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Abstract 
 
The Chandra X-ray Observatory (Chandra) is producing images with outstanding spatial 

resolution using low-noise, fast-readout CCDs.  Among many other things, X-ray images and 

spectra help astronomers study star formation and galactic evolution.  Currently, X-ray 

astronomers classify one X-ray source at a time by visual inspection and use of model-fitting 

software.  This approach is useful for studying the physics of bright individual sources but is time 

consuming for analyzing large images of rich fields of X-ray sources, such as stellar clusters.  

Objective and efficient techniques from the fields of multivariate statistics, pattern recognition, 

and hyperspectral image processing, are needed to analyze the growing Chandra image archive.  

 

An image processing algorithm has been developed that orders the given X-ray sources based on 

hard versus soft X-ray emission and then groups the ordered X-ray sources into clusters based on 

their spectral attributes.  The algorithm was applied to imaging spectroscopy of the Orion Nebula 

Cluster (ONC) population of more than 1000 X-ray emitting stars.  As an initial test of the 

algorithm, images of the ONC from the Chandra archive were analyzed. The final spectral 

classification algorithm was applied to a sample of sources selected from among the more than 

1600 X-ray sources detected in the Chandra Orion Ultradeep Project.  Clustering results have 

been compared with known optical and infrared properties of the population of the ONC to assess 

the algorithm’s ability to identify groups of sources that share common attributes.



 

v 

Contents 

 
List of Figures .............................................................................................................................. viii 

List of Tables.................................................................................................................................. xi 

Acronyms and Abbreviations........................................................................................................ xii 

Chapter 1  Introduction.................................................................................................................... 1 

Chapter 2  X-ray Astronomy ........................................................................................................... 7 

2.1 History ............................................................................................................................. 7 

2.2 X-ray Properties............................................................................................................... 8 

2.3 X-rays from Young Stars................................................................................................. 9 

2.4 Orion Nebula Cluster..................................................................................................... 11 

2.4.1 X-ray Background ................................................................................................. 11 

Chapter 3  Chandra X-ray Observatory......................................................................................... 13 

3.1 Background.................................................................................................................... 13 

3.2 Hardware ....................................................................................................................... 14 

3.2.1 HRMA................................................................................................................... 14 

3.2.2 ACIS...................................................................................................................... 15 

3.2.3 Heisenberg Uncertainty Principle.......................................................................... 23 

3.3 Ground Data Processing ................................................................................................ 24 

Chapter 4  Astronomical Applications of Data Mining................................................................. 25 

4.1 Background.................................................................................................................... 25 

4.2 Application to Astronomy ............................................................................................. 27 

4.3 Application to Astronomical X-ray Data....................................................................... 31 

4.4 X-ray Data Challenges .................................................................................................. 33 

Chapter 5  Relevant Mathematical Techniques............................................................................. 34 

5.1 Principal Component Analysis ...................................................................................... 35 

5.2 Agglomerative Hierarchical Clustering......................................................................... 37 

5.3 K-Means Clustering....................................................................................................... 39 

Chapter 6  Input Variable Selection .............................................................................................. 42 

6.1 Background.................................................................................................................... 42 

6.2 X-ray Emission Lines .................................................................................................... 43 

6.3 Equal-Width Bands ....................................................................................................... 46 



   

vi 

6.4 Equal Area-Under-the-Curve Bands ............................................................................. 48 

6.5 Hyperspectral Bands...................................................................................................... 48 

Chapter 7  Proof of Concept.......................................................................................................... 51 

7.1 Chandra Archival Observation ..................................................................................... 51 

7.1.1 Preprocessing......................................................................................................... 52 

7.1.2 Source Detection ................................................................................................... 53 

7.2 X-ray Spectral Band Selection ...................................................................................... 59 

7.3 Principal Component Analysis ...................................................................................... 62 

7.3.1 Stopping Rules....................................................................................................... 63 

7.4 Agglomerative Hierarchical Clustering......................................................................... 67 

7.5 K-means Clustering ....................................................................................................... 70 

7.6 Conclusions ................................................................................................................... 71 

Chapter 8  X-ray Source Classification Algorithm ....................................................................... 76 

8.1 Chandra Orion Ultradeep Project.................................................................................. 76 

8.1.1 Data Reduction ...................................................................................................... 77 

8.1.2 Selection of Subset ................................................................................................ 78 

8.1.3 Background Correction ......................................................................................... 78 

8.2 Principal Component Analysis ...................................................................................... 81 

8.2.1 Starting Rules ........................................................................................................ 82 

8.2.2 Stopping Rules....................................................................................................... 84 

8.2.2.1 Scree Test .......................................................................................................... 84 

8.2.2.2 Horn’s Stopping Rule ........................................................................................ 85 

8.2.2.3 Broken Stick ...................................................................................................... 87 

8.2.2.4 Average Eigenvalue........................................................................................... 87 

8.2.2.5 Statistical Significance Tests ............................................................................. 89 

8.2.3 Stopping Rule Conclusions ................................................................................... 91 

8.2.4 Eigenvector and Score Plots .................................................................................. 92 

8.3 Agglomerative Hierarchical Clustering......................................................................... 93 

8.4 K-means Clustering ....................................................................................................... 97 

Chapter 9  Results Analysis......................................................................................................... 100 

9.1 PCA Score Plots and Class Average Spectra .............................................................. 100 

9.2 Class Homogeneity...................................................................................................... 111 

9.3 Omission of Agglomerative Hierarchical Clustering Step .......................................... 121 

9.4 Hertzsprung-Russell Diagram ..................................................................................... 124 



 

vii 

9.5 X-ray Properties Versus ONIR Properties................................................................... 126 

9.6 Very Deeply Embedded Protostars.............................................................................. 132 

9.7 Beehive Proplyd .......................................................................................................... 132 

9.8 Hardness Ratio Diagram.............................................................................................. 133 

Chapter 10  Summary and Future Work...................................................................................... 136 

10.1 Summary ..................................................................................................................... 136 

10.2 Future Work................................................................................................................. 137 

Appendix A  X-ray Spectral Bands ............................................................................................. 140 

Appendix B  Similarity Matrix for Preliminary Dataset ............................................................. 144 

Appendix C  Clustering Assignments for Preliminary Dataset ................................................... 149 

Appendix D  Background Counts Table for COUP 444 Subset.................................................. 153 

Appendix E  Correlation Matrix for COUP 444 Subset.............................................................. 163 

Appendix F  Eigenvectors for COUP 444 Subset ....................................................................... 167 

Appendix G  Eigenvalues for COUP 444 Subset ........................................................................ 172 

Appendix H  Class Assignments After Clustering ...................................................................... 173 

References………………………………………..……………………………………………...183 



   

viii 

 

List of Figures 

 
Figure 1.1:  Chandra X-ray Observatory image of the ONC........................................................... 2 

Figure 1.2: Chandra image of the ONC from the COUP observation. ........................................... 4 

Figure 2.1:   Hubble Space Telescope image of the Trapezium region of the ONC.  The contour 

lines from the Chandra X-ray Observatory are overlaid on the visible image. ..................... 12 

Figure 3.1  The orbit of Chandra shown from above.  The pink bands encircling the Earth 

represent the radiation belts (Illustration: Chandra X-ray Center/M. Weiss). ...................... 14 

Figure 3.2:  Schematic of the Chandra X-ray Observatory (Illustration: Chandra Proposers’ 

Observatory Guide). .............................................................................................................. 15 

Figure 3.3:   High Resolution Mirror Assembly configuration (Illustration: Hughes Danbury 

Optical Systems). .................................................................................................................. 16 

Figure 3.4:  Photo of the Advanced CCD Imaging Spectrometer ................................................. 17 

Figure 3.5:  A schematic of the ACIS flight focal plane showing the 4 chips used for imaging 

(ACIS-I) and the 6 chips used for spectroscopy (ACIS-S). .................................................. 18 

Figure 3.6:  Plot showing how the FWHM of the FI CCDs increases with increasing energy. This 

data is after CTI correction.................................................................................................... 20 

Figure 3.7:  Quantum efficiency curves for the four front-illuminated ACIS-I chips showing the 

absorption features (07/2000 version of the data). ................................................................ 21 

Figure 3.8:  Extraction of energy spectrum (top) and light curve (bottom) for a detected X-ray 

source (Image from Ref. 8). .................................................................................................. 23 

Figure 5.1:  Example of a dendrogram.  The dashed horizontal red line shows where the 

dendrogram has been cut at a distance level of approximately 2 units. ................................ 39 

Figure 5.2:  2-D schematic showing between-cluster distance and within-cluster distance.  The 

clusters may exist in greater than 2-dimensional space......................................................... 40 

Figure 6.1:  Selected regions of the X-ray spectrum of TW Hya (solid curve).  The observed 

spectrum is overlaid with an emission measure model (dashed curve) that best fits 

temperature-sensitive line intensities. ................................................................................... 45 

Figure 6.2:  Four sources grouped into the same class when using equal-width spectral bands. .. 47 

Figure 7.1: Image created from ACIS-I chip 0.............................................................................. 54 

Figure 7.2: Instrument map for ACIS-I chip 0. ............................................................................. 55 



 

ix 

Figure 7.3: Exposure map for ACIS-I chip 0. ............................................................................... 56 

Figure 7.4:  Example of detected sources for one ACIS-I chip 0 (ellipses represent 3σσσσ). ............ 57 

Figure 7.5:  Spectra for two example sources in the testbed dataset. ............................................ 59 

Figure 7.6:  Mean X-ray spectrum created from 185 detected sources in Orion...........................60 

Figure 7.7:  Mean source spectrum showing eight bands with equal area. ................................... 61 

Figure 7.8:  Scree plot for the eight principal components. .......................................................... 65 

Figure 7.9: The top panel gives the average number of counts in each of the 8 bands.  The bottom 

panels are eigenvector plots for the first three principal components. .................................. 66 

Figure 7.10: Dendrogram resulting from hierarchical clustering. ................................................. 69 

Figure 7.11:  Spectra for All Sources in Class 1. .......................................................................... 73 

Figure 7.12: Spectra for All Sources in Class 2. ........................................................................... 74 

Figure 7.13:  Spectra for All Sources in Class 3. .......................................................................... 74 

Figure 7.14:  Spectra for All Sources in Class 8. .......................................................................... 75 

Figure 8.1:  Examples of soft (left) and hard (right) X-ray spectra among sources detected in the 

ONC. ..................................................................................................................................... 77 

Figure 8.2:  Original (solid black line) and background-corrected (dashed blue line) spectra for 

COUP source 1067................................................................................................................ 80 

Figure 8.3:  Scree Plot for COUP Subset ...................................................................................... 85 

Figure 8.4: Depiction of Horn’s Stopping Rule ............................................................................ 86 

Figure 8.5:  Depiction of Broken Stick stopping rule.................................................................... 88 

Figure 8.6:  Eigenvector plots for the first four principal components. ........................................ 95 

Figure 8.7:  Score plot of PCs 1 and 2 computed from the X-ray spectral band data. .................. 96 

Figure 8.8:  Dendrogram resulting from hierarchical clustering on COUP 444 subset, using 

Euclidean distance with complete linkage.  The dashed line shows where the dendrogram 

was cut, resulting in 17 classes.  Each class of sources is represented by a different color. . 97 

Figure 9.1:  Average spectra for each of the 17 classes. ............................................................. 103 

Figure 9.2:  Plot of the first 2 principal components with the source classes shown.  The class 

numbers increase clockwise around the horseshoe-shaped curve. ...................................... 104 

Figure 9.3:  Plot of principal components 3 versus 1 with source classes color-coded............... 105 

Figure 9.4:  Plot of principal components 4 versus 1 with source classes color-coded............... 106 

Figure 9.5:  Plot of principal components 3 versus 2 with source classes color-coded............... 107 

Figure 9.6:  Plot of principal components 4 versus 2 with source classes color-coded............... 108 

Figure 9.7:  Plot of principal components 4 versus 3 with source classes color-coded............... 109 

Figure 9.8:  Six example sources from Class 2. .......................................................................... 110 



   

x 

Figure 9.9:  Six example sources from Class 14. ........................................................................ 111 

Figure 9.10:  Andrews’ curves for the 17 classes resulting from the clustering algorithm. ........ 113 

Figure 9.11:  Results of running PCA followed by K-means clustering.  Hierarchical clustering 

was not run prior to running K-means clustering................................................................ 122 

Figure 9.12:  Andrews’ curves for Classes 1 and 17 created from PCA followed by K-means 

clustering. ............................................................................................................................ 123 

Figure 9.13:   Hertzsprung-Russell diagram of COUP 444 dataset color-coded by X-ray spectral 

class.  The A-type and B-type stars are labeled with their corresponding COUP source 

number................................................................................................................................. 125 

Figure 9.14:  X-ray spectrum for COUP 869. ............................................................................. 126 

Figure 9.15:  Hertzsprung-Russell diagram for soft X-ray spectrum classes 11, 12, and 13. ..... 127 

Figure 9.16:  Hertzsprung-Russell diagram for the softest X-ray spectral classes: 14, 15, and 16.

............................................................................................................................................. 127 

Figure 9.17:  Mean hydrogen column density plotted for each class. ......................................... 130 

Figure 9.18:  Mean visual extinction plotted by class. ................................................................ 130 

Figure 9.19:  Mean near-IR K-band excess plotted by class. ...................................................... 131 

Figure 9.20:  Mean log effective photospheric temperature plotted by class. ............................. 131 

Figure 9.21:  Hubble Space Telescope image of the Beehive Proplyd.  The position of the 

associated COUP source (COUP 948) is shown by the green circle................................... 133 

Figure 9.22: Hardness Ratio diagram for the COUP 444 subset................................................. 135 

Figure 10.1:  Example of a time series plot for one X-ray source............................................... 139 

 



 

xi 

 

List of Tables 

 
Table 3.1: ACIS Characteristics .................................................................................................... 18 

Table 6.1:  Spectral Ranges for Equal Width Bands ..................................................................... 46 

Table 7.1:  X-ray Spectral Band Ranges ....................................................................................... 60 

Table 7.2:  Correlation Matrix for X-ray Spectral Bands.............................................................. 61 

Table 7.3:  Eigenanalysis of the Correlation Matrix..................................................................... 63 

Table 7.4: Number of Sources Per Cluster .................................................................................... 70 

Table 8.1:  Source detection problems in the COUP observation. ................................................ 77 

Table 8.2: Comparison of Stopping Rules .................................................................................... 89 

Table 8.3: Significance Probabilities From Levene’s Test............................................................ 91 

Table 8.4: Number of Sources Per Class After Agglomerative Hierarchical Clustering .............. 96 

Table 8.5:  Number of Sources Per Class After K-means Clustering ........................................... 98 

Table 8.6: Two-way cross-tabulation of the class membership after agglomerative hierarchical 

clustering (rows) and K-means clustering (columns)............................................................ 99 

Table 9.1: ONIR properties of the resulting 17 X-ray classes.  Values in parentheses represent 

error on the mean.  The six A-type and B-type stars in the COUP 444 dataset have not been 

included in mean calculations based on optically-derived properties. ................................ 129 

Table 10.1: Light curve bin sizes. ............................................................................................... 138 

 

 

 



   

xii 

Acronyms and Abbreviations 
 

AAS   American Astronomical Society 

ACIS   Advanced CCD Imaging Spectrometer  

ACIS-I   ACIS-Imaging 

ANN   artificial neural network 

APED   Astrophysical Plasma Emissivity Database 

ASAS   All Sky Automated Survey 

ASCA   Advanced Satellite for Cosmology and Astrophysics 

AXAF     Advanced X-ray Astrophysics Facility 

BI    backside-illuminated  

CCD    charge-coupled device  

CIAO      Chandra Interactive Analysis of Observations  

COUP   Chandra Orion Ultradeep Project  

CXO    Chandra X-ray Observatory  

DEC   declination   

FI     frontside-illuminated  

FOV    field of view  

FWHM    full-width half-maximum  

HETG    High Energy Transmission Grating  

HRC    High Resolution Camera  

HRMA   High Resolution Mirror Assembly  

IDL   Interactive Data Language 

IPC   Imaging Proportional Counter  

IR     infrared  

ISIS   Interactive Spectral Interpretation System 

LETG   Low Energy Transmission Grating  

NIR     near infrared 

NCC   normalized correlation coefficient  

ObsIds   Observation Ids  

ONC    Orion Nebula Cluster  

PCA   principal component analysis 

PMS   pre-main-sequence 



 

xiii 

PSF    point spread function  

QE    quantum efficiency  

RA   right ascension  

ROSAT  Roentgen Satellite  

SAS   Statistical Analysis Software  

SIM    Science Instrument Module  

XMM-Newton  X-ray Multi-Mirror Mission-Newton 

XRB   X-ray background 



   

xiv 

Acknowledgements 
 
 
This research was funded in part by grants from the Eastman Kodak Company and the 

Smithsonian Astrophysical Observatory.    

 

The following people provided input and technical advice and I would like to thank each one of 

them: Eric Feigelson, Konstantin Getman, Giusi Micela, Norbert Schulz, David Huenemoerder, 

and Vinay Kashyap. 

 

I would like to thank the members of my thesis committee for providing me with invaluable input 

during the course of my research. Dr. LaLonde taught me to question all the results, to 

continually ask “why”, and to go beyond the numerical answer to find its meaning.  Dr. 

Richmond provided me with endless thought-provoking suggestions, ideas, and motivation.  Dr. 

Salvaggio provided the imaging science and remote sensing point of view, balancing out the 

astronomy aspects of my research. 

 

I’d like to thank all my friends who stood by me throughout the past 8+ years and the crazy 80+ 

hours per week of work and school.  I’m thankful for their support and for dragging me out on 

bicycle rides to give my brain a break. 

 

I am extremely grateful to my parents for teaching me perseverance and determination; for my 

Father’s unquestioning support and patience during my long pursuit of this degree; and for my 

Mother’s understanding when I missed family get-togethers and holidays.  I owe my Mother 

several Mother’s Days, with interest. 

 

Finally, I’d like to thank my advisor, Dr. Joel H. Kastner.  He listened to all my tales of woe and 

always got me back on track.  He never micromanaged my research and was a constant source of 

energy and enthusiasm.  One must never underestimate the importance of having a good advisor. 

  
 
 
 
 



 

1 

 

 
 

Chapter 1 
 
 
Introduction 
 
 
 
 

A large fraction of the Chandra X-ray Observatory1 (Chandra) observing time has been 

devoted to the study of young star clusters and, consequently, large datasets exist from 

these observations of rich stellar fields.  X-ray images help astronomers study new star 

formation and galactic evolution.  However, the physical processes responsible for X-ray 

emission from recently formed stars are not fully understood and are presently hotly 

debated within the X-ray astronomy community2, 3, 4.  The growth of the Chandra archive 

of X-ray observations of young clusters has fueled this vigorous debate concerning the 

characterization of X-ray emission from young stars 5, 6, 7. 

 

A typical Chandra charge-coupled device (CCD) observation of a young stellar cluster 

results in detection of X-ray emissions from tens to hundreds of very young stars.  An 

example of this is shown in Chandra's dramatic deep ~80 ks image of the Orion Nebula 

Cluster (ONC, Figure 1.1).  Chandra has resolved more than 1000 X-ray emitting sources 
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in this single image of the ONC, including X-ray sources associated with externally 

illuminated structures that are presumably planet-forming circumstellar disks8,9. 

 

 

Figure 1.1:  Chandra X-ray Observatory image of the ONC8. 
 
 
In addition, a new set of problems have been uncovered by X-ray images of young stellar 

clusters5,8,9,10.  Among the challenges and puzzles are: 

• Only very weak trends have been found when attempting to correlate model 

parameters derived from spectral fitting of individual sources (e.g., X-ray 

luminosity and temperature; X-ray absorbing column and visual extinction) 
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• There is no apparent relationship between the intensity of X-ray emission and the 

presence of circumstellar disks.  For example, Preibisch et al.11 have found weak 

anti-correlation between X-ray luminosity and indicators of accretion rate. 

• Some X-ray sources show distinct spectral features that can be attributed to 

emission from specific ions; most do not 

• A very wide range of temporal behavior has been detected, from long-term 

flaring to episodic, short X-ray bursts12  

• Approximately 17.6% of the ~1616 detected X-ray sources in and around the 

ONC have no visible or infrared (IR) counterparts68 

 

These puzzling observations are being studied by analyzing data from the Chandra Orion 

Ultradeep Project (COUP), an ~838 ks exposure of the ONC obtained over a nearly 

continuous period of ~10 days in January of 200312 (Figure 1.2). 

 

Classification of X-ray sources is traditionally accomplished by visual inspection of 

individual X-ray source spectra and subsequent fitting of each source spectrum to various 

models, either manually, or by use of model-fitting software programs.  One X-ray source 

is analyzed at a time using this approach and classification success is measured visually.  

This approach is useful for studying the physics of bright, individual sources.  However,  

this can be a time consuming approach for analyzing large datasets created from 

observations of rich stellar fields. 
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Figure 1.2: Chandra image of the ONC from the COUP observation. 
 

The wealth of multidimensional data currently being produced by the X-ray CCD 

detector arrays onboard Chandra represents a far-reaching problem pervasive to many 

current astronomical missions.  That is, the data archives of current missions have 

surpassed their predecessors, both in terms of number of sources detected and the 

information content available for each source.  Given the detection of a very large 

number of X-ray sources, each of which is potentially well-resolved spectrally, spatially, 

and temporally, how does one best extract and analyze the available information?  Is it 

possible to group detected sources into distinct categories or classes in an unbiased 

manner in order to better guide subsequent spectral analyses of individual sources?  

These questions suggest use of objective model-independent methods for spectral 
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clustering of X-ray sources: methods that can take advantage of the vast collection of 

high-spatial resolution CCD spectral data now being acquired by Chandra.  

 

My research involved exploring solutions to this problem using multivariate statistical 

and pattern recognition techniques.  Use of techniques from these fields is not new to 

astronomical data analysis (see Chapter 4), but are previously untested in the context of 

X-ray spectral data from Chandra.  The goal of my research was to develop an X-ray 

source clustering algorithm with the following capabilities: 

• Find natural groupings of X-ray sources in stellar clusters  

• Process large datasets created from observations of rich stellar fields 

• Perform without a priori information concerning the nature of the sources 

• Use an approach that is objective and model-independent 

• Consist of as few manual steps as possible 

 

Sources within the same group may be sufficiently similar to be treated identically for the 

purpose of further astronomical analysis, where this would be impossible for the whole 

heterogeneous star field.   

 

The expected scientific significance of this approach includes the potential to: 

• Determine relationships between X-ray and visible spectral classes and 

parameters 

• Uncover classes of sources that do not fit any existing models 

• Identify extreme outliers of interest among all the sources in a stellar field 
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• Identify groups of sources that have no visible or IR counterparts or that are 

poorly characterized in other wavelength regimes 

• Identify groups of contaminating and interloping sources so that researchers can 

eliminate them from subsequent statistical studies 

• Increase productivity of X-ray archival research due to the ability of the resulting 

algorithm to process and categorize larger quantities of data than could be done 

manually  

 

Chapter 2 contains a brief background on X-ray astronomy.  In Chapter 3, I provide a 

description of the relevant subsystems of Chandra and its imaging capabilities.  Chapter 

4 contains a review of applications of multivariate statistical and pattern recognition 

techniques to current and past astronomical problems.  Challenges specific to X-ray data 

are also provided in Chapter 4.  Chapter 5 contains a description of the mathematical 

techniques used in my research.  In Chapter 6, I define the multivariate variables used as 

input into the algorithm.  A proof of concept is presented in Chapter 7.  The X-ray source 

classification algorithm is then detailed in Chapter 8.  The analysis of results is presented 

in Chapter 9.  Finally, a summary is presented in Chapter 10. 

 
 



 

7 

 
 

Chapter 2 
 
 
X-ray Astronomy 
 
 
 
 

2.1 History 
 
 
X-ray astronomy dates back to 1949 when it was discovered that the Sun emits X-rays13 .  

Since that time, many interesting sources of X-ray emission have been discovered in the 

universe.  In the early 70's, NASA's Uhuru14 astronomy satellite discovered a number of 

X-ray binary stars, in which an ordinary star orbits a super dense neutron star that emits 

X-rays as it pulls matter from the ordinary star.  In the late 70's and early 80's, NASA's 

Einstein Observatory discovered that cataclysmic variable stars in our own galaxy emit 

X-rays when they are in outburst.  The Einstein Observatory also collected the first X-ray 

images of pulsars and supernova remnants.  The imaging ability of the Einstein 

Observatory changed the way X-ray astronomers conduct their research, with the 

detection of thousands of discrete sources of X-ray emission.  This trend toward high-

resolution X-ray imaging spectroscopy accelerated in the mid 90's with the advent of 
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Roentgen Satellite15 (ROSAT).  ROSAT, a joint project of the United States, Great 

Britain, and Germany, was used to expand the number of known X-ray sources to over 

60,000.  The availability of ROSAT proportional counter data led to the widespread use 

of X-ray hardness ratios (the Hertzsprung-Russell diagrams of X-ray astronomy) for 

source classification16 .   

 

The Advanced Satellite for Cosmology and Astrophysics17 (ASCA), the follow-on to 

ROSAT, featured improved spectral resolution, albeit with inferior spatial resolution. 

ASCA's demonstration of the application of CCDs in X-ray astronomy paved the way for 

Chandra and the X-ray Multi-Mirror Mission-Newton18 (XMM-Newton).  Chandra, one 

of NASA's Great Observatories, was launched in 1999.  Within months, an X-ray source 

at the center of our galaxy that is believed to be a supermassive black hole was 

discovered from the X-rays emitted from superheated matter nearing its event horizon. 

 

2.2 X-ray Properties 
 

The wavelength range for the X-ray portion of the electromagnetic spectrum is from 

about 0.01 nm to about 10 nm, which corresponds to a range of 0.1 Å to 100 Å, (10 Å = 1 

nm = 10-9 m).  The wavelength of an X-ray photon is less than a millionth of a 

centimeter: about a thousand times shorter than a visible-light photon.  Extremely hot 

gases and charged particles moving at nearly the speed of light emit X-rays.  Material that 

is at a very high temperature (millions of degrees Kelvin) emits X-rays.  Temperatures 
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this high can occur in extremely dense objects, in large magnetic fields, or from explosive 

forces.   

 

The energies of X-ray photons are typically measured in electron volts and range from 

0.1 keV to 10 keV.  Higher energy X-rays are referred to as “hard” X-rays while lower 

energy X-rays are referred to as “soft” X-rays.  The boundary between the two types is 

not well defined, but is generally placed around 2 keV 19.  The highest energy X-rays can 

penetrate more deeply into a substance than soft X-rays, and therefore, require a denser 

detector containing material that is more massive.  

 

X-ray photons emitted by a constant source or a source that is at least constant for some 

time interval will form an independent Poisson process for each energy interval.  The 

counts in a given time interval will then be a Poisson-distributed random variable20 .  

 

2.3 X-rays from Young Stars 
 

A star spends most of its life in what is known as the “main-sequence phase” in which it 

produces power by nuclear fusion of hydrogen into helium.  Young stars are called pre-

main-sequence (PMS) stars if they have not yet begun to burn hydrogen.  These very 

young stars are constantly changing in X-ray brightness, sometimes within half a day.  

Star birth occurs within dense, molecule-rich and dust-rich cores of interstellar gas 

clouds.  As the star-generating part of the core collapses, it flattens so as to conserve 
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angular momentum.  The central region of the collapsing cloud will form a star, while the 

flattened structure surrounding this protostar can eventually form planets orbiting the star.  

This flattened structure is called a protoplanetary disk and can be quite thick.  The cloud 

core can be optically opaque, such that visible and even infrared (IR) light cannot escape 

the star’s immediate vicinity, particularly if the star is viewed through its own disk almost 

edge-on.  However X-ray photons are somewhat more penetrating than even IR photons, 

especially at energies greater than 2 keV 9.  A large number of PMS stars in the ONC 

have only been detectable in X-rays thus far.  Therefore, X-ray astronomy may be used to 

penetrate these star-forming regions to detect stars in very early stages of formation that 

are inaccessible to optical and IR observations.  

 

Young stars, with or without surrounding, planet forming disks, emit X-rays at rates 

thousands of times higher than middle-aged stars such as the Sun.  These X-rays often are 

emitted during flares that are thought to arise from the release of energy stored in highly 

tangled magnetic fields near the surface of the star, similar to magnetic flares from the 

Sun.  However, young stars release much more frequent and violent flares, reaching 

temperatures of ~100 x 108 Kelvin10.  It is possible that some of this energy release is 

derived from magnetic reconnection events resulting from interactions between a young 

star and its circumstellar, protoplanetary disk21.  Newborn stars at the center of nebulae 

emit extremely strong bursts of X-rays.  One particular rich sample of PMS stars can be 

observed in a relatively compact region within the Great Nebula in Orion.  This cluster is 

called the Orion Nebula Cluster (ONC)8. 
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2.4 Orion Nebula Cluster 
 

At a distance of about 450 parsecsa, the ONC is the richest stellar nursery in the solar 

neighborhood.  Within the ONC radius of less than ~3 parsecs is an association of young 

stars (< 1 Myr), most of them X-ray sources.  At the core of the ONC is a very young, 

closely packed group of stars and protostars that are only a few hundred thousand years 

old.  Many of these stars emit extremely strong bursts of hard X-rays.  A Chandra 

Advanced CCD Imaging Spectrometer – Imaging (ACIS-I, see Chapter 3) image of the 

ONC is shown in Figure 1.1.  The detected sources range from a few photon counts to 

several thousand photon counts.  Some of the detected X-ray sources are very faint, 

resulting in approximately only 6 detected photons22.  Figure 2.1 shows the Hubble Space 

Telescope image of the Trapezium region of the ONC.  Contours from Chandra X-ray 

data of the same region have been overlaid on the optical image.  As can be seen in this 

image, some X-ray sources have no visible counterparts. 

 

2.4.1 X-ray Background 
 
 
The X-ray background (XRB) was detected during a rocket flight whose scientific 

purpose was to study X-ray emission from the Moon, but instead found the first extra-

solar X-ray source (Sco X-1) and the XRB23.  Instrumental effects can also contribute to 

the perceived background radiation. 

 

                                                      
a 1 parsec = 3.26 light years 
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Figure 2.1:   Hubble Space Telescope image of the Trapezium region of the ONC9.  The 

contour lines from the Chandra X-ray Observatory are overlaid on the visible image. 
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Chapter 3 

 
 
Chandra X-ray Observatory 
 
 
 
 

3.1 Background 
 

X-rays are absorbed by the Earth's atmosphere.  Therefore, a space-based telescope is needed to 

image X-ray emitting space-based objects.  Chandra was carried up on the Space Shuttle 

Columbia during a night launch on July 23, 1999 from the Kennedy Space Center in Florida.  The 

observatory reached its final orbit location on August 24, 1999, after a series of five burns of the 

Integral Propulsion System.  Chandra's orbit is elliptical with a perigee of 250 miles and an 

apogee of 45,014 miles: more than one-third of the way to the moon (see Figure 3.1).  The period 

is 24 hours and 38 minutes and the Earth's radiation belts are crossed on every orbit.  At perigee, 

Chandra travels at approximately 22,000 miles per hour. 
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3.2      Hardware 
 

A schematic of the observatory is shown in Figure 3.2.  The hardware relevant to my research 

includes the High Resolution Mirror Assembly (HRMA; Figure 3.3) and the Advanced CCD 

Imaging Spectrometer (ACIS; Figure 3.4).   

 

Figure 3.1  The orbit of Chandra shown from above.  The pink bands encircling the Earth 

represent the radiation belts (Illustration: Chandra X-ray Center/M. Weiss). 

3.2.1 HRMA 
 

X-ray telescopes use grazing incidence optics so photons are not absorbed by the optics.  

Chandra’s X-ray mirrors are capable of resolving sources that are of the order of an arcsecond 



CHAPTER 3.  CHANDRA X-RAY OBSERVATORY                                                                15 

  

apart.  The HRMA consists of two sets of four concentric nested mirrors: one set of paraboloid-

shaped mirrors and one set of hyperboloid-shaped mirrors (see Figure 3.3).  This configuration 

increases the photon collection area while deflecting the paths of the photons towards the focal 

surface.  

 

 

 

 

 

 

 

 

 

 
Figure 3.2:  Schematic of the Chandra X-ray Observatory (Illustration: Chandra Proposers’ 

Observatory Guide). 

 

3.2.2 ACIS 
 

X-ray CCDs are essentially similar in design to visible light CCDs.  However, in visible light 

imaging systems, ensembles of photons arrive within a given observing interval at each pixel of 

the CCD.  In contrast, X-ray CCDs are operated in a manner such that, ideally, photons can be 

counted one at a time.  Another key difference involves the number of electrons that are liberated 

by one photon.  Whereas a visible light photon will liberate one electron, an X-ray photon can 

liberate many electrons within the silicone of the CCD because the number of electrons that are 

liberated depends on the energy of the photon.   Photon energies can be determined if the X-rays 

are detected individually. 
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Figure 3.3:   High Resolution Mirror Assembly configuration (Illustration: Hughes Danbury 

Optical Systems). 

 
 
The field of view (FOV) is the total amount of sky that can be imaged in one frame.  The ACIS 

has an angular resolution of 0.49 arcseconds with an FOV of 16 arcminutes by 16 arcminutes.  

The ACIS consists of 10 planar CCDs, each with 1024 by 1024 pixels (Figure 3.5) with a pixel 

size of 24 µm.  Four of the CCDs are arranged in a 2x2 array (ACIS-I) and are used for imaging.  

The remaining six are arranged in a 1x6 array (ACIS-S) and are used either for imaging or as a 

detector for the transmission grating spectrometers aboard Chandra.  ACIS-I was used for the 

archival observations used in my research.  If ACIS-I is selected in “imaging” mode, chips I0-I3 

plus chips S2 and S3 are used24. 
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Figure 3.4:  Photo of the Advanced CCD Imaging Spectrometer 
 
 

See Table 3.1 for a summary of ACIS characteristics.  Two characteristics of CCDs are quantum 

efficiency and charge transfer efficiency.  Quantum efficiency is the percentage of incident 

photons that actually produces detectable charge in the depletion region.  See Figure 3.7 for the 

quantum efficiency curve for the ACIS-I chips.  Charge transfer efficiency (CTE) is the fraction 

of charge that is successfully transferred from pixel to pixel during one CCD transfer cycle.   

CTI = 1 – CTE 

where CTI is the charge transfer inefficiency. 
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Figure 3.5:  A schematic of the ACIS flight focal plane showing the 4 chips used for imaging 

(ACIS-I) and the 6 chips used for spectroscopy (ACIS-S). 

 

Table 3.1: ACIS Characteristics 

CHARACTERISTIC VALUE 
CCD format 1024 by 1024 pixels 
  
Pixel size 24 microns 
  
Array size ACIS-I : 16.9 by 16.9 arcmin 

ACIS-S:  8.3 by 50.6 arcmin 
On-axis effective area 110 cm2 @ 0.5 keV (FI) 
  
Quantum Efficiency > 80% between 3.0 and 5.0 keV 
     frontside illumination > 30% between 0.8 and 8.0 keV 
Quantum Efficiency > 80% between 0.8 and 6.5 keV 
      backside illumination > 30% between 0.3 and 8.0 keV 
  
Charge Transfer Inefficiency 
(parallel) 

FI: ~2x10-4 
BI: ~2x10-5 

Charge Transfer Inefficiency 
(serial) 

BI (S3): ~7x10-5 
BI (S1): ~1.5x10-4 
FI: < 2x10-5 

  
System noise <  ~2 electrons (rms) per pixel 
  
Nominal frame time 3.2 sec (full frame) 
  
Event threshold FI: 38 ADU (~140 eV) 

BI: 20 ADU ( ~70 eV) 
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All but two of the chips on the ACIS are frontside-illuminated (FI).  The FI chip gate structures 

are facing the incident X-ray beam.  However, the backs of chips S1 and S3 have had treatments 

applied to remove insensitive, undepleted, bulk silicon material, thereby leaving the photo-

sensitive depletion region exposed.  These two chips have their backs facing the HRMA and are 

called backside-illuminated (BI).  They were designed to improve the quantum efficiency at low 

energies. 

 

Before launch, the ACIS FI CCDs approached the theoretical limit for energy resolution for 

almost all energies1.  After launch, it was discovered that there was some degradation in the 

quality of the FI CCDs, exhibited by the energy resolution as a function of row number with the 

largest degradation in the farthest row from the frame store region.  It is believed that the damage 

was caused by low energy protons that reached the focal plane during radiation belt passages1.  

As a result, the operating procedure was changed to move the ACIS out of the focal plane during 

radiation belt passages.  Therefore, the resulting energy resolution for the FI CCDs is a function 

of row number due to the increase in CTI from radiation damage.  An ACIS CTI correction has 

been developed and is now applied as part of the standard processing25.  The full-width half-

maximum (FWHM) of the FI detectors increases with increasing energy (see Figure 3.6).  The 

energy resolution for the two BI CCDs is the same as their pre-launch values. 
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Figure 3.6:  Plot showing how the FWHM of the FI CCDs increases with increasing energy. This 

data is after CTI correction. 

 

 

There are several sources of noise in a CCD imaging system.  One source is photon counting 

noise (also called shot noise).  Photon noise includes random fluctuations in the photon stream of 

the source due to the quantum nature of light.  The rate at which photons are received has a 

Poisson distribution.  Other sources of noise are read noise, due to CCD readout electronics, and 

thermal noise generated by dark current.  The total noise for ACIS is shown in Table 3.1. 
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Figure 3.7:  Quantum efficiency curves for the four front-illuminated ACIS-I chips showing the 

absorption features (07/2000 version of the datab). 

 

The ACIS operates in X-ray photon counting mode.  The energy of a photon with frequency ν is 

given by  

E = h ν 

where h is a constant from quantum theory known as Planck’s constant.  The X-ray photon 

arrival time follows a Poisson distribution.  X-ray photons arriving at the ACIS are called events 

or counts.  Software onboard Chandra records each event's two-dimensional spatial location, 

energy, and arrival time.  Each event is assigned values for x and y in “sky” coordinates.  These 

coordinates can be converted to a position in right ascension (RA) and declination (DEC).  Since 
                                                      
b From Chandra X-ray Center Calibration Website: 
http://cxc.harvard.edu/cal/Acis/Cal_prods/qe/08_11_04/qe.html 
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the CCD is dithered around on the sky during an observation, there is a complex, although 

typically very well-determined, time-dependent relationship between CCD pixel x and y, sky x 

and y, and RA and DEC.  Therefore, the energy and arrival time, as well as the position of each 

photon, are known.  Thus, in principle, the data can be represented by a four-way table of 

counts26.  Due to instrumental constraints, each of these quantities is binned or rounded, creating 

a discrete variable.  

 

For ACIS, if an X-ray source is bright, there is a non-negligible probability that two or more 

photons could land in the same pixel before readout of the ACIS frame.  The detector will not be 

able to discern that there were multiple events and the individual photon energies will be 

unknown.  This is called photon pileup27.  The nominal frame exposure time is 3.2 seconds (full 

frame).  The amount of time it takes to transfer data to the frame store is approximately 41 ms.  

The count rate at which a source is flagged as possibly exhibiting pileup for the COUP 

observation is approximately 0.003 counts/sec/pixel12. 

 

From the four-way table of counts data, a spectrum and an X-ray light curve can be constructed 

for each detected source (Figure 3.8).  This data provides the potential for astrophysical insight 

into individual X-ray sources, and, in the case of a rich stellar cluster such as the ONC, to 

establish the global X-ray spectral and temporal properties of various classes of objects (e.g., 

low-mass versus high-mass pre-main-sequence stars; accreting versus non-accreting stars; cluster 

members versus contaminating foreground and background X-ray sources). 
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Figure 3.8:  Extraction of energy spectrum (top) and light curve (bottom) for a detected X-ray 

source (Image from Ref. 8). 

 

3.2.3 Heisenberg Uncertainty Principle 
 

It is interesting to look at the Heisenberg Uncertainty Principle as it relates to Chandra.  A form 

of the quantum mechanical principle due to Heisenberg states that it is not possible to determine 

the energy and time of a particle at a specific time.  The simultaneous measurement of energy and 

time for a moving particle entails a limitation on precision (standard deviation) of each 

measurement.  Moreover, the more precise the measurement of energy, the more imprecise the 

measurement of the time, and vice versa28.  For example, at a precise time t, the energy of the 

particle is not determinable to a precision greater than h/4π. 
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∆E ∆t ≥ h / 4π 

where, 

∆E  is the uncertainty in the energy measurement 

∆t  is the uncertainty in the time measurement when the energy is measured 

h  Planck’s constant , 6.6262 x 10-34 J s 

 

For Chandra, ∆t is equal to 3.2 seconds.  This requires that the energy resolution of Chandra be 

greater than or equal to 1.02 x 10-16 eV.  Chandra’s energy resolution well exceeds this number 

and indeed, current technology does not even approach this number. 

 

3.3     Ground Data Processing 
 

Level 0 processing takes raw Chandra telemetry, splits it into products that correspond to the 

different spacecraft components and then divides the data along observation boundaries.  Level 1 

processing takes Level 0 output and applies instrument-dependent corrections, including aspect 

determination (pointing position of Chandra versus time), science observation event processing, 

and calibration29.   
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Chapter 4 

 

Astronomical Applications of Data 
Mining  
 

 

4.1 Background 
 

Pattern recognition emphasizes feature selection and classification techniques30.  It is defined as 

the grouping of objects into distinct classes by examining significant attributes of the objects31.  

The set of these attributes of the objects is called a feature vector.  The feature vector method is 

dependent on finding features that are invariant to the expected changes in the features between 

the pattern classes and the amount of discriminating information contained in the features 

chosen31.  Classification then takes place using a statistical method such as a similarity measure, a 

distance measure, or a probability function, as in the maximum likelihood method and Bayesian 

methods.  There are two types of classification methods: supervised and unsupervised.  In 

supervised classification or learning, part of the classifier design involves training the classifier 

using samples for which the class membership is known.  The algorithm tries to group the 

samples of the training set into classes that match their predefined labels.  The accuracy of the 
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classifier design is tested on a separate set of sequestered samples.  When an acceptable level of 

accuracy is achieved, the internal state of the classifier is saved.  The algorithm is then used to 

classify new objects of unknown class.  An example of a supervised classification method is the 

neural network.  In unsupervised classification, or cluster analysis, the classifier forms “natural” 

groupings of the input samples32.  Cluster analysis is a multivariate statistical technique that 

compares and groups objects based on a set of variables representing characteristics of the objects 

to be grouped, not on an estimation of those variables themselves.  This makes the researcher's 

definition of the set of variables critical to the success of the clustering33.  Supervised methods 

typically outperform unsupervised methods, however they are incapable of discovering new 

classes of objects and accounting for extreme outliers of possible interest34. 

 

Combinations of classification techniques, as opposed to a single classification technique, may 

show better clustering results35.  Bazell and Aha36 found that combining the results of an 

ensemble of classifiers gave better classification results than using an individual classifier.   

 

A literature review was performed to ascertain the types and extent of astronomical research 

performed using techniques from the fields of multivariate statistics and pattern recognition.  

Since the objective of my research was to develop a model independent method to classify X-ray 

sources, independent of a priori knowledge concerning the nature of the sources, methods that 

analyze one source at a time and attempt to fit X-ray spectra to a model are not included in this 

review of existing techniques.   

 

A broad search was performed first, to ascertain existing knowledge and breadth of techniques in 

the field of astronomy in general.  Also, this search was kept broad in part to examine: 

• Preprocessing required for astronomical data  

• Types of attributes that have been selected to classify astronomical objects 
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• Classification accuracy of various methods for astronomical data 

The results of this broad search are presented in section 4.2. 

 

Next, the search was narrowed to focus on research specific to X-ray astronomy.  An overview of 

the relevant research is in section 4.3. 

 

4.2    Application to Astronomy 
 

Statistical clustering and pattern recognition techniques have been used in a variety of areas of 

astronomy.  What follows is not an exhaustive list, but a sampling of the techniques and methods 

used for various astronomical applications. 

 

Until the early 1980's, galaxy shapes were classified by visual examination37.  Recently, pattern 

recognition has been used to automatically classify galaxies into spiral, elliptical, and irregular 

classes.  Burda and Feitzinger38 used data from the atlas of HII regions in spiral galaxies39 as 

input for their classification technique.  Preprocessing involved centering the images and 

normalizing all objects in size and inclination.  A relaxed form of the opening and closing 

morphological operations was used to filter the grayscale density distribution structure of each 

galaxy to be classified.  Five classification parameters, including galaxy inclination and size of 

the bulge, were extracted from the filtered density distributions.  These parameters are dependent 

upon galaxy morphological type.  The mathematical form of the spiral was used for pattern 

matching.  The authors were able to correctly classify 21 out of 24 objects.  However, they 

concluded that this was a poor method of classification for the given data set, because the 

majority of the galaxies in the input data set have very few HII regions.  Another technique40 used 

data created by digitally scanning over 50 pictures from The Hubble Atlas of Galaxies41.  A 
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statistical spatial thresholding method for initial segmentation of the image was applied.  The 

median filter was used to remove salt and pepper noise.  A smoothing process was then 

performed on the boundaries between the segmented regions.  In the smoothing process, the input 

gray-level image and the segmented image were modeled as realizations of Markov Random 

Fields.  The posterior distribution was calculated using Bayes rule.  The maximum of the 

posterior distribution was considered the final segmentation.  The following parameters were 

measured from the final segmented image: a scale-invariant measure of compactness of the 

closed shape, the distance between the boundary of the segmented region and a fitted elliptical 

model, and curvature values calculated on each point on the boundary.  Using these parameters, 

spiral and elliptical galaxies were successfully classified.  Bazell and Aha36 tested a Naive Bayes 

classifier, a backpropagation neural network, and a decision-tree induction algorithm on a sample 

of 800 galaxies.  They started with 22 features of the galaxies, including area, radius of the bulge, 

peak brightness, and entropy.  After examining the correlation matrix of the features, 8 features 

were eliminated due to significant correlation with other features.  The neural network was a fully 

connected network consisting of 14 input nodes, 10 hidden nodes, and 2 to 6 output nodes 

corresponding to the number of output classes.  An interesting part of their experiment involved 

the use of an ensemble of classifiers.  An ensemble of classifiers is created by using bootstrap 

replicates of the training set.  The predictions of the classifiers in the ensemble are then combined 

to determine a final class prediction.  Bazell and Aha determined that an ensemble approach, as 

opposed to an individual approach, greatly improved the results for the decision-tree and neural 

network methods when classifying galaxy morphology.  Overall, they concluded that their 

technique decreased classification error, with improvement as the number of output classes is 

decreased. 

 

Pattern recognition and neural networks have been used in astrophysical studies of the Sun to 

predict solar flares42.  A combination of datasets was used, all of which were acquired at a single 
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site and under the same observing conditions.  The datasets included full-disk white light images 

with high precision of position determination, full-disk Ha images, full-disk magnetograms, full-

disk Doppler velocity fields, and full-disk filtergrams.  They included a pre-processing step to 

remove effects caused by non-uniform illumination, and to remove the center-to-limb variation 

from the solar full-disk images.  Another example of replacing human classification with 

computer-based classification is shown in a study performed using both a supervised and an 

unsupervised method to classify the neutral hydrogen distribution in 21 cm spectral line images43.  

The supervised method involved cross-correlation of the observed HI distribution with a template 

that represented the projected supershell model.  A noise-corrected estimator of the normalized 

correlation coefficient was used to measure the quality of the match.  The unsupervised method 

used a dissimilarity measure based on the brightness temperature distribution of the feature.  

After calculating the dissimilarity for all pairs of features, clustering of the dissimilarity matrix 

was performed.   

 

Computerized classification techniques have also been used to classify variable stars.  Eyer and 

Blake44 developed a classification method for periodic variable stars.  First, a Fourier 

decomposition of the light curves was found.  Four light curve parameters were then chosen: 

period, amplitude, skewness, and an amplitude ratio.  The parameters were fed into a Bayesian 

classifier called AutoClass45.  They applied this algorithm to a subsample of 458 stars from the 

All Sky Automated Survey (ASAS).  They obtained a classification error rate of about 5% for 

their sample.   

 

Wozniak et al.34 developed several supervised and unsupervised methods to automatically 

classify 1781 variable stars.  Their input data set consisted of light curves from 5.6% of the total 

Robotic Optical Transient Search Experiment sky coverage.  The variable stars were manually 

divided into nine classes.  Some of the light curve features used include period, amplitude, ratios 
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formed from the amplitudes of the first three Fourier components, and the sign of the largest 

deviation from the mean.  The authors emphasized that the asymmetry of the magnitude 

distribution must be represented in the feature set chosen.  The supervised method, Support 

Vector Machines, outperformed the unsupervised methods of K-means and AutoClass.  The best 

classification accuracy rate achieved was 90% for the supervised method and 75% for the 

unsupervised method.  However, the authors point out some advantages of using unsupervised 

methods.  The classes with the highest confusion were the Mira variable stars and the long period 

variable stars.  The classification was rerun after reducing the number of classes from nine to four 

and better results were obtained.   

 

Buccheri et al.46 presented a self-adaptive clustering method to detect microstructures in the light 

curves of gamma-ray pulsars.  They claim that their method works for low counting statistics in 

the high-energy range, as well as high counting statistics in the low energy range.  The method is 

based on the single linkage clustering algorithm.  The input into the algorithm consists of the 

residual phases corresponding to the arrival times of the selected gamma-ray photons after sorting 

in ascending order.  The specific dataset they used contains the Crab and Vela pulsars.  The 

dataset was collected by a European Space Agency satellite.  The authors obtained very good 

results without using any a priori information or binning. 

 

Spectra of stars have been classified with methods developed by Heck et al.47, Bailer-Jones48, and 

Vieira and Ponz49.  Heck et al. argued that the best strategy is to apply multiple methods to the 

same data set and then compare the results.  They used three cluster analysis methods (K-means 

clustering, single linkage clustering, and modified complete linkage clustering) on stellar data 

from the Hauck and Lindemann photometric catalogue50.  Principal component analysis was used 

with the Euclidean clustering method.  Input to each classifier consisted of numerical values of 

photometric indices from 2849 stars.  Overall, they obtained good agreement between the three 
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clustering methods although the misclassified stars were not the same for each method.  Due to 

their results, the authors recommended that either the spectral type or the photometric indices of 

249 of the stars in the catalogue should be re-determined.   

 

Bailer-Jones48 used an artificial neural network (ANN) to automate MK spectral classification.  

The input data set was taken from the Michigan Spectral Survey50 and included over 5000 spectra 

in the wavelength range of 3800 Å to 5200 Å.  The ANN was trained on synthetic spectra and 

then applied to observed spectra to determine the spectral classification, effective temperature, 

and other physical parameters of the stars.  Principal component analysis was used to reduce the 

dimensionality of the stellar spectra.  The reproducibility of neural network classifications was 

shown with high accuracy for the dwarf and giant classes.   

 

Vieira and Ponz49 explored two automated classification methods: an ANN and a Self-Organized 

Map.  Their input set consisted of low-dispersion spectra of normal stars with spectral types 

ranging from O3 to G5.  All spectra were corrected for interstellar extinction prior to 

classification.  Sixty-four stars were used for training.  Very low error rates were achieved by 

both methods. 

 

4.3 Application to Astronomical X-ray Data 
 

Automated pattern recognition and classification methods have been successfully implemented 

for classification of X-ray spectra in certain contexts.  Yin et al.51 applied pattern recognition 

techniques to spectra obtained by an X-ray spectrometer developed for the Mars rover.  The X-

ray fluorescence pulse-height spectrum was represented by an n-dimensional vector, where n is 

the number of channels.  The authors used a normalized correlation coefficient (NCC) based on 
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the angle between two n-dimensional vectors: one vector representing the spectra of the sample 

and the other representing the spectra from a chemical composition table.  The value of the NCC 

is close to one for two spectra with similar structures.  All the spectra were attenuated to reduce 

the magnitude of overly prominent components.  They demonstrated that applying their 

techniques to the raw spectra provided the same discrimination among samples collected by the 

Mars rover as knowledge of the sample's actual chemical composition.  An interesting test that 

the authors' performed involved re-running the experiment with fewer counts per sample.  They 

tried decreasing the number of counts per sample by two orders of magnitude (from 1,200,000 to 

12,000) and still obtained a very high rate of accuracy (97%).   

 

Pattern recognition has been used on active regions of the sun to forecast solar flares52.  Solar 

flares were separated into two classes, hazardous and non-hazardous, using radiation in the X-ray 

range of the active regions of the Sun.  Maximum intensity of the X-ray burst and time of the 

flare's decline were used as parameters for the Topol and Sigma algorithms.  A classification 

accuracy of over 80% was obtained.   

 

Finally, pioneering work by Collura et al.53 successfully demonstrated a model-independent 

method to group X-ray sources detected with the Einstein Observatory Imaging Proportional 

Counter (IPC).  Einstein was operational from 1978 thru 1981.  The IPC provided full focal plane 

coverage but only moderate spatial and spectral resolution.  The IPC had an FOV of 75 arcmin by 

75 arcmin with a spatial resolution of ~1 arcmin, compared to Chandra’s ACIS FOV of 16 

arcmin by 16 arcmin and a spatial resolution of less than 1 arcsec.  The IPC covered an energy 

range of 0.4 keV to 4 keV, whereas the ACIS energy range is from to 0.2 keV to 10 keV.   

 

Much like the X-ray source clustering method described in Chapter 8 which I developed 

independently, their technique uses multivariate statistical techniques, including principal 
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component analysis and hierarchical clustering.  The authors limited their X-ray data to sources 

whose X-ray spectra contained more than 50 net counts and those that could be identified with 

high Galactic latitude entries in one of four catalogs.  As a result, their input data did not contain 

any young stars or A stars.  Their results showed that the IPC had sufficient spectral resolution to 

distinguish between stellar sources and extragalactic sources.  In comparison, my research 

involves the much higher spatial and spectral resolution data currently being produced by 

Chandra. 

 

4.4 X-ray Data Challenges 
 

Observations of some very weak X-ray sources may yield only a few counts per detector element.  

The photons detected generate an image in which the faint X-ray object appears as a cluster of 

events embedded in the cosmic background.  Since low count X-ray data is not typically normally 

distributed, classical multivariate methods that require multivariate normal data cannot be used 

for the analysis of low count X-ray sources.  Also, traditional multivariate techniques often 

assume that the relationships between variables are linear.  However, astronomical variables may 

have nonlinear relationships, such as logarithmic, exponential, or power law54.  Non-normal data 

may be made more “normal looking” by performing a transformation of the data, such as a 

logarithmic or square-root transformation.  Normal-theory analyses are then carried out on the 

transformed data.  It has been theoretically shown that count data can often be made more normal 

by taking the square root of the counts55.  Therefore, if techniques that assume normality of the 

data are to be used on non-normal data, a transformation of the data to near normality is often 

indicated.
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Chapter 5 
 

Relevant Mathematical Techniques 
 

 

Multivariate statistical methods provide a simultaneous analysis of relationships among a set of p 

random variables.  These variables consist of measurements taken across a sample of n 

observations, such as people or objects.  Multivariate techniques can be used for exploratory 

analysis to search the relationships among the variables for patterns that are not attributable to 

chance.   

 

Cluster analysis is a multivariate statistical technique that compares and groups the n observations 

based on the set of p variables.  Cluster analysis works best when the objects to be grouped have 

distinct measurable characteristics that are reflected directly in the p variables.  The p variables 

must be relevant to the classification desired.  This makes the definition of the set of variables 

critical to the success of the clustering33.   

 

Many clustering algorithms exist and no specific algorithm is generally considered to be the 

“best”.  Different algorithms may produce different results for the same set of input data56.  In 
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addition, the results obtained by most clustering algorithms are sensitive to outliers, because 

sources of error or variation are not formally considered57.    

 

Clusters can only be based on the variables that are given in the data.  The clusters obtained may 

be rather sensitive to the particular choice of variables that is made.  A different choice of 

variables, apparently equally reasonable, may result in different clusters. 

 

Three multivariate techniques were used in my algorithm.  The first technique, Principal 

Component Analysis (PCA), is described in section 5.1.  Two clustering methods were used: 

agglomerative hierarchical clustering, described in section 5.2, and a non-hierarchical technique 

called K-means, described in section 5.3.  The clustering algorithms were used to find groups of 

X-ray sources with similar spectra and to separate out X-ray sources with unusual spectra.  In the 

context of my research, the n observations are the detected X-ray sources.  The p input variables 

correspond to X-ray spectral bandpasses, which are described in detail in Chapter 6.  

 

5.1 Principal Component Analysis 
 

PCA is a classical multivariate statistical technique that originated in 1901 when Pearson 

developed the method as a means of fitting planes by orthogonal least squares58.  It may be used 

to58,59,60,61: 

• Transform a number of correlated input variables into uncorrelated ones 

• Find linear combinations that result in relatively large variability 

• Reduce the size of the dataset for subsequent analyses 

• Identify groups of variables that vary together and possibly uncover hidden relationships 

in the data 
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Standardizing the variables entails subtracting the mean of the variable (computed across all 

observations) from the variable, then dividing the resulting value by the standard deviation of the 

variable (again, computed across all observations).  Input variables should be standardized if they 

are measured on widely differing scales or if the units of measurement are not commensurate.  

Standardization will minimize differences between existing groups, because if groups are 

separated well by variable pi, then the variance of pi will be large, however, that is desired.  The 

equivalent of standardization can be accomplished by using the correlation matrix as opposed to 

the covariance matrix in PCA. 

 

PCA can be described algebraically through the data's covariance or correlation matrices, or 

geometrically via clouds of data points in k-dimensional space62.  Geometrically speaking, if two 

or more variables are correlated, the cloud of data points will be most elongated along some 

direction in this k-dimensional space.  PCA removes the correlation between the input variables 

by rotating the data axes so that the cloud of data points is most elongated along a new axis: the 

axis of maximum variance of the data63.  The method of minimization of the sums of squares of 

the deviations is used to determine the new axis of maximum variance and accomplish this 

rotation.  This occurs subject to the constraint that the new axes are orthogonal.  The resulting 

axis of maximum variance represents the first principal component.  This process is repeated to 

define each subsequent component, in order of decreasing variance.  The principal components 

are then the new random variables specified by the axes of each rigid rotation of the original 

system of coordinates, and correspond to the successive directions of maximum variance of the 

cloud of data points.  The principal components give the positions of the objects in the new 

system of coordinates. 

 

PCA generates p eigenvalues and eigenvectors from the covariance or correlation matrix.  The 

eigenvalues are the variance explained by each of the principal components.  The eigenvectors 
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are linear combinations of the original input variables.  They determine the directions of 

maximum variability and can be interpreted as measuring the importance of the corresponding 

variable to each principal component.  PCA depends solely on the covariance or correlation 

matrix, not on multivariate normal data64.  Typically, researchers attempt to assign application 

specific significance and meaning to the principal components resulting from PCA, but the 

components are not always interpretable65.  

 

Although p components are required to reproduce the total variability within the dataset, a 

relatively smaller number of principal components, k, may adequately represent most of the 

original variance.  PCA may then be used for data reduction by retaining only those k principal 

components, resulting in a simplified description of the dataset. 

 

PCA has some disadvantages in the context of astronomical problems.  First, it can only uncover 

linear relationships between the input variables.  Astronomical variables may have nonlinear 

relationships, in which case the variables will appear uncorrelated.  Second, since PCA is scale 

dependent, it is sensitive to outliers57.  

  

PCA was used in the proof of concept algorithm (see Chapter 7) and the final X-ray source 

classification algorithm (see Chapter 8). 

 

5.2 Agglomerative Hierarchical Clustering 
 

The objective of the agglomerative hierarchical clustering algorithm is to uncover natural 

groupings of the n observations.  This method does not assume multivariate normality of the data. 
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It begins with each of the observations (i.e., sources) as its “own statistical cluster” and the 

statistical distance (or statistical similarity) between each individual observation and all other 

individual observations is calculated.  In the first step, the closest two (i.e., most similar) 

observations are joined.  In the next step, either a third observation joins the two that were joined 

in the first step or two other observations are joined together.  Close groups (i.e., similar groups) 

are successively merged in this hierarchical or “nested” fashion, based on the statistical distance 

(or similarity) measure between each pair of clusters.  Cluster merging continues until there is 

only one large cluster containing all the sources.  At this point, the pattern of how the distance (or 

similarity) values change from step to step is manually examined to find a large jump in the 

metric value between amalgamations.  This identifies the number of clusters in the final partition, 

if the grouping seems logical for the dataset at hand.   

 

Selection of the final partition can also be accomplished visually by use of a 2-D tree diagram 

called a dendrogram, which shows the cluster mergers at each step (see Figure 5.1).  The distance 

values for each of the intermediate clustering steps are examined for large gaps to determine the 

final number of clusters.  The dendrogram is then “cut” at the desired distance (or similarity) 

level to specify the final grouping of observations.  Domain knowledge is typically used when 

determining the final number of clusters.  This final partition is the grouping of observations 

which will, ideally, identify groups whose members share common characteristics. 

 

There are many different metrics that can be used for the statistical measure.  For example, 

measures of distance (dissimilarity) such as Euclidean, Minkowski, Canberra, and Czekanowski, 

or measures of similarity such as correlation coefficients can be used66. 

 

One disadvantage of hierarchical clustering is that the selection of the final number of classes 

(i.e., the location at which to cut the dendrogram) is somewhat heuristic.  There is no 



CHAPTER 5.  RELEVANT MATHEMATICAL TECHNIQUES                                                39 

  

mathematical basis for choosing a final distance (similarity) level.  A second disadvantage of this 

clustering method is that it cannot transfer an observation (i.e., a source) from one cluster to 

another if it was grouped incorrectly in an earlier step57.   
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    5.49

    0.00

Distance

Observations

         Hierarchical Clustering of 244 Observations
Example of Dendrogram Resulting from Agglomerative

 
Figure 5.1:  Example of a dendrogram.  The dashed horizontal red line shows where the 

dendrogram has been cut at a distance level of approximately 2 units. 

 
 

Agglomerative hierarchical clustering was used in the proof of concept algorithm (see Chapter 7) 

and the final source classification algorithm (see Chapter 8). 

 

5.3 K-Means Clustering 
 

K-means is an iterative, non-hierarchical clustering method that groups observations into a 

collection of K clusters.  It begins by partitioning the sources into K clusters, where K is an input 
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to the algorithm and, therefore, must be identified in advance of running K-means.  For my 

algorithm, I used the agglomerative hierarchical clustering algorithm to obtain a value of K to 

feed into the K-means algorithm.  The clusters obtained by the hierarchical clustering algorithm 

were used to seed the K-means algorithm with an initial set of clusters. 

 

The centroid of a cluster is the center of that cluster.  It is represented by a vector containing one 

number for each variable, where each number is the mean of that variable for the observations in 

that cluster.  First, the centroids (means) for each of the K clusters are then calculated.  Next, each 

observation is examined and reassigned to the cluster with the nearest centroid where necessary, 

based on the distance measure (see Figure 5.2).  Then the centroids are recalculated for each 

cluster receiving a reassigned observation and also for any clusters losing observations.  This is 

repeated until either no more reassignments take place or a specified number of iterations have 

been completed.  At this point, each cluster contains statistically similar sources, based on the 

multivariate features passed to the algorithm.   

 

 
 

Figure 5.2:  2-D schematic showing between-cluster distance and within-cluster distance.  The 

clusters may exist in greater than 2-dimensional space. 

 

b 

b 

a:   distance between cluster centers 
b:   distance between cluster center and cluster member 

a 
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The final assignment of observations to clusters is, to some extent, dependent on the initial 

clusters passed to the algorithm.  Most major changes in cluster assignments happen during the 

first reallocation step67.  

 
 
K-means clustering was used in the proof of concept algorithm (see Chapter 7) and the final X-

ray source classification algorithm (see Chapter 8). 
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Chapter 6 
 

Input Variable Selection 
 

 

6.1 Background 
 

Input variables were chosen that could be used to distinguish the X-ray sources, keeping 

in mind that a priori information about the type or nature of the X-ray sources could not 

be used.  The projected spatial location (x and y) of each point source is known.  

However, the distance to the source (z) is not well-determined.  Two sources that are 

close in x and y may be far apart in z, and won’t necessarily have the same intrinsic 

nature.  For example, for Orion, analysis indicates that ~10% of COUP sources (~159) 

are “background” (extragalactic) point sources68.  Consequently, it can be difficult to 

draw conclusions about source similarity based solely on spatial proximity or density.  
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Therefore, the variables chosen had to be based on the raw photon count data.  Temporal 

data was not used at this time. 

 

6.2    X-ray Emission Lines 
 

Emission lines are narrow features in the spectral distribution that are caused when 

electrons make a transition from one allowed energy state to the next, each one emitting 

energy in the form of a photon in the process.  The photon carries exactly the amount of 

energy set free by dropping to a lower allowed energy state.  Emission lines are typically 

modeled with a Gaussian distribution, Lorentzian distribution, or delta function26.  X-ray 

spectra display emission lines if the spectra are of sufficiently high resolution and/or the 

emission is strong.   

 

Spectral analysis of individual X-ray sources is performed to determine temperatures of 

the sources and elemental abundances in the source.  Elements with strong enough lines 

to be observed with current technology are oxygen (O), neon (Ne), magnesium (Mg), 

silicon (Si), sulphur (S), argon (Ar), calcium (Ca), iron (Fe), and  nickel (Ni) 9,69,71.  Mg 

and Ne are in the energy range dominated by the Fe L-shell lines.  With current X-ray 

spectrometer resolutions, these elements are difficult to measure independently of the Fe 

L-shell lines.  The Fe K-shell lines have larger transition probability widths and are in a 

more isolated part of the spectrum, so Fe K-shell lines are observationally easier and 

more reliable to measure69 .   
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The X-ray spectrum from 0.4 keV to 8.2 keV was divided into non-overlapping bands.  

The locations of the bands had to be chosen to emphasize regions of the X-ray spectrum 

that are important in distinguishing young stars.  For this reason, I looked at emission 

lines from measurements of the spectra of young stars.  Some important emission line 

features are: 

• Ne line at ~0.92 and ~1.02 keV  

• Si line at 1.7 keV 

• Fe Kα emission line at ~6.4 keV; an integral part of AGN phenomenology 70 

• Fe XXV (24 times ionized Fe) at ~6.7 keV; iron atom that has lost 24 of its 26 

electrons 

 

Figure 6.1 shows an example of the regions of the X-ray spectrum of a young star called 

TW Hya3.  This particular spectrum is weak in iron.   

 

A variety of techniques was used to divide the X-ray spectrum from 0.4 keV to 8.2 keV 

into bands.  I tried three different techniques for selecting the bands.  The width of the 

bands and the number of bands were varied for each technique.  Each method and its 

resulting bands are described in the following sections.  The resulting X-ray spectral 

bands became the input variables for the classification algorithm.  The algorithm was run 

on the number of counts in each spectral band for the source dataset. 
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Figure 6.1:  Selected regions of the X-ray spectrum of TW Hya (solid curve).  The 

observed spectrum is overlaid with an emission measure model (dashed curve) that best 

fits temperature-sensitive line intensities3. 
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6.3 Equal-Width Bands 
 

The width of spectral bands in the soft X-ray region was set to 500 eV.  The width of 

spectral bands in the hard X-ray region was set to 1000 eV.  Ranges were defined as 

shown in Table 6.1.  All of the bands were sufficiently wide enough to avoid correlation 

between bands, due to the energy resolution of the ACIS-I CCDs (see Chapter 3).   

 

This method did not yield good results.  The classes were not homogeneous.  Sources 

with dissimilar spectra were placed in the same groups (see Figure 6.2).  Many X-ray 

emission features are grouped together in one band.  For example, using this definition of 

X-ray spectral bandpasses, the algorithm could not distinguish between a source that had 

a high abundance of Ne X at ~1211 eV versus a source that had a high abundance of Mg 

XII  at ~1472 eV because the photon counts for these two features would both be summed 

within band number 3. 

 

Table 6.1:  Spectral Ranges for Equal Width Bands 
 

Band Number Range [eV] 
1       0 –   500  
2   501 – 1000  
3 1001 – 1500 
4 1501 – 2000 
5 2001 – 3000 
6 3001 – 4000 
7 4001 – 5000 
8 5001 – 6000 
9 6001 – 7000 
10 7001 – 8000 
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Figure 6.2:  Four sources grouped into the same class when using equal-width spectral 

bands. 
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6.4       Equal Area-Under-the-Curve Bands 
 

The spectra of all the sources in the sample were averaged to create a mean spectrum for 

the subset of X-ray sources.  The total area under the curve was then calculated to 

compute the mean spectrum.  This value is used to divide the spectrum into eight spectral 

bands, each with approximately equal area.  Note that the number of spectral bands was 

selected arbitrarily.  More or fewer bands could have been chosen.  The proof of concept 

algorithm makes use of this technique, and it is described in more detail in Chapter 7.  A 

disadvantage of this technique is that it is source-spectrum dependent.   

 

6.5 Hyperspectral Bands 
 

Multispectral systems have up to ten or twenty, non-contiguous spectral bands.  

Typically, each discrete band covers a wide range of energies.  Hyperspectral systems 

have tens to hundreds of narrow, contiguous spectral bands.  Spectral resolution can be 

defined as the smallest interval of bandwidth that can be detected in the spectrum, 

measured as the full-width at half of the maximum energy peak height.  Multispectral 

systems therefore have low spectral resolution relative to hyperspectral systems.   

 

With the expectation that most sources of interest to this work (i.e., young stars) will 

exhibit emission line spectra characteristic of ionized plasma, the X-ray spectrum from 

0.4 keV to 8.2 keV was divided into a number of spectral bands which were chosen based 

on high-resolution X-ray emission line measurements from well-characterized X-ray 
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sources3,71.  While it is not possible to isolate every significant feature due to resolution of 

the device and other hardware constraints, the spectral bands were chosen to include 

strong lines of high-ionization species such as O VIII , Ne IX , Ne X, Mg XII ,  Si XIV , and 

Fe XXIV .   

 

The spectral resolution of the ACIS CCDs at the nominal operating temperature of 

Chandra (-120C) was used in determining the width of the bands.  The full-width half-

maximum (FWHM) of the FI detectors increases with increasing energy (see Figure 3.6), 

so the spectral bands increase in width accordingly.   

 

Analysis of the results of CTI correction was also used in determining the width of the 

spectral bands.  After launch and orbital activation of Chandra, low energy protons that 

were encountered during radiation belt passages reflected off the telescope and onto the 

focal plane.  This caused some damage to the FI detectors and increased their CTI.  The 

ACIS instrument team developed a CTI correction algorithm to improve the spectral 

resolution of the FI CCDs at all energies.  This algorithm was run on the Chandra 

observations used in my research. 

 

Finally, absorption features apparent in the quantum efficiency curves of the ACIS-I 

CCDs (see Figure 3.7) were also considered when selecting ranges for the spectral bands.  

These edges were avoided when defining the bands.   
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The final band definitions were made by combining these hardware-imposed band 

constraints with knowledge of the locations of X-ray features that were considered 

important.  Band locations and widths were selected for a set of 42 bands (Appendix A).  

Edges of the bands were chosen partially to avoid a feature considered important where 

possible, and partially to stay within the bounds of the hardware constraints.  The set of 

42 bands was used for the final X-ray source classification algorithm (Chapter 8). 
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Chapter 7 
 

Proof of Concept 
 

 

The literature review revealed that pattern recognition and multivariate statistical 

techniques had not been applied to X-ray observations of young stellar clusters for the 

purpose of clustering and classification.  To test the feasibility of this idea, I developed a 

“proof of concept”, which consisted of a preliminary algorithm, a sample dataset, and a 

set of input X-ray spectral band definitions.    

 

7.1 Chandra Archival Observation 
 

The Chandra X-ray Center (CXC) Automated Processing system generates several 

hundred data products derived from Chandra telemetry.  Standard data processing is used 

for ACIS-I observations.  Archival ACIS-I imaging of the well-studied Trapezium region 
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of the ONC (Chandra Observation Id (ObsId) 1522) was used for developing the proof of 

concept algorithm.   

 

7.1.1 Preprocessing 
 

The first step was to prepare the X-ray observation dataset.  For Chandra archive data, 

this involves performing pre-processing to “clean” the dataset.  The initial dataset 

consisted of a Level 1 processed event list provided by the pipeline processing at the 

CXC (see Chapter 3).  Additional data processing was performed as described in Ref. 5.  

This included: 

• Astrometry correction for data aspect offsets up to 2” due to uncertainties in 

boresight calibration at time of processing  (this is necessary for data in the 

Chandra archive) 

• Application of charge transfer inefficiency (CTI) correction 

• Removal of spurious events from cosmic-ray afterglows and “hot columns”   

 

The spurious events are false events caused by flickering pixels on the CCD detectors and 

cosmic ray hits in the frame store area5.   

 

Some of the pre-processing procedures introduce a non-linear effect across the dataset.  

This changes the structure of the data that is used for subsequent X-ray source detection. 
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7.1.2 Source Detection 
 

After pre-processing, X-ray source detection was performed on ACIS-I FI chips 0, 1, 2, 

and 3 to locate X-ray sources in the Chandra dataset.  A standard, automated X-ray 

source detection program called WAVDETECT72 was used.  WAVDETECT is a wavelet 

transform source detection program that is part of the Chandra Interactive Analysis of 

Observations (CIAO)c  software package.  The user must provide a background map or 

use the built-in iterative background determination option.   

 

The first step in the process is to create region files for each of the four ACIS-I front-

illuminated (FI) chips. Each region file is created with a text editor and contains the 

rotbox command with the sky coordinates of the center of the chip, the x and y extent of 

the chip, and the roll angle.  The center of the chip in sky coordinates can be obtained by 

running the dmcoords script.  The x and y extent of each chip is 1024.  The roll angle can 

be obtained by running the dmkeypar script with the parameter ROLL_NOM.  The 

regions file for chip 0, “chip0.reg”, is shown below. 

 

# Region file format: CIAO version 1.0 

rotbox(4730.10,  3603.19,  1024,  1024,  263.485) 

 

 

 

                                                      
c http://cxc.harvard.edu/ciao/ 
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After creating the region files, I used the dmcopy command for each file to: 

• create an image for each individual chip (see Figure 7.1) 

• filter the observation event file to include only photon events with energies in the 

range 0.3 keV to 10 keV (any events outside this range are particle events) 

• bin the data by two to obtain a better signal-to-noise ratio and also to ensure the 

file size would be small enough to run with WAVDETECT 

Figure 7.1: Image created from ACIS-I chip 0. 
 

To create the exposure map for each chip, the peak energy, the sky grid coordinates, the 

aspect histogram, and the instrument map are needed for each of the chips.  To compute 

the peak energy for the chip, the brightest source on the chip was identified and 

dmextract was used to extract that source’s histogram.  Next, I used dmstat to determine 

the maximum count rate from the histogram, followed by running dmlist to determine the 

energy at which that maximum count rate occurred.  The sky grid coordinates are needed 

so that the exposure map that is created is the same size as the image created from the 

event list.  To compute the sky grid coordinates, I used the get_sky_limits program for 
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each chip.  The next step was to create the aspect histogram file.  The aspect, or aspect 

solution, is the pointing position of the Chandra telescope versus time.  Star positions 

from astrometric surveys are used to put the aspect solution onto a reference frame.  The 

aspect histogram is a binned histogram for the chip, detailing the aspect history of the 

observation.  It gives the amount of time the Chandra optical axis dwelled on each part of 

the sky.  The asphist script is used to create the aspect histogram, using parameter files 

from the ObsId 1522 distribution, including the aspect solution file.   

 

Next, the instrument map was created for each chip.  It is in detector coordinates, must 

describe the chip with full resolution, and provides the instantaneous effective area for 

the chip.  It is basically the mirror effective area projected onto the detector surface and 

includes detector quantum efficiency, bad pixels, non-uniformities across the face of the 

detector, and mirror vignetting.  The mkinstmap script was used, which requires at a 

minimum, the detector number, the pixel grid, and the peak energy.  The instrument map 

(Figure 7.2) was required in the subsequent step to make the exposure map. 

Figure 7.2: Instrument map for ACIS-I chip 0. 
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Finally, I created an exposure map for the observation by using the mkexpmap script, the 

sky grid coordinates, and the aspect information stored in the histogram to project the 

instrument map onto the sky.  The exposure map is then the product of the aspect 

histogram and the instrument map.  This exposure map (Figure 7.3) is used by 

WAVDETECT for source detection. 

Figure 7.3: Exposure map for ACIS-I chip 0. 
 

 

WAVDETECT repeats the source detection process using the Mexican Hat wavelet for a 

set of user-defined wavelet scales.  The more scales used, the more time and memory the 

process can take.  I worked with CFA personnel to determine optimal wavelet scales.  

WAVDETECT was run several times to fine-tune the selection.  The scales used for the 

final source detection were: 2.0, 4.0, 8.0, 16.0, and 24.0 pixels. 
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Figure 7.4:  Example of detected sources for one ACIS-I chip 0 (ellipses represent 3σ). 
 

For each source candidate, the detection with the highest correlation maximum for all of 

the runs was selected.  WAVDETECT works well in crowded regions of sources and also 

in situations where there is a point source on top of an area of extended emission.  

WAVDETECT can also handle edge-of-field and vignetting effects.  Figure 7.4 shows 
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the results of the source detection phase for one of the ACIS CCD arrays.  The ellipses 

encircle each detected source, with a standard deviation of 3σ.   

 

A total of 1153 X-ray sources were detected for ObsId 1522.  Detected sources with 

fewer than 400 total counts were eliminated, to limit the faint sources with poor photon 

counting statistics and to reduce the size of the dataset to a reasonable size for iterative 

testing of the preliminary algorithm.  This resulted in 204 detected X-ray sources.  These 

sources were sorted by number of counts and sequential numbers were assigned to each 

source, from brightest to faintest.  A subset of the brightest sources was then eliminated 

due to the potential for photon pileup (sources with greater than 7600 counts).  The 

remaining 185 detected sources (sources 20 through 204) were used in the analysis.  

Interactive Data Language (IDL) programs and standard CIAO tools were then used to 

extract the X-ray source spectra from the source detection output for each of the 185 

sources.  These X-ray sources were crosschecked against a table of known sources in 

Orion5 and their optical and infrared attributes recorded.  Figure 7.5 shows the spectra for 

two of the detected sources. 
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Figure 7.5:  Spectra for two example sources in the testbed dataset. 
 
 
 

7.2 X-ray Spectral Band Selection 
 

The spectra of the 185-source test set were averaged to create a mean spectrum over all 

the X-ray sources (Figure 7.6).  The total area under the curve was calculated for the 

mean spectrum.  I used this value to divide the spectrum into eight spectral bands, each 

with approximately equal area (Figure 7.7).  A multispectral approach was desired, 

however, the number of spectral bands selected was somewhat arbitrary.  The resulting 

band ranges are shown in Table 7.1.  The correlation matrix for the 8 bands and 185 

sources was calculated using the Pearson correlation coefficient.  The matrix is shown in 

Table 7.2. 
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Figure 7.6:  Mean X-ray spectrum created from 185 detected sources in Orion. 
 
 
   
 

Table 7.1:  X-ray Spectral Band Ranges 
 

Band Number Energy Range (eV) 
1 0.00 – 759.2 
2 760.2 - 934.4 
3 935.4 – 1051.2 
4 1052.2 - 1226.4 
5 1227.4 - 1576.8 
6 1577.8 - 2277.6 
7 2278.6 - 4263.2 
8 4264.2 – 10000.00 
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Figure 7.7:  Mean source spectrum showing eight bands with equal area. 
 
 
 
 

Table 7.2:  Correlation Matrix for X-ray Spectral Bands 
 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 
Band 1 1.000        
Band 2 0.933  1.000        
Band 3 0.862  0.973  1.000       
Band 4 0.804  0.855  0.909  1.000      
Band 5 0.476  0.538  0.580  0.744  1.000     
Band 6 0.265  0.340  0.365  0.438  0.824  1.000    
Band 7 0.157  0.208  0.218  0.223  0.476  0.819  1.000  
Band 8 0.687  0.833  0.871  0.753  0.485  0.483  0.529 1.000  
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It can be seen from the table that the following bands are highly correlated: 

• band 1, band 2 0.933 

• band 1, band 3 0.862 

• band 2, band 3 0.973 

• band 2, band 4 0.855 

• band 3, band 4 0.909 

• band 3, band 8 0.871 
 
 
This strong correlation suggests the PCA would be effective in removing the redundancy 

in the data prior to attempting to group the sources into classes. 

 

7.3 Principal Component Analysisd 
 

For the statistical analysis, each of the eight X-ray spectral bands was considered a 

variable and the observations were the detected X-ray sources.  I ran PCA using the 

correlation matrix for the X-ray spectral data.  The resulting eigenvalues and eigenvectors 

are shown in Table 7.3.  The eigenvectors determine the directions of maximum 

variability and can be interpreted as measuring the importance of the corresponding 

variable to each principal component.  The eigenvalues represent the variances for each 

principal component.   

 

 

                                                      
d See section 5.1 for a general description of PCA.   
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Table 7.3:  Eigenanalysis of the Correlation Matrix 
 

Variable PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 
Band 1 -0.367  0.299  -0.026  0.739  0.207  0.288  -0.172  0.273  

Band 2 -0.400  0.266  -0.096  0.184  -0.382  -0.165  0.324  -0.669  

Band 3 -0.406  0.239  -0.056  -0.223  -0.258  -0.540  0.074  0.601  

Band 4 -0.399  0.149  0.287  -0.310  0.640  -0.213  -0.315  -0.294  

Band 5 -0.335  -0.296  0.630  -0.084  -0.032  0.340  0.508  0.149  

Band 6 -0.277  -0.570  0.147  0.137  -0.410  -0.095  -0.612  -0.082  

Band 7 -0.211  -0.590  -0.485  0.180  0.398  -0.256  0.341  0.012  

Band 8 -0.384  0.024  -0.502  -0.465  -0.087  0.603  -0.112  0.029  

 
Eigenvalue 5.2926  1.6899  0.6246  0.2363  0.1019  0.0265  0.0245  0.0037  

Proportion 0.662  0.211  0.078  0.030  0.013  0.003  0.003  0.000  

Cumulative 0.662  0.873  0.951  0.980  0.993  0.996  1.000  1.000  

 
 

7.3.1 Stopping Rules 
 
The following stopping rules were used to determine the number of components to retain 

for further analysis: the percent of variance explained, the fair share (mineigen) criteria, 

and the scree plot. 

 

Percent of Variance Explained 

 

For this stopping rule, one retains the number of principal components required to reach a 

particular threshold for the amount of variance explained in the data.  In the literature and 

in some software packages, 95% is the default threshold for cumulative variance 

explained73,59.  However, there is no mathematical basis for choosing any particular fixed 

percentage of variance.  This metric is very subjective and 95% is an arbitrary value. 
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If this stopping rule were used for the ObsId 1522 subset, the first three components 

would be retained.  The first three components together explain 95.1% of the variance 

(see Table 7.3).  The first four components together explain 98.0% of the variance.  

Therefore, according to this stopping rule, a sufficient amount of the data structure can be 

captured in three underlying dimensions.  The remaining principal components account 

for a very small percentage of the variability and are less important.  

 

Fair Share Criteria 

The fair share is equal to the total variance divided by the number of variables, and 

therefore is equal to unity since the correlation matrix was used.  Hence, components 

with eigenvalues greater than or equal to one should be retained.  This method suggests 

that only the first two components should be retained. 

 

Scree Plot 

A scree plot73,74  is a graph of the eigenvalues in decreasing order of variance explained.  

Scree is defined as a slope of loose rock debris at the base of a cliff or steep incline.  

Cattell (1966) named this the “scree plot” because the retained eigenvalues appear as a 

cliff and the deleted ones are the slope of loose rock debris at the base.  An “elbow”, 

bend, or break in the scree plot shows the location after which the eigenvalues are 

relatively small and of relatively equal value.  The components prior to this elbow are 

retained73.  Some authors also retain the component at the location of the bend75.  The 

scree plot is shown in  
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Figure 7.8.  The elbow is at component number 3.  This suggests that three components 

may effectively summarize the sample variability. 
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Figure 7.8:  Scree plot for the eight principal components. 
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Figure 7.9: The top panel gives the average number of counts in each of the 8 bands.  The 

bottom panels are eigenvector plots for the first three principal components. 
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The first three principal components were retained for the ensuing clustering steps.  I 

chose to retain three components although one of the stopping rules suggested retaining 

two.  It is less detrimental to retain more principal components than needed (within 

reason) than to delete some that represent some of the inherent variability in the dataset. 

 

The average number of counts in each of the eight bands and the eigenvectors for the first 

three principal components are plotted in Figure 7.9.  Principal component 1 is similar to 

an average of each of the spectral bands.  Principal component 2 could be interpreted as 

an indicator of spectral hardness since soft X-rays have a positive value and hard X-rays 

have a negative value, with the exception of band 8 (0.02).  There is no obvious 

interpretation for principal component 3, although it has a peak at band 5 (1.23 keV to 

1.58 keV) suggesting it is related to spectral hardness.   

 

7.4 Agglomerative Hierarchical Clusteringe 
 

An agglomerative hierarchical clustering method based on Euclidean distance and 

complete linkage was used on the first three principal components generated from the 

detected X- ray sources.  The method started with each source as its “own cluster” and 

similarities between each individual source and all other individual sources were 

calculated.  The similarity level at any step between two clusters, i and j, is the percent of 

                                                      
e See section 5.2 for a detailed description of the agglomerative hierarchical clustering method 
used. 
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the minimum distance at that step relative to the maximum inter-observation distance in 

the data: 

sij = 100(1- dij) / d(max) 

where, 

dij is the Euclidean distance between cluster i and cluster j 

d(max) is the maximum value in the original distance matrix  

 

Close groups (i.e., similar groups) were successively merged based on this statistical 

similarity measure.  Cluster merging continued until there was only one large cluster 

containing all the sources.  At this point, the similarity level for each of the intermediate 

clustering steps was manually examined to find a large jump between amalgamations to 

estimate the number of source classes.  The similarity matrix created from the clustering 

is shown in Appendix B. 

 

As can be seen in the similarity matrix in Appendix B, the similarity level decreases in 

increments of approximately 2 or less at each step until the step between eight clusters 

and seven clusters, at which point it decreases by almost 8 units.  This large jump 

indicates that eight clusters should be reasonably sufficient for a final partition of the X-

ray sources.  The resulting dendrogram is shown in Figure 7.10.  Each resulting cluster is 

shown in a different color in the dendrogram.  The horizontal line at a similarity level of 

approximately 65 illustrates where the dendrogram has been cut to obtain eight clusters.   
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Figure 7.10: Dendrogram resulting from hierarchical clustering. 
 

One disadvantage of hierarchical clustering is that the selection of the final number of 

classes (i.e., the location at which to cut the dendrogram) is somewhat heuristic.  There is 

no mathematical basis for choosing a similarity level.  A second disadvantage of 

hierarchical clustering is that it cannot transfer a source from one cluster to another if the 

source was grouped incorrectly in an earlier step.  Therefore, I used the K-means 

algorithm to fine-tune the clusters obtained from the hierarchical clustering algorithm.   
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7.5          K-means Clusteringf 
 

K-means does not assume multivariate normality of the data.  The class assignments 

resulting from the hierarchical clustering were used as the initial partition for the K-

means clustering.  Therefore, “K,” the number of classes, was set to eight.  Each source 

was examined and assigned to the cluster with the nearest centroid (mean).  In some 

cases, this resulted in the source being reassigned to a new cluster.  The centroids were 

then recalculated for the cluster receiving the reassigned source and for the cluster losing 

the source.  This process was repeated until no more reassignments took place.  The final 

number of X-ray sources in each cluster is shown in Table 7.4.  The cluster numbers have 

no physical meaning.  Appendix C shows a comparison of the cluster assignments 

resulting from agglomerative hierarchical clustering and K-means clustering.  The K-

means algorithm moved 36 of the sources (19.5%) to different clusters.  The resulting 

clusters contained sources that were statistically similar based on the features passed to 

the initial clustering algorithm.   

Table 7.4: Number of Sources Per Cluster 

Cluster Number of 
Sources 

1 8 
2 4 
3 3 
4 30 
5 33 
6 30 
7 72 
8 5 

 

                                                      
f See section 5.3 for a detailed description of the K-means clustering algorithm used. 
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The source spectra for all the classes were plotted.  Some of the sources appeared to be 

outliers, based on their spectra alone.  However, they were forced into one of the eight 

classes.  Most of the classes contained at least one source that appeared as if it did not 

belong to that class.  Class 7 contained a mixture of source spectra, i.e., it consisted of all 

the sources that did not fit neatly into one of the other classes. 

 

The source spectra for the four smallest classes (1, 2, 3, and 8) are shown in Figure 7.11, 

Figure 7.12, Figure 7.13, and Figure 7.14, respectively.  From visual inspection, it can be 

seen that there are strong spectral similarities within a given class.  Also, strong 

fundamental spectral differences can be seen between classes.  

 

7.6 Conclusions 
 
 

From visual inspection of the class spectra, it was evident that the classes contained 

source spectra that had much stronger within class similarities than between class 

similarities.  The algorithm isolated subtle differences between the strengths of key 

spectral features when grouping sources.  There were also trends in the optical properties 

of the data.  Most of the sources in classes 1 and 2 have counterparts in the optical 

wavelength range, while none of the sources in class 8 do5. 

 

Preliminary results from this proof of concept clustering on ONC sources showed 

promise for development of a model-independent, unsupervised method that could be 
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used to group X-ray sources with similar spectra into classes.  No a priori knowledge of 

the nature of each source was used to accomplish the source groupings.  This algorithm 

was used as a baseline for development of a more sophisticated and robust X-ray source 

classification algorithm.  To improve the results, additional work was done to better 

determine the number of classes necessary and to optimize the definition of the X-ray 

spectral bands.   
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Figure 7.11:  Spectra for All Sources in Class 1.
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Figure 7.12: Spectra for All Sources in Class 2. 
 
 
 

 
 

Figure 7.13:  Spectra for All Sources in Class 3. 
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Figure 7.14:  Spectra for All Sources in Class 8. 
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Chapter 8 
 

X-ray Source Classification Algorithm 
 

 

8.1 Chandra Orion Ultradeep Project 
 

Data from the Chandra Orion Ultradeep Project12 (COUP) observation (ObsIds 4395, 3744, 4373, 

4374, 4396, and 3498) obtained in January 2003 was used as the input dataset for development of 

the X-ray source classification algorithm.  The 838 ks total exposure consists of six consecutive 

exposures obtained over a nearly-continuous period of 13.2 days.  There is a gap of 29 ks 

between exposures due to removal of the ACIS (see Chapter 3) from the focal plane during five 

passages thru the Van Allen belts during this period.  The COUP dataset represents the most 

sensitive and comprehensive description of X-ray emission from a PMS star cluster12.  The 

dataset was released to the international COUP team of researchers by the COUP Data Reduction 

and Catalog group in November of 2003 and is summarized in Getman et al. (2005).  Examples 

of spectra for two of the sources detected are shown in Figure 8.1. 
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Figure 8.1:  Examples of soft (left) and hard (right) X-ray spectra among sources detected in the 

ONC. 

8.1.1 Data Reduction 
 

The Data Reduction and Catalog group of the international COUP team of researchers reduced 

the COUP data in a similar manner to that described for the input dataset for the prototype 

algorithm (see section 7.1.1), extracting valid events, locating sources, deriving X-ray properties, 

and constructing scientifically useful publishable tables, atlases and data files12.  

 

Table 8.1:  Source detection problems in the COUP observation. 

Number of 
Sources 

Source Detection Problem 

74 source existence is uncertain 

422 double source (90% point spread function overlap) 

65 pileup source (photon surface brightness > 0.003 
ct/s/pix) 

251 source extraction region crosses a bright source CCD 
readout trail 

656 source in wings of a bright source with > 20000 counts 
or source with offaxis < 2 arcmin 

556 source with inhomogeneous or low exposure map 
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More than 1600 sources were detected in the COUP dataset.  A number of the detected sources in 

the COUP observation were flagged as having “source detection” problems (Table 8.1).  A 

detected source can be flagged with more than one source detection problem. 

 

8.1.2 Selection of Subset 
 

A subset of the COUP observation was selected for use in developing the algorithm.  Sources in 

the COUP dataset that were flagged as having the following source detection problems were 

eliminated: double source, pileup source, and source extraction region crossing a bright source 

readout trail.  Faint sources, considered to be any source with less than 300 counts, were also 

eliminated.  This resulted in a sample size of 444 sources for which high quality ACIS spectra 

could be drawn from the COUP dataset.   

 

8.1.3 Background Correction 
 

The long exposure of the COUP observation resulted in significant accumulation of uniform 

surface brightness background.  The percentage of background for an individual source is 

calculated as follows: 

 % background = BkgCts / (Total Counts) * 100 

 =    BkgCts / ( NetCts + BkgCts ) * 100 

where, 

BkgCts is the photon counts due to background radiation 

NetCts is the net photon counts for the detected source 
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Values for BkgCts and NetCts have been provided for each source by the COUP team in the 

distributed data files.  For my subset of 444 COUP sources, the average percentage of 

background is 4.41% (see Appendix D).  There are ~50 sources with greater than 9% background.  

Photon counts due to the background radiation had to be subtracted from the photon counts for 

each detected source.  Construction of local background spectra for each source was performed 

by the COUP Data Reduction and Catalog group.  The process began with removal of the sources 

from the observation.  The observation's exposure map was modified in exactly the same way, so 

that it accurately represented which regions have background data and which are masked out.  

This resulted in a data set and corresponding exposure map that look like “Swiss cheese” due to 

all the holes where sources were detected.  A software tool called ACIS Extract76 (AE) was then 

used to construct a local background spectrum for each source.  AE found the smallest circular 

region around each detected and extracted source that contained at least the minimum number of 

background counts specified.  If a high minimum number of background counts is specified for a 

region with relatively low background then relatively large background regions will result.  For 

the COUP dataset, the minimum number of background counts for the smallest circular region 

around each detected and extracted source was set at 100 counts. 

 

Since a region larger than the source extraction region was used to estimate the background 

spectrum, the background spectrum had to be normalized to the size of the source region.  I did 

this by multiplying the background spectrum by a scale factor, equivalent to the ratio of source to 

background extraction region area, to adjust for the difference in size of the background region as 

compared to the size of the source region.  Then the scaled background spectrum was subtracted 

from the source spectrum.   

 

The spectrum of source 1067, before and after background correction, is shown in Figure 8.2.  

The Au Lα line feature at 9.7 keV in the original spectrum is due to fluorescence of material in 
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the telescope.  The feature has effectively been removed by the background-subtraction 

procedure. 

 

 

Figure 8.2:  Original (solid black line) and background-corrected (dashed blue line) spectra for 

COUP source 1067. 

 

The subset of 444 sources detected in the COUP observation (see section 8.1) was used for 

development and testing of the X-ray source classification algorithm.  The high energy X-ray 



CHAPTER 8.  X-RAY SOURCE CLASSIFICATION ALGORITHM                                       81 

  

spectrum was divided into 42 bands (see section 6.5 and Appendix A) using the following factors 

to guide my choice of band locations and widths: 

• high-resolution emission line data 

• spectral resolution of the X-ray CCD detector arrays at -120 deg C, the nominal operating 

temp of Chandra 

• quantum efficiency of the CCDs 

 

The total number of photon counts within each of the 42 spectral bands was used as the 

multivariate input variables.  A monotonic transformation was performed on the input data to 

reduce non-linearities.  The correlation matrix for the resulting transformed band data is shown in 

Appendix E.   

 

8.2     Principal Component Analysisg 
 

PCA was used to reduce the redundancy in the transformed X-ray spectral bands.  The goal of 

PCA is to identify a new, smaller set of uncorrelated variables, called principal components, 

which explain all or nearly all of the total variance in the dataset.  Each principal component is 

described by: 

• an eigenvector: a linear combination of the original input variables 

• an eigenvalue: the variance accounted for by that component 

 

The covariance matrix was used for PCA, rather than the correlation matrix.  This is equivalent to 

foregoing standardization of the input variables (see section 5.1).  The units of measurement of all 

                                                      
g See section 5.1 for a detailed description of PCA.   
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the input variables (spectral bands) are commensurate and they were not measured on widely 

differing scales.  Therefore, standardization was not necessary. 

 

8.2.1     Starting Rules 
 

Two starting rules for PCA were examined.  These rules aid in determining whether there is 

enough correlation in the dataset to warrant applying PCA.  The first starting rule is a check of 

the bounds on the eigenvalues.  Therefore, an eigenanalysis of the covariance matrix was 

performed to calculate the eigenvalues.  The resulting eigenvectors are shown in Appendix F and 

the eigenvalues are shown in Appendix G.      

 

The lower bound for the first eigenvalue (the eigenvalue corresponding to the first principal 

component) is the maximum variance in the sample covariance matrix77.   

 ( )2
i1

max s≥λ   for i = 1, 2, …, p (1.1) 

 
where p is the number of eigenvalues.  For the COUP observation subset, this becomes 

 121.114913E 
1

+≥λ   (1.2)  

  

 true, since λ1 = 5.4858E + 12  
 

The values for λ1 are large because the covariance matrix rather than the correlation matrix was 

used.  The upper bound for the first eigenvalue is the maximum of the row sums of the absolute 

values of the covariance matrix.   

 ∑λ
=

≤
p

j
ijrmax

1
1  for i = 1,2,…, p (1.3) 

where p is the number of eigenvalues. 
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For the COUP observation subset, this becomes 

 

 131.22881E
1

+≤λ   (1.4) 

 

 true, since λ1 = 5.4858E + 12  
 
 
Another starting rule involves redundancy in the input dataset.  Gleason and Staelin78 calculated a 

single number from the correlation matrix to determine the level of correlation among the 

variables (see Equation 1.5).  They called this a measure of redundancy.  

 

 

 ( )1

2

−

−
=ϕ

pp

pR
 (1.5) 

where, 

 ∑λ∑∑ == 222
iijrR  for i,j = 1,2, … , p (1.6) 

 

This coefficient has the same range as a multiple correlation coefficient.  If the variables are 

perfectly correlated then ϕ = 1.  If there is no correlation among the variables then ϕ = 0.  A 

Monte Carlo study done by Gleason and Staelin78 show that PCA is not useful when ϕ gets below 

0.16.  However, the distribution of ϕ is not known and interpretation is guided by experience.  

For the COUP observation subset, ϕ = 0.682, indicating that there is correlation among the 42 

variables.  The correlation is high enough to indicate PCA may be of use in eliminating 

redundancy in the data. 
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8.2.2 Stopping Rules 
 
 
Stopping rules are used to determine the number of components to retain.  The amount of total 

sample variance explained, the relative variances of the components, and possible interpretations 

of the components have been used to determine the number of components to retain.  There are 

over 20 stopping rules detailed in the literature.  Some of these stopping rules are statistical 

significance tests for homogeneity of the eigenvalues.  The first of these tests was developed by 

Bartlett79.  Additional statistical significance tests were developed for unique population 

eigenvalues80, and for small sample sizes and non-normal data81.  Many of the other stopping 

rules are, necessarily, ad-hoc, testing physical significance for a specific application area.  A 

subset of stopping rules was selected to use on the COUP subset.  The stopping rules were 

selected based on computation speed, ease of automation, and acceptance in the literature.   

 

The following stopping rules were computed to determine the number of components to retain for 

the clustering analysis.  Several stopping rules have been included simply because they are 

commonly used.  Before using the statistical significance test, several ad-hoc stopping rules were 

used, to get an approximation for the number of components to retain. 

 

8.2.2.1    Scree Test 
 
 

A scree plot73,74  is a graph of the eigenvalues in decreasing order of variance explained.  Scree is 

defined as a slope of loose rock debris at the base of a cliff or steep incline.  Cattell named this 

the ‘scree plot’ because the retained eigenvalues appear as a cliff and the deleted ones are the 

slope of loose rock debris at the base74.  An “elbow”, bend, or break in the scree plot shows the 

location after which the eigenvalues are all relatively small and of relatively equal value.  The 

components prior to this elbow are retained73.  Some authors also retain the component at the 
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location of the bend75.  The scree plot for the COUP observation subset is shown in Figure 8.3.  It 

can be seen from the figure that there is a well-defined bend in the scree plot.  The first three 

components are retained.  

 

The scree plot is a nice visual aid for determining the number of components to retain.  However, 

it is not very useful for an automated algorithm due to the variety of breaks that could arise, 

including multiple breaks or bends. 
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Figure 8.3:  Scree Plot for COUP Subset 

 
 
 
8.2.2.2   Horn’s Stopping Rule 
 

Horn suggested generating a normally-distributed random dataset that is the same size as the real 

dataset.  The mean and standard deviation of the original dataset is used in generating the random 
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dataset.  The eigenvalues of this random dataset are plotted against the eigenvalues of the original 

dataset82.  Where the plot from the random data crosses the plot from the real data indicates the 

point that separates the retained and deleted principal components.    
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Figure 8.4: Depiction of Horn’s Stopping Rule 

 
 
K matrices of random variables were generated, each matrix of order 42 by 444.  The covariance 

matrix for each of the K matrices was computed.  Then an eigenanalysis of each of the covariance 

matrices was performed.  This resulted in a set of 42 eigenvalues for each of the K random 

matrices.  The first eigenvalues were averaged over K, the second eigenvalues were averaged 

over K, and so forth.  The plot of the resulting averaged eigenvalues is shown in blue in Figure 

8.4.  The plot of the real data (from the COUP subset) is shown in red.  Two eigenvalues from the 

real data are above the intersection with the line obtained from the random data.  These two 
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eigenvalues are larger than they would be by chance alone.  Therefore, Horn’s stopping rule 

indicates that two principal components should be retained. 

 

8.2.2.3    Broken Stick 
 

The broken stick is a simple stopping rule proposed by Jolliffe83 as a quick estimation of Horn’s 

stopping rule.  If a line of unit length is randomly broken up into p segments, the expected length 

of the kth-longest segment is:  

 

 ∑
=








=
p

ki
k ip

g
11

 for k = 1,2,…, p (1.7) 

 

The proportion of variance explained is calculated for each of the p principal components.  Retain 

any principal component that explains a greater proportion of the variance than the corresponding 

value of gk.  In Figure 8.5, the blue line is a plot of equation 1.7 for the COUP subset.  The red 

line is a plot of the proportion of variance explained for each component.  The first two 

components should be retained, according to this method.  

 

8.2.2.4   Average Eigenvalue 
 

The Average Eigenvalue method is a quick technique that retains components with eigenvalues 

greater than the average eigenvalue84.  The average eigenvalue is given by 

 ( ) psss /p
22

2
2
1 +++=λ L  

where si
2  is the variance of variable i and p is the total number of eigenvalues.  For the COUP 

observation dataset with 42 variables, the average eigenvalue, λ , is 2.0964E+11.  The first two 

components, with eigenvalues of 5.49E+12 and 2.70E+12 respectively, would be retained. 
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Figure 8.5:  Depiction of Broken Stick stopping rule 
 

Jolliffe85 ran PCA on simulated data and maintained that the Average Eigenvalue method does 

not allow for sampling variability and therefore, retains too few components.  He modified the 

Average Eigenvalue method by reducing the value of the average eigenvalue, prior to comparison 

with the component eigenvalues (see Equation 1.8).  Jolliffe chose to reduce the value of the 

average eigenvalue by 70%, based on simulation studies on 587 sets of artificial data85. 

 

 ( )[ ]psss p /22
2

2
1 +++×= L0.70λ  (1.8) 

 

Applying this technique to the COUP subset results in a modified average eigenvalue of 

1.4675E+11.  The third and fourth components have eigenvalues of 1.93E+11 and 1.67E+11 
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respectively.  Hence, they would also be retained.  Therefore, a total of 4 components would be 

retained by use of this stopping rule. 

 

8.2.2.5    Statistical Significance Tests 
 

A statistical significance test is used to determine if the eigenvalues of the discarded components 

are not significantly different from each other.  The null hypothesis, H0, is that the eigenvalues of 

the last (p − k) eliminated components are approximately equal.  This test allows for non-distinct 

eigenvalues:  

 λλλ ≤≤≤ +−− pkpkp L1  (1.6) 

 

where p is the number of eigenvalues (p also equals the number of variables) and k is the number 

of components retained.  Bartlett’s significance test is not robust for non-normal datasets79.  

Levene81 developed a significance test that can be used for data that come from continuous, but 

not necessarily normal distributions.  It can also be used with small sample sizes. 

 

The initial value of k was determined from the stopping rules listed in the previous sections 

(Table 8.2). 

Table 8.2: Comparison of Stopping Rules 

Scree Plot Broken Stick Average Root Jolliffe 70% of 
Average Root 

Horn Average 
Eigenvalues 

3 2 2 4 2 
 

If the discarded components really have equal, or approximately equal variances, what is the 

chance that randomly selected samples would have variances as far apart or more so (i.e. have an 

F-test value as large or larger) as observed in the sample dataset?  The P value answers this 

question.  The P value is a probability that represents the lowest level of significance at which the 
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observed value of the test statistic is significant.  Any observed value of the test statistic is 

considered significant if the null hypothesis is rejected at the specified level of significance.  If 

the P value is small, we can conclude that the variances (and thus the eigenvalues) are 

significantly different and it is unlikely that the difference observed is due to a coincidence of 

random sampling.  We can reject the idea that the difference is a coincidence and conclude 

instead that the principal components have different variances.  Therefore, the null hypothesis is 

rejected.  If the P value is large, there is insufficient evidence, based on the data, that the 

eigenvalues of the discarded components differ.    

 

The sample size of the COUP subset and the number of levels of the categorical variable (spectral 

bands) are so large, that there are large degrees of freedom in both the numerator and 

denominator of the F-test statistic.  The test has extremely high power to detect statistically 

different variances, which may in fact have no practical significance.  In other words, nearly any 

difference in the eigenvalues of the discarded components would be judged significant.  A 

difference may be detected that is not considered significant for the determination of the number 

of components to discard.   

 

A random subset of 44 sources (10%) was drawn from the COUP subset to lower the power of 

the test.  Since Levene’s test works well for small sample sizes, it was used on the random subset.   

Table 8.3 below shows the results of Levene’s statistical significance test for homogeneity of 

variance for the random sample of 10% of COUP observation subset.  A small significance 

probability, Pr > F, indicates that some linear function of the parameters is significantly different 

from zero.  It is important to note that “statistically significant” is not the same as “physically or 

scientifically important”.  It can be seen from Table 8.3 that the power of the test is still too high.  

The test suggests retaining 40 components.  I tried reducing the sample size again, to 22 

observations (5% of the COUP subset), but the resulting score plot (principal component 2 versus 
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principal component 1) did not resemble the original score plot, suggesting the relationships in 

the original dataset were not represented accurately by the 5% sample.  Therefore, the statistical 

significance test could not be run on my COUP subset. 

 

8.2.3    Stopping Rule Conclusions 
 

Four principal components were retained for the ensuing clustering steps.  I chose to retain four 

components, although three of the stopping rules suggested retaining two (Table 8.2).  It is less 

detrimental to retain more principal components than needed (within reason) than to delete some 

components that may represent some of the inherent variability in the dataset.  Retaining too 

many principal components increases the dimensionality of the dataset and may result in 

preserving unwanted redundancy and/or noise. 

 
Table 8.3: Significance Probabilities From Levene’s Test 

Number of 
Components Retained 

f Pr (F > f) 
 

3 5.88 0.0001 
4 4.43 0.0001 
5 3.51 0.0001 
6 2.98 0.0001 
7 3.93 0.0001 
8 8.36 0.0001 
9 9.26 0.0001 
10 10.76 0.0001 
11 9.63 0.0001 
12 9.21 0.0001 
13 9.67 0.0001 
• • • 
• • • 
• • • 
34 7.95 0.0001 
35 7.78 0.0001 
36 4.21 0.0011 
37 4.30 0.0023 
38 4.21 0.0011 
39 7.71 0.0010 
40 1.39 0.2412 
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8.2.4    Eigenvector and Score Plots 
 

Plots of the eigenvectors that correspond to the first four principal components are shown in 

Figure 8.6.  PC 1 could be interpreted as an indicator of sources with soft X-ray spectra with an 

energy peak around 1 keV.  PC 2 also indicates sources with soft X-ray spectra, however, the 

energy peak is shifted to the right, peaking around 1.5 keV.  PCs 3 and 4 could be indicators of 

sources that have both a soft X-ray component and a hard X-ray component.  The hard X-ray 

component indicated by PC 4 is broader and farther to the right than that of PC 3.  The score plot, 

a plot of PC 2 versus PC 1, is shown in Figure 8.7.  The overall shape of this score plot is curved, 

rather than aligned somewhat linearly along one of the axes or randomly scattered.  This effect is 

sometimes seen in ecological studies of species and environmental gradients86.  It occurs 

generally when the following conditions are found in the dataset: 

• objects have unimodal distributions along gradients  

• input variables all have the same units 

• data are approximately on the same scale 

 

The effect of the gradient on the distance relationship between the input variables (i.e., spectral 

bands), calculated from the count data, is non-linear.  This non-linearity shows up as a curve in 

the score plot.  The shape of the curve can range from a bow, to an arch, to a horseshoe (one or 

both ends curve inwards).  The shape of the score plot shown in Figure 8.7 is a horseshoe due to 

the incurving of the ends.   
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8.3 Agglomerative Hierarchical Clusteringh 
 

I used the unsupervised methods of agglomerative hierarchical clustering and K-means clustering 

for my research because one goal was to find “true” groupings of X-ray sources in the ONC, 

without attempting to fit the sources to any pre-defined models or groupings.  The clustering 

techniques used find a “natural” partitioning of the data set into a relatively homogeneous number 

of groups, K.  An agglomerative hierarchical clustering method based on Euclidean distance and 

complete linkage was used on the first four principal components generated from the detected X- 

ray sources.   

 

Similar groups were successively merged based on the Euclidean distance measure.  Cluster 

merging continued until there was only one large cluster containing all the sources.  At this point, 

the Euclidean distance for each of the intermediate clustering steps was manually examined to 

find a large jump between amalgamations to estimate the number of source classes.  The final 

number of clusters chosen was based on the distances between successive cluster mergers and 

application knowledge.  The resulting dendrogram is shown in Figure 8.8.  The horizontal dashed 

line at a distance level of approximately 2.0E+06 illustrates where the dendrogram has been cut 

to obtain 17 clusters.  If this line were lowered, more clusters would be obtained.  Table 8.4 lists 

the number of sources per class.  Refer to Appendix H for a list of class membership as a result of 

running agglomerative hierarchical clustering.   

 
 
 

                                                      
h See section 5.2 for a detailed description of the agglomerative hierarchical clustering method used. 
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Figure 8.6:  Eigenvector plots for the first four principal components. 
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Figure 8.7:  Score plot of PCs 1 and 2 computed from the X-ray spectral band data. 
 
 

Table 8.4: Number of Sources Per Class After Agglomerative Hierarchical Clustering 

Class Number of 
Sources 

1 7 
2 12 
3 9 
4 18 
5 2 
6 9 
7 24 
8 21 
9 12 
10 14 
11 68 
12 44 
13 32 
14 108 
15 49 
16 14  
17 1 
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Figure 8.8:  Dendrogram resulting from hierarchical clustering on COUP 444 subset, using 

Euclidean distance with complete linkage.  The dashed line shows where the dendrogram was cut, 

resulting in 17 classes.  Each class of sources is represented by a different color. 

 

8.4      K-means Clusteringi 
 

The class assignments resulting from the hierarchical clustering were used as the initial partition 

for the K-means clustering.  K, the number of classes, then becomes 17 by default.  Each source 

was examined and assigned to the cluster with the nearest centroid (mean).  In some cases, this 

resulted in the source being reassigned to a new cluster.  The centroids were then recalculated for 

the cluster receiving the reassigned source and for the cluster losing the source.  This process was 

repeated until no more reassignments took place.  The final number of X-ray sources in each 

                                                      
i See section 5.3 for a detailed description of K-means clustering algorithm used. 
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cluster is shown in Table 8.5.  The K-means algorithm moved 123 of the sources (27.7%) from 

one cluster to another during the course of the algorithm’s iterations.  Table 8.6 shows a 2-way 

cross-tabulation of the cluster membership after agglomerative hierarchical clustering (rows) and 

after K-means clustering (columns).  Cell contents are counts.  The counts on the diagonal 

represent sources that did not switch clusters during the K-means algorithm.  The sources that did 

switch clusters did not move far from their initial cluster assignment.  Appendix H details which 

sources moved to a different cluster during the K-means algorithm.      

 

Table 8.5:  Number of Sources Per Class After K-means Clustering 

Class Number 
of Sources 

1 7 
2 12 
3 9 
4 19 
5 2 
6 14 
7 18 
8 21 
9 22 
10 37 
11 54 
12 30 
13 30 
14 61 
15 88 
16 19 
17 1 
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Table 8.6: Two-way cross-tabulation of the class membership after agglomerative hierarchical 

clustering (rows) and K-means clustering (columns). 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  
1 7                 7 
2  12                12 
3   9               9 
4    18              18 
5     2             2 
6      9            9 
7    1  5 18           24 
8        20 1         21 
9         12         12 

10        1 9 4        14 
11          33 35       68 
12           16 28      44 
13           3 2 27     32 
14             3 61 44   108 
15               44 5  49 
16                14  14 
17                 1 1 

 7 12 9 19 2 14 18 21 22 37 54 30 30 61 88 19 1 444 
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Chapter 9 
 

Results Analysis 
 

 

9.1 PCA Score Plots and Class Average Spectra 
 

The source spectra were averaged for each of the 17 classes.  The results are shown in Figure 9.1.  

The plot of the first two principal components for each source was recreated, this time color-

coded by class (see Figure 9.2).  The progression of classes moving clockwise around the 

horseshoe in Figure 9.2 forms a sequence of decreasing spectral hardness.  The lowest numbered 

classes contain sources with the hardest spectra.  These classes are also more easily separated 

visually in this plot of only the first two principal components.  The highest numbered classes can 

be seen to be a continuum of sources with increasingly softer spectra.  Finally, the lone source in 

Class 17 is an outlier that stands out in the plot. 
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Figure 9.1:  Average spectra for each of the 17 classes. 
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Figure 9.2:  Plot of the first 2 principal components with the source classes shown.  The class 

numbers increase clockwise around the horseshoe-shaped curve. 

 

The plot of the first two principal components typically holds the most information about the 

clustering, since principal components 1 and 2 explain most of the variance in the data.  For my 

data, principal components 1 and 2 account for 93% of the variance in the data.  However, the 

first four principal components were used in the clustering algorithm.   Principal components 3 

and 4 contribute an additional 4.1% of the variance.  Since it is not possible to envision a plot of 

all four principal components simultaneously in 4-D space, pairs of the retained principal 

components were plotted for further insight into the clustering assignments.  A plot of PC 3 
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versus PC 1 is shown in Figure 9.3, PC 4 versus PC 1 is shown in Figure 9.4, PC 3 versus PC 2 in 

Figure 9.5, PC 4 versus PC 2 in Figure 9.6, and PC 4 versus PC 3 in Figure 9.7. 

 

Upon examining the plot of principal component 3 versus principal component 1 (Figure 9.3), it 

can be seen that the separation between the classes containing sources with harder spectra (lowest 

numbered classes) is still apparent in this plot.  Better separation between some of the classes 

containing sources with softer spectra can be seen in this plot, also.  The lone X-ray source in 

Class 17 is an outlier in this plot, too. 
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Figure 9.3:  Plot of principal components 3 versus 1 with source classes color-coded. 
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Figure 9.4:  Plot of principal components 4 versus 1 with source classes color-coded. 
 

 

These principal component plots show how, for the most part, the same objects appear in the 

same clusters in more than one of the plots.  Also the outliers and the tightly clustered groups are 

consistent across the six plots.   This is to be expected, since these first four principal components 

were used to create the cluster assignments and also the plots. 
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Figure 9.5:  Plot of principal components 3 versus 2 with source classes color-coded. 
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Figure 9.6:  Plot of principal components 4 versus 2 with source classes color-coded. 
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Figure 9.7:  Plot of principal components 4 versus 3 with source classes color-coded. 
 

 

Examples of sources drawn randomly from one of the lowered-numbered classes (Class 2) and 

one of the higher numbered classes (Class 14) are shown for comparison purposes in Figure 9.8 

and Figure 9.9, respectively.  These spectra are plotted on a log-log scale.  The sources in Class 2 

have harder spectra than the sources in Class 14.  From visual inspection, it can be seen that there 

are strong spectral similarities within a given class.  Also, strong fundamental spectral differences 

can be seen between the classes. 
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Figure 9.8:  Six example sources from Class 2. 
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Figure 9.9:  Six example sources from Class 14. 
 

 

9.2 Class Homogeneity 
 

Homogeneity of the classes was checked by plotting Andrews’ curves87.  The curves are based on 

a Fourier series representation.  For each source, the following curve has been plotted: 
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where y1, y2, y3, and y4 are values of the first four PCs for the source being plotted.  The curve is 

defined for the range of t from -π to π, inclusive.  These profiles of the data preserve the 

“distance” between objects88.  Andrews’ curves were plotted separately for each of the X-ray 

source classes.  Figure 9.10 shows the curves for the 17 classes.  It can be seen immediately that 

different classes have different amplitude and/or different shaped curves, showing the variation 

between the classes.  Within a class, the curves fall into fairly tight, narrow bands.  Narrower 

bands of curves for a particular class imply greater homogeneity for that class89.  Overall, the 

curves are tight for each class.  Some of the classes contain sources with curves that stray a small 

amount from the main group of curves for that class.  Also, the values for some of the curves in 

the intermediate-numbered classes overlap, meaning a source could potentially have been placed 

into the preceding class or the subsequent class.  However, the shape of the curve still differs, 

especially the curvature near π and –π.   
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Class 1:  7 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Class 2:  12 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Figure 9.10:  Andrews’ curves for the 17 classes resulting from the clustering algorithm. 
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Class 3:  9 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Class 4:  19 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Figure 9.10 (cont.) 
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Class 5:  2 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Class 6:  14 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Figure 9.10 (cont.) 
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Class 7:  18 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Class 8:  21 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Figure 9.10 (cont.) 
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Class 9:  22 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Class 10:  37 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Figure 9.10 (cont.) 
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Class 11:  54 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Class 12:  54 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Figure 9.10 (cont.) 
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Class 13:  30 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Class 14:  61 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Figure 9.10 (cont.) 
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Class 15:  88 Sources
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Class 16:  19 Sources
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Figure 9.10 (cont.) 
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Class 17:  1 Source
f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)
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Figure 9.10 (cont.) 

9.3 Omission of Agglomerative Hierarchical Clustering Step 
 

As part of the results analysis, K-means clustering was run again without running hierarchical 

clustering first, to determine whether the hierarchical clustering step improved the source 

groupings.  The corresponding score plot, color-coded by class, is shown in Figure 9.11.  In 

comparing this plot to Figure 9.2, it can be seen that the outlier in Class 17 has now been 

incorrectly placed within a large class of sources with soft spectra (see plot of the X-ray spectrum 

for Class 17 in Figure 9.1).  Also, Classes 1 and 2 from the previous clustering algorithm have 

now been combined into one, less-homogeneous class consisting of, for example, sources with 

large flares versus sources without flares, and sources with prominent Fe K-α lines versus sources 

without prominent Fe K-α lines.  Andrews’ curves were plotted for Class 1 and Class 17 (see 

Figure 9.12).  The new Class 1 plot appears to contain two groupings of curves, signifying that 

the class is not as homogeneous as the classes obtained from the first clustering algorithm that 
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included agglomerative hierarchical clustering.  In the new Class 17 plot, it is interesting to note 

that the peaks and valleys of the curve for COUP 948 are located at the same values of t as the 

other curves in the new Class 17 plot.  However, the COUP 948 curve has much larger amplitude, 

indicating that this source does not fit well into the new Class 17.  Overall, the curves in Figure 

9.10 and Figure 9.12 suggest that homogeneity of the resulting classes is greater as a result of 

running agglomerative hierarchical clustering prior to K-means clustering.  
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Figure 9.11:  Results of running PCA followed by K-means clustering.  Hierarchical clustering 

was not run prior to running K-means clustering. 
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K-means Without Hierarchical Clustering
Class 1:  7 Sources

f(t) = PC1 / sqrt(2)  +  PC2 * sin(t)  +  PC3 * cos (t)  +  PC4 * sin(2t)

-8000000

-6000000

-4000000

-2000000

0

2000000

4000000

6000000

8000000

10000000

−13π/4 −9π/4 −6π/4 −3π/4 −0π/4 3π/4 6π/4 9π/4 13π/4

t

f(
t)

 

K-means Without Hierarchical Clustering 
Class 17:  12 Sources
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Figure 9.12:  Andrews’ curves for Classes 1 and 17 created from PCA followed by K-means 

clustering. 
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9.4 Hertzsprung-Russell Diagram 
 

The Hertzsprung-Russell (H-R) diagram for the COUP 444 dataset is shown in Figure 9.13.  The 

sources are color-coded with their X-ray spectral classes as determined by the X-ray source 

classification algorithm.  The H-R diagram axes can be the optical stellar properties of luminosity 

or mass versus spectral type or (decreasing) effective photospheric temperature.  The band of 

stars running from the upper left to the lower right of the H-R diagram is called the main 

sequence, where stars burn hydrogen in their cores90.  For stars on the main sequence, the hotter 

the star is, the brighter it is.  Stars located near the top of the diagram are more massive than stars 

at the bottom of the diagram, whether they are on the main sequence or not.  There are six X-ray 

sources in the COUP 444 dataset that correspond to high mass A-type or B-type stars.  These 

sources are labeled on the H-R diagram with their COUP source number.  All six of these sources 

are found in X-ray spectral classes with softer spectra: classes 14, 15, and 16.  Five of these 

sources, numbered 100, 113, 869, 1360, and 1415, have been included in a study by Stelzer et al. 

of the X-ray properties of O, B, and A stars91.  For 4 out of these 5 sources (100, 113, 1360, and 

1415), they conclude that the X-rays are being emitted by low-mass companions to the A-type 

and B-type stars found in optical spectroscopy.  They base their conclusions on X-ray variability 

of these sources.  For these 4 sources, my analysis shows the same conclusion from running my 

model-independent algorithm on the X-ray spectral data alone.  For the fifth source (COUP 869), 

they studied the X-ray spectral and variability properties and concluded that the X-ray emission is 

from the massive B-type star itself.  My X-ray source classification algorithm places this source, 

COUP 869, into class 16: the class with the lowest average mass and the softest spectra.  The X-

ray spectrum for COUP 869 (see Figure 9.14) has a similar spectral shape to the other members 

of X-ray spectral class 16 and also to the average class spectrum for class 16.  The Andrews’ 

curve for COUP 869 is within the group of Andrews’ curves for class 16; it is not an outlier.  This 
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argues that X-ray emission from COUP 869 is coming from a low-mass companion to the high-

mass B star.  

 

Figure 9.13:   Hertzsprung-Russell diagram of COUP 444 dataset color-coded by X-ray spectral 

class.  The A-type and B-type stars are labeled with their corresponding COUP source number. 

 

The x-axis scale of the H-R diagrams in Figure 9.15 and Figure 9.16 was restricted to focus on 

the main group of sources, which are of spectral types K and M.  The H-R diagram for classes 11 

thru 13 is shown in Figure 9.15.  The H-R diagram for classes 14 thru 16 is shown in Figure 9.16.  

These three classes appear to occupy slightly different regions in the H-R diagram.  The sources 

in class 16 are clumped in the lower-right part of the main sequence.  These diagrams show a 

trend of increasing spectral softness with decreasing Teff for X-ray sources in the ONC. 
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Figure 9.14:  X-ray spectrum for COUP 869. 
 

9.5 X-ray Properties Versus ONIR Properties 
 
 
The source spectra, as well as the ONIR properties for the classes obtained from the K-means 

clustering algorithm were examined to assess the algorithm’s ability to identify groups of sources 

that share common attributes.  Table 9.1 lists the mean values for hydrogen column density (NH),  

effective photospheric temperature (Teff)
92, stellar mass93, stellar age93, visual extinction92 (AV), 

and ∆(I-K) near-infrared excess94 of the ONIR counterparts of the members of the 17 X-ray 

classes.  The numbers in parentheses in Table 9.1 are the errors on the mean.  These results were 

compiled from data available for the X-ray-emitting ONC population12.  A-type and B-type stars 

were not included in the mean calculations based on optically-derived properties (i.e., Teff). 
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Figure 9.15:  Hertzsprung-Russell diagram for soft X-ray spectrum classes 11, 12, and 13. 
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Figure 9.16:  Hertzsprung-Russell diagram for the softest X-ray spectral classes: 14, 15, and 16. 
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NH decreases monotonically from class 1 to class 16 (Figure 9.17).  The large NH characteristic of 

classes 1 through 8 is reflected in small fractions of ONIR counterparts.  The mean visual 

extinction is observed to decrease monotonically for the classes 11 to 16 (Figure 9.18).  The mean 

near-infrared excess is observed to decrease monotonically for the soft spectra classes 10 to 16 

(Figure 9.19), suggesting a generally decreasing accretion rate.  For classes 12 through 16, which 

have relatively large fractions of ONIR counterparts and softer X-ray emission, the mean Teff 

decreases as the X-ray spectra gets softer (Figure 9.20).  This was also shown by the H-R 

diagrams in section 9.4.   

 

The stellar mass and stellar age decrease almost monotonically with increasing spectral softness 

for classes 10 thru 16.  However, these properties are determined by comparing the source’s Teff 

and luminosity with evolution models of young stars.  Mass depends directly on Teff and age 

depends directly on luminosity and at the same time are highly model-dependent and therefore 

potentially uncertain. 

 

Classes form sequences in NH, AV, near-IR K-band excess, stellar mass, and stellar age 

demonstrating that the algorithm efficiently sorts young stars into physically meaningful groups.  

These trends show a strong correlation between X-ray and ONIR properties of young stars in the 

ONC. 
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Table 9.1: ONIR properties of the resulting 17 X-ray classes.  Values in parentheses represent 

error on the mean.  The six A-type and B-type stars in the COUP 444 dataset have not been 

included in mean calculations based on optically-derived properties. 

Class Number 
of 

Sources 

< log NH > 
[cm-2] 

N <logTeff >
  

[K] 
N Mass 

[solMass] 
N Age N < AV >  

mag 
N < ∆(I-K)  

> 
Mag 

N 

1 7 23.40 
(0.06) 

7  0      0  0 

2 12 22.96 
(0.03) 

12 3.57 : 1 0.47 : 1 7.21 : 1  0  0 

3 9 22.79 
(0.02) 

9  0      0  0 

4 19 22.66 
(0.01) 

19 3.59 : 3 0.64 : 3 6.67 : 3 1.34 : 3 1.66 : 3 

5 2 22.52 
(0.05) 

2 3.68 : 1 1.91 : 1 6.27 : 1 3.67 : 1 2.61 : 1 

6 14 22.48 
(0.02) 

14  0      0  0 

7 18 22.46 
(0.02) 

18 3.70 : 1 1.10 : 1 7.28 : 1 3.52 : 1 0.98 : 1 

8 21 22.30 
(0.02) 

21 3.55 : 3 0.49 : 3 6.19 : 3 1.52 : 3 0.30 : 2 

9 22 22.18 
(0.01) 

22 3.56 
(0.02) 

7 0.41 
(0.10) 

6 5.99 
(0.49) 

6 1.77 
(0.99) 

7 1.10 : 3 

10 37 22.03 
(0.02) 

37 3.58 
(0.01) 

21 0.73 
(0.12) 

19 6.34 
(0.10) 

19 2.60 
(0.45) 

20 1.31 
(0.18) 

18 

11 54 21.90 
(0.02) 

54 3.57 
(0.01) 

38 0.57 
(0.06) 

38 6.23 
(0.09) 

38 2.69 
(0.31) 

38 0.91 
(0.12) 

30 

12 30 21.66 
(0.03) 

30 3.59 
(0.01) 

20 0.79 
(0.14) 

19 6.20 
(0.07) 

19 1.57 
(0.29) 

19 0.80 
(0.14) 

16 

13 30 21.61 
(0.03) 

30 3.56 
(0.01) 

22 0.58 
(0.12) 

21 5.95 
(0.12) 

21 1.44 
(0.27) 

22 0.62 
(0.11) 

18 

14 61 21.32 
(0.03) 

61 3.55 
(0.01) 

45 0.51 
(0.07) 

43 5.88 
(0.08) 

43 1.16 
(0.16) 

44 0.49 
(0.08) 

38 

15 88 20.79 
(0.05) 

86 3.52 
(0.01) 

75 0.39 
(0.05) 

71 5.80 
(0.07) 

70 0.65 
(0.11) 

72 0.25 
(0.07) 

62 
 

16 19 20.28 
(0.11) 

19 3.50 
(0.01) 

14 0.29 
(0.11) 

14 5.95 
(0.15) 

14 0.32 
(0.14) 

16 0.11 
(0.05) 

12 

17 1 20.88 : 1 3.56 : 1 0.39 : 1 7.21 : 1 0.34 1  0 

 

 
 
 

 



130                                                                                        CHAPTER 9.  RESULTS ANALYSIS 

 

Mean Hydrogen Column Density for Each Class
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Figure 9.17:  Mean hydrogen column density plotted for each class. 
 

Mean Visual Extinction By Class
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Figure 9.18:  Mean visual extinction plotted by class. 
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Mean K-Band Excess By Class
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Figure 9.19:  Mean near-IR K-band excess plotted by class. 
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Figure 9.20:  Mean log effective photospheric temperature plotted by class. 
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9.6 Very Deeply Embedded Protostars 
 

Sources in class 1 are easily identified as a distinct X-ray spectral group by my classification 

technique.  These sources lack ONIR counterparts and all have high-amplitude fast-rise X-ray 

flares68.  An analogous sample of deeply embedded, flaring protostars is discussed in Tsujimoto 

et al.95.  The strong Fe line emission at 6.4-6.7 keV seen in the Class 1 average spectrum attests to 

their high X-ray emission temperatures.  These objects are likely very young protostars deeply 

embedded in the Orion Molecular Core. 

 

9.7 Beehive Proplyd 
 

COUP 948 is isolated by the source classification algorithm.  It is associated with a jet source 

called the Beehive Proplyd (see Figure 9.21).  It has an elliptical silhouette disk at the center and 

jets protruding along the minor axis of the ellipse96.  The X-ray spectrum of COUP 948 has 

distinct hard and soft components with the soft component peaking at around 0.85 keV and the 

hard component with a main arc from 3.0 keV to 4.5 keV.  This unique, double-peaked X-ray 

spectral distribution is indicative of strong shocks in the jet collimation region96.   
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Figure 9.21:  Hubble Space Telescope image of the Beehive Proplyd96.  The position of the 

associated COUP source (COUP 948) is shown by the green circle. 

 
 
 

9.8 Hardness Ratio Diagram 
 
 
A common practice in X-ray astronomy is to examine X-ray spectral properties by analysis of the 

X-ray hardness ratio for a group of sources.  To compute a hardness ratio, the full-range of the X-

ray energy band is divided into sub-bands, and the source’s photons are totaled for each sub-band.  

The ratio of the counts in one band to the counts in another band is defined as a X-ray hardness 

ratio.  For example, if the full-energy range is divided into three energy sub-bands, labeled s 

(soft), m (medium), and h (hard), then a hardness ratio can be defined as HR = (h / m).  Alternate 

hardness ratios can be defined as HR = (h / s) and HR = (h - s) / (h + s).  The sub-band definitions 
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are not the same for all X-ray missions because their definition is dependent upon the energy 

range over which the CCDs involved are sensitive. 

 

For COUP, four sub-bands were defined: 0.5 to 1.7 keV (s1), 0.5 to 2.0 keV (s2), 1.7 to 2.8 keV 

(m), and 2.0 to 8.0 keV (h)12.  The three COUP hardness ratios are defined as HR1 = (s2 / h), HR2 

= (s1 / m), and HR3 = (m / h).  HR1 represents the traditional hardness ratio definition; while HR2 

is used to measure the softer part of the X-ray spectrum and HR3 the harder part of the X-ray 

spectrum12.   

 

The plot of HR3 versus HR2 for the 444 subset is shown in Figure 9.22.  COUP sources 510 and 

647 have not been included in this plot due to the lack of HR2 data for them in the COUP table.  

This plot shows that, although the X-ray spectral classes are a sequence in spectral hardness, there 

are additional, more subtle aspects of the classes that do not appear in the hardness ratio plot.  The 

ordering of the sources on the HR diagram does not match the ordering of the X-ray spectral 

classes determined from the algorithm and the groupings obtained from the algorithm could not 

be obtained from this plot alone.  For example, class 8 covers a wide range in HR2.  Also, classes 

15 and 16 are blurred in HR space.  The ordering of the sources on this HR diagram is not 

representative of their order in X-ray spectral space. 
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Figure 9.22: Hardness Ratio diagram for the COUP 444 subset. 
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Chapter 10 

 
Summary and Future Work 
 

 

10.1 Summary 
 

I have developed an algorithm and corresponding input variable definition that groups X-ray 

sources based solely on observables.  The method is non-parametric.  It is an improvement over 

other methods that rely on empirical measures of X-ray spectral properties, such as hardness 

ratios, because it incorporates a technique that accounts for the variance in the data.  Source 

groupings are then determined by examining the four principal components that represent the 

most variance in the data. 

 

Classification results reveal that my spectral clustering technique can be used to efficiently 

identify very young X-ray sources that: 

• lack optical and near-infrared counterparts  

• display strong Fe Kα line emission  

• display large-amplitude, fast-rise flares  
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The plot of the first two principal components (Figure 9.2) contains a horseshoe-shaped curve.  

The spectral hardness of the classes going clockwise around the horseshoe decreases.  Extreme 

outliers do not fall along the horseshoe-shaped curve, but in the space surrounding the curve.   In 

addition, the Andrews Curves for classes 16 and 17 in Figure 9.10 confirm the outlier status of 

the source in class 17.  These results demonstrate that the algorithm can be used to place the 

sources in order of decreasing spectral hardness and can be used to identify outliers with unusual 

spectra. 

 

Trends between X-ray spectral parameters and stellar parameters have been found for very low-

mass, soft spectra, young sources.   Also, there are clear correlations between the softer X-ray 

spectral classes and the classical optical spectral types in the cluster H-R diagram.  These trends 

and correlations are of significance to astronomers interested in star formation and the 

mechanisms causing X-ray emission in young stellar clusters. 

 

10.2    Future Work 
 

Future work includes using the source classification algorithm to place the remaining ~1000 

sources in the COUP data set into the existing X-ray spectral classes.  The relationships between 

the X-ray spectral classes and fundamental stellar parameters found by my research may or may 

not be unique to the ONC.  X-ray sources in other star formation regions could be grouped into 

clusters based on the source groupings from the ONC to determine whether candidate young stars 

in these nearby star formation regions fit into the previously established statistical groupings from 

the ONC.    
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Once it is determined whether or not the results from the ONC generalize to other star forming 

regions, the algorithm could be extended for use with ‘unknown’ X-ray source datasets, i.e., a 

field of X-ray sources whose mixture of foreground stars, young stars, distant AGNs, and/or other 

unusual sources is far less well-determined than the Orion region. 

 

It may be useful to do a separate analysis and clustering on the temporal data using the X-ray 

light curves (time series plots of intensity) for each detected source.  An example X-ray light 

curve for one of the detected X-ray sources is shown in Figure 10.1.  The black line shows the 

full energy band (0.5 – 8.0 keV) light curve, binned according to the values in Table 10.1. 

 
Table 10.1: Light curve bin sizes. 

 
In-Band Source Counts Bin Length 

< 200 ~ 6.3 hours 

< 500 ~ 3.2 hours 

< 10000 ~ 1.59 hours 

< 20000 ~ 1.1 hours 

< 40000 ~ 47.6 minutes 

>= 40000 ~ 23.8 minutes 

 

The red line in Figure 10.1 shows the light curve in the soft energy band (0.5 – 2.0 keV).  The 

blue line shows the light curve in the hard energy band (2.0 – 8.0 keV). 

 

A flare can be seen in the center of the light curve.  Multivariate features describing the 

variability of the sources and the power spectrum of the time series could possibly be used to aid 

in the clustering analysis.  Previous astronomical studies on temporal analysis could be 

investigated to determine input variables that best describe the variability of the data.  Finally, 

temporal inputs could be combined with the spectral inputs and the clustering algorithm re-run on 

the ONC to determine the effects of adding source variability to the algorithm.  Such a hybrid 
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method might be particularly effective when attempting to understand the robustness of the 

spectral classifications. 

 

 

Figure 10.1:  Example of a time series plot for one X-ray source. 
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Appendix A 
 

42 X-ray Spectral Bands 
 

Band 
Number  

Low (eV) - High 
(eV)a  Ion  E (eV) Theoretical λλλλ  

( Å )b  
Model Line 

Flux c  

1 425.00 - 525.00 N VII 500.345 24.782 137.20 

O VII 561.117 22.098 76.97 

O VII 568.735 21.802 18.70 2 545.00 - 631.00 

O VII 574.000 21.602 128.90 

O VIII 653.640 18.970 858.80 

O VII 665.676 18.627 15.36 3 632.00 - 721.00 

Fe XVIII 703.601 17.623 55.56 

Fe XVII 725.290 17.096 210.10 

Fe XVII 727.204 17.051 232.30 

Fe XVII 738.948 16.780 193.60 

Fe XVIII 767.347 16.159 31.16 

Fe XIX 769.681 16.110 43.53 

Fe XVIII 771.548 16.071 77.00 

O VIII 774.682 16.006 127.10 

Fe XVIII 781.320 15.870 18.03 

Fe XVIII 783.592 15.824 33.99 

Fe XVIII 793.571 15.625 55.81 

4 722.00 - 815.00 

Fe XVII 812.499 15.261 124.40 

O VIII 817.050 15.176 40.88 

Fe XIX 822.306 15.079 33.30 

Fe XVII 825.866 15.014 441.60 

O VIII 836.621 14.821 17.90 

Fe XVIII 853.141 14.534 41.11 

Fe XX 869.107 14.267 26.94 

Fe XVIII 869.778 14.256 40.82 

5 816.00 - 912.00 

Ne IX 905.143 13.699 65.60 

Ne IX 914.961 13.552 19.55 6 913.00 - 1013.00 

Fe XIX 917.262 13.518 99.15 
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Fe XIX 918.690 13.497 44.98 

Ne IX 922.106 13.447 144.90 

Fe XXII 972.209 12.754 25.34 

Fe XX 985.970 12.576 22.67 

Fe XXI 1009.407 12.284 135.90 

Fe XVII 1010.888 12.266 45.09 

Fe XXIII 1019.616 12.161 50.26 

Ne X 1021.801 12.135 633.70 

Fe XVII 1022.728 12.124 50.17 

Fe XXII 1053.488 11.770 70.06 

Fe XXIII 1056.540 11.736 91.19 

Ne IX 1074.112 11.544 20.24 

Fe XVIII 1075.697 11.527 12.78 

Fe XVIII 1094.787 11.326 18.61 

7 1014.00 - 1115.00 

Fe XXIV 1109.480 11.176 76.20 

Fe XXIV 1124.268 11.029 42.19 

Fe XXIII 1125.288 11.019 28.89 

Fe XXIII 1129.183 10.981 44.10 

Fe XIX 1146.408 10.816 11.96 

Fe XVII 1151.305 10.770 9.08 

Fe XXIV 1162.858 10.663 34.61 

Fe XXIV 1167.676 10.619 65.97 

8 1116.00 - 1220.00 

Ne X 1211.012 10.239 89.03 

Ne X 1277.251 9.708 28.24 
9 1221.00 - 1335.00 

Mg XI 1331.281 9.314 26.81 

Mg XI 1343.397 9.230 8.99 

Mg XI 1352.334 9.169 59.28 

Fe XXII 1381.566 8.975 7.57 
10 1336.00 - 1445.00 

Fe XXII 1406.643 8.815 8.38 

Mg XII 1472.281 8.422 102.70 

Fe XXIV 1491.048 8.316 10.09 

Fe XXIII 1493.203 8.304 8.36 

Fe XXIV 1496.627 8.285 1.85 

Fe XXIV 1506.080 8.233 4.96 

11 1446.00 - 1558.00 

Fe XXIV 1551.690 7.991 13.82 
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Al XII 1575.147 7.872 4.53 

Mg XI 1579.561 7.850 7.66 12 1559.00 - 1673.00 

Al XII 1598.499 7.757 5.51 

Al XIII 1728.884 7.172 12.00 

Fe XXIV 1729.607 7.169 4.33 

Mg XII 1744.941 7.106 14.14 
13 1674.00 - 1840.00 

Si XIII 1839.696 6.740 20.64 

Si XIII 1854.278 6.687 9.54 
14 1852.00 - 1974.00 

Si XIII 1865.156 6.648 51.71 

15 1975.00 - 2100.00 Si XIV 2005.427 6.183 62.34 

16 2101.00 - 2400.00 Si XIV 2376.759 5.217 8.81 

S XV 2430.332 5.102 8.78 

S XV 2448.086 5.065 5.83 17 2401.00 - 2537.00 

S XV 2460.717 5.039 26.65 

18 2538.00 - 2676.00 S XVI 2621.470 4.730 26.05 

19 2677.00 - 3045.00         

Ar XVII 3106.101 3.992 6.12 

Ar XVII 3124.888 3.968 2.32 20 3046.00 - 3276.00 

Ar XVII 3139.922 3.949 8.91 

21 3277.00 - 3436.00 Ar XVII 3320.716 3.734 5.57 

22 3437.00 - 3737.00 Ar XVII 3684.860 3.365 1.16 

23 3738.00 - 3909.00 Ca XIX 3877.284 3.198 8.37 

24 3910.00 - 4085.00         

25 4086.00 - 4266.00 Ca XX 4104.453 3.021 1.90 

26 4267.00 - 4452.00         

27 4453.00 - 4643.00         

28 4644.00 - 4838.00         

29 4839.00 - 5038.00         

30 5039.00 - 5243.00         

31 5244.00 - 5454.00         

32 5455.00 - 5670.00         

33 5671.00 - 5891.00         

34 5892.00 - 6118.00         

35 6119.00 - 6351.00         

36 6352.00 - 6590.00 Fe Kα  6400     
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37 6591.00 - 6834.00 Fe XXV 6662.845 1.861 25.95 

38 6835.00 - 7086.00 Fe XXVI 6962.130 1.781 4.40 

39 7087.00 - 7344.00         

40 7345.00 - 7609.00         

41 7610.00 - 7881.00         

42 7882.00 - 8156.00         

 

  a Gaps (526-544 eV and 1841-1851 eV) due to drop in QE of ACIS-I chips  
  b From Huenemoerder, D.P., Canizares, C.R., Drake, J.J, and Sanz-Forcada, J., “The Coronae of 
 AR Lacertae”, The Astrophysical Journal, Vol. 595, pp. 1131-1147, 2003. 
  c From the Astrophysical Plasma Emissivity Database (APED) 
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Appendix B 
 

Similarity Matrix for Preliminary Dataset 
 
 

Step Number of 
Clusters 

Similarity 
Level 

Distance 

1 184 99.66 0.03 
2 183 99.59 0.035 
3 182 99.59 0.036 
4 181 99.51 0.042 
5 180 99.43 0.049 
6 179 99.41 0.05 
7 178 99.37 0.054 
8 177 99.35 0.056 
9 176 99.16 0.072 
10 175 99.14 0.074 
11 174 99.12 0.076 
12 173 98.98 0.088 
13 172 98.92 0.093 
14 171 98.89 0.096 
15 170 98.81 0.103 
16 169 98.77 0.106 
17 168 98.76 0.107 
18 167 98.75 0.108 
19 166 98.7 0.112 
20 165 98.69 0.113 
21 164 98.63 0.118 
22 163 98.56 0.125 
23 162 98.4 0.138 
24 161 98.4 0.138 
25 160 98.39 0.139 
26 159 98.36 0.141 
27 158 98.34 0.144 
28 157 98.31 0.145 
29 156 98.26 0.15 
30 155 98.23 0.153 
31 154 98.22 0.154 
32 153 98.18 0.157 
33 152 98.17 0.158 
34 151 98.17 0.158 
35 150 98.11 0.163 
36 149 98.1 0.164 
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Step Number of 
Clusters 

Similarity 
Level 

Distance 

37 148 98.09 0.165 
38 147 97.93 0.179 
39 146 97.87 0.184 
40 145 97.86 0.185 
41 144 97.85 0.185 
42 143 97.85 0.185 
43 142 97.8 0.189 
44 141 97.78 0.192 
45 140 97.78 0.192 
46 139 97.73 0.195 
47 138 97.68 0.2 
48 137 97.63 0.204 
49 136 97.54 0.212 
50 135 97.48 0.217 
51 134 97.48 0.218 
52 133 97.43 0.222 
53 132 97.39 0.225 
54 131 97.3 0.232 
55 130 97.3 0.233 
56 129 97.14 0.247 
57 128 97.12 0.249 
58 127 97.12 0.249 
59 126 97.08 0.252 
60 125 97.01 0.258 
61 124 96.96 0.263 
62 123 96.9 0.267 
63 122 96.88 0.27 
64 121 96.85 0.272 
65 120 96.82 0.274 
66 119 96.77 0.278 
67 118 96.68 0.286 
68 117 96.65 0.289 
69 116 96.57 0.296 
70 115 96.56 0.296 
71 114 96.47 0.304 
72 113 96.45 0.307 
73 112 96.4 0.311 
74 111 96.38 0.312 
75 110 96.38 0.312 
76 109 96.33 0.317 
77 108 96.27 0.322 
78 107 96.1 0.337 
79 106 96.01 0.344 
80 105 96 0.345 
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Step Number of 
Clusters 

Similarity 
Level 

Distance 

81 104 95.94 0.35 
82 103 95.93 0.351 
83 102 95.92 0.352 
84 101 95.86 0.357 
85 100 95.85 0.358 
86 99 95.83 0.359 
87 98 95.82 0.361 
88 97 95.74 0.367 
89 96 95.71 0.37 
90 95 95.62 0.378 
91 94 95.56 0.383 
92 93 95.52 0.386 
93 92 95.48 0.39 
94 91 95.48 0.39 
95 90 95.29 0.406 
96 89 95.25 0.41 
97 88 95.23 0.411 
98 87 95.16 0.418 
99 86 94.83 0.446 
100 85 94.75 0.453 
101 84 94.53 0.471 
102 83 94.51 0.473 
103 82 94.5 0.475 
104 81 94.44 0.479 
105 80 94.32 0.49 
106 79 94.22 0.499 
107 78 94.14 0.506 
108 77 94.13 0.507 
109 76 94.1 0.509 
110 75 94.08 0.51 
111 74 94.04 0.514 
112 73 93.96 0.521 
113 72 93.92 0.524 
114 71 93.9 0.526 
115 70 93.56 0.555 
116 69 93.54 0.557 
117 68 93.44 0.566 
118 67 93.43 0.567 
119 66 93.39 0.57 
120 65 93.33 0.576 
121 64 93.31 0.577 
122 63 93.29 0.579 
123 62 93.14 0.592 
124 61 93 0.604 
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Step Number of 
Clusters 

Similarity 
Level 

Distance 

125 60 92.95 0.608 
126 59 92.74 0.626 
127 58 92.67 0.632 
128 57 92.6 0.638 
129 56 92.4 0.656 
130 55 92.15 0.677 
131 54 92.11 0.681 
132 53 92 0.69 
133 52 91.76 0.711 
134 51 91.68 0.718 
135 50 91.64 0.721 
136 49 91.6 0.725 
137 48 91.2 0.76 
138 47 91.13 0.765 
139 46 90.92 0.783 
140 45 90.36 0.831 
141 44 90.31 0.836 
142 43 90.19 0.846 
143 42 90.12 0.853 
144 41 89.7 0.889 
145 40 89.68 0.89 
146 39 88.95 0.953 
147 38 88.7 0.975 
148 37 88.69 0.976 
149 36 88.6 0.984 
150 35 88.4 1.001 
151 34 88.05 1.03 
152 33 87.86 1.048 
153 32 87.38 1.088 
154 31 87.24 1.101 
155 30 87.12 1.111 
156 29 86.69 1.148 
157 28 86.66 1.15 
158 27 86.11 1.198 
159 26 85.15 1.281 
160 25 84.74 1.316 
161 24 84.71 1.319 
162 23 84.53 1.334 
163 22 83.72 1.405 
164 21 83.5 1.423 
165 20 83.36 1.435 
166 19 82.66 1.496 
167 18 81.83 1.568 
168 17 81.25 1.617 
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Step Number of 
Clusters 

Similarity 
Level 

Distance 

169 16 78.36 1.867 
170 15 76.47 2.03 
171 14 76.29 2.045 
172 13 74.37 2.21 
173 12 73.88 2.253 
174 11 72.57 2.366 
175 10 70.54 2.541 
176 9 68.87 2.685 
177 8 68.76 2.695 
178 7 61.09 3.357 
179 6 55.46 3.842 
180 5 47.21 4.554 
181 4 44.38 4.798 
182 3 31.71 5.891 
183 2 23.61 6.59 
184 1 0 8.626 

 

 
 
 
 
 



APPENDIX C.  CLUSTERING ASSIGNMENTS FOR PRELIMINARY DATASET  149 

  

Appendix C 
 

Clustering Assignment Summary for Preliminary Dataset 
 

 
Source 
Number 

RA DEC Hierarchical 
Clustering 

Class 
Membership 

K-means 
Class 

Membership 

Source 
Changed 
Classes 

20 83.8154 -5.3822 1 1   
22 83.7982 -5.43389 1 1   
24 83.773 -5.24785 1 1   
26 83.8601 -5.42765 1 1   
29 83.8139 -5.38228 4 1 * 
31 83.8813 -5.42098 4 1 * 
34 83.8804 -5.25876 4 1 * 
35 83.828 -5.34258 4 1 * 
21 83.8488 -5.39198 2 2   
23 83.8233 -5.29429 2 2   
25 83.8338 -5.35152 2 2   
28 83.8168 -5.397 2 2   
27 83.8532 -5.4664 3 3   
30 83.7994 -5.36358 3 3   
32 83.828 -5.387 3 3   
33 83.7409 -5.39772 4 4   
36 83.8646 -5.44099 5 4 * 
37 83.7631 -5.50054 4 4   
38 83.8586 -5.42975 4 4   
39 83.825 -5.25998 4 4   
40 83.8165 -5.48127 4 4   
41 83.839 -5.41575 5 4 * 
42 83.8343 -5.44405 5 4 * 
43 83.8268 -5.37695 4 4   
44 83.7986 -5.28261 4 4   
45 83.7881 -5.49976 5 4 * 
46 83.7737 -5.42198 5 4 * 
47 83.8483 -5.31565 4 4   
48 83.8211 -5.37573 5 4 * 
49 83.8478 -5.31385 5 4 * 
50 83.794 -5.43832 5 4 * 
52 83.8345 -5.34901 4 4   
53 83.8731 -5.27575 5 4 * 
56 83.7113 -5.4002 5 4 * 
57 83.8369 -5.26372 4 4   
60 83.8151 -5.42048 5 4 * 
63 83.8568 -5.50533 5 4 * 
69 83.7695 -5.29462 5 4 * 
90 83.8873 -5.26654 4 4   
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97 83.694 -5.40874 5 4 * 
101 83.7353 -5.46361 5 4 * 
103 83.7198 -5.4653 5 4 * 
113 83.7424 -5.29376 5 4 * 
144 83.694 -5.39053 5 4 * 
196 83.927 -5.45818 5 4 * 
55 83.7325 -5.49108 5 5   
68 83.9118 -5.298 5 5   
71 83.9139 -5.28819 5 5   
72 83.8854 -5.52139 5 5   
74 83.9144 -5.2832 5 5   
78 83.9103 -5.30409 5 5   
79 83.8733 -5.51781 5 5   
85 83.7711 -5.26869 5 5   
86 83.9125 -5.29376 5 5   
95 83.8748 -5.51176 5 5   
96 83.9493 -5.37988 5 5   

100 83.9491 -5.38001 5 5   
106 83.8757 -5.50079 5 5   
112 83.7331 -5.489 5 5   
115 83.6717 -5.44938 5 5   
119 83.7727 -5.25903 5 5   
120 83.9096 -5.30875 5 5   
129 83.9395 -5.47097 5 5   
136 83.7737 -5.25525 5 5   
140 83.8771 -5.49504 5 5   
145 83.6715 -5.44464 5 5   
146 83.8752 -5.50416 5 5   
153 83.8725 -5.52738 5 5   
156 83.7718 -5.26367 5 5   
167 83.9697 -5.3511 5 5   
168 83.701 -5.29422 5 5   
178 83.9093 -5.31335 5 5   
179 83.7333 -5.48161 5 5   
182 83.879 -5.47699 5 5   
184 83.878 -5.49061 5 5   
189 83.8784 -5.48732 5 5   
192 83.9467 -5.47901 5 5   
193 83.7351 -5.47415 5 5   
51 83.9821 -5.27145 6 6   
58 83.9357 -5.5362 6 6   
62 83.7135 -5.22303 5 6 * 
66 83.9785 -5.28172 6 6   
77 83.9159 -5.26979 6 6   
89 83.915 -5.27766 5 6 * 
92 83.6676 -5.49003 6 6   
99 83.9757 -5.30583 6 6   

102 83.9775 -5.29213 6 6   
104 83.918 -5.25975 6 6   
123 83.9386 -5.51897 6 6   
124 83.6702 -5.46228 5 6 * 
125 83.7479 -5.22836 6 6   
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135 83.7766 -5.23407 5 6 * 
139 83.9082 -5.53285 6 6   
142 83.7087 -5.25025 6 6   
149 83.9651 -5.27076 6 6   
150 83.706 -5.25987 5 6 * 
152 83.7095 -5.24072 6 6   
157 83.9388 -5.51031 6 6   
159 83.9423 -5.2623 6 6   
160 83.9379 -5.5237 6 6   
162 83.667 -5.47985 6 6   
165 83.9725 -5.32014 6 6   
166 83.7351 -5.22753 6 6   
175 83.9419 -5.50247 6 6   
176 83.7283 -5.50125 5 6 * 
177 83.729 -5.22489 6 6   
188 83.9722 -5.32696 6 6   
199 83.6802 -5.47608 5 6 * 
54 83.823 -5.38898 7 7   
59 83.807 -5.33177 7 7   
61 83.8194 -5.40153 7 7   
64 83.8783 -5.40848 7 7   
65 83.8063 -5.51534 7 7   
67 83.825 -5.3792 7 7   
70 83.7909 -5.35777 7 7   
73 83.8142 -5.37088 7 7   
75 83.785 -5.46567 7 7   
76 83.8405 -5.42389 7 7   
80 83.8172 -5.3433 7 7   
81 83.8126 -5.39408 7 7   
82 83.7548 -5.40222 5 7 * 
83 83.7589 -5.44349 5 7 * 
84 83.8173 -5.38511 7 7   
87 83.8659 -5.30108 7 7   
91 83.822 -5.3587 7 7   
93 83.8593 -5.33484 7 7   
94 83.8781 -5.45458 7 7   

105 83.8014 -5.39651 7 7   
107 83.8521 -5.41086 7 7   
108 83.8127 -5.36654 7 7   
109 83.8069 -5.51641 7 7   
110 83.8001 -5.34238 7 7   
111 83.8291 -5.27041 7 7   
114 83.7764 -5.36732 7 7   
118 83.8952 -5.48733 7 7   
121 83.8397 -5.52301 7 7   
126 83.8033 -5.28089 7 7   
127 83.8349 -5.51156 7 7   
128 83.8226 -5.42893 7 7   
130 83.7506 -5.38365 5 7 * 
131 83.7371 -5.36008 7 7   
132 83.8113 -5.37595 7 7   
133 83.8858 -5.43588 5 7 * 
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134 83.8226 -5.33732 7 7   
137 83.8355 -5.39139 7 7   
138 83.8376 -5.27716 7 7   
141 83.8773 -5.40616 7 7   
143 83.878 -5.30181 7 7   
147 83.7664 -5.48473 7 7   
148 83.8246 -5.27043 7 7   
151 83.8393 -5.39575 7 7   
154 83.7976 -5.31983 7 7   
155 83.8353 -5.28701 7 7   
158 83.8124 -5.37745 7 7   
161 83.7671 -5.44355 7 7   
163 83.8201 -5.40101 7 7   
164 83.8974 -5.35731 7 7   
169 83.8431 -5.3413 7 7   
170 83.7197 -5.40073 7 7   
171 83.8548 -5.3961 7 7   
172 83.8315 -5.28428 7 7   
173 83.8148 -5.45622 7 7   
174 83.8807 -5.31552 7 7   
180 83.8735 -5.41565 7 7   
181 83.8342 -5.35919 7 7   
183 83.7943 -5.36552 7 7   
185 83.807 -5.40702 7 7   
186 83.8726 -5.42947 7 7   
187 83.804 -5.25612 7 7   
190 83.8253 -5.4931 7 7   
191 83.7177 -5.37531 7 7   
194 83.7253 -5.48084 7 7   
195 83.7928 -5.38914 7 7   
197 83.8772 -5.42719 7 7   
198 83.7507 -5.42099 7 7   
200 83.9029 -5.33595 7 7   
201 83.8173 -5.25029 7 7   
202 83.824 -5.41482 7 7   
203 83.8185 -5.40079 7 7   
204 83.8174 -5.24882 7 7   
88 83.8038 -5.3593 8 8   
98 83.8214 -5.39264 7 8 * 

116 83.8144 -5.35377 7 8 * 
117 83.7991 -5.42011 8 8   
122 83.828 -5.31804 8 8   
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Appendix D 
 

Background Counts Table for COUP 444 Subset 
 
 

Source 
Number 

Source 
Counts 

Bkg 
Counts 

Net 
Counts 

%  Bkgnd 

6 2260 372 1887 16.47 
8 1349 219 1129 16.25 
11 5824 123 5700 2.11 
17 1126 42 1083 3.73 
20 531 148 382 27.92 
21 572 120 451 21.02 
28 21013 149 20863 0.71 
29 2349 61 2287 2.60 
40 359 44 314 12.29 
43 7085 63 7021 0.89 
49 902 170 731 18.87 
54 1640 56 1583 3.42 
55 511 49 461 9.61 
60 794 137 656 17.28 
62 9361 66 9294 0.71 
64 864 49 814 5.68 
65 870 29 840 3.34 
66 6266 28 6237 0.45 
67 7732 41 7690 0.53 
69 1009 186 822 18.45 
89 2064 30 2033 1.45 
90 7257 139 7117 1.92 
96 1446 19 1426 1.31 

100 821 141 679 17.20 
109 1185 189 995 15.96 
110 588 77 510 13.12 
111 1020 20 999 1.96 
112 7469 70 7398 0.94 
113 6807 82 6724 1.20 
114 471 34 436 7.23 
115 6163 22 6140 0.36 
117 1321 19 1301 1.44 
118 407 29 377 7.14 
119 737 109 627 14.81 
122 4962 22 4939 0.44 
128 326 18 307 5.54 
132 1491 21 1469 1.41 
133 341 18 322 5.29 
134 322 15 306 4.67 
137 523 21 501 4.02 
139 6124 29 6094 0.47 
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Source 
Number 

Source 
Counts 

Bkg 
Counts 

Net 
Counts 

%  Bkgnd 

141 13744 16 13727 0.12 
154 380 12 367 3.17 
164 399 9 389 2.26 
165 385 13 371 3.39 
169 517 96 420 18.60 
172 2601 24 2576 0.92 
173 12356 26 12329 0.21 
174 2879 68 2810 2.36 
177 5081 26 5054 0.51 
179 1028 184 843 17.92 
183 5776 12 5763 0.21 
192 525 112 412 21.37 
197 1114 67 1046 6.02 
202 5150 47 5102 0.91 
205 6401 17 6383 0.27 
217 2331 7 2323 0.30 
218 2092 9 2082 0.43 
223 10306 62 10243 0.60 
224 1510 6 1503 0.40 
226 2684 7 2676 0.26 
227 460 5 454 1.09 
230 1061 5 1055 0.47 
236 1189 8 1180 0.67 
238 349 6 342 1.72 
241 337 22 314 6.55 
244 762 31 730 4.07 
246 656 42 613 6.41 
249 2058 8 2049 0.39 
250 505 7 497 1.39 
253 1395 4 1390 0.29 
255 988 13 974 1.32 
256 755 15 739 1.99 
260 2481 10 2470 0.40 
262 11551 10 11540 0.09 
266 843 11 831 1.31 
269 1731 62 1668 3.58 
270 6655 7 6647 0.11 
276 705 8 696 1.14 
292 1630 49 1580 3.01 
294 471 6 464 1.28 
296 427 52 374 12.21 
300 608 9 598 1.48 
301 2167 148 2018 6.83 
304 1090 6 1083 0.55 
308 628 21 606 3.35 
309 981 6 974 0.61 
310 6189 21 6167 0.34 
312 554 6 547 1.08 
314 478 19 458 3.98 
319 442 73 368 16.55 
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Source 
Number 

Source 
Counts 

Bkg 
Counts 

Net 
Counts 

%  Bkgnd 

321 317 8 308 2.53 
322 1636 7 1628 0.43 
323 5190 43 5146 0.83 
325 4972 81 4890 1.63 
328 13927 71 13855 0.51 
331 5934 144 5789 2.43 
332 3269 10 3258 0.31 
338 3205 8 3196 0.25 
340 711 16 694 2.25 
353 1274 27 1246 2.12 
365 6499 12 6486 0.18 
368 476 15 460 3.16 
373 1095 134 960 12.25 
376 1220 81 1138 6.64 
379 743 11 731 1.48 
382 5081 15 5065 0.30 
385 892 6 885 0.67 
387 20103 12 20090 0.06 
389 878 149 728 16.99 
391 1654 10 1643 0.60 
395 575 9 565 1.57 
404 2421 7 2413 0.29 
407 606 126 479 20.83 
410 490 19 470 3.89 
413 3678 473 3204 12.86 
414 3577 60 3516 1.68 
415 2804 8 2795 0.29 
418 323 14 308 4.35 
424 425 12 412 2.83 
427 3698 6 3691 0.16 
431 20692 77 20614 0.37 
435 1334 13 1320 0.98 
441 417 12 404 2.88 
446 1803 54 1748 3.00 
454 17142 16 17125 0.09 
459 8201 142 8058 1.73 
466 312 7 304 2.25 
468 1637 93 1543 5.68 
470 12580 10 12569 0.08 
471 522 8 513 1.54 
472 505 3 501 0.60 
481 3431 72 3358 2.10 
483 707 5 701 0.71 
485 4253 18 4234 0.42 
488 3409 13 3395 0.38 
489 2273 75 2197 3.30 
490 6772 89 6682 1.31 
498 547 9 537 1.65 
499 5490 108 5381 1.97 
507 428 13 414 3.04 
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Source 
Number 

Source 
Counts 

Bkg 
Counts 

Net 
Counts 

%  Bkgnd 

510 415 11 403 2.66 
513 336 18 317 5.37 
514 6871 21 6849 0.31 
515 4406 12 4393 0.27 
517 611 29 581 4.75 
520 857 50 806 5.84 
533 372 11 360 2.96 
536 1909 15 1893 0.79 
539 513 10 502 1.95 
545 3111 7 3103 0.23 
548 2354 38 2315 1.61 
550 902 13 888 1.44 
553 2330 6 2323 0.26 
554 14056 10 14045 0.07 
557 1965 10 1954 0.51 
561 13686 23 13662 0.17 
563 509 17 491 3.35 
565 3915 9 3905 0.23 
566 1175 23 1151 1.96 
572 813 18 794 2.22 
585 520 38 481 7.32 
595 633 8 624 1.27 
598 482 13 468 2.70 
599 862 15 846 1.74 
602 1775 5 1769 0.28 
604 312 6 305 1.93 
610 733 135 597 18.44 
612 2332 26 2305 1.12 
614 1978 24 1953 1.21 
616 1102 5 1096 0.45 
624 3768 20 3747 0.53 
625 681 22 658 3.24 
626 5565 53 5511 0.95 
627 502 22 479 4.39 
631 2001 10 1990 0.50 
640 448 24 423 5.37 
645 4484 12 4471 0.27 
647 829 20 808 2.42 
648 24456 42 24413 0.17 
649 5106 29 5076 0.57 
653 727 11 715 1.52 
655 6361 31 6329 0.49 
658 2567 25 2541 0.97 
660 2985 246 2738 8.24 
663 1807 41 1765 2.27 
664 1279 25 1253 1.96 
665 1068 31 1036 2.91 
666 670 15 654 2.24 
667 383 6 376 1.57 
671 447 118 328 26.46 



APPENDIX D.  BACKGROUND COUNTS TABLE FOR COUP 444 SUBSET 157 

  

Source 
Number 

Source 
Counts 

Bkg 
Counts 

Net 
Counts 

%  Bkgnd 

672 7586 21 7564 0.28 
680 1402 17 1384 1.21 
695 660 22 637 3.34 
697 6001 16 5984 0.27 
700 1838 30 1807 1.63 
710 644 7 636 1.09 
711 3623 11 3611 0.30 
712 404 11 392 2.73 
713 1716 48 1667 2.80 
723 593 7 585 1.18 
726 480 13 466 2.71 
737 4338 11 4326 0.25 
739 686 21 664 3.07 
750 2773 26 2746 0.94 
751 378 40 337 10.61 
753 5890 160 5729 2.72 
754 390 49 340 12.60 
756 749 18 730 2.41 
763 879 15 863 1.71 
776 910 28 881 3.08 
780 1708 354 1353 20.74 
783 441 11 429 2.50 
789 1612 9 1602 0.56 
790 1896 28 1867 1.48 
797 1736 20 1715 1.15 
798 982 13 968 1.33 
801 12296 12 12283 0.10 
807 1472 24 1447 1.63 
817 681 13 667 1.91 
823 2260 14 2245 0.62 
837 2107 27 2079 1.28 
849 360 9 350 2.51 
852 593 15 577 2.53 
856 3328 14 3313 0.42 
857 786 22 763 2.80 
862 516 45 470 8.74 
864 346 8 337 2.32 
865 352 16 335 4.56 
869 7942 40 7901 0.50 
878 378 64 313 16.98 
885 3404 13 3390 0.38 
888 455 11 443 2.42 
892 943 36 906 3.82 
896 1278 10 1267 0.78 
897 2100 16 2083 0.76 
899 1945 29 1915 1.49 
902 984 12 971 1.22 
903 378 15 362 3.98 
914 415 2 412 0.48 
919 328 13 314 3.98 
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Source 
Number 

Source 
Counts 

Bkg 
Counts 

Net 
Counts 

%  Bkgnd 

921 1549 33 1515 2.13 
924 592 3 588 0.51 
936 1981 7 1973 0.35 
937 658 13 644 1.98 
939 10473 181 10291 1.73 
948 505 17 487 3.37 
949 3639 333 3305 9.15 
960 5280 53 5226 1.00 
966 1346 9 1336 0.67 
969 1562 22 1539 1.41 
970 1419 71 1347 5.01 
972 1225 11 1213 0.90 
974 2602 27 2574 1.04 
976 3895 11 3883 0.28 
986 1856 15 1840 0.81 
992 1609 9 1599 0.56 
998 413 17 395 4.13 

1000 324 8 315 2.48 
1007 352 9 342 2.56 
1008 3086 11 3074 0.36 
1009 319 13 305 4.09 
1019 1923 8 1914 0.42 
1028 5057 12 5044 0.24 
1035 7558 67 7490 0.89 
1041 603 12 590 1.99 
1045 4281 7 4273 0.16 
1053 1013 171 841 16.90 
1054 1810 179 1630 9.89 
1056 375 15 359 4.01 
1058 1355 6 1348 0.44 
1062 392 13 378 3.32 
1066 3186 196 2989 6.15 
1067 898 406 491 45.26 
1070 4746 12 4733 0.25 
1071 17079 27 17051 0.16 
1074 402 2 399 0.50 
1075 468 2 465 0.43 
1076 1991 4 1986 0.20 
1081 1051 14 1036 1.33 
1086 337 7 329 2.08 
1095 662 10 651 1.51 
1097 2564 45 2518 1.76 
1100 2715 9 2705 0.33 
1101 3759 5 3753 0.13 
1103 2118 12 2105 0.57 
1104 1934 26 1907 1.35 
1110 1757 11 1745 0.63 
1111 7430 18 7411 0.24 
1112 2799 10 2788 0.36 
1117 1623 13 1609 0.80 
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Source 
Number 

Source 
Counts 

Bkg 
Counts 

Net 
Counts 

%  Bkgnd 

1120 337 13 323 3.87 
1121 1291 14 1276 1.09 
1123 321 8 312 2.50 
1126 358 41 316 11.48 
1127 5680 81 5598 1.43 
1128 899 11 887 1.22 
1131 597 12 584 2.01 
1132 630 14 615 2.23 
1134 5075 152 4922 3.00 
1135 373 33 339 8.87 
1137 644 15 628 2.33 
1139 312 4 307 1.29 
1140 7044 12 7031 0.17 
1141 881 6 874 0.68 
1143 15904 8 15895 0.05 
1147 323 10 312 3.11 
1149 4512 20 4491 0.44 
1150 592 9 582 1.52 
1151 24113 18 24094 0.07 
1154 823 7 815 0.85 
1155 353 4 348 1.14 
1158 8525 16 8508 0.19 
1161 9283 12 9270 0.13 
1165 4534 16 4517 0.35 
1167 348 12 335 3.46 
1169 465 11 453 2.37 
1172 877 11 865 1.26 
1177 4200 192 4007 4.57 
1191 559 8 550 1.43 
1193 3495 5 3489 0.14 
1199 4097 8 4088 0.20 
1200 1663 11 1651 0.66 
1202 3535 11 3523 0.31 
1206 934 19 914 2.04 
1207 486 69 416 14.23 
1210 3803 8 3794 0.21 
1212 2097 10 2086 0.48 
1216 645 7 637 1.09 
1223 421 27 393 6.43 
1231 2364 8 2355 0.34 
1233 1155 98 1056 8.49 
1234 4831 48 4782 0.99 
1235 349 3 345 0.86 
1236 4528 148 4379 3.27 
1242 367 11 355 3.01 
1245 1172 7 1164 0.60 
1246 7641 25 7615 0.33 
1258 615 8 606 1.30 
1261 5744 8 5735 0.14 
1264 1077 29 1047 2.70 
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Source 
Number 

Source 
Counts 

Bkg 
Counts 

Net 
Counts 

%  Bkgnd 

1275 575 10 564 1.74 
1276 587 8 578 1.37 
1279 1616 9 1606 0.56 
1282 1033 47 985 4.55 
1284 817 3 813 0.37 
1290 1938 7 1930 0.36 
1291 410 3 406 0.73 
1292 2552 70 2481 2.74 
1296 510 13 496 2.55 
1297 505 14 490 2.78 
1298 329 9 319 2.74 
1302 357 5 351 1.40 
1306 719 5 713 0.70 
1308 425 13 411 3.07 
1311 5114 6 5107 0.12 
1316 1132 102 1029 9.02 
1336 1892 8 1883 0.42 
1344 1184 8 1175 0.68 
1355 5930 51 5878 0.86 
1356 1023 97 925 9.49 
1357 587 8 578 1.37 
1360 1299 5 1293 0.39 
1364 529 27 501 5.11 
1369 314 12 301 3.83 
1373 307 5 301 1.63 
1374 5438 128 5309 2.35 
1382 10291 73 10217 0.71 
1384 25451 17 25433 0.07 
1387 1721 9 1711 0.52 
1388 2925 43 2881 1.47 
1391 14398 55 14342 0.38 
1398 3060 22 3037 0.72 
1399 463 92 370 19.91 
1404 691 72 618 10.43 
1407 847 6 840 0.71 
1409 6390 8 6381 0.13 
1410 8210 55 8154 0.67 
1411 1476 45 1430 3.05 
1415 883 16 866 1.81 
1419 3527 91 3435 2.58 
1423 3565 11 3553 0.31 
1424 7046 124 6921 1.76 
1429 5538 10 5527 0.18 
1430 1997 20 1976 1.00 
1432 538 80 457 14.90 
1433 6432 124 6307 1.93 
1438 3206 12 3193 0.37 
1439 1194 8 1185 0.67 
1440 726 22 703 3.03 
1447 698 12 685 1.72 
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Source 
Number 

Source 
Counts 

Bkg 
Counts 

Net 
Counts 

%  Bkgnd 

1449 5758 53 5704 0.92 
1450 1224 14 1209 1.14 
1454 2987 112 2874 3.75 
1455 3443 50 3392 1.45 
1456 7532 13 7518 0.17 
1457 905 17 887 1.88 
1462 13136 152 12983 1.16 
1463 8257 42 8214 0.51 
1464 1222 30 1191 2.46 
1466 5284 12 5271 0.23 
1469 733 21 711 2.87 
1471 384 8 375 2.09 
1474 739 26 712 3.52 
1475 596 105 490 17.65 
1478 927 57 869 6.16 
1480 928 13 914 1.40 
1485 1579 125 1453 7.92 
1487 5728 67 5660 1.17 
1492 6801 19 6781 0.28 
1503 1149 30 1118 2.61 
1507 854 50 803 5.86 
1512 931 25 905 2.69 
1516 7798 60 7737 0.77 
1521 10093 31 10061 0.31 
1524 651 35 615 5.38 
1529 1126 34 1091 3.02 
1531 1670 38 1631 2.28 
1535 489 79 409 16.19 
1537 363 39 323 10.77 
1539 1250 39 1210 3.12 
1543 2004 50 1953 2.50 
1544 3339 107 3231 3.21 
1546 1984 49 1934 2.47 
1550 2088 41 2046 1.96 
1553 2305 61 2243 2.65 
1561 3260 39 3220 1.20 
1564 692 103 588 14.91 
1570 4259 112 4146 2.63 
1571 664 49 614 7.39 
1572 636 46 589 7.24 
1579 605 57 547 9.44 
1585 957 41 915 4.29 
1588 578 57 520 9.88 
1591 1998 94 1903 4.71 
1594 700 66 633 9.44 
1595 6922 60 6861 0.87 
1603 4334 135 4198 3.12 
1607 815 116 698 14.25 
1608 9368 269 9098 2.87 
1609 465 118 346 25.43 
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Source 
Number 

Source 
Counts 

Bkg 
Counts 

Net 
Counts 

%  Bkgnd 

1610 1277 60 1216 4.70 
1612 1128 152 975 13.49 
1616 562 109 452 19.43 
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Appendix E 
 

Correlation Matrix for COUP 444 Subset 
Cell Contents: Pearson Correlation Coefficient 

 
 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 
Band  2 0.626        
Band  3 0.572 0.857       
Band  4 0.530 0.808 0.970      
Band  5 0.500 0.786 0.952 0.980     
Band  6 0.275 0.554 0.750 0.799 0.861    
Band  7 0.154 0.406 0.603 0.661 0.733 0.970   
Band  8 0.041 0.245 0.435 0.499 0.576 0.870 0.946  
Band  9 -0.045 0.116 0.274 0.329 0.410 0.741 0.846 0.948 

Band 10 -0.189 -0.110 0.002 0.046 0.124 0.491 0.633 0.792 
Band 11 -0.246 -0.245 -0.181 -0.150 -0.081 0.264 0.415 0.604 
Band 12 -0.295 -0.364 -0.371 -0.348 -0.294 0.015 0.170 0.374 
Band 13 -0.359 -0.526 -0.582 -0.572 -0.534 -0.258 -0.098 0.117 
Band 14 -0.377 -0.570 -0.650 -0.642 -0.614 -0.363 -0.209 -0.001 
Band 15 -0.419 -0.627 -0.738 -0.735 -0.715 -0.502 -0.352 -0.142 
Band 16 -0.424 -0.680 -0.825 -0.836 -0.836 -0.695 -0.566 -0.381 
Band 17 -0.406 -0.668 -0.834 -0.849 -0.860 -0.778 -0.668 -0.501 
Band 18 -0.407 -0.670 -0.827 -0.844 -0.858 -0.771 -0.663 -0.503 
Band 19 -0.361 -0.642 -0.820 -0.849 -0.877 -0.863 -0.781 -0.648 
Band 20 -0.349 -0.620 -0.797 -0.832 -0.871 -0.898 -0.834 -0.728 
Band 21 -0.304 -0.596 -0.767 -0.799 -0.843 -0.905 -0.856 -0.765 
Band 22 -0.304 -0.573 -0.754 -0.795 -0.842 -0.918 -0.877 -0.805 
Band 23 -0.269 -0.536 -0.709 -0.752 -0.803 -0.907 -0.883 -0.824 
Band 24 -0.277 -0.537 -0.715 -0.756 -0.809 -0.915 -0.892 -0.841 
Band 25 -0.249 -0.494 -0.671 -0.718 -0.773 -0.910 -0.904 -0.870 
Band 26 -0.260 -0.489 -0.663 -0.711 -0.770 -0.907 -0.900 -0.865 
Band 27 -0.248 -0.470 -0.635 -0.677 -0.739 -0.889 -0.890 -0.867 
Band 28 -0.240 -0.461 -0.627 -0.672 -0.731 -0.881 -0.881 -0.860 
Band 29 -0.235 -0.443 -0.610 -0.658 -0.718 -0.873 -0.876 -0.863 
Band 30 -0.239 -0.465 -0.628 -0.671 -0.731 -0.883 -0.886 -0.860 
Band 31 -0.221 -0.433 -0.600 -0.648 -0.707 -0.872 -0.879 -0.863 
Band 32 -0.217 -0.421 -0.588 -0.637 -0.698 -0.864 -0.877 -0.871 
Band 33 -0.211 -0.420 -0.572 -0.620 -0.681 -0.852 -0.867 -0.864 
Band 34 -0.200 -0.395 -0.543 -0.585 -0.646 -0.821 -0.839 -0.839 
Band 35 -0.202 -0.349 -0.484 -0.528 -0.587 -0.757 -0.786 -0.811 
Band 36 -0.214 -0.389 -0.530 -0.582 -0.640 -0.805 -0.826 -0.832 
Band 37 -0.206 -0.369 -0.524 -0.579 -0.634 -0.783 -0.799 -0.804 
Band 38 -0.154 -0.307 -0.426 -0.474 -0.528 -0.699 -0.737 -0.779 
Band 39 -0.135 -0.274 -0.398 -0.445 -0.497 -0.662 -0.699 -0.735 
Band 40 -0.101 -0.225 -0.323 -0.371 -0.417 -0.587 -0.623 -0.659 
Band 41 -0.070 -0.191 -0.290 -0.341 -0.390 -0.553 -0.597 -0.645 
Band 42 -0.036 -0.209 -0.330 -0.375 -0.408 -0.565 -0.607 -0.630 
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 Band 9 Band 10 Band 11 Band 12 Band 13 Band 14 Band 15 Band 16 
Band 10 0.914        
Band 11 0.761 0.935       
Band 12 0.551 0.781 0.916      
Band 13 0.315 0.599 0.784 0.939     
Band 14 0.198 0.497 0.703 0.884 0.973    
Band 15 0.060 0.367 0.586 0.804 0.931 0.959   
Band 16 -0.185 0.135 0.374 0.628 0.825 0.880 0.942  
Band 17 -0.323 -0.021 0.220 0.501 0.730 0.800 0.880 0.966 
Band 18 -0.328 -0.032 0.206 0.485 0.715 0.784 0.868 0.958 
Band 19 -0.487 -0.195 0.048 0.340 0.597 0.681 0.791 0.923 
Band 20 -0.590 -0.318 -0.089 0.199 0.473 0.569 0.695 0.861 
Band 21 -0.638 -0.383 -0.162 0.116 0.395 0.496 0.626 0.808 
Band 22 -0.691 -0.443 -0.226 0.046 0.332 0.439 0.571 0.772 
Band 23 -0.725 -0.501 -0.303 -0.047 0.234 0.345 0.484 0.699 
Band 24 -0.745 -0.521 -0.322 -0.077 0.206 0.322 0.464 0.687 
Band 25 -0.790 -0.582 -0.383 -0.136 0.148 0.264 0.412 0.637 
Band 26 -0.784 -0.579 -0.385 -0.143 0.139 0.253 0.397 0.626 
Band 27 -0.799 -0.608 -0.427 -0.194 0.086 0.205 0.349 0.583 
Band 28 -0.791 -0.607 -0.432 -0.207 0.071 0.183 0.334 0.570 
Band 29 -0.802 -0.627 -0.459 -0.245 0.033 0.147 0.298 0.540 
Band 30 -0.796 -0.611 -0.430 -0.215 0.065 0.177 0.326 0.562 
Band 31 -0.802 -0.634 -0.463 -0.247 0.027 0.141 0.293 0.532 
Band 32 -0.813 -0.644 -0.474 -0.271 -0.004 0.112 0.259 0.503 
Band 33 -0.805 -0.641 -0.481 -0.274 -0.004 0.112 0.256 0.496 
Band 34 -0.795 -0.655 -0.509 -0.330 -0.074 0.037 0.191 0.429 
Band 35 -0.790 -0.671 -0.554 -0.394 -0.147 -0.035 0.108 0.348 
Band 36 -0.781 -0.639 -0.504 -0.325 -0.070 0.045 0.187 0.427 
Band 37 -0.760 -0.627 -0.503 -0.333 -0.082 0.031 0.171 0.408 
Band 38 -0.770 -0.667 -0.563 -0.424 -0.178 -0.076 0.060 0.302 
Band 39 -0.728 -0.631 -0.529 -0.419 -0.211 -0.120 0.003 0.230 
Band 40 -0.654 -0.603 -0.533 -0.458 -0.267 -0.186 -0.045 0.154 
Band 41 -0.639 -0.554 -0.463 -0.386 -0.224 -0.125 -0.022 0.167 
Band 42 -0.620 -0.526 -0.424 -0.311 -0.129 -0.058 0.065 0.238 
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 Band 17 Band 18 Band 19 Band 20 Band 21 Band 22 Band 23 Band 24 
Band 18 0.974        
Band 19 0.960 0.962       
Band 20 0.916 0.915 0.977      
Band 21 0.878 0.883 0.950 0.977     
Band 22 0.846 0.851 0.934 0.972 0.980    
Band 23 0.779 0.785 0.886 0.937 0.948 0.970   
Band 24 0.771 0.780 0.879 0.934 0.948 0.974 0.978  
Band 25 0.729 0.738 0.850 0.912 0.930 0.961 0.965 0.981 
Band 26 0.715 0.729 0.839 0.904 0.923 0.955 0.968 0.973 
Band 27 0.679 0.693 0.808 0.879 0.907 0.939 0.961 0.966 
Band 28 0.669 0.680 0.798 0.875 0.903 0.934 0.957 0.965 
Band 29 0.640 0.651 0.770 0.854 0.885 0.924 0.944 0.958 
Band 30 0.661 0.672 0.789 0.867 0.893 0.926 0.948 0.956 
Band 31 0.634 0.645 0.766 0.848 0.879 0.918 0.943 0.951 
Band 32 0.602 0.614 0.742 0.825 0.859 0.899 0.929 0.939 
Band 33 0.603 0.611 0.740 0.824 0.860 0.897 0.922 0.934 
Band 34 0.534 0.544 0.682 0.772 0.815 0.857 0.892 0.908 
Band 35 0.453 0.467 0.606 0.708 0.747 0.805 0.844 0.862 
Band 36 0.527 0.539 0.675 0.766 0.805 0.851 0.884 0.897 
Band 37 0.510 0.519 0.653 0.744 0.777 0.829 0.878 0.888 
Band 38 0.408 0.424 0.560 0.660 0.701 0.756 0.812 0.822 
Band 39 0.325 0.329 0.469 0.567 0.605 0.672 0.732 0.742 
Band 40 0.240 0.253 0.363 0.466 0.515 0.570 0.629 0.649 
Band 41 0.252 0.254 0.380 0.472 0.509 0.574 0.629 0.641 
Band 42 0.319 0.322 0.427 0.499 0.522 0.568 0.610 0.624 

 
 

 Band 25 Band 26 Band 27 Band 28 Band 29 Band 30 Band 31 Band 32 
Band 26 0.979        
Band 27 0.971 0.978       
Band 28 0.974 0.970 0.976      
Band 29 0.965 0.968 0.969 0.979     
Band 30 0.960 0.969 0.964 0.965 0.974    
Band 31 0.963 0.961 0.966 0.969 0.972 0.967   
Band 32 0.953 0.957 0.957 0.961 0.963 0.960 0.965  
Band 33 0.948 0.948 0.957 0.957 0.957 0.950 0.953 0.951 
Band 34 0.926 0.925 0.935 0.941 0.947 0.938 0.942 0.944 
Band 35 0.888 0.889 0.903 0.907 0.914 0.913 0.916 0.926 
Band 36 0.918 0.918 0.930 0.942 0.937 0.923 0.932 0.935 
Band 37 0.900 0.903 0.911 0.923 0.927 0.911 0.920 0.931 
Band 38 0.841 0.850 0.872 0.874 0.889 0.872 0.875 0.885 
Band 39 0.768 0.789 0.803 0.805 0.826 0.813 0.829 0.849 
Band 40 0.675 0.692 0.698 0.719 0.736 0.720 0.732 0.743 
Band 41 0.672 0.678 0.691 0.716 0.728 0.708 0.716 0.727 
Band 42 0.643 0.649 0.657 0.673 0.662 0.672 0.673 0.696 
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 Band 33 Band 34 Band 35 Band 36 Band 37 Band 38 Band 39 Band 40 Band 41 
Band 34 0.950         
Band 35 0.915 0.938        
Band 36 0.933 0.933 0.939       
Band 37 0.912 0.918 0.921 0.937      
Band 38 0.890 0.897 0.909 0.909 0.909     
Band 39 0.816 0.842 0.864 0.835 0.863 0.857    
Band 40 0.734 0.773 0.777 0.763 0.756 0.791 0.831   
Band 41 0.731 0.733 0.762 0.767 0.761 0.779 0.772 0.751  
Band 42 0.673 0.684 0.695 0.696 0.679 0.707 0.699 0.669 0.697 
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Appendix F 
 

Eigenvectors for COUP 444 Subset 
 
Band          PC1       PC2       PC3       PC4       PC5       PC6 
  1            0.007    -0.013     0.053    -0.008     0.013     0.019 
  2            0.034    -0.038     0.132    -0.003     0.062     0.037 
  3            0.120    -0.099     0.311     0.030     0.210     0.079 
  4            0.129    -0.094     0.295     0.054     0.167     0.116 
  5            0.304    -0.177     0.581     0.162     0.297     0.180 
  6            0.442     0.006     0.035     0.460    -0.135    -0.273 
  7            0.387     0.110    -0.230     0.448    -0.241    -0.164 
  8            0.191     0.127    -0.185     0.133    -0.038     0.241 
  9            0.222     0.249    -0.268     0.047     0.193     0.567 
 10            0.158     0.366    -0.222    -0.075     0.435     0.135 
 11            0.087     0.412     0.006    -0.175     0.408    -0.384 
 12            0.002     0.414     0.266    -0.059    -0.023    -0.228 
 13        -0.077     0.366     0.226     0.026    -0.127    -0.066 
 14           -0.096     0.308     0.202     0.052    -0.159    -0.088 
 15           -0.116     0.252     0.142     0.070    -0.153     0.098 
 16           -0.125     0.156     0.077     0.104    -0.072     0.086 
 17           -0.165     0.147     0.101     0.135    -0.145     0.234 
 18           -0.152     0.132     0.081     0.160    -0.124     0.205 
 19           -0.169     0.092     0.084     0.158    -0.048     0.144 
 20           -0.194     0.062     0.047     0.211    -0.005     0.129 
 21           -0.163     0.032     0.034     0.185     0.042     0.136 
 22           -0.164     0.015     0.006     0.188     0.061     0.020 
 23           -0.149    -0.007    -0.024     0.183     0.126    -0.004 
 24           -0.185    -0.015    -0.054     0.215     0.153    -0.037 
 25           -0.189    -0.035    -0.025     0.213     0.147    -0.117 
 26           -0.138    -0.027    -0.030     0.153     0.136    -0.082 
 27           -0.130    -0.035    -0.037     0.162     0.138    -0.076 
 28           -0.119    -0.035    -0.048     0.162     0.152    -0.050 
 29           -0.126    -0.044    -0.067     0.167     0.165    -0.074 
 30           -0.092    -0.028    -0.039     0.107     0.114    -0.051 
 31           -0.100    -0.036    -0.044     0.125     0.134    -0.043 
 32           -0.080    -0.032    -0.044     0.088     0.117    -0.083 
 33           -0.052    -0.021    -0.024     0.066     0.076    -0.030 
 34           -0.056    -0.028    -0.047     0.071     0.104    -0.044 
 35           -0.045    -0.029    -0.051     0.072     0.087    -0.071 
 36           -0.056    -0.028    -0.049     0.078     0.110    -0.049 
 37           -0.061    -0.032    -0.071     0.094     0.120    -0.061 
 38           -0.025    -0.019    -0.029     0.051     0.052    -0.044 
 39           -0.013    -0.011    -0.021     0.015     0.035    -0.044 
 40           -0.011    -0.011    -0.022     0.009     0.030    -0.017 
 41           -0.007    -0.006    -0.009     0.010     0.026    -0.030 
 42           -0.007    -0.005    -0.005     0.007     0.015    -0.018 
 
Band             PC7       PC8       PC9      PC10      PC11      PC12 
  1           -0.020    -0.028    -0.125     0.056    -0.026    -0.005 
  2           -0.095    -0.041    -0.392     0.006    -0.278    -0.218 
  3           -0.170    -0.021    -0.504     0.237    -0.313    -0.062 
  4           -0.066     0.011    -0.010     0.154    -0.079     0.155 
  5            0.087     0.014     0.389    -0.100     0.166     0.089 
  6            0.214    -0.171    -0.051    -0.210     0.132    -0.296 
  7           -0.022     0.155    -0.111     0.166    -0.188     0.239 
  8           -0.342     0.196     0.254     0.291    -0.104     0.207 
  9           -0.298    -0.055     0.026    -0.109     0.099    -0.269 
 10            0.370    -0.244    -0.257    -0.188     0.104     0.179 
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 11            0.222     0.200     0.239     0.340    -0.243    -0.081 
 12           -0.329     0.456    -0.097    -0.415     0.126    -0.055 
 13           -0.213    -0.066    -0.166     0.148     0.384     0.041 
 14           -0.148    -0.619     0.069     0.314     0.110     0.102 
 15           -0.052    -0.243     0.256    -0.399    -0.605     0.118 
 16            0.142    -0.058     0.056    -0.017    -0.170    -0.050 
 17            0.209     0.079     0.090     0.166     0.043    -0.225 
 18            0.236     0.181     0.033     0.213    -0.013    -0.508 
 19            0.162     0.133    -0.115    -0.066    -0.045     0.006 
 20            0.140     0.151    -0.175    -0.092    -0.072     0.318 
 21            0.163     0.155    -0.034     0.060     0.160     0.287 
 22            0.065     0.071    -0.120     0.054     0.092     0.177 
 23           -0.080    -0.023    -0.063    -0.077     0.112     0.102 
 24            0.074    -0.032    -0.010    -0.001    -0.041     0.003 
 25           -0.076    -0.059     0.065    -0.110    -0.069    -0.073 
 26           -0.129    -0.005    -0.020     0.026     0.016    -0.051 
 27           -0.101    -0.056     0.058     0.021     0.069    -0.008 
 28           -0.100     0.031     0.039    -0.037     0.017    -0.049 
 29           -0.101    -0.003     0.031     0.070    -0.043    -0.044 
 30           -0.048     0.017     0.081     0.091     0.003    -0.030 
 31           -0.128     0.021     0.082     0.015    -0.027    -0.072 
 32           -0.078    -0.005     0.041     0.002    -0.010    -0.087 
 33           -0.032    -0.024     0.014    -0.005     0.038    -0.009 
 34           -0.081     0.009     0.089    -0.031    -0.022    -0.008 
 35           -0.080    -0.066     0.040    -0.035     0.008    -0.036 
 36           -0.091    -0.080     0.004    -0.062     0.033    -0.052 
 37           -0.145    -0.111    -0.040    -0.053    -0.001    -0.122 
 38           -0.026    -0.047     0.010     0.008     0.022    -0.050 
 39           -0.048    -0.013     0.013    -0.007     0.010    -0.036 
 40           -0.042    -0.024     0.037    -0.007    -0.036    -0.043 
 41           -0.022    -0.020     0.010    -0.005    -0.016    -0.022 
 42           -0.010    -0.011     0.018    -0.018    -0.011    -0.033 
 
Band            PC13      PC14      PC15      PC16      PC17      PC18 
  1            0.123     0.051     0.088    -0.091     0.043     0.166 
  2            0.056    -0.100     0.258     0.061     0.008     0.209 
  3           -0.011     0.070    -0.090     0.013     0.013    -0.236 
  4           -0.077    -0.082    -0.199     0.026    -0.051    -0.023 
  5           -0.060    -0.048     0.103    -0.051    -0.040     0.160 
  6            0.140     0.171    -0.008     0.009     0.175    -0.255 
  7           -0.108    -0.138     0.028     0.076    -0.165     0.311 
  8           -0.128    -0.103    -0.034    -0.260     0.081    -0.345 
  9            0.337     0.201     0.074     0.077    -0.024     0.143 
 10           -0.358    -0.214    -0.113    -0.015    -0.090    -0.047 
 11            0.238     0.180     0.103    -0.010     0.109    -0.026 
 12            0.093    -0.321    -0.089     0.100    -0.132    -0.040 
 13           -0.399     0.457     0.149    -0.203     0.138     0.160 
 14            0.315    -0.244    -0.086     0.114    -0.180    -0.055 
 15           -0.124     0.182    -0.098     0.096     0.091     0.057 
 16           -0.048    -0.042     0.063    -0.091     0.194     0.134 
 17           -0.162    -0.369     0.531     0.169     0.022    -0.222 
 18           -0.125    -0.003    -0.524    -0.034    -0.134     0.099 
 19            0.090     0.083    -0.038    -0.181     0.057    -0.173 
 20            0.103     0.132     0.124     0.031     0.061    -0.263 
 21            0.275     0.246    -0.091     0.376    -0.123    -0.001 
 22            0.114     0.063     0.055     0.081    -0.089     0.122 
 23            0.196    -0.232    -0.082    -0.222     0.584     0.092 
 24            0.204    -0.213     0.045    -0.421    -0.075     0.272 
 25           -0.014     0.159     0.152    -0.432    -0.546    -0.119 
 26           -0.066     0.023    -0.221    -0.055     0.069    -0.040 
 27           -0.082    -0.136    -0.297     0.123     0.093    -0.025 
 28           -0.120    -0.005     0.030     0.106    -0.075     0.074 
 29           -0.215     0.011     0.098     0.272     0.020     0.277 
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 30           -0.112     0.076     0.010     0.146     0.209    -0.029 
 31           -0.051     0.011     0.061     0.136     0.041     0.110 
 32            0.005     0.006     0.028     0.100     0.042    -0.059 
 33           -0.010     0.010     0.002     0.095    -0.051    -0.048 
 34           -0.001     0.046     0.041     0.078    -0.049    -0.063 
 35           -0.083     0.024     0.011     0.076    -0.063    -0.187 
 36           -0.029     0.036     0.015     0.135    -0.112    -0.198 
 37           -0.033    -0.097     0.110     0.007     0.061    -0.180 
 38           -0.084     0.018     0.017     0.038     0.069    -0.073 
 39           -0.057    -0.014     0.029     0.036     0.046    -0.020 
 40           -0.063     0.024     0.016     0.044     0.021     0.030 
 41           -0.012    -0.019     0.020     0.037    -0.003    -0.018 
 42           -0.040     0.009     0.026     0.005     0.031    -0.027 
 
Band            PC19      PC20      PC21      PC22      PC23      PC24 
  1           -0.228     0.019     0.093     0.043    -0.012     0.016 
  2           -0.422     0.435    -0.055     0.127     0.025    -0.141 
  3            0.114    -0.300     0.036    -0.016     0.012     0.123 
  4            0.176    -0.262    -0.064     0.041    -0.169    -0.068 
  5            0.001     0.259     0.082    -0.070     0.033     0.007 
  6           -0.163    -0.165    -0.192     0.034     0.074    -0.055 
  7            0.243     0.121     0.220     0.017    -0.113     0.111 
  8           -0.423     0.043    -0.117    -0.060     0.097    -0.144 
  9            0.251    -0.032    -0.035     0.067    -0.033     0.006 
 10           -0.141     0.025    -0.047    -0.037     0.006     0.080 
 11            0.061     0.038     0.095     0.086     0.028    -0.021 
 12           -0.024    -0.068    -0.106    -0.084    -0.014    -0.017 
 13           -0.002    -0.045     0.110     0.030    -0.043    -0.026 
 14            0.034     0.142    -0.075    -0.089     0.144     0.040 
 15           -0.116    -0.116     0.133     0.030    -0.020     0.136 
 16            0.141    -0.054    -0.255    -0.013    -0.310    -0.492 
 17            0.035    -0.212     0.029     0.240    -0.107     0.169 
 18           -0.084     0.087     0.121    -0.214     0.113     0.083 
 19            0.162     0.327     0.161     0.032     0.022    -0.002 
 20            0.293     0.228    -0.199    -0.132     0.357    -0.061 
 21           -0.431    -0.209     0.109     0.043    -0.136    -0.078 
 22           -0.084     0.050    -0.028    -0.065    -0.271     0.040 
 23           -0.046    -0.080     0.241     0.071     0.068     0.303 
 24           -0.021    -0.310    -0.048    -0.228    -0.031    -0.170 
 25           -0.052    -0.048    -0.073     0.198     0.020     0.192 
 26            0.076     0.233    -0.345     0.192    -0.284     0.029 
 27            0.042     0.092     0.063     0.586     0.003    -0.214 
 28            0.028    -0.112     0.222     0.194     0.471    -0.210 
 29            0.006    -0.141    -0.279    -0.189     0.328    -0.135 
 30           -0.017     0.057    -0.260    -0.238     0.006     0.189 
 31           -0.040     0.037    -0.115    -0.049     0.031     0.429 
 32            0.011     0.125    -0.008    -0.148    -0.215     0.100 
 33            0.039    -0.002     0.023     0.058    -0.058     0.044 
 34           -0.039    -0.003     0.058    -0.014    -0.162     0.018 
 35            0.010     0.096     0.073    -0.168    -0.248     0.024  
 36            0.079     0.053     0.257    -0.072    -0.050    -0.225 
 37           -0.002     0.042     0.405    -0.370    -0.088    -0.222 
 38            0.025     0.027     0.136    -0.074    -0.046    -0.084 
 39            0.008     0.041     0.016    -0.040    -0.065     0.001 
 40           -0.004    -0.025     0.031    -0.031    -0.071    -0.008 
 41            0.008     0.000     0.033    -0.026     0.013    -0.004 
 42           -0.018     0.021     0.042    -0.021    -0.023    -0.015 
 
Band            PC25      PC26      PC27      PC28      PC29      PC30 
  1           -0.010    -0.142    -0.214    -0.285    -0.246    -0.353 
  2            0.138    -0.130    -0.035     0.118     0.099     0.243 
  3           -0.179     0.204     0.185    -0.076    -0.220    -0.076 
  4            0.237    -0.425    -0.323     0.072     0.434     0.078 
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  5           -0.061     0.164     0.078     0.005    -0.143    -0.014 
  6            0.034    -0.063     0.042    -0.005     0.106    -0.013 
  7           -0.009     0.043    -0.088     0.012    -0.110     0.006 
  8           -0.067    -0.004     0.089    -0.045     0.033    -0.016 
  9            0.061     0.007     0.000     0.019     0.015     0.013 
 10           -0.046    -0.021    -0.038    -0.026    -0.028    -0.039 
 11            0.038     0.036     0.019     0.039     0.069     0.038 
 12           -0.020    -0.009    -0.006    -0.060    -0.036    -0.041 
 13            0.093    -0.066     0.046     0.118    -0.031     0.051 
 14           -0.041    -0.003    -0.043    -0.066    -0.016    -0.010 
 15            0.149     0.089     0.060     0.051     0.037    -0.003 
 16           -0.540    -0.102    -0.092    -0.098    -0.083     0.022 
 17            0.135     0.099    -0.023     0.031    -0.015    -0.004 
 18           -0.037     0.007    -0.004     0.044    -0.017     0.144 
 19            0.131    -0.162    -0.018    -0.387     0.168    -0.418 
 20            0.045    -0.080     0.020     0.271    -0.151     0.164 
 21           -0.037     0.058    -0.195     0.139    -0.156    -0.059 
 22           -0.094     0.174     0.419    -0.162     0.499     0.098 
 23           -0.147     0.095    -0.166    -0.105     0.108     0.265 
 24            0.347    -0.099     0.250     0.158    -0.249     0.007 
 25           -0.159     0.032    -0.191    -0.010     0.096     0.003 
 26            0.160     0.494    -0.239     0.099    -0.060     0.008 
 27            0.108    -0.158     0.344     0.155    -0.106    -0.215 
 28           -0.169    -0.048    -0.229    -0.066     0.031     0.201 
 29            0.089     0.191    -0.003    -0.262     0.190    -0.231 
 30            0.223    -0.111    -0.124    -0.140    -0.127     0.044 
 31           -0.365    -0.368     0.272     0.232     0.032    -0.196 
 32           -0.155    -0.166    -0.274     0.230    -0.078    -0.136 
 33            0.065    -0.059     0.036    -0.148    -0.169     0.049 
 34            0.168    -0.158     0.005    -0.355    -0.204     0.144 
 35            0.056    -0.205     0.116    -0.135    -0.082     0.324 
 36           -0.112     0.031     0.104    -0.150    -0.011     0.226 
 37            0.050     0.168    -0.102     0.339     0.199    -0.314 
 38            0.062     0.007     0.046    -0.075    -0.080    -0.007  
 39           -0.006    -0.024    -0.012     0.013    -0.029    -0.094 
 40           -0.018     0.045    -0.020    -0.034    -0.129     0.063 
 41           -0.009     0.023    -0.010    -0.058    -0.002    -0.005 
 42           -0.005    -0.031    -0.006    -0.019    -0.095     0.006 
 
Band            PC31      PC32      PC33      PC34      PC35      PC36 
  1            0.497    -0.380     0.290    -0.070    -0.010    -0.073 
  2           -0.065     0.131    -0.043     0.032    -0.047     0.066 
  3           -0.109     0.009    -0.085    -0.071     0.047    -0.051 
  4            0.128    -0.025     0.101     0.111    -0.051     0.064 
  5           -0.025     0.019    -0.020    -0.042     0.003    -0.019 
  6           -0.012    -0.067     0.037     0.049     0.024    -0.002 
  7            0.029     0.080    -0.050    -0.033    -0.019    -0.002 
  8           -0.055    -0.071     0.017     0.035    -0.017     0.050 
  9            0.019     0.010    -0.005    -0.066    -0.004    -0.018 
 10           -0.013    -0.013    -0.003     0.018     0.019    -0.000 
 11            0.029     0.008     0.031     0.011    -0.021    -0.011 
 12            0.045     0.007    -0.008    -0.041     0.003     0.017 
 13           -0.064     0.008    -0.005     0.035    -0.033     0.002 
 14           -0.038     0.013    -0.018     0.024     0.040    -0.019 
 15            0.002    -0.106    -0.005    -0.014    -0.012     0.025 
 16            0.032     0.178    -0.013    -0.050     0.094     0.022 
 17            0.045    -0.072    -0.005     0.021    -0.038    -0.040 
 18            0.056    -0.000     0.170    -0.050    -0.020     0.004 
 19           -0.211     0.059    -0.313     0.184    -0.012    -0.016 
 20            0.138    -0.060     0.319    -0.036    -0.027    -0.037 
 21           -0.035     0.218    -0.148     0.071    -0.067    -0.041 
 22            0.027    -0.328     0.104    -0.197     0.216     0.077 
 23           -0.016     0.159     0.092    -0.055    -0.169    -0.014 
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 24           -0.082    -0.138    -0.175     0.136    -0.025     0.027 
 25            0.083     0.235     0.052    -0.230    -0.102     0.029 
 26            0.103    -0.153    -0.033     0.380     0.099    -0.068 
 27            0.055     0.075     0.050    -0.316    -0.064    -0.067 
 28           -0.096    -0.328    -0.218     0.085     0.427    -0.058 
 29           -0.119     0.135     0.171    -0.004    -0.343    -0.134 
 30            0.254     0.127    -0.449    -0.409     0.213     0.205 
 31            0.149     0.079    -0.048     0.447     0.079    -0.005 
 32           -0.530    -0.439     0.018    -0.246    -0.267     0.030 
 33           -0.164     0.070     0.272     0.037     0.150     0.720 
 34           -0.270     0.204     0.356     0.192     0.270    -0.235 
 35            0.085    -0.022    -0.051    -0.120    -0.044    -0.482 
 36            0.284    -0.110    -0.228     0.242    -0.484     0.216 
 37            0.138     0.219     0.126    -0.055     0.296    -0.013 
 38            0.041     0.063     0.150     0.051    -0.168     0.151 
 39            0.004    -0.047     0.051     0.031     0.027    -0.036 
 40            0.046    -0.059     0.073     0.078     0.026     0.050 
 41            0.066    -0.050     0.011     0.017    -0.001     0.090 
 42            0.038    -0.146     0.005     0.028     0.008     0.074 
 
Band            PC37      PC38      PC39      PC40      PC41      PC42 
  1           -0.059     0.137     0.049    -0.069    -0.017     0.007 
  2            0.016    -0.028    -0.011    -0.000     0.005    -0.006 
  3           -0.006    -0.003     0.012     0.006     0.018    -0.002 
  4            0.017    -0.046    -0.019     0.013    -0.005     0.016 
  5           -0.005     0.019     0.002    -0.004     0.002    -0.009 
  6           -0.009    -0.000    -0.019    -0.018    -0.014     0.003 
  7           -0.013     0.001     0.007     0.020     0.011     0.002 
  8            0.012     0.016    -0.012    -0.018    -0.009    -0.004 
  9            0.036    -0.019     0.013     0.018     0.014    -0.002 
 10           -0.032    -0.018     0.002    -0.007    -0.008    -0.001 
 11            0.020     0.033    -0.014    -0.001     0.004     0.012 
 12            0.021    -0.029     0.026    -0.008    -0.011     0.020 
 13           -0.048     0.035    -0.028     0.010    -0.017    -0.038 
 14            0.022    -0.054    -0.000     0.003     0.003     0.028 
 15           -0.016     0.040     0.032    -0.017     0.032    -0.013 
 16            0.003     0.026     0.028     0.017     0.008    -0.018 
 17           -0.024     0.022     0.011    -0.013    -0.005     0.003 
 18           -0.048    -0.002    -0.020     0.005     0.031    -0.019 
 19            0.117     0.004    -0.069    -0.014    -0.065     0.034 
 20           -0.040    -0.034    -0.033    -0.009     0.000    -0.014 
 21            0.106    -0.007    -0.016     0.036     0.019    -0.012 
 22           -0.046    -0.112     0.039    -0.017     0.010     0.020 
 23            0.006     0.019    -0.057     0.026     0.018     0.008 
 24            0.009     0.010     0.001    -0.019     0.014    -0.030 
 25            0.020    -0.092    -0.015     0.022     0.022     0.016 
 26            0.021     0.090     0.080     0.011    -0.006    -0.008 
 27           -0.064    -0.040    -0.055     0.014    -0.046    -0.007 
 28            0.088     0.010     0.108    -0.062     0.027     0.010 
 29            0.060     0.121    -0.081     0.061    -0.020     0.052 
 30           -0.160    -0.124     0.045    -0.037     0.016     0.004 
 31            0.002     0.020     0.067     0.002    -0.046     0.006 
 32           -0.126    -0.019     0.046    -0.044    -0.067    -0.033 
 33            0.208     0.437    -0.102    -0.026     0.029     0.045 
 34           -0.464    -0.201     0.045     0.039     0.014    -0.069 
 35            0.445     0.392    -0.037     0.019    -0.050     0.026 
 36           -0.385     0.024    -0.080    -0.055     0.063    -0.003 
 37           -0.077     0.098    -0.039     0.026    -0.072     0.039 
 38            0.395    -0.430     0.689    -0.114     0.030     0.031 
 39            0.202    -0.233    -0.358    -0.169     0.825    -0.158 
 40            0.235    -0.452    -0.536    -0.324    -0.462     0.257 
 41            0.162    -0.141    -0.135     0.286    -0.257    -0.872 
 42            0.101    -0.216    -0.121     0.862     0.082     0.358
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Appendix G 

Eigenvalues for COUP 444 Subset 
Component Eigenvalue Proportion Cumulative 

1 5485800000000 0.623 0.623 
2 2703700000000 0.307 0.930 
3 193090000000 0.022 0.952 
4 166530000000 0.019 0.971 
5 83088000000 0.009 0.980 
6 36108000000 0.004 0.984 
7 14359000000 0.002 0.986 
8 12044000000 0.001 0.987 
9 10638000000 0.001 0.989 
10 9161318129 0.001 0.990 
11 8661918888 0.001 0.991 
12 8278939401 0.001 0.992 
13 6213038245 0.001 0.992 
14 5936007079 0.001 0.993 
15 5559488440 0.001 0.994 
16 5075589349 0.001 0.994 
17 4989070817 0.001 0.995 
18 4084620225 0.000 0.995 
19 3981628161 0.000 0.996 
20 3518224813 0.000 0.996 
21 3273573251 0.000 0.996 
22 3071969487 0.000 0.997 
23 2683702815 0.000 0.997 
24 2638508387 0.000 0.997 
25 2544445558 0.000 0.998 
26 2336962812 0.000 0.998 
27 2193127824 0.000 0.998 
28 1932914749 0.000 0.998 
29 1867531668 0.000 0.999 
30 1689332097 0.000 0.999 
31 1529087747 0.000 0.999 
32 1418222255 0.000 0.999 
33 1344162080 0.000 0.999 
34 1239097892 0.000 0.999 
35 1066209823 0.000 1.000 
36 918758024 0.000 1.000 
37 721826174 0.000 1.000 
38 647750008 0.000 1.000 
39 424973629 0.000 1.000 
40 300182087 0.000 1.000 
41 193401860 0.000 1.000 
42 153394869 0.000 1.000 
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Appendix H 

Class Assignments After Each Clustering Method 

COUP 
Source 
Number 

Hierarchical 
Clustering 

Class 
Membership 

K-Means 
Class 

Membership 

Source Changed 
Classes 

Marked With * 

471 1 1   
510 1 1   
625 1 1   
647 1 1   
680 1 1   
723 1 1   
797 1 1   
441 2 2   
466 2 2   
507 2 2   
539 2 2   
563 2 2   
572 2 2   
598 2 2   
599 2 2   
640 2 2   
667 2 2   
1123 2 2   
1139 2 2   
376 3 3   
554 3 3   
614 3 3   
655 3 3   
780 3 3   
1075 3 3   
1223 3 3   
1297 3 3   
1364 3 3   
241 4 4   
246 4 4   
385 4 4   
407 4 4   
415 4 4   
424 4 4   
533 4 4   
595 4 4   
817 4 4   
1054 4 4   
1062 4 4   
1067 4 4   
1234 4 4   
1298 4 4   
1439 4 4   
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COUP 
Source 
Number 

Hierarchical 
Clustering 

Class 
Membership 

K-Means 
Class 

Membership 

Source Changed 
Classes 

Marked With * 

1469 4 4   
1480 4 4   
1535 4 4   
986 5 5   
1053 5 5   
111 6 6   
224 6 6   
292 6 6   
548 6 6   
896 6 6   
970 6 6   
1041 6 6   
1128 6 6   
1165 6 6   
314 7 7   
319 7 7   
353 7 6 * 
391 7 7   
427 7 7   
472 7 4 * 
712 7 7   
713 7 7   
849 7 7   
852 7 7   
878 7 7   
892 7 7   
919 7 7   
1056 7 7   
1081 7 6 * 
1137 7 7   
1200 7 6 * 
1276 7 7   
1284 7 7   
1296 7 7   
1308 7 7   
1579 7 7   
1607 7 6 * 
1609 7 6 * 
165 8 8   
192 8 8   
332 8 8   
418 8 8   
435 8 8   
481 8 8   
520 8 8   
610 8 8   
627 8 8   
653 8 8   
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COUP 
Source 
Number 

Hierarchical 
Clustering 

Class 
Membership 

K-Means 
Class 

Membership 

Source Changed 
Classes 

Marked With * 

751 8 8   
1035 8 8   
1112 8 8   
1147 8 8   
1154 8 9 * 
1167 8 8   
1399 8 8   
1430 8 8   
1471 8 8   
1544 8 8   
1561 8 8   

8 9 9   
321 9 9   
331 9 9   
338 9 9   
365 9 9   
561 9 9   
658 9 9   
697 9 9   
837 9 9   
1071 9 9   
1140 9 9   
1456 9 9   

65 10 8 * 
137 10 10   
172 10 9 * 
230 10 10   
238 10 9 * 
269 10 9 * 
483 10 9 * 
536 10 9 * 
664 10 9 * 
902 10 9 * 
1110 10 9 * 
1258 10 10   
1357 10 10   
1603 10 9 * 

55 11 11   
90 11 10 * 

115 11 11   
183 11 10 * 
223 11 10 * 
227 11 11   
236 11 11   
250 11 10 * 
260 11 10 * 
262 11 10 * 
301 11 11   
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COUP 
Source 
Number 

Hierarchical 
Clustering 

Class 
Membership 

K-Means 
Class 

Membership 

Source Changed 
Classes 

Marked With * 

310 11 11   
322 11 10 * 
323 11 11   
373 11 10 * 
414 11 11   
454 11 10 * 
485 11 10 * 
514 11 11   
515 11 11   
612 11 11   
624 11 10 * 
645 11 10 * 
649 11 10 * 
660 11 10 * 
789 11 11   
790 11 10 * 
823 11 10 * 
897 11 10 * 
921 11 11   
939 11 10 * 
949 11 11   
976 11 11   
998 11 11   
1000 11 11   
1008 11 10 * 
1028 11 10 * 
1045 11 11   
1070 11 10 * 
1074 11 11   
1097 11 11   
1104 11 10 * 
1120 11 11   
1141 11 11   
1158 11 11   
1191 11 11   
1210 11 11   
1231 11 10 * 
1245 11 10 * 
1275 11 10 * 
1290 11 10 * 
1292 11 11   
1302 11 10 * 
1316 11 10 * 
1344 11 10 * 
1356 11 11   
1391 11 10 * 
1407 11 11   
1409 11 10 * 
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COUP 
Source 
Number 

Hierarchical 
Clustering 

Class 
Membership 

K-Means 
Class 

Membership 

Source Changed 
Classes 

Marked With * 

1410 11 11   
1419 11 11   
1450 11 11   
1474 11 11   
1485 11 10 * 
1503 11 11   
1529 11 10 * 
1531 11 11   
1550 11 11   

11 12 12   
49 12 12   

110 12 11 * 
117 12 12   
174 12 12   
217 12 12   
256 12 11 * 
304 12 12   
308 12 11 * 
368 12 11 * 
404 12 12   
446 12 12   
490 12 11 * 
550 12 11 * 
566 12 12   
626 12 11 * 
663 12 12   
737 12 12   
753 12 12   
756 12 11 * 
776 12 11 * 
801 12 12   
857 12 11 * 
885 12 12   
899 12 12   
992 12 11 * 
1019 12 12   
1086 12 11 * 
1100 12 12   
1111 12 12   
1117 12 12   
1127 12 12   
1193 12 11 * 
1246 12 12   
1261 12 12   
1264 12 11 * 
1374 12 12   
1382 12 11 * 
1449 12 12   
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COUP 
Source 
Number 

Hierarchical 
Clustering 

Class 
Membership 

K-Means 
Class 

Membership 

Source Changed 
Classes 

Marked With * 

1462 12 12   
1464 12 12   
1466 12 11 * 
1478 12 12   
1570 12 12   

17 13 13   
29 13 13   

154 13 13   
177 13 13   
226 13 13   
244 13 13   
312 13 11 * 
431 13 13   
499 13 13   
648 13 13   
671 13 13   
710 13 13   
750 13 13   
783 13 13   
856 13 12 * 
903 13 13   
1058 13 13   
1101 13 13   
1103 13 13   
1132 13 13   
1149 13 12 * 
1155 13 13   
1161 13 13   
1172 13 13   
1206 13 13   
1216 13 13   
1235 13 11 * 
1336 13 13   
1369 13 13   
1447 13 13   
1475 13 13   
1588 13 11 * 

6 14 14   
28 14 14   
40 14 15 * 
43 14 14   
54 14 14   
62 14 14   
66 14 14   
67 14 15 * 
96 14 14   

109 14 15 * 
112 14 14   
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COUP 
Source 
Number 

Hierarchical 
Clustering 

Class 
Membership 

K-Means 
Class 

Membership 

Source Changed 
Classes 

Marked With * 

113 14 14   
122 14 14   
134 14 14   
139 14 14   
141 14 14   
173 14 15 * 
179 14 15 * 
197 14 14   
202 14 14   
205 14 14   
218 14 14   
253 14 14   
270 14 15 * 
309 14 14   
325 14 15 * 
379 14 14   
382 14 14   
387 14 14   
410 14 15 * 
413 14 14   
459 14 15 * 
470 14 15 * 
488 14 15 * 
489 14 14   
498 14 15 * 
513 14 14   
517 14 15 * 
545 14 14   
557 14 14   
565 14 14   
602 14 14   
604 14 14   
616 14 15 * 
631 14 13 * 
665 14 15 * 
666 14 14   
672 14 14   
700 14 14   
711 14 14   
726 14 15 * 
739 14 15 * 
754 14 14   
763 14 15 * 
798 14 14   
807 14 14   
862 14 15 * 
865 14 13 * 
888 14 15 * 
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COUP 
Source 
Number 

Hierarchical 
Clustering 

Class 
Membership 

K-Means 
Class 

Membership 

Source Changed 
Classes 

Marked With * 

914 14 15 * 
924 14 14   
936 14 14   
960 14 14   
969 14 15 * 
972 14 14   
1007 14 14   
1009 14 14   
1076 14 14   
1095 14 15 * 
1121 14 14   
1126 14 15 * 
1131 14 14   
1134 14 14   
1135 14 15 * 
1143 14 14   
1150 14 15 * 
1151 14 14   
1169 14 15 * 
1177 14 15 * 
1202 14 15 * 
1212 14 15 * 
1233 14 15 * 
1236 14 15 * 
1242 14 14   
1279 14 14   
1282 14 14   
1291 14 13 * 
1306 14 15 * 
1311 14 15 * 
1355 14 15 * 
1384 14 14   
1387 14 14   
1388 14 15 * 
1398 14 15 * 
1423 14 15 * 
1424 14 14   
1429 14 15 * 
1432 14 15 * 
1433 14 14   
1455 14 14   
1463 14 15 * 
1487 14 14   
1492 14 15 * 
1521 14 14   
1546 14 15 * 
1585 14 14   
1608 14 14   
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COUP 
Source 
Number 

Hierarchical 
Clustering 

Class 
Membership 

K-Means 
Class 

Membership 

Source Changed 
Classes 

Marked With * 

1610 14 15 * 
20 15 15   
21 15 15   
69 15 15   
89 15 15   

100 15 15   
114 15 16 * 
118 15 15   
119 15 15   
132 15 16 * 
133 15 15   
169 15 16 * 
249 15 15   
255 15 15   
266 15 15   
276 15 15   
296 15 15   
328 15 15   
340 15 15   
389 15 15   
395 15 15   
468 15 15   
553 15 15   
695 15 15   
937 15 15   
966 15 15   
974 15 15   
1066 15 15   
1207 15 15   
1360 15 15   
1373 15 16 * 
1404 15 15   
1411 15 15   
1438 15 15   
1440 15 15   
1454 15 15   
1512 15 15   
1516 15 15   
1524 15 15   
1539 15 15   
1543 15 15   
1553 15 15   
1564 15 15   
1571 15 16 * 
1572 15 15   
1591 15 15   
1594 15 15   
1595 15 15   
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COUP 
Source 
Number 

Hierarchical 
Clustering 

Class 
Membership 

K-Means 
Class 

Membership 

Source Changed 
Classes 

Marked With * 

1612 15 15   
1616 15 15   

60 16 16   
64 16 16   

128 16 16   
164 16 16   
294 16 16   
300 16 16   
585 16 16   
864 16 16   
869 16 16   
1199 16 16   
1415 16 16   
1457 16 16   
1507 16 16   
1537 16 16   
948 17 17   
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