of a spectral sensor if forced to image under less than ideal circumstances.
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1 Introduction

In August 2008, Dr. Pete Rustan, then director of the Ground Enterprise
Directorate of the National Reconnaissance Office, identified high value target location
and tracking as one of the fundamental problems facing the intelligence community
[Rustan 2008]. Researchers with the Air Force Research Laboratory have stressed the
importance of detecting targets hidden in natural and man-made clutter, and described
efforts to exploit hyperspectral imaging capabilities for automated target recognition
[Eismann 2006]. However, the corresponding false alarm rates are often higher than
desired, especially for small targets in urban areas with a large amount of man-made
clutter.

Faced with the possibility of acquiring a new sensor system, the Defense
Acquisition Guidebook directs government acquisition personnel to consider cost as an
independent variable [DAG 2010]. Individual system capability requirements are defined
via a range spanning from thresholds, which must be met, to objectives, which represent
the ideal capability. The emphasis on controlling costs often means that the best possible
system is not actually built—rather, the government trades extra capability in one area to
meet requirements in others in order to stay within the budget.

In general, trade studies are used to assess the impact of varying capabilities
within the requirement range. As one way to potentially achieve a reduction in spectral
imaging false alarm rates, it is essential to explore how combining spectral imaging
capability with a second sensing modality will affect target detection capability in an
urban environment. The resulting multimodal sensor system might become effective

over a wider range of imaging conditions, more effective under ideal conditions, or some



combination of both. In addition, conditions may be identified where no increase in
performance is observed; potentially preventing an expensive lesson learned only after
the final system has been deployed.

Several existing commercial space-based systems incorporate multispectral
imaging capability, so the potential exists to task a sensor in that class for an urban target
detection scenario. However, the coarse spectral resolution of these bands limits the
ability to make fine distinctions between targets and background with reasonably similar
spectra, contributing to the false alarm rate. Adding a second sensor modality to a
multispectral sensor may significantly improve target detection performance by weeding
out some false alarms. Although performance may improve, the final multimodal system
may still not meet the detection accuracy requirements.

Alternatively, a hyperspectral sensor with a dramatically larger number of spectral
bands, as opposed to the four to ten in a common multispectral sensor, could capture
more spectral data for use in a target detection algorithm. As a result, the initial number
of false alarms is likely to be reduced, while no doubt driving a corresponding increase in
cost. When a second imaging modality is included in the system, the potential again
exists for an increase in performance. Further, because of the increased spectral
resolution, it is expected that the hyperspectral system’s target detection performance will
be superior to the multispectral system under similar viewing conditions. Once the
potential performance increase is known, the user can decide whether the increase in cost
is justified.

The outcomes of this study provide a series of contributions to the field of remote

sensing. Two novel fusion algorithms were developed by leveraging the strengths of



existing tools to fuse information at either the pixel or decision level. First, a new pixel-
level fusion algorithm was demonstrated to incorporate multiple sensing modalities for
target detection applications. The pixel fusion algorithm combines polarimetric
information with multispectral or hyperspectral measurements. Second, a generalized
decision-level fusion algorithm was showcased. The decision fusion algorithm combines
the outputs from different sensing modalities after a different target detection algorithm
has been applied to each data set. This dissertation breaks new ground by merging
relevant theory in the fields of spectral and polarimetric remote sensing for target
detection applications.

The foundation of this work was defining a process to quantify the effect of
incorporating both spectral and polarimetric information into an automated target
detection scenario via simulation with the Digital Imaging and Remote Sensing Image
Generation (DIRSIG) model [Ientilucci and Brown 2003]. Specifically, the effect of first
fusing data from a polarimetric sensor with data from a multispectral sensor, then fusing
the same data from a polarimetric sensor with data from a hyperspectral sensor were
quantified. A scenario with an urban environment was examined, and the available trade
space was mapped as a function of the viewing geometry, illumination conditions and
signal-to-noise ratios (SNR) of the chosen sensors.

Once the initial results demonstrated that incorporating additional polarimetric
information may enable suitable performance with a less capable spectral sensor, a series
of trade studies was carried out to assess how varying the spectral SNR, spectral ground
sample distance (GSD), or target spectrum affected the impact of spectral and

polarimetric data fusion via the spectral / polarimetric integration (SPI) algorithm for a



notional multimodal sensor. A field experiment was designed to further exploit the
DIRSIG simulation results and apply the fusion algorithms to real data by constructing a
small-scale scene of model cars and bits of urban clutter.

Finally, emerging research at RIT suggested yet another avenue to explore with
the spectral/polarimetric fusion concept. Therefore, a process was defined to model a
particular set of image acquisition scenarios, to determine which polarimetric image
(from a set of many) will produce the most impact on target detection performance, to
quantify the impact of incorporating polarimetric information from multiple viewing
geometries and to evaluate the performance degradation introduced by a reasonable
degree of registration error.

In summary, perhaps the most important contribution to the remote sensing
community from this dissertation was the demonstration of a generalized approach to
performing trade space evaluations via synthetic image generation tools. Simulation is an
attractive alternative for cutting-edge systems because of the sheer volume of data
required for a reasonable trade study, especially when multimodal sensors are considered.
However, the available trade space is enormous, and compromises must be made in terms
of what points are sampled because of finite computational resources. A generalized
trade space evaluation tool therefore helps to quickly bound the problem by sampling the
most extreme cases, and areas in between can then be sampled in ever finer resolution to
hone in on any dramatic changes in performance. System designers can thus tailor the
target and sensor parameters to their particular scenario of interest and determine how to

best allocate their resources. Further, users of existing joint multispectral/hyperspectral



and polarimetric sensors are presented with a method to determine the optimum tasking

conditions for their hybrid system.



2 Project Overview

2.1 Research Questions

The foundation of this research was an investigation into the effect of fusing
existing multispectral or hyperspectral sensor data with polarimetric information from a
second sensor in an urban target detection application. This project assumed a
multispectral or hyperspectral sensor with fixed capabilities had been designed and
combined a polarimetric sensor with each of the above mentioned sensors to assess the
benefits from a multimodal system. A performance improvement was defined as an
enhanced probability of detection at a fixed probability of a false alarm when the receiver
operating characteristic (ROC) curve for the multimodal system was compared to the
ROC curve for only the given multispectral or hyperspectral system under the same
conditions. For the initial part of this study, two potential scenarios were examined.

In the first case, the polarimetric sensor was co-located with the multispectral or
hyperspectral sensor, such that the viewing geometries for both sensors were identical. |
tested whether fusing data from the two sensors improved automated target detection
performance for a range of viewing geometries, illumination conditions and reasonable
sensor SNR values.

In the second case, the polarimetric sensor was on a different platform from the
multispectral or hyperspectral sensor, with each sensor optimally positioned for a
particular set of illumination conditions. With this scenario, I established the maximum
improvement in performance that could be expected from the given multimodal system

across a range of reasonable SNR values for each instrument.



2.2 Objectives
There were a number of steps required to complete the study at the foundation of
this project, and they are outlined below.

1. Define a relevant scenario. The comments in Sec. 1 indicate a useful analysis of
sensor performance consists of attempting to detect a specific type of vehicle
target in an urban environment under varying illumination and viewing
conditions, with the targets located in varying degrees of concealment and sensors
having a range of SNR values. Because of the vast number of combinations in
this trade space, and lack of available hardware or actual simultaneous data,
simulation presents a practical method to explore the options.

2. Select an effective combination of sensor modalities. Because some of the
bands in a hyperspectral system are highly correlated, a point can be reached
where little information is added by considering more data [Prasad and Bruce
2008]. Along these same lines, Petrakos et al (2001) found that maximizing the
increase in accuracy of a combined classifier depends on fusing classifiers that
often do not agree—ideally, they would be uncorrelated with each other, yet
correlated with the target. Therefore, a study was carried out to demonstrate that
classifiers exploiting the chosen sensing modalities were relatively uncorrelated
for the given target detection scenario.

3. Design a model scene. To plausibly explore the trade space, a synthetic image

generation model was required to render a radiometrically correct urban scene.



The synthetic scene must be geometrically plausible, with the material
characteristics in the scene characterized to a high degree of spatial, spectral, and
polarimetric fidelity. The model must then be capable of reasonably propagating
radiation from any sources through the atmosphere and correctly portraying any
interactions with objects in the scene. Finally, the model must be able to
accurately simulate the effect of a variety of sensor characteristics on the image.
Render multiple versions of the scene, varying a range of relevant
parameters. Schott (2007) explained that the sensor reaching radiance depends,
among other things, on the illumination source’s zenith and azimuth angles, the
sensor’s zenith and azimuth angles, and the shape factor of the target. In addition
to effects from the overall sensor reaching radiance, Schott (2009) noted the
ability to distinguish the target from the background is also highly sensor
dependent, depending in part on SNR for most systems and the degree of
polarization (DOP) for any polarimetric sensor. Therefore, a range of potentially
useful values for each of these variables was identified, and the simulation
executed for each case to isolate the effect of changing one variable at a time.
Compensate the spectral data for atmospheric effects. The simulated radiance
reaching the sensor is a function of both the scene characteristics and any
modeled atmospheric effects. In an actual target detection application based on
information from spectral libraries, it is reasonable to expect a user to perform
some type of atmospheric compensation, but the focus of this project was not to
determine which atmospheric compensation technique is best. Therefore,

considering the vast number of different simulated scenes to be analyzed, a



reasonable atmospheric compensation technique was applied with an emphasis on
simplicity and speed.

Simulate some degree of registration error between the two modalities.
Although the synthetic imagery for a given version of the scene consisted of
perfectly registered bands for both sensing modalities, exact registration between
the two modalities is unlikely in a practical application. Therefore, a small
amount of offset was induced to account for residual errors generated from
applying a registration routine to actual data.

Fuse co-located sensor outputs in a meaningful manner. After establishing the
baseline sensor performance, the data captured from the two sensors was
combined via a fusion algorithm to enhance the probability of target detection.
The type of data to be combined was identified, and then a methodology was
constructed to analyze the result and exploit the unique contributions of each
Sensor.

Quantify any impact on target detection. When the fusion product had been
assembled, improvement was defined in terms of an increased probability of
target detection over the data for a fixed probability of a false alarm. In essence,
the ROC curve for the fusion product was compared to the ROC curve of the
original sensor for each of the cases in Step 5, and any areas of performance
improvement or detriment were noted. A crucial part of this analysis was having
enough pixels to quantify low enough false alarm rates for a practical application,
so a balance was struck between the extent of the modeled scene and the required

computational effort.



9.

10.

I11.

Identify viewing geometries expected to maximize target detection
improvement for dispersed sensors. Since the different sensor modalities will
likely have different measures of merit for any target detection algorithm
employed, the ideal viewing geometries for each sensor are unlikely to be
identical. The data produced using each individual modality was investigated,
and compared to relevant theory, to identify each sensor’s optimum viewing
geometry.

Register the images generated by each sensor. Before data fusion can occur,
the data were registered into a common space. A process for aligning common
scene features in images from each sensor was determined and executed for the
limited number of viewing geometries identified in Step 9.

Establish the maximum attainable target detection improvement with the
decision level fusion algorithm for dispersed sensors. The fusion algorithm
applied in Step 7 should produce the best attainable probability of target detection
at a fixed false alarm rate with data obtained from each sensor when positioned in
its optimum viewing geometry. Therefore, the performance of the fused sensor
systems was compared with the original sensor’s performance, in its optimum
viewing geometry, to again quantify via ROC curves the maximum attainable

improvement in performance.

10



3 Background

3.1 Section Overview

This section describes previously published research and demonstrated
operational capabilities to examine the effect of multimodal data fusion in a target
detection scenario. Before developing an experimental method, the current state of the
art is assessed by examining existing sensor systems, understanding the different data
fusion levels, and reviewing established decision level fusion techniques. Further, a brief
overview of existing sensing modalities is conducted, with an emphasis on the emerging
field of polarimetric remote sensing. After a recap of previously published multimodal
sensor fusion efforts, the capabilities of several synthetic image generation models are
examined. Finally, several existing atmospheric compensation methods and target

detection algorithms are assessed for potential use in this project.

3.2 Existing Systems

Several commercial space-based operational sensors are currently capable of high
spatial resolution panchromatic imaging, with some also capturing a modest number of
spectral channels with a significantly lower ground sample distance (GSD). In particular,
the satellites operated by DigitalGlobe and GeoEye are among the most recognized and
illustrate the current commercial space-based state of the art.

The IKONOS satellite, launched in 1999 and currently operated by GeoEye, was
among the first commercial satellites to permit public access to high spatial resolution
imagery. In addition to providing a 0.82 m panchromatic GSD at nadir, the sensor also

has four multispectral bands—red, green, blue, and near-IR—with a GSD of 4 m
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[GeoEye 2009]. Additionally, the sensor can capture images up to 60° off nadir,
potentially imaging the same target from several different points of view.

Further pushing the envelope, DigitalGlobe’s QuickBird satellite, launched in
2001, is capable of 60 cm panchromatic GSD and 2.4 m multispectral GSD at nadir
[DigitalGlobe 2009]. Although QuickBird’s multispectral capability is similar to
IKONOS’s, with red, green, blue, and near-IR channels, QuickBird is different because it
can alter its pointing direction in both the across-track and along-track direction.
However, the satellite’s maximum slew in the across-track direction is only + 30° off
nadir. To meet the growing public demand for high spatial resolution imagery, and
reduce the image collection burden on QuickBird, DigitalGlobe launched the
WorldView-1 satellite in 2007. Although the sensor only has a panchromatic band, it is
capable of a 50 cm GSD at nadir with the ability to slew + 45° off nadir, with higher
angles being selectively available [Digital Globe 2009].

The next generation of commercial satellites sought to combine a high spatial
resolution, multispectral imaging capability and significant spacecraft agility. The
GeoEye-1 satellite was launched in 2008, boasting a panchromatic GSD of 0.41 m at
nadir and the traditional red, green, blue and near-IR multispectral bands with a GSD of
1.65 m at nadir. Most notably, the satellite has the incredible ability to rotate or swivel
forward, backward, or side-to-side—essentially allowing imaging in any direction, at
different times of day [GeoEye 2009]. DigitalGlobe’s WorldView-2 satellite, launched
in late 2009, is described as having similar spatial resolutions with a panchromatic GSD
of 0.46 m and a multispectral GSD of 1.84 m at nadir [DigitalGlobe 2009]. However, the

sensor has a unique combination of spectral bands: the typical red, green, blue, and near-

12



IR bands are included, along with additional red edge, yellow, coastal, and near-IR2

bands. The four additional multispectral bands are planned to provide enhanced

information for studying regions near water. As with WorldView-1, the satellite can slew

+ 45° off nadir with higher angles selectively available. Table 1 summarizes the key

capabilities of operational commercial high spatial resolution imaging satellites.

Table 1. Summary of key capabilities for operational high spatial resolution commercial imaging
satellites, as advertised by Digital Globe and GeoEye.

Satellite GSD Number of Max Slew Along-Track
(Panchromatic / Spectral Angle Pointing

Multispectral) Channels (Across-Track) Capability?
IKONOS 0.82m/4m 4 60° No
QuickBird 0.60m/2.4m 4 30° Yes
WorldView-1 0.50 m/ --- 1 45° No
GeoEye-1 04l m/1.65m 4 Any angle Yes
WorldView-2 0.46/1.84 m 8 45° No

In contrast to sensors with high spatial resolution and a few spectral bands, other

operational systems, dubbed hyperspectral sensors, have demonstrated the ability to

acquire spectral information over a significantly larger number of bands. When the

incoming signal is divided into such fine spectral bands, a trade must occur between

spatial, spectral and radiometric resolution [Schott 2007]. To compensate for the

decreased number of signal photons in each narrow spectral band, the GSD must be

increased or a lower instrument signal-to-noise ratio (SNR) must be accepted. Two of

the most widely known hyperspectral sensors are NASA’s Airborne Visible Infrared

Imaging Spectrometer (AVIRIS) and the Hyperion instrument onboard the EO-1 satellite.
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AVIRIS’s 224 spectral bands span the region from 0.4 um to 2.5 pm in 10 nm
increments, achieving a spectral resolution much higher than that of the previously
described satellites. Since the instrument can be flown on different aircraft, the GSD
depends on the chosen altitude. Kruse ef al. (2003) assessed AVIRIS’s capabilities to
quantify the instrument’s SNR, and calculated an SNR around 150 for most channels for
a 50% reflector. Encouraged by results obtained from AVIRIS, NASA launched the EO-
1 satellite in 2000, using the Hyperion instrument to demonstrate high spectral resolution
imaging from space. After the one year technology demo was complete, the U.S.
Geological Survey (USGS) assumed operational control of the satellite. The Hyperion
instrument’s capabilities are quite similar to AVIRIS’s, resolving 220 spectral bands and
spanning the region from 0.4 um to 2.5 um in 10 nm increments with a 30 m GSD
[USGS 2009]. Additionally, the spacecraft can point + 20° off nadir to acquire imagery.
Boeing’s Hyperion validation report highlighted that the sensor SNR for a 30% reflector
depended on the spectral region of interest: 140-190 in the VNIR, 96 near the center of
the SWIR (~1225 nm), but only 38 near the long edge of the SWIR (~2125 nm)
[Pearlman 2003].

In addition to space-based systems driving toward high spatial or spectral
resolution, the US military has emphasized flexibility in remote sensing applications,
effectively employing unmanned aerial vehicles (UAVs) like the Global Hawk and
Predator. The Global Hawk is designed to loiter at an altitude of 65,000 ft and is
equipped with electro-optical (EO), infrared (IR) and synthetic aperture radar (SAR)
sensors [Leachtenauer and Driggers 2001]. The EO sensor response spans the 0.4-0.8 pm

range and the IR sensor is sensitive across the 3.6-5.0 um range. Further, the EO sensor
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is specified to provide a visible National Image Interpretability Rating Scale (NIIRS)
value of 6.5 at a 45° elevation angle (28 km slant range) and the IR sensor is specified to
provide an infrared NIIRS of 5.5 at a 45° elevation angle (28-km slant range). Schott
(2007) calculated that a 10-inch GSD roughly corresponded to a NIIRS of 6.9, so the
visible GSD specification of the Global Hawk could be about 0.3 m for 45° off nadir, and
should improve as the viewing angle approached nadir.

According to the official US Air Force factsheet, the Predator system is a
remotely piloted vehicle with an operational ceiling of 7620 m equipped with a variable-
aperture TV camera and a variable-aperture IR camera. Specifically, the EO camera has
a 10:1 zoom, with the focal length varying from 16-160 mm and the FOV varying from
2.3 by 1.7 degrees to 23 by 17 degrees [Leachtenauer and Driggers 2001]. The GSD in
the visible range therefore depends on the zoom setting and aircraft altitude, providing a
significant degree of flexibility.

The above examples of existing systems demonstrate what levels of spatial,
spectral and signal resolution are currently attainable. Ideally, a new system would seek
to maximize all three, but practically, designers must make trades within the three spaces
to meet mission requirements. This dissertation attempts to identify any regions within
the trade space where an increase in capability might provide a dramatically improved
target detection performance in an urban environment. One way to improve target
detection capability might be to combine data from different sensors, a process known as

data fusion.

15



3.3 Data Fusion Levels

When approaching the issue of fusing data from multiple sources, the first task is to
determine the level of fusion that will occur. Essentially, one must determine the point
where information from the first source will first interact with information from the
second source. The three commonly accepted levels of data fusion in remote sensing
applications are the pixel level, feature level and decision level [Pohl et al. 1998]. Figure

1 shows how the three fusion levels are related to each other.
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Figure 1. Potential levels of data fusion and their relation to any image processing steps. Image
courtesy of Pohl et al., 1998.

Pixel level data fusion describes combining information from each source at the
lowest possible processing level, in effect merging different measurements of the same
physical parameter. One example of this type of data fusion is the spatial resolution
enhancement of multispectral data using higher spatial resolution panchromatic
information [Price 1987]. Given a lower GSD multispectral super pixel, the signal
strength of the smaller GSD panchromatic pixels can be used to infer what the spectral
characteristics of the smaller pixels might have been. The resulting product is a

multispectral image with a GSD equivalent to the original higher spatial resolution
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panchromatic image. Although the two images must be very well geometrically
registered to avoid artifacts and misinterpretation, pixel level fusion preserves the most
original data [Pohl ef al. 1998].

Feature level data fusion implies some processing has already taken place to
identify objects consisting of multiple pixels. Pohl et al. (1998) described a segmentation
application where individual buildings were extracted from an urban scene by exploiting
extent, shape and neighborhood, citing a dissertation written in French [Mangolini 1994].
Further, the corresponding structures used in feature level fusion tend to relax the
geometric accuracy required, but some information is lost during the feature extraction
process.

Decision level fusion consists of individually processing images, then combining
the results in some way to reinforce common interpretations and resolve discrepancies.
The final product thus provides a better understanding of the scene. Petrakos et al.
(2001) cautioned that the correlation between classifiers used in decision level fusion can
limit the potential accuracy increase. In brief, if two classifiers always agree or always
disagree, no new information is gained by combining their outputs. Table 2 demonstrates
how to determine the maximum potential increase in effectiveness obtained by fusing

outputs from two different classifiers.

Table 2. Table of dichotomous outcome for two classifiers, based on Petrakos et al. (2001)

) ) Classifier 2 — Correct Classifier 2 — Incorrect
Classifier Comparison ) . ) .
classification classification
Classifier 1 — Correct . .
classification Region 1 Region 2
Clasglﬁer ‘1 — Incorrect Region 3 Region 4
classification
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Region 1 represents the pixels that will never be misclassified in a combination. If the
number of pixels in Region 1 is divided by the total number of pixels, the result is the
lower limit of the classification accuracy of any combined classification scheme. Region
4 represents the pixels that will never be classified correctly by a given combination, and
dividing the number of pixels in Region 4 by the number of total pixels provides an upper
bound on the fused classification accuracy. Regions 2 and 3 are therefore a relative
measure of classifier effectiveness, and illustrate the potential performance increase
attainable with a data fusion algorithm.

This section has divided data fusion efforts into three levels, based on the amount
of processing that occurs before fusion. At the pixel level, raw measurements of the
same parameter are combined in some fashion, making the result highly dependent on
accurate registration. Fusing data at the feature level involves identifying objects through
their shape, extent, or neighborhood, slightly reducing the dependence on accurate
registration but preserving less of the original information. Finally, fusing data at the
decision level consists of processing sensor outputs independently, and often combining
metrics like a classification score rather than measurements of actual data. Since data
from ill-correlated sensors can be combined via decision level fusion, a great opportunity
exists to exploit decision level fusion in multimodal target detection scenarios.

Therefore, specific decision level fusion techniques will be investigated.

3.4 Decision Level Fusion Techniques
Decision level fusion techniques are based either on mathematical manipulations

of some score metric from different sensors, or some form of voting based on the opinion
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of all sensors involved. The most common mathematical manipulations are a linear
opinion pool (LOP), logarithmic opinion pool (LOGP) and a pseudo-inverse solution. In
contrast, the much simpler voting schemes are based either on some form of majority rule
or using the result with the highest confidence level.

The linear opinion pool (LOP) has the form shown in Eq. 1, where the group

probability of belonging to class w; is given by C;(X) if n data sources are used
Cj(X):Z/lip(wj |x,‘) (D
i=1

where X =[x,,...,x,]is an input data vector, where each x; is a source-specific pattern
which is multidimensional if the data source is multidimensional, p(w, | x,)is a source

specific posterior probability and A, (i =1,...,n) are source-specific weights which

control the relative influence of the data sources [Petrakos et al. 2001]. One weakness of
the LOP is that it shows dictatorship when Bayes’ theorem is applied and it is not
externally Bayesian [Benediktsson and Swain 1992]. The second technique, the
logarithmic opinion pool (LOGP), has the form shown in Eq. 2, where the group
probability of belonging to class w; is given by L;(X) if n data sources are used [Petrakos

et al. 2001]:
L) =T ptw, | x)" @

The LOGP differs from the LOP in that it is unimodal and less dispersed, while also
treating the data sources independently [Benediktsson ef al. 1999]. Additionally, a zero
vote from any source is an automatic veto. In either case, the weights should be high

when the data sources are expected to contribute to higher accuracy, and low when the
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additional data provides little added value. Finally, a pseudo-inverse solution can be
obtained by solving the problem with a linear regression model, where the inputs are the
spatial and spectral class-conditional probabilities and the outputs are the observed data
values [Benediktsson et al. 2004].

Decision level fusion techniques based on voting have been demonstrated in
hyperspectral classification applications. Perhaps the simplest method is to apply the
classification result from the sensor with the maximum degree of confidence in its
classification result [Benediktsson et al. 2004]. A more sophisticated approach, qualified
majority voting (QMYV), is designed to better exploit classifiers of disparate expertise.
The QMYV fusion algorithm allows each classifier to influence the decision, but varies the
impact each classifier has on the final decision by modifying the vote by some weighting
factor [Cheriyadat ef al. (2003)]. The final decision is then the outcome with the most
votes. In practice, the weighting factor is based on the degree of confidence the
experimenter has in each classifier.

Although several different decision level fusion schemes have been described, the
ideal fusion method is highly application and data dependent [Pohl ef al. 1998]. In
particular, the issues of differing classifier expertise and potential veto power are
especially important when considering potential fusion techniques. In a multimodal
sensor target detection application, if the sensors measure ill-correlated physical
phenomena under the same illumination conditions, it is likely that more confidence will
be placed in the results from one sensor than from another, and the LOP, LOGP and
QMYV methods account for this. However, in a LOGP, if one sensor is sure that a given

pixel is not a target, the pixel is ignored regardless of the other sensors’ opinions. The
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veto effect could be good or bad, but the issue of how to address veto power must be
considered in any decision level fusion scheme. In general, the way veto power is

handled depends on the sensing modalities used in a particular scenario.

3.5 Potential Sensing Modalities

Several different sensing modalities could be exploited for the urban target
detection problem, and each has potential strengths and weaknesses that must be
considered. The modalities potentially applicable for use in this work are synthetic
aperture radar (SAR), panchromatic imaging, multispectral imaging, hyperspectral
imaging, polarimetric imaging, and light detection and ranging (LIDAR).

SAR data has been previously analyzed via simulation with automatic target
detection algorithms [Douglas et al. 2004]. A significant amount of data is required to
accurately map the trade space associated with incorporating a second imaging modality.
This study therefore requires either an existing cache of SAR and spectral urban data,
obtained simultaneously, for a variety of viewing geometries and illumination conditions.
Alternatively, the data could be generated through rigorous simulation of a notional scene
as observed by both modalities under the same variety of viewing conditions. However,
since no such cache of simultaneous SAR and spectral urban data is freely available for
analysis, and since RIT doesn’t currently have access to a rigorous simulation program
capable of integrating SAR with other optical modalities, SAR must be ruled out for
consideration in this study.

Panchromatic imaging is often an attractive sensing modality, as the existing

satellites described in Sec. 3.2 show. Since photons are integrated over a wide spectral
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range, the instrument SNR can be quite high. Alternatively, the increase in signal
photons captured at the focal plane means the detector size, and therefore the GSD, can
be much smaller while still maintaining the SNR of a similar multispectral system.
Although a small GSD panchromatic image allows an analyst to more easily identify
features, panchromatic imagery is of limited use in automated target detection scenarios.
The nature of panchromatic imagery means only one image is available for processing,
and target detection would probably occur by using a spatial matched filter. In the urban
target detection scenario addressed by this project, the use of a spatial matched filter
becomes problematic for several reasons. First, because of the variety of different
viewing geometries, matched filters must be generated for all possible orientations of the
target vehicle. Next, the background is expected to be quite cluttered, meaning the target
will likely be partially obscured by trees, buildings, or other vehicles, reducing the
matched filter’s effectiveness. Finally, if the sensor is positioned at a fixed altitude but is
agile enough to look significantly off nadir, the range to the target and therefore scale on
the ground can change significantly. The variety of scaled replicas of the matched filter
required for every possible vehicle orientation would dramatically increase the
computational requirements for this scenario, making it an unrealistic option.
Multispectral imaging, referring to data captured with up to ten spectral bands, is
especially attractive for this project because of the relatively widespread availability of
these sensors. Multispectral systems range in complexity from the advanced satellites
outlined in Sec. 3.2 to airborne systems like the WASP-Lite (2009), flown in a Cessna by
RIT’s Laboratory for Imaging Algorithms and Systems. In addition, incorporating a few

bands of spectral information means images can be analyzed by either spatial or spectral
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techniques, or a combination of both, for a target detection application. Although
splitting the incoming signal spectrally impacts the instrument SNR, a reasonable GSD
can still be maintained. One can easily envision a multispectral system mounted on a
UAYV orbiting an urban environment searching for targets, making this a critical modality
to consider when mapping the available trade space.

Hyperspectral systems, with tens or hundreds of spectral bands, acquire a massive
amount of data. Schott (2007) summarizes many effective existing hyperspectral target
detection algorithms, but those algorithms which increase performance within an imaging
modality tend to require more processing time or human involvement, or both.
Additionally, new articles frequently appear in the literature detailing better hyperspectral
target detection and classification algorithms [Fauvel et al. 2008] [Huang and Zhang
2008] [Prasad and Bruce 2008]. Since it seems that no consensus has occurred within the
community with regards to a universally “best” algorithm, the challenge is to find a
reasonably effective and efficient target detection algorithm to model the baseline system
performance for this scenario.

Polarimetric remote sensing in the visible and thermal infrared is a relatively new
and largely undeveloped field [Schott 2009]. Anomaly detection algorithms have
achieved some degree of success with polarimetric data in separating man-made
materials from the natural background [Cavanaugh et al. 2006]. For the urban target
detection scenario, a significant portion of the background is man-made material, so the
anomaly detection capability may be reduced. Further, polarimetric sensing is highly
sensitive to illumination and viewing geometries [Devaraj et al. 2007]. However, since

polarimetric anomaly detection algorithms exploit different phenomenon than spectral
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algorithms, a polarimetric remote sensor could potentially complement a multispectral or
hyperspectral sensor for urban target detection applications.

As an alternative to passive systems that are affected significantly by solar
illumination conditions, active LIDAR systems have also been used in seaborne target
detection applications [Van den Heuvel et al. 2008]. Although range information can be
extracted from reflective scene elements, identifying specific targets in a cluttered urban
environment seems to be a computationally intensive task subject to some of the same
limitations as panchromatic imaging. If done correctly, LIDAR data could be used to aid
registration of the polarimetric data with the spectral data [Lach ef al. 2009]. Further,
LIDAR data has been fused with aerial imagery to extract individual building footprints,
with a GSD of about 1 m, but several hundred pulses were needed per pixel [Zabuawala
et al. 2009]. However, it may be a challenge with LIDAR to obtain this resolution over a
notional 1 km? urban environment, in a timely fashion, without being apparent to
observers below.

In summary, SAR, panchromatic EO, multispectral, hyperspectral, polarimetric
and LIDAR systems could all potentially be combined in some fashion as part of a
decision level data fusion experiment. Although most of these modalities have been
extensively employed in the remote sensing field, polarimetric sensing is an emerging
capability. Before investigating previous fusion demonstrations, a high-level overview of

polarimetric remote sensing will be conducted.
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3.6 Polarimetric Remote Sensing

A full explanation of the field of polarimetric remote sensing would require an
entire text, so this section is intended to provide a basic overview on how to manipulate
measured polarimetric information for later exploitation. Polarimetric information is
derived from a combination of the signal obtained by viewing the scene through various
linearly polarized filters, and typically expressed as a vector of Stokes parameters based

on irradiance [Schott 2009]. However, the direction of the polarization in the sensor

reaching radiance can be expressed through the unnormalized Stokes parameters, S, as

shown in Egs. 3 - 6 below:

Sy=Ly+L, (3)
S =L,-L, 4)
S,=L.—L (5)
Sy =Ly—L, (6)

A

where 3’0 is the total incident radiance, §1 is related to horizontal polarization, S, is
related to the polarization at 45°, and S , 1s related to the circular polarization of the

incident radiance. The §,, S, and S, values can be either positive or negative,

depending on which type of polarization dominates. In Egs. 3-6, L represents the sensor
reaching radiance while the subscript denotes the use of a polarizing filter oriented to
transmit only radiance polarized horizontally (H), vertically (V), diagonally (+45 or -45)

or circularly (R or L).
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Another way to express the polarization state of the incoming radiation is through

the normalized Stokes vector, S, arranged as shown in Eq. 7 [Schott 2009]

S, /8,1 [S, 1

s=|5/Su | S| ™
S, /8, | [Sa] IS,
53/50 S, S,

The degree of polarization (DOP) and the degree of linear polarization (DOLP) in the

incoming radiance are calculated via Eqgs. 8 and 9.

DOP - \SE+ S +S? q
= (8)

0

JSE+S3
poLp =21 22 9)

0

In practice, S, = 0 for most passive sensing applications, so DOP = DOLP [Schott

2009].

Because the polarimetric components of the Stokes beam obey linear
superposition, the incoming energy can be represented as the sum of a completely
polarized component and a randomly polarized, or completely unpolarized, component

by incorporating the DOP as shown in Eq. 10 [Schott 2009]:

DOP- S, S,
S 5 +(1- DoP) 0 (10)
= — Do
TOT S2 0
S, 0

Again, for a passive sensing application, the radiance vector can be simplified by

neglecting circular polarization, as shown in Eq. 11:
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DOLP-S, S,
Sior=| S, |+(-DOLP) 0 (11)
S, 0

If a polarization sensitive sensor is incorporated, the instrument is represented as a
Mueller matrix, M), and relates the Stokes vector of the incident radiance, S, to the
Stokes vector recorded by the detector, Sp, as shown in Eq. 12 [Schott 2009]:
Sp =M, -5, (12)

The ability to detect an object’s polarimetric signature is highly dependent on the
sun-target-sensor viewing geometry [Schott 2009]. Specifically, the Fresnel reflection
coefficients of polarization states parallel and perpendicular to the plane of incidence, of
a specular surface, depend differently on incident angle. As a result, nadir view or
illumination tends to induce no polarization difference, while larger angles induce a
larger DOP. However, as angles get more oblique, the DOP again decreases. Further,
the specular component, rather than the diffuse component, of the reflectance tends to
induce polarization [Schott 2009]. These effects suggest the presence of a polarimetric
sensing “sweet spot” located azimuthally near the specular component of the reflection
from the target and at some middle declination angle. Now that the fundamentals of
polarimetric information have been described, an in-depth investigation of previous

multimodal data fusion demonstrations can be conducted.

3.7 Previous Multimodal Data Fusion Demonstrations
Several examples of multimodal fusion demonstrations can be found in the
literature, exploiting different fusion levels for different applications. In imaging

applications, spectral data is often fused with either spatial or temporal data for land-use
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classification. However, spectral data is more commonly fused with polarimetric data for
anomaly detection or target detection scenarios.

One application of data fusion was based solely on the relationship between bands
of spectral data. Hyperspectral data was partitioned into contiguous subspaces,
maximizing the discrimination information in each subspace while minimizing the
statistical dependence between subspaces [Prasad and Bruce 2008]. Each subspace was
then treated as a separate source in a multisource classification problem. Several decision
level fusion algorithms were employed, classified as either hard decision fusion or soft
decision fusion. In hard decision fusion, like QMYV, a final decision was based on some
weighted vote from each data subspace. Hard decision fusion techniques had the
advantage of proving relatively insensitive to inaccurate estimates of posterior
probabilities. Alternatively, a soft decision fusion technique, like LOP or LOGP used
some class membership function from every classifier to make the final decision. For the
hyperspectral subspace problem, soft decision fusion techniques were more likely to
provide stable and accurate classification.

Another application relied solely on hyperspectral data, but used decision level
fusion to leverage multi-temporal data in an application distinguishing between two
aquatic vegetation species [Prasad ef al. 2008]. Several common classification
algorithms were used as baselines to determine the fusion system’s effectiveness, and
majority voting was employed as the decision fusion scheme in all cases. In the first
baseline method, linear discriminant analysis (LDA) was conducted for each day, and
then the LDA outputs from all dates were combined into one common feature space for

analysis with a single classifier. In the second baseline approach, hyperspectral
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signatures from all dates were combined into a single dataset, and the hyperspectral space
was partitioned into multiple smaller subspaces, with LDA and classification performed
on each subspace. The third baseline algorithm again involved merging hyperspectral
signatures from all dates into a single dataset, projecting the data into a new spaced based
on LDA (learned from training data), then applying a single classifier. The proposed
multi-temporal decision fusion system consisted of classifying each day’s hyperspectral
data via Gaussian maximum likelihood (GML), then combining those classification
results over multiple days via majority voting. For this two-class application, the multi-
temporal fusion system outperformed the baseline algorithms that didn’t fully exploit the
temporal information.

In an attempt to better exploit complementary imaging modalities, airborne
LIDAR data has been fused with hyperspectral data at the pixel level for a seafloor and
land cover classification problem [Macon ef al. 2008]. Since the LIDAR data and
hyperspectral data were acquired under highly similar environmental conditions, the
LIDAR data was first used to correct the hyperspectral data to produce a geo-referenced
image for each flight line. Radiation transfer equations were then used to estimate the
seafloor reflectance from the data. Finally, the results of LIDAR processing were used to
establish an elevation for each pixel, permitting fine corrections of the seafloor
reflectance data when known water properties were taken into account.

Another complementary set of imaging modalities used for decision level fusion
was multi-frequency polarimetric SAR with a panchromatic EO sensor [Yang and Moon
2003]. For a land-cover classification application, each data source was independently

classified using the maximum likelihood classification method, based on a subset of
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training data, and the classification results were merged using the Dempster-Shafer
theory of evidence. The Dempster-Shafter theory measures conflicting results via user
defined belief and plausibility metrics, and assigns the pixel of interest to the most likely
class. Specifically, the belief metric was the sum of user-defined mass functions for each
class, and the plausibility metric was the maximum class-conditional probability assigned
by any classifier. No general rules exist for defining the class mass functions, although
this step was identified as the most crucial one in the algorithm [Yang and Moon 2003].
Using a mass function based on all the classification results for pixels in a window
around the pixel of interest, the fusion algorithm was found to enhance classification
accuracy when results from the EO and SAR system were compared to results from just
the EO system.

One of the more sophisticated techniques to fuse multispectral and panchromatic
data was an algorithm relying on principal component analysis (PCA) and the discrete
wavelet transform (DWT) [Chen ef al. 2005]. First, both images were geometrically
registered and the multispectral image was spatially resampled to match the panchromatic
image. Next, the first principal component (PC) was obtained from the multispectral
image via PCA. Then, the panchromatic was histogram matched to the PC image, and
wavelet decomposition was performed. The low frequency coefficients of the PC image
were then set as the low frequency coefficients of the fused image, but the high-
frequency components were chosen from either the PC image or the panchromatic image
via a series of decision rules. Finally, an inverse DWT and inverse PCA were performed

to generate the spatially enhanced fused image.
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Attempts to fuse hyperspectral and polarimetric data have occurred at different
decision levels for a wide variety of applications, essentially limited by the capabilities of
the hardware available. In one example, LWIR hyperspectral imagery was combined
with polarimetric information to determine the near-surface wind vector, sea-surface
temperature, and surface thermal emission properties [lannarilli ef al. 2000]. The
hyperspectral and polarimetric data were acquired simultaneously using the InfraRed
Polarimetric HyperSpectral Imager (IRPHSI) developed by Aerodyne, which was
designed to be mounted on a ship and consisted of a single focal plane array,
conventional optics, and no moving parts. Birefringent crystals were used to influence
the polarimetric information such that the polarization information modulates the spectral
information when captured at the focal plane. A demodulation scheme based on the
Stokes vectors was used to extract the polarimetric information, and the primary
advantage of this approach was that the hyperspectral and polarimetric images were
perfectly registered in both time and space. From the modulation pattern imposed on the
spectral data, a pixel fusion technique was carried out to solve for the wave slope, which
was then used to determine the near-surface wind vector. Further, the ability to solve for
the wave slope inversely depended on the GSD, since the polarimetric effects tended to
average out over larger sample sizes. This last point illustrates the importance of high-
spatial resolution in any polarimetric system designed for use in anomaly or target
detection.

One particular target detection application employing polarimetric sensing was a
system designed to exploit spectral features in visible and near-IR polarimetric images

[Duggin and Loe 2002]. In that setup, thin film polarizers were manually rotated
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between image captures to obtain the polarization measurements required to define three
of the four Stokes parameters. Images of a model military vehicle, painted with
camouflage paint and in a shadow under a platform covered in live leaves, were taken at
discrete wavelengths over the range from 400 nm to 1 um. The intent was to determine
whether polarimetric information could assist in differentiating man-made targets from
the background. In an example of fusion at the pixel level, the polarimetric images from
the near-infrared were analyzed with an NDVI algorithm and contrast in the resulting
image provided some ability to separate the target from the background.

In an attempt to further exploit the combination of spectral and polarimetric
imaging, an anomaly detection experiment was carried out with a ground-based
hyperspectral polarimetric imaging test bed [Cavanaugh ef al. 2006]. The imaging test
bed consisted of SWIR and VNIR hyperspectral capabilities, three polarimetric channels
with linear polarizers set at 0, 60 and 120 degrees, and one high resolution panchromatic
channel. Anomaly detection was accomplished by computing the PC transform of a
hyperspectral image, classifying each pixel via a K-means classifier, and highlighting any
pixels below some threshold probability of belonging to any of the classes. Separately,
the polarimetric images were combined to calculate the DOLP of each pixel in the scene.
Since the scale of the hyperspectral imagery exactly matched the polarimetric image, the
images were combined by simply overlaying them such that the resulting pixel value was
a multiplication of the hyperspectral anomaly score and the DOLP. Figure 2 summarizes
the data fusion procedure laid out by Cavanaugh ef al. (2006). Their preliminary results
showed some ability to detect small man-made targets amidst a natural background,

although a number of false alarms were also flagged.
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Figure 2. Data processing scheme for hyperspectral polarimetric imaging system used by
Cavanaugh et al. (2006).

Another system with both hyperspectral and polarimetric imaging capabilities was
demonstrated by Alouini et al. (2009). The hyperspectral imager spanned the 800 - 2100
nm range with a spectral resolution of 5 nm. The system was operated in either active or
passive mode, and in the active mode nonlinear optical crystals were used to create one of
five different signal wavelengths. To acquire images, the camera was operated at twice
the pulse repetition rate, effectively interleaving an active image with a passive image,
while rotating the polarization state between active images. For each image, the passive
image was subtracted from the active image to eliminate the contribution of ambient
light. Therefore, the system effectively became a multispectral sensor, acquiring
polarization images at five different wavelengths. In their ground-based target detection
application, one scene was analyzed with small metal plates located 20 m away from the
sensor against different types of backgrounds. Further, a metric called the peak-to-

sidelobe ratio (PSR) was defined, representing the conspicuousness of the peak
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corresponding to the position of the target in the particular image, with a higher PSR
providing easier target detection. Alouini ef al. found that the PSR increased with
wavelength for the intensity image, but that the PSR decreased with wavelength for the
polarimetric image, and concluded that the intensity and polarimetric images for diffuse
objects tended to behave in a complementary manner in most cases.

To recap, spectral data (of various spectral resolutions) has been fused with
additional spectral data, obtained either in different regions of the spectrum or at different
times, to enhance classification performance. Additionally, LIDAR, SAR, and
polarimetric systems have been used in conjunction with spectral data for land cover
classification, anomaly detection and target detection applications. The past successes
achieved with spectral and polarimetric data suggest that fusing those two data types may
increase target detection performance. Further, the fusion demonstrations indicate that
information can be gained by examining both how anomalous and how target-like a pixel
appears. However, the key requirement for multimodal fusion applications is
simultaneous data acquired by both modalities. Because of the difficulty involved in
acquiring simultaneous data for two state of the art systems, under a variety of imaging
conditions, simulation becomes an attractive option. Therefore, the capabilities of

existing software packages must be assessed.

3.8 Existing Simulation Software
Several software simulation packages exist, with varying degrees of use and
acceptance in the remote sensing community. Results from MODTRAN, IRMA,

CameoSim, IRHSS, and DIRSIG have been shown in remote sensing literature and
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conferences for the field. These tools often began as one specialized application, with
increasing capabilities provided via extra modules developed over time.
3.8.1 MODTRAN

The MODTRAN model [Berk et al. 1989] is probably the most widely used and
readily available of any of the atmospheric radiation propagation models [Schott 2007].
MODTRAN assumes the atmosphere is divided into a stack of homogenous layers, with
the temperatures and concentrations of those layers determined either from user inputs or
standard atmospheric profiles. After the user defines a sensor location and view angle,
the radiance reaching the sensor from a given point is determined by incorporating the
cumulative transmission effect of each of the atmospheric layers, with a spectral
resolution as small as 2 cm™. Additionally, the MODTRAN model allows a sensor to be
placed on the ground, looking up to space. Integrating the observed radiance from
several angles effectively computes the downwelled radiance under the given weather
conditions. A limited release version, MODTRAN 4P, is capable of modeling the
atmospheric effects on radiation with different polarization states, a crucial requirement
for synthetic polarimetric modeling efforts [Devaraj et al. 2007]. However, MODTRAN
4P is limited to modeling single scattering rather than accounting for multiple bounces.
3.8.2 IRMA

The US Air Force’s Infrared Modeling and Analysis (IRMA) software package
has the capability to generate imagery simulating sensors from the visible range, IR,
millimeter wave radar, and SAR, and claims over 130 users [Savage et al. 2008]. The
software is divided into a passive channel, a radar channel, and a LADAR channel, each

viewing a common scene made of models constructed from triangular facets. Material
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IDs are associated with each facet to describe its electromagnetic properties, referencing
additional reflectance, thermal properties, and texture files.

Although significant effort seems to have been invested in the radar channel,
interest in IRMA for this project is limited to the passive channel, which Savage ef al.
(2008) described as further divided into three separate programs: ENVIRO,
PASSIVE/PPASSIVE, and SSW. ENVIRO is used to compute the heat signatures of
objects and one-dimensional heat transfer between objects, calculating facet temperatures
for use by the passive image generators. PASSIVE models an unpolarized signature,
while PPASSIVE models generalized elliptical polarization signatures, rendering images
via Z-buffer accounting for emitted radiation, diffuse and specular reflections from the
sun, the sky, and the earth, atmospheric path radiance, path transmittance, sensor spectral
effects, and sensor spatial effects. SSW handles sensor effects modeling such as system
responsivity and digitization. Surface reflectance is modeled with diffuse and specular
components, and the passive channel includes multiple bounce effects.

In one example, IRMA was used to model a polarimetric IR imaging system in a
small target detection scenario [Sadjadi and Chun 2004]. The scene of interest consisted
of four aircraft hangars connected by runways, with a target vehicle (either a T-72 tank or
M-35 truck) parked on the grass nearby. Several simplifying assumptions were made in
the modeling process. First, all surfaces were set to the same temperature, 24° C.
Second, only two surface materials existed: grass, which emitted unpolarized light, and
glossy paint, which emitted polarized light as described by the Fresnel equations.
Finally, no sun was present in the scene. Figure 3 shows the synthetic scene as observed

by the three Stokes vectors Sy, S; and S, as described in Sec. 3.6.
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Figure 3. Synthetic polarimetric imaging scene generated by Sadjadi and Chun (2004) using the
IRMA software package. The scene is displayed as an intensity value for the S, (top), S; (middle),
and S, (bottom) Stokes vectors.

Given these constraints, Sadjadi and Chun demonstrated the ability to separate the target
from the background using statistical methods in a simple scene at GSDs with as few as
four pixels on target. However, IRMA’s polarimetric fidelity currently seems hindered
by significant simplifying assumptions, so it will be avoided for this dissertation.
3.8.3 CameoSim

The CameoSim software package is currently maintained by Lockheed Martin’s
UK division. Ranging from the ultraviolet to the infrared, CameoSim is based on first
principles physics and radiometric interactions, while using ray tracing techniques to
generate a radiance map as well as temperature images for synthetic scenes. In general, a
CameoSim scene is constructed of 3-D geometric models, which are generally composed

of facets [Mitchell ez al. 2007]. Each facet then has a material associated with it, and
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each material is described in a database containing a bidirectional reflectance distribution
function (BRDF) along with optical and thermophysical properties. A sensor system is
defined, along with known weather parameters and a time of day. An atmospheric
database incorporates direct solar or lunar fluxes, sky shine fluxes, path radiance and
transmission, and the local thermal environment. The synthetic image is rendered by
incorporating the cumulative effects of the sensor and atmosphere in observing the scene.

Some work has been done to validate CameoSim’s hyperspectral modeling
capability and to determine the fidelity of reflection modeling. Although the synthetic
hyperspectral data compared reasonably well to real data, areas for improvement were
identified [Briottet et al. 2006]. Specifically, difficulties arose in capturing the correct
tree density and effects of the 3-D nature of grass in the modeled scene. Problems were
also noted with facets that failed to accurately represent reflections, or glints, from curved
areas like rotor blades in the 3-5 pm band [Mitchell ez al. 2007]. One approach to solving
the problem was to simply use the law of reflection with an enormous number of small
facets, but a severe increase in computational load resulted. In contrast, a method known
as vertex averaging was demonstrated to be more accurate with far fewer facets.

More recently, Harvey ef al. (2008) used CameoSim to analyze a laser imaging
application and their synthetic scenes are shown in Figure 4 below. In their urban
scenario, the sensor flew toward and then over the target, such that the degree of
obscuration remained constant regardless of range or look-down angle. In the scene with
the target under foliage, rendering individual leaves took a significant amount of
computing time, limiting the number of target types that could be used in a given

scenario.
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Figure 4. Synthetic CameoSim scenes used by Harvey et al. (2008) for a laser imaging application.

Although CameoSim seems to be reasonably rigorous, the common intense
computational requirements make CameoSim an unattractive option for simulating a
complicated urban environment under the vast number of illumination conditions for a
serious trade study.
3.8.4 IRHSS

Kwan et al. (2008) described the Infrared Hyperspectral Scene Simulation
(IRHSS) software suite sponsored by the US Air Force Research Laboratory and the
Army Armament Research, Development and Engineering Center. In addition to models
for atmospheric propagation and sensor processing, the software integrates the Multi-
service Electro-optical Signature (MUSES) model to compute scene temperatures and
hyperspectral radiances for the thermal IR bands (3-14 um). As with the other modeling
packages, material surface properties are linked to facets in 3-D geometry models. The
software is relatively new and results lack widespread publication in remote sensing
literature. IRHSS’s limitation to IR spectral data severely constrains its potential use in a

data fusion experiment.
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3.8.5 DIRSIG

The Digital Imaging and Remote Sensing Laboratory at Rochester Institute of
Technology developed the DIRSIG software package as a first-principles based ray
tracing model to create sample data to test image system designs, evaluate target
detection algorithms and train image analysts. Rays are cast out from each pixel on the
focal plane to determine what that pixel sees, and what the sources of radiance are for the
area observed. Each pixel is subsampled, with the spectral results combined via a linear
mixing model [Ientilucci and Brown 2003]. The model is capable of producing
hyperspectral imagery from the visible through the thermal infrared (0.4-20 pm), and can
correctly model interactions for different polarizations of incoming light. The
MODTRAN model is incorporated into DIRSIG to accurately account for atmospheric
effects.

DIRSIG has been used to model both high resolution spectral and spatial data.
Since DIRSIG is a ray tracing model, geometric detail is essential to accurately describe
radiometric mechanisms. Striking a balance between the modeled field-of-view and the
required computation time means the amount of detail required is inversely proportional
to the expected GSD. A wide area synthetic scene dubbed Megascene 1 was constructed
in DIRSIG to mimic an area on the northeast side of Rochester, NY for use in
hyperspectral image analysis [Ientilucci and Brown 2003]. The area of interest has a
combination of urban and suburban residential, industrial and forested areas, so detailed
models of ten geometrically unique house types, along with specific commercial and
government buildings were created in the Rhinoceros CAD package [Rhinoceros

software 2010]. In addition, six different species of trees were modeled with the Tree
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Professional software package [Tree Professional software 2010], and three geometric
variants of each species were created. Figure 5 shows examples of the models produced

by Ientilucci and Brown.
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Figure 5. (Left) Example of a house generated with Rhinoceros. (Right) Screen capture of the Tree
Professional software package illustrating a rendered Norway maple. Images courtesy of lentilucci
and Brown (2003).

Once the houses and trees were designed, the models were replicated and altered through
scale, rotation and translation for use throughout the scene. Further, the materials
attributed to each facet could be changed each time the model was reused in the scene.
As aresult, a set of 50 geometrically and spectrally unique houses was produced,
complemented by a set of 20 geometrically and spectrally unique trees. Additionally,
primary terrain materials like asphalt and grass were characterized spectrally and placed
in the scene to match the results of a GML classification performed on actual data of the
site. Finally, the spectral angle mapper (SAM) and spectral matched filter (SMF)
algorithms were applied in a target detection scenario, and the trends of the ROC curves
that resulted were consistent with results obtained from actual data.

For applications based on a much narrower field-of-view, a high resolution

synthetic scene dubbed MicroScene was constructed based on an existing data collection
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effort [Barcomb et al. 2004]. High spatial (3 GSD) and spectral (0.01 pm) resolution
imagery was captured using at the Rochester Institute of Technology using the Center for
Imaging Science’s MISI and WASP sensors at an oblique viewing angle. Three
Humvees were placed in the scene under varying levels of concealment to serve as
targets. After the data was collected, a spatially and spectrally accurate synthetic replica
of the scene was created in DIRSIG. The synthetic imagery was validated against the
images of MicroScene by analyzing both scenes with qualitative analysis, GML
classification, and the RX target detection algorithm. Figure 6 demonstrates one example
of the qualitative analysis performed by Barcomb ef al., where an actual image of a
Humvee under camouflage netting was compared to the synthetic image of the same

scene to highlight the phenomenology reproduced.
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Figure 6. (Left) Actual image of a Humvee under camouflage netting. (Right) Synthetic image of the
same Humvee under camouflage netting, demonstrating accurate reproduction of a highly detailed
model and shadowing phenomenology. Images courtesy of Barcomb et al. (2004).

Although the GML classification results showed some differences depending on whether
DIRSIG or truth derived training sets were used, overall the objects in the image were
classified appropriately with either training set. Further, it was found that the results of

the RX algorithm at the high resolution examined were dependent on the accurate
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modeling of objects in the actual scene that were initially considered inconsequential,
demonstrating a potential flaw in model scenes that use only a test object and a uniform
background.

Building on the successful modeling of spectral effects, polarization effects were
first incorporated into DIRSIG by using BRDF models based on the Torrance-Sparrow
and Beard-Maxwell models to provide polarized BRDF estimations [Meyers et al. 2002].
By applying the effects of surface roughness and index of refraction to the different
incident polarizations, the models reasonably matched measured BRDF data. However, a
lack of polarimetric BRDF databases poses the single largest problem for conducting
fully polarimetric radiometry simulations, while physically based BRDF models do a
reasonable job of predicting the polarimetric BRDF of simple surfaces. Because
materials with highly polarized properties, such as the man-made materials often sought
in target detection algorithms, are often also highly specular, the full BRDF is required to
correctly incorporate the directionally reflected background contributions [Gartley ef al.
2007]. DIRSIG generally treats the polarized BRDF as a polarized specular component

and an unpolarized volume component, as shown in Eq. 13:

prRDF = fs‘pecular + fvolume = fpolarized + funpolarized (13)

The generalized, polarized BRDF model used for Gartley’s study was the “Shell Target”
BRDF model [Shell 2005]. In this approach, the specular component was modeled using
a generalized, polarized, Gaussian-distributed micro-facet approach, while the
unpolarized component was modeled using a compound volume scattering and diffuse
scattering term. Polarimetric measurements were taken of geometrically complex

vehicles open to the night sky, and a similar scene was rendered in DIRSIG to assess the
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polarimetric modeling capabilities. Figure 7 shows the actual imagery alongside the
synthetic DIRSIG imagery generated by Gartley ef al. Qualitatively, the images agree
quite well in each band. However, some salt-and-pepper noise is apparent in the S,
synthetic image of the SUV, a fault which the study’s authors traced to the chosen
polarized BRDF model breaking down at grazing angles rather than an issue with

DIRSIG’s ray tracing capabilities.

Real Images

DIRSIG Simulation

Figure 7. (Left) Actual polarimetric images of vehicles under a cold, clear night sky. (Right)
Synthetic image generated by DIRSIG based on the actual scene. Images courtesy of Gartley et al.
(2007).

Another effort to reproduce real-world polarimetric imagery in the reflective
region with the DIRSIG model incorporated pBRDFs, polarized atmospheric models, and
polarization-sensitive sensor models [Pogorzala et al. 2007]. Grass and asphalt were
attributed based on the Shell BRDF model [Shell 2005], while an aluminum fire hydrant
was attributed with a material based on a Priest-Germer pBRDF [Priest and Germer
2002]. The remaining objects were attributed with unpolarized spectral emissivity

curves, since the authors noted the limited number of pPBRDF models available for the
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construction of their scene. The lack of available polarized optical properties was
compensated for by a technique called bump mapping, designed to introduce pixel-to-
pixel variability within material classes. In bump mapping, the surface normal of an
object is deflected a specific amount based on the corresponding pixel’s value in the
bump map. In essence, the bump map serves to introduce small-scale variability while
constraining the number of facets required for a given scenario. A qualitative comparison
between the real and synthetic imagery showed that the bump mapping technique was
able to recreate asphalt texture observed in real images. Further, the synthetic imagery
produced a low DOP from natural materials and a high DOP from man-made materials,
confirming phenomenology observed in actual data. However, the largest deficiencies in
the synthetic data were associated with the lack of available pPBRDF models for all
materials in the scene.

As a key ingredient for scenes involving vegetation, Gartley and Basener (2009)
verified the correct simulation of leaf pPBRDF properties in DIRSIG. A synthetic forest
attributed with leaves having pPBRDFs but unpolarized trunks and branches was created,
and the degree of linear polarization from the generated forest imagery was validated
against publicly available POLDER measurements.

In summary, DIRSIG is a proven first principles based synthetic image generation
model. The proven ability to simulate hyperspectral effects in the visible and IR regions,
combined with an emerging capability to model polarimetric effects, makes DIRSIG an
attractive choice for use in a multimodal sensor trade study. Further, the existence of a
rigorously modeled, realistically attributed synthetic urban scene makes DIRSIG a

natural choice for modeling an urban target detection scenario. Once the synthetic
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imagery has been generated, the modeled atmospheric effects must be compensated to

some degree for spectral target detection algorithms.

3.9 Atmospheric Compensation

As part of the analysis required for an accurate trade, it is assumed that an analyst
would have performed some form of atmospheric compensation on the imagery.
However, rather than identifying the optimum atmospheric compensation technique, this
study only requires a reasonable, consistent process be applied to each image. The users
could then select and optimize a particular atmospheric correction technique when the
parameters in their trade study have been customized based on the actual resources
available. Since this study is concerned with many images in the solar reflective region
of the spectrum, three primary techniques for atmospheric compensation exist. Schott
(2007) showed that the radiance reaching the sensor through a bandpass in the reflective

region can be approximated as shown in Eq. 14

L= [E cosc — 7, +[FE, +(1—F)Ebs]r—"}2 +L, (14)
T T

where E| is the exoatmospheric irradiance, o is the solar zenith angle, 7; is the

transmission from the sun to the target, /' is a shape factor describing what fraction of the
hemisphere of the sky above the target is open, Ey is the downwelled irradiance, Ej; is
the reflected background irradiance onto the target, and L, is the upwelled radiance
reaching the sensor.

The empirical line method (ELM) is a common ground truth reflectance

correction method [Schott 2007]. For clear skies at small zenith angles, Eq. 14 can be
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simplified by assuming E, = E_coso r,. Further, for pixels in a relatively open space,
F =1. The main goal of ELM is to regress observed radiance values against known
reflectance values in each band as shown in Egs. 15 and 16

L=(Ex"+L,)t,r, +L, (15)

L=mr, +b (16)

where m = E 7', + L7, is the slope of the regression, and b = L, is the intercept. In
ideal cases, carefully calibrated control panels are placed in the scene as a reference, but
the users could also obtain reflectivity measurements of several Lambertian objects in the
scene.

For situations without some form of ground truth, Piech and Walker (1974)
described a method to take advantage of the difference in radiance levels observed at
shadow edges. The radiance in a given spectral band observed just outside a shadow, L;,
depends on the shape factor, F, as shown in Eq. 17, while the radiance observed just
inside the shadow, Ly, cast on the same diffuse material is given by Eq. 18 [Schott 2007]:

L =[Ex't,+FL,t,lr, +L, (17)
L,=FL,t,r,+L, (18)
Combining Egs. 17 and 18 by substitution of ; and rearranging yields Eqgs. 19a and 19b,
where m=(E,z”' + FL,)and b=(1-m)L, :

_Ex' +FL, . Ex™' +FL

Ls sh 4 Lu + Lu (1 93.)
FL, FL,

L=mr, +b (19b)
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If L, is assumed constant, and objects of similar shape are selected, then F'is also
approximately constant. Therefore, m and b are approximately constant, and can be
solved for by a linear regression of the shadow radiance versus the sun radiance,

producing L, as shown in Eq. 20 [Schott 2007]:
L =—— (20)

Piech et al. (1978) then explained how the upwelled radiance could be combined with a
statistical estimate of the mean observed radiance, for a class of objects whose mean
reflectance is well known, to produce the total radiance incident on the sensor. They
typically used concrete, with the resulting equation form shown in Eq. 21 [Schott 2007]:

L —-L
m=[Ex't,+L,r,]=—2%—" 20

¥ dave
Where L, is the mean radiance observed for many samples of the standard material
chosen and 7, 1s the mean reflectance based on known measurements. Once the slope
term is known, the reflectivity of each pixel in the scene can be estimated.

Several atmospheric correction methods based on radiative transfer models exist
[Schott 2007]. In a typical case, as many known parameters from the data collect as
possible are entered into MODTRAN, where the transmittance, upwelled radiance,
downwelled radiance and solar radiance are calculated and combined to produce the total
radiance reaching the sensor for a nominal reflectivity target. From that information, in
conjunction with the observed radiance, an estimate of the reflectivity of every pixel in

the scene can be calculated.
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In closing, the shadow method, ELM and MODTRAN-based methods are all
recognized atmospheric compensation techniques. ELM is the most attractive choice for a
trade study because perfectly calibrated reference panels can be placed in every version
of the synthetic scene. Another advantage is that even with multiple view angles and
multiple times of day, ELM can be easily automated. After converting the synthetic data

into reflectance space, a widely accepted target detection algorithm can be applied.

3.10 Detection Algorithms

Since the focus of this work is on fusing the products from two sensors at the
decision level to enhance target detection, the data from each sensor will be processed
independently with some detection algorithm. Although many different target detection
algorithms exist [Schott 2007], to avoid turning the project into a target detection
algorithm optimization effort, representative standard algorithms will be used.

The spectral matched filter (SMF) is the most common target detection algorithm
based on a stochastic description of the data, and is described by Eq. 22 [Schott 2007]

SMF(X)=(t—-m)"S™' (x —m) (22)

where t is the target vector and X is the sample vector. Further, m and S are the
background mean vector and covariance matrix, which are created from local values
drawn from an area around the pixel of interest or global values drawn from the entire
scene. Each pixel in the image is analyzed, and if the SMF score is above some user
defined threshold, 7, the pixel is designated a target. The threshold is used to control the
false alarm rate, and so can be varied based on the particular application. Farrand and

Harsanyi (1997) modified the SMF algorithm such that the output is scaled to a target
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abundance value between zero and one, dubbing their method constrained energy

minimization (CEM) as shown in Eq. 23:

(t-m)" S (x-m)
(t-m)"S'(t-m)

CEM (X) = (23)

The CEM technique is therefore an attractive algorithm for a multispectral or
hyperspectral target detection problem.

The topological anomaly detection (TAD) algorithm has achieved a reasonable
degree of success when applied to a hyperspectral target detection application [Basener
and Messinger 2009]. The TAD algorithm models the background as a set of connected
components of a graph, imposing a topological assumption on the data without requiring
any assumptions on the geometry, linearity, or statistical distribution of the data. First,
the TAD algorithm normalizes the image data so that the brightest 10% of the pixels in
the image have Euclidean L2 norm equal to two, and the darkest 1% have Euclidean L2
norm equal to one. Next, a random subsample from the image of between 500 and
10,000 pixels is chosen to model the background, and the distance between every pair of
pixels in the sample is computed. A graph is then constructed by adding an edge between
the closest 10% of pairs of points, exploiting the idea that anomalous pixels are unlikely
to have nearby neighbors. The largest groups of points are then designated as

background as shown in Figure 8.
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Figure 8. The TAD algorithm operating on data notionally distributed in two dimensions. The
closest pairs of points are deemed background and linked by dotted lines, with different colors
implying different classes. Pixels linked to their nearest neighbor by longer solid lines are likely
anomalous. Image courtesy of Basener and Messinger (2009).

The percentage of pixels from the subsample that are background is then assumed
to equal the percentage of the image that is background. Finally, each pixel is measured
against the identified background pixels via the codensity metric, dx, which represents the
radius of the smallest sphere enclosing £ neighbors. The TAD ranking of each pixel in
the image is equal to the sum of the distances to the 3 4™ and 5™ nearest neighbors in

the background pixels, as shown by Eq. 24:
5
TAD(x) = > 5,(x) (24)
i=3

The TAD rankings result in level sets of arbitrary topology, allowing detection of pixels
in the holes of the convex hull of the background as shown in Figure 9 [Basener and

Messinger 2009].
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Figure 9. The TAD algorithm produces level sets of arbitrary topology (solid lines), allowing
detection of anomalous members (circled) both inside and outside of the background’s convex hull.
Image courtesy of Basener and Messinger (2009).

Similar to the CEM score, the TAD ranking can be normalized to fall in the range
between zero and one. In their experiment, the TAD algorithm outperformed several
standard spectral anomaly detection algorithms.

The TAD algorithm has also been employed for a DIRSIG polarimetric target
detection application [Gartley and Basener 2009]. The specific scenario consisted of
manmade targets in a natural background, observed by a multispectral polarimetric
sensor. Four polarization images (Sy, S;, S»> and S;) were captured at blue, green, red and
near IR wavelengths, but the TAD algorithm performed best when the intensity, or Sy
band, was ignored. Further, the TAD algorithm outperformed the standard RX anomaly

detector on panchromatic polarimetric imagery.

52



3.11 Section Summary

In conclusion, this section has summarized the current state of the art by
describing the capabilities of existing high spatial or spectral resolution sensor systems,
explaining the different data fusion levels and reviewing established decision level fusion
techniques. A high level overview of existing sensing modalities and polarimetric remote
sensing was conducted, identifying ongoing interest in hyperspectral and polarimetric
sensors for target detection applications. Several previously published multimodal sensor
fusion efforts were described, confirming that the impact of fusing hyperspectral and
polarimetric data under a variety of conditions is still largely unexplored. The
capabilities of several synthetic image generation models were examined for possible use
in a potential trade study, and DIRSIG was identified as a useful tool. Next, the ELM
was found to be a representative atmospheric compensation method that could easily be
implemented for synthetic imagery under a wide variety of viewing geometries and
illumination conditions. Finally, the CEM and TAD algorithms were identified as proven
target detection algorithms. In a decision level multimodal fusion experiment, CEM
could be used to analyze the data spectrally, while TAD could be used to identify
materials with a strong polarimetric signature. With the general concepts firmly

established, the specific experimental method must be determined.
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4 Methodology

4.1 Section Overview

Several key tasks made up the multimodal sensor trade study proposed in Sec. 1.
First, a reasonable scenario and notional sensor systems were defined. Then, a model
urban scene was designed to evaluate the scenario and sensors of interest. The scene was
rendered under a variety of viewing geometries, illumination conditions and SNR values
before applying an atmospheric compensation technique. After introducing some degree
of registration error between the images from the two sensors, the sensor outputs were
fused for analysis at both the pixel and the decision levels. A method to determine the
impact of incorporating data from a second modality was described by analyzing the
resulting ROC curves, and a process to determine the ideal viewing conditions for each
sensing modality was proposed. Finally, a procedure describing how the best-case
images from each modality were geometrically registered and analyzed helped determine

the maximum attainable benefit from incorporating the second modality.

4.2 Defining the Scenario

Given the intelligence community’s emphasis on high value target and tracking
discussed in Sec. 1 and the existing remote sensing systems described in Sec. 3.2, an
unmanned sensor platform scanning an urban area for a particular vehicle described a
reasonable scenario. A representative urban area contained a mix of residential houses,
commercial facilities, government buildings, trees, roads, and vehicles. In this scene, the
target vehicles were mixed with several other types of vehicles to provide realistic

background clutter, assessing the sensor’s ability to differentiate between vehicle types

54



rather than simply detecting any vehicle. After establishing the scene of interest,

reasonable sensor parameters were defined.

4.3 Defining the Sensor

The goal of this project was to assess the utility of a particular sensor rather than
to investigate the engineering challenges inherent in building that sensor. No optical
aberrations were considered, such that the output represented a detector limited best-case
scenario. For this project, a hyperspectral or multispectral sensor was used in
conjunction with a polarimetric sensor, and the notional test sensors were assembled by
merging optimum capabilities from published existing systems. As outlined in Sec. 3.2,
the Predator’s published operational ceiling of 7620 m provided a notional observational
altitude; while the Global Hawk’s published GSD (from a much higher vantage point)
suggested a minimum GSD of 0.5 m is reasonable.

To achieve the desired GSD in the simulation, both sensors shared a common
optic with a focal length of 300 mm. However, the hyperspectral sensor had significantly
larger detector pixels than the polarimetric or multispectral sensors to account for SNR
issues. The capabilities of each sensor were simulated in DIRSIG by an ideal 2-D
framing array, where each pixel was capable of recording information as seen through
multiple user-defined spectral bands or linear polarizers arranged at different orientations.
Therefore, the resulting synthetic data appeared as an image of the scene as seen through
each of the filtered bands defined by the user. It was assumed that an actual detector,
sampling and interpolation scheme could be constructed to produce data equivalent to the

capabilities described below.
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NASA’s AVIRIS instrument proves that an airborne hyperspectral system
spanning the 0.4-2.2 um region is achievable and served as the template for this scenario.
The hyperspectral sensor’s focal plane was simulated as a framing array of 128 x 128
pixels, where each pixel was 120 pmx 120 um. Positioning the sensor at the Predator’s
flying altitude of 7500 m above ground level produced a nadir GSD of 3 m, with the
intent to hunt sub-pixel vehicle targets while permitting a reasonable pixel fill factor.
The hyperspectral sensor consisted of 90 channels spanning the same spectral range as
AVIRIS, each with a Gaussian spectral response of FWHM 20 nm.

The spectral characteristics for the multispectral sensor in this project were based
on Worldview-2’s eight bands, with rectangular spectral responses of varying widths.

Table 3 shows the spectral sensitivity regions of the multispectral bands.

Table 3. Spectral bands for the multispectral sensor used in this project. The spectral bandwidths
roughly match Worldview-2.

Band Name Spectral Bandpass (nm)
Coastal 400 — 450
Blue 450 - 530
Green 520-610
Yellow 585-625
Red 640 — 690
Red Edge 705 — 745
NIR 770 — 880
NIR 2 860 - 1040
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GeoEye-1’s proven space-based multispectral capability has a nadir GSD of 1.65 m. If
the GeoEye-1 multispectral instrument were mounted on a lower airborne platform, the
change in scale would improve the GSD. Reducing the number of spectral bands, as
compared to the hyperspectral instrument, allows a plausible decrease in GSD to 0.5 m.
To generate this data, the multispectral focal plane was designed as a framing array of
768 x 768 pixels where each pixel was 20 x 20 um.

Four of GeoEye-1’s multispectral bands could easily be re-imagined as the four
bands needed for polarimetric imaging. The polarimetric sensor was mounted on the
same platform as the spectral sensor, and had a 768 x 768 pixel focal plane where each
pixel was 20 x 20 um. The resulting nadir GSD of 0.5 m ensured multiple pixels on
target, capturing localized polarimetric phenomena rather than losing information by
integrating over a large region. Four separate polarimetric bands were defined, each
filtered with a linear polarizer oriented at 0°, 45°, 90° or -45° such that the sensor
reaching radiance could be decomposed into a Stokes vector at each pixel with the
modified Pickering method [Schott 2009]. The panchromatic spectral response function
was a rectangle spanning 400 — 900 nm.

The combination of hyperspectral and polarimetric sensors identified in this
section represented cutting-edge, but reasonably achievable, sensor capabilities. Since
the goal of this project was to determine the value added by incorporating polarimetric
information into spectral data analysis, plausible baseline systems were identified. This
project did not address whether these were the ideal combinations of sensor hardware or
tasking altitudes—rather, a future potential user could apply this method to evaluate the

effect obtained with the exact systems available. Similarly, the system effectiveness was
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assessed against a notional urban scene, with a future user free to exactly model a

particular target of interest.

4.4 Designing a Model Scene

DIRSIG was the natural choice for use in this project, since RIT has access to the
model and extensive work has been done with DIRSIG to simulate an urban environment.
A subset of Megascene 1, dubbed Tile 1, provided an excellent background for a target
detection application. Tile 1 was composed of a mostly residential area, a significant
school complex, several trees, open fields and parking lots. Figure 10 shows both a
DIRSIG rendering and a Google Earth snapshot of the region of interest, permitting
vehicles in open fields, on roads, in parking lots, near houses, under trees and near large

buildings while constraining the amount of data generated.
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Figure 10. (Left) DIRSIG rendering of Megascene 1, Tile 1. (Right) Google Earth snapshot of
region of Rochester, NY nominally represented by Megascene 1, Tile 1.

The modeled target and decoy vehicles in the synthetic scene were facetized
geometric constructions based on actual vehicles. Because polarimetric effects are highly

sensitive to surface orientations, great effort was expended to accurately model small
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features on the vehicle like the side view mirror, radiator grille and door handles. Figure
11 shows one of the CAD vehicle models designed for use with DIRSIG, provided by the

Air Force Office of Scientific Research (AFOSR).

Figure 11. Subaru wagon model provided by AFOSR for use in DIRSIG. Notice the level of detail—
a side mirror, front grille and even door handles have been incorporated.

Once the models had been converted into a format that DIRSIG could read, each facet
was attributed with a material, which then linked to an emissivity curve, measured at 1
nm spectral resolution, and a pBRDF also provided by AFOSR. The target vehicles are
red Subaru wagons, while the decoy vehicles are blue Ford Focus sedans, white sedans,
black BMW SUVs, green VW wagons, yellow pickup trucks, and grey Volvo wagons. A
total of 18 target vehicles and 108 decoy vehicles were inserted into the scene. While the
facetized non-target vehicles provided polarimetric clutter, several different red materials
provided spectral clutter for the target detection application. For example, measured
spectra of red asphalt, roof shingles, bricks and a tennis court surface were attributed

where those objects appear in the scene.
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To remain plausible, the radiance reaching the sensor was affected by local
weather conditions. Weather effects in the scene were modeled with MODTRAN-4P,
with realistic weather inputs based on Megascene 1’s location in Rochester, NY. Actual
weather data from June 23, 1992 was input into MODTRAN-4P, along with the standard
mid-latitude summer tape5 file adjusted to account for urban aerosols. In conjunction
with MODTRAN-4P, DIRSIG predicted the sensor reaching radiance, but did not apply
any sensor MTF effects. In essence, this implied that the sensor was detector limited, and
represented the best-case scenario.

The synthetic scene was generated by sampling the scene al/,t the instantaneous
field of view (IFOV) in each direction, across every spectral band, leading to a GSD of
0.25 m at nadir and 2x2 spatial oversampling in general. Then, 2x2 pixel neighborhoods
in each band were summed, such that the resulting DIRSIG scene captured the sensor-
reaching radiance in each polarimetric or spectral band for each pixel on the high
resolution focal plane described in Sec. 4.3. Since each of the high spatial resolution
pixels represented 1/, the IFOV of the larger GSD hyperspectral image, one hyperspectral
super pixel was created by summing the radiance values calculated from a 6 pixel x 6
pixel area of the high spatial resolution image. Because the spectral and polarimetric
information was rendered for a wide variety of viewing conditions, constructing the low
spatial resolution spectral image from existing data eliminated the need to re-render each

DIRSIG scene at the larger hyperspectral GSD.
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4.5 Varying Relevant Parameters
For this trade study, the fundamental free parameters were solar zenith angle,
sensor zenith angle, sensor relative azimuth angle, and sensor SNR. Figure 12 describes

how the angles of interest could be varied while the sensor GSD values were fixed.

Sun MS (or HS) & PI

gt

Sensor Relative
Azimuth

solar Sensor
Zenith Zenith

Figure 12. The solar zenith, sensor zenith and sensor relative azimuth angles were all varied for this
trade study while the hyperspectral (blue rectangle), multispectral (red rectangle) and polarimetric
(green rectangle) sensor GSD values were fixed.

Varying the illumination angle and sensor viewing angles affected the ability to measure
spectral and polarimetric phenomena, while varying the sensor SNR helped establish
sensor design requirements. The rendered scene GSD was locked to 0.5 m for nadir
viewing, as described in Sec. 4.3, and was not a part of the investigated trade space.
Since the scene represented an actual part of Rochester, NY, the illumination angle was

varied by examining several different times of day: 0600, 0700, 0800, 1000 and 1200.
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For each time, the position of the sun was set accordingly to produce five separate
illumination conditions. As long as some of the targets and decoys are shadowed while
some are well lit, at each time, the morning and afternoon sun positions are redundant if
the images are acquired as described below.

The sensor zenith angle was varied in a uniform fashion while holding the altitude
constant. As a result, the slant range to the center of the scene changed for every zenith
angle. However, maintaining a constant altitude is more representative of a loitering
UAYV than holding the slant range constant and varying the sensor altitude. Since
Megascene 1 is located about 119 m above sea level, and the operational ceiling of the
Predator is 7620 m, the altitude of the sensor above ground was conveniently fixed at
7500 m. The sensor zenith angle was investigated by modeling seven concentric circular
flight paths of varying radii, plus a nadir image, with the sensor focused on the center of
the scene in Figure 10. The concentric flight paths represented zenith angles from +10°
to £70° in 10° increments, spanning a range more extreme than that used by most
existing systems.

The required sensor relative azimuth angles were determined by incorporating the
principles discussed in Sec. 3.6. A conceptual line was drawn from the sun, through the
center of the scene and on through the concentric circular flight paths described above.
Then, the sensor azimuth angle was varied as shown in Figure 13 by sampling angles
+20° from the principal plane formed by the sun, the point designated as the center of the

scene, and the ray representing the specular reflection.
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Figure 13. For each time of day, the sensor azimuth angles of interest were £20° from the line
representing the specular reflection coming from the center of the scene. The red arcs represent
circular flight paths with varying sensor zenith angles.

The azimuthal angles were sampled in 5° increments, producing nine distinct images for
each zenith angle. An additional control image was captured at a relative azimuth angle
90° from the sun, for a total of ten distinct azimuthal images per zenith angle. Finally,
the azimuthal images for each of the seven zenith angles were captured at each time of
day. Including one nadir image for each time of day required that a total of 355 DIRSIG
images be rendered for analysis.

Varying the SNR of either sensor should affect the system performance. To
explore the fusion best case scenarios, the polarimetric sensor will be fixed at SNR = 200
for all cases. The AVIRIS and Hyperion systems described in Sec. 3.2 provide an
estimate of reasonable SNRs for hyperspectral systems, ranging from just under 40 to
almost 200. Therefore, the spectral sensor SNR will be cycled through a series of values:

50, 60, 80, 100 and 200.
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The sensor SNR was varied during post-processing by adding scaled zero-mean
Gaussian noise to each band in a noise-free DIRSIG image, as shown in Egs. 25 and 26,

thereby eliminating the need to render more synthetic images in DIRSIG.

SignalAvg
=—=_° 25
N SNR (25)
Noise Image,, = Image, + o, (randn) (26)

In Eq. 25, SignalAvg represents the average radiance value across all pixels captured by a
particular spectral band and oy represents the standard deviation of the noise in that same
band. The pixel value in the ith row, jth column of the noise image was generated by
appropriately scaling a random number drawn from the zero-mean standard normal
distribution and adding the noise value to the radiance observed by the pixel in the ith
row, jth column of the noise-free DIRSIG image.

In summary, five times of day were considered, ranging from 0600 — 1200. Also,
seven sensor flight paths were modeled for each time of day, with ten images acquired
during each one, sampling angles +20° away from the specular reflection with one image
acquired at a 90° azimuthal angle from the sun. In addition, one nadir image was
rendered for each time of day. With the current computational resources available in the
Digital Imaging and Remote Sensing Laboratory, each of the 355 DIRSIG images was
rendered in about twelve hours, and fifteen instances of DIRSIG can reasonably be
executed in parallel. As a result, the entire image set took roughly two weeks of constant
computation to create. Finally, five SNR values for each sensor were considered at every

image acquisition point. However, in addition to variations in performance induced by
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illumination angle, sensor orientation and sensor SNR values, the multimodal sensor

fusion process will also be impacted by registration errors.

4.6 Simulating Registration Errors

In any realistic multimodal system, the images captured by each different sensor
modality will not be exactly aligned. Although a variety of techniques exist to
geometrically register images obtained from different perspectives, the images generally
will not align perfectly due to parallax effects [Schott 2007]. The high spatial resolution
hyperspectral, multispectral and polarimetric synthetic images generated by DIRSIG for
each sensor modality were exactly aligned since common platforms were assumed, so
some amount of registration error was induced by shifting the polarimetric image right

and down as shown in Figure 14 below.

H1
P1 P2 P3 P4 P5 P6
P7 P8 P9 P10 P11 P12
P13 P14 P15 P16 P17 P18
P19 P20 P21 P22 P23 P24
P25 P26 P27 P28 P29 P30
P31 P32 P33 P34 P35 P36

Figure 14. Registration error introduced between high spatial resolution polarimetric pixels, labeled
P1 - P36, and low spatial resolution hyperspectral super pixel labeled H1.

Shifting the polarimetric image as shown in Figure 14 ensured that the
polarimetric image was offset by the same distance on the ground from both the

multispectral and hyperspectral images, but the pixel offset was different because of the
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larger hyperspectral GSD. In the multispectral case, the registration error was a shift of
one pixel in x and y, while in the hyperspectral case the polarimetric information was
offset by 1/6 of a hyperspectral super pixel. The small amount of intentionally
introduced registration error was meant to simulate any residual error that might be
encountered after a registration routine was applied to actual data. The intent of this
project was not to investigate optimal registration techniques—rather, the goal was to
acknowledge that registration errors can occur and may decrease the effectiveness of data

fusion to some degree.

4.7 Compensating Atmospheric Effects

This project sought to apply a nominal atmospheric compensation technique to
the spectral images rather than determine the optimum atmospheric compensation
technique. ELM was the most attractive atmospheric compensation technique described
in Sec. 3.9, because it was easily automated and required minimal computational effort.
Since part of this trade study involved varying the sensor view angle and the time of day,
the atmospheric effects varied from one image to the next. Therefore, whatever
atmospheric compensation technique was chosen must be executed hundreds of times,
producing slightly different effects for each set of conditions, and ELM was particularly
suited to this task.

To implement ELM with synthetic DIRSIG data, three 12 m x 12 m calibration
panels of 0%, 50% and 100% reflectance were inserted into the image. The large size of
the panels, relative to the nadir multispectral GSD, ensured the calibration panels span

about 50 full pixels at a sensor declination angle of 65°. However, at the larger
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hyperspectral GSD, the calibration panels may not span a full pixel at oblique angles.
Since the goal of this step was to reasonably compensate the data for atmospheric effects,
ELM was performed on the high spatial resolution spectral image before degrading it to
the hyperspectral GSD. The calibration panels were designed to be perfectly Lambertian,
with a constant reflectance across the spectral range of interest. Two of the panels were
mounted on the flat roof of a large building in the center of the scene, while the third was
placed in an open field. Each location had a shape factor F = 1, satisfying the assumption
made for ELM in Sec. 3.9. Spatially dispersing the panels ensured at least two panels
were likely to be captured in each image, regardless of sensor view angle.

When each image was analyzed in post-processing, the pixels containing
calibration panels were identified via DIRSIG’s truth data. The known reflectance values
and corresponding sensor reaching radiances for each of those pixels were then plotted,
and a best-fit line identified the slope and intercept as described in Sec. 3.9. Finally, the
effective Lambertian reflectance of every other pixel in the image was determined using
the slope, intercept, and sensor reaching radiance. Once the image had been converted to

the reflectance domain, it was analyzed with spectral target detection algorithms.

4.8 Fusing Sensor Outputs

Two methods were explored to fuse the data in this project. First, in the case of
co-located multimodal sensors, the data were fused at the pixel level using elements
drawn from the pan-sharpening technique discussed in Sec. 3.3 [Price 1986] and the
combination logic for hyperspectral and DOLP data described in Sec. 3.7 [Cavanaugh et

al. 2006]. Then a different algorithm, based on the LOP and LOGP algorithms described
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in Sec. 3.4, was applied to fuse the sensor data at the decision level for both the co-
located and dispersed cases.
4.8.1 Pixel Level Fusion

The data from the co-located sensors was fused at the pixel level by treating the
DOP described in Sec. 3.6 as an additional spectral band. Specifically, the DOP values
from a given image were treated as an additional band of spectral reflectance data as

shown in Figure 15.

Figure 15. In the pixel fusion algorithm, DOP (black) will be conceptually stacked onto existing
spectral bands (shown as RGB above) to create the fused data set.

Normalizing the DOP values by the peak value ensured that all the data from the pixel
fusion case was constrained between zero and one. As a result, the Spectral Polarimetric
Optimization Tool (SPOT) pixel fusion algorithm was essentially the CEM algorithm
from Sec. 3.10 operating on a customized target vector as shown in Eq. 27:

SPOT (x) = CEM (x) (27)
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where X was the vector of polarimetric and reflectance values representing the target
signature.

In the multispectral case, the spectral GSD exactly matched the polarimetric GSD,
so the data were simply combined via stacking. In this case, X was the vector of
polarimetric and effective Lambertian reflectance values for each spectral band as shown
in Eq. 28:

DOP]

N

& I (28)
;]

If the images were acquired under favorable polarimetric sensing conditions, man-made

|
|

objects were expected to be among the most polarizing objects in the scene. Therefore,
the value sought in the DOP band with the CEM algorithm were set to one—identifying
objects with the highest degree of polarization as those most likely to be targets. The

target reflectance values were merged with the desired DOP value to produce the target

signature t as shown in Eq. 29:

t= t.z (29)
t:s
However, in the hyperspectral case, an additional issue had to be considered. The
hyperspectral 3.0 m nadir GSD didn’t match the polarimetric 0.5 m nadir GSD.
Therefore, the hyperspectral super pixel will be spatially resampled by dividing it into 36

sub-pixels to match the polarimetric GSD, as shown previously in Figure 14. Although
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each sub-pixel will have the same spectral reflectivity values, the sub-pixels will align
with different DOP values to produce the pixel value as shown in Eq. 28.
4.8.2 Decision Level Fusion

Alternatively, since the two sensing modalities tested in this project measure
different physical phenomena, their outputs were also combined via a decision level
fusion technique as previously described in Sec. 3.4. As a result, data from each sensor
was analyzed independently and then merged to enhance the probability of detection at a
fixed probability of a false alarm. The spectral data was analyzed with the CEM
algorithm described in Sec. 3.10, producing a score for each pixel between zero and one.

Conversely, each pixel of polarimetric data was evaluated using the TAD
algorithm from Sec. 3.10, also producing a score between zero and one. The TAD
algorithm essentially differentiated polarimetrically anomalous pixels from the urban
background, rather than attempting to match pixels to a known polarimetric signature.
TAD was attractive because of the relatively few targets in the scene and the difference in
polarimetric signature between man-made vehicles and the background. After a TAD
score was calculated for each pixel, the TAD output was mapped onto the spectral data.
As Figure 14 shows, one hyperspectral pixel with GSD = 3 m represents a 6 x 6 pixel
region of polarimetric data with GSD = 0.5 m. Therefore, each hyperspectral super pixel
was divided into 36 pixels, all with the same CEM score, but with different TAD scores
as described above. Since the multispectral GSD was identical to the TAD GSD, the
multispectral CEM score for each pixel was combined with the corresponding TAD
score. The registration error described in Sec. 4.6 meant pixels on the image boundary

may not have both a TAD and CEM score. Since the TAD data was being mapped onto
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the spectral data, any TAD scores shifted off the image to the right or down were ignored.
The spectral pixels along the top and left edges of the images were assigned the TAD
score of their nearest neighbor.

Since the focus of this project was to reduce the number of false alarms for a
given spectral sensor, the outputs of the analysis above were exploited via a variation of
the LOGP discussed in Sec. 3.4. Pixels were thresholded according to their overall
spectral polarimetric integration (SPI) score, shown in Eq. 30:

SPI(X) =[CEM (X)][CEM (X) + TAD(X)] (30)
where SPI scores above some user-defined threshold were declared targets. The first
term in the SPI algorithm simply represented the likelihood of a given pixel being a target
from the multispectral or hyperspectral sensor’s point of view. The right-most term in
brackets from Eq. 32 represented a way to incorporate information from the polarimetric
sensor while preventing the polarimetric sensor from vetoing targets nominated by the
spectral sensor.

If a target is defined as a pixel containing part of a vehicle with a particular type
of paint, the spectral sensor is completely capable of identifying targets using the CEM
algorithm under ideal illumination and viewing conditions, unlike the polarimetric sensor
using TAD. Under poor polarimetric sensing conditions, little signal reaches the sensor
and polarimetric anomalies are unlikely to be found—in which case the SPI algorithm
essentially produces a squared CEM score, rather than vetoing all pixels. Alternatively,
when polarimetric sensing conditions are ideal, the spectral sensor identifies pixels as
potential targets, and then the polarimetric sensor modifies that ranking to place extra

emphasis on anomalous pixels. The impact of incorporating additional polarimetric
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information varies across a variety of viewing conditions, and ROC curves were used to

quantify the effect.

4.9 Quantifying the Impact

For both pixel and decision level fusion, enhanced performance with the SPOT or
SPI algorithm was defined as a higher probability of detection than that obtained with the
CEM algorithm at a fixed probability of false alarm. Since a larger area under the ROC
curve represented an enhanced probability of detection, the measure of merit was the
percent increase in area under the ROC curve when comparing the SPOT or SPI
algorithm to the CEM algorithm, for a specific viewing geometry, time of day, and SNR.
However, the ROC curve behavior at extremely high false alarm rates was irrelevant for
any practical application, so the integration was limited to the point where the false alarm
rate met some user-defined threshold. Any viewing conditions where no targets were
detected at that point were deemed not useful, noted and discarded from further analysis.

Fusing the data as described in Sec. 4.8 meant that one false alarm represented a
Praisediarm Of 1.7% 10'6, ensuring enough distinction to accurately capture behavior of the
target detection algorithms being analyzed. The first step in constructing the ROC curves
was to determine the number of targets actually visible in the scene. DIRSIG truth data
was used to determine the dominant material present in each high-spatial resolution
image pixel. Recalling from Sec. 4.4 that each pixel in the synthetic image will be
generated via 2x2 oversampling, a pixel at least 50% filled with target material was

flagged as a target in the DIRSIG truth data.
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Once the number of targets (expressed as target pixels) present for a particular
viewing geometry was determined, the pixels were separately scored by the SPOT, SPI
and CEM algorithms. For both the multispectral and hyperspectral case, scoring occurred
at the smaller multispectral / polarimetric GSD. The SPOT and SPI algorithms produced
a score map at the desired GSD, but the hyperspectral CEM score map needed to be
resampled to the same number of pixels as the SPOT and SPI scores. The scored pixels
were then classified as either targets or background. By thresholding and reducing the
threshold until the desired number of targets was found, the number of false alarms
generated was determined. The values required for a ROC curve were calculated as

shown in Eqgs. 31 and 32:

DR = _]zvaF 31)
T
FAR = M (32)

image
where DR, the detection rate, was the rate of correctly identifying a target, Nz was the
number of target pixels found, Nr was the total number of target pixels in the image,
FAR, the false alarm rate, was the rate of labeling a background pixel as a target pixel, N
was the number of pixels flagged as potential targets, and Njuqg Was the total number of
pixels in the image. With this method, a target completely obscured by buildings for a
particular viewing geometry did not show up as a missed target, since no information
about that target ever reached the focal plane. As a result, Ny may have changed from
image to image, which should not have posed a problem given the large number of target

pixels as described in Sec. 4.4.
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The area under the SPOT, SPI and CEM ROC curves was calculated by
numerically integrating, via the trapezoidal method, the curve’s DR values from the
minimum FAR value to the F4R threshold described above. In the case that no measured
DR value existed for the FAR threshold value, an estimated DR value was calculated by
assuming the ROC curve was piece-wise linear and interpolating between the nearest

neighbor data points as shown in Figure 16.
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Figure 16. When the area under a ROC curve was integrated to a user-defined threshold (vertical
black dashed line), an interpolated detection rate (red circle) was determined by assuming the ROC
curve is piecewise linear (red dashed line) between the two nearest measured values (blue x).

The governing measure of merit for assessing the performance of the fusion
algorithms was a ratio, R, of the test algorithm performance to the multispectral or
hyperspectral CEM algorithm performance when applied to the nadir image for the same

time of day as shown in Eq. 33:
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R =
Ay

(33)

The test area metric, A7, was the area under the ROC curve generated for each algorithm
and viewing geometry under evaluation. The nadir area metric, Ay, was the area under
the ROC curve generated by applying the CEM algorithm to the nadir image for the same
time of day as A7. The ratio R therefore assessed the off-nadir multispectral (or
hyperspectral) CEM, SPOT and SPI performance in terms of the nadir multispectral (or
hyperspectral) CEM performance.

Since the random noise added to the image as described in Sec. 4.5 changed the
appearance of pixels in the image, the target-like rankings of each pixel produced by the
various algorithms varied for different patterns of random noise. As a result, the area
under the ROC curves varied from one application of noise to another for the same
image. The image therefore had to be analyzed several times to ensure accurate
algorithm improvement metrics were reported. After each iteration, the standard
deviation of the area metrics was calculated and compared to the standard deviation from
the previous iteration. On the nth iteration, once the standard deviation for all area
metrics changed less than 3%, each of the percent improvement metrics was defined as
the median of the collection of the » individual values. The median value was used to
account for possible values of infinite percentage increases resulting from zero area under
a given ROC curve.

If any of the target detection algorithms failed to find a target before the FAR
threshold value was reached, the area under that particular ROC curve equaled zero and

that algorithm was declared not useful for the given viewing geometry. However, a
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situation could arise where one algorithm was not useful, but another might have had
some area under the ROC curve. The difference in performance was meaningful, but a
zero value in the denominator produced an infinite difference in Eq. 33. Therefore, an
infinite improvement meant that incorporating polarimetric information via a test
algorithm made the algorithm useful, whereas the original nadir CEM baseline scenario
was not. The metrics described above were then used to identify the ideal viewing

conditions for each sensing modality.

4.10 Independently Optimizing CEM & TAD Geometry
Next, this project assumed that a polarimetric sensor on one platform could be
tasked in conjunction with a spectral sensor on another platform to simultaneously

acquire imagery of the target scene from different angles as shown in Figure 17.
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Figure 17. The ideal multispectral (MS), hyperspectral (HS) and polarimetric (PI) sensing
geometries were established for each time of day.

The ideal viewing geometries for each sensing modality were determined for each of the

five times of day rendered in Sec. 4.5. For the spectral sensor, the optimum viewing
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geometry for each time was associated with the point where the area under the CEM
ROC curve calculated in Sec. 4.9 was the greatest. This metric was chosen because the
CEM algorithm is only dependent on spectral data. In contrast, the optimum viewing
geometry for the polarimetric sensor was determined by treating TAD as a target
detection algorithm and integrating the area under the ROC curve as described in Sec.
4.9. This metric represented the point where target pixels are most likely to be flagged as
anomalies with the TAD algorithm, highlighting where the extra polarimetric information

had the most impact on target detection.

4.11 Regist