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Abstract

The detection and characterization of powdered contaminants is a challenging as-

pect of remote sensing in the longwave infrared spectral region. Powders are small in

size (less than 45 microns in diameter) and exhibit weakened spectral features due to

increased volume scattering, which is more prevalent as particle size decreases. Mean-

while, atmospheric effects such as wind, clouds, or shadowing cause large fluctuations in

temperature of a surface on a microscale. This affects the ability of temperature emis-

sivity separation algorithms to adequately derive a material’s spectral emissivity from

spectral radiance measurements. Hazardous powdered contaminants that are inacces-

sible need to be monitored from afar by using instruments of remote sensing. While

spectral emissivity signatures alone can be useful, information about the physical prop-

erties and phenomenology of the material would be advantageous. Therefore, a method

for estimating various physical properties including contaminant mass is presented. The

proposed method relies on the principles of the Non-Conventional Exploitation Fac-

tors Data System (NEFDS) Contamination Model, which creates spectral reflectance

mixtures based on two materials from its own database. Here, a three-step parame-

ter inversion model was utilized that estimates several physical parameters to derive

a contaminant mass from three spectral emissivity measurements. This information is

then used to inject synthetic target mixtures into real airborne hyperspectral imagery

from the Blue Heron LWIR sensor at pixel and sub-pixel levels. Target detection was

performed on these images using the adaptive cosine/coherence estimator (ACE) with

several types of target spectra. The target spectrum with the largest detection statistic
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for each target pixel represents the best spectrum to detect its physical properties and

informs the detection method. Results indicate that best performance is not always

achieved when using the pure contaminant spectrum, but varies with level of contami-

nation and pixel fill fraction. The inversion algorithm method was also applied to real

targets in LWIR imagery and demonstrated the ability to extract contaminant mass

from the data directly.
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Chapter 1

Introduction

The field of remote sensing exists to discover and disseminate information about objects

without physically interacting with them. Diverse in its application, remote sensing is

ingrained into many of the day-to-day functions of society. Everyday citizens checking

the weather do so using predictive weather modeling created with the help of data

collected on airborne/spaceborne sensors. The NASA Landsat satellites let communities

responsibly develop areas of land by mapping changes in land use and trends in land

development. Intelligence gathering satellites allow the government to collect evidence of

illicit behavior by foreign governments, drug cartels and terrorist organizations without

endangering the lives of military personnel. The information gathered in each of these

examples is only possible because of our ability to collect and manipulate remote sensing

data.

Airborne remote sensing typically collects electromagnetic information in two ways.

Active remote sensing systems exclusively collect energy returns after the surface is

illuminated by an on board source. The most common form of active remote sensing

is light detection and ranging (LIDAR). LIDAR uses light in the form of laser pulses

to measure variable distances from the sensor to an object based on the time taken to

return to the sensor. This data is combined with other remotely sensed data to create a

three-dimensional topographic representation of surface characteristics. Passive remote

sensing measures radiation that originates from the sun and is reflected off surfaces or

is directly emitted from the observed object.

Visible and near infrared (VNIR + SWIR) electromagnetic radiation predominantly

originates from the sun and is reflected back into the sensor from objects. Longwave

infrared imagery (LWIR) comes directly as a result of an object’s ambient temperature
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while midwave infrared energy (MWIR) is a combination of both phenomena.

The region encompassed by a sensor pixel as projected onto the ground is unlikely

to be uniform in its composition but rather a mixture of multiple materials that fall in

the same governing space. Consider a pixel that is one square meter and falls upon the

boundary of a baseball infield and the grassy outfield. From a physical standpoint there

is clear separation of materials, which allows electromagnetic energy to independently

reach the sensor pixel where energy from all governing materials will combine linearly.

On a smaller scale, pixels can also be represented as a collection of intimate mixtures

between materials. While the grassy outfield in the previous example may appear nearly

homogeneous in a large area pixel, upon closer inspection the grass may be comprised

of different species of grass. Those grass blades also grow from earthy soil materials, all

of which will interact with incoming solar electromagnetic radiation prior to reaching

the sensor. Everything in the scene contributes to the final measured result.

Methods exist to decompose measured spectrum of a pixel into abundance fractions

of constituent materials called spectral unmixing. An important application of spectral

unmixing of intimate mixtures is to detect the presence of effluent powders from indus-

trial processes. An effluent powder is another way of identifying a material that should

not be present in a location. Often times, this refers to materials of a hazardous or

dangerous nature. Companies and countries that hold similar materials typically place

them in heavily guarded, inaccessible locations. Remote sensing provides a means to

extract as much information as possible about the effluent material from a safe distance

in order to assess its risk to the public.

Data processing algorithms assist in the breakdown of spectrally collected remote

sensing information. Spectral unmixing algorithms are capable of determining a rough

estimate of the composition of mixed pixels (assuming the mixture is a linear combi-

nation of materials), but at times this proves inadequate. It is important to be able

to accurately assess the type and the amount of a contaminant present as quickly as

possible in order to reduce any potential risks to the environment or people. Aerial

imagery in conjunction with unmixing algorithms cannot currently derive an accurate

amount of material present in a scene when intimately mixed for a variety of reasons to

be described later. So how can we estimate physical characteristics of intimately mixed

materials that fall within the bounds of a single pixel?
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Figure 1.1: Fused Silica dust coating a painted aluminum surface.

1.1 Objectives

The goal of this research is to use spectrally mixed hemispherical directional reflectance

(HDR) and spectral emissivity data to derive information regarding about the physical

properties of an effluent contaminant from remotely sensed longwave infrared hyper-

spectral imagery. This information can then be used as a way to inform target detection

algorithms on the fidelity of using different types of target signatures. A bullet point

overview of this is provided below:

1.1.1 Tasks

1. Develop a framework for repeatable contamination tests

2. Measure mixtures of materials in laboratory and field settings

(a) Using simple mixtures of materials

(b) Using complex mixtures of materials
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3. Estimate physical parameters of mixed materials from the field and potentially

model mixture emissivity

4. Inject signatures into real airborne data in both full and sub pixel forms

5. Determine the minimum detectable amount of contaminant present for both full

and sub-pixel mixtures as a function of target signature

6. Compare estimated contaminant mass present to actual mass present

A secondary goal of this project is to improve our detection algorithms by better un-

derstanding target phenomenology and the resulting spectra to be used in the detection

scheme. Mixtures will be made and injected into real airborne hyperspectral scenes.

These mixtures will vary in amount and pixel coverage (full pixel vs subpixel).

1.2 Scope

This research will examine estimating physical parameters from the defined region of

longwave infrared spectra (8-14 µm). Midwave spectra are not considered as their elec-

tromagnetic energy distribution is too complex for the current model. In many cases,

especially those not involving naturally occurring materials, directional changes between

emissivity spectra can be assumed to be relatively small. As a result of instrument

limitations and the overall challenge of the problem, off-nadir considerations were not

thoroughly examined. There are already several unresolved potential sources of error in

measuring mixture emissvities and estimating physical masses of effluent materials on

surfaces. Unless more are rectified, noticeable differences in angular mixture measure-

ments may be the result of a summation of errors and not true phenomenology. This

is especially true for intimate mixture cases, where the contaminating material is likely

sparsely coating the surface.

1.3 Overview

In Chapter 2, a robust discussion of remotely sensed data in the longwave infrared will

occur. Longwave infrared imagery was chosen for this study as good imagery can be

collected regardless of time of day and many materials have strong identifying features in

this spectral range. While great advancements have been made in analysis of longwave
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infrared imagery, it is often ignored as a viable alternative to VNIR and SWIR for its

complex sensor designs.

In Chapter 3, the Non-Conventional Exploitations Factors Data System (NEFDS)

contamination model will be discussed in great detail. This model uses some principles

of the Hapke model to create spectral emissivity for mixtures of differing levels. The

NEFDS Contamination Model is the basis for the derived algorithm responsible for esti-

mating mixture contaminant amounts. This chapter will also briefly look at µDIRSIG, a

first principles based simulation tool as a potential method to create simulated mixtures

with well defined properties.

Physical parameters such as coverage density are computed from the NEFDS derived

three-step parameter inversion model and the derived total contaminant mass from the

results is shown. Estimated parameter values will be derived from real measurements

made in a laboratory and field setting. Improvements to the model will be examined,

specifically if the contaminant extinction cross section can be directly measured to reduce

its impact on estimated density amounts.

A discussion of the methodology of this project is presented in Chapter 4. The

three-step parameter inversion model created from the NEFDS contamination model

is explained. Physical parameters such as coverage density and contaminant mass are

estimated for both measured and modeled data. An approach to injecting the mix-

ture signatures into real airborne longwave hyperspectral scenes for further analysis is

explored. Target detection algorithms performed on these synthetic images will help de-

termine the conditions for which each amount of material can be detected. The smallest

detectable quantity of contaminant will be considered the minimum detectable quantity

(MDQ), but will vary based on density, pixel coverage and type of target signature used.

A number of results for the parameter inversion model are presented in Chapter 5.

Several solid powder contaminants were chosen as well as a number of substrate surfaces

for the experiments. Basic material combinations were initially created as a proof of

concept to the model. Complexity of mixtures is increased by combining materials

with less pronounced signatures and by using more complicated substrate materials.

The results are presented as individual parameter estimates for mixtures as well as

reconstructed reflectance and emissivity signatures. Future work will be proposed at

the end that considers the current status of the project and what could be accomplished

with additional efforts.
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Chapter 2

Background

From a remote sensing perspective, the collection and analysis of electromagnetic radi-

ation data is paramount to understanding the characteristics of a material or mixture

of materials in a scene. While mixtures are inherently more complicated to understand

than a single material collection, all types of data have unique complexities. A single

material may appear different than expected due to interactions the surrounding en-

vironment and atmosphere have with that material. Furthermore, for some types of

data like longwave infrared radiation, temperature retrieval is required along with col-

lected radiance data to calculate spectral emissivity. Before any data can be parsed

and analyzed, a thorough understanding of electromagnetic radiation and its impacts

on materials needs to occur.

2.1 Remote Sensing

As previously mentioned, remote sensing enables us to learn information about an object

without ever coming into physical contact with that object. Light waves are collected

by instruments and image analysts dissect collected data to discover useful information

about the scene. Radiometry provides an adequate way to study the nature of light.

All electromagnetic energy travels at the speed of light c in a vacuum, which is

defined as

c = λν, (2.1)

where speed is comprised of the frequency (ν) of the wave peaks measured in Hertz

and the wavelength of light (λ) [1]. The frequency of light is determined by its source.
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Monochromatic light has a single frequency component where as polychromatic light

contains a spectrum of radiation components. No theoretical limit to the frequency of

light exists, therefore electromagnetic radiation waves may have very large frequencies

like radio waves ( 104m) or very small like gamma ray bursts ( 10−16m).

According to quantum theory, energy travels as quanta carried on particles called

photons. Energy is based on the wavelength of light that is being considered and is

defined as

q =
hc

λ
, (2.2)

where h is Planck’s constant, and q is the total energy at the specified wavelength.

Most remote sensing instruments and applications measure quanta from the 0.4 - 14.0

µm region. The two largest sources of quanta, terrestrial radiation and solar radiation,

have the biggest impact in this spectral range.

With this newly defined spectral range, Earth based passive sensor reaching electro-

magnetic energy originates primarily from two types of sources. The visible and near

infrared (VNIR-SWIR) portion of light is dominated by solar energy that reflects off of

terrestrial objects towards the sensor while the longwave infrared (LWIR) spectrum con-

tains emitted energy that is associated with the temperature of non-solar objects. In the

region between 3-5 µm (midwave infrared radiation), both aspects occur in significant

amounts.

2.2 Solar Reflected Radiation

Solar reflected radiance is calculated by summing electromagnetic radiation originating

from the sun that reflects off of materials into a passive sensor. The dominant portion

of the electromagnetic spectrum for solar energy occurs in the visible and near infrared.

Depending on the path taken, a photon may interact with many objects before

reaching the sensor (downwelling radiance, adjacency effects) or reflect off the target

directly (direct radiance). Photons sometimes even fail to interact with the target

prior to reaching the sensor (upwelling). Total observed solar radiation (Lobs) is the

combination of each energy path described.

In practice, to determine the surface characteristics, Solar radiance is rearranged

and manipulated to solve for spectral reflectance (r(λ)) which is better for material

specificity. If conditions are favorable, it is possible to eliminate some components of
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this equation by understanding the surroundings. For example (as described below) the

background radiance term ((1 − F )Lb,s,λrd(λ)) incorporates a sky fraction (F ) that is

defined by the proportion of hemisphere visible from the measurement location. When

the entire hemisphere is visible, the background term is completed eliminated.

2.3 Infrared Radiation

Unlike solar radiation, infrared radiation is not a measurement of the reflected solar

energy, but the radiation that an object directly emits. Any object with a temperature

above absolute zero and that is not a perfect reflector, including atmospheric matter will

radiate energy. If the temperature the object emits at is roughly the temperature of the

Earth, emitted energy will be present in the longwave infrared spectral region. While

similar to reflected solar energy, it is more difficult to conceptualize longwave radiation

than light originating from the visible spectrum.

Given that objects emit light based on their temperature, there should be a spectral

range where emitted light plays a dominant role for Earth objects. Using Wein’s Dis-

placement Law, a spectral emission peak can be determined for an object at temperature

T and is written as

λ =
2898

T
. (2.3)

The numerator of Equation 2.3 represents the Wein displacement constant ‘A’ and

is found by manipulating Planck’s Law. Since the sun has a known temperature of

approximately 5778 K, its peak emission wavelength hovers around 0.5 microns, or

approximately green visible light. An object on Earth will have a temperature around

300 K, which results in a spectral peak of approximately 10 µm. For an object on Earth

to emit even a small amount of visible light, its temperature needs to reach at least 500

Kelvin which is significantly higher than most terrestrial surfaces.

With this in mind, an idealized spectral range to examine radiation generated by

objects found on Earth will be the longwave infrared spectrum (8-14 µm). Much like

radiance in the visible and near infrared, multiple sources contribute to longwave infrared

radiance. Following the notation of Schott (2007), the radiance at a sensor measuring

in the LWIR is written as

L = LD + LE + LH + LF (2.4)

where LD is the direct radiating term, LE is the downwelling radiance, LH represents
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any existing background effects, and LF represents the upwelling component. Each path

is visualized in Figure 2.1.

Breaking down Equation 2.4 further, it can be seen that there are many different con-

tributions to each respective term. The comprehensive version of the thermal radiance

equation is written as

L(λ) = [ε(λ)LBB(λ, T )+FEd(ε, λ)
rd(λ)

π
+(1−F )(Lb(ε, λ))rd(λ)]τ2(λ)+Lu(ε, λ), (2.5)

where each term in equation 2.5 corresponds to the respective term written in Equation

2.4. The direct surface radiance is a combination of spectral emissivity (ε(λ)), black-

body radiance (LBB(λ, T )) at a given temperature and the transmission through the

atmosphere to the sensor (τ(λ)). The downwelling radiance is comprised of the visi-

ble sky fraction (F ), downwelling irradiance (Ed(ε, λ)), and reflectance of downwelling

irradiance rd(λ). Background radiance Lb(ε, λ) is also modulated by the sky fraction,

atmospheric transmission and reflectance. Finally the upwelling radiance (Lu(ε, λ)) is

the final term.

Equation 2.5 comprehensively examines the numerous impacts of the surrounding

environment on a sensor’s observed radiance field. Various mitigating factors to the

observed radiance include the material optical properties, background radiance, atmo-

spheric effects and various combinations of each. Ground based instruments are close

enough to eliminate any atmospheric effects while placing the instrument far from large

objects, such as buildings or trees, eliminates any sky occlusions. For this observation

geometry, the sensor reaching radiance is

Lobs(λ) = ε(λ)LBB(λ, T ) + (1− ε(λ))Ld(λ) (2.6)

Surface emissivity is easily derived by rearranging Equation 2.6 for the emissivity

parameter

ε(λ) =
Lobs(λ)− Ld(λ)

LBB(λ, Ts)− Ld(λ)
. (2.7)

The resulting spectral emissivity equation leaves a ratio between object and black-

body radiance modulated by reducing both the numerator and denominator by the

downwelling component. When downwelling from the atmosphere approaches the tar-

get temperature, the numerator forces Equation 2.7 to be extremely small relative to its
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Figure 2.1: Visual representation of various paths photons travel to reach a sensor in
the longwave infrared. Taken from Schott (1997), Figure 3.3.

associated denominator. This results in noise dominated emissivity values.

An easy way to reduce the instability associated with poor relative downwelling

radiance is to collect when downwelling lacks significant impact. This occurs during

cloud free periods with low humidity (low water vapor content). Measurement collection

during early morning or early evening time periods helps because the sky is relatively

cool compared to the ground.

2.4 Electromagnetic Radiation Collection Geometry

The geometry behind measuring energy from the VNIR/SWIR and LWIR is very similar.

Visible light acts as in Figure 2.2, where an illuminating light source (typically the

sun), strikes a surface at two reference angles. The incident zenith angle(φi) describes

the incoming radiation declination angle from an imaginary z-axis above the incident
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surface, while θi represents the rotational angle from the planar axes (x, y). Visible light

then reflects off the surface in the direction of the symbols with a r subscripts, which

indicate reflected angles of the same nature as the incident angles.

Figure 2.2: Geometry of the a surface receiving incident energy at angles specified with
an ‘i’ subscripts and reflected in a direction specified by ‘r’ subscript angles.

Since the reflected electromagnetic energy can travel in any direction across the sky

hemisphere above the surface, a measure of this direction scatter should be created. This

measurement is defined as the Bidirectional Reflectance Distribution Function (BRDF)

and can appear in many forms. An ideal specular reflection appears at the leftmost

image in Figure 2.3 where incoming light is reflected in a concentrated singular direction.

The closest example of such an event is a laser pointer off a flat mirrored surface. An

ideal diffuse reflection will reflect light equally in all directions off a surface, which is

best represented by the rightmost image of Figure 2.3. Diffuse surfaces such as flat

paints or very rough surfaces will have very diffuse characteristics. Most materials fall

somewhere in between these ideal situations similar to the middle image in Figure 2.3. A
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Figure 2.3: Three cases of a scattering by electromagnetic energy. The left-most image
represents the ideal specular case and the right-most image represents the ideal diffuse
case for scattering. The center image is representative of most objects, where scattering
is fairly diffuse, with an low intensity specular lobe.

directionally diffuse surface has a low intensity directional lobe, but is relatively evenly

spread across the hemisphere.

In LWIR spectral region emissivity, not reflectance is the dominating factor. While

electromagnetic energy from the sun and surrounding environment becomes incident

upon the surface, it is the surface itself that emits energy. Directional spectral emis-

sivity combines the properties of emitted energy with these directional components and

appears similar to the center and right images of Figure 2.3. With the exception of spe-

cific features addressed later, LWIR measurements do not have significant directional

variation.

2.5 Material Properties

When light reaches a surface, it can either reflect off the surface, be transmitted through

the surface or be absorbed by that surface. Since energy is conserved, light will either

be reflected, absorbed or transmitted with each having wavelength dependencies. This

means the total of the three properties must be equal to the total amount of irradiance

reaching that surface. Therefore each interaction can be represented as a ratio (or an

efficiency) that sums to one,

α(λ) + τ(λ) + r(λ) = 1 (2.8)

where α(λ) is the wavelength dependent absorptance, τ(λ) is the transmittance, and

r(λ) is the reflectance.

Transmittance is the ratio of electromagnetic energy that passes through a surface
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(Mτ (λ)) to the amount that is incident upon that surface (Ei(λ)). Sunglasses represent a

practical example of how to calculate transmittance. Sunglasses are used when sunlight

or sun glare visually overwhelms a person’s sight. When placed over the eyes, the

amount of light reaching the eye is lessened. The ratio of the amount of light reaching

their eyes to the amount reaching the sunglasses is a practical example of transmittance.

Transmittance is calculated as

τ(λ) =
Mτ (λ)

Ei(λ)
. (2.9)

Reflectance is the ratio of the spectral exitance reflected off the surface (Mr) to

the incoming irradiance on that surface (Ei). This differs slightly from a material’s

reflectivity in that the reflectivity is a material’s capability to reflect incident flux into

the entire hemisphere over the material. Spectral sensors in the visible and near infrared

most commonly use reflectance to identify materials. The reflectance of a surface is

calculated as

r(λ) =
Mr(λ)

Ei(λ)
. (2.10)

Finally, when the incident flux is not reflected or transmitted, it is absorbed by

the object. The absorptance is represented by the ratio of flux energy that has been

converted into another energy by the material (Mα(λ)) to the incident flux and is written

as

α(λ) =
Mα(λ)

Ei(λ)
. (2.11)

One parameter not directly seen in any of the above equations is the emissivity of

the material. The spectral radiance of an object or material is directly dependent on the

object’s temperature. Because the energy source is the object itself and not impinged

upon by another source, it is not part of Equation 2.8. Emissivity is a ratio between the

amount of energy radiated by the object or material(Mε(λ)) to the amount radiated by

a blackbody at the same temperature, written as

ε(λ) =
Mε(λ)

MBB(λ)
. (2.12)

Using the principles of thermodynamics and Kirkhoff’s law, the object emissivity can

be incorporated into Equation 2.8 without violating conservation of energy laws. Con-
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sider an object that is placed in an isothermal enclosure. Over time, the enclosure and

object will exchange energy and reach a temperature equilibrium according to the sec-

ond law of thermodynamics. This implies, as found in Kirkhoff’s law, that the absorbed

energy and emitted energy of blackbodies are essentially equivalent parameters,

α = ε. (2.13)

This leads to a modification of Equation 2.8 to appear as

ε(λ) + τ(λ) + r(λ) = 1 (2.14)

and for opaque objects where little energy is transmitted through the material,

ε(λ) + r(λ) = 1. (2.15)

Given that the longwave infrared spectral region is where emissivity dominates, it

is important to understand how to find the spectral exitance for blackbodies. Planck’s

Radiation Law calculates the exitance based on the vibrational energy state between

atoms. The equation used to calculate exitance for a given wavelength and temperature

is given by the Planck equation,

Mλ(T ) =
2πhc2

λ5(e
hc
λkT − 1)

(2.16)

In this case, k denotes the Boltzmann gas constant, h is the Planck constant, c is

the speed of light in a vacuum, λ is the wavelength and T represents the object surface

temperature in Kelvin.

2.6 Temperature Emissivity Separation

In the visible and near infrared, spectral reflectance is ascertained through rearranging

components of spectral radiance (see Equation 2.4) to retrieve a solution assuming at-

mospheric effects are perfectly known or can be modeled using a simulation tool such

as MODTRAN. Solving for reflectance is a well posed problem resulting in a unique an-

swer. In the longwave infrared regime, both emissivity and temperature are unknowns.

Temperature as well as an emissivity at each wavelength affect the observed spectral

radiance of the scene, resulting in a problem with n measurements, but n+1 unknowns.
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Manipulation of Equation 2.6 along with constraining the number of terms results in an

equation for emissivity seen in Equation 2.7. This still leaves an ill posed problem of

solving emissivity for ′n′ wavelengths as well as temperature. The process of deriving

all the unknowns for a spectral image is called Temperature Emissivity Separation and

will be described below.

2.6.1 Fixed Window Technique

Numerous TES algorithms exist to extract spectral emissivity and temperature. A

commonly used method for fourier transform infrared spectrometer (FTIR) measure-

ments called the fixed window technique determines the temperature that constructs

the smoothest spectral emissivity within the user defined window. An algorithm was

developed for this method was written in IDL by Carl Salvaggio and is based on work

by Horton et al (1998) and Bower (1998). This method examines the average of the

squared second derivative of each spectral emissivity at all examined temperatures within

set boundary conditions. The average squared magnitudes of the window for each tem-

perature are compared, with the lowest value corresponding to the most likely surface

temperature. The lowest value (i.e. the smoothest) is the best because the first deriva-

tive denotes the function slope. Small second derivatives demonstrate small changes in

the slope, therefore indicating the derived emissivity curve is very smooth. Any size

spectral window can be selected over any portion of the longwave infrared spectrum. A

poor window selection where the emissivity is not inherently smooth will lead to large

estimation errors.

In Figures 2.4 and 2.5 an example of the process behind the fixed window technique

is shown for Quartz sand. Figure 2.4 shows the emissivity between 306 and 316 Kelvin

at 1 degree intervals and highlights the best estimate of temperature at 312 Kelvin in

red. Figure 2.5 focuses on the window where spectral smoothness was evaluated. A

fixed window was selected in the range of 8.12-8.6 µm in this example due to a strong

well known absorption feature in quartz. A spectral window of any size and location

can be used, but selecting the location of the best absorption feature is ideal.

Another similar technique uses two fixed windows to find the correct temperature

and spectral emissivity [6]. The method is exactly the same, however the aggregate

of the two windows is considered rather than one window. This is useful when the

material is known and has two distinctly strong absorption features to consider. In

cases where two strong absorption features do not exist or where only one feature is well
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Figure 2.4: Derived emissivity spectra of quartz sand for temperatures between 306 and
316 K. The red line represents the best emissivity estimate and its temperature based
on spectral smoothness within a fixed window.

characterized, this method is not ideal.

2.6.2 Moving Window Technique

Some attempts have been made by Darling (2003) and others to incorporate a moving

spectral window of fixed or varying size. In theory, this would find the ideal window

location and size to calculate the smoothest section of the emissivity spectra. In practice,

there could be millions of combinations tested to find the smoothest sized window,

exponentially increasing computation time. The available python code for this method

had significant instabilities as well, and therefore will not be further examined.
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Figure 2.5: Derived emissivity for the user defined fixed spectral window from 8.12-8.6
µm. At 312 Kelvin, the emissivity has the smoothest features within the fixed window
and therefore represents the best estimate for emissivity.

2.6.3 Known Temperature

The final method for temperature emissivity separation of a single spectrum is to simply

use a measured infrared temperature of the surface at the time of collection. This directly

solves for spectral emissivity making it unnecessary to perform temperature emissivity

separation. It is most likely that a known measured temperature is unavailable for any

airborne data, but will be available for ground measured data. In practice, this method

often does not capture the true temperature at the time of measurement. An Exergen

contact probe thermometer needs to be in contact with the material to find its infrared

temperature, but as it contacts the material, it shadows it from the sun, affecting the

radiance measurement. Having the ground temperature as reference is the best case
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scenario for a measurement as truth data is better than estimation in all cases.

Figure 2.6: A comparison of spectral emissivity derivation from various temperature
emissivity separation methods.

As seen in Figure 2.6, the selection of the proper temperature emissivity separation

method can affect the resulting spectral emissivity in the LWIR by significant mar-

gins. For this example, the fixed window technique has overestimated the signature by

about 0.1. Even with a measured known temperature, shadowing of the surface by the

thermometer caused underestimation of the spectral emissivity by a small margin.

2.6.4 Full Scene Methods

While several TES methods have been discussed, all examine single pixel output spectra

data collected from a non-imaging instrument such as the Designs and Prototypes FTIR.

Airborne imagery typically consists of an array of pixels which each have unique spectral
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characteristics. Due to the finite pixel size of airborne sensor arrays, pixels often capture

light from multiple materials, resulting in spectral mixing. Ground truth (also called

reference data) is often not available for airborne imagery and alternative methods for

temperature retrieval are necessary.

Unlike ground based measurements, airborne LWIR imagery must also consider path

radiance contributions when performing a temperature retrieval process. A standard

method for removing atmospheric effects seen in imagery uses the in-scene atmospheric

compensation (ISAC) or something similar [4].

Intuition would indicate the best approach to remove atmospheric effects is to mea-

sure the physical state of the atmosphere at the time of collection and calculate atmo-

spheric parameters using a radiative transfer model such as MODTRAN [7]. This is not

realistic as radiosonde data are rarely available at the site or time of collection. Spec-

tral misregistration between measured and modeled data may amplify the atmospheric

effects making the problem significantly worse.

A more realistic approach is to use the hyperspectral data itself. The In-Scene

approach to atmospheric compensation (often abbreviated ISAC) determines relative

atmospheric parameters like transmissivity and path radiance using only the actual

data collected (Young (2002)) which focuses on two main assumptions:

1. Atmosphere is homogeneous throughout the scene

2. A population of near blackbody materials with a range of temperatures is present

in the scene and encompass entire pixels

When performing ISAC, all pixels help to estimate atmospheric parameters. First,

they are converted into brightness temperature by inverting Planck’s equation [9, 7, 8]

TB(Lbb, λ) =
C2

λln( C1
π∗λ5∗Lbb

+ 1)
(2.17)

where

C1 = 2πhc2 (2.18)

C2 =
hc

k
(2.19)

The variables h, c, and k are the Planck constant, the speed of light and the Boltz-

mann constant [9, 7, 8]. Temperature is not a function of wavelength, however, so
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after calculating all the brightness temperature values, each pixel’s highest temperature

wavelength is determined. The wavelength band with the most maximum brightness

temperature pixels denotes the ideal wavelength for estimating the surface pixel tem-

perature. All maximum brightness temperature pixels in the ideal wavelength are used

to create a scatter plot over the full spectral range of the image such as the one seen in

Figure 2.7. Measured at-sensor spectral radiance is plotted against the spectral radiance

of the blackbody to form a scatter plot.

Figure 2.7: A recreation of a standard scatter plot to estimate atmospheric parameters.
Plot represents the observed vs Planck radiance for each wavelength. Image taken from
Figure 3 of Borel (2003).

A regression line is determined using the highest value from each data bin [7]. The

slope of this regression line represents the atmospheric transmission while the Y-intercept

represents the path (upwelling) radiance contribution. These values are not perfect

as they represent the emissivity relative to the scene as a whole which is unknown.

Fitting to the maximum found in the scatter plot will ensure that the values found for

transmission and upwelling radiance are the best possible fit given the data set. Once

full scenes have been adjusted for atmospheric effects, the necessary data processing can

occur.
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2.7 Material Mixtures and Contaminants

In airborne imagery, pixels tend to fall across more than one single material [10] de-

pending on the sensor ground sample distance (GSD) and instantaneous field of view

(IFOV). In some cases, a mixture may sit on the border between two areas, such as

on a baseball infield where grass and dirt converge. Mixtures like these are known as

areal mixtures. In the absence of multiple scattering between materials, they create

a linear combination of radiance received by each material as a result of the spatial

separation between the materials. It is more likely that materials combine such that

spatial segregation is not present and separating each material’s spectral influence be-

comes more convoluted. These types of mixtures, called intimate mixtures, pose issues

due to non-linearities from scattering between particles.

Intimate mixtures often combine a naturally found surface with a rarely found con-

taminating material. A contaminant is considered any material that at detectable levels,

has an effect on the spectral characteristics of a measurement. The contaminating ma-

terial may be airborne like gases hovering over a factory, or a liquid like oil floating on

a water body surface or embedded in the soil. There are profound differences between

the three states of matter and how they affect a spectral signature.

2.7.1 Gaseous Contaminants

Gaseous contaminants differ greatly from their liquid and solid counterparts in that

they are airborne. Being airborne adds complexities in the phenomenology that are not

seen in ground based contaminants. The resulting detected signature is a complicated

synthesis of the atmosphere, the materials beneath (or behind if viewed horizontally)

the gaseous plume assuming the plume is optically thin, temperature contrasts between

the ground and plume as well as the density of the gas in that location [11]. Small effects

like clutter can have a big effect on plumes. Background clutter has the capability to

completely obscure the plume in a scene [12].

While molecules in equalibrium have several types of energy, molecules only create

features from molecular vibrations in the longwave infrared [11, 13]. Energy quantization

occurs when molecules emit or absorb energy, changing the dipole direction. Because

gaseous effluents are airborne, each particle scatters light independently, whereas liquids

and solids are tightly packed in comparison and can scatter as if a single particle.

In the example of airborne ammonia (NH3), a number of narrow absorption features

exist when electromagnetic energy creates an overtone, specifically in the 7.5 µm region.
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Figure 2.8: Gas absorption spectra of NH3 from Eismann, Figure 4.18.

Narrow absorption features are commonplace in gas spectra because gas plumes are

not cohesive [11]. In reality, detecting narrow absorption features in the measured data

does not happen as cleanly as in Figure 2.8 due to contributions by the atmosphere and

ground. Often times, identifying a gas plume spectrum requires the residual background

spectra from the scene to be extracted [14].

2.7.2 Liquid Contaminants

Liquid contaminants have cohesion, but present additional challenges not seen in gases.

When gases such as water vapor cool below the dew point temperature, they condense

transforming into liquid dew formations on solid surfaces [15]. When dew forms on the

surface of a vehicle, modeling by Reinov (2009) suggests that the surface temperature of

vehicles changes up to 8◦ Kelvin in a situation with dew present as compared to when

the dew is not present. This particular case highlights the ability of a liquid to act as a

thermal heat sink.

Because liquids have no defined shape, they can appear on solid surfaces or in mix-

tures with different liquids. As a surface contaminant, liquids are best understood when

applied as a spray. Archer (2014) showed that several liquids could be well reproduced

in simulation tools when they were considered a thin film on a flat surfaces.
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Physics based modeling like µDIRSIG tend to over compensate for the effects of

liquids on surfaces. In Kerekes (2008), a sample of quartz sand was separated by particle

size and coated with SF96 oil. Restrahlen features were nearly eliminated with the

presence of the oil, but models completely flatten the spectra of the mixture [17].

2.7.3 Solid Materials Properties

Remote sensing has a storied history of collecting imagery of solids using longwave

infrared radiation instruments. Instruments like the Airborne Hyperspectral Imager

(AHI) have been placed in airborne vehicles such as helicopters to measure disturbed

soils in order to find items such as land mines [5]. Others have used mineral features to

do mining and mineral identification work [18].

Some natural materials like soils have distinct restrahlen features that help define

them in the thermal region [19]. When a material’s ionic bonds vibrate, the result-

ing spectral emissivity contains deep absorption regions called restrahlen bands. Most

commonly, they are found in materials containing quartz and can have different shapes

depending on the soil composition. Kerekes (2013) demonstrated that when adding

SF96 contaminant to a quartz sand, the restrahlen features lessened considerably. This

is likely due to an increase in volume scattering from cohesion between the particles

with the liquid oil.

Restrahlen features have varying effects for materials when viewed off-nadir. In Fig-

ure 2.9, clear magnitude changes in emissivity occur at the absorption features from

8.1-8.6 µm. In Figure 2.10, a non-quartz material is measured and no significant emis-

sivity change occurs when the adding angular dependencies.

Another thermal identifier besides Restrahlen bands are Christensen features. These

occur when the real portion of the indoex of refraction of a material undergoes anamolous

dispersion [20]. This is when rapid changes in the refractive index of the material

approach the refractive index of air at a specified wavelength [21, 22, 23]. Christensen

features easily allow radiation to transmit through a material because scattering and

absorption are significantly reduced [22]. Both of these features make them ideal for

identifying a material. Christiansen features can also be used in situations where the

material is known, but the spectrum is slightly bias. Quartz sand is an example where

the 7.41 µm band should match that of air, but in many cases, the measured spectrum

is slightly off from this value.
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Figure 2.9: Change in emissivity given angle for Quartz sand. Measurements taken at
Sand Mountain Recreation Area in Sand Mountain, Nevada.

2.8 Particle Size Considerations

While gaseous effluents have no well-defined volume and liquids act as thin films on

surfaces, solids materialize in several different constructs. They can form as a lattice

of bonded particles, as a loose conglomerate of diversely sized particles, or contain a

homogeneously sized set of particles. Despite consisting of the same material, each can

yield wildly different spectra. Particle size represents a significant influencing factor to

why spectral emissivity measurements differ between each group.

A distinction must be made between the use of the terms particle and grain when

describing a solid material. Grains are single crystal structures within a material layer

while particles are comprised of at least two or more crystals in an agglomerate structure.

This means that a particle must be made up of at least two or more grains.

In Figure 2.11, the spectral reflectivity of three types of quartz are shown, keeping

in mind spectral reflectivity is 1 − ε(λ) according to Kirchoff’s law [10]. The solid

line represents a single polished piece of quartz, the dashed line contains only loose

coarse particles and the smallest dashed lines represent loose finer particle quartz. In

the spectral region containing the two main restrahlen features, it is clear that as the

material particle size distribution changes, the contrast in these bands decreases. Volume

scattering largely contributes to this precipitous drop in the restrahlen features [21].

Volume scattering occurs when electromagnetic energy passes through a material
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Figure 2.10: Little change in emissivity given angle occurs for another size that is not
quartz. Measurements taken at the Nevada Automotive Testing Center in Nevada.

and back toward a sensor [23]. A solid piece of quartz will have tightly packed particles

which will reduce volume scattering and increase surface scattering [21, 18]. When

only fine particles are present, the contrast of the restrahlen bands decreases because

fine particles are typically separated by a distance larger than the wavelength of light.

This results in particles independently volume scattering [18]. Coarse particles typically

only surface scatter, but may have clinging powder sized particles attached to them,

increasing volume scattering by filling porous space between the coarse particles.

While Figure 2.11 shows two particle sizes, materials are usually made up of many

grain sizes. Figure 2.12 explores the differences between eight groupings of particle

sizes separated by sieves. Moersch and Christiansen corroborate the ideas explained by

Salisbury and Wald in more detail [21, 24].

Particles of all sizes have been explored as natural contaminants on vehicle surfaces

and even in the visible when examining planetary bodies [17, 15, 25]. Fines are materials

having a particle size smaller than 45µm. They are commonly referred to as powdered

materials and in natural settings make up a small portion of a sample. In the exam-

ple of the AHI sensor detecting land mines, detection is only capable because of our

knowledge of the finest particle materials. The role of fines to a spectra has not been

explored independent of a full material distribution. When a soil is disturbed, coarse

underground particles brought to the surface are typically coated in electrostatically

attached fine particles [2, 26]. Over time, these small particles detach from the coarse
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Figure 2.11: Reflectance change of quartz material between different particle sizes. The
solid line represents a polished piece of quartz, the dashed line is the reflectance of large
quartz particles (75−250µm) and the small dashed line is the reflectance of fine particles
(> 75µm). Taken from Salisbury and Wald (1992), Figure 1B

particles from wind gusts, rain and other weathering effects, causing them to appear

more like the surrounding undisturbed soils, thus reducing the spectral contrast of this

feature. Immediately after a hole in the ground is created and filled in, the fines from

the soil are present on the surface, changing the observed spectral characteristics. As

time passes, these filled holes become more and more difficult to detect as the particle

size used for identification is weathered from the soil.

2.9 Chemical Composition

Another important factor that affects the spectral characteristics of a material are its

chemical composition and structure. Both of which are related in how they affect the

final target spectrum. Chemical composition refers to the way that the target material

is defined by its index of refraction information, n and k. When used in conjunction

with other parameters of the material, the complex index of refraction (n+ ik) can be
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Figure 2.12: Emissivity of quartz particle sizes ranging from 15 to 277 µm on a
wavenumber(cm−1) scale. Note that 1000 cm−1 is approximately 10 µm. Taken Figure
6a from Moersch and Christiansen (1995)

used in first principles modeling of materials [27]. These models have been employed at

times to characterize chemical warfare objects and toxins for stand-off detection by the

military for the unique spectral features of the agents in the infrared region [28]. Given

the similarity to the military applications, industrial effluents could theoretically also

be examined in this range.

It is a non-trivial problem to attempt to acquire the complex index of refraction

of materials in the longwave infrared. There are however several different methods

that could be used to extract usable spectra, each with unique challenges. The longer

established method is called the single-angle reflectance method, which has been used in

research for several decades. Experimentally, the reflectance of a material is measured in

wavenumber space against that of a perfect reflector over a large spectral range [27]. In

Blake (2017), materials were measured using a Bruker A510/Q-T reflectance accessory

that had the capability to be outfitted with different optical components to obtain as

large of a spectrum as possible (5000 - 50 cm−).

The complex index of refraction information can then be derived from the Kramers-

Kronig Transform (KKT) which uses the experimentally measured reflectance in wavenum-

ber space. This relationship is described as
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φ(νm) =
2νm
π

∫ ∞
0

ln(
√
R(ν))

ν2 − ν2
m

dν (2.20)

where equation 2.20 solves for the phase function φ(νm) with the measured reflectance.

The best solution to the complex index of refraction will be evaluating the largest pos-

sible spectrum of wavenumbers in the integral (ideally infinite wavenumbers). Equation

2.20 can be manipulated to solve for both n in

n(ν) = [1−R(ν)]/[1 +R(ν)− 2R0.5(ν)cos(φ(ν))] (2.21)

and k in

k(ν) = 2R0.5(ν)sin(φ(ν))/[1 +R(ν)− 2R0.5(ν)cos(φ(ν))] (2.22)

The largest issue with this method is that it requires a significant spectral range of

measurements in order to properly work. In the example case described in Blake (2017),

spectra were measured between 5000 and 50 cm−. This corresponds to a wavelength

range of 2.0 - 200 µm.

Another method that can be employed is to compress materials into a disk and

directly measure them using a IR-ellipsometer. Ellipsometry uses changes in the po-

larization state of light, specifically the amplitude (tan[ψ]) and phase difference (∆) to

calculate the index of refraction. Linearlly polarized electric fields, both parallel and

perpendicular to the incident plane, are used as illumination and amplitude and phases

shifts are measured. These shifts in amplitude and phase difference are related to the

parallel and perpendicular fields of light as seen in Fresnel equations by

rp
rs

= (tan(ψ)ei∆) (2.23)

where rp represents the parallel field and rs represents the perpendicular field. Measured

data is input into a Levenberg-Marquardt algorithm to calculate the index of refraction

at each wavelength [27]. The main issues with this method are that if materials are

compressed into disks incorrectly or poorly placed in the ellipsometer, the measurements

may cascade error and result in poor index of refraction derivations.

Material structure can be used to help identify previously derived index of refraction

data by using x-ray diffraction. The crystalline structure of the material (monoclinic,

tetragonal, cubic, hexagonal etc) will have unique intensity peaks at specific angles that
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can be used to identify its structure. Each type of structure will have a distinctive index

of refraction that could already have been measured and placed in a spectral library.

2.10 Solid Contamination Properties

The physical properties of solids are unique in comparison to gases and liquids. As

stated in Section 2.7, solid materials act as unique particles with varying particle sizes

which can have affects on optical properties. The location where the solid material is

found must also be considered and can be separated in to many cases. The presence of

solid contaminants is demonstrated as:

1. Natural contaminants on natural surfaces

2. Man-made contaminants on natural surfaces

3. Natural contaminants on man-made surfaces

4. Man-made contaminants on man-made surfaces

An example of man-made materials and surfaces are road asphalt covered in styro-

foam peanuts. Man-made contaminant materials may also be considered a material that

is not native to the area. Man-made surfaces such as concrete, asphalt and brick tend

to lack distinct spectral characteristics in the LWIR. This research focuses on the effects

of solid powder contaminants. Powders are considered to be particles that are less than

45 µm in diameter. In many cases, powders are much smaller than that criteria, even

on the order of the wavelength of light that interacts with them.

Several tests were completed to determine the validity of a solid material being

a powder and understand its chemical composition and grain structure. An example

material is silicon carbide obtained from Washington Mills seen in Figure 2.13. This

material is listed as the dust collected fines from the mineral mine, which indicates

that it passed through their smallest sieve and should follow the requirements of a

powder. To confirm its material purity and geometric shape for modeling, a series of

x-ray diffraction measurements of each material. The silicon carbide material results

are shown in Figure 2.14 and demonstrate that when the it is composed of hexagonal

structured silicon carbide grains based on intensity peak matches to that structure in a

spectral library. Materials were also sent out to be measured using a Woollam IR-VASE
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Figure 2.13: Pure silicon carbide powder emissivity.

Mark II ellipsometer at a lab in Lincoln, Nebraska. This was done to materials that had

no discernible intensity peaks or contained multiple structures or materials.

Another test done is for the particle sizes of each particle and the effective particle

size distribution. In large particles, size analysis can be completed by passing a large

amount of material through a set of sieves in a sieve shaker. Because small particles tend

to clump together, sieves are not as effective a method to do a particle size distribution.

Instead particle size analysis is done by utilizing a scanning electron microscope (SEM).

The process for collection of SEM images starts by preparing the samples for the

microscope. A small aluminum stub is covered in a carbon tab which acts as an ad-

hesive to both the aluminum and the powder. Since the powdered materials are not

naturally conductive, the materials must go through the process of sputter coating. A

Gold Palladium material coats the powder coated carbon tab with a few nanometers of
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Figure 2.14: X-ray diffraction images of silicon carbide powder. Data was collected in
the material science department at the Rochester Institute of Technology in August
2016.

material, making the surface conductive.

The material is now prepared to be imaged in the SEM. An electron gun within the

instrument shoots electrons through several magnetic lenses towards the powdered tab.

Electrons interact with the conductive surface and a signal is measured by the SEM

of the surface one pixel at a time until an image is built up. Figure 2.13 shows the

analysis of the silicon carbide at various zoom levels and projects a physical ruler next

to each image. Each image demonstrates that the particles found in the Washington

Mills sample are less than 50 µm in diameter. Particle size distribution on small sized

materials can also be performed by examining the rate that an amount of material drops

through a graduated cylinder of liquid over a long period of time.



2.10. SOLID CONTAMINATION PROPERTIES 55

(a) SEM image of silicon carbide powder at
889x zoom

(b) SEM image of silicon carbide powder at
2730x zoom

(c) SEM image of silicon carbide powder at
6850x zoom

(d) SEM image of silicon carbide powder at
19970x zoom

Figure 2.15: Scanning Electron Microscope (SEM) images of silicon carbide powder at various
zooming distances
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Chapter 3

Theory

While non-linear material mixtures are commonplace in the real world, they are exceed-

ingly difficult to recreate from a theoretical perspective. Currently, only a few models

exists that can create an emissivity spectrum from knowledge of the two materials being

intimately combined as well as a few parameters about each material. Of those, the

Non-Conventional Exploitation Factor Data System contamination model is one of the

strongest available commercially. It uses the NEF database of spectral reflectance data

to create mixtures at any theoretical mixture level.

3.1 NEFDS Contamination Model

The Non-Conventional Exploitation Factors Data System (NEFDS) is a comprehensive

spectral library of materials managed by Cortana Corporation that contains thousands

of material reflectances on nearly every material on Earth[29]. The library is unique

in that a material may have several unique spectral reflectances, each corresponding to

various characteristics or conditions applied to that material. Such factors addressed

include reflectance changes as a result of composition differences, moisture content,

weathering and texture. The library itself contains over 25,000 individual reflectances

with some materials having been measured several times over the course of years. Given

the extensive nature of the library, many remote sensing applications utilize the database

to help support new frontiers in research.

Cortana Corporation expanded upon its database to explore the functionality of

interactive applications of their library that assist in research. One such application

was a contamination model that could generate spectral reflectance information for non-
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linear intimate mixtures between a substrate surface and a contaminant. Currently, RIT

has access to version 15.0 of this model; later versions likely have significant changes to

parameters. Version 15.0 of the model uses two reflectance measurements and a user

defined mixture percentage to model the reflectance of the mixture. The contamination

model evolved from their original linear mixture model

R(t) = Rse
ϑt +R∞(1− e−ϑt). (3.1)

The mixture reflectance R(t) was a comination of information from the reflectance

of the substrate (Rs) as well as the pure contaminant (R∞). Each reflectance signature

was modulated by the effective layer thickness t and a model fit parameter ϑ. This

parameter represents the contaminant scattering coefficient as a scalar value while also

assuming that no multiple scattering effects occur either in the contaminant layer or

between the contaminant and the sparsley covered substrate surface [29]. In actuality,

wavelength dependencies exist for scattering in the examined spectral region. The linear

mixing model is the only version of the contamination model that make the assumption

that scattering can be generalized to a single value. The single scattering coefficient can

be detailed further as

ϑ ∼=
ρs
ρq

3

2D
, (3.2)

which utilizes the relationship between the powder mass density (ρs), a single particle

mass density (ρq), and the average diameter of a particle (D). This statistical model

indicates that particle size effects significantly change the linear model results as they

approach the magnitude of the wavelength of light, suggesting that wavelength depen-

dencies are a result of particle Mie scattering [29].

The largest challenge with Equation 3.1 lies in effectively incorporating contaminant

layer thickness into the model. Consider a situation where so little contaminant exists on

the surface that no consistent and measurable layer of contaminant is present. The model

will fail as the parameter is not quantifiable. Removing contaminant layer thickness

as a model parameter and replacing it with another parameter or set of parameters

assists in accurately representing spectra of low contaminant mixtures. Another issue

arises in the model when high amounts of contaminant are present. The shift in the

thickness parameter’s magnitude causes the model to become insensitive to thickness

and produce diminishing returns to the parameter. Objectively, this makes the model’s
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thickness parameter unreliable and necessitates a parameter substitution for the term.

The NEFDS linear mixing model was adjusted considerably to incorporate these changes

as seen in

Rm(λ) = fRs(λ) + (1− f)Rc(λ), (3.3)

which substitutes R∞ with the contamination reflectance (Rc(λ)). This adjustment also

groups together the conglomerate of parameters and renames them as the area fraction of

incident light through a contamination layer (f). Essentially, the area fraction represents

a non-linear electromagnetic radiation extinction method that mirrors the attenuation

of light commonly seen in Beer’s Law as transmission. Initially, the area fraction is

written as

f = e−α(λ)Nt, (3.4)

where α(λ) describes the spectrally dependent extinction cross-section and N represents

the particle number density. The extinction cross-section is also sometimes referred to as

the extinction coefficient in Beer’s Law when discussing measuring the radiance through

a plume. It represents the product of the extinction coefficient (QE) and the geometric

cross-section of the contaminant particle (σ). Utilizing a few principles of radiative

transfer theory, additional equations will be substituted to eliminate thickness from the

model. This increased the complexity of the radiation extinction term exponentially.

When the contaminating material coverage density is so large that the volume of

particles begin to stack and become closely packed, the model becomes insensitive to

number density. In order to address this insensitivity, the contamination model needs

to create an effective number density as a replacement to number density [29]. The

reason a standard number density representation fails in this model is that an incorrect

assumption is made that the amount of light passing through a thin layer of particles

is negligible compared to the open space found in between the particles [23]. This

affects the area fraction of light and is only true for sparsely packed media, which is the

majority of cases examined for this research. A substituted equation for the effective

particle density (Ne) is shown as

Ne =
−N ∗ ln(1− φ)

φ
, (3.5)

where φ represents the fraction of the layer containing the contaminant or fill factor.
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Essentially, Equation 3.5 is the product of the particle number density (N) and a porosity

coefficient [23]. Equation 3.5 can act as a substitute for N in Equation 3.4 and address

issues surrounding thicker layers of contaminant.

Following the substitution, the thickness parameter still exists, therefore a relation-

ship was developed to remove its dependencies from the model. This relationship was

used to eliminate both the particle layer density and thickness in the exponential term.

The relationship is given as

n

A
= Nt, (3.6)

where n represents the number of particles and A is the given area . The fraction is

essentially representative of an area coverage density where its substituted components

represent that same parameter, but use more realistic and measurable variables.

Now the area fraction contains no information regarding thickness or number den-

sity, but measurable quantities with the exception of the packing fraction (φ). In a

situation where the coverage density was very small, a good assumption would be that

the packing fraction will approach zero while for large coverage densities, the fraction

would approach particle geometry. A phenomenological model for the packing fraction

is used to eliminate the packing fraction seen as

φ = φ0(1− e−β
n
A ), (3.7)

where φ0 = .67 and β is considered the rate at which the particulate layer approaches

the asymptotic limit of packing for the packing fraction [29]. In the case of φ0, that

value represents the density for spherical particles, which are common.

While the representation of β in the NEFDS contamination model is as a rate of

change to the packing fraction, it is essentially a fitting parameter. There is no quan-

tifiable way to know the rate of change in an instantaneous measurement of a material.

The parameter also has no wavelength dependencies and unit analysis shows the units

are in squared centimeters per gram. In the forward model, this parameter is considered

a fit parameter.

Once applying all the model substitutions above, the resulting area fraction of light

is significantly more complex than that found in the linear area mixing model. The
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NEFDS Contamination Model Parameter Definitions

Parameters Parameter Definitions

α(λ) Spectral Extinction Cross Section of Contaminant

n Number of particles

A Area of interest (cm2)
n
A Contaminant coverage density. Equivalent units of g

cm2

β Rate of packing fraction change through contaminant layer

φ0 Volume of particle = 2
3

Rs Substrate Reflectance

Rc Contaminant Reflectance

Table 3.1: NEFDS Contamination Model parameters and their respective definitions

non-linear area fraction of light is now

f = exp
[α(λ) nA ln[1− φ0(1− e−β

n
A )]

φ0(1− e−β
n
A )

]
, (3.8)

which when applied to the mixture equation is able to create non-linear mixtures between

two materials.

The mixture reflectance is now represented by physical parameters that are practical,

real, and stable. Each parameter in the area fraction now only represents a property of

the contaminant alone.[29] In total, one spectrally dependent parameter and two scalar

parameters are used in the model. A fourth parameter is naturally set to the assumed

shape of a particle (φ0 = 0.667). Once all substituted equations for the area fraction of

light have been adjusted and input into the linear area mixing model, the final form of

the NEFDS contamination model is created. The new non-linear model takes the form

Rm(λ) = Rc(λ)

(
1− exp

[α(λ) nA ln[1− φ0(1− e−β
n
A )]

φ0(1− e−β
n
A )

])
+

Rs(λ)exp
[α(λ) nA ln[1− φ0(1− e−β

n
A )]

φ0(1− e−β
n
A )

]
, (3.9)

and uses reflectance data for contaminant and substrate materials from the NEFDS

spectral library. Each term is defined in the table below.
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3.1.1 NEFDS Contamination Model Parameters

While the model is now larger and more complex, it only carries four parameters beyond

the reflectance information. There are two scalar parameter, one spectrally dependent

parameter and one variable that remains constant regardless of situation. The spectrally

dependent extinction cross section (α(λ)) references the total loss of energy due to

absorption and scattering in a medium of the contaminating material alone. Since it is

only dependent on the contaminant, there should not be any change to the parameter

based on the level of contaminant present. Unlike its counterpart in the linear area

mixing model, the extinction cross section contains the effects of multiple scattering

and is wavelength dependent.

One of the scalar parameters n
A , represents the area coverage density of the contam-

inant on a surface. This could also be refered to as the physical amount of material over

a given area [29]. The parameter has two components: the number of particles (n) and

the area of coverage (A). While it is possible to measure the number of particles, it lacks

practicality in a real experimental situation, especially when considering materials with

particles on the order on hundreds of nanometers in diameter. A reasonable alternative

to an exact particle count is to use a measured contaminant mass within that area. Unit

analysis dictates that either number of particles or grams are acceptable in the finalized

equation. For imaging systems, this assumes a consistent coverage density across each

pixel.

The second scalar parameter β is defined by the NEFDS contamination model docu-

mentation as the rate of change in the effective packing fraction of the contaminant [29].

This definition is neither intuitive or physically descriptive enough to understand. When

analyzing the units for each parameter of the forward model, the β parameter ends up

having inverse coverage density units cm2

g , which are easier to explain from a physical

standpoint. A low value for β indicates that the contaminating material particles are

likely to be stacked and concentrated in a smaller area. Higher values for β suggests that

particles are spread across a large area and unlikely to be stacked. In contamination

model version 15.0, this parameter was created through a first principles derivation and

remains independent of wavelength.

Technically speaking, φ0 could be considered a third scalar parameter that represents

the fill factor of a single particle. In the forward model, the model assumes that most

particles are spherical with a estimated fill factor of two-thirds. For the purposes of

this research, the spherical particle assumption is maintained. Even if variation occurs
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between particles the average shape from the distribution will represent the spherical

approximation

Despite the uniqueness of the NEFDS contamination model to create non-linear

emissivity mixtures, its current extent within the NEF database is limited to use of

just over a dozen materials. These limitations make the model irrelevant to current

hyperspectral applications.

3.2 Extinction Cross Section

In attempts to directly measure the extinction cross section parameter found in the

NEFDS contamination model, a mathematical solution was created that in theory would

find a novel solution for the cross section of particles compressed into a disk. Mathe-

matically, the extinction cross section could be calculated using Beer’s Law because the

parameter is contained within the transmission term. A standard Beer’s Law equation

appears as

I(λ) = I0(λ) ∗ e−Nα(λ)Z , (3.10)

where I(λ) is the measured radiance of a contaminated surface, I0(λ) represents the

radiance of a pristine surface, N represents the volume density of the contaminant, Z

represents the optical path length through a layer and α(λ) is the cross section. This

form of Beer’s law is sometimes used in cases of sensors staring through a gaseous plume

or layer of atmosphere where path length and volume density will have an impact on the

resulting radiance. Since this experiment involves a solid powder layer, the path length

term is not necessary. Volume density must also be replaced with number density to

keep unit analysis consistent. This can be accomplished by dividing out the depth of the

material disk from the volume density as the disks represent a well characterized volume

density. This reconfigured Beer’s law equation for powdered materials now appears as

I(λ) = I0(λ) ∗ e−nα(λ), (3.11)

with number density having units of g
cm2 and path length now removed by the only

considering the extent of the disk. Rearranging this equation to solve for the extinction

cross section results in
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α(λ) = −
(

1

n

)
ln

[
I(λ)

I0(λ)

]
. (3.12)

In a singular sense, with knowledge of one disk’s number density, equation 3.12 can

be applied to solve for the cross section. Disks of increased number density will likely

have large differences in the amount of electromagnetic energy that can pass through

them. Therefore a robust solution that incorporates several disks can be created by

again rearranging equation 3.12 to appear as

ln

[
I(λ)

I0(λ)

]
= −nα(λ) (3.13)

which takes the format of the standard linear equation y = mx+b. Using measurements

of several number densities, a semilogarithmic plot can be created using equation 3.13

that defines a linear plot of the log-ratio to number density at each wavelength. The

slope of this line will represent the extinction cross section while the intercept in theory

should be zero or nearly zero. If an intercept of any significance does exist, backing it

out would place it in the transmission portion of Beer’s law as

I(λ) = I0(λ) ∗ e−nα(λ)+γ(λ) (3.14)

where γ represents the wavelength dependent y-intercept in the previously mentioned

calculations. There is no concrete definition as to what this error term represents phys-

ically, but the error is spectrally dependent.

3.3 Signature Injection

Target signatures can be injected into an airborne hyperspectral image as synthetic tar-

get data using several methods. Aerial emissivity imagery came from a 2015 collection

of data from the Blue Heron LWIR sensor which performed a radiance collection over

an asphalt parking lot in the Gate, New York region. The radiance image was converted

into emissivity space for target injection. Synthetic target signatures were created using

estimated parameters from the parameter inversion model discussed in Chapter 4 as

inputs to the forward contamination model seen in equation 3.9. The pure contaminant

reflectance signature comes from the empirically measured dataset (Rc), while the sub-

strate signature (Rs) was created from the selected background pixel corresponding to

the location where the synthetic target was placed.
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The purpose of placing synthetic targets in a scene using the parameter estimates

from the parameter inversion model was to assess the performance of detection algo-

rithms using target pixels with a wide variety of properties without varying the target

signature used in the algorithm. Targets varied based on the coverage density from the

estimated parameter set, but were also given varying sub-pixel fractions (δ) for total

pixel coverage. As an example, a sub-pixel fraction of δ = 0.8 indicates that 80% of

the pixel has an intimate mixture while the remaining portion contains just the pure

background substrate. A visual table of targets within the image containing different

combinations of these two properties was created.

Target detection is an application of remote sensing where a user attempts to find

any occurrences of a similar matching pixel in a hyperspectral scene to a spectral signa-

ture provided as reference. Image pixels are tested against this reference spectrum and

assigned a detection score which can be compared to a user defined threshold. Image

pixels whose detection statistic is above (depending on detection algorithm) the thresh-

old are assigned as targets while those below the threshold are not given any distinction.

If a pixel that does not incorporate any of the material of interest, but has a score above

the defined threshold it is considered a false alarm. Missed detections and false alarms

are common given the nature of the problem. Detection difficulties increase when con-

sidering the desired material may only exist in a few number of pixels in the scene and

may not fully encapsulate an entire pixel area (sub-pixel).

Statistical methods of detection such as the adaptive cosine/coherence method (ACE)

attempt to the solve the detection problem by using prior knowledge of the spectral sig-

nature and testing every pixel in the scene against it. The equation for the ACE detector

is

DACE1 =
((t−m)′Σ−(t−m))2√

(t−m)′Σ−(t−m)
√

(x−m)′Σ−(x−m)
(3.15)

where t represents the target spectrum, m represents the background mean, x repre-

sents the test pixel from the scene and Σ defines the background covariance of the image.

While ACE is considered as one of the best detection algorithms, detection performance

is susceptible to a number of problems related to signature mismatch. Manolakis (2010)

cited problems including atmospheric propagation, sensor noise, and intrinsic spectral

variability that can contribute to mismatch of the test pixel to the target spectrum.

Statistical algorithms in general are more likely to have mismatch due to these fac-

tors as they all require the background covariance matrix for determination. While all
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important, little discussion was placed on the value of using variant target signatures

based on properties of test pixels. Given that the properties of target pixels could be

significantly different while simultaneously only accounting for a handful of pixels in the

scene, using an unrepresentative target spectrum for detection could cause target pixels

to go undetected despite both signatures being the same material. This mismatch is

especially prominent in some cases where in-scene targets are of low density coverage or

are sub-pixel in nature as spectral signatures deviate from the pure material signature

in these situations. An analysis of how target detection with an specific type of target

spectrum changes the ability of a test pixel to be detected will help define situations to

use more representative target spectra than just a pure material signature.

3.4 Simulated Contaminant Scenes

While empirical measurements assist in the confirmation of the accuracy of the parame-

ter inversion algorithm, they are not perfect. Measurement errors occur that can cascade

through a series of calculations, leading to a misrepresentation of the derived physical

parameters in the inversion algorithm. By design, simulated data cannot have measure-

ment errors because the scenes are created for ideal conditions and model parameters

are set by the user. One potential method for simulating data is µDIRISIG, which uses

scenes that can be created in Blender or in a text file. Like the NEFDS contamination

model, µDIRSIG can create intimate mixtures between a surface and a sparse layer of

contaminating material, however it uses the index of refraction information and absorp-

tion coefficient to perform its calculations. Conditions of a scene including the number

of particles, size of particles and density of coverage can easily be controlled by the user.

As a simulation tool, µDIRSIG relies upon a first principles, physics based ray tracing

model to evaluate the BRDF of a surface and its polarization components at a sub-pixel

level [30]. This model considers surfaces as having several facets within a single pixel

which captures influences of particles that are not locally flat. Objects are created

using a program like Blender and assigned optical properties (n, absorptioncoefficient)

based on which materials are needed. The absorption coeffiecent is easily found using

the imaginary component of the index of refraction at each wavelength k. Ray-tracing

solvers in µDIRSIG and DIRSIG trace rays from the surface back through until reaching

a illuminating source such as the sky or sun. In µDIRSIG however, the entire hemisphere

is treated as a series of detectors that collect rays to capture an entire BRDF scan

[30]. Output results come in a variety of forms, including as a bi-directional reflectance
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distribution function (BRDF) or as individual Stokes vectors. The first Stokes vector

will provide the information needed to create a single emissivity spectrum that will be

used in the parameter inversion algorithm.
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Chapter 4

Methods

The accurate estimation of a contaminant mass from empirical remote sensing data is

a complex task. The motivation for finding this information is to be able to quan-

tify the smallest amount of a material that can be detected under specific conditions.

This information could also pose useful in an environmental application such as pol-

lution monitoring, or in risk assessment for hazardous effluent materials. A technique

to estimate the amount of contaminant and other parameters takes advantage of both

empirically derived and simulated results. The process is detailed from initial ground

based physical measurements to deriving physical properties from signatures injected

into remotely sensed hyperspectral data. An overview of the entire process can be seen

in Figure 4.1 below.

Experimentally measured LWIR mixture emissivity spectra were input into a pa-

rameter inversion algorithm that calculates the physical parameters of the NEFDS con-

tamination model using intimate mixture spectra. Once estimated, improvements to

the inversion model were attempted, including the direct measurement of individual

parameters. The parameter inversion model results were then used to create synthetic

target signatures within real airborne LWIR hyperspectral images. Targets were made

original by varying the properties of density and sub-pixel fraction into specific combi-

nations. By making each target block a unique combination of the two parameters, a

determination of the ideal spectral signature to use in target detection for each combi-

nation can be made. This helps inform ways to better employ target detection methods

in hyperspectral scenes. Target detection was performed on the images with the ACE

algorithm and several varied target spectra. Target detection scores for every pixel were

calculated and the best input spectra was determined. From this, a map of the ideal
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Figure 4.1: A flow chart depicting an overview of the project.

target spectra for each combination of pixel coverage and density was made.

Attempts at first principles simulations of intimate mixtures using µDIRSIG were

also made to try and create an LWIR spectrum similar to those experimentally measured.

The goal was to make intimate mixture spectra with known parameters that could help

confirm the fidelity of the parameter inversion model.

4.1 Measurements

In order to reduce the impact of environmental biases on contaminated surface measure-

ments, both laboratory and field equipment were utilized in the experimental process.

Laboratory data provided more realistic signatures not found in outdoor hyperspectral

scene collections. Temperature is one of several factors that influence a LWIR spectral

signature outdoors [10]. If wind, rain or clouds are present, then the temperature of
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the measured surface and atmosphere will have temporal inconsistencies throughout the

collection period. Indoor laboratory measurements have no environmental biases, but

are not as comparable to real remote sensed data. Therefore, it is important to examine

both types of collected data as a cross check.

Figure 4.2: One inch thick aluminum plate painted with Krylon 1602 Ultra Flat Black
spray paint.

Most field measurements were made on the roof of the Chester F. Carlson Center

for Imaging Science on the Rochester Institute of Technology campus on various days

throughout the summers of 2015, 2016 and 2017. The roof was ideal for measurements

because of its height above surface obstacles. At that height, no major trees or buildings

can occlude portions of the sky hemisphere. The rooftop surface is covered with a thick

rubberized tar which heated quickly in the morning and maintained surface temperature

continuity, resulting in a large difference between the sky and surface. Atmospheric

effects such as wind and clouds were greatly diminished by examining weather forecasts

and selecting days with clear skies and little to no wind or humidity.

Measurements also occurred in Silver Springs, Nevada at the Nevada Automotive

Test Center approximately one hour east of Carson City. Nevada provided an ideal sit-

uation to record a large amount of data in optimal environmental conditions. From an
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environmental standpoint, Nevada has very warm air temperatures and near zero humid-

ity during summer months. Clouds typically only appear during afternoon hours when

the FTIR instrument is less useful due to self shadowing at nadir. Central Nevada has

the benefit of being very sparsely populated and does not have many trees or buildings,

making the sky hemispherical occlusion a non-factor.

4.1.1 Substrate and Contaminant Selection

Substrates

Multiple types of substrates and contaminants were selected for this project, ensuring

that a diverse collection of material combinations could be constructed for measure-

ments. A strict set of criteria was implemented for selecting both contaminant and

substrate materials for consistency. In the case of substrates, the requirements were

that

1. Substrate surfaces must hold a consistent temperature over a long period of time

2. Substrate surfaces must be relatively flat, smooth and not physically mix with

contaminants

3. Surfaces be well characterized in the longwave infrared spectral range

4. Substrates must be available and easily transported

As discussed in Chapter 2, having a consistent temperature throughout the measure-

ment set significantly increases the accuracy of measurements so that there is improved

performance in the temperature emissivity separation for each spectrum. Controlling

the smoothness of the substrate simply mitigates another factor that can affect the mea-

surements. Substrates with spectrally flat signatures are preferred initially in order to

identify contaminant features easier. As characterization was achieved, some additional

complex substrates were considered including a hardened soil surface which had its own

strong spectral features.

For initial experiments, a one inch thick aluminum sheet was used and painted with

Krylon Ultra Flat Black 1602 spray paint as seen in Figure 4.2. This spray paint has

a well known flat signature in the longwave infrared region. The aluminum sheet has

a smooth surface without texture to reduce effects of surface roughness. Since metals

in general tend to have a low thermal conductivity, they can retain heat for longer
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longer periods of time. Aluminum is not as thermally conductive, however a flat black

painted piece of steel the same size as the aluminum was also used. These should appear

spectrally the same as the surface is coated with the same material, however the steel

retains heat much better than the aluminum.

Two other simple surfaces used in experiments were an asphalt slab and a concrete

slab. Like the black painted aluminum and steel, asphalt and concrete also have flat

spectral signatures in the longwave infrared and hold temperature well. The major

difference between the two is that asphalt has much more pronounced surface texture

with cracks being present throughout the layer. Both materials have spectrally flat

LWIR signatures. The one soil substrate examined was of a soil surface from the Nevada

desert that was flat and hardened from the sun. While it did have spectral features, the

soil had physical properties more in line with asphalt as cracks were present from being

dried out.

Contaminants

The requirements that needed to be met for powdered contaminants were less strict

than the substrates. Each contaminant simply needed to be made of solid material and

consist solely of powder sized particles. Powder materials are considered solids that have

particle sizes less than 45 µm in diameter. Acquiring spectrally interesting materials of

this size proved challenging, but several materials were found, four of which are discussed

in detail. Several manufactured powder materials (silicon carbide, fused silica, white and

brown aluminum oxides) came from Washington Mills. The remaining two were a red

chalk powder from Irwin Construction and a Quartz calibration sand. The red chalk

powder is a composite of relatively larger calcium carbonate particles coated with smaller

red iron oxide dust. The quartz has some larger particle sizes while the rest fit the exact

definition of a solid powder material. Spectral emissivity measurements were made for

each material both as pure material and as progressively more contaminant was added

to a substrate surface.

4.1.2 Powder Deposition Technique

The most challenging and quantifiable aspect of experimentally applying powdered con-

tamination to surfaces was doing so in a repeatable fashion. The first attempted de-

position technique involved the deposition of materials via a kitchen flour/sugar duster

acquired from a kitchen supply store that would normally be used in baking applica-
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tions. While the duster had a convenient application squeeze handle, the design was

clearly not ideal for this specific application. The mesh grading was too wide to hold

reasonably large amounts of material and squeezing the handle failed to consistently

drop equal amounts of material each time.

Figure 4.3: Humboldt sieve used to apply contaminants to the substrate surfaces.

Improvements to the deposition technique were made over time that applied powder

materials through actual mesh sieves seen in Figure 4.3 that have significantly improved

deposition consistency. Sieves chosen were two to three times the size of the largest

particles present so that material can effectively pass through without excessive force.

Material was released from a consistent height of just above the desired surface in order

to prevent material from being carried off by light surface winds. Once a force was

applied to the side of the sieve, a small amount of the powder leaves the sieve and falls

onto the surface. Mass measurements were made of the sieve before and after each appli-

cation was completed with the difference being the amount applied to the surface. This

technique currently provides consistent deposition of materials considering all sources

of error. After each deposition occurs and after a short period to allow the substrate

and contaminant to reach thermal equilibrium, a spectral emissivity measurement was
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taken. One unfortunate aspect to this technique is that the sieve area is several inches

in diameter larger than the instrument IFOV. Because of this, the derivation of total

contaminant mass is made using a subset of the area under which the contaminant is

deposited.

4.1.3 LWIR Instrumentation

Spectral Emissivity Measurement: FTIR

The main instrument used to measure the emissivity of objects in a field setting is

the portable Designs and Prototypes Fourier Transform Infrared Spectrometer Model

102F. Light enters the 4.8◦ foreoptic and is detected on a Mercury Cadmium Telluride

(HgCdTe) liquid nitrogen cooled detector with a spectral sensitivity ranging from 2-16

µm [31]. Realistically, the strongest portion of the LWIR, ranging from 7.0 to 14 µm

provides ample electromagnetic energy for the sensor to detect accurately. The midwave

range is highly inaccurate during daylight hours as solar radiation is equally dominant

as thermally emitted radiation in this region, but could conceivably be used during

night hours. The current sensor also does a poor job detecting photons in the shortwave

spectral range. In the LWIR, more than 218 individual measurements spaced in bands

approximately 30 nanometers wide are possible with this sensor. [31, 32, 33].

The instrument itself attaches to a standard camera tripod and sits one meter off

the surface as seen in Figure 4.4. The foreoptic has an IFOV of 4.8 ◦ which projects a

three inch circular spot size from a meter tall tripod. A digital inclinometer can help

adjust the foreoptic view angle so that a nadir viewing angle can be achieved. Off-

nadir measurements can be made up to 60◦, but as the angle changes, the spot size

transforms into an ellipse and the spot area increases. As seen in Table 4.1, the area

difference between a nadir measurement and 60◦ off axis on the instrument stand is

quite large (34in2). Angular measurements were not considered for this research as it is

difficult to estimate masses with inconsistent spot sizes.

A single measurement of surface emissivity requires four individual measurements

of different properties to eliminate specific terms in radiance space. Two blackbody

measurements are made with one cooler than the estimated surface temperature and one

warmer than the estimated surface temperature. The blackbody used was a temperature

controlled instrument attachment that quickly modifies itself to the desired user input

temperature. Both the cold and warm blackbody measurements bookend the sample

and downwelling correction radiance measurement. The latter removes atmospheric
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Figure 4.4: Designs and Prototypes FTIR 102 instrument set up.

downwelling effects from the scene by collecting only electromagnetic energy that reflects

off a highly reflective Infragold plate. Atmospheric path radiance is negligible from one

meter above the surface as not enough atmosphere is between the surface and instrument

to have an effect. Temperature emissivity separation (described in Section 2.5) was

performed on data when a ground temperature was not available and from this an

output emissivity spectrum was computed. Field measurements more closely resemble

airborne collected data, but are more error prone because they contain environmental

influences from the surroundings. Laboratory measurements are not realistic to airborne

collected data, but can help inform an accurate measurement of a material in a controlled

setting.

Spectral Emissivity Measurement: Reflectometer

Once field measurements are complete, laboratory comparisons can be made using the

Surface Optics Corporation 400-T directional reflectometer. Since no method exists to

completely remove atmospheric and environmental effects from a thermal field measure-

ment, laboratory measurements can act as a pseudo ground truth to those in the field.
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D&P Spot Size Differences by Angle

View
Angle

Distance to
Aperture (in)

Spot Size Major
Axis Diameter
(in)

Spot Size Minor
Axis Diameter
(in)

Spot Area
(in2)

Nadir 30.5 2.557 2.557 5.134
15◦ 31.5 2.710 2.647 5.633
30◦ 35 3.328 2.952 7.717
45◦ 44 4.908 3.616 13.936
60◦ 60.75 9.535 5.113 38.290

Table 4.1: Design and Prototypes Model 102F spot size differences by angle.

Upwelling and downwelling are not present in reflectomemter measurements because

the instrument is in contact with the surface of interest throughout the measurement

process [34, 35].

A typical spectrum collection by this instrument ranges from 2-25 µm with an ad-

justable spectral resolution that is normally set to 4cm−1 and a triangle apodization

method [35]. A benefit to requiring the instrument to be in contact with the desired

surface is that the instrument aperture does not need to be large to make measurements.

In this case, it is a circular opening only half an inch in diameter.

Rather than measure the emissivity of an object, which requires a thermally cooled

sensor, the Surface Optics Corporation 400-T measures the reflectance of a surface. This

can be done despite surfaces at room temperature having a peak wavelength exitance

of around 10µm by using a high temperature internal heating source. This internal

source is a silicon carbide globar which heats to a temperature of 1650 K and exits as

a collimated infrared radiation beam [34]. A parabolic mirror focuses the beam to a

reflecting mirror that passes the energy onto the surface of interest. Reflectance is used

in the parameter inversion algorithm and the emissivity is calculated by using the known

relationship between emissivity and reflectance, described by Kirkhoff’s law. Since the

instrument needs to be in contact with the surface, there is no true collection geometry.

A Michelson interferometer modulates the collimated beam to create interference

patterns detected by two infrared detectors. The combination of the multiple interfer-

ence patterns create a Fourier domain representation of the sample directional reflectance

spectrum. Between each sample measurement, the instrument switches a chopper (seen

in Figure 4.5) from open to closed and measures the internal source off a gold mirror

as a reference [34]. The sample measurement is divided by the reference value and mul-
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Figure 4.5: Surface Optics Corporation 400-T Reflectometer. The aperture (seen in gold
at the top of the instrument) is roughly half an inch in diameter.

tiplied by a calibration value to get the final sample reflectance. Proprietary software

can perform measurement correction by spectrally smoothing the measured directional

reflectance based on user input criteria.

4.2 Estimation of Physical Parameters

Parameters used in the calculation of a reflectance mixture in the NEFDS Contamination

model (see Chapter 3) were found to be informative to the physical characteristics of

materials. Since the model only functioned in the forward state, there was no way

to use already measured mixture spectra to find out physical properties of the mixing

materials. The method proposed looks to invert this forward model in order to estimate

these parameters for intimate mixture spectra.

Inverting the contamination model to estimate physical parameters is a complex

process. A single step optimizing algorithm cannot mathematically determine scalar

and wavelength dependent parameters simultaneously. Instead a complex three-step

inversion model encompassing multiple separate optimization processes (seen in Figure
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Figure 4.6: Diagram of inner workings of SOC-400T reflectometer. Taken from SOC-400
manual.

4.7) estimated the unknown parameters iteratively. The forward version of the NEFDS

contamination model takes substrate and contaminant spectra along with a user defined

coverage percentage to derive a mixture reflectance signature. The parameter inversion

model requires three spectral signatures; the bare substrate, pure contaminant and

mixture spectra. The output result from the parameter inversion model are estimates

of the three unknown parameters (α(λ), β, nA). The first step in this process estimates

all three parameters as if they were scalars. A general minimization will appear in:

min
x
||f(x)||22 = minx(f1(x)2 + f2(x)2 + ...fn(x)2), (4.1)

where each fn(x)2 represents a parameter in the model. Specifically, the technique used

in the first step is called a trust-region reflective optimization. A trust region is a subset

of an objective function that is estimated with a given model. Good agreement between

the expected improvement and actual improvement expands the trust region over a
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larger range and poor agreement contracts it. This process continues until reaching a

solution or hitting a boundary condition.

Mathematically, the objective function is f while a function q is applied across a

small neighborhood N around a specified point x. The neighborhood represents the

trust region where minimization occurs and is represented as

min
s
{q(s), s ∈ N, }. (4.2)

Once agreement is found (typically a threshold marker is set) where f(x + s) < f(x) ,

the neighborhood expands by s and finds a new minimization. The process continues

until reaching a defined convergence threshold or until the number of iterations reaches

it maximum. In order to prevent the optimization from hitting a boundary condition,

100,000 iterations were completed with each computation.

Results from the first optimization routine provide initial scalar estimates for each

parameter. Unlike β and n
A which are both scalar parameters, α(λ) is wavelength

dependent and requires a vectorized solution. The second optimization step creates a

solution for α(λ) by rearranging equation 3.9 into the form of

α(λ) = ln

[
Rm(λ)−Rc(λ)

Rs(λ)−Rc(λ)

]
∗ φ0(1− e−β

n
A )

n
A(ln(1− φ0(1− e−β

n
A )))

. (4.3)

Along with the mixture, substrate and contaminant spectra, the initial parameter esti-

mates for β and n
A are also input into 4.3, allowing for the direct calculation of α(λ).

Despite its simple appearance, finding the correct α(λ) presents the largest hurdle to

calculating a complete solution due to the presence of the logarithmic fraction. There

are four possible results of the argument of the logarithm that have large consequences

to finding a real result. This interior fraction of the logarithm contains differences be-

tween the substrate and pure contaminant and the differences between the mixture and

pure contaminant. For further cases, this operation represents the contrast ratio of the

materials. When the mixture spectrum is enveloped by the substrate and contaminant

spectra, the contrast ratio will be positive and the resulting logarithm produces a real

result. When the mixture spectra does not lie between the two pure material reflectance

signatures, the logarithm produces an imaginary component. If any of the mixture spec-

tra within a data set contain spectral locations that create an imaginary component,

the data was assumed to be poor and those specific wavelengths were eliminated from

the spectra and calculations continue as if those points were not collected. When this
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Figure 4.7: Flow Chart of model parameter inversion process.

occurs at a point for one mixture spectra, that point is eliminated for all mixtures in

the dataset. This prevents the extinction cross sections from being different sizes.

Once solutions were estimated for α(λ), the third optimization estimated the two

scalar parameters. Instead of using the trust-region reflective algorithm as in step one,

a look-up table was instead generated. Reflectance mixtures were calculated using the

NEFDS forward model with every possible combination of the two scalar parameters as

long as the values fell within their respective boundary ranges. Each mixture reflectance

was compared to the physically measured mixture reflectance using a point wise sum

squared difference formula. The combination of scalar parameters that best minimized

the sum-squared difference between measured and modeled results were surmised to be

the correct scalar parameter values. Combined with α(λ), these three parameters de-
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scribe physical properties of contaminant laden mixtures as estimated from the mixture

measurement and the NEFDS model.

Many times, a non-linear optimizer will find a local minimum where results appear to

be acceptable, but in reality a better global minimum may exist. The first optimization

process undergoes multiple trials that randomize starting locations in order to reduce

local minimizations. Starting points are randomized by selecting a starting point from

a random number generator seeded by the clock time. For this experiment, the number

of starting locations varied between one and one hundred starting locations per run.

Having more randomized starts than that increased computation time exponentially,

but did not appear to dramatically improve results.

Once model parameter estimation was completed, estimated parameter values were

used as inputs into the original forward version of the NEFDS contamination model to

cross check with measured reflectance mixtures. Five parameter inputs are used in this

final step: Rs(λ), Rc(λ), α(λ), β, and n
A . The output result for each case is the intimate

mixture reflectance spectrum converted into emissivity that should be a perfect match

to the measured spectrum.

It is important to note that in each of the optimization steps within the parameter

estimation algorithm, parameter boundary conditions are in place. These conditions

bound the potential estimates to realistic values. In the case of the coverage density, the

boundary conditions match those in the NEFDS forward model of 0.001 - 0.0125 g
cm2 .

The extinction cross section was given non-negative boundary conditions up to 200 cm2.

Since the rate of change in the effective packing fraction (β) acts as a fitting parame-

ter with units of area, the boundary conditions were not clearly defined by literature.

Currently, this parameter is set to non-negative values up to a value of ten. Recent

analysis indicates that this parameter can likely be set with a maximum that is two

orders of magnitude larger based on unit analysis without having significant impact on

the magnitude of other estimated parameters.

An additional property can be computed from the parameter inversion model results

that can estimate the mass present on the surface using coverage density. This can occur

by using an assumption that the powder material was deposited with an relatively equal

distribution across the area of the sieve. Simple mathematics computes total mass as

MTotal =
n

A
∗ASieve (4.4)

which uses the coverage density and sieve area. The product of the two parameters
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results in units of grams as desired and represents the derived mass for the mixture.

The sieve area used to calculate the measured mass has a diameter that is seven inches

wider than the IFOV of the instrument sensor where the measurement occurred. If there

is uneven application across the sieve area as opposed to the sensor IFOV, the derived

total contaminant mass will be over or underestimated. Both are equally possible as

sparsely contaminated surfaces are rarely equally distributed over large areas.

4.3 Direct Cross Section Measurement

In the NEFDS contamination model, the extinction cross section (or just cross section)

is used to calculate the mixture spectrum between two materials. This parameter only

references the extinction and scattering of the contaminating material per wavelength

and therefore should be consistent regardless of the amount of material on a surface.

Several attempts were made to directly measure the extinction cross section parameter

from various powder materials. Since direct measurement of this parameter is a novel

idea, improvements were made to each iteration of the experiment and are documented

in this section.

Figure 4.8: Labsphere 2 inch infragold integrating sphere.
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As seen in Figure 4.8, the integrating sphere was initially directly attached to the

instrument optic of the D&P via a 3-D printed connection piece. Direct attachment

was supposed to eliminate any transmission loss from the gold mirror foreoptic and

improve overall signal. This was thought to be important since the radiance levels being

measured were low, however it was later determined that the foreoptic was needed to

disperse an internal cool reflection from the liquid nitrogen dewar.

4.3.1 Light Source

Since the measured cross section will be entirely contained within the infrared spec-

trum, a light source had to be chosen that could contribute significant energy in that

range. The original light bulb provided in the sphere was a electronic light bulb and

not adequate in either wattage or in measurable energy in the longwave infrared range.

A new bulb purchased from Electro-Optical Components was used instead called the

EK-537X steady state IR emitter. This bulb has a radiating temperature around 1173

Kelvin (900 celcius) and 2.4 Watts of power. The wavelength of maximum radiating

temperature was around 2.5 µm, but the overall contribution in the longwave infrared

range was significantly larger than the previous bulb.

A major hurdle to measuring electromagnetic energy across the longwave infrared

range with a light source is that the bulb must reach a thermal equilibrium with its

environment for consistency. Experiments were performed to determine when this ideal

time should occur. As apparent in Figure 4.9, the light source does shift upwards over

time, but after approximately two hours, the rate of change in radiance is insignificant.

Figure 4.10 demonstrates this at several wavelengths in the spectral range of interest

and seems to indicate that after the first hour, there is little variation in signal within

the integrating sphere.

4.3.2 Integrating Sphere Experimental Design

In the first rendition of the experiment, powder was placed inside an output port cap in

two amounts and packed into the same volume of space. Each amount would produce a

different number density as the mass shifted but each was contained in the same volume.

Measurements of the radiance from the pristine sphere as well as the sphere with both

amounts of material inside were measured. Two ratio values at each wavelength were

produced from these measurements.

Using equation 3.12, a wavelength-by-wavelength profile of the negative logarithm of
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Figure 4.9: Measured radiance at intervals across two hour period for EK-573X IR
emitter light bulb

that ratio per measured number density was produced. In theory, this semi-logarithmic

plot should have created a straight line with a near zero intercept at each wavelength.

The slope of the line would represent the extinction cross section at a specific wavelength

and the cumulative build-up of these slopes would represent the entire spectral parame-

ter. In an ideal situation, a direct cross section measurement should closely correlate to

the estimated cross sections from the parameter inversion model in both spectral shape

and magnitude. This would help confirm the fidelity of the model and allow for the

insertion of the measured cross section into the parameter inversion model and remove

a point of error from the scalar parameter estimates.

Unfortunately, due to the size, depth, and shape of the cap, it was nearly impossi-

ble to pack varying amounts of contaminant into the same size area with any level of

certainty. The cap has a half inch diameter circular area with a depth of 0.03 inches.

With a volume of 0.0966 cubic centimeters, the region where contaminant is placed is

extremely small and high levels of uncertainty exist. A solution to this problem is to

create a stable, consistent density layer by pressing the material into compressed disks.

The benefit to creating compressed disks of material instead of dumping and packing

powder into the cap of the integrating sphere is that densities are well known and

disks can be placed at any orientation inside the sphere without spilling over. In the
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Figure 4.10: Radiance shift at three wavelengths over two hours for EK-573X IR emitter
light bulb.

integrating sphere setup, a disk can be placed vertically in the port directly in line with

the foreoptic of the instrument or placed between the foreoptic and integrating sphere

directly. In the case of both experimental designs, the radiometry is the same because

the light originates within an integrating sphere. Secondary reflections are trivial in

magnitude to the transmitted and direct reflected energy interacting with the sphere.

Another benefit to measuring the radiance ratio of disks is that a third experimental

design is possible. Instead of using an integrating sphere with disks of varying contami-

nant density, those same disks can be placed directly on the foreoptic of the instrument

while facing a blackbody radiation source. Disks were held with a lens holder at close

proximity to the foreoptic lens and near the CI SR-80 blackbody radiator. Electromag-

netic energy reaching the sensor was transmitted through the disk of pure potassium

bromide or contaminant mixture. This situation does not contain a large contribu-

tion from secondary reflections or disk emissivity because the disk is only present in

the experimental design for a few seconds so as not to be influenced by the radiating

temperature of the blackbody source.
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4.3.3 Disk Making

In order to make disks with varying densities of contaminant materials, a binder was

required that held the powder together under immense pressure while not affecting

the incoming signal. The best options for materials that have these characteristics in

the longwave infrared are several types of salt. More specifically, potassium bromide

(KBr) powder, which is highly transmissive from 0.25 − 25µm is the most commonly

used binder substance. Potassium Bromide powder was purchased from Sigma-Aldrich

and had 99.99999% purity, which constitutes laboratory grade spectrophotometric salt.

Although potassium bromide is mostly transmissive in the longwave infrared, it is also

hydroscopic, therefore its signature can be easily disrupted by water absorption that

permanently degrades the disk quality.

Both contaminating materials as well as the potassium bromide salt were ground

with a mortar and pestle until reaching a fine powder state. Grinding each material

into this state brought the particle size of both materials to the same level and allowed

the materials to mix intimately and evenly throughout the sample. Prior to making the

disks, the potassium bromide along with all other contaminant materials were indepen-

dently placed in a industrial scale drying over for 36-48 hours at 110 Celcius. Placing

them in conditions above the boiling point of water for long periods of time ensured

that there would be no water vapor absorbed by the sample that could degrade the

disk signature. Following the extensive drying process, the materials were immediately

placed inside a thick sealed plastic bag with desiccant packs that absorbed atmospheric

water vapor and kept samples dry. The samples were then transferred to the material

science laboratory to prepare for the disk pressing process.

Since the radiance of several density levels needed to be measured for each material,

a high end scale with the capability of accurately measuring to one ten-thousandth of

a gram was used to measure the materials. At high contaminant amounts, binding the

material into a disk was difficult. Therefore, disks were made with amounts less than

20% contaminant to 80% potassium bromide. In chemistry, IR spectroscopy indicates

that disks should be 0.2-2% material with the remainder being KBr, but even with a

high end scale, lowering the amount of material to that level is extremely difficult.

Disks were created with an X-Press 3630 hydraulic press as seen in Figure 4.11. This

press has the ability to apply up to 40 tons of evenly distributed force onto a surface for

a pre-programmed amount of time. Several different size options were available for this

hydraulic press made with 13, 32, and 40 millimeter diameter dye casts. Disks could
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Figure 4.11: X-Press 3630 40 ton disk press.

be made up to 10 millimeters thick, but ideal sizes ranged from 3-5 millimeters. Each

size disk required different forces for slightly varied amounts of time in order to achieve

similar results. Disks that were 40 millimeters needed 30 tons of force, while the 13

millimeter disks only needed 6 tons.

For this experiment to be valid, density needed to vary, but the volume of space the

disk contained could not. Therefore, disks were calculated to have the same height for

each contaminant ratio. First, the volume of space was determined by finding the cubic

centimeter volume for the desired height. The volume density of the potassium bromide

binder was then used to calculate the amount of that material which would be necessary

to encompass the disk space. To incorporate the contaminant into the disk, a percent

volume was selected and the mass of the binder at that volume percentage was found

and removed from the total. Then the density of the contaminant was multiplied by

this removed volume to calculate the amount of contaminant to add without changing
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the size of the disk.

The materials were measured and combined in a container where they were shaken

up for several minutes to ensure that the materials were properly combined. That

mixture is then placed inside a dye cast for pressing. In ideal situations, a disk of just

potassium bromide should appear completely transparent when removed from the dye

cast. Transparency indicates that no air has been trapped within the disk and that the

material and that no water vapor was absorbed by the binder material prior to pressing

it. In practice, a perfectly transparent disk is difficult to achieve even when proper

procedures are followed as water vapor is present throughout the atmosphere.

Figure 4.12: A disk compressed with silicon carbide powder and bound with potassium
bromide.

Once placed inside the dye cast, the powder mixtures were pressed for 5-7 minutes

depending on disk size. Following the compression period was a 3-5 minute period of slow

decompression of the dye cast. This is done slowly because quick depressurization can

cause structural deformities and cracks within the disks. Following the depressurization,

the disks were removed from the dye cast and directly placed in a bag with large desiccant

packs and sealed. This bag was then placed inside another bag with large desiccant

packs and sealed. This is to ensure that any water vapor within the atmosphere is not

absorbed by the hydroscopic mixture of potassium bromide with the contaminant. After

long periods of inactivity, the disks were placed in the drying oven for several hours to

bake off any potential absorbed water vapor.
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4.4 Scene Simulation

After real measurement collections have occurred and been tested with the parameter

inversion model, similar recreated mixtures can be modeled using a simulation tool

like µDIRSIG. This powerful simulation tool can confirm the viability of the parameter

inversion model estimates for contaminant mass. Surface mixtures are created in Blender

based on material properties of the substrates and powder contaminants found using the

scanning electron microscope images to create particles.

The Blender mixture recreation allows for known randomized placement of particles,

indicating that the placement of particles is such that a large group can be removed in

the data file without changing the overall distribution found in the scene. The intent

of randomizing particle placement is to be able to adjust the coverage density without

concentrating particles in a single portion of the substrate area across the field of view.

This may have a subtle effect on the β parameter, but should not change the estimated

coverage density.

The geometric properties applied to the powders in simulation originate from the

scanning electron microscope (SEM) images, x-ray diffraction analysis of the powder’s

crystalline structure and analysis of the technical data sheets. From this information,

good estimates of the particle size distribution and particle shape can occur. X-ray

diffraction data contributes to determining the correct optical constants to apply to

each material in the actual simulation. In lieu of a database of known constants for any

of the materials, a compressed disk of each of the materials with potassium bromide

binder were sent out to JA Woollam in Lincoln, Nebraska. JA Woollam has a special

longwave infrared ellipsometer that can directly measure the optical constants n and k

for each material. While k is not directly used in µDIRSIG, it can be used to calculate

the absorption coefficient by using

abs =
4πk

λ
(4.5)

where lambda is the wavelength at each k value in units of centimeters. Once the absorp-

tion coefficient is determined, µDIRSIG can model the scene geometry for a mixture

spectrum. Due to unforeseen challenges in obtaining the index of refraction information,

data for similar products from other customers was provided by JA Woollam instead of

the exact materials used in this study.
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4.5 Signature Injection

The collection and analysis of airborne hyperspectral imagery with target signatures

present is useful in examining the fidelity of the concepts developed in laboratory and

field experiments. These types of experiments are typically placed under ideal condi-

tions, where real world effects such as atmospheric contributions, scene occlusions and

other conditions may change desired results. Target rich airborne data is also useful in

the assessment of detection algorithms when the desired targets are well characterized

at ground level. In most cases, available hyperspectral data either does not contain

pertinent target signatures or signatures exist, but are not well characterized at ground

level. When airborne data available without targets, one method that can be employed

is to inject synthetic targets within the scene using intimate mixture modeling.

Assuming the comparison between the empirically measured spectra and the param-

eter inversion modeling was reasonably successful, the parameter estimates from this

step can be used to inject these targets into the longwave hyperspectral scene. Airborne

data was provided from the Blue Heron longwave hyperspectral sensor of a collection

undertaken in the fall of 2015. The Blue Heron sensor is a 256 pixel linescanner with 250

bands in the longwave infrared (7.5 − 13.0µm). Unlike standard linescanner, the Blue

Heron sensor is attached to a gimbal or turret and flies circularly around a target point.

Because measurements are taken around a point, the imagery appears georeferenced

or orthorectified imagery despite not being either. Provided data has a sensor ground

sample distance (GSD) of 0.25m2.

Airborne data was first converted into surface emissivity space through the longwave

atmospheric compensation tools in the ENVI software program. Once an emissivity

space map was obtained, the hyperspectral data was converted into reflectance space

with Kirkoff’s law. Hyperspectral scenes were chosen based on the availability of large

uniform surfaces such as parking lots or sidewalks within the scene. Large areas were

needed to place as many targets of varying condition as possible. The example scene

used for this experiment contained a parking lot that occupied approximately 30-40%

of the entire image. Physical property estimates (α(λ), β, nA) from the parameter inver-

sion model combined with the hyperspectral scene reflectance signatures as well as the

measured pure contaminant signature to create an intimate mixture. Each target was

created as a 3x3 block of pixels on a parking lot surface from the airborne data. Each

of the three rows of target blocks represented a different coverage density parameter,

most empirical datasets had three discernible coverage densities. Each column of tar-
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get blocks represented a variation of sub-pixel fraction. Ten columns of target blocks

existed; the right-most column was a full pixel representation of target mixtures. Each

subsequent column to the left lowered the sub-pixel fraction by 0.1 (some renditions of

this created sub-pixel fractions that decreased in different amounts). Once completed,

a synthetic target map contained 27 3x3 target blocks, each using a unique combination

of coverage density and sub-pixel fraction. Finally, the targets were blurred and turned

back into emissivity space.

Every hyperspectral map underwent target detection using the adaptive cosine esti-

mator (ACE) algorithm and several different types of targets. Since each target block

contained unique features, performing a target detection algorithm on the scene with

different types of targets should be informative as to which type of target worked best

in each situation. Four target signatures were used for target detection analysis; the

pure target spectrum from experimental measurements as well as three emissivity sig-

natures created with the NEFDS forward model. To make target spectra more realistic

to the scene, the substrate signatures from the experimental dataset was replaced with

an average spectrum from 16 pixels of the parking lot surface in the airborne scene.

4.6 Signature Injected HSI Data

An opportunity arose in November of 2016 that allowed for the collection of airborne

longwave hyperspectral data from the same Blue Heron sensor that was used for signa-

ture injections, where targets could be deployed onto the surface being measured. This

was the ideal situation as targets were actually in the scene and ground based reference

data was collected to compare to the airborne collection. Measurements were made

using the Designs and Prototypes 102F FTIR during the airborne collection. Target

detection algorithms similar to the ones performed in the simulated data were carried

out on the real data and a preliminary assessment was made on this data.

Another benefit to this data collection was that it provided the chance to assess the

point spread function of the sensor which was previously unknown. This was done by

analyzing the line spread function created by the existence of a straight line of pixels

where aluminum foil was placed to create target boundaries. The aluminum line was

narrow enough to be sub-pixel and create the spread needed to assess the LSF and

PSF. The point spread function is simply a three dimensional representation of the

line spread function. The importance of obtaining the point spread function was that

synthetic targets injected into the scenes from the 2015 collection could now be blurred
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to the correct optics of the sensor. Without this blur, all targets would appear without

the effects of the sensor optics wavefront limitations and look out of place relative to

the background scene. The calculated point spread function was a 5x5 matrix that is

two pixels wider than the target blocks. This means that all target pixels will receive

contributions from background pixels due to the sensor optics. In the case of target

block edge and corner pixels, the contribution will be exceedingly larger.
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Chapter 5

Results

This chapter presents and discusses the results that have been achieved during the course

of this study. Most of the work focused on obtaining physical parameter estimates from

the inversion model that was created from the NEFDS contamination’s forward model.

These parameter estimates lead to the derivation of total contaminant mass present on

the surface. Improvements to the model were attempted through direct measurement

of the wavelength dependent extinction cross section term. Target detection analysis

of the mixture signatures injected into airborne data was performed to determine best

practices for the ACE detection algorithm when attempting to detect small levels of

powdered contaminant on various surfaces. Longwave airborne imagery containing real

targets was also analyzed using target detection algorithms and the mass estimation

method presented above. An assessment on the consistency of measurements with the

FTIR instrument is also presented.

For the first summer of data collections, contaminant mass knowledge was unavail-

able due to the lack of a scale with high enough resolution. Inversion model results

under these conditions were placed in an appendix as they can be informative to the

model, but cannot be confirmed with reference data. For all results shown below, mix-

ture spectra without reference data on the mass amounts were labeled numerically from

least to most contamination (least contaminant present is ‘Mixture 1,’ most contami-

nant is ‘Mixture n’). Results discussed in this chapter do contain measurements of the

contaminant mass for each collected spectrum. A mixture in this case is considered a

substrate surface that contains a contaminating material, not a physical mixture of two

materials.

95
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5.1 FTIR Instrument Analysis

5.1.1 Blackbody Characterization

In order to properly characterize the D&P FTIR system, measurements were made to

examine the spectrum of a well controlled external blackbody source programmed to

a specific temperature over an extended period of time. Blackbodies are designed to

maintain a set temperature as defined by the user for long periods of time so that radi-

ating electromagnetic energy can be used for calibrating an instrument. This particular

experiment utilized an in house CI SR-80 blackbody set to 297.15 Kelvin where mea-

surements were collected at small temporal intervals over three straight hours. This time

scale allows for the identification of any significant thermal drift in the FTIR instrument.

As evident from Figures 5.1 and 5.2, the measurements of the blackbody over this time

scale demonstrated consistency not only in the longwave infrared, but across the entire

instrument spectral response. Because the blackbody can be programmed to the hun-

dredth of a degree (2− 15µm) and essentially remains locked in place without variation

except for subtle drift correction, any deviation between spectra can be considered a

result of error within the FTIR. In the peak wavelength range (around 9.6 µm), the

variation in the data remains small. Using equation 2.3 along with the set temperature,

the calculated peak wavelength for the blackbody should be 9.752 µm and given that

the blackbody has not been calibrated in several years, a small deviation from the set

point is not surprising.

A calculation for the standard deviation of the instrument radiance measurement

over the three hour time interval was also computed in Figure 5.3. The standard de-

viation can be described as roughly equivalent to the average distance to the mean

spectrum at each wavelength. In Figure 5.3, the standard deviation never exceeds 0.1

radiance units at any point across the measured instrument spectrum. In the longwave

infrared range (8-14 µm), the standard deviation was less than 0.2 radiance units. This

indicates that on average, each wavelength has essentially the same value for the entire

three hour time interval and almost no error exists in the instrument. This was further

supported by Figure 5.4 which shows the calculated variance or spread in the data at

each wavelength. The variance in the longwave infrared range was calculated to be

essentially zero.
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Figure 5.1: Measured Radiance of a Blackbody Using the CI SR-80 blackbody with the
D&P

Figure 5.2: A close up look at the location of peak blackbody radiance for each time
interval measurement using the D&P.

Finally, peak wavelengths for every blackbody measurement were determined and

plotted relative to the elapsed time from the initial measurement. This was performed to

establish if there was a consistent directional thermal drift occurring in the instrument.

The maximum wavelength varies from 9.65µm to 9.8µm between all measurements which

translates to blackbody temperatures between 296.15 and 300.15 degrees, but no trend
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was seen. Overall, the measurements indicate that the FTIR instrument is incredibly

consistent from measurement to measurement and that any error is likely a result of

another aspect of the measurement process. It also indicates that there is no consistent

thermal drift in any direction as the peak wavelengths do not shift in one singular direc-

tion. Despite this low error, precautions were put in place to ensure power fluctuations

from the building did not incidentally cause variations in the measurements. When this

FTIR instrument was used in a laboratory setting, its power source was connected to

a high end power regulator. In field settings, the instrument was connected to high

quality charged batteries and the voltage was closely monitored. In addition, after the

summer of 2015 collection, the instrument was sent for a much needed recalibration and

upgrade. This reduced the error associated with normal wear and tear of instrument

use.

Figure 5.3: Calculated standard deviation for the blackbody as measured by the D&P
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Figure 5.4: Calculated variance of the blackbody radiance for the D&P

Figure 5.5: The measured peak wavelength of the CI SR-80 blackbody measured by the
D&P

5.1.2 Effect of Nitrogen Dewar

During an investigation into potential direct measurements of the extinction cross section

parameter, it was discovered that when removing the foreoptic of the instrument, the

radiance increased in a contaminated sphere as opposed to a pristine one (experiment

described in detail below). This is counter-intuitive as the materials used had a lower
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reflectance than the infragold found on the surface of the sphere. This is attributed to

an outside influence breaching the closed system. The belief was that this error occurred

due to experiment design. When the location of the material disks were moved to be

directly in-line with the sensor, the effects were reduced. This led to the idea that

there were internal reflections occurring from the liquid nitrogen dewar, which sits just

behind the sensor. It is likely that the foreoptic mirror which was removed from the set-

up dispersed internal reflections from the dewar away from reaching the sensor. When

this mirror was removed, the internal reflections from the dewar were reverberated back

towards the sensor by the highly reflective integrating sphere surface. Therefore the

foreoptic was included in the direct extinction cross section measurements.

5.2 microDIRISIG Modeling

The purpose of examining the µDIRSIG simulation tool was to see if a first principles ray

tracing model could effectively create emissivity mixtures with clearly defined surface

conditions that could be used as a comparison to the estimates found with the parameter

inversion model. If they were capable of creating similar mixtures, then measured data

could be foregone for spectra with isolated characteristics for a more rigorous study.

Ultimately, the largest challenge in the operation of µDIRSIG is the acquisition of the

complex index of refraction for the materials in the longwave infrared range. Typically,

a database of n and k data will not have information outside of the visible and near

infrared range. The only commercially available index of refraction data found for any

material in this research (hexagonal silicon carbide) had n values fall below one at

critical wavelengths, indicating that light was actually speeding up as it passed through

the material. Since this is not physically possible, the only other option was to attempt

to directly measure the properties.

Johnson (2017) described several methods for which this could be done, however

the most realistic option given instrument availability was to send compressed disks of

material out to JA Woollam to be measured with an ellipsometer. Measurements from

this instrument failed in part due to the preparation of the compressed disks of material.

Powders were not ground into small enough particles using a mortar and pestle for the

mixture of the contaminant and binder to be homogeneous. As a result, ellipsometer

measurements were not measuring the contaminant, but a conglomerate material of

potassium bromide particles and contaminant particles. Another issue that occurred

was that some disk surfaces has slight bowing which prevented optical alignment in the
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ellipsometer. This was an unforeseen error as the bowing of the disk was not visible to the

naked eye. Ultimately, the measurements did not work, but measured properties of very

similar items from other customers were provided in place of failed disk measurements.

Complex index of refraction data was provided for two materials, fused silica and

silicon carbide powder, but both occurred as wafer materials instead of powder disks.

Refractive index measurements provided by JA Woollam were made in-plane of these

wafers, but beyond this knowledge, no other information was available from the com-

pany. Attempts to run a µDIRSIG simulation with the complex index of refraction data

provided by the company proved to not be successful for a number of reasons. The sili-

con carbide simulations were not successful as the provided data did not match a known

partial index of refraction match from a database and therefore would not have been a

representative signature. Fused silica failed in the simulations as the model setup did

not contain enough photons to generate a complete signal on the entire array. Unfor-

tunately, the buildup of signal was not improved upon when adding additional photon

bounces and adjusting the array.

The acquisition or measurement of full spectral complex index of refraction data

could prove to be a promising future work project to obtain necessary information that

can perform first principles simulations of surfaces with controlled properties. Until this

information is easier to acquire, simulating contaminated scenes in the longwave infrared

range will remain a challenge.

5.3 Direct Extinction Cross Section Measurements

In an attempt to reduce the complexities surrounding the parameter inversion model

described in Chapter 3, attempts were made at directly measuring the extinction cross

section parameter. This parameter is material specific and does not rely on variation

in contaminant amount as a modulation tool. The direct measurement of the param-

eter would allow for the removal of two of the three steps necessary in the inversion

model. Direct measurements were completed through the creation of disks with differ-

ent densities of contaminating material in them and measuring their radiance changes

as explained in Chapter 4. Initially the measurements were undertaken inside a two inch

diameter infragold integrating sphere from Labsphere, however this design later shifted

to looking through a blackbody source. Results from both methods are presented below.
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5.3.1 Integrating Sphere Measurements

The extinction cross section estimates present the largest hurdle to good estimations

for the coverage density parameter. Since the extinction cross section has wavelength

dependencies, the inversion algorithm needed to dedicate two separate steps and valuable

computation time to help determine its value. The direct measurement of this parameter

would simplify the method and help reduce the computation involved by directly feeding

a parameter that is consistent regardless of mixture.

As discussed in Chapter 4, the initial experimental design used an infragold black-

body with a strong thermal emitting light to try and extract a single extinction cross sec-

tion. Disks of several different number densities were placed inside the integrating sphere

and their radiance ratio with the pristine sphere was measured. At each wavelength,

the ratio for each disk was input into equation 3.13 and plotted on a semi-logarithmic

plot. The slope of the line created by the semi-log plot represents the extinction cross

section at that wavelength, and the intercept should be zero although error does exist

in calculations.

The measured radiance ratios for two amounts of silicon carbide powder in the

integrating sphere can be seen in Figure 5.6. Both ratios are slightly greater than

one in this example; this occurs as a result of an internal reflection from the liquid

nitrogen dewar reflecting off the surface of the integrating sphere (described above).

Since infragold is highly reflective, the energy from this internal reflection returns and

reaches the sensor. This became more apparent when the disks were moved from the

bottom of the sphere to directly in-line with the sensor. In this setup, the ratios dipped

slightly below one, but were still adversely affected by the reflection. Once the foreoptic

was placed back into the optical system, the internal reflection was dispersed without

issue.

Despite having solved this problem of internal reflections adding undesired signal

to the ratio measurements, additional problems remained in the design. Placing disks

inside the infragold sphere meant that the sphere was occasional handled and opened,

changing the thermal characteristics of the sphere. Since the light takes multiple hours

to reach thermal equilibrium, any handling of the sphere or exposure to the outside air

will change its properties and have an effect on the measurements. This is especially

true given the low nature of the signal applied by the light source.
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Figure 5.6: Radiance Ratio between the pristine integrating sphere to one with two
amounts of silicon carbide contamination.

An example of the type of issue that can occur due to using an integrating sphere

can be seen in Figure 5.7. Red chalk powder was added in low percentages to potassium

bromide disks and measured inside the integrating sphere. This design incorporated

the changes mentioned to account for dewar reflections. Despite having clearly defined

differences in number density, the ratios do no behave linearly. Physically, unless the

material added to the sphere is more reflective than the surface of the sphere, the ratio

should decrease with added material. In Figure 5.7, the lowest ratio appears to occur

in the disk with the lowest percentage of contaminant. The expected behavior should

be a decreasing ratio with increasing contaminant percentage as more energy will be

scattered in higher density layers. These errors are a result of the internal environment

(i.e. temperature) of the integrating sphere being inconsistent due to the need to replace

disks by opening the sphere.

Despite only one example being shown, almost every collection of the disks had this

phenomenon occur where ratios stayed below one, but failed to follow a standard trend.

Several efforts were made to simplify the process using the integrating sphere, however

nothing significant could be done to fix the process without making it unviable.
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Figure 5.7: Extinction

5.3.2 Blackbody Measurements

Given the failures of the previous design, the promise of success in examining the cross

section with a blackbody was obvious. The CI-SR80 blackbody could provide a signif-

icantly stronger signal than the integrating sphere light bulb could while not requiring

much time to reach equilibrium. An optical lens holder could be used to hold a disk

such that the foreoptic of the instrument could be completely covered by it with a tight

seal. Disks were made to be 40 mm in diameter while the foreoptic of the instrument

is just 25.4 mm. Staring through the disk towards a blackbody radiation source would

measure the radiation loss between a disk without contaminant from a disk with con-

taminant. Since the blackbody could be set to a specific temperature and remain there

indefinitely, a temperature of 50.00◦C was chosen and the disk was placed as close as

possible to the source. This temperature produced a peak exitance around 9µm and a

stronger signal than found in the sphere light bulb. Because the disk would be present

for a short period of time, the energy emitted by the disk itself has a negligible effect on

the measurement due to its relative temperature to the blackbody and should not need

to be accounted in the final computation.

Fused Silica

For this experiment, four, 40mm diameter disks were created with 0.042, 0.0869, 0.1305

and 0.1741 grams of fused silica and the remaining volume containing potassium bromide
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binder. Because all disks were designed to be the exact same dimensions (3.5 mm thick),

each contained a different number density. As a percentage, the fused silica in the three

disks represented 0.5, 1.0, 1.5 and 2.0% of the total amount of material present. Radiance

was measured of the blackbody through each disk as well as a disk of just binder material

and used to calculate a single spectrum extinction cross section. Since the experiment

only placed the disk in the lens holder for a few seconds and only measured photons

that were transmitted through the disk, no secondary effects needed to be accounted for

in the calculations.

Figure 5.8 shows the resulting extinction cross section for fused silica using the

measured output from all four disks. If this spectrum were to be placed in the parameter

inversion model, the model would fail. This is because the magnitude of this parameter

is far too low and would force the estimated coverage densities for mixtures to exceed

pre-defined boundary conditions. The NEFDS contamination model is only valid for

low density mixtures approximately between 0.001 and 0.01 g
cm2 . Slight divergence

from these conditions may still have validity, but in order to accommodate extinction

cross sections seen in Figure 5.8, the model would need be have validity for coverage

density amounts at approximately 0.1 g
cm2 or higher. In equation 3.8, it becomes clear

that the main factors that have an effect on the final results are the coverage density

parameter and the extinction cross section. Both parameters are found in the numerator

of the exponential, while the β parameter can only be found in ancillary exponential

terms within the main exponent. If the scale of the α(λ) or n
a parameters is reduced,

the other must compensate for this change. Because the measured extinction cross

section parameters are an order of magnitude lower than inversion model estimates,

compensation must occur in increasing the coverage density parameter.

Red Chalk

Three disks were used for the calculation of the extinction cross section for red chalk

powder with 0.0643, 0.1316, and 0.1964 grams of red chalk. A fourth disk would have

been made, but the amount of powder left was too small to make a fourth disk. The

three disks made represent between 0.5 and 1.5% contaminant by volume within the

disk. Measurements of the extinction cross section can be seen in Figure 5.9. The

spectrum calculated for the extinction cross section from these disks looks very similar

to the emissivity spectrum found in empirical measurements for an optically thick layer
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Figure 5.8: Derived extinction cross section parameter found from blackbody transmis-
sion measurements of compressed disks of fused silica powder.

of material. Like the previous example, the magnitude of this spectrum appears to be

at least an order of magnitude smaller than what could be used in the model.

Silicon Carbide

In the final example material, silicon carbide disks were measured with a blackbody

using four different amounts of material per disk (0.0406, 0.1269, 0.1920, and 0.2549

grams). Unlike the example of red chalk powder, the calculated spectrum for the ex-

tinction cross section had no real similarities to its pure material spectral emissivity.

Radiance ratio measurements for all four cases appeared remarkably close, regardless

of contaminant amount present. This lack of disparity in ratio signatures may have

resulted in a spectrally unremarkable signature for the extinction cross section. Like

both previous examples, the magnitude results for the material are significantly lower

than expected and could not be used in the inversion model.
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Figure 5.9: Derived extinction cross section parameter found from blackbody transmis-
sion measurements of compressed disks of red chalk powder.

5.3.3 Integration into Parameter Inversion Model

In an ideal situation, the measured extinction cross section should be able to be incorpo-

rated into the parameter inversion model and reduce the computational steps necessary

to estimate the two other parameters (na and β). Since the magnitude of the computed

extinction cross section is too low and the only other parameter that can affect the mag-

nitude has pre-defined conditions, the inaccuracy must exist in the measured extinction

cross section.

Disks were made for this experiment to contain between 0.5% and 2.0% contaminant

by volume. When broken down into area density, it appears that several of the disks

had larger coverage densities than the forward model’s boundaries for the parameter.

As described in Chapter 3, substitutions were made in the model to address scenarios

where the volume density parameter became insensitive due to particles being closely

stacked. While extremely low, the amount of contaminant used in the creation of the

disks could be too large to be used to calculate the extinction cross section parameter.

As a test of the fidelity of the calculations, the extinction cross section parameters

were recalculated using only disks that had a coverage density within the boundary

conditions of the forward model. In two cases (red chalk and fused silica), the only disk
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Figure 5.10: Derived extinction cross section parameter found from blackbody trans-
mission measurements of compressed disks of silicon carbide powder.

used was the lowest density disk. Silicon carbide was able to incorporate the second

smallest disk as well. To improve the fit of the model, an assumed y-intercept point

at the zero point on the semi-logarithmic plot was added to the calculations. There

should be no radiance shift between a pure potassium bromide disk and one without

any added contaminant. Therefore the logarithm of the ratio should be zero at zero

coverage density for all wavelengths. Adding this point improves calculations and forces

data to behave in a physically realistic way.

When only incorporating the disks that fell within the area density seen for the

NEFDS contamination model, the calculated fused silica extinction cross section in-

creased five-fold from its previous calculation. The estimates in the LWIR section of

the spectrum for α(λ) were as high as 80 cm2

g at some wavelengths which was much

closer in magnitude to the desired magnitude to run through the parameter inversion

model, but still too low. These results are presented in Figure 5.11. Similar, but reduced

improvements can also be seen in Figure 5.12 where the extinction cross section for red

chalk powder increased in magnitude a very small amount, but nowhere near the amount

necessary to bring it on par with the expected input for the parameter inversion model.

The same is true for the silicon carbide disk results found in Figure 5.13 where estimates

increases by a factor of three, but remained far too low for the inversion model.
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Figure 5.11: Derived extinction cross section parameter found from blackbody trans-
mission measurements of lowest number density compressed disk of fused silica powder.

It appears that calculations for the extinction cross section parameter have a some-

what logarithmic quality to them. As volume density increases, the slope of the loga-

rithm of the radiance ratio appears to decrease demonstrating the diminishing returns

discussed in the NEFDS contamination model documentation. At volume densities

within the boundary conditions of the density of the forward model, these results came

closer to the inversion model estimates. If more disks were made at lower densities

within this range, a better calculation could occur that more accurately reflected the

results seen in the inversion model estimates.

Another possibility exists that because of forward contamination model units, the

desired parameter is not the extinction cross section, but the extinction cross section per

gram ( cm
2

g ). To attempt to mitigate this, tests were conducted that used the number

of particles as a substitution for grams in the calculations. This produced results that

were on the order of previous computations or slightly smaller.

Finally, there is speculation that the compression of the material into disks may

change its crystalline structure and therefore its material properties. Further analysis

should be done on this aspect to ensure that the material properties do not shift when

under this amount of pressure.
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Figure 5.12: Derived extinction cross section parameter found from blackbody trans-
mission measurements of lowest number density compressed disk of red chalk powder.

5.4 Parameter Inversion Estimate Results

As discussed in Chapter 4, a parameter inversion model was created to estimate physical

properties of sparsely contaminated surfaces. This model used three spectral reflectance

signatures as inputs (pure materials and a mixture spectrum). A process was put in place

using a 10 inch diameter sieve to apply various amounts of contaminant to a surface for

analysis. Contaminant mass amounts were measured during the application and allowed

to reach thermal stability before spectral collections occurred. A total of five (in most

cases) measurements were made for each data collection period. In addition to the three

sparsely contaminated surface measurements were collections of both the bare pristine

substrate and an optically thick layer of contamination. The five measured spectra were

then input into the parameter inversion model to estimate physical parameters.

5.4.1 Scalability Test

To ensure that model results are properly scaled, a mixture spectrum was created with

the NEF forward contamination model and three synthetically created parameters val-

ues for α(λ), β, and n
a and then run through the inversion process. A properly scaled

model will compute estimates for each parameter on the same order (and preferably the

same values) as used to create this spectrum. The mixture was made with the pure
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Figure 5.13: Derived extinction cross section parameter found from blackbody transmis-
sion measurements of lowest number density compressed disk of silicon carbide powder.

silicon carbide and concrete spectra with parameters for β and n
A of 4.8 and 0.0052

respectfully. The extinction cross section was created with a uniformly distributed ran-

dom number generator centered around 120 cm2

g , which represents a typical magnitude

for the parameter.

Since stochastic variability exists in the optimization step of the inversion model,

the synthetic mixture spectrum was analyzed 20 times with the inversion model and

statistical averages for each parameter were found. After 20 runs, estimates for the

coverage density parameter ( nA) averaged 0.0056 g
cm2 with a standard deviation of 0.0013.

The β parameter estimate is a fitting parameter, but had an average value was 4.2

with a 3.6 standard deviation. If run a larger number of times, the coverage density

parameters would likely converge even closer to the actual values assigned during the

synthetic mixture creation. Similar results occurred for the extinction cross section with

the magnitude only slightly varying from its actual spectrum. These results indicate that

the optimization routine incorporated into the inversion model is properly scaled and a

viable solution to use.
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5.4.2 Measured Results

Fused Silica

There were several types of materials analyzed on various surfaces, some of which are

described in this section. Additional combinations of substrates and contaminants are

placed in the appendix. Single examples of three materials (fused silica, red chalk and

silicon carbide powders) are considered in this chapter. The first example shown is of

fused silica powder obtained from Washington Mills. This material was classified as dust

collected fine particles by the company, meaning that all particles within the material

were small enough in size that they were not trapped by any sieve mesh available.

The fused silica powder in this example was deposited onto a dry, hardened soil

surface in the Nevada desert in varying amounts. This type of situation would normally

be problematic due to the inherent complexities of soils as a result of the properties

described in Chapters 2 and 3. Despite properties such as particle size distribution,

specific material type and crystalline structure being unknowns, this experiment worked

because the surface had been so dry. At the time of measurement, the surface had been

allowed to dry for a long time resulting in a cement like surface with large deep cracks

where particles were not acting independently, but as a surface.

Figure 5.14: Measured emissivity of various amounts of fused silica powder on hardened
clay soil in Nevada. Also captured are emissivity measurements of the hardened clay
soil without contaminant and an optically thick layer of fused silica.
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Figure 5.14 demonstrates a typical data collection of three amounts of material

applied to this surface. As material accumulates on the soil surface, the characteristics of

the soil become engulfed into the fused silica signature. Confluence points occur around

10.3 and 11.5 µm where the emissivity of all combinations of the two materials do not

shift regardless of the contamination amount. As evident by the spectral signatures,

mixtures that fell between the bare substrate and pure contaminant spectrum existed

in the enveloping space between the two signatures. If there existed a point that fell

outside of these boundaries, the measurement contained error.

Red Chalk

The second example material as seen in Figure 5.15 shows the same progression of a red

chalk composite powder placed on a portable concrete slab in varying amounts. This

chalk comes from Irwin Tools and can be found in hardware stores for making cut lines

on large pieces of wood. Since the chalk powder is not of scientific quality, the exact

composition is not known. Technical safety data sheets indicate that it contains roughly

75-80 % by volume of calcium carbonate (CaCO3) and 20-25 % by volume of red iron

oxide powder (Fe2O3). While both materials are of powder size, the red iron oxide

particles are smaller in a relative sense than the calcium carbonate (see Figure B.2).

Larger calcium carbonate particles are coated in the smaller red iron oxide particles as

a result of the materials intended application as a line marker.

From a spectral perspective, the sparse applications of this powder on the concrete

surface are relatively flat. The major exception to this occurs between 11 and 12 µm

where a large well defined emission feature occurs and is instantly followed by a signifi-

cant absorption feature that is best seen in the largest application of the material. This

collection was made in September 2017 at the Rochester Institute of Technology.

Silicon Carbide

The final example material came from Washington Mills and was a silicon carbide pow-

der. This material, like the fused silica, was called dust collected fines meaning it passed

through all available sieves at the site. Analysis indicated that particles were all less

than 50 µm in diameter. Like previous examples, three well defined amounts of material

were applied to a concrete surface that demonstrated a progression of features in the
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Figure 5.15: Measured emissivity of various amounts of red chalk (Calcium Carbon-
ate and Red Iron Oxide) powder on a concrete surface. Also captured are emissivity
measurements of the pristine concrete and an ultra thick layer of red chalk.

mixture. Silicon carbide powder has a relatively high emissivity across the longwave in-

frared range, but somewhat distinctive features. A very small absorption features exists

at 9 µm while a drawn out gradual descent in emissivity occurs from 10-12.5 µm. This

is followed up with precipitous rise in emissivity from 12.5-14 µm. This example like

the fused silica was collected in the Nevada desert where environmental conditions were

optimal.

5.4.3 Contrast Ratio

In the process of estimating the three parameters of the NEFDS contamination model,

a determination of the contrast ratio must occur. The contrast ratio represents the ratio

between the differences of the substrate and mixture to the contaminant. Its calculation

occurs within the natural logarithm found in the extinction cross section calculation

seen in equation 4.3. Independent of equation 4.3, the contrast ratio can be represented

as

ContrastRatio =
Rm(λ)−Rc(λ
Rs(λ)−Rc(λ)

(5.1)

Unlike the calculations for the extinction cross section, the contrast ratio should
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Figure 5.16: Measured emissivity of various amounts of silicon carbide powder on a
concrete surface. Also captured are emissivity measurements of the pristine concrete
and an ultra thick layer of silicon carbide.

always change with different amounts of contaminant. Recall that the extinction cross

section represents the scattering and absorption of the contaminating material and there-

fore does not vary with differing amounts of material. The contrast ratio described in

equation 5.1 has the same denominator for a combination of two materials, but its

numerator will change with changes to the mixture spectrum. At small amounts of

material, the mixture spectrum should appear more similar to the substrate spectrum,

resulting in a contrast ratio closer to one. As more contaminating material is added to

the surface, the mixture spectrum approaches the spectral shape of the pure contam-

inant, resulting in a numerator that approaches zero. So the expectation is that the

contrast ratio approaches zero at all wavelengths as more and more material is added

to a surface.

Fused Silica

In the example of fused silica on the hardened soil surface, the contrast ratio at a

large majority of wavelengths behaves as expected. Between 8.5 and 9.0 µm, there are

overlapping sections of contrast ratio for two contaminant amounts. This occurs because

in the measured spectral emissivity data, the variation in signature at these locations is

extremely small and measurement error has shifted one mixture slightly above another

mixture.
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Figure 5.17: Contrast ratio of fused silica powder in three amounts.

Red Chalk Powder

In the example of red chalk powder, the behavior of the contrast ratio falls more in line

with the expected results. Figure 5.18 shows the contrast ratio for the three amounts

of contaminant on the surface. As the amount of material increases on the surface, the

contrast ratio decreases. Each contrast spectrum appears relatively flat, but decreases

clearly at each wavelength. Some points were intentionally not shown in either Figure

5.17 or 5.18. Points at these wavelengths represented locations where one contaminant

amount fell outside the boundaries of the pure material reflectances. When this occurs

the contrast ratio become negative and the natural logarithm that uses the contrast ratio

for calculators has an imaginary component. For simplification purposes, the model

eliminated wavelengths where this occurred for the every spectrum in the dataset. The

example of fused silica has several locations that were removed for this reason, while

the red chalk powder only has this occur in a small section around 8.5 µm and two

points near 11.5 µm. In the latter wavelength location, the error results from small

variations between all five emissivity measurements. Given that the magnitude of the five

emissivity spectra at this location only change by less than 0.01, even a slight change in

the experiments conditions (environmental or otherwise) could shift a mixture spectrum

outside normal conditions. In the 8.5µm range, the error is a result of a mixture that

was spectrally close enough to the pure contaminant spectrum that similar changes in

the experimental conditions could have the same effect as the other section.
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As an important note, the inversion model can continue to work even when removing

many datapoints for the contrast ratio calculation. Estimates for the contrast ratio and

extinction cross section can occur as long as there is at least one wavelength in the

mixture spectrum that has validity to complete the calculations. Calculations will be

more robust when measurements have more valid datapoints to perform the calculations.

Figure 5.18: Contrast ratio of red chalk powder in three amounts.

Silicon Carbide

In the final contaminant example, the contrast ratio for silicon carbide is shown in figure

5.19. This example demonstrates the best case scenario as every single wavelength except

one at 10.36 µm where every single spectra crosses over the same location. Contrast

ratios appear mostly flat and decrease as the mixture amount increases. The benefit to

having complete and properly trending contrast ratio calculations is that they improve

the calculations for the extinction cross section and scalar parameters in future steps

to the inversion model. When large spectral regions of the contrast ratio are removed,

future calculations are based on smaller sample sizes which leads to increased uncertainty

in the validity of the measurements. The silicon carbide example shown has 99.5% of

the measured wavelengths which will improve certainty for parameter calculations.
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Figure 5.19: Contrast ratio of silicon carbide powder in three amounts.

5.4.4 Estimated Extinction Cross Section

Once the contrast ratios for each mixture were calculated, they could then be input

into the direct computation of the extinction cross section parameter. This wavelength

dependent parameter was initially calculated as a scalar average across all wavelengths

in the first optimization routine. To solve for the extinction cross section, the NEFDS

forward model was manipulated algebraically to isolate the extinction parameter as seen

in equation 4.3. Contrast ratios were determined for each amount of contaminant and

locations where contrast ratios became negative were removed from the calculations.

The mathematically derived extinction cross section represents the scattering and

absorption that occurs as a result of the contaminating material only. This means that

regardless of the amount of material present on the substrate surface, there should not

be variation in the extinction parameter.

Fused Silica

The calculated extinction cross sections are shown in figure 5.20. Three amounts of ma-

terial (0.729, 1.458 and 2.187 grams) were applied to a concrete surface. The calculated

extinction cross section for each amount demonstrates reasonable agreement between

the three spectra for valid wavelengths. Units for this parameter are square centimeters

(cm2), meaning that the numerical representation is an effective area.
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Figure 5.20: Extinction cross section estimates for each contaminant amount of fused
silica powder. Due to measurement error, sections of the estimated spectra between
beyond 11.5 microns and between 8.0 and 8.25 microns are not considered for final
estimates.

Red Chalk

The second example material, red chalk has extremely good agreement between two

of the three contaminant amounts. At almost every wavelength of the spectrum, the

0.49 and 1.17 gram sample calculations are in complete agreement for the calculated

extinction cross section. The third spectrum representing the 2.43 gram sample has a

significantly larger magnitude than the others, but matches well in terms of spectral

shape. As in the previous example, due to measurement error pushing some mixture

spectra outside of the enveloping boundaries of the pure material reflectances and negat-

ing the contrast ratio term, there are large portions removed from these parameter es-

timations. These regions were eliminated in this example because the variation from

mixture to mixture of the emissivity spectra were so small that even normally negligible

error contribution in a sample measurement caused problems. Around 11.5 µm, every

spectral emissivity measurement falls within 0.01 of the other four samples in the set so

this problem was expected. From a radiometric prospective, due to the low differentials

between spectral curves create asymptotes in the calculated extinction cross section.

While mathematically correct given the inputs, the formation of asymptotes for these

locations is likely an artifact of the radiometric model for computation and not apart of
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the actual property of the materials.

Figure 5.21: Extinction cross section estimates for each contaminant amount of red
chalk powder. In ideal cases, limited variation will occur between each measurement.
This example has variation in the largest amount of contaminant present, but good
agreement between initial two estimates.

Silicon Carbide

Silicon carbide powder demonstrated the best example of agreement between contami-

nant amounts as shown in Figure 5.22. This example only had one point eliminated due

to a negative contrast ratio at 10.36 µm and found nearly perfect agreement between all

three calculated extinction spectra. Each spectrum was flat and had asymptotic trends

occurring around 7.5 µm and 10.4 µm where confluence of emissivity spectra occurred.

As in the case of red chalk, these locations are likely artifacts of the radiometric model to

compute the extinction cross section. This result represents the best case ideal situation

as the extinction cross sections are in agreement and almost every point is available for

further calculations.

5.4.5 Comparisons Across Measurement Sets

As a verification that the model was performing the estimation of the extinction cross

section correctly and consistently, overlays of calculated cross sections for multiple data

collections are compared. Despite the environmental conditions and the amounts of
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Figure 5.22: Extinction cross section estimates for each contaminant amount of silicon
carbide powder. In ideal cases such as this, limited variation will occur between each
measurement.

contaminant applied for each collection being slightly different, the properties of the

parameter imply that there should be agreement regardless. This was done in lieu of a

database comparison as there is seemingly no spectral library of extinction for longwave

infrared materials publicly available. Comparing multiple collections helps to ensure

that the estimates are not randomized based on a single collection.

Red Chalk

In Figure 5.23, a comparison of the estimated extinction cross section parameter from

three sets of collections taken on three separate occasions is shown. Each collection

is labeled with D# to indicate which collection the spectrum belongs to and each are

followed by a letter, indicating the contaminant amount order in each collection. So

spectrum D2a is from collection two and represents the estimated extinction cross section

from the smallest amount of material in that set. Two collections had contaminant mass

available and the third was collected before a methodology for empirically measuring

mass was developed. With the exception of two outliers, the estimates for these three

data collections appear in good agreement across the entire longwave infrared, indicating

agreement in the model for this specific material, not just a single data collection.
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Figure 5.23: Extinction cross section estimates for each contaminant amount of red
chalk powder. In ideal cases, limited variation will occur between each measurement.
This example has variation in the largest amount of contaminant present, but good
agreement between initial two estimates.

Silicon Carbide

In Figure 5.24, the same comparison was performed for the silicon carbide powder. This

figure overlays four data collections taken in multiple states over two years. Collections

with measured contaminant mass data are included with collections that do not have

mass data. While the example collection from the previous section contained all but a

single datapoint for each of its cross section calculations, some collection sets presented

here were missing up to 40% of the wavelength range due to collection error leading to

a negative contrast ratio. This comparison only intends to demonstrate the agreement

that occurs between data collections for a given material. Like the red chalk example,

the silicon carbide powder demonstrates reasonable agreement between all collected

results. This demonstrates that the fidelity of the algorithmic process to estimate the

extinction cross section parameter for a given material regardless of contaminant amount

or environmental variation that may occur on a given collection day.

5.4.6 Scalar Parameter Estimates and Mixture Reconstruction

Estimates for the scalar parameters (β, nA) are determined using the look-up table

method from the third step of the parameter inversion model (see Chapter 4. These
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Figure 5.24: Extinction cross section estimates for each contaminant amount of silicon
carbide powder. In ideal cases such as this, limited variation will occur between each
measurement.

parameters represent properties of the contaminant particle stacking as well as the area

coverage density of the contaminant respectively. The look-up table used the direct

extinction calculations described in the second step of the inversion model alongside the

pure material refectance spectra. Every possible combination of the two scalar parame-

ters was determined and input into the forward model to create mixtures that were then

compared to the empirically measured spectrum. The combination of scalar parameters

that yielded the lowest sum squared difference between the empirical results and the

calculated results represented the best fitting combination of parameters. As a visual

check, the parameters were then used in the forward model to overlay the resulting

mixtures with their measured counterparts.

Fused Silica

Fused silica was applied in three amounts (0.729, 1.458, and 2.187g) on a hardened

soil surface. Once passed through the parameter inversion model, the scalar estimates

for the particle stacking parameter (β) indicated that the material had some stacking

occurring between particles. Values for this parameter were relatively low compared to

the given boundary conditions, having values of 3.481, 2.221 and 5.841 cm2

g . Given that

the forward model used this parameter as a fitting parameter, the boundary conditions
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within the forward model were not clear, therefore they were set between zero and ten

units. Since the surfaces examined have a sparse nature, it is possible that the upper

condition on β could be increased orders of magnitude. The effect of this parameter

is relatively small compared to the other parameters because of its location within the

model, so changing its upper boundary should not have a significant effect regardless.

Estimates for the area coverage density parameter demonstrate consistency with the

observable conditions of the experiment. When material was added to the surface, the

estimated coverage density parameter increased as expected (0.005, 0.006 and 0.0093
g
cm2 ). Each of these scalar parameters can be seen in Table 5.2. When combined with

the estimated extinction cross section parameter, the modeled emissivity spectra for

each mixture show near perfect agreement with the measured spectra. Figure 5.25

shows how each modeled spectra using the parameter estimates and measured spectra

compare. While a section of the spectrum from 12-14 µm was eliminated in estimating

the extinction, the modeled and measured spectra are in good agreement for wavelengths

that were considered.

Figure 5.25: Measured and modeled comparison for fused silica powder on hardened
clay coil.

Red Chalk

In the second example material, a red chalk powder was applied to a concrete surface

in three amounts (0.49, 1.17 and 2.43 g
cm2 ). Like the previous example, the estimates
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for the particle stacking properties appear relatively low, indicating that the contami-

nating material was more concentrated and stacking occurred. Again the contaminant

area density parameter increases with each increasing amount of contaminant (0.0044,

0.00069 and 0.0080 g
cm2 ).

In the fused silica example, the reconstructed mixture spectra were good matches

with the measured emissivity mixtures, however there were large portions of the spectra

missing as a result of the error that occurs due from the extinction estimation step.

The data for red chalk powder does not have significant sections of the spectra missing

except for a small section around 8.5 µm, so the modeled outputs were more complete

compared to the fused silica. Still, when passing the parameter estimates through the

forward model, the mixture results are near perfect matches to the measured dataset.

Figure 5.26: Measured and modeled comparison for red chalk on concrete.

Silicon Carbide

In the case of silicon carbide powder, there are again similar trends in the estimated

parameters. Silicon carbide was placed in amounts from 1.27-3.80 grams onto a concrete

slab. The stacking properties parameter appears relatively high within the set bound-

ary conditions with values of 8.364, 8.714 and 6.825 cm2

g . This demonstrates that the

contaminant is more evenly spread across the surface than the previous examples. An

even spread helps to create a more consistent mixture across the area. With regards to
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the coverage density parameter, once again the estimated density of material increases

(0.0035, 0.0080, and .0122 g
cm2 ) as material is added to the surface.

Reconstructed mixture spectra as seen in Figure 5.27 show that almost all wave-

lengths were present in reconstruction and that they modeled parameters result in ex-

cellent matches to the measured spectra. There is explicit consistency for all materials

in the estimation of parameter and well fit reconstruction of mixture signatures.

Figure 5.27: Measured and modeled comparison for silicon carbide powder on concrete.

5.4.7 Derived Total Mass

Once all parameters from the parameter inversion model have been estimated, the total

contaminant mass present can be derived. This calculation makes the assumption that

the coverage density present in the sensor IFOV is consistent with the coverage density

present in the area where mass was applied. The D&P FTIR instrument is non-imaging

and therefore only takes in information from a single pixel. This pixel projects a roughly

three inch in diameter spot size onto the surface when the instrument sits on a standard

sized tripod. Due to limitations in the availability of small sized sieves, the contaminant

deposition process relied on the application of material with a sieve that was ten inches

in diameter.

Using equation 4.4, the total amount of material was determined for each mixture.

Results for all three example cases are presented in Table 5.2. In the case of fused silica,
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overestimation occurred for all three mixture amounts, but each derived mass fell within

0.9 grams of material of the actual amount applied. Error in this sample may have been

a result of uneven application as this example had very low β estimations. Furthermore,

there were clear disadvantages in the estimation of the extinction cross section (lack

of points, slight inconsistencies between spectra) that could have caused issues in the

estimation of the total contaminant mass. Red chalk powder also saw overestimation of

the total mass occur. Like the fused silica, the distribution of particles as denoted by

the β values likely contributed to the error.

Unlike the previous two examples however, silicon carbide mass estimations were on

point, being within 22% of the actual amount applied in all cases and less than 10% in

two of the three. This set had high estimations for the β parameter, indicating good

spread of particles. It is clear that if there is uneven or poor particle distribution of the

sample on the surface, the total estimations of material will be error prone as they are

based on densities of the sensor IFOV. In a theoretical sensor with an array of pixels,

all area will be covered and each pixel will have a unique coverage density associated

with it. In that situation, this problem should not exist as every contaminated area

will have a measurement associated with it. Figure 5.28 demonstrates the error between

each derived total mass value to the actual amount applied with a 1:1 line present for

reference.

Figure 5.28: Deposited versus Estimated total mass for each contaminant.
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Table 5.1: Best fit line statistics for each dataset of Applied vs Estimated contaminant
total mass.

Fused Silica on Hard Soil

Material Slope [m] Intercept R2

Fused Silica 0.944 0.806 0.9141

Red Chalk 0.697 1.209 0.9393

Silicon Carbide 1.073 -0.015 0.9587

Statistical best fit lines were calculated to determine if any inherent bias existed, if

there was a trend to the data fits and how well they produced a matching plot with the

data. The results of this analysis are presented in table 5.1. Ideal fits for this sequence

have a slope of exactly one with a zero y-intercept which would represent perfect mass

derivation for all cases. Red chalk powder represented a failure to achieve either statistic

having a slope of 0.697 and an intercept above 1.2. These characteristics indicate that

for this particular material, the model improved as more material was added to the

surface as a slope below one will eventually converge with the 1:1 line. This fit matched

with the projected line reasonably well, having an R2 value of 0.9393.

Fused silica has an adequate slope (0.944) on its fit line, but contains a large bias

(0.806) factor. Without a bias of this size, the best fit line would nearly overlap the

desired 1:1 fit line. Having a bias is not necessarily a bad thing as this example represents

a fit with a near 1.0 slope, indicating that the bias for this material is similar across

the range, but still robust in its calculation of total mass amounts. Statistically, the

R2 value for this material is the lowest of the three examples, but still remains at 0.914

meaning the data can be 91% explained using the slope and intercept parameters.

The most ideal case presented is of silicon carbide powder. This example fit a line

with a slope of 1.073 and an intercept of just -0.015, which almost perfectly matches with

the 1:1 trendline desired. For this example, the R2 value is just .9587, but most of the

unexplainable phenomenology originates in the second datapoint where the estimated

mass is slightly too large. Each of the three examples presented a different type of result

indicating that while the method is robust, improvements can still be made to ensure

more accurate results.

Table 5.2: Estimated NEFDS contamination model scalar parameters and total mass
for fused silica, red chalk and silicon carbide powder examples. Total mass is based on
surface area of 10 inch diameter sieve.
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Fused Silica on Hard Soil

Mass Applied [g] β−value

[ cm
2

g ]

n
A [ g

cm2 ] Estimated

Mass [g]

∆Mass Es-

timated

0.729 3.481 0.0050 1.616 0.887

1.458 2.221 0.0060 1.939 0.481

2.187 5.841 0.0093 2.993 0.806

Red Chalk on Concrete

Mass Applied [g] β−value

[ cm
2

g ]

n
A [ g

cm2 ] Estimated

Mass [g]

∆Mass Es-

timated

0.49 3.2732 0.0044 1.422 0.932

1.17 4.5787 0.0069 2.223 1.053

2.43 4.0131 0.0080 2.833 0.403

Silicon Carbide on Concrete

Mass Applied [g] β−value

[ cm
2

g ]

n
A [ g

cm2 ] Estimated

Mass [g]

∆Mass Es-

timated

1.27 8.364 0.0035 1.131 -0.139

2.11 8.714 0.0080 2.574 0.464

3.80 6.825 0.0122 3.951 0.151

5.4.8 Statistical Analysis

Each of the inversion model runs finds the optimal parameter set to reconstruct the

mixture spectrum using the radiometric model behind the NEFDS contamination model.

The results of the inversion model can however, vary from run to run in the event that

the model finds localized error, the existence of multiple local minima or otherwise. Steps

were put into place in the model itself to help reduce this, including the incorporation

of a multiple start program, which performed each estimation using a user defined set

of randomized starting locations on the spectrum. As an additional statistical support,

the model operated 1000 times on the same dataset to achieve statistical metrics of

performance and variability. A set of example statistics is shown in this section on the

silicon carbide dataset. Each estimated scalar parameter alongside the derived total

contaminant mass has statistics of mean, standard deviation, variance and standard

error.

Table 5.3: Statistical analysis for parameter estimates of silicon carbide on concrete
dataset.
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β Estimate Statistics for Silicon Carbide on Concrete

Mixture Mean [µ] Standard

Deviation [σ]

Variance [σ2] Standard

Error

0.729 [g] 5.066 4.352 18.936 0.1376

1.458 [g] 4.960 2.862 8.188 0.0905

2.187 [g] 5.360 2.865 8.209 0.0905

Coverage Density Statistics for Silicon Carbide on Concrete

Mixture Mean [µ] Standard

Deviation [σ]

Variance [σ2] Standard

Error

0.49 [g] 0.0033 0.0003 1.1*10−6 9.49*10−6

1.17 [g] 0.0074 0.0007 5.3*10−6 2.21*10−5

2.43 [g] 0.0110 0.0011 1.15*10−5 3.48*10−5

Grams Present Statistics for Silicon Carbide on Concrete

Mixture Mean [µ] Standard

Deviation [σ]

Variance [σ2] Standard

Error

1.27 [g] 1.066 0.106 0.011 0.0034

2.11 [g] 2.398 0.235 0.055 0.0074

3.80 [g] 3.565 0.347 0.120 0.0110

The results for the β parameter show that the model does not have a well defined

physical representation for this parameter. The mean results for β hover around the

midway point of its defined boundary conditions, while the standard deviation of each

of the mixture amounts show that almost the entire bounded range for the parameter

falls within the first standard deviation from the mean. Since the parameter is utilized

as a fitting parameter in the forward model, the statistical results seem to confirm its

lack of physical meaning and insensitivity to the final results. Other materials showed

similar statistics for this parameter. A visual representation of this parameter is seen in

Figure 5.29 which shows the 1000 estimated β results for the 2.11g mixture binned into

10 groupings. From this figure, it is clear that there is not a normal distribution, but an

equal likelihood of any result within the boundaries occurring for this mixture. This is

the expected behavior of a parameter that is only applied as a fitting term in a model.

The mean results for the coverage density and grams present terms of the three

mixtures are significantly more interesting. They show that the model does converge

towards the actual amounts applied to the surface. Each coverage density had means

centered at similar points to the single run results from Table 5.2, but also had very small

standard deviations and variance results. Histogram results indicate that the coverage
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density and derived total mass terms both follow normal distributions with elongated

leftward tails.

Figure 5.29: Histogram chart of the estimated results for the 2.11g application of silicon
carbide on concrete for the β parameter.

Figure 5.30: Histogram chart of the estimated results for the 2.11g application of silicon
carbide on concrete for the n

a parameter.
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Figure 5.31: Histogram chart of the estimated results for the 2.11g application of silicon
carbide on concrete for the derived total contaminant mass.

Error Propagation

In addition to the statistics provided above, a brief study of error propagation was per-

formed on silicon carbide data to examine how shifting the temperature of the mixture

signatures changed the parameter inversion model’s ability to derive total contaminant

mass. In order to do this, instrument measurements for all mixture spectra from the

silicon on concrete data collection were adjusted by one, two and five degrees Kelvin and

reprocessed for spectral emissivity. Pure material substrate signatures were left alone

so that the spectral shift in emissivity only occurred in the mixture spectra. The new

mixture spectra were then re-run through the inversion process and an output for total

contaminant mass was derived.
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Figure 5.32: Derived total contaminant mass [g] for three contaminant amounts with
varying temperature changes.

The estimated total contaminant mass amounts were plotted against the amounts

applied in Figure 5.32 for five temperature changes. Because the magnitude of emissiv-

ity shifts as temperature is adjusted, mixtures with a negative five degree deviation fell

outside of normal parameters for emissivity and were not considered in this examina-

tion. Included in the figure are linear best fit lines and r-squared values for each set of

mass estimates. There appears not to be a specific trend associated with a change in

temperature for the derived total contaminant mass. Fitted slopes for all five instances

fell well below one, and intercepts were varied between each example. This study may

show more clearly defined trends in this data with an example containing more than

three contaminant amounts for analysis.

5.5 Signature Injections

Parameter inversion model results were used to create synthetic target signatures in

hyperspectral data from the Blue Heron sensor (described in Chapter 4). The data was
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created with the parameter estimates from the model, the pure contaminant spectrum,

and the selected pixel emissivity spectrum from the airborne scene as the substrate.

Mixtures were made using the NEFDS forward contamination model and placed back in

the scene in the original locations of the substrate asphalt signatures. Each target block

contained a 3x3 section of pixels with a different combination of conditions. Every row

represented a different coverage density estimate from the parameter inversion model and

each column of target blocks representing a different sub-pixel fraction coverage resulting

in 27 unique combinations of the conditions with nine pixels for each combination. Pixel

fraction coverage varied by target scene, but typically occurred in 10% drops from full

pixel down to 20% coverage.

The main scene used for the signature injections came from the Blue Heron sen-

sor collection over building 101 of the Harris Corporation in Rochester New York in

November 3rd and 4th of 2015 [36]. The weather on these days showed clear skies with

unseasonably warm air temperatures. The scene occurred over a mostly empty parking

lot and next to a very shallow water retention pond. The example scene described in

the following sections will be of a collection that occurred on November 4th at 18:07:02

UTC time (1:07 pm est).

Figure 5.33: Blue Heron airborne sensor data with synthetic target signatures injected
onto asphalt parking lot surface. This image was created without consideration to the
effects of the point spread function created by the limitations in the optics of the Blue
Heron sensor. Spectral plots show emissivity products of each pixel in a target block (9
total).
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5.5.1 PSF vs. No PSF

The initial placement of synthetic targets in the scene was performed without consider-

ation for the degradation of signal due to the optics in the system. This caused pixels

within each target block to appear uniform and stand out relative to background pixels

which is not realistic or ideal for this study. Since the point spread function blurs targets

and was not initially available or obtainable from objects in the scene, the synthetic tar-

gets were first added without a blurring effect. An example of how the targets appeared

can be seen in Figure 5.33 where all 27 3x3 blocks of targets appear essentially the same

visually in this image chip.

Figure 5.34: Spectral profiles of the nine target signatures from the center target block
found in the middle row and fifth column of the target block grid. Targets in this
block were created with the middle mixture parameters estimated from the parameter
inversion model and contain target signatures in just 50% of each pixel. Little to no
variability exists between the spectra due to the effects of the point spread function not
being included in the target signatures.
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An example of how a failure to incorporate signal degradation due to optics can be seen

when examining the middle target block (middle row, 5th block from either direction).

This block is a 50% sub-pixel fraction target block with the second largest amount of

contaminant present from the measured data. Each pixel is created by incorporating the

estimated parameter values with the measured pure contaminant spectrum and asphalt

emissivity from the airborne data. When targets are created without the effects of a

point spread function, the signals from the 3x3 block only differ by the variation found

between the asphalt substrate. Every other parameter included in the creation of the

emissivity spectrum is exactly the same for these nine pixels. The lack of variation can

be viewed in Figure 5.34 where the spectral profile for all nine pixels are overlayed in a

spectral plot. Clearly the variation between the nine signatures is extremely limited.

It is understood that when applying a blur kernal or point spread function to a pixel,

the pixel will contain contributions from all surrounding pixels and depending on PSF

size, secondary neighboring pixels. In this situation, if a PSF was 5x5, an edge pixel

on the 3x3 target blocks stronger contributions from background pixels than would the

center target. Edge targets would have an even stronger influence by the background as

the mismatch between PSF center and target block center would be less aligned.

Figure 5.35: Target signatures from pixels contained in the center target block (5th
column, middle row) for silicon carbide. These target signatures contain the effects of
the point spread function unlike the previous example. Variability exists between the
middle pixel, edge pixels and corner pixels that would normally have been seen in real
imagery.
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The PSF was determined from a line spread function created by a narrow aluminum

foil line in a separate collection with the sensor that occurred in November of 2017. The

line spread function was used to create a 3-dimensional point spread function that was

used exclusively on the synthetic target data. The PSF was 5x5 pixels, however target

blocks were separated by enough pixels not to self-contribute to other synthetic targets.

Following the application of the point spread function to the synthetic targets, a check

on the variability of the emissivity signatures was done. Using the same visualization

settings, an image chip of the targets degraded by the PSF can be seen in Figure 5.35.

Clearly the effects of the PSF were stronger on the edges and corners than on the

center pixels, where an effect still ocurred but more contribution from target signatures

occurred. Looking at the spectral responses of the pixels in the middle target block

discussed earlier, clear variability can be seen. Three groupings occur as seen in Figure

5.36, two grouping of four spectra and a single spectrum appearing alone as the highest

magnitude spectrum.

These target representations indicate the importance of including the effects of sensor

optics to synthetic targets placed in airborne imagery. Without the addition of these

effects, the target spectra will appear essentially uniform and have no relevance to the

study of target detection performance sensitivity to the variables considered.

5.6 Target Detection

The goal of this experiment is to determine if better matching with a mixture spectrum

to a test pixel will improve detection performance over simply using a pure contaminant

spectrum. By creating a grid of mixture targets with varying target signatures, analysis

can be performed to achieve this goal. Following the convolution of the point spread

function to synthetic target spectra created with the estimates from the parameter

inversion model, the scenes were ready for target detection analysis. Airborne data was

from a parking lot was used for synthetic target injection and a full scene example of

data with targets can be found in Figure 5.37. A sparsely filled asphalt parking lot

makes up about 40-50% of the scene while grass and a nearly empty retention pond

comprise the rest of the scene. The large black area in the parking lot appears to be a

location that was sealed with different sealant than the rest of the lot or painted with a

paint. Targets varied in coverage density by row (increasing density moving downward)
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Figure 5.36: Blue Heron airborne sensor data with synthetic target signatures injected
onto asphalt parking lot surface. This image was created with consideration to the
effects of the point spread function created by the limitations in the optics of the Blue
Heron sensor. Clear variation occurs between center, edge and corner pixels from a
visual and spectral standpoint.

and sub-pixel coverage in columns (full pixel on right-most column to 20% sub-pixel

coverage on far left).

Target signatures were created using the same estimated parameters from the inver-

sion model along with a spectral average of a large swath of asphalt pixels from the scene

for the substrate signature. Spectral averaging of the asphalt pixels prevented irregular-

ities from affecting the output spectral emissivity. Using an asphalt background ensured

that the substrate in the target spectra matched that of the test pixels in the emissivity

image. This prevented error as a result of differences between substrate materials of the

target and test pixels from occurring. Four target signatures were created; one for each

parameter estimate of coverage density as well as the measured pure material spectrum.

While ROC curves were created that depict several different methods of detection,
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the main algorithm applied to the data was the Adaptive Cosine/Coherence Estimator

(ACE) algorithm. This algorithm will be the basis for comparing the best possible target

spectrum to use on each target pixel. Four target detection statistics were generated for

every target pixel in the scene representing the scores for ACE using each target spec-

trum. The target spectrum associated with the largest detection statistic at each pixel

represents the best spectrum to use for that pixel. Since each target block represents a

unique combination of sub-pixel fraction percentage and coverage density, there should

be trends associated with use of different target spectra.
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Figure 5.37: Full scene image from Blue Heron sensor with the synthetic targets placed
inside the bounds of the asphalt parking lot. Targets were blurred with the PSF of the
sensor.
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5.6.1 Red Chalk

Red chalk was the initial example used as its signature was spectrally the most varied

visually from the asphalt surface. Targets were created from the parameter estimates

calculated in a previous section and followed the 10% sub-pixel coverage step discussed,

with full pixel targets being the right-most column. Four target spectra were used in

the ACE algorithm to determine under what conditions a particular target spectrum

was best suited for detection of a target pixel. Three spectra were created with the

estimated parameters from the inversion model along with a asphalt substrate spectrum.

The fourth target spectrum came from the empirical data collection and represented the

pure contaminant spectrum. Each of the 243 target pixels in the scene were color coded

based on the which target spectrum produced the highest detection score. Figure 5.38

shows the results for the red chalk powder with the ACE algorithm. In 171 cases, the

best target spectrum for detection was the pure contaminant spectrum. Conditions for

these pixels tended to trend towards lowest sub-pixel fraction targets and targets with

the highest coverage density. At least one full pixel target for all coverage density levels

were best detected by the pure contaminant spectrum.

The high number of target pixels that were best detected by the pure contaminant

spectrum were unremarkable as red chalk powder has a novel spectral shape relative

to the asphalt surface (i.e. red chalk on asphalt has high contrast to the background

and is relatively easy to detect). When the coverage density decreased to its lowest

(top row of target pixels), there was a shift in which target spectrum was best fit for

detection. In 64 cases, the middle coverage density spectrum was ideal. Most of these

did not occur in the row with the matching coverage density parameter (middle row)

which was counter-intuitive. The remaining eight pixels came from the highest coverage

density mixture spectrum and the lowest mixture spectrum. They occurred in random

locations and at low sub-pixel coverages indicating that results for those pixels were

likely extremely close and by chance these spectra were best.

Overall, what can be said about this case is that when a target signature is vastly

different in spectral shape from the background constituent pixels, the targets are in

most cases best detected by the pure material spectrum. In rare cases where the targets

are extremely sparsely contaminated, mixture spectra may be considered as an improved

method for detection.
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Figure 5.38: Target detection analysis of synthetic red chalk targets using the ACE algo-
rithm. The best target spectrum for each target pixel are colored as pure contaminant
spectrum (yellow), highest mixture spectrum(orange), middle mixture(green), lowest
mixture (lighter blue). Background pixels are labeled dark blue.

5.6.2 Silicon Carbide

Analysis of ACE target detection on silicon carbide targets using four unique target

signatures is presented in Figure 5.39. Pixels were colored coded based on the highest

magnitude target detection statistic found from the four detection maps. Each pixel was

labeled with the appropriate color. Pixels which were best detected by the pure target

spectrum were colored yellow. In the case of silicon carbide targets, all full pixel targets,

regardless of coverage density were best detected by the pure target spectrum. This

means under conditions where the background surface is at least somewhat contaminated

with material, the best method is to use the pure material. In cases below 50% sub-

pixel fraction, most target pixels were again best detected in ACE using the pure target

spectrum. In total, 149 pixels were best detected by the pure target spectrum.

For higher sub-pixel fraction targets, there was a clear trend towards well-matched

target signatures. The highest coverage density targets (found in the lowest row of target

blocks) had several high sub-pixel fraction target blocks that were best detected by the

mixture using the same coverage density. A total of 32 pixels from the highest coverage

density were detected by the appropriately matched density target spectrum, but so

were 25 additional pixels from the other rows. These all occurred at high sub-pixel

fractions, but had a lessened effect at lower coverage density. This seems to indicate

that sub-pixel fractions can have a strong influence on which target signature to use

when the targets are not significantly different from the background. High coverage
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density targets at 50% sub-pixel fraction were detected by the same spectrum as some

of the lowest density targets at 90% sub-pixel fraction.

The second mixture target spectrum demonstrated the same trend with pixels at

lower coverage densities being detected by it better than other target spectra. In this

case however, the lowest coverage density targets were only better detected by this

spectra when they were not on corners of target blocks. This likely is an effect of the

signal degradation by convolving synthetic targets with the sensor point spread function.

Corner target pixels degrade more due to the increased effect of background pixels on

the signal. In total, 24 pixels were best detected by the second mixture target spectrum,

with 18 of them occurring in the lowest mixture row (top row in Figure 5.39).

Like the last example, only a handful of target pixels were best detected by the target

spectrum created with the lowest coverage density parameters. These locations were not

random, but occurred in the center pixels of the lowest target sub-pixel fractions and

densities. This indicates that there is use for low contaminant mixture targets in the

detection of sub-pixel targets in extremely low coverage density. At extremely low sub-

pixel fractions below 50%, the pixels were mostly best identified by the pure material

spectrum, but there is not a clear trend in this region. The likely explanation is that

at such low pixel fractions, detection statistics for each of the input spectra are so low

that it does not truly matter which spectrum is used.

The main takeaway from the example of silicon carbide is that when a target signa-

ture does not have unique features to distinguish it from the background, target spectra

need to be thoroughly considered case by case. Silicon carbide does have a unique sig-

nature, but it is relatively flat and highly emissive across the longwave infrared spectral

range. This could cause a detection algorithm such as ACE to mistake it for a back-

ground pixel under the wrong conditions. In real cases one might choose to use a bank of

target signatures that span a range of average densities to ensure best detection across

a range of test pixel conditions.
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Figure 5.39: Target detection analysis of synthetic silicon carbide targets using the
ACE algorithm. The best target spectrum for each target pixel are colored as pure con-
taminant spectrum (yellow), highest mixture spectrum(orange), middle mixture(green),
lowest mixture (lighter blue). Background pixels are labeled dark blue.

5.7 Blue Heron Real Airborne Data

Real data was collected in November of 2016 where sparsely contaminant targets could

be directly placed into the scene. This removed the need to apply a blur kernel using

the point spread function onto synthetic targets in airborne images. It also allowed for

a real world example for which to apply the created parameter inversion model and

target detection analysis. Targets were created by applying two contaminant materials

(silicon carbide and fused silica powder) in two coverage density amounts (0.025 and

0.050 g
cm2 ) over an area that was approximately 1.5 m2. Ground images of each density

amount can be seen in Figure 5.40. This created four unique targets of varying coverage

density and material, each bounded by aluminum foil wrapped 2x4 lumber as seen in

Figures 5.36 where 25 and 50 grams of silicon carbide powder was distributed in an

aluminum bounded target. This material, like the empirically measured targets using

the FTIR instrument, were applied using a sieve. Because this sieve in this example is

significantly smaller than the area of the targets, material was only spread as evenly as

humanly possible.

From an aerial perspective, the collected radiance data from the Blue Heron sensor
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Figure 5.40: Left: 25g of silicon carbide powder placed across target area surrounded
on all sides with aluminum wrapped 2x4 lumber. Aluminum helps provide high fidelity
targets in airborne data. Right: 50g of silicon carbide powder placed across target area
surrounded on all sides with aluminum wrapped 2x4 lumber. Aluminum helps provide
high fidelity targets in airborne imagery.

has striping due to pixel malfunctions mainly on the leftmost section of the sensor array.

This error can be removed using ENVI based software tools. An example of the collected

radiance map with the targets can be seen in Figure 5.41, where the Blue Heron sensor

flew over a parking lot in the Gates, NY region with our targets present in-scene. In this

false color image there are six targets, with two pairs of adjacent targets and two stand-

alone ones. All of these targets exist roughly halfway down the image and are pushed all

the way to the left edge. The two individual targets are of Quartz sand and large particle

fused silica placed in the same sized space, but with an optically thick layer present.

The two sets of adjacent targets are silicon carbide (green targets) and fused silica (pink

targets) powders. Clearly bounding all targets are darkened lines representing the highly

reflective aluminum wrapped lumber used to bound targets. These clearly define fidelity

of the contaminant mixture target space by creating strong contrast between materials.
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Figure 5.41: Full scene image from Blue Heron sensor with the synthetic targets placed
inside the bounds of the asphalt parking lot. Targets were blurred with the PSF of the
sensor.

5.7.1 Target Detection Analysis

Prior to applying real target pixels to the parameter inversion model, target detection

analysis was performed using ENVI’s target detection wizard. Since Blue Heron pro-
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duces radiance maps of a scene, the images first needed to be converted into emissivity

space. This was accomplished by performing in-scene atmospheric compensation on

the radiance image to achieve ground leaving radiance without upwelling contributions.

Compensated radiance imagery was then directly solved for emissivity using the emissiv-

ity normalization application. The resulting emissivity image could then be used within

the target detection wizard in ENVI to analyze how effective pure target spectra could

be in detecting each sparsely contaminated surface.

Table 5.4: Target detection statistics for fused silica and silicon carbide targets in Blue
Heron imagery.

Detection Scores for Blue Heron Targets Using ACE (ENVI)

Material Type Threshold Target Pixels Detected False Alarms

Fused Silica 0.096 38 2

Silicon Carbide 0.035 19 1

Images presented in Figure 5.38 are target detection statistic images for fused silica

and silicon carbide using the pure contaminant spectra for both materials respectfully.

Numerical analysis of the detection scores are presented in Table 5.4. Fused silica

represents a contaminant material that has strong spectral contrast with the underlying

substrate, while the silicon carbide targets have little contrast with the asphalt. In

applying the pure fused silica spectrum to ACE, nearly every target, full and sub-pixel

alike appeared to be detected in the image before false alarms appeared. Given the

spectral contrast between the test pixel and background, this result is the expectation

based on results presented in the previous section.

With a higher threshold value, the results for the silicon carbide targets also con-

firmed examinations from the previous sections. While 19 target pixels were identified

from the image, a higher threshold was needed and many of the sub-pixel edge targets

were not discovered before false alarms began to dominate. This leads credence to the

idea that spectral contrast between the background and test pixels has an important

impact on the target spectrum that should be applied in this detection algorithm.
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Figure 5.42: Left: Detection score map for ACE run with pure fused silica spectrum as
target spectrum for Blue Heron data collection. Target pixels were detected at a 0.096
threshold with 38 target pixels identified to two false alarms. Right: Detection score
map for ACE run with pure silicon carbide spectrum as target spectrum for Blue Heron
data collection. Target pixels were detected at a 0.035 threshold with 19 target pixels
identified to one false alarm.

5.7.2 Application into the Inversion Model

Given the excellent detection of the two materials using the ACE algorithm, the next

step was to examine if the parameter inversion model could be used to correctly estimate

the amount of material on the surface by accurately determining the coverage density
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in the four types of targets. Both fused silica and silicon carbide materials were placed

on the surface in targets of 0.0025 and 0.0050 g
cm2 . Since material was applied to each

target using a sieve, the material was not perfectly uniform coverage density across the

entire target square (see Figure ). Given the sensor GSD for the collection, there were at

least four full target pixels in each target square that could be used to make an average

mixture spectrum for each of the four targets.

In order to pass an emissivity spectrum from the airborne data into the parameter

inversion model, emissivity signatures of both the pure contaminant and bare substrate

spectra must be determined. The pure substrate signature was calculated by taking

the average of 16 pixels in an open section of the asphalt parking lot from the airborne

emissivity image. Consideration was made to ensure that pixels chosen were not near

vehicles, edges or buildings. The pure contaminant spectrum came from a resampled

version of a D&P FTIR instrument emissivity from a previous empirical data collection.

Resampling occurred to match FTIR datapoints to the wavelengths associated with the

airborne spectrum. Results are presented in Table 5.5 where estimates for coverage

density are compared to each target’s known value for the parameter.

Table 5.5: Parameter inversion estimates for coverage density of real Blue Heron targets

Coverage Density Estimates for Real HSI Targets

Material Coverage Density

Applied

Coverage Density

Estimated

Difference

Fused Silica 0.025 g
cm2 0.0022 g

cm2 0.0003 g
cm2

0.050 g
cm2 0.0053 g

cm2 0.0003 g
cm2

Silicon Carbide 0.025 g
cm2 0.0020 g

cm2 0.0005 g
cm2

0.050 g
cm2 0.0055 g

cm2 0.0005 g
cm2

In all four cases, the estimated coverage density values for the targets were within

0.0005 g
cm2 of the actual coverage density present on the surface. Results for the fused

silica material indicate that estimates are extremely close to the actual amount applied,

however this table only provides results from a single run of the inversion model. For

deeper analysis, the inversion model was run 1000 times and basic level statistical anal-

ysis was performed. This found that the average coverage density estimates for the

fused silica mixtures were 0.0037 and 0.0063 g
cm2 respectfully. These results are further

from the single run estimates, but still close to the reference data. Variances for each

mixture of fused silica were extremely low (less than 5 ∗ 10−6) demonstrating that the
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spread of estimates from the mean value is low. Histogram analysis in Figure 5.43 and

5.44 shows that for the each case, the deviation between scores is higher than expected.

Scores for the larger coverage density fit a pseudo normal distribution, but the smaller

fused silica mixture failed to fit that distribution type. The distortion from a normal

distribution in the lowest mixture is such that the most frequent bin has a significantly

lower magnitude than the bin which contains the mean value of the distribution. Both

distributions are wider than expected, indicating that the estimates had variability de-

spite being centralized near the reference density. An increase in the varied results for

this material could be due to the reduction in the number of bands used for process-

ing. Because of spectral disagreement between pure material spectra and the mixtures,

only the wavelengths between 10 and 11.5 µm could be used for estimation. While the

inversion model is robust, an increase in the number of wavelengths used should help

increase the confidence of the estimations and reduce this wider distribution.

Figure 5.43: Histogram of 1000 parameter inversion runs on the 0.0025 g
cm2 fused silica

coverage density target.
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Figure 5.44: Histogram of 1000 parameter inversion runs on the 0.0050 g
cm2 fused silica

coverage density target.

Silicon carbide targets from the Blue Heron data collection were also run through

the parameter inversion model 1000 times and analyzed against the single run results

presented in Table 5.5. Unlike the fused silica test, the silicon carbide contained a large

majority of its constituent wavelengths, improving the calculations. Only a handful of

wavelengths at 8 µm and at 10.5 µm needed to be culled for the model. This is a similar

result to the empirical dataset measured by the D&P FTIR instrument. The latter

of the two groups is the location of the cross-over point where all spectral signatures

have roughly the exact same spectral emissivity. Estimated mean coverage densities for

the two mixture targets were 0.0027 and 0.0049 g
cm2 respectfully, converging even closer

than the single model runs from the previous table. Variance calculations proved that

there were smaller deviations within the data than in the fused silica example, with

variances being 2.6 ∗ 10−6 and 3.8 ∗ 10−6 respectfully. When analyzing the frequency of

the estimation for each mixture in the histograms, it becomes obvious that the spread

of data is reduced from the previous example. While both example appear to have an

elongated right tail, the data is centered at the expected locations and with a narrower,

taller distribution. One reason for a long right tail in the distributions is that a larger

portion of the range dictated by the boundary conditions is to the right of the expected

mean. There will always be a small probability that the model inversion estimates a

value within the coverage density range set by the model, but outside the expected
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distribution.

Figure 5.45: Histogram of 1000 parameter inversion runs on the 0.0025 g
cm2 silicon

carbide coverage density target.

Figure 5.46: Histogram of 1000 parameter inversion runs on the 0.0050 g
cm2 silicon

carbide coverage density target.
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For the fused silica targets, the reconstructed spectra from the inversion model are

presented against the aerial collected emissivity spectra. The pure asphalt signature

comes from the average of 16 asphalt pixels in the scene while the pure contaminant

spectra for both materials is from empirical data collections that occurred in other

experiments. Both mixtures are again the average of center pixels in the target squares

from the airborne collection. For fused silica, a 1.5 µm range between 10 and 11.5

µm represented the only region in the spectrum that was usable due to differences

between the aerial measurements and the pure material emissivity spectra. With such a

low number of wavelengths being used for calculation, the results as previously discussed

had a somewhat larger variability, but were still roughly centralized around the expected

result. Using the first run results from table 5.5, spectral mixtures were recreated in the

NEFDS forward contamination model and overlayed with the spectral measurements

from the airborne data in Figure 5.47.

Figure 5.47: Measured vs Modeled Estimates for fused silica targets placed in Blue
Heron 11/12/17 flyover. Estimated coverage density for both targets is in near perfect
agreement with the actual amounts placed in-scene.

A much larger swath of wavelengths were able to be included in the calculations for

silicon carbide as both mixture spectra fell within the envelope created by the pure ma-

terial spectra. This helped produced results that were more localized around a mean and
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even better physical representations that the single run results used in the reconstruction

of the mixture spectra. The results of which are presented in Figure 5.48. Alongside

the pure material reflectances and airborne emissivities of both coverage amounts, re-

constructed spectra (labeled with disconnected colored plus signs) were overlayed for

a visual comparison. The results of both of these examples indicate that it may be

possible to extrapolate out a coverage density (and therefore total contaminant mass)

from an aerial pixel using this method.

Figure 5.48: Measured vs Modeled Estimates for silicon carbide targets placed in Blue
Heron 11/12/17 flyover. Estimated coverage density for both targets is in near perfect
agreement with the actual amounts placed in-scene.

Application to Unknown Target Locations

If the desired target material was known but its location in a scene was not, a step-by-

step process as seen in Figure 5.49 could be undertaken to find and determine contami-

nant mass quantities from an airborne scene. Initially, the scene must be converted from

radiance to emissivity or reflectance space by performing atmospheric compensation and

temperature emissivity separation. Target spectra representing the pure material as well

as several mixtures between the pure material and underlying substrate surfaces are used

to perform target detection with the desired algorithm. Potential target pixels can then

be identified and ranked by detection score from likeliest target to least likely target.
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Each target pixel can then be run against the parameter inversion process n times and

statistical averages can be computed. As the number of runs increases, the average

coverage density will converge to the best estimate for the parameter. This can be used

to determine the total contaminant mass within the IFOV by multiplying the coverage

estimate and IFOV of the sensor together. The process then repeats for the next highest

detection score until all target pixels are identified.

Figure 5.49: Process to incorporate inversion model estimator with target detection

Using the parameter inversion process in this way is more computationally efficient

that attempting the inversion process on all pixels within a emissivity image. The

number of trial runs for each inversion can also increase when analyzing only the high-

est likelihood targets. This improves the estimates for coverage density and mass by

increasing the sample set of estimates.
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Chapter 6

Summary

The determination of physical properties regarding a sparsely contaminated surface with

powders is important in several fields including industrial pollution monitoring. The

target signatures of powders can be affected by the particle size, shape and distribution

of particles. Their crystalline structure affects the optical properties of the material

and angular effects can cause shifts in the signature in certain materials. The goal of

this research was to determine how we can improve the characterization of low density

powder contaminated surfaces with longwave infrared imagery. Our initial focus was to

try and estimate the total contaminant mass present on a sparsely contaminated surface

using a parameter inversion model designed in the spirit of the NEFDS contamination

model.

Results from NEFDS contamination model inversion indicate that empirically mea-

sured intimate mixtures can be used to determine a coverage density and contaminant

mass from a pixel with relative success using several different types of materials. These

results were achieved by applying varying contaminant amounts to several types of sur-

faces and making emissivity measurements with the Design and Prototypes FTIR and

Surface Optics Corporation Reflectometer. These grouping of mixture measurements

were made with different combinations of red chalk, silicon carbide, fused silica and

quartz sand onto several different types of simple substrates. In most cases, the cov-

erage density amounts estimated for the sparse contaminant amounts were similar to

those actually applied to the surfaces being measured. On occasion, uneven material

distribution caused issues with the measurements. Coverage density estimates helped

derive the total contaminant mass on the surface, typically within a factor of two from

the actual amount applied. Other parameters including the β parameter were estimated

157
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in this model, but no solid conclusion can be made from this parameter as it was used

as a model fitting parameter in the original NEFDS forward contamination model.

Extinction cross section was also estimated in the parameter inversion model. As a

contaminant material property, this was not supposed to have variation between different

amounts of contaminant. While estimated results typically did not vary between mixture

amounts, the extinction cross section was never in perfect agreement between mixtures in

a collection. Therefore attempts were made to directly measure this parameter using an

integrating sphere and later on, a blackbody. Compressed disks of varying contaminant

number density were used to find radiance ratio variation at each wavelength. The

slope created in a semi-logarithmic plot at each wavelength represented the extinction

cross section at that wavelength. As each wavelength was processed, an extinction

cross section signal was built up with for the material. The findings of this research

indicate that the amount of contaminant material placed in the disks was likely too

large relative to the coverage density boundary conditions set forth by the NEFDS

forward contamination model. At larger coverage density, the number density parameter

becomes insensitive due to the stacking of particles and produces diminishing returns for

radiance ratio. When deriving the cross section from disks that had coverage densities

within the model range, the results improved somewhat. Specifically in fused silica where

the data fell within a factor of two of the estimated extinction cross section found using

the parameter inversion model. While the use of these results would greatly reduce the

complexity of the parameter inversion model, the extinction cross section measurements

were too low in magnitude. This caused the coverage density parameter to reach its

maximum boundary condition for all mixtures, even with the improved results. This

occurs because the area fraction term described in

f = exp
[α(λ) nA ln[1− φ0(1− e−β

n
A )]

φ0(1− e−β
n
A )

]
, (6.1)

can only have a magnitude shift by changing the extinction cross section parameter or

the coverage density parameter. Since coverage density has clear defined boundaries set,

a decreased extinction cross section magnitude will cause problems in the estimation of

the coverage density.

The estimated parameter information from the empirical measurements was then

used to inject synthetic targets into real longwave hyperspectral data from the Blue

Heron sensor. Targets were created with the NEFDS contamination model parameters

so that each block of pixels had a unique combination of coverage density and sub-pixel
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fraction coverage. A total of 27 3x3 target blocks were placed on a parking lot substrate

and degraded with the calculated point spread function of the sensor. Target spectra

for each mixture and the pure contaminant emissivity were used in the ACE algorithm

to determine the spectra best suited to detect each condition. The results show that

when the material signature has significant spectral character relative to the background

material spectra, most cases will be best detected by the pure contaminant spectrum. In

cases where the target is not wildly different from the background, more consideration

must be placed in what type of target signature should be used in ACE.

Real targets were recently placed in a data collection with the same sensor and tested

against ACE and the parameter inversion model. Testing found that when airborne

hyperspectral imagery of targets was passed through the parameter inversion model,

extremely good estimations of coverage density occurred for the two materials in scene.

This result demonstrates the robustness of the parameter inversion model to achieve

reasonable results for a total contaminant mass on the surface.

6.1 Future Considerations

Going forward, there are several aspects of the research that should be considered for

future evaluation. Firstly, the examination of extinction cross section of powders should

be performed as described in Chapter 4, but with much lower density contaminants.

While disks were made using 0.5-2.0% contaminant, that created much larger coverage

density values that were examined by the NEFDS forward model. Any disks made for

this purpose should not have more than 0.01 g
cm2 of contaminant in them. While the

extinction cross section was calculated using 3-4 disks, it is recommended that future

calculations use more disks to build up a better defined slope at each wavelength. In

some cases, having three disk measurements did not provide clarity on the slope of the

line. With this in mind, it is possible that the measurements do not produce a stable

result even at extremely low coverage densities or that the process is non-linear in this

range which would require a different solution be developed.

It is also worth examining whether the physical properties of the powder have shifted

when put under the immense stress of a 40 ton disk press. All powders were measured

for crystalline structure using a x-ray diffraction instrument prior to experimental trials.

If the material crystalline structure does change under the pressure of making a disk,

the structure could be re-measured using an x-ray diffraction instrument by breaking

apart a previously made disk and placing its contents onto a slide for analysis.
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Finding a way to acquire the index of refraction parameters necessary to simulate

sparse surfaces of the powder materials in µDIRSIG would be extremely beneficial as

well. Simulations of sparse contaminants that are accurate help provide specific emis-

sivity information for surfaces under specific conditions. While the measured optical

constant values did not work with the ellipsometer, this was likely because of disk

preparation problems. If given more time, properly created disks could yield good re-

sults for the n and k parameter as was done in Blake (2017). Other methods described

in that paper could also be explored if the proper instrumentation is available.

Moving forward, the parameter inversion model should also attempt to incorporate

the improvements made in recent editions of the NEFDS contamination model. The pa-

rameter inversion model was created using documentation for version 15.0 of the model.

Currently, the Cortana Corporation is working on version 18.1, which has significantly

updated the β parameter to account for particle size distributions. Clearly from the

histogram analysis of the parameter, it is extremely model insensitive and essentially

has no impact on the results. Version 15.0 defined this parameter as a fit parameter for

the model, so this improvement gives the parameter clearer purpose in the calculations.

It is worth examining if the NEFDS contamination model is even the best model for the

problem of characterizing sparse intimate mixture of particles. While it was convenient

and had good results, the NEFDS contamination model is not a robust way to determine

a lot about a material as it only contains three parameters.
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X-Ray Diffraction Data

This appendix chapter contains measurements of x-ray diffraction for two additional

materials not included in the main text. The first material is fused silica powder which

was purchased from Washington Mills. Figure A.1 shows the resulting intensity chart

given sample angle. Normally, the intensity plot would contain discrete narrow intensity

features as seen in the silicon carbide example found in the main text. These discrete

peaks would allow for the matching of crystalline structures from a database of materials

to determine if one or several different structures exist within the material. Fused silica

has no discrete peaks, but rather a single wide peak that ranges from 10-40 degrees.

When no discrete peaks are present in the measurement, the material is said to be

amorphous which means that no defined crystalline shape is present within the material.

Figure A.2 shows that about two dozen low magnitude narrow peaks do exist in

the red chalk sample. Since data from the company that provided the chalk powder

(Irwin Tools) showed that the material was made of calcite and red iron oxide, all x-ray

diffraction data from the spectral library for both these materials was cross-checked

against the peaks measured. Library reference data was positioned below for both

materials so that visual comparison of the location and intensity of the peaks could be

made.
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Figure A.1: X-ray diffraction images of Fused Silica powder. Fused Silica has one broad
intensity lobe, indicating that the material is comprised of multiple types of materials.
The result is that the Fused Silica is amorphous, not crystalline like the other materials.
Data was collected in the material science department at the Rochester Institute of
Technology in August 2016.
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Figure A.2: X-ray diffraction images of Red Chalk powder. This confirms the technical
data sheet that stated the material was a combination of calcium carbonate dyed with
red iron oxide powder. Data was collected in the material science department at the
Rochester Institute of Technology in August 2016.
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Appendix B

Scanning Electron Microscope

Images

Scanning electron microscope (SEM) imagery was taken for all powders purchased

through Washington Mills and found in RIT storage. Besides the silicon carbide ex-

ample shown in the main text, there were four additional materials examined with SEM

imagery. They were red chalk powder, fused silica powder, duralum white powder and

duralum brown powder. The latter two materials were later discarded for lack of sig-

nificant spectral features in the longwave infrared, but were included in this text. The

fused silica powder from Washington Mills showed unique features in its composition.

Since it was already determined to be amorphous, the material was expected to have

a complete lack of uniformity to particle shape and size. The SEM imagery seems to

indicate that this was the case. Particles are jagged and inhomogeneous. Relatively

larger particles exist (less than 50 µm), but many smaller particles are electrostatically

attached to these larger particles as can be seen in the highest resolution imagery.

Red chalk powder is significantly different in its composition. Since the material is

used for construction, the particles are designed to be uniquely combined. Larger calcium

carbonate particles are present (around 50 µm) while most of the smaller particles are

red iron oxide which are extremely small and attached to the large particles. This is

likely by design as the red iron oxide is used as a dying agent for the chalk.
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(a) SEM image of Fused Silica Powder at 573x
zoom

(b) SEM image of Fused Silica Powder at
2380x zoom

(c) SEM image of Fused Silica Powder at
9920x zoom

(d) SEM image of Fused Silica Powder at
43290x zoom

Figure B.1: Scanning Electron Microscope (SEM) images of Fused Silica powder at various
zooming distances
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(a) SEM image of Red Chalk Powder at 722x
zoom

(b) SEM image of Red Chalk Powder at 1220x
zoom

(c) SEM image of Red Chalk Powder at 2340x
zoom

(d) SEM image of Red Chalk Powder at 6140x
zoom

Figure B.2: Scanning Electron Microscope (SEM) images of Red Chalk powder at various
zooming distances
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(a) SEM image of Duralum White Powder at
632x zoom

(b) SEM image of Duralum White Powder at
2550x zoom

(c) SEM image of Duralum White Powder at
11700x zoom

(d) SEM image of Duralum White Powder at
23770x zoom

Figure B.3: Scanning Electron Microscope (SEM) images of Duralum White powder at various
zooming distances
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(a) SEM image of Duralum Brown Powder at
636x zoom

(b) SEM image of Duralum Brown Powder at
3760x zoom

(c) SEM image of Duralum Brown Powder at
13070x zoom

(d) SEM image of Duralum Brown Powder at
34430x zoom

Figure B.4: Scanning Electron Microscope (SEM) images of Duralum Brown powder at various
zooming distances
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Appendix C

Parameter Inversion Results:

Additional Data Collections

This chapter shows the other sets of results not presented in the results chapter. Exper-

imental collections in this section may not have had enough data points, been collected

without knowledge of the contaminant mass deposited onto the surface or were repeats

of results presented in the results chapter.

C.1 Chalk on Asphalt

This example demonstrates the fidelity of the parameter inversion model on red chalk

powder contaminating asphalt surfaces using the Design and Prototypes FTIR. The

three-step optimization technique is used so that a spectrally depended parameter (α(λ))

can be estimated alongside two scalar parameters ( nA and β). In the second optimization

step, a contrast ratio is found and used to calculate the extinction cross section (α(λ))

which can be seen in figure C.1, where all contrast ratio data points fall between zero

and one as expected.

Locations that fall under conditions where the contrast ratio is negative or above

one are eliminated. For this example, there are only a handful of points at 11.5 µm

that are discarded. If a data point fails in any spectra in the family of mixtures, all are

removed. In this example, one mixture had data that failed to meet the criteria at 11.5
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Figure C.1: Contrast Ratio for three mixtures of red chalk powder on asphalt.

µm, but all three mixtures had this location removed. This is done to keep variable

structure in the algorithm consistent for all measurements.

Once the contrast ratio is calculated, an extinction cross section can be found for

each mixture amount shown in Figure C.2. This is the spectrally dependent parameter

that should only describe the characteristics of the contaminant. The extinction cross

section represents the total amount of incoming energy scattered or absorbed by the

powder. Poor agreement across mixtures in this example could be a result of the asphalt

slab having a lot of texture. In the initial parameter estimation, the algorithm may

underestimate the amount of contaminant present relative to the contrast ratio for all

mixtures because of these cracks, but have a larger effect on those with more contaminant

present.

For a contaminant coverage with a reflectance that is spectrally close to the pure

contaminant reflectance, the contrast ratio will approach zero and its logarithm will

approach a very large negative number. An underestimation of coverage density due to

the presence of crevasses will not modulate the contrast ratio logarithm low enough and

α(λ) estimates will appear too large.

For small amounts of contaminant, the natural log of the contrast ratio approached

zero from a positive direction. The non-logarithmic term will be larger with a underes-
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timated coverage density. However since the contamination present is not particularly

thick, coverage density estimates from the first parameter estimation step will be con-

siderably closer than in a thicker layer. The result of which is a reasonably close α(λ).

Another potential source of error comes from the collection method for this data set.

Measurements collected with the D&P FTIR occur in a field setting and require clear

skies, no wind or humidity and warm temperatures. Regardless, field measurements

will intrinsically contain errors relative to laboratory measurements that can cascade

through a parameter estimating process.

Figure C.2: Extinction cross section for three mixtures of red chalk powder.

In the third parameter estimation step, the estimated spectral α(λ) is used to find

the scalar parameters for the effective packing fraction and coverage density for each

mixture via a look-up table. In Table C.1, both scalar parameters are listed alongside

the computed contaminant mass present on the surface. Mixtures are listed in order of

least contaminant to most contaminant present. Parameter inversion results safely fall

within the bounding set by the NEFDS forward model for coverage density. The derived

total contaminant mass represents the estimated amount of contaminant across the

entire substrate surface This is calculated by assuming a uniform coverage density across
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Parameter Estimates for Red Chalk on Asphalt

Mixture Number Effective Packing
Fraction (β)

Coverage Density
( nA) in g

cm2

Contaminant
Mass (g)

Mixture 1 1.7220 0.0046 1.4868
Mixture 2 8.0100 0.0088 2.8307
Mixture 3 7.1870 0.0099 3.1948

Table C.1: Table of parameter estimates and total calculated mass for red chalk powder
mixtures on asphalt.

the area directly below the sieve used to deposit contaminants. In this example, the

estimates are qualitatively correct. Since truth measurements of the deposited amounts

are not available, no quantitative comparison can be made.

After all three parameter values are determined, they are input into the forward

NEFDS Contamination Model along with the pure contaminant and bare substrate

reflectances. The output results are converted back into emissivity using Kirkoff’s law

with measured and modeled results being overlayed. Figure C.3 overlays the modeled

data points using parameter inversion estimates with the measured D&P data. For

completeness, pure material emissivities are included as well.

While the parameter inversion model worked well to estimate each physical pa-

rameter value, there remain concerns about using this material. Highly inconsistent

extinction cross section estimates indicate that other parameter estimates while stable,

are not sufficiently accurate.

C.2 Quartz Sand

Another contaminant that was examined was Humbodlt Calibration sand.. This sand

is composed of nearly 100% quartz, but does have a wide particle size distribution.

Portions of this could be considered powder, however this measurement data set was

measured using the full particle size distribution. Quartz measurements were made using

the Surface Optics Corporation reflectometer in the laboratory, so no environmental

errors were present in the measurements, but the spot size was significantly reduced. A

total of four mixtures were created and the quartz sand was placed on a Krylon 1602

black spray painted surface.
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Figure C.3: Measured emissivity (solid lines) vs modeled results for mixtures of red
chalk powder on asphalt. Emissivity data for the bare substrate and pure contaminant
are also included.

In this example, calculated contrast ratios shown in Figure C.4 are fairly consistent

with the exception of one mixture level. Several grouping of data points were eliminated

because a mixture did not meet the contrast ratio standards required for further calcu-

lation. This did not preclude the parameter inversion model from performing estimates

on the rest of the spectrum.

There is excellent agreement between mixtures for the extinction cross section as

shown in Figure C.5. Unfortunately, because of lost data points the cross section in the

region of most importance is lost. The most significant absorption feature of Quartz

occurs between 8-9.5 µm. With a small 20-30 data point exception, this section is

completely missing from the α(λ) estimates.

Scalar parameter estimates were very poor for this material. Mixtures one and two

converged to the same parameter space location despite having different amounts of

material present. Errors in low contaminant scalar parameter estimation did not occur

due to a lack of data in the strongest absorption feature of quartz. Issues arose as a
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Figure C.4: Contrast ratio for four mixtures of quartz sand on Krylon 1602 spray painted
aluminum.

result of too little contaminant being present and experimental error in the deposition

process.

The Surface Optics Corporation reflectometer has a one centimeter diameter aper-

ture, so it is difficult to apply small coverage densities without undershooting or over-

shooting the target amount. In this case, too little material was applied to the spot and

the model as a whole failed. However, good estimates are made when using the results

from only steps one and two of the parameter inversion.

The first two mixture coverage densities and all effective packing fraction rate es-

Three-Step Parameter Estimates for Quartz Sand on Krylon 1602 Painted Aluminum

Mixture Number Effective Packing
Fraction (β)

Coverage Density
( nA) in g

cm2

Contaminant
Mass (g)

Mixture 1 0.0010 0.0010 0.3232
Mixture 2 0.0010 0.0010 0.3232
Mixture 3 8.2130 0.0054 1.7690
Mixture 4 8.2640 0.0092 2.9843

Table C.2: Table of parameter estimates and total calculated mass for four mixtures of
Quartz sand on Krylon 1602 painted aluminum sheet
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Two-Step Parameter Estimates for Quartz Sand on Krylon 1602 Painted Aluminum

Mixture Number Effective Packing
Fraction (β)

Coverage Density
( nA) in g

cm2

Contaminant
Mass (g)

Mixture 1 8.1519 0.000811 0.2621
Mixture 2 7.5016 0.000915 0.2957
Mixture 3 0.2963 0.0054 1.7453
Mixture 4 6.7783 0.0093 2.0058

Table C.3: Table of parameter estimates and total calculated mass for four mixtures
of quartz sand on Krylon 1602 painted aluminum. Results were obtained only with
parameter estimates from steps 1,2 of the three-step parameter inversion technique.

timates shifted from the initial parameter estimates. Because the amount applied was

so small, the model became unstable when estimating these parameters in the final

step. This instability does not occur in the first parameter estimation step because the

boundaries are more loosely defined.

Mixture emissivity signatures were recreated with the three-step parameter inversion

technique for continuity with other examples. The recreated spectra again overlay well

with their measured emissivity. Both bare substrate and pure contaminant are also

included. This example should be redone with larger initial contaminant quantities to

ensure initial parameter coverage amounts fall within acceptable boundary conditions.
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Figure C.5: Extinction cross section for four mixtures of quartz.

Figure C.6: Measured emissivity (solid lines) vs modeled results for four mixtures of
quartz sand on Krylon 1602 painted aluminum. Emissivity data for the bare substrate
and pure contaminant are also included.



C.3. SILICON CARBIDE 179

C.3 Silicon Carbide

Silicon Carbide is an example of a metallic powder manufactured by a mining company

(Washington Mills) that presents a challenge to parameter estimation. A thick layer of

pure Silicon Carbide powder has a spectral window from approximately 8.5-10.5 µm that

is less emissive than the substrate (black aluminum) it contaminants and a region beyond

10.5 µm that is more emissive than the substrate. Invariably, this will lead to a single

or multiple crossover points: locations where the substrate and contaminant emissivities

cross as one becomes larger or smaller than the other. The substrate emissivity averages

around 0.92 with contaminant surface emissivities occurring before 10.5 µm being more

emissivity and values beyond 10.5 µm being less emissive.

Silicon Carbide like quartz, was tested on a Krylon 1602 spray painted aluminum

substrate surface. Materials were deposited with a 100 µm eight inch diameter sieve.

Measurements were made in the laboratory with the SOC-400T reflectometer and spec-

trally smoothed using the instruments proprietary software. Settings for the smoothness

algorithm were set low so as not to remove important features in the spectra.

As in the previous examples, the contrast ratios seen in Figure C.7 are mostly com-

plete data sets with some exceptions at 8.5 and 10.6 µm. They have very similar shapes

as well, but occur at vastly different magnitudes like some of the previous materials.

Again, magnitude of the contrast ratio has no standing to the validity of the estimated

extinction cross section or the other estimated parameters.
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Parameter Estimates for Silicon Carbide

Mixture Number Effective Packing
Fraction Rate (β)

Coverage Density
( nA) in g

cm2

Contaminant
Mass (g)

Mixture 1 0.5370 0.0040 1.2928
Mixture 2 3.6550 0.0083 2.9681
Mixture 3 10.000 0.0010 3.2299

Table C.4: Table of parameter estimates and total calculated mass for silicon carbide
(SiC) on Krylon 1602 painted aluminum.

Figure C.7: Contrast ratio for three mixtures of Silicon Carbide (SiC) on Krylon 1602
painted aluminum.

In Figure C.8, estimates for extinction cross sections are shown. In mixtures one and

two, agreement exists across the entire spectral region for the extinction cross section.

Mixture three has an increased magnitude spectrally from the other two extinction cross

sections, and appears more stretched vertically. This is very apparent at the 13-15 µm

range where peaks and troughs are exaggerated in mixture three and relative to the

others.

Scalar parameter estimates take shape from the extinction cross section measure-

ments in the next optimization steps. Like the quartz example, the estimated parameter

values for the final mixture approach the maximum boundary conditions for both the
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effective packing fraction rate as well as the coverage density. However, in this case the

initial parameter estimates also do the same.

Figure C.8: Extinction cross section of three mixtures of Silicon Carbide (SiC).

One possible explanation for poor results in the final mixture is inherent to the

estimation process. The NEFDS Forward model utilizes a complex exponential term to

modulate the substrate and contaminant reflectances seen in equation 3.9. Because the

third mixture appears so close across the spectral range examined to the spectra of the

pure contaminant and due to the larger estimate of extinction cross section from the

other mixtures, the exponential plays a large role. Mixture three requires the exponential

term to eliminate the substrate reflectance almost completely from the equation which

can only be done by forcing it to be exp(1).

f = exp
[α(λ) nA ln[1− φ0(1− e−β

n
A )]

φ0(1− e−β
n
A )

]
(C.1)

As seen in Equation C.1, zeroing the exponential with an already large α(λ) requires

as large a coverage density and effective packing fraction rate as possible. This pushes

the other scalar parameters up to their maximum considering boundary conditions.
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Despite issues with the third mixture, parameter estimates recreate the spectra for

mixtures one and two very well. Mixture three works as well as shown in Figure C.9,

but based on its parameter estimation, the results are suspect at best. As in previous

examples, measured contaminant and bare substrates are included for completeness.

Figure C.9: Measured Emissivity (solid lines) vs modeled emissivity results for three
mixtures of Silicon Carbide (SiC) on Krylon 1602 painted aluminum. Emissivity data
for the bare substrate and pure contaminant are also included.

C.4 Fused Silica

The final contaminant examined in this study is fused silica powder that also comes from

Washington Mills. It is considered a powder composite because it contains the fine dust

collected as remnants of the milling process. Since these are all remaining particles from

milling, there occasionally exists larger particles, however a vast majority of particles in

this sample will have sizes less than 20 microns. Three fused silica contaminant amounts

were used to cover a flat black painted aluminum slab. Each amount of contaminant

was deposited using a sieve and measured with the reflectometer previously described.

As in previous examples, Figure C.10, the contrast ratio for the extinction cross

section parameter varies in magnitude between contaminant amounts. In this example,
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each ratio has the same approximate shape regardless of mixture. Overall, the contrast

ratio decreases with each mixture demonstrating that the difference between the mixture

and contaminant approaches the magnitude of the difference between the substrate and

pure contaminant as more contaminant is added (i.e. mixture 3).

Figure C.10: Contrast Ratio for three mixtures of fused silica powder on Krylon 1602
painted aluminum.

The extinction cross section of the fused silica seen in Figure C.11 represents the best

estimate for a contaminant so far. Regardless of the amount of contaminant present, the

overall extinction cross section is relatively consistent at all spectral locations. Given

the large differences in contrast ratio between samples, it becomes clear that the driver

for consistency between samples is changes within the two scalar parameters.

Coverage density estimates shown in Table C.5 indicate little change between density

estimates in the initial step to the final step of the parameter inversion model. This

occurs in this example because the spectral extinction cross section estimate is relatively

flat and close in magnitude to the scalar average used for the initial parameter estimate.

Given the similarity, there is very little variation from the first step to the final step in

estimating the scalar parameters.

Mixture to mixture, the amount of contaminant increases when more contaminant

is present. With near consistency in the extinction cross section and no change be-

tween steps, it was surprising to discover that the effective packing fraction rate of the
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initial mixture had reached a boundary condition. The initial estimates for this pa-

rameter never reached estimate boundaries, but had nearly identical coverage density

parameters. The difference occurred in the extinction cross section. The primary esti-

mation technique uses an averaged cross section value rather than a vector of values.

Each mixture underestimated the average cross section initially which underestimated

the effective packing fraction rate. Since there is no documentation regarding the ideal

boundary conditions for this parameter, it is possible an increase to the boundary range

is needed. Another possibility is that local minimization forced the effective packing

fraction to the maximum to best fit the data.

Finally, a comparison of the measured and modeled results for fused silica is presented

in Figure C.12. Even with an issue in the first mixture effective packing fraction rate,

the reproduced model results represent the measured mixture emissivity well.

Figure C.11: Extinction cross section for three mixtures of Fused Silica powder.
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Parameter Estimates for Fused Silica

Mixture Number Effective Packing
Fraction (β)

Coverage Density
( nA) in g

cm2

Contaminant
Mass (g)

Mixture 1 10.000 0.0013 0.4202
Mixture 2 9.3790 0.0051 1.6574
Mixture 3 8.4620 0.0091 2.9452

Table C.5: Table of parameter estimates and total calculated mass for Fused Silica
powder on Krylon 1602 painted aluminum.

Figure C.12: Measured emissivity (solid lines) vs Modeled emissivity results for three
mixtures of fused silica powder on Krylon painted aluminum. Emissivity data for the
bare substrate and pure contaminant are also included.
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Appendix D

Additional Extinction Cross

Section Results

Prior the use of compressed disks with a blackbody source, the extinction cross sec-

tion was measured using an infragold integrating sphere. Initial measurements were

performed on the material in non-disk form simply placed in an output port cover and

tamped down with a spoon. This method was challenging as the port cover was ex-

tremely small and certainty in the number density measurements were not guaranteed.

The best result from this methodology is presented in this chapter. Figure D.1 shows

the two measured radiance ratio plots of the silicon carbide material inside the inte-

grating sphere. The blue line represents the lower contaminant amount and the red

line represents the higher contaminant amount. Ratio values should decrease as more

material is added as scattering and absorption will increase in the sphere. Figure D.2

shows the calculated extinction cross section as described by the method in chapter 4.

Unlike examples using a blackbody and disk, the extinction cross section in this case is

extremely low and spectrally uninteresting in the longwave infrared range.
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Figure D.1: Average ratio of two amounts of silicon carbide powder placed inside the
port cover of an infragold integrating sphere. The silicon carbide was not compressed
into a disk prior to placement inside the integrating sphere.



189

Figure D.2: Resulting extinction cross section measurement of the uncompressed silicon
carbide material placed in the output port cover of the infragold integrating sphere.

Once a method that utilized compressed disks of known material was employed, disks

were placed inside the integrating sphere and that apparatus was directly attached to

the instrument. The major issue with that set-up was that the integrating sphere has

an exceedingly high reflectivity rate in the longwave infrared. Because the instrument

had a sensor cooling liquid nitrogen dewar, an internal reflection occurred that reached

the sensor and caused error within the radiance ratio measurements. This phenomena

can be seen in figure D.3 where over the course of an hour, the measured ratio spectra

remained above 1.0 at almost every single wavelength, despite having well characterized

contaminant densities from the disks. The extinction cross sections that were calculated

from these ratio measurements were near and sometimes below zero as can be seen in

figure D.4, where fused silica powder disks produced a negative extinction cross section

due to internal sensor reflections. In this example, extinction cross section calcluates at
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wavelengths from 8.992 to 12.75 µm fell below one. Even when the internal reflection

issue was corrected, the signal produced by the integrating sphere light source was too

weak and unstable to produce reasonable results. This is why the integrating sphere

was replaced with the blackbody setup.

Figure D.3: Radiance ratios of fused silica to a pristine sphere found over a period of 1
hour.
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Figure D.4: Extinction cross section generated from fused silica in a infragold integrating
sphere.
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Appendix E

ROC Curve Results for Blue

Heron Synthetic Targets

Airborne hyperspectral images that contained synthetic target signatures were also vi-

sualized using receiver operator characteristic curves to show the detection rate against

false alarms. This method was done for all target detection algorithms employed by

the ENVI software tool including ACE, Matched Filter, Spectral Angle Mapper (SAM),

and Constrained Energy Minimization (CEM). Each of the four detection methods was

applied to an emissivity image from Blue Heron with synthetic targets against four tar-

get spectra. The ROC figures presented in this chapter represent each of those spectra.

The ACE algorithm results are generated from ENVI’s ACE algorithm. The purpose of

exhibiting these results is to demonstrate how the detection rate for each algorithm de-

creases in efficiency as the target spectrum used becomes less like the pure contaminant

spectrum.

The four ROC curves presented were generated using a Blue Heron sensor collection

at 18:07:02 UTC time on 11/3/16. This is the same file used in Chapter 5. Synthetic

targets utilized parameter inversion model estimates for Silcon Carbide contaminant

powder. Targets were generated in 10% sub-pixel intervals up to full pixel coverage

with a total of 243 target pixels present.
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Figure E.1: ROC generated curves for pure silicon carbide target spectrum using ACE,
MF, CEM, and SAM target detection algorithms.

Figure E.2: ROC generated curves for highest mixture amount of silicon carbide target
spectrum using ACE, MF, CEM, and SAM target detection algorithms.
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Figure E.3: ROC generated curves for second highest mixture amount of silicon carbide
target spectrum using ACE, MF, CEM, and SAM target detection algorithms.

Figure E.4: ROC generated curves for lowest mixture amount of silicon carbide target
spectrum using ACE, MF, CEM, and SAM target detection algorithms.
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