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Abstract

The Chandra X-ray ObservatoryChHandra) is producing images with outstanding spatial
resolution using low-noise, fast-readout CCDs. Amanany other things, X-ray images and
spectra help astronomers study star formation aalhctic evolution. Currently, X-ray

astronomers classify one X-ray source at a timevibyal inspection and use of model-fitting
software. This approach is useful for studyingghgsics of bright individual sources but is time
consuming for analyzing large images of rich fietifsX-ray sources, such as stellar clusters.
Objective and efficient techniques from the fielitfsmultivariate statistics, pattern recognition,

and hyperspectral image processing, are needathtgza the growinghandra image archive.

An image processing algorithm has been developadottders the given X-ray sources based on
hard versus soft X-ray emission and then groupsttered X-ray sources into clusters based on
their spectral attributes. The algorithm was aptio imaging spectroscopy of the Orion Nebula
Cluster (ONC) population of more than 1000 X-rayiténg stars. As an initial test of the
algorithm, images of the ONC from thehandra archive were analyzed. The final spectral
classification algorithm was applied to a samplesafirces selected from among the more than
1600 X-ray sources detected in t@bhandra Orion Ultradeep Project. Clustering results have
been compared with known optical and infrared pridge of the population of the ONC to assess
the algorithm’s ability to identify groups of soes that share common attributes.
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Chapter 1

Introduction

A large fraction of the Chandra X-ray Observatdai@handra) observing time has been
devoted to the study of young star clusters andseguently, large datasets exist from
these observations of rich stellar fields. X-reyages help astronomers study new star
formation and galactic evolution. However, the gibgl processes responsible for X-ray
emission from recently formed stars are not fulhderstood and are presently hotly
debated within the X-ray astronomy commuhity’ The growth of th&€handra archive

of X-ray observations of young clusters has fudldd vigorous debate concerning the

characterization of X-ray emission from young sfafs’.

A typical Chandra charge-coupled device (CCD) observation of a yosteflar cluster
results in detection of X-ray emissions from teoshtundreds of very young stars. An
example of this is shown iGhandra's dramatic deep ~80 ks image of the Orion Nebula

Cluster (ONC, Figure 1.1)Chandra has resolved more than 1000 X-ray emitting sources
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in this single image of the ONC, including X-rayusces associated with externally

illuminated structures that are presumably planetafng circumstellar diske.

Figure 1.1:Chandra X-ray Observatory image of the GNC

In addition, a new set of problems have been uneavly X-ray images of young stellar
clusters®®*% Among the challenges and puzzles are:

* Only very weak trends have been found when attergptd correlate model

parameters derived from spectral fitting of indivéd sources (e.g., X-ray

luminosity and temperature; X-ray absorbing colutand visual extinction)
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» There is no apparent relationship between the sitienf X-ray emission and the
presence of circumstellar disks. For example bigeh et al! have found weak
anti-correlation between X-ray luminosity and iratiwrs of accretion rate.

*+ Some X-ray sources show distinct spectral feattines can be attributed to
emission from specific ions; most do not

* A very wide range of temporal behavior has beereded, from long-term
flaring to episodic, short X-ray bursts

» Approximately 17.6% of the ~1616 detected X-rayrses in and around the

ONC have no visible or infrared (IR) counterp&tts

These puzzling observations are being studied bBjyaimg data from th€handra Orion
Ultradeep Project (COUP), an ~838 ks exposure ef NC obtained over a nearly

continuous period of ~10 days in January of 28(Bigure 1.2).

Classification of X-ray sources is traditionallycamplished by visual inspection of
individual X-ray source spectra and subsequemmditbf each source spectrum to various
models, either manually, or by use of model-fittsaftware programs. One X-ray source
is analyzed at a time using this approach andifilzegt#on success is measured visually.
This approach is useful for studying the physicbrajht, individual sources. However,
this can be a time consuming approach for analyzarge datasets created from

observations of rich stellar fields.
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Figure 1.2:Chandra image of the ONC from the COUP observation.

The wealth of multidimensional data currently beippduced by the X-ray CCD
detector arrays onboa@handra represents a far-reaching problem pervasive toyman
current astronomical missions. That is, the dathiges of current missions have
surpassed their predecessors, both in terms of ewrab sources detected and the
information content available for each source. e@ivthe detection of a very large
number of X-ray sources, each of which is potelgtiakll-resolved spectrally, spatially,
and temporally, how does one best extract and aealye available information? Is it
possible to group detected sources into distintégmaies or classes in an unbiased
manner in order to better guide subsequent speaftralyses of individual sources?

These questions suggest use of objective modepérdent methods for spectral
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clustering of X-ray sources: methods that can t@tteantage of the vast collection of

high-spatial resolution CCD spectral data how beioguired byChandra.

My research involved exploring solutions to thislgem using multivariate statistical
and pattern recognition techniques. Use of tealesgfrom these fields is not new to
astronomical data analysis (see Chapter 4), buprnégously untested in the context of
X-ray spectral data fronChandra. The goal of my research was to develop an X-ray
source clustering algorithm with the following chpgies:

* Find natural groupings of X-ray sources in stetlaisters

» Process large datasets created from observatianshadtellar fields

» Perform without a priori information concerning th&ture of the sources

» Use an approach that is objective and model-indig@n

» Consist of as few manual steps as possible

Sources within the same group may be sufficiernithilar to be treated identically for the
purpose of further astronomical analysis, where tduld be impossible for the whole

heterogeneous star field.

The expected scientific significance of this apptoencludes the potential to:
» Determine relationships between X-ray and visiblgecsral classes and
parameters
» Uncover classes of sources that do not fit anytiegisnodels

» Identify extreme outliers of interest among all soeirces in a stellar field
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» Identify groups of sources that have no visibleIRrcounterparts or that are
poorly characterized in other wavelength regimes

» Identify groups of contaminating and interlopingusmes so that researchers can
eliminate them from subsequent statistical studies

* Increase productivity of X-ray archival researcle do the ability of the resulting
algorithm to process and categorize larger quastitf data than could be done

manually

Chapter 2 contains a brief background on X-rayoastmy. In Chapter 3, | provide a
description of the relevant subsystemsChandra and its imaging capabilities. Chapter
4 contains a review of applications of multivariatatistical and pattern recognition
technigues to current and past astronomical prable@hallenges specific to X-ray data
are also provided in Chapter 4. Chapter 5 contaimescription of the mathematical
technigues used in my research. In Chapter efinel¢he multivariate variables used as
input into the algorithm. A proof of concept iepented in Chapter 7. The X-ray source
classification algorithm is then detailed in Chag@e The analysis of results is presented

in Chapter 9. Finally, a summary is presentedhagier 10.



Chapter 2

X-ray Astronomy

2.1  History

X-ray astronomy dates back to 1949 when it wasodisced that the Sun emits X-rays
Since that time, many interesting sources of Xemyssion have been discovered in the
universe. In the early 70's, NASA's Uhtfrastronomy satellite discovered a number of
X-ray binary stars, in which an ordinary star cslat super dense neutron star that emits
X-rays as it pulls matter from the ordinary stan. the late 70's and early 80's, NASA's
Einstein Observatory discovered that cataclysmitatée stars in our own galaxy emit
X-rays when they are in outburst. The Einsteinédstory also collected the first X-ray
images of pulsars and supernova remnants. Theingagbility of the Einstein
Observatory changed the way X-ray astronomers amntheir research, with the
detection of thousands of discrete sources of Xewmyssion. This trend toward high-

resolution X-ray imaging spectroscopy acceleratedhe mid 90's with the advent of
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Roentgen Satellité (ROSAT). ROSAT, a joint project of the United ®& Great
Britain, and Germany, was used to expand the numbknown X-ray sources to over
60,000. The availability of ROSAT proportional coer data led to the widespread use
of X-ray hardness ratios (the Hertzsprung-Russelgrdms of X-ray astronomy) for

source classificatidfi.

The Advanced Satellite for Cosmology and Astropty/$i(ASCA), the follow-on to
ROSAT, featured improved spectral resolution, allvéth inferior spatial resolution.
ASCA's demonstration of the application of CCDinay astronomy paved the way for
Chandra and the X-ray Multi-Mirror Mission-Newtdfi (XMM-Newton). Chandra, one
of NASA's Great Observatories, was launched in 1988thin months, an X-ray source
at the center of our galaxy that is believed to éeupermassive black hole was

discovered from the X-rays emitted from superheatatter nearing its event horizon.

2.2  X-ray Properties

The wavelength range for the X-ray portion of theceomagnetic spectrum is from
about 0.01 nm to about 10 nm, which correspondsramge of 0.1 Ato 100 A, (10A =1
nm = 10° m). The wavelength of an X-ray photon is lessntta millionth of a

centimeter: about a thousand times shorter tharsiblerlight photon. Extremely hot
gases and charged particles moving at nearly thedspf light emit X-rays. Material that

is at a very high temperature (millions of degretvin) emits X-rays. Temperatures
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this high can occur in extremely dense objecttarige magnetic fields, or from explosive

forces.

The energies of X-ray photons are typically measduneelectron volts and range from
0.1 keV to 10 keV. Higher energy X-rays are refdrto as “hard” X-rays while lower
energy X-rays are referred to as “soft” X-rays. eTdoundary between the two types is
not well defined, but is generally placed arourke® *°. The highest energy X-rays can
penetrate more deeply into a substance than sodtyX-and therefore, require a denser

detector containing material that is more massive.

X-ray photons emitted by a constant source or acgotlnat is at least constant for some
time interval will form an independent Poisson @mex for each energy interval. The

counts in a given time interval will then be a Rois-distributed random variable

2.3  X-rays from Young Stars

A star spends most of its life in what is knowrtlas “main-sequence phase” in which it
produces power by nuclear fusion of hydrogen irgbuim. Young stars are called pre-
main-sequence (PMS) stars if they have not yet theéguburn hydrogen. These very
young stars are constantly changing in X-ray brighs, sometimes within half a day.
Star birth occurs within dense, molecule-rich andtdich cores of interstellar gas

clouds. As the star-generating part of the coféagses, it flattens so as to conserve
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angular momentum. The central region of the csllfap cloud will form a star, while the

flattened structure surrounding this protostar @aentually form planets orbiting the star.
This flattened structure is called a protoplanetdisk and can be quite thick. The cloud
core can be optically opaque, such that visible @rah infrared (IR) light cannot escape
the star’'s immediate vicinity, particularly if tis¢ar is viewed through its own disk almost
edge-on. However X-ray photons are somewhat menetpating than even IR photons,
especially at energies greater than 2 KeVA large number of PMS stars in the ONC
have only been detectable in X-rays thus far. @loee, X-ray astronomy may be used to
penetrate these star-forming regions to detecs #tavery early stages of formation that

are inaccessible to optical and IR observations.

Young stars, with or without surrounding, planetnitng disks, emit X-rays at rates
thousands of times higher than middle-aged stans as the Sun. These X-rays often are
emitted during flares that are thought to arisenfithe release of energy stored in highly
tangled magnetic fields near the surface of the stmilar to magnetic flares from the
Sun. However, young stars release much more freqaied violent flares, reaching
temperatures of ~100 x 4®&elvin'™. It is possible that some of this energy reldase
derived from magnetic reconnection events resuliog interactions between a young
star and its circumstellar, protoplanetary &iskNewborn stars at the center of nebulae
emit extremely strong bursts of X-rays. One pafécrich sample of PMS stars can be
observed in a relatively compact region within @wat Nebula in Orion. This cluster is

called the Orion Nebula Cluster (ONC)
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2.4  Orion Nebula Cluster

At a distance of about 450 parstdte ONC is the richest stellar nursery in theasol
neighborhood. Within the ONC radius of less th&mparsecs is an association of young
stars (< 1 Myr), most of them X-ray sources. Ad¢ tiore of the ONC is a very young,
closely packed group of stars and protostars tteabaly a few hundred thousand years
old. Many of these stars emit extremely strongstsuof hard X-rays. AChandra
Advanced CCD Imaging Spectrometer — Imaging (ACISele Chapter 3) image of the
ONC is shown in Figure 1.1. The detected souraege from a few photon counts to
several thousand photon counts. Some of the @etetray sources are very faint,
resulting in approximately only 6 detected phofang&igure 2.1 shows the Hubble Space
Telescope image of the Trapezium region of the ONEbintours fromChandra X-ray
data of the same region have been overlaid onltieabimage. As can be seen in this

image, some X-ray sources have no visible countexpa

2.4.1 X-ray Background

The X-ray background (XRB) was detected during ekeb flight whose scientific
purpose was to study X-ray emission from the Mdaut, instead found the first extra-
solar X-ray source (Sco X-1) and the X®B Instrumental effects can also contribute to

the perceived background radiation.

21 parsec = 3.26 light years
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Figure 2.1: Hubble Space Telescope image of the Trapezium megfithe ONC. The

contour lines from the Chandra X-ray Observatogya@rerlaid on the visible image.



Chapter 3

Chandra X-ray Observatory

3.1 Background

X-rays are absorbed by the Earth's atmosphererefdre, a space-based telescope is needed to
image X-ray emitting space-based object€handra was carried up on the Space Shuttle
Columbia during a night launch on July 23, 199%fritie Kennedy Space Center in Florida. The
observatory reached its final orbit location on Asig24, 1999, after a series of five burns of the
Integral Propulsion SystemChandra's orbit is elliptical with a perigee of 250 milesda@an
apogee of 45,014 miles: more than one-third ofwhg to the moon (see Figure 3.1). The period
is 24 hours and 38 minutes and the Earth's radidigits are crossed on every orbit. At perigee,

Chandra travels at approximately 22,000 miles per hour.

13
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3.2 Hardware

A schematic of the observatory is shown in FiguZz 3The hardware relevant to my research
includes the High Resolution Mirror Assembly (HRMAigure 3.3) and the Advanced CCD

Imaging Spectrometer (ACIS; Figure 3.4).

Figure 3.1 The orbit ad€handra shown from above. The pink bands encircling thelE

represent the radiation belts (lllustrati@nandra X-ray Center/M. Weiss).

3.2.1 HRMA

X-ray telescopes use grazing incidence optics sotgpls are not absorbed by the optics.

Chandra’s X-ray mirrors are capable of resolving sourdest tare of the order of an arcsecond
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apart. The HRMA consists of two sets of four cartde nested mirrors: one set of paraboloid-
shaped mirrors and one set of hyperboloid-shaperbrei(see Figure 3.3). This configuration
increases the photon collection area while defigcthe paths of the photons towards the focal

surface.
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Figure 3.2: Schematic of the Chandra X-ray Obgerya(lllustration: Chandra Proposers’
Observatory Guide).

3.2.2 ACIS

X-ray CCDs are essentially similar in design toibles light CCDs. However, in visible light
imaging systems, ensembles of photons arrive wihgiven observing interval at each pixel of
the CCD. In contrast, X-ray CCDs are operated inaaner such that, ideally, photons can be
counted one at a time. Another key difference Ive® the number of electrons that are liberated
by one photon. Whereas a visible light photon Villerate one electron, an X-ray photon can
liberate many electrons within the silicone of th€D because the number of electrons that are
liberated depends on the energy of the photonotdPhenergies can be determined if the X-rays

are detected individually.
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HRMA Optical Form Field-of-View
- 5Deg '\
2
Doubly 9
: Reflected -t i o
Four Nested Hyperboloids X-rays _ i /.,-' STI;E;CE
-
7
7 Doubly
Reflected
X-rays
10 Meters

Mirror elements are 0.B m long and from 0.6 m to 1.2 m diameter

Figure 3.3: High Resolution Mirror Assembly canfration (lllustration: Hughes Danbury
Optical Systems).

The field of view (FOV) is the total amount of sktyat can be imaged in one frame. The ACIS
has an angular resolution of 0.49 arcseconds witk@V of 16 arcminutes by 16 arcminutes.
The ACIS consists of 10 planar CCDs, each with 1824024 pixels (Figure 3.5) with a pixel
size of 24um. Four of the CCDs are arranged in a 2x2 arrayI$Al) and are used for imaging.
The remaining six are arranged in a 1x6 array (AS)&nd are used either for imaging or as a
detector for the transmission grating spectrometdsardChandra. ACIS-I was used for the
archival observations used in my research. If ACiSselected in “imaging” mode, chips 10-13

plus chips S2 and S3 are u¥ed
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S SIS

Figure 3.4: Photo of the Advanced CCD Imaging &peteter

See Table 3.1 for a summary of ACIS characteristibsyo characteristics of CCDs are quantum

efficiency and charge transfer efficiency. Quantafficiency is the percentage of incident

photons that actually produces detectable chargkeirdepletion region. See Figure 3.7 for the

guantum efficiency curve for the ACIS-I chips. @ transfer efficiency (CTE) is the fraction

of charge that is successfully transferred fronepia pixel during one CCD transfer cycle.
CTI=1-CTE

where CTl is the charge transfer inefficiency.
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Figure 3.5: A schematic of the ACIS flight focdape showing the 4 chips used for imaging

(ACIS-1) and the 6 chips used for spectroscopy @&S)).

Table 3.1: ACIS Characteristics

CHARACTERISTIC

VALUE

CCD format 1024 by 1024 pixels
Pixel size 24 microns
Array size ACIS-I : 16.9 by 16.9 arcmin

ACIS-S: 8.3 by 50.6 arcmin

On-axis effective area

110 cm2 @ 0.5 keV (FI)

Quantum Efficiency

> 80% between 3.0 and 5.0 k¢

1%

»

frontside illumination

> 30% between 0.8 and IV

Quantum Efficiency

> 80% between 0.8 and 6.5 k¢

17

]

backside illumination

> 30% between 0.3 artlkeV

Charge Transfer Inefficiency Fl: ~2x10"

(parallel) Bl: ~2x10°

Charge Transfer Inefficiency Bl (S3): ~7x10°

(serial) BI (S1): ~1.5x1d
Fl: < 2x10°

System noise

< ~2 electrons (rms) per pixe

Nominal frame time

3.2 sec (full frame)

Event threshold

FI: 38 ADU (~140 eV)

Bl: 20 ADU ( ~70 eV)
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All but two of the chips on the ACIS are frontsitleminated (FI). The FI chip gate structures
are facing the incident X-ray beam. However, thelds of chips S1 and S3 have had treatments
applied to remove insensitive, undepleted, bulicail material, thereby leaving the photo-
sensitive depletion region exposed. These twoschgve their backs facing the HRMA and are
called backside-illuminated (Bl). They were desidrio improve the quantum efficiency at low

energies.

Before launch, the ACIS FI CCDs approached the réteal limit for energy resolution for
almost all energiés After launch, it was discovered that there wame degradation in the
quality of the FI CCDs, exhibited by the energyotason as a function of row number with the
largest degradation in the farthest row from tlaenfe store region. It is believed that the damage
was caused by low energy protons that reachedotted plane during radiation belt passdges
As a result, the operating procedure was changetbie the ACIS out of the focal plane during
radiation belt passages. Therefore, the resudtitergy resolution for the FI CCDs is a function
of row number due to the increase in CTI from radiadamage. An ACIS CTI correction has
been developed and is now applied as part of twedatd processify The full-width half-
maximum (FWHM) of the FI detectors increases withreéasing energy (see Figure 3.6). The

energy resolution for the two Bl CCDs is the saméhair pre-launch values.
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Figure 3.6: Plot showing how the FWHM of the FI@<Cincreases with increasing energy. This
data is after CTI correction.

There are several sources of noise in a CCD imagystem. One source is photon counting
noise (also called shot noise). Photon noise deduandom fluctuations in the photon stream of
the source due to the quantum nature of light. mte at which photons are received has a
Poisson distribution. Other sources of noise aasl moise, due to CCD readout electronics, and

thermal noise generated by dark current. The taiesle for ACIS is shown in Table 3.1.
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ACIS chips i0, i1, i2, i3
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Figure 3.7: Quantum efficiency curves for the front-illuminated ACIS-I chips showing the
absorption features (07/2000 version of the Yata

The ACIS operates in X-ray photon counting modee €nergy of a photon with frequencys
given by

E=hv

where h is a constant from quantum theory knowrPlasck’s constant The X-ray photon
arrival time follows a Poisson distribution. X-rahotons arriving at the ACIS are called events
or counts. Software onboahandra records each event's two-dimensional spatial iocat
energy, and arrival time. Each event is assigraddes for x and y in “sky” coordinates. These

coordinates can be converted to a position in ragisension (RA) and declination (DEC). Since

® FromChandra X-ray Center Calibration Website:
http://cxc.harvard.edu/cal/Acis/Cal_prods/qe/08_11 04/gé.htm
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the CCD is dithered around on the sky during areotagion, there is a complex, although
typically very well-determined, time-dependent tielaship between CCD pixel x and vy, sky x
and y, and RA and DEC. Therefore, the energy andahtime, as well as the position of each
photon, are known. Thus, in principle, the data b& represented by a four-way table of
count$®. Due to instrumental constraints, each of thesmtities is binned or rounded, creating

a discrete variable.

For ACIS, if an X-ray source is bright, there isran-negligible probability that two or more
photons could land in the same pixel before readbthie ACIS frame. The detector will not be
able to discern that there were multiple events #red individual photon energies will be
unknown. This is called photon pilélp The nominal frame exposure time is 3.2 secofuls (
frame). The amount of time it takes to transfelada the frame store is approximately 41 ms.
The count rate at which a source is flagged asilggsgxhibiting pileup for the COUP

observation is approximately 0.003 counts/sec/pixel

From the four-way table of counts data, a spectamech an X-ray light curve can be constructed
for each detected source (Figure 3.8). This det&ighes the potential for astrophysical insight
into individual X-ray sources, and, in the caseaofich stellar cluster such as the ONC, to
establish theglobal X-ray spectral and temporal properties of variclasses of objects (e.g.,
low-mass versus high-mass pre-main-sequence a@nsting versus non-accreting stars; cluster

members versus contaminating foreground and baaokgr&-ray sources).
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Figure 3.8: Extraction of energy spectrum (top) and light cu(@ettom) for a detected X-ray

source (Image from Ref. 8).

3.2.3 Heisenberg Uncertainty Principle

It is interesting to look at the Heisenberg UndettaPrinciple as it relates tGhandra. A form

of the quantum mechanical principle due to Heisemlséates that it is not possible to determine
the energy and time of a particle at a specifietinthe simultaneous measurement of energy and
time for a moving particle entails a limitation @recision (standard deviation) of each
measurement. Moreover, the more precise the mmasmt of energy, the more imprecise the

measurement of the time, and vice vétsaFor example, at a precise time t, the energthef

particle is not determinable to a precision gretitan h/4t
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AEAt>h/ 4
where,
AE is the uncertainty in the energy measurement
At is the uncertainty in the time measurement wherettezgy is measured
h Planck’s constant§.6262 x 10*J s

For Chandra, At is equal to 3.2 seconds. This requires that tieegy resolution o€handra be

greater than or equal to 1.02 x#@V. Chandra’s energy resolution well exceeds this number

and indeed, current technology does not even appribdgs number.

3.3 Ground Data Processing

Level O processing takes rahandra telemetry, splits it into products that correspdaodhe

different spacecraft components and then dividesddta along observation boundaries. Level 1
processing takes Level 0 output and applies inggnirdependent corrections, including aspect
determination (pointing position @handra versus time), science observation event processing

and calibratiof?.



Chapter 4

Astronomical Applications of Data
Mining

4.1  Background

Pattern recognition emphasizes feature selectidnckassification techniqu&s It is defined as
the grouping of objects into distinct classes bgreiing significant attributes of the objetts
The set of these attributes of the objects is dadldeature vector. The feature vector method is
dependent on finding features that are invariarthéoexpected changes in the features between
the pattern classes and the amount of discrimigatiiormation contained in the features
choser'. Classification then takes place using a statistnethod such as a similarity measure, a
distance measure, or a probability function, ath@éamaximum likelihood method and Bayesian
methods. There are two types of classificationhmes$: supervised and unsupervised. In
supervised classification or learning, part of dhessifier design involves training the classifier
using samples for which the class membership isvkno The algorithm tries to group the

samples of the training set into classes that mtiteh predefined labels. The accuracy of the

25
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classifier design is tested on a separate setqpfestered samples. When an acceptable level of
accuracy is achieved, the internal state of thesdiar is saved. The algorithm is then used to
classify new objects of unknown class. An exangfla supervised classification method is the
neural network. In unsupervised classificationcloister analysis, the classifier forms “natural”
groupings of the input sampfés Cluster analysis is a multivariate statisticathnique that
compares and groups objects based on a set oblexigpresenting characteristics of the objects
to be grouped, not on an estimation of those vitathemselves. This makes the researcher's
definition of the set of variables critical to teaccess of the clusteritig Supervised methods
typically outperform unsupervised methods, howetlery are incapable of discovering new

classes of objects and accounting for extremeesatbf possible intere’t

Combinations of classification techniques, as opdd® a single classification technique, may
show better clustering resuffts Bazell and Ah® found that combining the results of an

ensemble of classifiers gave better classificatgsults than using an individual classifier.

A literature review was performed to ascertain tfyges and extent of astronomical research
performed using techniques from the fields of nvaltiate statistics and pattern recognition.
Since the objective of my research was to develomdel independent method to classify X-ray
sources, independent of a priori knowledge conogritive nature of the sources, methods that
analyze one source at a time and attempt to fiykapectra to a model are not included in this

review of existing techniques.

A broad search was performed first, to ascertaistieg knowledge and breadth of techniques in
the field of astronomy in general. Also, this sbawas kept broad in part to examine:
* Preprocessing required for astronomical data

* Types of attributes that have been selected tgitfasstronomical objects
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» Classification accuracy of various methods forastmical data

The results of this broad search are presentegciing 4.2.

Next, the search was narrowed to focus on resesuetific to X-ray astronomy. An overview of

the relevant research is in section 4.3.

4.2 Application to Astronomy

Statistical clustering and pattern recognition teghes have been used in a variety of areas of
astronomy. What follows is not an exhaustive listt a sampling of the techniques and methods

used for various astronomical applications.

Until the early 1980's, galaxy shapes were classifiy visual examinatidh Recently, pattern
recognition has been used to automatically clagsifiaxies into spiral, elliptical, and irregular
classes. Burda and Feitzintfeused data from the atlas of Hll regions in spgalaxied® as
input for their classification technique. Preprsgiag involved centering the images and
normalizing all objects in size and inclination. rAlaxed form of the opening and closing
morphological operations was used to filter theygecale density distribution structure of each
galaxy to be classified. Five classification pagéens, including galaxy inclination and size of
the bulge, were extracted from the filtered dendisgributions. These parameters are dependent
upon galaxy morphological type. The mathematicainf of the spiral was used for pattern
matching. The authors were able to correctly dasal out of 24 objects. However, they
concluded that this was a poor method of clasgiinafor the given data set, because the
majority of the galaxies in the input data set heeey few Hll regions. Another technidieised

data created by digitally scanning over 50 picturesn The Hubble Atlas of Galaxits A
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statistical spatial thresholding method for initsdgmentation of the image was applied. The
median filter was used to remove salt and peppéseno A smoothing process was then
performed on the boundaries between the segmeagénhs. In the smoothing process, the input
gray-level image and the segmented image were modesd realizations of Markov Random
Fields. The posterior distribution was calculaieging Bayes rule. The maximum of the
posterior distribution was considered the finalmsegtation. The following parameters were
measured from the final segmented image: a scabeiant measure of compactness of the
closed shape, the distance between the boundahedegmented region and a fitted elliptical
model, and curvature values calculated on each poirthe boundary. Using these parameters,
spiral and elliptical galaxies were successfulbssified. Bazell and Afatested a Naive Bayes
classifier, a backpropagation neural network, adédasion-tree induction algorithm on a sample
of 800 galaxies. They started with 22 featurethefgalaxies, including area, radius of the bulge,
peak brightness, and entropy. After examiningdbeelation matrix of the features, 8 features
were eliminated due to significant correlation wither features. The neural network was a fully
connected network consisting of 14 input nodes,hilen nodes, and 2 to 6 output nodes
corresponding to the number of output classes.inferesting part of their experiment involved
the use of an ensemble of classifiers. An ensembldassifiers is created by using bootstrap
replicates of the training set. The predictionshef classifiers in the ensemble are then combined
to determine a final class prediction. Bazell &ith determined that an ensemble approach, as
opposed to an individual approach, greatly improtrediresults for the decision-tree and neural
network methods when classifying galaxy morpholog@verall, they concluded that their
technique decreased classification error, with owpment as the number of output classes is

decreased.

Pattern recognition and neural networks have besal in astrophysical studies of the Sun to

predict solar flaréé. A combination of datasets was used, all of whighe acquired at a single
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site and under the same observing conditions. det@sets included full-disk white light images
with high precision of position determination, fdisk Ha images, full-disk magnetograms, full-
disk Doppler velocity fields, and full-disk filtergms. They included a pre-processing step to
remove effects caused by non-uniform illuminatiand to remove the center-to-limb variation
from the solar full-disk images. Another example replacing human classification with
computer-based classification is shown in a studsfgpmed using both a supervised and an
unsupervised method to classify the neutral hydraljstribution in 21 cm spectral line imadés
The supervised method involved cross-correlatiothefobserved HI distribution with a template
that represented the projected supershell modehoise-corrected estimator of the normalized
correlation coefficient was used to measure thditguaf the match. The unsupervised method
used a dissimilarity measure based on the brighttesperature distribution of the feature.
After calculating the dissimilarity for all paird ¢eatures, clustering of the dissimilarity matrix

was performed.

Computerized classification techniques have alsmhesed to classify variable stars. Eyer and
Blake" developed a classification method for periodiciaksle stars. First, a Fourier
decomposition of the light curves was found. Fligint curve parameters were then chosen:
period, amplitude, skewness, and an amplitude.rafibe parameters were fed into a Bayesian
classifier called AutoClads They applied this algorithm to a subsample & 4frs from the
All Sky Automated Survey (ASAS). They obtainedlassification error rate of about 5% for

their sample.

Wozniak et af* developed several supervised and unsupervisedod®tto automatically
classify 1781 variable stars. Their input datacestsisted of light curves from 5.6% of the total
Robotic Optical Transient Search Experiment skyecage. The variable stars were manually

divided into nine classes. Some of the light cdeatures used include period, amplitude, ratios
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formed from the amplitudes of the first three Feurcomponents, and the sign of the largest
deviation from the mean. The authors emphasized the asymmetry of the magnitude

distribution must be represented in the featurecbeisen. The supervised method, Support
Vector Machines, outperformed the unsupervised attiof K-means and AutoClass. The best
classification accuracy rate achieved was 90% e supervised method and 75% for the
unsupervised method. However, the authors poihtsome advantages of using unsupervised
methods. The classes with the highest confusiae tie Mira variable stars and the long period
variable stars. The classification was rerun agducing the number of classes from nine to four

and better results were obtained.

Buccheri et af® presented a self-adaptive clustering method tecd@hicrostructures in the light
curves of gamma-ray pulsars. They claim that thedthod works for low counting statistics in
the high-energy range, as well as high countingissitss in the low energy range. The method is
based on the single linkage clustering algorithfithe input into the algorithm consists of the
residual phases corresponding to the arrival tioi¢ke selected gamma-ray photons after sorting
in ascending order. The specific dataset they wsedains the Crab and Vela pulsars. The
dataset was collected by a European Space Agenelitea The authors obtained very good

results without using any a priori information aniing.

Spectra of stars have been classified with metdesisloped by Heck et &, Bailer-Jone¥, and
Vieira and PorZ. Heck et al. argued that the best strategy @spfly multiple methods to the
same data set and then compare the results. H®eelythree cluster analysis methods (K-means
clustering, single linkage clustering, and modifemmplete linkage clustering) on stellar data
from the Hauck and Lindemann photometric catalduBrincipal component analysis was used
with the Euclidean clustering method. Input tolealassifier consisted of numerical values of

photometric indices from 2849 stars. Overall, tlodyained good agreement between the three
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clustering methods although the misclassified siae not the same for each method. Due to
their results, the authors recommended that eitteespectral type or the photometric indices of

249 of the stars in the catalogue should be rert@ted.

Bailer-Jone¥ used an artificial neural network (ANN) to automatlK spectral classification.
The input data set was taken from the Michigan 8gkSurvey® and included over 5000 spectra
in the wavelength range of 3800 A to 5200 A. THéNAwas trained on synthetic spectra and
then applied to observed spectra to determine pleetial classification, effective temperature,
and other physical parameters of the stars. B@hciomponent analysis was used to reduce the
dimensionality of the stellar spectra. The repmioility of neural network classifications was

shown with high accuracy for the dwarf and giaassks.

Vieira and Pon? explored two automated classification methodsABIN and a Self-Organized
Map. Their input set consisted of low-dispersigrectra of normal stars with spectral types
ranging from O3 to G5. All spectra were correctied interstellar extinction prior to
classification. Sixty-four stars were used foiirtieg. Very low error rates were achieved by

both methods.

4.3  Application to Astronomical X-ray Data

Automated pattern recognition and classificatiorthuds have been successfully implemented
for classification of X-ray spectra in certain oexts. Yin et af' applied pattern recognition

techniques to spectra obtained by an X-ray speei®ndeveloped for the Mars rover. The X-
ray fluorescence pulse-height spectrum was repreddyy an n-dimensional vector, where n is

the number of channels. The authors used a nar@datiorrelation coefficient (NCC) based on
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the angle between two n-dimensional vectors: or¢oveepresenting the spectra of the sample
and the other representing the spectra from a damomposition table. The value of the NCC
is close to one for two spectra with similar stuwes. All the spectra were attenuated to reduce
the magnitude of overly prominent components. Thigmonstrated that applying their
technigues to the raw spectra provided the sanwimiimation among samples collected by the
Mars rover as knowledge of the sample's actual @damomposition. An interesting test that
the authors' performed involved re-running the expent with fewer counts per sample. They
tried decreasing the number of counts per samplsvbyorders of magnitude (from 1,200,000 to

12,000) and still obtained a very high rate of aacy (97%).

Pattern recognition has been used on active regibiise sun to forecast solar flates Solar
flares were separated into two classes, hazardalis@n-hazardous, using radiation in the X-ray
range of the active regions of the Sun. Maximuterisity of the X-ray burst and time of the
flare's decline were used as parameters for thelTapd Sigma algorithms. A classification

accuracy of over 80% was obtained.

Finally, pioneering work by Collura et l.successfully demonstrated a model-independent
method to group X-ray sources detected with thestBin Observatory Imaging Proportional
Counter (IPC). Einstein was operational from 18#8 1981. The IPC provided full focal plane
coverage but only moderate spatial and spectralusn. The IPC had an FOV of 75 arcmin by
75 arcmin with a spatial resolution of ~1 arcmiompared toChandra’'s ACIS FOV of 16
arcmin by 16 arcmin and a spatial resolution of lgmn 1 arcsec. The IPC covered an energy

range of 0.4 keV to 4 keV, whereas the ACIS eneagge is from to 0.2 keV to 10 keV.

Much like the X-ray source clustering method ddxmsdli in Chapter 8 which | developed

independently, their technique uses multivariatatigical techniques, including principal
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component analysis and hierarchical clusteringe atthors limited their X-ray data to sources
whose X-ray spectra contained more than 50 nettscamd those that could be identified with
high Galactic latitude entries in one of four cags. As a result, their input data did not contain
any young stars or A stars. Their results showatithe IPC had sufficient spectral resolution to
distinguish between stellar sources and extragaladurces. In comparison, my research
involves the much higher spatial and spectral rggmi data currently being produced by

Chandra.

4.4  X-ray Data Challenges

Observations of some very weak X-ray sources malg yinly a few counts per detector element.
The photons detected generate an image in whicliathe X-ray object appears as a cluster of
events embedded in the cosmic background. Sincedoint X-ray data is not typically normally
distributed, classical multivariate methods thajuiee multivariate normal data cannot be used
for the analysis of low count X-ray sources. Als@ditional multivariate techniques often
assume that the relationships between variablebn@a@. However, astronomical variables may
have nonlinear relationships, such as logarithesponential, or power latt Non-normal data
may be made more “normal looking” by performingransformation of the data, such as a
logarithmic or square-root transformation. Norrttedory analyses are then carried out on the
transformed data. It has been theoretically shtihahcount data can often be made more normal
by taking the square root of the codntsTherefore, if techniques that assume normalitthe
data are to be used on non-normal data, a tranafmmmof the data to near normality is often

indicated.



Chapter 5

Relevant Mathematical Techniques

Multivariate statistical methods provide a simuétans analysis of relationships among a sgt of
random variables. These variables consist of measents taken across a sample rof
observations, such as people or objects. Mul@tartechniques can be used for exploratory
analysis to search the relationships among theblas for patterns that are not attributable to

chance.

Cluster analysis is a multivariate statistical t@ghe that compares and groups ihebservations
based on the set pfvariables. Cluster analysis works best when thjeats to be grouped have
distinct measurable characteristics that are rgftedirectly in thep variables. The variables
must be relevant to the classification desired.is Thakes the definition of the set of variables

critical to the success of the clusterfhg

Many clustering algorithms exist and no specifigoaithm is generally considered to be the

“pbest”. Different algorithms may produce differamisults for the same set of input dataln

34
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addition, the results obtained by most clusteritgp@thms are sensitive to outliers, because

sources of error or variation are not formally ddaged’.

Clusters can only be based on the variables tieagisien in the data. The clusters obtained may
be rather sensitive to the particular choice ofialdes that is made. A different choice of

variables, apparently equally reasonable, may réasdifferent clusters.

Three multivariate techniques were used in my #igor The first technique, Principal
Component Analysis (PCA), is described in sectioh 5Two clustering methods were used:
agglomerative hierarchical clustering, describedention 5.2, and a non-hierarchical technique
called K-means, described in section 5.3. Thetetirgy algorithms were used to find groups of
X-ray sources with similar spectra and to sepavateX-ray sources with unusual spectra. In the
context of my research, tlmeeobservations are the detected X-ray sources. plihput variables

correspond to X-ray spectral bandpasses, whicdegeribed in detail in Chapter 6.

5.1  Principal Component Analysis

PCA is a classical multivariate statistical teclhu@gthat originated in 1901 when Pearson
developed the method as a means of fitting plagesrihogonal least squarés It may be used
t058,59,60,6:'L

» Transform a number of correlated input variablés imcorrelated ones

* Find linear combinations that result in relatividyge variability

* Reduce the size of the dataset for subsequentsasaly

» Identify groups of variables that vary together godsibly uncover hidden relationships

in the data
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Standardizing the variables entails subtracting rtrean of the variable (computed across all
observations) from the variable, then dividing thsulting value by the standard deviation of the
variable (again, computed across all observatiohg)ut variables should be standardized if they
are measured on widely differing scales or if tim¢suof measurement are not commensurate.
Standardization will minimize differences betweexiseng groups, because if groups are

separated well by variablg, then the variance gf will be large, however, that is desired. The

equivalent of standardization can be accomplishedding the correlation matrix as opposed to

the covariance matrix in PCA.

PCA can be described algebraically through the'slatavariance or correlation matrices, or
geometrically via clouds of data points in k-dimensl spac¥. Geometrically speaking, if two
or more variables are correlated, the cloud of getiaats will be most elongated along some
direction in this k-dimensional space. PCA remothescorrelation between the input variables
by rotating the data axes so that the cloud of datats is most elongated along a new axis: the
axis of maximum variance of the d&ta The method of minimization of the sums of sqaase
the deviations is used to determine the new axisnakimum variance and accomplish this
rotation. This occurs subject to the constraiat thhe new axes are orthogonal. The resulting
axis of maximum variance represents the first gpilccomponent. This process is repeated to
define each subsequent component, in order of dsioig variance. The principal components
are then the new random variables specified byattes of each rigid rotation of the original
system of coordinates, and correspond to the ssieedirections of maximum variance of the
cloud of data points. The principal componentsegifie positions of the objects in the new

system of coordinates.

PCA generatep eigenvalues and eigenvectors from the covariancewoelation matrix. The

eigenvalues are the variance explained by eacheoptincipal components. The eigenvectors
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are linear combinations of the original input vatés. They determine the directions of
maximum variability and can be interpreted as meaguhe importance of the corresponding
variable to each principal component. PCA depeswigly on the covariance or correlation
matrix, not on multivariate normal dita Typically, researchers attempt to assign apiidioa

specific significance and meaning to the principamponents resulting from PCA, but the

components are not always interpretéble

Although p components are required to reproduce the totahlitity within the dataset, a
relatively smaller number of principal componeriks,may adequately represent most of the
original variance. PCA may then be used for dathuction by retaining only thodeprincipal

components, resulting in a simplified descriptidnhe dataset.

PCA has some disadvantages in the context of astrimal problems. First, it can only uncover
linear relationships between the input variablesstronomical variables may have nonlinear
relationships, in which case the variables will @@puncorrelated. Second, since PCA is scale

dependent, it is sensitive to outligrs

PCA was used in the proof of concept algorithm (€bapter 7) and the final X-ray source

classification algorithm (see Chapter 8).

5.2  Agglomerative Hierarchical Clustering

The objective of the agglomerative hierarchicalstduing algorithm is to uncover natural

groupings of the observations. This method does not assume muteanormality of the data.



38 CHAPTER 5. RELEVANT MATHEMATICATECHNIQUES

It begins with each of the observations (i.e., sesy as its “own statistical cluster” and the
statistical distance (or statistical similarity)tlveen each individual observation and all other
individual observations is calculated. In the tfistep, the closest two (i.e., most similar)
observations are joined. In the next step, eithtird observation joins the two that were joined
in the first step or two other observations aregditogether. Close groups (i.e., similar groups)
are successively merged in this hierarchical oste@’ fashion, based on the statistical distance
(or similarity) measure between each pair of chssteCluster merging continues until there is
only one large cluster containing all the sourcasthis point, the pattern of how the distance (or
similarity) values change from step to step is nadlguexamined to find a large jump in the
metric value between amalgamations. This idesstifiiee number of clusters in the final partition,

if the grouping seems logical for the dataset atdha

Selection of the final partition can also be acclshed visually by use of a 2-D tree diagram
called a dendrogram, which shows the cluster mergeeach step (see Figure 5.1). The distance
values for each of the intermediate clusteringstae examined for large gaps to determine the

final number of clusters. The dendrogram is theat™ at the desired distance (or similarity)
level to specify the final grouping of observationBomain knowledge is typically used when
determining the final number of clusters. Thisafipartition is the grouping of observations

which will, ideally, identify groups whose membeatsare common characteristics.

There are many different metrics that can be usedlfe statistical measure. For example,
measures of distance (dissimilarity) such as Eaalig Minkowski, Canberra, and Czekanowski,

or measures of similarity such as correlation doieffits can be usé&d

One disadvantage of hierarchical clustering is thatselection of the final number of classes

(i.e., the location at which to cut the dendrograim)somewhat heuristic. There is no
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mathematical basis for choosing a final distanauilarity) level. A second disadvantage of this
clustering method is that it cannot transfer aneoletion (i.e., a source) from one cluster to

another if it was grouped incorrectly in an earitap’.

Example of Dendrogram Resulting from Agglomerative

Hierarchical Clustering of 244 Observations
Distance

16.48 — :

10.98 —

5.49 —

0.00
Observations

Figure 5.1: Example of a dendrogram. The dashaukdntal red line shows where the

dendrogram has been cut at a distance level obajpppately 2 units.

Agglomerative hierarchical clustering was usedhm proof of concept algorithm (see Chapter 7)

and the final source classification algorithm (€éapter 8).

5.3 K-Means Clustering

K-means is an iterative, non-hierarchical clusigrimethod that groups observations into a

collection of K clusters. It begins by partitiogithe sources into K clusters, where K is an input
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to the algorithm and, therefore, must be identifiedadvance of running K-means. For my
algorithm, | used the agglomerative hierarchicalstdring algorithm to obtain a value of K to
feed into the K-means algorithm. The clusters ioleth by the hierarchical clustering algorithm

were used to seed the K-means algorithm with aialrsiet of clusters.

The centroid of a cluster is the center of thasieu It is represented by a vector containing one
number for each variable, where each number isnis@n of that variable for the observations in
that cluster. First, the centroids (means) fohezfdhe K clusters are then calculated. Nextheac
observation is examined and reassigned to theeclusth the nearest centroid where necessary,
based on the distance measure (see Figure S.Bgn the centroids are recalculated for each
cluster receiving a reassigned observation andfalsany clusters losing observations. This is
repeated until either no more reassignments takeepbr a specified number of iterations have
been completed. At this point, each cluster costaitatistically similar sources, based on the

multivariate features passed to the algorithm.

a: distance between cluster centers
b: distance between cluster center and clustenbae

Figure 5.2: 2-D schematic showing between-cludistance and within-cluster distance. The

clusters may exist in greater than 2-dimensionatep
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The final assignment of observations to clusterstassome extent, dependent on the initial
clusters passed to the algorithm. Most major chang cluster assignments happen during the

first reallocation ste.

K-means clustering was used in the proof of conedgutrithm (see Chapter 7) and the final X-

ray source classification algorithm (see Chapter 8)



Chapter 6

Input Variable Selection

6.1 Background

Input variables were chosen that could be usedstinduish the X-ray sources, keeping
in mind that a priori information about the typer@ture of the X-ray sources could not
be used. The projected spatial location (x andofy)each point source is known.
However, the distance to the source (z) is not-determined. Two sources that are
close in x and y may be far apart in z, and wotassarily have the same intrinsic
nature. For example, for Orion, analysis indicates ~10% of COUP sources (~159)
are “background” (extragalactic) point souféesConsequently, it can be difficult to

draw conclusions about source similarity basedlyaa spatial proximity or density.

42
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Therefore, the variables chosen had to be basékeoraw photon count data. Temporal

data was not used at this time.

6.2 X-ray Emission Lines

Emission lines are narrow features in the spedisiribution that are caused when
electrons make a transition from one allowed enstgie to the next, each one emitting
energy in the form of a photon in the process. plheton carries exactly the amount of
energy set free by dropping to a lower allowed gyetate. Emission lines are typically
modeled with a Gaussian distribution, Lorentziastribution, or delta functich X-ray
spectra display emission lines if the spectra &subiiciently high resolution and/or the

emission is strong.

Spectral analysis of individual X-ray sources isf@gned to determine temperatures of
the sources and elemental abundances in the soltements with strong enough lines
to be observed with current technology are oxydge@)) feon (Ne), magnesium (Mg),
silicon (Si), sulphur (S), argon (Ar), calcium (Capn (Fe), and nickel (NiJ**"t Mg
and Ne are in the energy range dominated by the-$teell lines. With current X-ray
spectrometer resolutions, these elements are wiffic measure independently of the Fe
L-shell lines. The Fe K-shell lines have largensition probability widths and are in a
more isolated part of the spectrum, so Fe K-shiedis| are observationally easier and

more reliable to measufe
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The X-ray spectrum from 0.4 keV to 8.2 keV was déd into non-overlapping bands.
The locations of the bands had to be chosen to asigdregions of the X-ray spectrum
that are important in distinguishing young stafor this reason, | looked at emission
lines from measurements of the spectra of youngs.st&ome important emission line
features are:

* Neline at ~0.92 and ~1.02 keV

e Siline at 1.7 keV

« Fe Ka emission line at ~6.4 keV; an integral part of ABhenomenology’

*  Fe XXV (24 times ionized Fe) at ~6.7 keV; iron attimat has lost 24 of its 26

electrons

Figure 6.1 shows an example of the regions of thayXspectrum of a young star called

TW Hya’. This particular spectrum is weak in iron.

A variety of techniques was used to divide the ¥-spectrum from 0.4 keV to 8.2 keV
into bands. | tried three different techniques getecting the bands. The width of the
bands and the number of bands were varied for &aatinique. Each method and its
resulting bands are described in the following isest The resulting X-ray spectral
bands became the input variables for the classificalgorithm. The algorithm was run

on the number of counts in each spectral banchtosburce dataset.
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Figure 6.1: Selected regions of the X-ray spectfmW Hya (solid curve). The
observed spectrum is overlaid with an emission omeamodel (dashed curve) that best

fits temperature-sensitive line intensifies
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6.3 Equal-Width Bands

The width of spectral bands in the soft X-ray regwas set to 500 eV. The width of
spectral bands in the hard X-ray region was set0@0 eV. Ranges were defined as
shown in Table 6.1. All of the bands were suffitig wide enough to avoid correlation

between bands, due to the energy resolution AA@IS-1 CCDs (see Chapter 3).

This method did not yield good results. The classere not homogeneous. Sources
with dissimilar spectra were placed in the samaigso(see Figure 6.2). Many X-ray
emission features are grouped together in one b&odexample, using this definition of
X-ray spectral bandpasses, the algorithm coulddimtinguish between a source that had
a high abundance of Ne X at ~1211 eV versus a sdhat had a high abundance of Mg
Xl at ~1472 eV because the photon counts for theséemtares would both be summed

within band number 3.

Table 6.1: Spectral Ranges for Equal Width Bands

Band Number Range [eV]
0- 500
501 — 1000
1001 — 1500
1501 — 2000
2001 — 3000
3001 — 4000
4001 — 5000
5001 — 6000
6001 — 7000
7001 — 8000

Blo|lo|No|a|s(w|n(-
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Figure 6.2: Four sources grouped into the same class when esjngl-width spectral

bands.
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6.4 Equal Area-Under-the-Curve Bands

The spectra of all the sources in the sample wezeaged to create a mean spectrum for
the subset of X-ray sources. The total area umidercurve was then calculated to
compute the mean spectrum. This value is useividedthe spectrum into eight spectral
bands, each with approximately equal area. Naettie number of spectral bands was
selected arbitrarily. More or fewer bands coulgéhbeen chosen. The proof of concept
algorithm makes use of this technique, and it scdbed in more detail in Chapter 7. A

disadvantage of this technique is that it is somectrum dependent.

6.5 Hyperspectral Bands

Multispectral systems have up to ten or twenty, -oontiguous spectral bands.
Typically, each discrete band covers a wide ranigenergies. Hyperspectral systems
have tens to hundreds of narrow, contiguous spdeaireds. Spectral resolution can be
defined as the smallest interval of bandwidth tbah be detected in the spectrum,
measured as the full-width at half of the maximunergy peak height. Multispectral

systems therefore have low spectral resolutiontiveléo hyperspectral systems.

With the expectation that most sources of intetesthis work (i.e., young stars) will
exhibit emission line spectra characteristic ofized plasma, the X-ray spectrum from
0.4 keV to 8.2 keV was divided into a number ofcdpd bands which were chosen based

on high-resolution X-ray emission line measurementsn well-characterized X-ray
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source3’ . While it is not possible to isolate every sigraht feature due to resolution of
the device and other hardware constraints, thetrgpdzands were chosen to include
strong lines of high-ionization species such agiiQ Neix, Ne x, Mg xi, Sixiv, and

FeXxxiv.

The spectral resolution of the ACIS CCDs at the imaioperating temperature of
Chandra (-120C) was used in determining the width of tlaads. The full-width half-
maximum (FWHM) of the FI detectors increases wittréasing energy (see Figure 3.6),

so the spectral bands increase in width accordingly

Analysis of the results of CTI correction was alsed in determining the width of the
spectral bands. After launch and orbital activaixd Chandra, low energy protons that
were encountered during radiation belt passagésctefl off the telescope and onto the
focal plane. This caused some damage to the Ettes and increased their CTIl. The
ACIS instrument team developed a CTI correctioroalgm to improve the spectral
resolution of the FI CCDs at all energies. Thigoakhm was run on th€handra

observations used in my research.

Finally, absorption features apparent in the quanafficiency curves of the ACIS-I
CCDs (see Figure 3.7) were also considered whextsgl ranges for the spectral bands.

These edges were avoided when defining the bands.
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The final band definitions were made by combinitgse hardware-imposed band
constraints with knowledge of the locations of X-reeatures that were considered
important. Band locations and widths were seletbed set of 42 bands (Appendix A).

Edges of the bands were chosen partially to avdighture considered important where
possible, and patrtially to stay within the boundfishe hardware constraints. The set of

42 bands was used for the final X-ray source diaasion algorithm (Chapter 8).



Chapter 7

Proof of Concept

The literature review revealed that pattern recigmi and multivariate statistical
techniques had not been applied to X-ray obsemsitaf young stellar clusters for the
purpose of clustering and classification. To thstfeasibility of this idea, | developed a
“proof of concept”, which consisted of a prelimipalgorithm, a sample dataset, and a

set of input X-ray spectral band definitions.

7.1 Chandra Archival Observation

The Chandra X-ray Center (CXC) Automated Processing systemegsrs several
hundred data products derived fr@handra telemetry. Standard data processing is used

for ACIS-1 observations. Archival ACIS-I imaging the well-studied Trapezium region

51
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of the ONC Chandra Observation Id (Obsld) 1522) was used for develpphe proof of

concept algorithm.

7.1.1 Preprocessing

The first step was to prepare the X-ray observatiataset. FoChandra archive data,
this involves performing pre-processing to “cleathie dataset. The initial dataset
consisted of a Level 1 processed event list pravidg the pipeline processing at the
CXC (see Chapter 3). Additional data processing performed as described in Ref. 5.
This included:

» Astrometry correction for data aspect offsets uRtodue to uncertainties in
boresight calibration at time of processing (tlisnecessary for data in the
Chandra archive)

» Application of charge transfer inefficiency (CTBreection

* Removal of spurious events from cosmic-ray aftemgland “hot columns”

The spurious events are false events caused kefiiig pixels on the CCD detectors and

cosmic ray hits in the frame store atea

Some of the pre-processing procedures introducendinear effect across the dataset.

This changes the structure of the data that is figezslibsequent X-ray source detection.
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7.1.2 Source Detection

After pre-processing, X-ray source detection wasopeed on ACIS-I FI chips 0, 1, 2,
and 3 to locate X-ray sources in t@bandra dataset. A standard, automated X-ray
source detection program called WAVDETE€Was used. WAVDETECT is a wavelet
transform source detection program that is parthefChandra Interactive Analysis of
Observations (CIAGC) software package. The user must provide a backgk map or

use the built-in iterative background determinatiqion.

The first step in the process is to create regil@s for each of the four ACIS-I front-
illuminated (FI) chips. Each region file is createith a text editor and contains the
rotbox command with the sky coordinates of the centehefchip, the x and y extent of
the chip, and the roll angle. The center of thig ainsky coordinates can be obtained by
running thedmcoords script. The x and y extent of each chip is 10Z#e roll angle can
be obtained by running thémkeypar script with the parameter ROLL_NOM. The

regions file for chip 0, “chip0.reg”, is shown belo

# Region file format: CIAO version 1.0

rotbox(4730.10, 3603.19, 1024, 1024, 263.485

¢ http://cxc.harvard.edu/ciao/
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After creating the region files, | used ttacopy command for each file to:
» create an image for each individual chip (see FEdgut)
» filter the observation event file to include onlggion events with energies in the
range 0.3 keV to 10 keV (any events outside tmgeaare particle events)
» bin the data by two to obtain a better signal-ts@aatio and also to ensure the

file size would be small enough to run with WAVDECTIE

Figure 7.1: Image created from ACIS-I chip O.

To create the exposure map for each chip, the peakgy, the sky grid coordinates, the
aspect histogram, and the instrument map are ndededch of the chips. To compute
the peak energy for the chip, the brightest sownethe chip was identified and
dmextract was used to extract that source’s histogram. Nexteddmstat to determine
the maximum count rate from the histogram, folloviegdrunningdmlist to determine the
energy at which that maximum count rate occurréde sky grid coordinates are needed
so that the exposure map that is created is the sim as the image created from the

event list. To compute the sky grid coordinateaséd theget_sky limits program for
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each chip. The next step was to create the asfsogram file. The aspect, or aspect
solution, is the pointing position of the Chandete$cope versus time. Star positions
from astrometric surveys are used to put the agmdation onto a reference frame. The
aspect histogram is a binned histogram for the,athggailing the aspect history of the
observation. It gives the amount of time the Charuptical axis dwelled on each part of
the sky. Theasphist script is used to create the aspect histogramguysarameter files

from the Obsld 1522 distribution, including the asipsolution file.

Next, the instrument map was created for each chips in detector coordinates, must
describe the chip with full resolution, and prowWdde instantaneous effective area for
the chip. It is basically the mirror effective arprojected onto the detector surface and
includes detector quantum efficiency, bad pixets-oniformities across the face of the
detector, and mirror vignetting. Thekinstmap script was used, which requires at a
minimum, the detector number, the pixel grid, amel peak energy. The instrument map

(Figure 7.2) was required in the subsequent stepatce the exposure map.

Figure 7.2: Instrument map for ACIS-I chip O.
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Finally, | created an exposure map for the obsamadty using thenkexpmap script, the

sky grid coordinates, and the aspect informatiamest in the histogram to project the
instrument map onto the sky. The exposure magés the product of the aspect
histogram and the instrument map. This exposur@ ifigure 7.3) is used by

WAVDETECT for source detection.

Figure 7.3: Exposure map for ACIS-I chip 0.

WAVDETECT repeats the source detection procesgyusie Mexican Hat wavelet for a
set of user-defined wavelet scales. The more sealed, the more time and memory the
process can take. | worked with CFA personnel étemnine optimal wavelet scales.
WAVDETECT was run several times to fine-tune thkestion. The scales used for the

final source detection were: 2.0, 4.0, 8.0, 16n@, 24.0 pixels.
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Figure 7.4: Example of detected sources for on&AIhip O (ellipses represent3

For each source candidate, the detection with igjleelst correlation maximum for all of
the runs was selected. WAVDETECT works well inveded regions of sources and also
in situations where there is a point source on db@an area of extended emission.

WAVDETECT can also handle edge-of-field and vigmeiteffects. Figure 7.4 shows
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the results of the source detection phase for éribeoACIS CCD arrays. The ellipses

encircle each detected source, with a standarctiewiof 3.

A total of 1153 X-ray sources were detected for I@522. Detected sources with
fewer than 400 total counts were eliminated, tatlitme faint sources with poor photon
counting statistics and to reduce the size of #iagkt to a reasonable size for iterative
testing of the preliminary algorithm. This resdlie 204 detected X-ray sources. These
sources were sorted by number of counts and sdguanmbers were assigned to each
source, from brightest to faintest. A subset @f bhightest sources was then eliminated
due to the potential for photon pileup (sourceshvgteater than 7600 counts). The
remaining 185 detected sources (sources 20 thr@0gh were used in the analysis.
Interactive Data Language (IDL) programs and steshdsAO tools were then used to
extract the X-ray source spectra from the sourdectien output for each of the 185
sources. These X-ray sources were crosscheckeadshgatable of known sources in
Orior® and their optical and infrared attributes recordEajure 7.5 shows the spectra for

two of the detected sources.
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Figure 7.5: Spectra for two example sources in the testbedédiata

7.2  X-ray Spectral Band Selection

The spectra of the 185-source test set were aviitagereate a mean spectrum over all
the X-ray sources (Figure 7.6). The total areaeurtie curve was calculated for the
mean spectrum. | used this value to divide thetspm into eight spectral bands, each
with approximately equal area (Figure 7.7). A nspkectral approach was desired,
however, the number of spectral bands selectedsaamewhat arbitrary. The resulting

band ranges are shown in Table 7.1. The correlahatrix for the 8 bands and 185
sources was calculated using the Pearson cormeletiefficient. The matrix is shown in

Table 7.2.
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Figure 7.6:Mean X-ray spectrum created from 185 detected ssurcOrion.

Table 7.1: X-ray Spectral Band Ranges

Band Number Energy Range (eV)
0.00 — 759.2
760.2-934.4
935.4 — 1051.2
1052.2 - 1226.4
1227.4 - 1576.8
1577.8 - 2277.6
2278.6 - 4263.2
4264.2 — 10000.00

N O|UR|WIN P
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Figure 7.7:Mean source spectrum showing eight bands with eayeal.

Table 7.2: Correlation Matrix for X-ray Spectral Bands

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Ba 8
Band 1 1.000
Band 2 0.933 1.000
Band 3 0.862 0.973 1.000
Band 4 0.804 0.855 0.909 1.000
Band 5 0.476 0.538 0.580 0.744 1.000
Band 6 0.265 0.340 0.365 0.438 0.824 1.000
Band 7 0.157 0.208 0.218 0.223 0.476 0.819 1.000
Band 8 0.687 0.833 0.871 0.753 0.485 0.483 0.529 1.000
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It can be seen from the table that the followingdsaare highly correlated:
e Dband 1, band 2 0.933
* band 1, band 3 0.862
* band 2, band 3 0.973
e Dband 2, band 4 0.855
e band 3, band 4 0.909

« band 3, band 8 0.871

This strong correlation suggests the PCA wouldffextve in removing the redundancy

in the data prior to attempting to group the sosiioéo classes.

7.3 Principal Component Analysis

For the statistical analysis, each of the eighta)X-spectral bands was considered a
variable and the observations were the detectedyXsources. | ran PCA using the
correlation matrix for the X-ray spectral data.eTesulting eigenvalues and eigenvectors
are shown in Table 7.3. The eigenvectors deterntimee directions of maximum
variability and can be interpreted as measuring itheortance of the corresponding
variable to each principal component. The eigam&lrepresent the variances for each

principal component.

4 See section 5.1 for a general description of PCA.
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Table 7.3: Eigenanalysis of the Correlation Matrix
Variable | PC1 PC 2 PC3 PC 4 PC5 PC6 PC7 PC8
Band 1 -0.367 0.299 -0.026 0.739 0.207 0.288 -0.172 0.273
Band 2 -0.400 0.266 -0.096 0.184 -0.382 -0.165 0.324 -0.669
Band 3 -0.406 0.239 -0.056 -0.223 -0.258 -0.540 0.074 0.601
Band 4 -0.399 0.149 0.287 -0.310 0.640 -0.213 -0.315 -0.294
Band 5 -0.335 -0.296 0.630 -0.084 -0.032 0.340 0.508 0.149
Band 6 -0.277 -0.570 0.147 0.137 -0.410 -0.095 -0.612 -0.082
Band 7 -0.211 -0.590 -0.485 0.180 0.398 -0.256 0.341 0.012
Band 8 -0.384 0.024 -0.502 -0.465 -0.087 0.603 -0.112 0.029
Eigenvalue| 5.2926 1.6899 0.6246 0.2363 0.1019 0.0265 0.0245 0.0037
Proportion 0.662 0.211 0.078 0.030 0.013 0.003 0.003 0.000
Cumulative 0.662 0.873 0.951 0.980 0.993 0.996 1.000 1.000

7.3.1 Stopping Rules

The following stopping rules were used to deterntirenumber of components to retain

for further analysis: the percent of variance exyad, the fair share (mineigen) criteria,

and the scree plot.

Percent of Variance Explained

For this stopping rule, one retains the numbernioiggpal components required to reach a

particular threshold for the amount of variancelaixd in the data. In the literature and

in some software packages, 95% is the default hbtdsfor cumulative variance

explained®>>°. However, there is no mathematical basis for slngpany particular fixed

percentage of variance. This metric is very subje@and 95% is an arbitrary value.




64 CHAPTER 7. PROOF OF CONCEPT

If this stopping rule were used for the Obsid 152®set, the first three components
would be retained. The first three components ttaagreexplain 95.1% of the variance
(see Table 7.3). The first four components togethelain 98.0% of the variance.
Therefore, according to this stopping rule, a sigfit amount of the data structure can be
captured in three underlying dimensions. The raingi principal components account

for a very small percentage of the variability amd less important.

Fair Share Criteria

The fair share is equal to the total variance didicdby the number of variables, and
therefore is equal to unity since the correlatioatn® was used. Hence, components
with eigenvalues greater than or equal to one shbelretained. This method suggests

that only the first two components should be retdin

Scree Plot

A scree plof™ is a graph of the eigenvalues in decreasing afleariance explained.
Scree is defined as a slope of loose rock debribeabase of a cliff or steep incline.
Cattell (1966) named this the “scree plot” becathgeretained eigenvalues appear as a
cliff and the deleted ones are the slope of loasé¥ debris at the base. An “elbow”,
bend, or break in the scree plot shows the locatifter which the eigenvalues are
relatively small and of relatively equal value. eThomponents prior to this elbow are
retained®. Some authors also retain the component at tetit;m of the berld. The

scree plot is shown in
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Figure 7.8. The elbow is at component number 3. Thiggests that three components

may effectively summarize the sample variability.

Scree Plot of Band 1-Band 8

Eigenvalue

\ \ \ \ \ \ \ \
1 2 3 4 5 6 7 8

Component Number

Figure 7.8: Scree plot for the eight principal gaments.
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Figure 7.9: The top panel gives the average numbeounts in each of the 8 bands. The

bottom panels are eigenvector plots for the fliste principal components.
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The first three principal components were retaif@dthe ensuing clustering steps. |
chose to retain three components although oneeostitpping rules suggested retaining
two. It is less detrimental to retain more pritigomponents than needed (within

reason) than to delete some that represent sothe afherent variability in the dataset.

The average number of counts in each of the eigiht$ and the eigenvectors for the first
three principal components are plotted in FiguBe Rrincipal component 1 is similar to
an average of each of the spectral bands. Prinocgmaponent 2 could be interpreted as
an indicator of spectral hardness since soft X-tege a positive value and hard X-rays
have a negative value, with the exception of ban{.82). There is no obvious
interpretation for principal component 3, althoughas a peak at band 5 (1.23 keV to

1.58 keV) suggesting it is related to spectral hasd.

7.4  Agglomerative Hierarchical Clustering®

An agglomerative hierarchical clustering method eda®n Euclidean distance and
complete linkage was used on the first three poaiccomponents generated from the
detected X- ray sources. The method started veétt esource as its “own cluster” and
similarities between each individual source and aher individual sources were

calculated. The similarity level at any step betwéwo clusters, i and j, is the percent of

¢ See section 5.2 for a detailed description of the agglomehiérarchical clustering method
used.
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the minimum distance at that step relative to tleimum inter-observation distance in
the data:
Sj = 100(1-dj) / d(max)
where,
dj is the Euclidean distance between cluster i anstet |

d(max) is the maximum value in the original dis&ntatrix

Close groups (i.e., similar groups) were succefsivgerged based on this statistical
similarity measure. Cluster merging continued lutitere was only one large cluster
containing all the sources. At this point, theikinity level for each of the intermediate
clustering steps was manually examined to findrgelgump between amalgamations to
estimate the number of source classes. The sityilaatrix created from the clustering

is shown in Appendix B.

As can be seen in the similarity matrix in AppenBixthe similarity level decreases in
increments of approximately 2 or less at each atdj the step between eight clusters
and seven clusters, at which point it decreaseslimost 8 units. This large jump
indicates that eight clusters should be reasonsdffijcient for a final partition of the X-
ray sources. The resulting dendrogram is showkigare 7.10. Each resulting cluster is
shown in a different color in the dendrogram. Tiogizontal line at a similarity level of

approximately 65 illustrates where the dendrograsitbeen cut to obtain eight clusters.
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Similarity
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Figure 7.10Dendrogram resulting from hierarchical clustering.

One disadvantage of hierarchical clustering is thatselection of the final number of
classes (i.e., the location at which to cut theddegram) is somewhat heuristic. There is
no mathematical basis for choosing a similarityelev A second disadvantage of
hierarchical clustering is that it cannot transfesource from one cluster to another if the
source was grouped incorrectly in an earlier stepherefore, | used the K-means

algorithm to fine-tune the clusters obtained fréma hierarchical clustering algorithm.
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7.5 K-means Clustering

K-means does not assume multivariate normalityhef data. The class assignments
resulting from the hierarchical clustering were dises the initial partition for the K-
means clustering. Therefore, “K,” the number @fssks, was set to eight. Each source
was examined and assigned to the cluster with #gsest centroid (mean). In some
cases, this resulted in the source being reassignachew cluster. The centroids were
then recalculated for the cluster receiving thessgmed source and for the cluster losing
the source. This process was repeated until ne me@ssignments took place. The final
number of X-ray sources in each cluster is showTable 7.4. The cluster numbers have
no physical meaning. Appendix C shows a comparigbithe cluster assignments
resulting from agglomerative hierarchical clustgriand K-means clustering. The K-
means algorithm moved 36 of the sources (19.5%ifferent clusters. The resulting
clusters contained sources that were statisticthilar based on the features passed to
the initial clustering algorithm.

Table 7.4: Number of Sources Per Cluster

Cluster | Number of
Sources

8
4
3
30
33
30
72
5

XN [WIN]|F-

" See section 5.3 for a detailed description of the K-meangthgstlgorithm used.
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The source spectra for all the classes were plot&mime of the sources appeared to be
outliers, based on their spectra alone. Howeveay twere forced into one of the eight
classes. Most of the classes contained at leassource that appeared as if it did not
belong to that class. Class 7 contained a mixfismurce spectra, i.e., it consisted of all

the sources that did not fit neatly into one of dliger classes.

The source spectra for the four smallest classe®, @, and 8) are shown in Figure 7.11,
Figure 7.12, Figure 7.13, and Figure 7.14, respelsti From visual inspection, it can be
seen that there are strong spectral similaritiethiwia given class. Also, strong

fundamental spectral differences can be seen batalasses.

7.6 Conclusions

From visual inspection of the class spectra, it waglent that the classes contained
source spectra that had much stronger within ckisslarities than between class
similarities. The algorithm isolated subtle diffaces between the strengths of key
spectral features when grouping sources. There ®aisp trends in the optical properties
of the data. Most of the sources in classes 1 2Zmméve counterparts in the optical

wavelength range, while none of the sources insBado.

Preliminary results from this proof of concept ¢&rsng on ONC sources showed

promise for development of a model-independentupesvised method that could be
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used to group X-ray sources with similar spectta tiasses. No a priori knowledge of
the nature of each source was used to accomplkskdhrce groupings. This algorithm
was used as a baseline for development of a m@igitiwated and robust X-ray source
classification algorithm. To improve the resultslditional work was done to better
determine the number of classes necessary andtitoiop the definition of the X-ray

spectral bands.
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Figure 7.11:Spectra for All Sources in Class 1.
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Chapter 8

X-ray Source Classification Algorithm

8.1 Chandra Orion Ultradeep Project

Data from theChandra Orion Ultradeep Projett(COUP) observation (Obslds 4395, 3744, 4373,
4374, 4396, and 3498) obtained in January 2003us@g as the input dataset for development of
the X-ray source classification algorithm. The &38total exposure consists of six consecutive
exposures obtained over a nearly-continuous pesfod3.2 days. There is a gap of 29 ks
between exposures due to removal of the ACIS ($epi€r 3) from the focal plane during five
passages thru the Van Allen belts during this peri@he COUP dataset represents the most
sensitive and comprehensive description of X-rayssion from a PMS star clustér The
dataset was released to the international COUP tdagsearchers by the COUP Data Reduction
and Catalog group in November of 2003 and is sunz@din Getman et al. (2005). Examples

of spectra for two of the sources detected are shinwigure 8.1.

76
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Figure 8.1: Examples ofwoft (left) and hard (right) X-ray spectra among m@s detected in the
ONC.

8.1.1 Data Reduction
The Data Reduction and Catalog group of the inteznal COUP team of researchers reduced
the COUP data in a similar manner to that descritoedthe input dataset for the prototype

algorithm (see section 7.1.1), extracting validraselocating sources, deriving X-ray properties,

and constructing scientifically useful publishatables, atlases and data fifes

Table 8.1: Source detection problems in the COUP observation.

Number of Source Detection Problem
Sources

74 source existence is uncertain

422 double source (90% point spread function opégrla

65 pileup source (photon surface brightness > 0.003
ct/s/pix)

251 source extraction region crosses a bright 00D
readout trail

656 source in wings of a bright source with > 20660nts
or source with offaxis < 2 arcmin

556 source with inhomogeneous or low exposure map
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More than 1600 sources were detected in the COtHZetla A number of the detected sources in
the COUP observation were flagged as having “sodetection” problems (Table 8.1). A

detected source can be flagged with more than amees detection problem.

8.1.2 Selection of Subset

A subset of the COUP observation was selectedderim developing the algorithm. Sources in
the COUP dataset that were flagged as having thewiog source detection problems were
eliminated: double source, pileup source, and soestraction region crossing a bright source
readout trail. Faint sources, considered to be smyce with less than 300 counts, were also
eliminated. This resulted in a sample size of 4ddrces for which high quality ACIS spectra

could be drawn from the COUP dataset.

8.1.3 Background Correction

The long exposure of the COUP observation resuttedignificant accumulation of uniform
surface brightness background. The percentageaokgoound for an individual source is
calculated as follows:
% background = BkgCts/ (Total Counts) * 100
= BkgCts/ ( NetCts + BkgCts ) * 100
where,
BkgCts is the photon counts due to background tiagia

NetCts is the net photon counts for the detectedcso



CHAPTER 8. X-RAY SOURCE CLASSIFICATION ALGORITHM 79

Values for BkgCts and NetCts have been providedefmmh source by the COUP team in the
distributed data files. For my subset of 444 COB®urces, the average percentage of
background is 4.41% (see Appendix D). There afeserirces with greater than 9% background.
Photon counts due to the background radiation bauetsubtracted from the photon counts for
each detected source. Construction of local backgt spectra for each source was performed
by the COUP Data Reduction and Catalog group. proeess began with removal of the sources
from the observation. The observation's exposwap was modified in exactly the same way, so
that it accurately represented which regions haagkdround data and which are masked out.
This resulted in a data set and corresponding expasap that look like “Swiss cheese” due to
all the holes where sources were detected. A softwool called ACIS Extrat(AE) was then
used to construct a local background spectrum dchesource. AE found the smallest circular
region around each detected and extracted soustedhtained at least the minimum number of
background counts specified. If a high minimum bemof background counts is specified for a
region with relatively low background then relativéarge background regions will result. For
the COUP dataset, the minimum number of backgramats for the smallest circular region

around each detected and extracted source wasX#) aounts.

Since a region larger than the source extractigiorewas used to estimate the background
spectrum, the background spectrum had to be nareshtio the size of the source region. | did
this by multiplying the background spectrum by alsdactor, equivalent to the ratio of source to
background extraction region area, to adjust ferdifference in size of the background region as
compared to the size of the source region. Therstlaled background spectrum was subtracted

from the source spectrum.

The spectrum of source 1067, before and after vaakg correction, is shown in Figure 8.2.

The Au La line feature at 9.7 keV in the original spectrisrdie to fluorescence of material in
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the telescope. The feature has effectively beenoved by the background-subtraction

procedure.

Source 1067/ Spectrum
ZO T ‘ T T T ‘ T

| Solid=0riginal Spectrum
H | Dashed=Background—Corrected Spectrum

15

O

binned counts

0 2 4 §) 3 10
energy (keV)

Figure 8.2: Original (solid black line) and background-correc{glashed blue line) spectra for
COUP source 1067.

The subset of 444 sources detected in the COUPnaligm (see section 8.1) was used for

development and testing of the X-ray source clasdibn algorithm. The high energy X-ray
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spectrum was divided into 42 bands (see sectiomdbAppendix A) using the following factors

to guide my choice of band locations and widths:

» high-resolution emission line data

» spectral resolution of the X-ray CCD detector asray -120 deg C, the nominal operating
temp ofChandra

» quantum efficiency of the CCDs

The total number of photon counts within each of #2 spectral bands was used as the
multivariate input variables. A monotonic transfation was performed on the input data to
reduce non-linearities. The correlation matrixthee resulting transformed band data is shown in

Appendix E.

8.2 Principal Component Analysi§

PCA was used to reduce the redundancy in the ttemsfl X-ray spectral bands. The goal of
PCA is to identify a new, smaller set of uncorrethtvariables, callegrincipal components,
which explain all or nearly all of the total var@nin the dataset. Each principal component is
described by:

* an eigenvector: a linear combination of the originput variables

* an eigenvalue: the variance accounted for by thiaiponent

The covariance matrix was used for PCA, rather tharcorrelation matrix. This is equivalent to

foregoing standardization of the input variable=se(section 5.1). The units of measurement of all

9 See section 5.1 for a detailed description of PCA.
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the input variables (spectral bands) are commetesunad they were not measured on widely

differing scales. Therefore, standardization watsnecessary.

8.2.1 Starting Rules

Two starting rules for PCA were examined. Thedesraid in determining whether there is
enough correlation in the dataset to warrant apgl#CA. The first starting rule is a check of
the bounds on the eigenvalues. Therefore, an aigdysis of the covariance matrix was
performed to calculate the eigenvalues. The reguéiigenvectors are shown in Appendix F and

the eigenvalues are shown in Appendix G.

The lower bound for the first eigenvalue (the eigdune corresponding to the first principal

component) is the maximum variance in the samplaance matri¥.

A, 2 maxs?) fori=1,2,....p (1.1)
where p is the number of eigenvalues. For the COhHervation subset, this becomes

.2 1.114913E-12 (1.2)

true, since\; = 5.4858E + 12

The values fol\; are large because the covariance matrix ratherttfegorrelation matrix was

used. The upper bound for the first eigenvaludésmaximum of the row sums of the absolute

values of the covariance matrix.
p .
A1 < max '21 ‘rij‘ fori=1,2,...,p (1.3)
]:

where p is the number of eigenvalues.
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For the COUP observation subset, this becomes

], < 1.22881E+13 (1.4)

true, since\; = 5.4858E + 12

Another starting rule involves redundancy in theuindataset. Gleason and Staélwalculated a
single number from the correlation matrix to detexenthe level of correlation among the

variables (see Equation 1.5). They called thissasure of redundancy.

(1.5)

where,

HRH2 = Y X2 = XA forij=12, ...,p (1.6)

This coefficient has the same range as a multipleetation coefficient. If the variables are
perfectly correlated thed = 1. If there is no correlation among the vagabthend = 0. A
Monte Carlo study done by Gleason and St&&ihow that PCA is not useful whéngets below
0.16. However, the distribution df is not known and interpretation is guided by eiqae.
For the COUP observation subst= 0.682, indicating that there is correlation agidhe 42
variables. The correlation is high enough to iathcPCA may be of use in eliminating

redundancy in the data.
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8.2.2 Stopping Rules

Stopping rules are used to determine the numbepwiponents to retain. The amount of total
sample variance explained, the relative varianéégseocomponents, and possible interpretations
of the components have been used to determineuimder of components to retain. There are
over 20 stopping rules detailed in the literaturBome of these stopping rules are statistical
significance tests for homogeneity of the eigenesluThe first of these tests was developed by
Bartletf®.  Additional statistical significance tests wereveloped for unique population
eigenvalue®, and for small sample sizes and non-normal®datMany of the other stopping
rules are, necessarily, ad-hoc, testing physigatifitance for a specific application area. A
subset of stopping rules was selected to use orCDEP subset. The stopping rules were

selected based on computation speed, ease of didojrend acceptance in the literature.

The following stopping rules were computed to daiae the number of components to retain for
the clustering analysis. Several stopping rulegehlacen included simply because they are
commonly used. Before using the statistical sigaifce test, several ad-hoc stopping rules were

used, to get an approximation for the number of paments to retain.

8.2.2.1 Scree Test

A scree plot™ is a graph of the eigenvalues in decreasing mtieariance explained. Scree is
defined as a slope of loose rock debris at the basecliff or steep incline. Cattell named this
the ‘scree plot’ because the retained eigenvalpesa as a cliff and the deleted ones are the
slope of loose rock debris at the bAseAn “elbow”, bend, or break in the scree plot\whahe
location after which the eigenvalues are all re&yi small and of relatively equal value. The

components prior to this elbow are retaiffedSome authors also retain the component at the
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location of the berfd. The scree plot for the COUP observation sulssehdwn in Figure 8.3. It

can be seen from the figure that there is a wdlhdd bend in the scree plot. The first three

components are retained.

The scree plot is a nice visual aid for determirtimg number of components to retain. However,

it is not very useful for an automated algorithmedo the variety of breaks that could arise,

including multiple breaks or bends.

Scree Plot
COUP Subset of 444 Sources

5.00E+12 —

4 .00E+12 —

lue

3.00E+12 —

igenva

2.00E+12 —

E

1.00E+12 —

0—

I I I I I I I
5 10 15 20 25 30 35

Component Number

Figure 8.3: Scree Plot for COUP Subset

8.2.2.2 Horn’s Stopping Rule

40

Horn suggested generating a normally-distributedioan dataset that is the same size as the real

dataset. The mean and standard deviation of igaak dataset is used in generating the random
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dataset. The eigenvalues of this random datasgdlatted against the eigenvalues of the original
dataséf. Where the plot from the random data crosseplbtefrom the real data indicates the

point that separates the retained and deletedipaihnmomponents.

Horn's Stopping Rule

6.00E+12

5
5.00E+12

4.00E+12
“ Two 'real data' eigenvalues

- are above the intersection
with the ‘chance’ line.

3.00E+12

Variance Explained

2.00E+12

—e—variance explained by chance

—&—variance explained by 'real data’

1.00E+12

0.00E+00 -
0 5 10 15 20 25 30 35 40

Component Number

Figure 8.4: Depiction of Horn’s Stopping Rule

K matrices of random variables were generated, e@athix of order 42 by 444. The covariance
matrix for each of the K matrices was computederTan eigenanalysis of each of the covariance
matrices was performed. This resulted in a sed2feigenvalues for each of the K random
matrices. The first eigenvalues were averaged 8yehe second eigenvalues were averaged
over K, and so forth. The plot of the resultingeaged eigenvalues is shown in blue in Figure
8.4. The plot of the real data (from the COUP stijos shown in red. Two eigenvalues from the

real data are above the intersection with the tih&ained from the random data. These two



CHAPTER 8. X-RAY SOURCE CLASSIFICATION ALGORITHM 87

eigenvalues are larger than they would be by chatmee. Therefore, Horn's stopping rule

indicates that two principal components shoulddiained.

8.2.2.3 Broken Stick

The broken stick is a simple stopping rule propdsgedolliffe® as a quick estimation of Horn’s
stopping rule. If a line of unit length is randgntiroken up into p segments, the expected length

of the kth-longest segment is:

p
g, = %Z (E) fork=12,..,p 1.7)
- [

The proportion of variance explained is calculdtedeach of the p principal components. Retain
any principal component that explains a greatep@mion of the variance than the corresponding
value ofgk. In Figure 8.5, the blue line is a plot of eqaatil.7 for the COUP subset. The red
line is a plot of the proportion of variance expkl for each component. The first two

components should be retained, according to thtbode

8.2.2.4 Average Eigenvalue

The Average Eigenvalue method is a quick technifaeretains components with eigenvalues

greater than the average eigenv8lu@he average eigenvalue is given by
A= (2es2+vs?)/p

2

where S; is the variance of variable i and p is the totadnber of eigenvalues. For the COUP

observation dataset with 42 variables, the avemvaluej, is 2.0964E+11. The first two

components, with eigenvalues of 5.49E+12 and 2.7@Eespectively, would be retained.
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Broken Stick Stopping Rule
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Figure 8.5: Depiction of Broken Stick stoppingerul

Jolliffe® ran PCA on simulated data and maintained thattrerage Eigenvalue method does
not allow for sampling variability and thereforetains too few components. He modified the
Average Eigenvalue method by reducing the valub®fverage eigenvalue, prior to comparison
with the component eigenvalues (see Equation 1R)liffe chose to reduce the value of the

average eigenvalue by 70%, based on simulatiorestah 587 sets of artificial ddta

A =070 x[(¢+g+-+s)/ p| (1.8)

Applying this technique to the COUP subset resuitsa modified average eigenvalue of

1.4675E+11. The third and fourth components hagerwalues of 1.93E+11 and 1.67E+11
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respectively. Hence, they would also be retain€Herefore, a total of 4 components would be

retained by use of this stopping rule.

8.2.2.5 Statistical Significance Tests

A statistical significance test is used to detemrifithe eigenvalues of the discarded components
are not significantly different from each otherhelnull hypothesis, lis that the eigenvalues of
the last (p- k) eliminated components are approximately eqddiis test allows for non-distinct

eigenvalues:

Mook < Apkst S S Ap (1.6)

where p is the number of eigenvalues (p also edhalsumber of variables) and k is the number
of components retained. Bartlett's significancet ts not robust for non-normal datadéts
Levené&! developed a significance test that can be useddtar that come from continuous, but

not necessarily normal distributions. It can ddsaused with small sample sizes.

The initial value of k was determined from the o rules listed in the previous sections

(Table 8.2).
Table 8.2: Comparison of Stopping Rules
Scree Plot Broken Stick Average Root Jolliffe 70%1f | Horn Average
Average Root Eigenvalues
3 2 2 4 2

If the discarded components really have equal, ppraimately equal variances, what is the
chance that randomly selected samples would havaneas as far apart or more so (i.e. have an
F-test value as large or larger) as observed insttmple dataset? The P value answers this

qguestion. The P value is a probability that regn¢s the lowedevel of significance at which the
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observed value of the test statistic is significatny observed value of the test statistic is
considered significant if the null hypothesis igeoted at the specified level of significance. If
the P value is small, we can conclude that theamadgs (and thus the eigenvalues) are
significantly different and it is unlikely that thdifference observed is due to a coincidence of
random sampling. We can reject the idea that fifference is a coincidence and conclude
instead that the principal components have diffevaniances. Therefore, the null hypothesis is
rejected. If the P value is large, there is insidght evidence, based on the data, that the

eigenvalues of the discarded components differ.

The sample size of the COUP subset and the nunfbeveds of the categorical variable (spectral
bands) are so large, that there are large degrédsee@dom in both the numerator and
denominator of the F-test statistic. The test @sisemely high power to detect statistically
different variances, which may in fact have no picat significance. In other words, nearly any
difference in the eigenvalues of the discarded emmepts would be judged significant. A
difference may be detected that is not consideigrdfieant for the determination of the number

of components to discard.

A random subset of 44 sources (10%) was drawn tf@mCOUP subset to lower the power of
the test. Since Levene’s test works well for sreathple sizes, it was used on the random subset.
Table 8.3 below shows the results of Levene’s sttedil significance test for homogeneity of
variance for the random sample of 10% of COUP ofadiem subset. A small significance
probability, Pr > F, indicates that some lineardhion of the parameters is significantly different
from zero. It is important to note that “statisfly significant” is not the same as “physically or
scientifically important”. It can be seen from Ta8.3 that the power of the test is still too high
The test suggests retaining 40 components. | tréshicing the sample size again, to 22

observations (5% of the COUP subset), but the tiaguscore plot (principal component 2 versus
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principal component 1) did not resemble the origswore plot, suggesting the relationships in
the original dataset were not represented accyrhtethe 5% sample. Therefore, the statistical

significance test could not be run on my COUP subse

8.2.3  Stopping Rule Conclusions

Four principal components were retained for theugmgsclustering steps. | chose to retain four
components, although three of the stopping rulggested retaining two (Table 8.2). It is less
detrimental to retain more principal componentsithaeded (within reason) than to delete some
components that may represent some of the inhewaidbility in the dataset. Retaining too
many principal components increases the dimenstgnaf the dataset and may result in

preserving unwanted redundancy and/or noise.

Table 8.3: Significance Probabilities From Leveneést

Number of f Pr(F>f)
Components Retained

3 5.88 0.0001

4 4.43 0.0001

5 3.51 0.0001

6 2.98 0.0001

7 3.93 0.0001

8 8.36 0.0001

9 9.26 0.0001

10 10.76 0.0001

11 9.63 0.0001

12 9.21 0.0001

13 9.67 0.0001

34 7.95 0.0001

35 7.78 0.0001

36 4.21 0.0011

37 4.30 0.0023

38 4.21 0.0011

39 7.71 0.0010

40 1.39 0.2412
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8.2.4  Eigenvector and Score Plots

Plots of the eigenvectors that correspond to th& four principal components are shown in
Figure 8.6. PC 1 could be interpreted as an inoliaaf sources with soft X-ray spectra with an
energy peak around 1 keV. PC 2 also indicatesceswvith soft X-ray spectra, however, the
energy peak is shifted to the right, peaking arouitdkeV. PCs 3 and 4 could be indicators of
sources that have both a soft X-ray component ahdrd X-ray component. The hard X-ray
component indicated by PC 4 is broader and faitthére right than that of PC 3. The score plot,
a plot of PC 2 versus PC 1, is shown in Figure 8 e overall shape of this score plot is curved,
rather than aligned somewhat linearly along onthefaxes or randomly scattered. This effect is
sometimes seen in ecological studies of species eadironmental gradierffs It occurs
generally when the following conditions are foundhe dataset:

» objects have unimodal distributions along gradients

* input variables all have the same units

» data are approximately on the same scale

The effect of the gradient on the distance relatigm between the input variables (i.e., spectral
bands), calculated from the count data, is noralineThis non-linearity shows up as a curve in

the score plot. The shape of the curve can ramge & bow, to an arch, to a horseshoe (one or
both ends curve inwards). The shape of the sdoteshown in Figure 8.7 is a horseshoe due to

the incurving of the ends.
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8.3  Agglomerative Hierarchical Clustering"

| used the unsupervised methods of agglomerateeifthical clustering and K-means clustering
for my research because one goal was to find “tgreupings of X-ray sources in the ONC,
without attempting to fit the sources to any préirdsl models or groupings. The clustering
technigues used find a “natural” partitioning oé tthata set into a relatively homogeneous number
of groups, K. An agglomerative hierarchical clustg method based on Euclidean distance and
complete linkage was used on the first four priatgpmponents generated from the detected X-

ray sources.

Similar groups were successively merged based enEticlidean distance measure. Cluster
merging continued until there was only one largester containing all the sources. At this point,
the Euclidean distance for each of the intermediaistering steps was manually examined to
find a large jump between amalgamations to estirttienumber of source classes. The final
number of clusters chosen was based on the distdreteveen successive cluster mergers and
application knowledge. The resulting dendrogramshiswn in Figure 8.8. The horizontal dashed
line at a distance level of approximately 2.0E+0&sirates where the dendrogram has been cut
to obtain 17 clusters. If this line were lowerethre clusters would be obtained. Table 8.4 lists
the number of sources per class. Refer to Appedddr a list of class membership as a result of

running agglomerative hierarchical clustering.

" See section 5.2 for a detailed description offyglomerative hierarchical clustering method used.
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Figure 8.6: Eigenvector plots for the first four principal cooments
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Score Plot of Band 1 - Band 42
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Figure 8.7:Score plot of PCs 1 and 2 computed from the X-pmcsal band data.

Table 8.4: Number of Sources Per Class After Agglative Hierarchical Clustering

Class Number of
Sources

1 7

2 12

3 9

4 18

5 2

6 9

7 24

8 21

9 12

10 14

11 68

12 44
13 32
14 108
15 49
16 14
17 1
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Hierarchical Clustering of 444 COUP X-ray Sources
Using 42 Emission-Driven Spectral Bands
4 PCs Retained, Complete Linkage, Variables Not Standardized
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Figure 8.8: Dendrogram resulting from hierarchichistering on COUP 444 subset, using
Euclidean distance with complete linkage. The dddme shows where the dendrogram was cut,

resulting in 17 classes. Each class of sourcepigsented by a different color.

8.4 K-means Clustering

The class assignments resulting from the hieraatlticistering were used as the initial partition

for the K-means clustering. K, the number of adasshen becomes 17 by default. Each source
was examined and assigned to the cluster with #aeest centroid (mean). In some cases, this
resulted in the source being reassigned to a nasterl The centroids were then recalculated for
the cluster receiving the reassigned source anthécluster losing the source. This process was

repeated until no more reassignments took placke fihal number of X-ray sources in each

' See section 5.3 for a detailed description of Kangeclustering algorithm used.
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cluster is shown in Table 8.5. The K-means alpgarimoved 123 of the sources (27.7%) from
one cluster to another during the course of therélgn’s iterations. Table 8.6 shows a 2-way
cross-tabulation of the cluster membership aftglagerative hierarchical clustering (rows) and
after K-means clustering (columns). Cell conteate counts. The counts on the diagonal
represent sources that did not switch clustersxdutie K-means algorithm. The sources that did
switch clusters did not move far from their init@uster assignment. Appendix H details which

sources moved to a different cluster during the &ns algorithm.

Table 8.5:Number of Sources Per Class After K-means Clusierin

Class Number
of Sources

1 7

2 12
3 9

4 19
5 2

6 14
7 18
8 21
9 22
10 37
11 54
12 30
13 30
14 61
15 88
16 19
17 1




CHAPTER 8. X-RAY SOURCE CLASSIFICATION ALGORITHM

99

Table 8.6: Two-way cross-tabulation of the classnimership after agglomerative hierarchical

clustering (rows) and K-means clustering (columns).

oO~NO O, WNPE
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14
68
44
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49
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Chapter 9

Results Analysis

9.1 PCA Score Plots and Class Average Spectra

The source spectra were averaged for each of tlkas3es. The results are shown in Figure 9.1.
The plot of the first two principal components fegich source was recreated, this time color-
coded by class (see Figure 9.2). The progressfoolasses moving clockwise around the
horseshoe in Figure 9.2 forms a sequence of déosgesgectral hardness. The lowest numbered
classes contain sources with the hardest spedtheese classes are also more easily separated
visually in this plot of only the first two princih components. The highest numbered classes can
be seen to be a continuum of sources with incrghssofter spectra. Finally, the lone source in

Class 17 is an outlier that stands out in the plot.

100
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binned counts
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Figure 9.1: Average spectra for each of the 13ses.
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Values of 444 COUP X-ray Sources for First 2 PCs

4 PCs Retained, Classes Resulting from Hierarchical Clustering Followed by K-means
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Figure 9.2: Plot of the first 2 principal compotewith the source classes shown. The class

numbers increase clockwise around the horseshgedirve.

The plot of the first two principal components tyglly holds the most information about the
clustering, since principal components 1 and 2 aRrpinost of the variance in the data. For my
data, principal components 1 and 2 account for @8%he variance in the data. However, the
first four principal components were used in thestdring algorithm. Principal components 3
and 4 contribute an additional 4.1% of the varianS@ce it is not possible to envision a plot of
all four principal components simultaneously in 4dpace, pairs of the retained principal

components were plotted for further insight inte ttlustering assignments. A plot of PC 3
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versus PC 1 is shown in Figure 9.3, PC 4 versud B&hown in Figure 9.4, PC 3 versus PC 2 in

Figure 9.5, PC 4 versus PC 2 in Figure 9.6, and R&sus PC 3 in Figure 9.7.

Upon examining the plot of principal component 3sus principal component 1 (Figure 9.3), it
can be seen that the separation between the clamsisning sources with harder spectra (lowest
numbered classes) is still apparent in this plBetter separation between some of the classes
containing sources with softer spectra can be geéhis plot, also. The lone X-ray source in

Class 17 is an outlier in this plot, too.

Values of 444 COUP X-ray Sources for PC3 vs PC1
4 PCs Retained, Classes Resulting from Hierarchical Clustering followed by K-means
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Figure 9.3: Plot of principal components 3 versweith source classes color-coded.
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Values of 444 COUP X-ray Sources for PC4 vs PC1

4 PCs Retained, Classes Resulting from Hierarchical Clustering followed by K-means
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Figure 9.4: Plot of principal components 4 verswsith source classes color-coded.

These principal component plots show how, for thesthpart, the same objects appear in the
same clusters in more than one of the plots. Hisooutliers and the tightly clustered groups are
consistent across the six plots. This is to lpeeted, since these first four principal components

were used to create the cluster assignments andhaplots.
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Values of 444 COUP X-ray Sources for PC3 vs PC2
4 PCs Retained, Classes Resulting from Hierarchical Clustering followed by K-means
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Figure 9.5: Plot of principal components 3 ver8weith source classes color-coded.
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Values of 444 COUP X-ray Sources for PC4 vs PC2

4 PCs Retained, Classes Resulting from Hierarchical Clustering followed by K-means
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Figure 9.6: Plot of principal components 4 ver8uwsith source classes color-coded.
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Values of 444 COUP X-ray Sources for PC4 vs PC3
4 PCs Retained, Classes Resulting from Hierarchical Clustering followed by K-means
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Figure 9.7: Plot of principal components 4 ver3wgith source classes color-coded.

Examples of sources drawn randomly from one oflolmeered-numbered classes (Class 2) and
one of the higher numbered classes (Class 14)hansnsfor comparison purposes in Figure 9.8

and Figure 9.9, respectively. These spectra atéepl on a log-log scale. The sources in Class 2
have harder spectra than the sources in Clas&n visual inspection, it can be seen that there
are strong spectral similarities within a givenssla Also, strong fundamental spectral differences

can be seen between the classes.
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Figure 9.9: Six example sources from Class 14.

Class Homogeneity

Homogeneity of the classes was checked by plo&imdrews’ curve¥. The curves are based on

a Fourier series representation. For each sotlredollowing curve has been plotted:
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f(t)y = % + yzsin(t) + yscost) + y4sin(2t)

where Vi, Y2, Y3, and y are values of the first four PCs for the sourcadpg@lotted. The curve is
defined for the range of t frontt-to 11, inclusive. These profiles of the data presetve t
“distance” between objedfs Andrews’ curves were plotted separately for eathhe X-ray
source classes. Figure 9.10 shows the curvesdoi classes. It can be seen immediately that
different classes have different amplitude andiffegtnt shaped curves, showing the variation
between the classes. Within a class, the cuniesnfa fairly tight, narrow bands. Narrower
bands of curves for a particular class imply gnehmogeneity for that cla¥s Overall, the
curves are tight for each class. Some of the etasentain sources with curves that stray a small
amount from the main group of curves for that cladsso, the values for some of the curves in
the intermediate-numbered classes overlap, meanswurce could potentially have been placed
into the preceding class or the subsequent cléksnvever, the shape of the curve still differs,

especially the curvature nemand L
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Class 1: 7 Sources

f(t) = PC1/sqri(2) + PC2*sin(t) + PC3*cos () + PC4* sin(2t)
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Figure 9.10: Andrews’ curves for the 17 classesitag from the clustering algorithm.
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Class 3: 9 Sources
f(t) = PC1/sqrt(2) + PC2*sin(t) + PC3*cos (t) + PC4 *sin(2t)
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Figure 9.10 (cont.)
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Class 5: 2 Sources
f(t) = PC1/sqrt(2) + PC2 *sin(t) + PC3 *cos (t) + PC4 * sin(2t)
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Class 6: 14 Sources
f(t) = PC1/sqrt(2) + PC2 *sin(t) + PC3*cos (t) + PC4 *sin(2t)
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Figure 9.10 (cont.)
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Class 7: 18 Sources
f(t) = PC1/sqrt(2) + PC2*sin(t) + PC3*cos (t) + PC4 *sin(2t)
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Figure 9.10 (cont.)
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Class 9: 22 Sources
f(t) = PC1/sqrt(2) + PC2*sin(t) + PC3*cos (t) + PC4 *sin(2t)
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Figure 9.10 (cont.)
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Class 11: 54 Sources
f(t) = PC1/sqrt(2) + PC2*sin(t) + PC3*cos (t) + PC4 *sin(2t)
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Class 12: 54 Sources
f(t) = PC1/sqrt(2) + PC2 *sin(t) + PC3*cos (t) + PC4 *sin(2t)
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Figure 9.10 (cont.)
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Class 13: 30 Sources
f(t) = PC1/sqrt(2) + PC2*sin(t) + PC3*cos (t) + PC4 *sin(2t)
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Figure 9.10 (cont.)
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Class 15: 88 Sources
f(t) = PC1/sqrt(2) + PC2 *sin(t) + PC3 *cos (t) + PC4 *sin(2t)
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Class 16: 19 Sources
f(t) = PC1/sqrt(2) + PC2 *sin(t) + PC3 *cos (t) + PC4 *sin(2t)
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Figure 9.10 (cont.)
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Class 17: 1 Source
f(t) = PC1/sqrt(2) + PC2 *sin(t) + PC3 *cos (t) + PC4 *sin(2t)

16000000
uuuuuuuu

8000000 -

6000000 -

4000000 -

nnnnnnn

f(t)
L

—-25178 -17178 -9178 -11v8 78 15178 23178
-2000000 -

-4000000 -

-6000000 -

t

Figure 9.10 (cont.)

9.3  Omission of Agglomerative Hierarchical Clustering $ep

As part of the results analysis, K-means clusterimg run again without running hierarchical
clustering first, to determine whether the hierarah clustering step improved the source
groupings. The corresponding score plot, colorecbbly class, is shown in Figure 9.11. In
comparing this plot to Figure 9.2, it can be selat the outlier in Class 17 has now been
incorrectly placed within a large class of sounsith soft spectra (see plot of the X-ray spectrum
for Class 17 in Figure 9.1). Also, Classes 1 arftbéh the previous clustering algorithm have
now been combined into one, less-homogeneous ctassisting of, for example, sources with
large flares versus sources without flares, andcesuwith prominent Fe I§-lines versus sources

without prominent Fe Kx lines. Andrews’ curves were plotted for Classntl &lass 17 (see

Figure 9.12). The new Class 1 plot appears toatorttvo groupings of curves, signifying that

the class is not as homogeneous as the classdéaaubfeom the first clustering algorithm that
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included agglomerative hierarchical clustering.tHa new Class 17 plot, it is interesting to note
that the peaks and valleys of the curve for COU® &#£ located at the same valueg af the

other curves in the new Class 17 plot. However,GRUP 948 curve has much larger amplitude,
indicating that this source does not fit well inkee new Class 17. Overall, the curves in Figure
9.10 and Figure 9.12 suggest that homogeneity efrésulting classes is greater as a result of

running agglomerative hierarchical clustering ptmK-means clustering.

Values of 444 COUP X-ray Sources for First 2 PCs
4 PCs Retained, K-means Clustering Only (no Prior Hierarchical Clustering Step)
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Figure 9.11: Results of running PCA followed byméans clustering. Hierarchical clustering

was not run prior to running K-means clustering.
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K-means Without Hierarchical Clustering

Class 1: 7 Sources
f(t) = PC1/sqrt(2) + PC2*sin(t) + PC3*cos (t) + PC4 * sin(2t)
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Class 17: 12 Sources
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Figure 9.12: Andrews’ curves for Classes 1 andrééated from PCA followed by K-means

clustering.



124 CHAPTER BESULTS ANALYSIS

9.4  Hertzsprung-Russell Diagram

The Hertzsprung-Russell (H-R) diagram for the COM4R dataset is shown in Figure 9.13. The
sources are color-coded with their X-ray specttabses as determined by the X-ray source
classification algorithm. The H-R diagram axes barthe optical stellar properties of luminosity
or mass versus spectral type or (decreasing) effephotospheric temperature. The band of
stars running from the upper left to the lower tigii the H-R diagram is called the main
sequence, where stars burn hydrogen in their €or&or stars on the main sequence, the hotter
the star is, the brighter it is. Stars located itlea top of the diagram are more massive thass star
at the bottom of the diagram, whether they arehenniain sequence or not. There are six X-ray
sources in the COUP 444 dataset that correspoinigto mass A-type or B-type stars. These
sources are labeled on the H-R diagram with th@Ue source number. All six of these sources
are found in X-ray spectral classes with softercBpe classes 14, 15, and 16. Five of these
sources, numbered 100, 113, 869, 1360, and 14¢8,been included in a study by Stelzer et al.
of the X-ray properties of O, B, and A stdrsFor 4 out of these 5 sources (100, 113, 1366, an
1415), they conclude that the X-rays are being teohiby low-mass companions to the A-type
and B-type stars found in optical spectroscopyeyThase their conclusions on X-ray variability
of these sources. For these 4 sources, my analysigs the same conclusion from running my
model-independent algorithm on the X-ray spectedhclone. For the fifth source (COUP 869),
they studied the X-ray spectral and variabilitypedies and concluded that the X-ray emission is
from the massive B-type star itself. My X-ray smiclassification algorithm places this source,
COUP 869, into class 16: the class with the lovaesrage mass and the softest spectra. The X-
ray spectrum for COUP 869 (see Figure 9.14) ham#as spectral shape to the other members
of X-ray spectral class 16 and also to the averdgss spectrum for class 16. The Andrews’

curve for COUP 869 is within the group of Andrewstves for class 16; it is not an outlier. This
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argues that X-ray emission from COUP 869 is confiogh a low-mass companion to the high-

mass B star.
H-R Diagram for COUP 444 Dataset
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Figure 9.13: Hertzsprung-Russell diagram of CQI4R dataset color-coded by X-ray spectral

class. The A-type and B-type stars are labelel thigir corresponding COUP source number.

The x-axis scale of the H-R diagrams in Figure @ahf Figure 9.16 was restricted to focus on
the main group of sources, which are of specti$yK and M. The H-R diagram for classes 11
thru 13 is shown in Figure 9.15. The H-R diagramdasses 14 thru 16 is shown in Figure 9.16.
These three classes appear to occupy slightlyrdifferegions in the H-R diagram. The sources
in class 16 are clumped in the lower-right parthed main sequenceThese diagrams show a

trend of increasing spectral softness with decreasing Test for X-ray sourcesin the ONC.
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Figure 9.14: X-ray spectrum for COUP 869.

9.5  X-ray Properties Versus ONIR Properties

The source spectra, as well as the ONIR propeftieshe classes obtained from the K-means
clustering algorithm were examined to assess tharithm’s ability to identify groups of sources
that share common attributes. Table 9.1 listsiean values for hydrogen column density, (N
effective photospheric temperature.{Jf?, stellar mas$, stellar ag&, visual extinctio? (Ay),

and A(I-K) near-infrared exce8of the ONIR counterparts of the members of theXtray
classes. The numbers in parentheses in Table®thaerrors on the mean. These results were
compiled from data available for the X-ray-emitti©@NC populatiof. A-type and B-type stars

were not included in the mean calculations basedpbically-derived properties (i.e. ).
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H-R Diagram for COUP 444 Dataset
Classes 11 thru 13
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Figure 9.15: Hertzsprung-Russell diagram for ¥efay spectrum classes 11, 12, and 13.

H-R Diagram for COUP 444 Dataset
Classes 14 thru 16
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Figure 9.16: Hertzsprung-Russell diagram for thféest X-ray spectral classes: 14, 15, and 16.
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Ny decreases monotonically from class 1 to clas$-ifiie 9.17). The larged\characteristic of
classes 1 through 8 is reflected in small fractiohSONIR counterparts. The mean visual
extinction is observed to decrease monotonicaliytlfe classes 11 to 16 (Figure 9.18). The mean
near-infrared excess is observed to decrease munally for the soft spectra classes 10 to 16
(Figure 9.19), suggesting a generally decreasingetion rate. For classes 12 through 16, which
have relatively large fractions of ONIR counterpaand softer X-ray emission, the meags T
decreases as the X-ray spectra gets softer (F@@2®. This was also shown by the H-R

diagrams in section 9.4.

The stellar mass and stellar age decrease almosttoracally with increasing spectral softness
for classes 10 thru 16. However, these propeatiesdetermined by comparing the sourcesg T
and luminosity with evolution models of young starsass depends directly orngTand age
depends directly on luminosity and at the same tmehighly model-dependent and therefore

potentially uncertain.

Classes form sequences iny,NAy, near-IR K-band excess, stellar mass, and steltp
demonstrating that the algorithm efficiently sortaing stars into physically meaningful groups.
These trends show a strong correlation betweeny>anal ONIR properties of young stars in the

ONC.
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Table 9.1: ONIR properties of the resulting 17 X-céasses. Values in parentheses represent
error on the mean. The six A-type and B-type dtateke COUP 444 dataset have not been

included in mean calculations based on opticallyvee properties.

Class| Number| <logNy> | N | <logTe#> | N Mass N Age N <A > | N | <A(-K) N
of [cm?] K] [solMass] mag >
Sources Mag

1 7 23.40 7 0 0 0
(0.06)

2 12 22.96 12 3.57: 1 0.47 : 1 7.21: 1 (] q
(0.03)

3 9 22.79 9 0 0 0
(0.02)

4 19 22.66 19 3.59: 3 0.64 : 3 6.67 : K 1.34 B 1.66|: 3
(0.01)

5 2 22.52 2 3.68: 1 1.91: 1 6.27 : 1 3.67 i 2.61} 1
(0.05)

6 14 22.48 14 0 0 0
(0.02)

7 18 22.46 18 3.70: 1 1.10: 1 7.28: ] 3.52 L 0.98(: 1
(0.02)

8 21 22.30 21 3.55: 3 0.49: 3 6.19: K 1.52 B 0.30{: 2
(0.02)

9 22 22.18 22 3.56 7 0.41 6 5.99 6 1.77 7 1.10: 3
(0.01) (0.02) (0.10) (0.49) (0.99)

10 37 22.03 37 3.58 21 0.73 19 6.34 19 260 | 20 1.31 18
(0.02) (0.01) (0.12) (0.10) (0.45) (0.18)

11 54 21.90 54 3.57 38 0.57 38 6.23 38 269 | 38 0.91 30
(0.02) (0.01) (0.06) (0.09) (0.31) (0.12)

12 30 21.66 30 3.59 20 0.79 19 6.20 19 1.57 19 0.80 16
(0.03) (0.01) (0.14) (0.07) (0.29) (0.14)

13 30 21.61 30 3.56 22 0.58 21 595 21 1.44 | 22 0.62 18
(0.03) (0.01) (0.12) (0.12) (0.27) (0.11)

14 61 21.32 61 3.55 45 0.51 43 5.88 43 1.16 | 44 0.49 38
(0.03) (0.01) (0.07) (0.08) (0.16) (0.08)

15 88 20.79 86 3.52 75 0.39 71 580 70 065 | 72 0.25 62
(0.05) (0.01) (0.05) (0.07) (0.11) (0.07)

16 19 20.28 19 3.50 14 0.29 14 595 14 0.32 16 0.11 12
(0.11) (0.01) (0.11) (0.15) (0.14) (0.05)

17 1 20.88 : 1 3.56: 1 0.39: 7.21: 1 0.3¢ 1 0
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Mean Hydrogen Column Density for Each Class
23 5
x
=
225 i - -
3
=
22 x
3
5 s
T 215
z
= (3
o
21
[)
205
20 : ; ; ; ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
class number
Figure 9.17: Mean hydrogen column density plofteceach class.
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Figure 9.18: Mean visual extinction plotted byssla
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Figure 9.19: Mean near-IR K-band excess plottedlays.
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9.6 Very Deeply Embedded Protostars

Sources in class 1 are easily identified as amtistK-ray spectral group by my classification
techniqgue. These sources lack ONIR counterpaidsadinhave high-amplitude fast-rise X-ray
flare$®. An analogous sample of deeply embedded, flgpimgostars is discussed in Tsujimoto
et al®®. The strong Fe line emission at 6.4-6.7 keV seahe Class 1 average spectrum attests to
their high X-ray emission temperatures. These atbjare likely very young protostars deeply

embedded in the Orion Molecular Core.

9.7 Beehive Proplyd

COUP 948 is isolated by the source classificatilgorithm. It is associated with a jet source
called the Beehive Proplyd (see Figure 9.21).ak &n elliptical silhouette disk at the center and
jets protruding along the minor axis of the elliseThe X-ray spectrum of COUP 948 has
distinct hard and soft components with the soft ponent peaking at around 0.85 keV and the
hard component with a main arc from 3.0 keV to Ke¥. This unique, double-peaked X-ray

spectral distribution is indicative of strong shedk the jet collimation regidh
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Figure 9.21: Hubble Space Telescope image of thehBe Proply®. The position of the
associated COUP source (COUP 948) is shown byrdengircle.

9.8 Hardness Ratio Diagram

A common practice in X-ray astronomy is to exanm¥agy spectral properties by analysis of the
X-ray hardness ratio for a group of sources. Timmate a hardness ratio, the full-range of the X-
ray energy band is divided into sub-bands, andduece’s photons are totaled for each sub-band.
The ratio of the counts in one band to the coumianiother band is defined as a X-ray hardness
ratio. For example, if the full-energy range isidéed into three energy sub-bands, labeled s
(soft), m (medium), and h (hard), then a hardnasie can be defined as HR = (h / m). Alternate

hardness ratios can be defined as HR = (h / sHahd (h - s) / (h + s). The sub-band definitions
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are not the same for all X-ray missions becausg thedinition is dependent upon the energy

range over which the CCDs involved are sensitive.

For COUP, four sub-bands were defined: 0.5 to &V {g), 0.5 to 2.0 keV (8, 1.7 to 2.8 keV
(m), and 2.0 to 8.0 keV (H) The three COUP hardness ratios are defined dsH® / h), HR2
=(s./ m), and HR3 = (m/ h). HR1 represents the tiaal hardness ratio definition; while HR2
is used to measure the softer part of the X-ragtsppm and HR3 the harder part of the X-ray

spectrun.

The plot of HR3 versus HR2 for the 444 subset @shin Figure 9.22. COUP sources 510 and
647 have not been included in this plot due tolélo& of HR2 data for them in the COUP table.
This plot shows that, although the X-ray spectla$ses are a sequence in spectral hardness, there
are additional, more subtle aspects of the classeglo not appear in the hardness ratio plot. The
ordering of the sources on the HR diagram doesmmaith the ordering of the X-ray spectral
classes determined from the algorithm and the gngspobtained from the algorithm could not

be obtained from this plot alone. For exampless& covers a wide range in HR2. Also, classes
15 and 16 are blurred in HR space. The orderinghefsources on this HR diagram is not

representative of their order in X-ray spectralcgpa
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HR3 vs HR2

COUP 444 Subset
Excluding Sources 510 and 647 (No HR2 Data)
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Figure 9.22: Hardness Ratio diagram for the COU#subset.
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Chapter 10

Summary and Future Work

10.1 Summary

| have developed an algorithm and correspondingtimariable definition that groups X-ray
sources based solely on observables. The methmohigparametric. It is an improvement over
other methods that rely on empirical measures ohyspectral properties, such as hardness
ratios, because it incorporates a technique thedwats for the variance in the data. Source
groupings are then determined by examining the foincipal components that represent the

most variance in the data.

Classification results reveal that my spectral tedtisg technique can be used to efficiently
identify very young X-ray sources that:

» lack optical and near-infrared counterparts

» display strong Fe & line emission

» display large-amplitude, fast-rise flares

136
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The plot of the first two principal components (fig 9.2) contains a horseshoe-shaped curve.
The spectral hardness of the classes going cloekangund the horseshoe decreases. Extreme
outliers do not fall along the horseshoe-shapedesuut in the space surrounding the curve. In
addition, the Andrews Curves for classes 16 anihIFigure 9.10 confirm the outlier status of
the source in class 17. These results demongtratethe algorithm can be used to place the
sources in order of decreasing spectral hardnessambe used to identify outliers with unusual

spectra.

Trends between X-ray spectral parameters andspellameters have been found for very low-
mass, soft spectra, young sources. Also, therelaar correlations between the softer X-ray
spectral classes and the classical optical spagpas in the cluster H-R diagram. These trends
and correlations are of significance to astrononmesested in star formation and the

mechanisms causing X-ray emission in young stelissters.

10.2 Future Work

Future work includes using the source classificat@gorithm to place the remaining ~1000
sources in the COUP data set into the existingyXsggectral classes. The relationships between
the X-ray spectral classes and fundamental stedeameters found by my research may or may
not be unique to the ONC. X-ray sources in othar ®ormation regions could be grouped into
clusters based on the source groupings from the @Ni&termine whether candidate young stars
in these nearby star formation regions fit into pheviously established statistical groupings from

the ONC.
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Once it is determined whether or not the resutisnfthe ONC generalize to other star forming
regions, the algorithm could be extended for usi winknown’ X-ray source datasets, i.e., a
field of X-ray sources whose mixture of foregrowstdrs, young stars, distant AGNs, and/or other

unusual sources is far less well-determined tharOttion region.

It may be useful to do a separate analysis andetlog on the temporal data using the X-ray
light curves (time series plots of intensity) fach detected source. An example X-ray light
curve for one of the detected X-ray sources is showFigure 10.1. The black line shows the

full energy band (0.5 — 8.0 keV) light curve, bidreccording to the values in Table 10.1.

Table 10.1: Light curve bin sizes.

In-Band Source Counts Bin Length
<200 ~ 6.3 hours
<500 ~ 3.2 hours

< 10000 ~1.59 hours

< 20000 ~ 1.1 hours

< 40000 ~ 47.6 minutes
>= 40000 ~ 23.8 minutes

The red line in Figure 10.1 shows the light cunvahe soft energy band (0.5 — 2.0 keV). The

blue line shows the light curve in the hard endrggd (2.0 — 8.0 keV).

A flare can be seen in the center of the light eurvMultivariate features describing the
variability of the sources and the power spectrdirthe time series could possibly be used to aid
in the clustering analysis. Previous astronomistidies on temporal analysis could be
investigated to determine input variables that lesicribe the variability of the data. Finally,
temporal inputs could be combined with the spedtgalits and the clustering algorithm re-run on

the ONC to determine the effects of adding soureability to the algorithm. Such a hybrid
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method might be particularly effective when atteimptto understand the robustness of the

spectral classifications.

03331 B.59—L01 541

i Ba 100 150 200 h 300
Time [hra]

Figure 10.1: Example of a time series plot for ¥Ry source.
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Appendix A
42 X-ray Spectral Bands
NE;nbder Low (f(fg/&)-a High ‘ lon ‘ E (eV) ‘The(zr’ztl)%al A ‘Mog:eulecme

|1 | 425.00-525.00 NVII  |500.345 | 24.782 | 137.20
oVl |561.117 | 22098 | 76.97
2 545.00- 631.00 OVII  |568.735 | 21.802 | 18.70
OVIl  |574.000 | 21.602 | 128.90
OVIIl  |653.640 | 18970 | 858.80
3 632.00-721.00 [OVIl 665676 18.627 | 15.36
IFe XVIIl |703.601 | 17.623 | 55.56
Fe XVIl [725.290 | 17.096 | 210.10
IFe XVII |727.204 | 17.051 | 232.30
Fe XVIl |738.948 | 16.780 | 193.60
Fe XVIIl |767.347 | 16.159 | 31.16
Fe XIX |769.681 | 16.110 | 43.53
4 722.00 - 815.00 |[Fe XVIII |771.548 | 16.071 | 77.00
ovil | 774682 | 16.006 | 127.10
[Fe XVIIl |781.320 | 15870 | 18.03
Fe XVIIl |783.592 | 15824 | 33.99
IFe XVIII |793.571 | 15625 | 55.81
Fe XVIl |812.499 | 15261 | 124.40
OVIl |817.050 | 15176 | 40.88
Fe XIX [822.306 | 15079 | 33.30
IFe XVII |825.866 | 15.014 | 441.60
c 816.00 - 912.00 oVvil  [836.621 | 14821 | 17.90
Fe XVIII |853.141 | 14534 | 4111
Fe XX |869.107 | 14.267 | 26.94
Fe XVIIl |869.778 | 14.256 | 40.82
NeIX |905.143 | 13699 | 65.60
6 913.00- 1013.00 [Ne IX  |914.961 | 13552 | 19.55
Fe XIX |917.262 | 13518 | 99.15
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Fe XIX |918.690 | 13.497 | 44.98
Ne IX 922106 | 13.447 | 144.90
Fe XXIl |972.209 | 12.754 | 25.34
IFe XX |985.970 | 12576 | 2267
Fe XXI |1009.407| 12.284 | 135.90
Fe XVIl |1010.888| 12.266 | 45.09
Fe XXIll |1019.616| 12.161 | 50.26
INe X [1021.801| 12.135 | 633.70
Fe XVIl [1022.728| 12.124 | 5017
Fe XXIl |1053.488| 11.770 | 70.06
7 1014.00 - 1115.00 [Fe XXIIl |1056.540| 11.736 | 91.19
Ne IX  [1074.112| 11544 | 20.24
Fe XVIIl [1075.697| 11527 | 1278
Fe XVIIl |1094.787| 11.326 | 18.61
Fe XXIV |1109.480| 11.176 | 76.20
Fe XXIV [1124.268|  11.029 | 4219
Fe XXIll [1125.288|  11.019 | 28.89
Fe XXIll |1129.183| 10.981 | 44.10
o 1116.00 - 1220.00 Fe XIX |1146.408| 10.816 | 11.96
IFe XVIl |1151.305| 10.770 |  9.08
Fe XXIV (1162.858|  10.663 | 34.61
Fe XXIV [1167.676|  10.619 | 65.97
Ne X  |1211.012] 10239 | 89.03
o 1991.00 - 1335.00 Ne X  [1277.251| 9708 | 28.24
Mg XI  [1331.281| 9314 | 26.81
Mg Xl |1343.397| 9230 | 8.99
10 |1336.00 - 1445.00 Mg XI |1352.334|  9.169 | 59.28
Fe XXIl |1381.566| 8975 | 7.57
IFe XXIl |1406.643| 8815 | 8.38
Mg XIl  |1472.281| 8422 | 102.70
Fe XXIV |1491.048| 8316 | 10.09
11 |1446.00 - 1558.00 IFe XXIll [1493.203| 8304 | 8.36
Fe XXIV [1496.627| 8285 | 1.85
Fe XXIV [1506.080|  8.233 | 4.96
Fe XXIV [1551.690|  7.991 | 13.82
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AIXII  |1575.147| 7.872 | 453

12 |1559.00 - 1673.00 Mg XI ~ |1579.561| 7.850 |  7.66

AIXIl  |1598.499| 7.757 | 551

ALXII  [1728.884|  7.172 | 12.00

13 |11674.00 - 1840.00 Fe XXIV [1729.607|  7.169 | 4.33

Mg XIl 1744941  7.106 | 14.14

SiXIl |1839.696| 6.740 | 20.64

14 |1852.00 - 1974.00 |s? Xl |1854.278|  6.687 | 9.54

SiXll |1865.156|  6.648 | 51.71

|15 [1975.00 - 2100.00 [Si XIV  [2005.427|  6.183 | 62.34

| 16  [2101.00 - 2400.00 |Si XIV  [2376.759| 5217 | 881

ISXV  [2430.332| 5102 | 8.78

17 |2401.00-2537.00|S XV  [2448.086] 5065 | 5.83

ISXV  [2460.717| 5039 | 26.65

| 18  [2538.00-2676.00 S XVI [2621.470| 4730 | 26.05
| 19 |2677.00 - 3045.00 | | | |

ArXvIl [3106.101|  3.992 | 6.12

‘ 20 ‘3046.00 -3276.00 |Ar XVIl [3124.888| 3.968 | 2.32

| | Arxvil [3139.922] 3949 | 801

| 21 |3277.00 - 3436.00 Ar XVIl [3320.716| 3.734 | 557

| 22 |3437.00 - 3737.00 |Ar XVIl [3684.860| 3.365 |  1.16

| 23 |3738.00-3909.00 |Ca XIX [3877.284| 3198 | 837
| 24 [3910.00 - 4085.00 | | | |

| 25  |4086.00 - 4266.00 |Ca XX |4104.453|  3.021 |  1.90
| 26 |4267.00 - 4452.00 | | | |
| 27 |4453.00 - 4643.00 | | | |
| 28  |4644.00 - 4838.00 | | | |
| 29  |4839.00 - 5038.00 | | | |
| 30  |5039.00 - 5243.00 | | | |
| 31 |5244.00 - 5454.00 | | | |
| 32 |5455.00 - 5670.00 | | | |
| 33 |5671.00 - 5891.00 | | | |
| 34 |5892.00 - 6118.00 | | | |
| 35  |6119.00 - 6351.00 | | | |
| 36  [6352.00-6590.00FeKa | 6400 | |
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37  |6591.00 - 6834.00 [Fe XXV 6662.845  1.861 25.95

38  6835.00 - 7086.00 |[Fe XXVI 6962.130|  1.781 4.40

40  |7345.00 - 7609.00 |

|
|
39 [7087.00 - 7344.00 | | | |
|
|
|

| |
41 [7610.00 - 7881.00 | | |
42 [7882.00 - 8156.00 | |

4Gaps (526-544 eV and 1841-1851 eV) due to dropErm€QACIS-I chips

®From Huenemoerder, D.P., Canizares, C.R., Drateadd Sanz-Forcada, J., “The Coronae of
AR Lacertae”, The Astrophysical Journal, Vol. 5pp, 1131-1147, 2003.

“From the Astrophysical Plasma Emissivity DatabageeD)
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Appendix B

Similarity Matrix for Preliminary Dataset

Step | Number of | Similarity | Distance
Clusters Level

1 184 99.66 0.03
2 183 99.59 0.035
3 182 99.59 0.036
4 181 99.51 0.042
5 180 99.43 0.049

6 179 99.41 0.05
7 178 99.37 0.054
8 177 99.35 0.056
9 176 99.16 0.072
10 175 99.14 0.074
11 174 99.12 0.076
12 173 98.98 0.088
13 172 98.92 0.093
14 171 98.89 0.096
15 170 98.81 0.103
16 169 98.77 0.106
17 168 98.76 0.107
18 167 98.75 0.108
19 166 98.7 0.112
20 165 98.69 0.113
21 164 98.63 0.118
22 163 98.56 0.125
23 162 98.4 0.138
24 161 98.4 0.138
25 160 98.39 0.139
26 159 98.36 0.141
27 158 98.34 0.144
28 157 98.31 0.145

29 156 98.26 0.15
30 155 98.23 0.153
31 154 98.22 0.154
32 153 98.18 0.157
33 152 98.17 0.158
34 151 98.17 0.158
35 150 98.11 0.163
36 149 98.1 0.164
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Step | Number of | Similarity | Distance
Clusters Level

37 148 98.09 0.165
38 147 97.93 0.179
39 146 97.87 0.184
40 145 97.86 0.185
41 144 97.85 0.185
42 143 97.85 0.185
43 142 97.8 0.189
44 141 97.78 0.192
45 140 97.78 0.192
46 139 97.73 0.195
47 138 97.68 0.2
48 137 97.63 0.204
49 136 97.54 0.212
50 135 97.48 0.217
51 134 97.48 0.218
52 133 97.43 0.222
53 132 97.39 0.225
54 131 97.3 0.232
55 130 97.3 0.233
56 129 97.14 0.247
57 128 97.12 0.249
58 127 97.12 0.249
59 126 97.08 0.252
60 125 97.01 0.258
61 124 96.96 0.263
62 123 96.9 0.267
63 122 96.88 0.27
64 121 96.85 0.272
65 120 96.82 0.274
66 119 96.77 0.278
67 118 96.68 0.286
68 117 96.65 0.289
69 116 96.57 0.296
70 115 96.56 0.296
71 114 96.47 0.304
72 113 96.45 0.307
73 112 96.4 0.311
74 111 96.38 0.312
75 110 96.38 0.312
76 109 96.33 0.317
77 108 96.27 0.322
78 107 96.1 0.337
79 106 96.01 0.344
80 105 96 0.345
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Step | Number of | Similarity | Distance
Clusters Level
81 104 95.94 0.35
82 103 95.93 0.351
83 102 95.92 0.352
84 101 95.86 0.357
85 100 95.85 0.358
86 99 95.83 0.359
87 98 95.82 0.361
88 97 95.74 0.367
89 96 95.71 0.37
90 95 95.62 0.378
91 94 95.56 0.383
92 93 95.52 0.386
93 92 95.48 0.39
94 91 95.48 0.39
95 90 95.29 0.406
96 89 95.25 0.41
97 88 95.23 0.411
98 87 95.16 0.418
99 86 94.83 0.446
100 85 94.75 0.453
101 84 94.53 0.471
102 83 94.51 0.473
103 82 94.5 0.475
104 81 94.44 0.479
105 80 94.32 0.49
106 79 94.22 0.499
107 78 94.14 0.506
108 77 94.13 0.507
109 76 94.1 0.509
110 75 94.08 0.51
111 74 94.04 0.514
112 73 93.96 0.521
113 72 93.92 0.524
114 71 93.9 0.526
115 70 93.56 0.555
116 69 93.54 0.557
117 68 93.44 0.566
118 67 93.43 0.567
119 66 93.39 0.57
120 65 93.33 0.576
121 64 93.31 0.577
122 63 93.29 0.579
123 62 93.14 0.592
124 61 93 0.604
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Step | Number of | Similarity | Distance
Clusters Level

125 60 92.95 0.608
126 59 92.74 0.626
127 58 92.67 0.632
128 57 92.6 0.638
129 56 92.4 0.656
130 55 92.15 0.677
131 54 92.11 0.681
132 53 92 0.69

133 52 91.76 0.711
134 51 91.68 0.718
135 50 91.64 0.721
136 49 91.6 0.725
137 48 91.2 0.76

138 47 91.13 0.765
139 46 90.92 0.783
140 45 90.36 0.831
141 44 90.31 0.836
142 43 90.19 0.846
143 42 90.12 0.853
144 41 89.7 0.889
145 40 89.68 0.89

146 39 88.95 0.953
147 38 88.7 0.975
148 37 88.69 0.976
149 36 88.6 0.984
150 35 88.4 1.001
151 34 88.05 1.03

152 33 87.86 1.048
153 32 87.38 1.088
154 31 87.24 1.101
155 30 87.12 1.111
156 29 86.69 1.148
157 28 86.66 1.15

158 27 86.11 1.198
159 26 85.15 1.281
160 25 84.74 1.316
161 24 84.71 1.319
162 23 84.53 1.334
163 22 83.72 1.405
164 21 83.5 1.423
165 20 83.36 1.435
166 19 82.66 1.496
167 18 81.83 1.568
168 17 81.25 1.617
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Step | Number of | Similarity | Distance
Clusters Level

169 16 78.36 1.867
170 15 76.47 2.03

171 14 76.29 2.045
172 13 74.37 2.21

173 12 73.88 2.253
174 11 72.57 2.366
175 10 70.54 2.541
176 9 68.87 2.685
177 8 68.76 2.695
178 7 61.09 3.357
179 6 55.46 3.842
180 5 47.21 4.554
181 4 44.38 4.798
182 3 31.71 5.891
183 2 23.61 6.59

184 1 0 8.626
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Clustering Assignment Summary for Preliminary Datagt

Source
Number

20
22
24
26
29
31
34
35
21
23
25
28
27
30
32
33
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
52
53
56
57
60
63
69
90

RA

83.8154
83.7982
83.773
83.8601
83.8139
83.8813
83.8804
83.828
83.8488
83.8233
83.8338
83.8168
83.8532
83.7994
83.828
83.7409
83.8646
83.7631
83.8586
83.825
83.8165
83.839
83.8343
83.8268
83.7986
83.7881
83.7737
83.8483
83.8211
83.8478
83.794
83.8345
83.8731
83.7113
83.8369
83.8151
83.8568
83.7695
83.8873

Appendix C

DEC

-5.3822
-5.43389
-5.24785
-5.42765
-5.38228
-5.42098
-5.25876
-5.34258
-5.39198
-5.29429
-5.35152

-5.397

-5.4664

-5.36358
-5.387
-5.39772
-5.44099
-5.50054
-5.42975
-5.25998
-5.48127
-5.41575
-5.44405
-5.37695
-5.28261
-5.49976
-5.42198
-5.31565
-5.37573
-5.31385
-5.43832
-5.34901
-5.27575

-5.4002
-5.26372
-5.42048
-5.50533
-5.29462
-5.26654

Hierarchical
Clustering
Class
Membership

=

PO bbb, ORBRMDMNDMNODDWWWNNNMNARAAEDMNPEPLEPRPRE

K-means
Class
Membership

ARARAADNDRDRAARNRNARNDNDRDRAARNRNRDNRRNRRAARNWWWNNNNRREPRRERRRLPR

Source
Changed
Classes

* % % %
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97 83.694 -5.40874
101 83.7353 -5.46361
103 83.7198 -5.4653
113 83.7424 -5.29376
144 83.694  -5.39053
196 83.927 -5.45818
55 83.7325 -5.49108
68 83.9118  -5.298

71 83.9139 -5.28819
72 83.8854 -5.52139
74 83.9144  -5.2832
78 83.9103 -5.30409
79 83.8733 -5.51781
85 83.7711 -5.26869
86 83.9125 -5.29376
95 83.8748 -5.51176
96 83.9493 -5.37988
100 83.9491 -5.38001
106 83.8757 -5.50079
112 83.7331  -5.489

115 83.6717 -5.44938
119 83.7727 -5.25903
120 83.9096 -5.30875
129 83.9395 -5.47097
136 83.7737 -5.25525
140 83.8771 -5.49504
145 83.6715 -5.44464
146 83.8752 -5.50416
153 83.8725 -5.52738
156 83.7718 -5.26367
167 83.9697 -5.3511
168 83.701  -5.29422
178 83.9093 -5.31335
179 83.7333 -5.48161
182 83.879  -5.47699
184 83.878 -5.49061
189 83.8784 -5.48732
192 83.9467 -5.47901
193 83.7351 -5.47415
51 83.9821 -5.27145
58 83.9357 -5.5362
62 83.7135 -5.22303
66 83.9785 -5.28172
77 83.9159 -5.26979
89 83.915 -5.27766
92 83.6676 -5.49003
99 83.9757 -5.30583
102 83.9775 -5.29213
104 83.918 -5.25975
123 83.9386 -5.51897
124 83.6702 -5.46228
125 83.7479 -5.22836

* % X % * %

U000 U U O U110 U1 O1O1 010101010101 O1O1TO1O1O1TO1O1TO1 010101010101 0101010101 0101 o1 o101 o1 o1 Ol
OO0l ooooooaooooaooaagooaoagoaaaabdbsbdbbhbhDb
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135
139
142
149
150
152
157
159
160
162
165
166
175
176
177
188
199
54
59
61
64
65
67
70
73
75
76
80
81
82
83
84
87
91
93
94
105
107
108
109
110
111
114
118
121
126
127
128
130
131
132
133

83.7766
83.9082
83.7087
83.9651
83.706
83.7095
83.9388
83.9423
83.9379
83.667
83.9725
83.7351
83.9419
83.7283
83.729
83.9722
83.6802
83.823
83.807
83.8194
83.8783
83.8063
83.825
83.7909
83.8142
83.785
83.8405
83.8172
83.8126
83.7548
83.7589
83.8173
83.8659
83.822
83.8593
83.8781
83.8014
83.8521
83.8127
83.8069
83.8001
83.8291
83.7764
83.8952
83.8397
83.8033
83.8349
83.8226
83.7506
83.7371
83.8113
83.8858

-5.23407
-5.53285
-5.25025
-5.27076
-5.25987
-5.24072
-5.51031
-5.2623
-5.5237
-5.47985
-5.32014
-5.22753
-5.50247
-5.50125
-5.22489
-5.32696
-5.47608
-5.38898
-5.33177
-5.40153
-5.40848
-5.51534
-5.3792
-5.35777
-5.37088
-5.46567
-5.42389
-5.3433
-5.39408
-5.40222
-5.44349
-5.38511
-5.30108
-5.3587
-5.33484
-5.45458
-5.39651
-5.41086
-5.36654
-5.51641
-5.34238
-5.27041
-5.36732
-5.48733
-5.52301
-5.28089
-5.51156
-5.42893
-5.38365
-5.36008
-5.37595
-5.43588
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134 83.8226 -5.33732
137 83.8355 -5.39139
138 83.8376 -5.27716
141 83.8773 -5.40616
143 83.878 -5.30181
147 83.7664 -5.48473
148 83.8246 -5.27043
151 83.8393 -5.39575
154 83.7976 -5.31983
155 83.8353 -5.28701
158 83.8124 -5.37745
161 83.7671 -5.44355
163 83.8201 -5.40101
164 83.8974 -5.35731
169 83.8431 -5.3413
170 83.7197 -5.40073
171 83.8548 -5.3961
172 83.8315 -5.28428
173 83.8148 -5.45622
174 83.8807 -5.31552
180 83.8735 -5.41565
181 83.8342 -5.35919
183 83.7943 -5.36552
185 83.807 -5.40702
186 83.8726 -5.42947
187 83.804 -5.25612
190 83.8253 -5.4931
191 83.7177 -5.37531
194 83.7253 -5.48084
195 83.7928 -5.38914
197 83.8772 -5.42719
198 83.7507 -5.42099
200 83.9029 -5.33595
201 83.8173 -5.25029
202 83.824  -5.41482
203 83.8185 -5.40079
204 83.8174 -5.24882
88 83.8038 -5.3593
98 83.8214 -5.39264
116 83.8144 -5.35377
117 83.7991 -5.42011
122 83.828 -5.31804
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Background Counts Table for COUP 444 Subset

Appendix D

Source Source Bkg Net % Bkgnd
Number Counts Counts Counts
6 2260 372 1887 16.47
8 1349 219 1129 16.25
11 5824 123 5700 2.11
17 1126 42 1083 3.73
20 531 148 382 27.92
21 572 120 451 21.02
28 21013 149 20863 0.71
29 2349 61 2287 2.60
40 359 44 314 12.29
43 7085 63 7021 0.89
49 902 170 731 18.87
54 1640 56 1583 3.42
55 511 49 461 9.61
60 794 137 656 17.28
62 9361 66 9294 0.71
64 864 49 814 5.68
65 870 29 840 3.34
66 6266 28 6237 0.45
67 7732 41 7690 0.53
69 1009 186 822 18.45
89 2064 30 2033 1.45
90 7257 139 7117 1.92
96 1446 19 1426 1.31
100 821 141 679 17.20
109 1185 189 995 15.96
110 588 77 510 13.12
111 1020 20 999 1.96
112 7469 70 7398 0.94
113 6807 82 6724 1.20
114 471 34 436 7.23
115 6163 22 6140 0.36
117 1321 19 1301 1.44
118 407 29 377 7.14
119 737 109 627 14.81
122 4962 22 4939 0.44
128 326 18 307 5.54
132 1491 21 1469 1.41
133 341 18 322 5.29
134 322 15 306 4.67
137 523 21 501 4.02
139 6124 29 6094 0.47
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Source Source Bkg Net % Bkgnd
Number Counts Counts Counts
141 13744 16 13727 0.12
154 380 12 367 3.17
164 399 9 389 2.26
165 385 13 371 3.39
169 517 96 420 18.60
172 2601 24 2576 0.92
173 12356 26 12329 0.21
174 2879 68 2810 2.36
177 5081 26 5054 0.51
179 1028 184 843 17.92
183 5776 12 5763 0.21
192 525 112 412 21.37
197 1114 67 1046 6.02
202 5150 47 5102 0.91
205 6401 17 6383 0.27
217 2331 7 2323 0.30
218 2092 9 2082 0.43
223 10306 62 10243 0.60
224 1510 6 1503 0.40
226 2684 7 2676 0.26
227 460 5 454 1.09
230 1061 5 1055 0.47
236 1189 8 1180 0.67
238 349 6 342 1.72
241 337 22 314 6.55
244 762 31 730 4.07
246 656 42 613 6.41
249 2058 8 2049 0.39
250 505 7 497 1.39
253 1395 4 1390 0.29
255 988 13 974 1.32
256 755 15 739 1.99
260 2481 10 2470 0.40
262 11551 10 11540 0.09
266 843 11 831 1.31
269 1731 62 1668 3.58
270 6655 7 6647 0.11
276 705 8 696 1.14
292 1630 49 1580 3.01
294 471 6 464 1.28
296 427 52 374 12.21
300 608 9 598 1.48
301 2167 148 2018 6.83
304 1090 6 1083 0.55
308 628 21 606 3.35
309 981 6 974 0.61
310 6189 21 6167 0.34
312 554 6 547 1.08
314 478 19 458 3.98
319 442 73 368 16.55
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Source Source Bkg Net % Bkgnd
Number Counts Counts Counts
321 317 8 308 2.53
322 1636 7 1628 0.43
323 5190 43 5146 0.83
325 4972 81 4890 1.63
328 13927 71 13855 0.51
331 5934 144 5789 2.43
332 3269 10 3258 0.31
338 3205 8 3196 0.25
340 711 16 694 2.25
353 1274 27 1246 2.12
365 6499 12 6486 0.18
368 476 15 460 3.16
373 1095 134 960 12.25
376 1220 81 1138 6.64
379 743 11 731 1.48
382 5081 15 5065 0.30
385 892 6 885 0.67
387 20103 12 20090 0.06
389 878 149 728 16.99
391 1654 10 1643 0.60
395 575 9 565 1.57
404 2421 7 2413 0.29
407 606 126 479 20.83
410 490 19 470 3.89
413 3678 473 3204 12.86
414 3577 60 3516 1.68
415 2804 8 2795 0.29
418 323 14 308 4.35
424 425 12 412 2.83
427 3698 6 3691 0.16
431 20692 77 20614 0.37
435 1334 13 1320 0.98
441 417 12 404 2.88
446 1803 54 1748 3.00
454 17142 16 17125 0.09
459 8201 142 8058 1.73
466 312 7 304 2.25
468 1637 93 1543 5.68
470 12580 10 12569 0.08
471 522 8 513 1.54
472 505 3 501 0.60
481 3431 72 3358 2.10
483 707 5 701 0.71
485 4253 18 4234 0.42
488 3409 13 3395 0.38
489 2273 75 2197 3.30
490 6772 89 6682 1.31
498 547 9 537 1.65
499 5490 108 5381 1.97
507 428 13 414 3.04
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Source Source Bkg Net % Bkgnd
Number Counts Counts Counts
510 415 11 403 2.66
513 336 18 317 5.37
514 6871 21 6849 0.31
515 4406 12 4393 0.27
517 611 29 581 4.75
520 857 50 806 5.84
533 372 11 360 2.96
536 1909 15 1893 0.79
539 513 10 502 1.95
545 3111 7 3103 0.23
548 2354 38 2315 1.61
550 902 13 888 1.44
553 2330 6 2323 0.26
554 14056 10 14045 0.07
557 1965 10 1954 0.51
561 13686 23 13662 0.17
563 509 17 491 3.35
565 3915 9 3905 0.23
566 1175 23 1151 1.96
572 813 18 794 2.22
585 520 38 481 7.32
595 633 8 624 1.27
598 482 13 468 2.70
599 862 15 846 1.74
602 1775 5 1769 0.28
604 312 6 305 1.93
610 733 135 597 18.44
612 2332 26 2305 1.12
614 1978 24 1953 1.21
616 1102 5 1096 0.45
624 3768 20 3747 0.53
625 681 22 658 3.24
626 5565 53 5511 0.95
627 502 22 479 4.39
631 2001 10 1990 0.50
640 448 24 423 5.37
645 4484 12 4471 0.27
647 829 20 808 2.42
648 24456 42 24413 0.17
649 5106 29 5076 0.57
653 727 11 715 1.52
655 6361 31 6329 0.49
658 2567 25 2541 0.97
660 2985 246 2738 8.24
663 1807 41 1765 2.27
664 1279 25 1253 1.96
665 1068 31 1036 2.91
666 670 15 654 2.24
667 383 6 376 1.57
671 447 118 328 26.46
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Source Source Bkg Net % Bkgnd
Number Counts Counts Counts
672 7586 21 7564 0.28
680 1402 17 1384 1.21
695 660 22 637 3.34
697 6001 16 5984 0.27
700 1838 30 1807 1.63
710 644 7 636 1.09
711 3623 11 3611 0.30
712 404 11 392 2.73
713 1716 48 1667 2.80
723 593 7 585 1.18
726 480 13 466 2.71
737 4338 11 4326 0.25
739 686 21 664 3.07
750 2773 26 2746 0.94
751 378 40 337 10.61
753 5890 160 5729 2.72
754 390 49 340 12.60
756 749 18 730 241
763 879 15 863 1.71
776 910 28 881 3.08
780 1708 354 1353 20.74
783 441 11 429 2.50
789 1612 9 1602 0.56
790 1896 28 1867 1.48
797 1736 20 1715 1.15
798 982 13 968 1.33
801 12296 12 12283 0.10
807 1472 24 1447 1.63
817 681 13 667 1.91
823 2260 14 2245 0.62
837 2107 27 2079 1.28
849 360 9 350 2.51
852 593 15 577 2.53
856 3328 14 3313 0.42
857 786 22 763 2.80
862 516 45 470 8.74
864 346 8 337 2.32
865 352 16 335 4.56
869 7942 40 7901 0.50
878 378 64 313 16.98
885 3404 13 3390 0.38
888 455 11 443 2.42
892 943 36 906 3.82
896 1278 10 1267 0.78
897 2100 16 2083 0.76
899 1945 29 1915 1.49
902 984 12 971 1.22
903 378 15 362 3.98
914 415 2 412 0.48
919 328 13 314 3.98
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Source Source Bkg Net % Bkgnd
Number Counts Counts Counts
921 1549 33 1515 2.13
924 592 3 588 0.51
936 1981 7 1973 0.35
937 658 13 644 1.98
939 10473 181 10291 1.73
948 505 17 487 3.37
949 3639 333 3305 9.15
960 5280 53 5226 1.00
966 1346 9 1336 0.67
969 1562 22 1539 1.41
970 1419 71 1347 5.01
972 1225 11 1213 0.90
974 2602 27 2574 1.04
976 3895 11 3883 0.28
986 1856 15 1840 0.81
992 1609 9 1599 0.56
998 413 17 395 4.13
1000 324 8 315 2.48
1007 352 9 342 2.56
1008 3086 11 3074 0.36
1009 319 13 305 4.09
1019 1923 8 1914 0.42
1028 5057 12 5044 0.24
1035 7558 67 7490 0.89
1041 603 12 590 1.99
1045 4281 7 4273 0.16
1053 1013 171 841 16.90
1054 1810 179 1630 9.89
1056 375 15 359 4.01
1058 1355 6 1348 0.44
1062 392 13 378 3.32
1066 3186 196 2989 6.15
1067 898 406 491 45.26
1070 4746 12 4733 0.25
1071 17079 27 17051 0.16
1074 402 2 399 0.50
1075 468 2 465 0.43
1076 1991 4 1986 0.20
1081 1051 14 1036 1.33
1086 337 7 329 2.08
1095 662 10 651 1.51
1097 2564 45 2518 1.76
1100 2715 9 2705 0.33
1101 3759 5 3753 0.13
1103 2118 12 2105 0.57
1104 1934 26 1907 1.35
1110 1757 11 1745 0.63
1111 7430 18 7411 0.24
1112 2799 10 2788 0.36
1117 1623 13 1609 0.80
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Source Source Bkg Net % Bkgnd
Number Counts Counts Counts
1120 337 13 323 3.87
1121 1291 14 1276 1.09
1123 321 8 312 2.50
1126 358 41 316 11.48
1127 5680 81 5598 1.43
1128 899 11 887 1.22
1131 597 12 584 2.01
1132 630 14 615 2.23
1134 5075 152 4922 3.00
1135 373 33 339 8.87
1137 644 15 628 2.33
1139 312 4 307 1.29
1140 7044 12 7031 0.17
1141 881 6 874 0.68
1143 15904 8 15895 0.05
1147 323 10 312 3.11
1149 4512 20 4491 0.44
1150 592 9 582 1.52
1151 24113 18 24094 0.07
1154 823 7 815 0.85
1155 353 4 348 1.14
1158 8525 16 8508 0.19
1161 9283 12 9270 0.13
1165 4534 16 4517 0.35
1167 348 12 335 3.46
1169 465 11 453 2.37
1172 877 11 865 1.26
1177 4200 192 4007 4.57
1191 559 8 550 1.43
1193 3495 5 3489 0.14
1199 4097 8 4088 0.20
1200 1663 11 1651 0.66
1202 3535 11 3523 0.31
1206 934 19 914 2.04
1207 486 69 416 14.23
1210 3803 8 3794 0.21
1212 2097 10 2086 0.48
1216 645 7 637 1.09
1223 421 27 393 6.43
1231 2364 8 2355 0.34
1233 1155 98 1056 8.49
1234 4831 48 4782 0.99
1235 349 3 345 0.86
1236 4528 148 4379 3.27
1242 367 11 355 3.01
1245 1172 7 1164 0.60
1246 7641 25 7615 0.33
1258 615 8 606 1.30
1261 5744 8 5735 0.14
1264 1077 29 1047 2.70
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Source Source Bkg Net % Bkgnd
Number Counts Counts Counts
1275 575 10 564 1.74
1276 587 8 578 1.37
1279 1616 9 1606 0.56
1282 1033 47 985 4.55
1284 817 3 813 0.37
1290 1938 7 1930 0.36
1291 410 3 406 0.73
1292 2552 70 2481 2.74
1296 510 13 496 2.55
1297 505 14 490 2.78
1298 329 9 319 2.74
1302 357 5 351 1.40
1306 719 5 713 0.70
1308 425 13 411 3.07
1311 5114 6 5107 0.12
1316 1132 102 1029 9.02
1336 1892 8 1883 0.42
1344 1184 8 1175 0.68
1355 5930 51 5878 0.86
1356 1023 97 925 9.49
1357 587 8 578 1.37
1360 1299 5 1293 0.39
1364 529 27 501 5.11
1369 314 12 301 3.83
1373 307 5 301 1.63
1374 5438 128 5309 2.35
1382 10291 73 10217 0.71
1384 25451 17 25433 0.07
1387 1721 9 1711 0.52
1388 2925 43 2881 1.47
1391 14398 55 14342 0.38
1398 3060 22 3037 0.72
1399 463 92 370 19.91
1404 691 72 618 10.43
1407 847 6 840 0.71
1409 6390 8 6381 0.13
1410 8210 55 8154 0.67
1411 1476 45 1430 3.05
1415 883 16 866 1.81
1419 3527 91 3435 2.58
1423 3565 11 3553 0.31
1424 7046 124 6921 1.76
1429 5538 10 5527 0.18
1430 1997 20 1976 1.00
1432 538 80 457 14.90
1433 6432 124 6307 1.93
1438 3206 12 3193 0.37
1439 1194 8 1185 0.67
1440 726 22 703 3.03
1447 698 12 685 1.72
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Source Source Bkg Net % Bkgnd
Number Counts Counts Counts
1449 5758 53 5704 0.92
1450 1224 14 1209 1.14
1454 2987 112 2874 3.75
1455 3443 50 3392 1.45
1456 7532 13 7518 0.17
1457 905 17 887 1.88
1462 13136 152 12983 1.16
1463 8257 42 8214 0.51
1464 1222 30 1191 2.46
1466 5284 12 5271 0.23
1469 733 21 711 2.87
1471 384 8 375 2.09
1474 739 26 712 3.52
1475 596 105 490 17.65
1478 927 57 869 6.16
1480 928 13 914 1.40
1485 1579 125 1453 7.92
1487 5728 67 5660 1.17
1492 6801 19 6781 0.28
1503 1149 30 1118 2.61
1507 854 50 803 5.86
1512 931 25 905 2.69
1516 7798 60 7737 0.77
1521 10093 31 10061 0.31
1524 651 35 615 5.38
1529 1126 34 1091 3.02
1531 1670 38 1631 2.28
1535 489 79 409 16.19
1537 363 39 323 10.77
1539 1250 39 1210 3.12
1543 2004 50 1953 2.50
1544 3339 107 3231 3.21
1546 1984 49 1934 2.47
1550 2088 41 2046 1.96
1553 2305 61 2243 2.65
1561 3260 39 3220 1.20
1564 692 103 588 14.91
1570 4259 112 4146 2.63
1571 664 49 614 7.39
1572 636 46 589 7.24
1579 605 57 547 9.44
1585 957 41 915 4.29
1588 578 57 520 9.88
1591 1998 94 1903 471
1594 700 66 633 9.44
1595 6922 60 6861 0.87
1603 4334 135 4198 3.12
1607 815 116 698 14.25
1608 9368 269 9098 2.87
1609 465 118 346 25.43
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Source Source Bkg Net % Bkgnd
Number Counts Counts Counts
1610 1277 60 1216 4.70
1612 1128 152 975 13.49
1616 562 109 452 19.43
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Appendix E
Correlation Matrix for COUP 444 Subset
Cell Contents: Pearson Correlation Coefficient

Bandl Band2 Band3 Band4 Band5 Band6 Band7 BandS8
Band 2 0.626
Band 3 0.572 0.857
Band 4 0.530 0.808 0.970
Band 5 0.500 0.786 0.952 0.980
Band 6 0.275 0.554 0.750 0.799 0.861
Band 7 0.154 0.406 0.603 0.661 0.733 0.970
Band 8 0.041 0.245 0.435 0.499 0.576 0.870 0.946
Band 9 -0.045 0.116 0.274 0.329 0.410 0.741 0.846 0.948
Band 10 -0.189 -0.110 0.002 0.046 0.124 0.491 0.633 0.792
Band 11 -0.246 -0.245 -0.181 -0.150 -0.081 0.264 0.415 0.604
Band 12 -0.295 -0.364 -0.371 -0.348 -0.294 0.015 0.170 0.374
Band 13 -0.359 -0.526 -0.582 -0.572 -0.534 -0.258 -0.098 0.117
Band 14 -0.377 -0.570 -0.650 -0.642 -0.614 -0.363 -0.209 -0.001
Band 15 -0.419 -0.627 -0.738 -0.735 -0.715 -0.502 -0.352 -0.142
Band 16 -0.424 -0.680 -0.825 -0.836 -0.836 -0.695 -0.566 -0.381
Band 17 -0.406 -0.668 -0.834 -0.849 -0.860 -0.778 -0.668 -0.501
Band 18 -0.407 -0.670 -0.827 -0.844 -0.858 -0.771 -0.663 -0.503
Band 19 -0.361 -0.642 -0.820 -0.849 -0.877 -0.863 -0.781 -0.648
Band 20 -0.349 -0.620 -0.797 -0.832 -0.871 -0.898 -0.834 -0.728
Band 21 -0.304 -0.596 -0.767 -0.799 -0.843 -0.905 -0.856 -0.765
Band 22 -0.304 -0.573 -0.754 -0.795 -0.842 -0.918 -0.877 -0.805
Band 23 -0.269 -0.536 -0.709 -0.752 -0.803 -0.907 -0.883 -0.824
Band 24 -0.277 -0.537 -0.715 -0.756 -0.809 -0.915 -0.892 -0.841
Band 25 -0.249 -0.494 -0.671 -0.718 -0.773 -0.910 -0.904 -0.870
Band 26 -0.260 -0.489 -0.663 -0.711 -0.770 -0.907 -0.900 -0.865
Band 27 -0.248 -0.470 -0.635 -0.677 -0.739 -0.889 -0.890 -0.867
Band 28 -0.240 -0.461 -0.627 -0.672 -0.731 -0.881 -0.881 -0.860
Band 29 -0.235 -0.443 -0.610 -0.658 -0.718 -0.873 -0.876 -0.863
Band 30 -0.239 -0.465 -0.628 -0.671 -0.731 -0.883 -0.886 -0.860
Band 31 -0.221 -0.433 -0.600 -0.648 -0.707 -0.872 -0.879 -0.863
Band 32 -0.217 -0.421 -0.588 -0.637 -0.698 -0.864 -0.877 -0.871
Band 33 -0.211 -0.420 -0.572 -0.620 -0.681 -0.852 -0.867 -0.864
Band 34 -0.200 -0.395 -0.543 -0.585 -0.646 -0.821 -0.839 -0.839
Band 35 -0.202 -0.349 -0.484 -0.528 -0.587 -0.757 -0.786 -0.811
Band 36 -0.214 -0.389 -0.530 -0.582 -0.640 -0.805 -0.826 -0.832
Band 37 -0.206 -0.369 -0.524 -0.579 -0.634 -0.783 -0.799 -0.804
Band 38 -0.154 -0.307 -0.426 -0.474 -0.528 -0.699 -0.737 -0.779
Band 39 -0.135 -0.274 -0.398 -0.445 -0.497 -0.662 -0.699 -0.735
Band 40 -0.101 -0.225 -0.323 -0.371 -0.417 -0.587 -0.623 -0.659
Band 41 -0.070 -0.191 -0.290 -0.341 -0.390 -0.553 -0.597 -0.645
Band 42 -0.036 -0.209 -0.330 -0.375 -0.408 -0.565 -0.607 -0.630
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Band 9 Band 10 Band 11 Band 12 Band 13 Band 14 Band 15 Band 16
Band 10 0.914
Band 11 0.761 0.935
Band 12 0.551 0.781 0.916
Band 13 0.315 0.599 0.784 0.939
Band 14 0.198 0.497 0.703 0.884 0.973
Band 15 0.060 0.367 0.586 0.804 0.931 0.959
Band 16 -0.185 0.135 0.374 0.628 0.825 0.880 0.942
Band 17 -0.323 -0.021 0.220 0.501 0.730 0.800 0.880 0.966
Band 18 -0.328 -0.032 0.206 0.485 0.715 0.784 0.868 0.958
Band 19 -0.487 -0.195 0.048 0.340 0.597 0.681 0.791 0.923
Band 20 -0.590 -0.318 -0.089 0.199 0.473 0.569 0.695 0.861
Band 21 -0.638 -0.383 -0.162 0.116 0.395 0.496 0.626 0.808
Band 22 -0.691 -0.443 -0.226 0.046 0.332 0.439 0.571 0.772
Band 23 -0.725 -0.501 -0.303 -0.047 0.234 0.345 0.484 0.699
Band 24 -0.745 -0.521 -0.322 -0.077 0.206 0.322 0.464 0.687
Band 25 -0.790 -0.582 -0.383 -0.136 0.148 0.264 0.412 0.637
Band 26 -0.784 -0.579 -0.385 -0.143 0.139 0.253 0.397 0.626
Band 27 -0.799 -0.608 -0.427 -0.194 0.086 0.205 0.349 0.583
Band 28 -0.791 -0.607 -0.432 -0.207 0.071 0.183 0.334 0.570
Band 29 -0.802 -0.627 -0.459 -0.245 0.033 0.147 0.298 0.540
Band 30 -0.796 -0.611 -0.430 -0.215 0.065 0.177 0.326 0.562
Band 31 -0.802 -0.634 -0.463 -0.247 0.027 0.141 0.293 0.532
Band 32 -0.813 -0.644 -0.474 -0.271 -0.004 0.112 0.259 0.503
Band 33 -0.805 -0.641 -0.481 -0.274 -0.004 0.112 0.256 0.496
Band 34 -0.795 -0.655 -0.509 -0.330 -0.074 0.037 0.191 0.429
Band 35 -0.790 -0.671 -0.554 -0.394 -0.147 -0.035 0.108 0.348
Band 36 -0.781 -0.639 -0.504 -0.325 -0.070 0.045 0.187 0.427
Band 37 -0.760 -0.627 -0.503 -0.333 -0.082 0.031 0.171 0.408
Band 38 -0.770 -0.667 -0.563 -0.424 -0.178 -0.076 0.060 0.302
Band 39 -0.728 -0.631 -0.529 -0.419 -0.211 -0.120 0.003 0.230
Band 40 -0.654 -0.603 -0.533 -0.458 -0.267 -0.186 -0.045 0.154
Band 41 -0.639 -0.554 -0.463 -0.386 -0.224 -0.125 -0.022 0.167
Band 42 -0.620 -0.526 -0.424 -0.311 -0.129 -0.058 0.065 0.238
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Band 17 Band 18 Band 19 Band 20 Band 21 Band 22 Band 23 Band 24
Band 18 0.974
Band 19 0.960 0.962
Band 20 0.916 0.915 0.977
Band 21 0.878 0.883 0.950 0.977
Band 22 0.846 0.851 0.934 0.972 0.980
Band 23 0.779 0.785 0.886 0.937 0.948 0.970
Band 24 0.771 0.780 0.879 0.934 0.948 0.974 0.978
Band 25 0.729 0.738 0.850 0.912 0.930 0.961 0.965 0.981
Band 26 0.715 0.729 0.839 0.904 0.923 0.955 0.968 0.973
Band 27 0.679 0.693 0.808 0.879 0.907 0.939 0.961 0.966
Band 28 0.669 0.680 0.798 0.875 0.903 0.934 0.957 0.965
Band 29 0.640 0.651 0.770 0.854 0.885 0.924 0.944 0.958
Band 30 0.661 0.672 0.789 0.867 0.893 0.926 0.948 0.956
Band 31 0.634 0.645 0.766 0.848 0.879 0.918 0.943 0.951
Band 32 0.602 0.614 0.742 0.825 0.859 0.899 0.929 0.939
Band 33 0.603 0.611 0.740 0.824 0.860 0.897 0.922 0.934
Band 34 0.534 0.544 0.682 0.772 0.815 0.857 0.892 0.908
Band 35 0.453 0.467 0.606 0.708 0.747 0.805 0.844 0.862
Band 36 0.527 0.539 0.675 0.766 0.805 0.851 0.884 0.897
Band 37 0.510 0.519 0.653 0.744 0.777 0.829 0.878 0.888
Band 38 0.408 0.424 0.560 0.660 0.701 0.756 0.812 0.822
Band 39 0.325 0.329 0.469 0.567 0.605 0.672 0.732 0.742
Band 40 0.240 0.253 0.363 0.466 0.515 0.570 0.629 0.649
Band 41 0.252 0.254 0.380 0.472 0.509 0.574 0.629 0.641
Band 42 0.319 0.322 0.427 0.499 0.522 0.568 0.610 0.624

Band 25 Band 26 Band 27 Band 28 Band 29 Band 30 Band 31 Band 32
Band 26 0.979
Band 27 0.971 0.978
Band 28 0.974 0.970 0.976
Band 29 0.965 0.968 0.969 0.979
Band 30 0.960 0.969 0.964 0.965 0.974
Band 31 0.963 0.961 0.966 0.969 0.972 0.967
Band 32 0.953 0.957 0.957 0.961 0.963 0.960 0.965
Band 33 0.948 0.948 0.957 0.957 0.957 0.950 0.953 0.951
Band 34 0.926 0.925 0.935 0.941 0.947 0.938 0.942 0.944
Band 35 0.888 0.889 0.903 0.907 0.914 0.913 0.916 0.926
Band 36 0.918 0.918 0.930 0.942 0.937 0.923 0.932 0.935
Band 37 0.900 0.903 0.911 0.923 0.927 0.911 0.920 0.931
Band 38 0.841 0.850 0.872 0.874 0.889 0.872 0.875 0.885
Band 39 0.768 0.789 0.803 0.805 0.826 0.813 0.829 0.849
Band 40 0.675 0.692 0.698 0.719 0.736 0.720 0.732 0.743
Band 41 0.672 0.678 0.691 0.716 0.728 0.708 0.716 0.727
Band 42 0.643 0.649 0.657 0.673 0.662 0.672 0.673 0.696
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Band 34
Band 35
Band 36
Band 37
Band 38
Band 39
Band 40
Band 41
Band 42

Band 33 Band 34 Band 35 Band 36 Band 37 Band 38 Band 39 Band 40 Band 41

0.950
0.915
0.933
0.912
0.890
0.816
0.734
0.731
0.673

0.938
0.933
0.918
0.897
0.842
0.773
0.733
0.684

0.939
0.921
0.909
0.864
0.777
0.762
0.695

0.937
0.909
0.835
0.763
0.767
0.696

0.909
0.863
0.756
0.761
0.679

0.857
0.791
0.779
0.707

0.831
0.772
0.699

0.751
0.669

0.697



APPENDIX F. EIGENVECTORS FOR COUP 444 SUBSET 167

Appendix F

Eigenvectors for COUP 444 Subset

Band PC1 PC2 PC3 PC4 PC5 PC6
1 0.007 -0.013 0.053 -0.008 0.013 0.019
2 0.034 -0.038 0.132 -0.003 0.062 0.037
3 0.120 -0.099 0.311 0.030 0.210 0.079
4 0.129 -0.094 0.295 0.054 0.167 0.116
5 0.304 -0.177 0.581 0.162 0.297 0.180
6 0.442 0.006 0.035 0.460 -0.135 -0.273
7 0.387 0.110 -0.230 0.448 -0.241 -0.164
8 0.191 0.127 -0.185 0.133 -0.038 0.241
9 0.222 0.249 -0.268 0.047 0.193 0.567
10 0.158 0.366 -0.222 -0.075 0.435 0.135
11 0.087 0.412 0.006 -0.175 0.408 -0.384
12 0.002 0.414 0.266 -0.059 -0.023 -0.228
13 -0.077 0.366 0.226 0.026 -0.127 -0.066
14 -0.096 0.308 0.202 0.052 -0.159 -0.088
15 -0.116 0.252 0.142 0.070 -0.153 0.098
16 -0.125 0.156 0.077 0.104 -0.072 0.086
17 -0.165 0.147 0.101 0.135 -0.145 0.234
18 -0.152 0.132 0.081 0.160 -0.124 0.205
19 -0.169 0.092 0.084 0.158 -0.048 0.144
20 -0.194 0.062 0.047 0.211 -0.005 0.129
21 -0.163 0.032 0.034 0.185 0.042 0.136
22 -0.164 0.015 0.006 0.188 0.061 0.020
23 -0.149 -0.007 -0.024 0.183 0.126 -0.004
24 -0.185 -0.015 -0.054 0.215 0.153 -0.037
25 -0.189 -0.035 -0.025 0.213 0.147 -0.117
26 -0.138 -0.027 -0.030 0.153 0.136 -0.082
27 -0.130 -0.035 -0.037 0.162 0.138 -0.076
28 -0.119 -0.035 -0.048 0.162 0.152 -0.050
29 -0.126 -0.044 -0.067 0.167 0.165 -0.074
30 -0.092 -0.028 -0.039 0.107 0.114 -0.051
31 -0.100 -0.036 -0.044 0.125 0.134 -0.043
32 -0.080 -0.032 -0.044 0.088 0.117 -0.083
33 -0.052 -0.021 -0.024 0.066 0.076 -0.030
34 -0.056 -0.028 -0.047 0.071 0.104 -0.044
35 -0.045 -0.029 -0.051 0.072 0.087 -0.071
36 -0.056 -0.028 -0.049 0.078 0.110 -0.049
37 -0.061 -0.032 -0.071 0.094 0.120 -0.061
38 -0.025 -0.019 -0.029 0.051 0.052 -0.044
39 -0.013 -0.011 -0.021 0.015 0.035 -0.044
40 -0.011 -0.011 -0.022 0.009 0.030 -0.017
41 -0.007 -0.006 -0.009 0.010 0.026 -0.030
42 -0.007 -0.005 -0.005 0.007 0.015 -0.018
Band PC7 PC8 PC9 PC10 PC11 PC12
1 -0.020 -0.028 -0.125 0.056 -0.026 -0.005
2 -0.095 -0.041 -0.392 0.006 -0.278 -0.218
3 -0.170 -0.021 -0.504 0.237 -0.313 -0.062
4 -0.066 0.011 -0.010 0.154 -0.079  0.155
5 0.087 0.014 0.389 -0.100 0.166 0.089
6 0.214 -0.171 -0.051 -0.210 0.132 -0.296
7 -0.022 0.155 -0.111 0.166 -0.188 0.239
8 -0.342 0.196 0.254 0.291 -0.104 0.207
9 -0.298 -0.055 0.026 -0.109 0.099 -0.269

10 0.370 -0.244 -0.257 -0.188 0.104 0.179
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11 0.222 0.200 0.239 0.340 -0.243 -0.081
12 -0.329 0.456 -0.097 -0.415 0.126 -0.055
13 -0.213 -0.066 -0.166 0.148 0.384 0.041
14 -0.148 -0.619 0.069 0.314 0.110 0.102
15 -0.052 -0.243 0.256 -0.399 -0.605 0.118
16 0.142 -0.058 0.056 -0.017 -0.170 -0.050
17 0.209 0.079 0.090 0.166 0.043 -0.225
18 0.236 0.181 0.033 0.213 -0.013 -0.508
19 0.162 0.133 -0.115 -0.066 -0.045 0.006
20 0.140 0.151 -0.175 -0.092 -0.072 0.318
21 0.163 0.155 -0.034 0.060 0.160 0.287
22 0.065 0.071 -0.120 0.054 0.092 0.177
23 -0.080 -0.023 -0.063 -0.077 0.112 0.102
24 0.074 -0.032 -0.010 -0.001 -0.041 0.003
25 -0.076 -0.059 0.065 -0.110 -0.069 -0.073
26 -0.129 -0.005 -0.020 0.026 0.016 -0.051
27 -0.101 -0.056 0.058 0.021 0.069 -0.008
28 -0.100 0.031 0.039 -0.037 0.017 -0.049
29 -0.101 -0.003 0.031 0.070 -0.043 -0.044
30 -0.048 0.017 0.081 0.091 0.003 -0.030
31 -0.128 0.021 0.082 0.015 -0.027 -0.072
32 -0.078 -0.005 0.041 0.002 -0.010 -0.087
33 -0.032 -0.024 0.014 -0.005 0.038 -0.009
34 -0.081 0.009 0.089 -0.031 -0.022 -0.008
35 -0.080 -0.066 0.040 -0.035 0.008 -0.036
36 -0.091 -0.080 0.004 -0.062 0.033 -0.052
37 -0.145 -0.111 -0.040 -0.053 -0.001 -0.122
38 -0.026 -0.047 0.010 0.008 0.022 -0.050
39 -0.048 -0.013 0.013 -0.007 0.010 -0.036
40 -0.042 -0.024 0.037 -0.007 -0.036 -0.043
41 -0.022 -0.020 0.010 -0.005 -0.016 -0.022
42 -0.010 -0.011 0.018 -0.018 -0.011 -0.033
Band PC13 PC14 PC15 PCi16 PC17 PC18
1 0.123 0.051 0.088 -0.091 0.043 0.166
2 0.056 -0.100 0.258 0.061 0.008 0.209
3 -0.011 0.070 -0.090 0.013 0.013 -0.236
4 -0.077 -0.082 -0.199 0.026 -0.051 -0.023
5 -0.060 -0.048 0.103 -0.051 -0.040 0.160
6 0.140 0.171 -0.008 0.009 0.175 -0.255
7 -0.108 -0.138 0.028 0.076 -0.165 0.311
8 -0.128 -0.103 -0.034 -0.260 0.081 -0.345
9 0.337 0.201 0.074 0.077 -0.024 0.143
10 -0.358 -0.214 -0.113 -0.015 -0.090 -0.047
11 0.238 0.180 0.103 -0.010 0.109 -0.026
12 0.093 -0.321 -0.089 0.100 -0.132 -0.040
13 -0.399 0457 0.149 -0.203 0.138 0.160
14 0.315 -0.244 -0.086 0.114 -0.180 -0.055
15 -0.124 0.182 -0.098 0.096 0.091 0.057
16 -0.048 -0.042 0.063 -0.091 0.194 0.134
17 -0.162 -0.369 0.531 0.169 0.022 -0.222
18 -0.125 -0.003 -0.524 -0.034 -0.134 0.099
19 0.090 0.083 -0.038 -0.181 0.057 -0.173
20 0.103 0.132 0.124 0.031 0.061 -0.263
21 0.275 0.246 -0.091 0.376 -0.123 -0.001
22 0.114 0.063 0.055 0.081 -0.089 0.122
23 0.196 -0.232 -0.082 -0.222 0.584 0.092
24 0.204 -0.213 0.045 -0.421 -0.075 0.272
25 -0.014 0.159 0.152 -0.432 -0.546 -0.119
26 -0.066 0.023 -0.221 -0.055 0.069 -0.040
27 -0.082 -0.136 -0.297 0.123 0.093 -0.025
28 -0.120 -0.005 0.030 0.106 -0.075 0.074

29 -0.215 0.011 0.098 0.272 0.020 0.277
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30 -0.112 0.076 0.010 0.146 0.209 -0.029
31 -0.051 0.011 0.061 0.136 0.041 0.110
32 0.005 0.006 0.028 0.100 0.042 -0.059
33 -0.010 0.010 0.002 0.095 -0.051 -0.048
34 -0.001 0.046 0.041 0.078 -0.049 -0.063
35 -0.083 0.024 0.011 0.076 -0.063 -0.187
36 -0.029 0.036 0.015 0.135 -0.112 -0.198
37 -0.033 -0.097 0.110 0.007 0.061 -0.180
38 -0.084 0.018 0.017 0.038 0.069 -0.073
39 -0.057 -0.014 0.029 0.036 0.046 -0.020
40 -0.063 0.024 0.016 0.044 0.021 0.030
41 -0.012 -0.019 0.020 0.037 -0.003 -0.018
42 -0.040 0.009 0.026 0.005 0.031 -0.027
Band PC19 PC20 PC21 PC22 PC23 PC24
1 -0.228 0.019 0.093 0.043 -0.012 0.016
2 -0.422 0.435 -0.055 0.127 0.025 -0.141
3 0.114 -0.300 0.036 -0.016 0.012 0.123
4 0.176 -0.262 -0.064 0.041 -0.169 -0.068
5 0.001 0.259 0.082 -0.070 0.033 0.007
6 -0.163 -0.165 -0.192 0.034 0.074 -0.055
7 0.243 0.121 0.220 0.017 -0.113 0.111
8 -0.423 0.043 -0.117 -0.060 0.097 -0.144
9 0.251 -0.032 -0.035 0.067 -0.033 0.006
10 -0.141  0.025 -0.047 -0.037 0.006 0.080
11 0.061 0.038 0.095 0.086 0.028 -0.021
12 -0.024 -0.068 -0.106 -0.084 -0.014 -0.017
13 -0.002 -0.045 0.110 0.030 -0.043 -0.026
14 0.034 0.142 -0.075 -0.089 0.144 0.040
15 -0.116 -0.116 0.133 0.030 -0.020 0.136
16 0.141 -0.054 -0.255 -0.013 -0.310 -0.492
17 0.035 -0.212 0.029 0.240 -0.107 0.169
18 -0.084 0.087 0.121 -0.214 0.113 0.083
19 0.162 0.327 0.161 0.032 0.022 -0.002
20 0.293 0.228 -0.199 -0.132 0.357 -0.061
21 -0.431 -0.209 0.109 0.043 -0.136 -0.078
22 -0.084 0.050 -0.028 -0.065 -0.271 0.040
23 -0.046 -0.080 0.241 0.071 0.068 0.303
24 -0.021 -0.310 -0.048 -0.228 -0.031 -0.170
25 -0.052 -0.048 -0.073 0.198 0.020 0.192
26 0.076 0.233 -0.345 0.192 -0.284 0.029
27 0.042 0.092 0.063 0.586 0.003 -0.214
28 0.028 -0.112 0.222 0.194 0.471 -0.210
29 0.006 -0.141 -0.279 -0.189 0.328 -0.135
30 -0.017 0.057 -0.260 -0.238 0.006 0.189
31 -0.040 0.037 -0.115 -0.049 0.031 0.429
32 0.011 0.125 -0.008 -0.148 -0.215 0.100
33 0.039 -0.002 0.023 0.058 -0.058 0.044
34 -0.039 -0.003 0.058 -0.014 -0.162 0.018
35 0.010 0.096 0.073 -0.168 -0.248 0.024
36 0.079 0.053 0.257 -0.072 -0.050 -0.225
37 -0.002 0.042 0.405 -0.370 -0.088 -0.222
38 0.025 0.027 0.136 -0.074 -0.046 -0.084
39 0.008 0.041 0.016 -0.040 -0.065 0.001
40 -0.004 -0.025 0.031 -0.031 -0.071 -0.008
41 0.008 0.000 0.033 -0.026 0.013 -0.004
42 -0.018 0.021 0.042 -0.021 -0.023 -0.015
Band PC25 PC26 PC27 PC28 PC29 PC30
1 -0.010 -0.142 -0.214 -0.285 -0.246 -0.353

2 0.138 -0.130 -0.035 0.118 0.099 0.243
3 -0.179 0.204 0.185 -0.076 -0.220 -0.076
4 0.237 -0.425 -0.323 0.072 0.434 0.078
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5 -0.061 0.164 0.078 0.005 -0.143 -0.014
6 0.034 -0.063 0.042 -0.005 0.106 -0.013
7 -0.009 0.043 -0.088 0.012 -0.110 0.006
8 -0.067 -0.004 0.089 -0.045 0.033 -0.016
9 0.061 0.007 0.000 0.019 0.015 0.013
10 -0.046 -0.021 -0.038 -0.026 -0.028 -0.039
11 0.038 0.036 0.019 0.039 0.069 0.038
12 -0.020 -0.009 -0.006 -0.060 -0.036 -0.041
13 0.093 -0.066 0.046 0.118 -0.031 0.051
14 -0.041 -0.003 -0.043 -0.066 -0.016 -0.010
15 0.149 0.089 0.060 0.051 0.037 -0.003
16 -0.540 -0.102 -0.092 -0.098 -0.083 0.022
17 0.135 0.099 -0.023 0.031 -0.015 -0.004
18 -0.037 0.007 -0.004 0.044 -0.017 0.144
19 0.131 -0.162 -0.018 -0.387 0.168 -0.418
20 0.045 -0.080 0.020 0.271 -0.151 0.164
21 -0.037 0.058 -0.195 0.139 -0.156 -0.059
22 -0.094 0.174 0.419 -0.162 0.499 0.098
23 -0.147 0.095 -0.166 -0.105 0.108 0.265
24 0.347 -0.099 0.250 0.158 -0.249  0.007
25 -0.159 0.032 -0.191 -0.010 0.096 0.003
26 0.160 0.494 -0.239 0.099 -0.060 0.008
27 0.108 -0.158 0.344 0.155 -0.106 -0.215
28 -0.169 -0.048 -0.229 -0.066 0.031 0.201
29 0.089 0.191 -0.003 -0.262 0.190 -0.231
30 0.223 -0.111 -0.124 -0.140 -0.127 0.044
31 -0.365 -0.368 0.272 0.232 0.032 -0.196
32 -0.155 -0.166 -0.274 0.230 -0.078 -0.136
33 0.065 -0.059 0.036 -0.148 -0.169 0.049
34 0.168 -0.158 0.005 -0.355 -0.204 0.144
35 0.056 -0.205 0.116 -0.135 -0.082 0.324
36 -0.112 0.031 0.104 -0.150 -0.011 0.226
37 0.050 0.168 -0.102 0.339 0.199 -0.314
38 0.062 0.007 0.046 -0.075 -0.080 -0.007
39 -0.006 -0.024 -0.012 0.013 -0.029 -0.094
40 -0.018 0.045 -0.020 -0.034 -0.129 0.063
41 -0.009 0.023 -0.010 -0.058 -0.002 -0.005
42 -0.005 -0.031 -0.006 -0.019 -0.095 0.006
Band PC31 PC32 PC33 PC34 PC35 PC36
1 0.497 -0.380 0.290 -0.070 -0.010 -0.073
2 -0.065 0.131 -0.043 0.032 -0.047 0.066
3 -0.109 0.009 -0.085 -0.071 0.047 -0.051
4 0.128 -0.025 0.101 0.111 -0.051 0.064
5 -0.025 0.019 -0.020 -0.042 0.003 -0.019
6 -0.012 -0.067 0.037 0.049 0.024 -0.002
7 0.029 0.080 -0.050 -0.033 -0.019 -0.002
8 -0.055 -0.071 0.017 0.035 -0.017 0.050
9 0.019 0.010 -0.005 -0.066 -0.004 -0.018
10 -0.013 -0.013 -0.003 0.018 0.019 -0.000
11 0.029 0.008 0.031 0.011 -0.021 -0.011
12 0.045 0.007 -0.008 -0.041 0.003 0.017
13 -0.064 0.008 -0.005 0.035 -0.033 0.002
14 -0.038 0.013 -0.018 0.024 0.040 -0.019
15 0.002 -0.106 -0.005 -0.014 -0.012 0.025
16 0.032 0.178 -0.013 -0.050 0.094 0.022
17 0.045 -0.072 -0.005 0.021 -0.038 -0.040
18 0.056 -0.000 0.170 -0.050 -0.020 0.004
19 -0.211 0.059 -0.313 0.184 -0.012 -0.016
20 0.138 -0.060 0.319 -0.036 -0.027 -0.037
21 -0.035 0.218 -0.148 0.071 -0.067 -0.041
22 0.027 -0.328 0.104 -0.197 0.216 0.077
23 -0.016 0.159 0.092 -0.055 -0.169 -0.014
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24 -0.082 -0.138 -0.175 0.136 -0.025 0.027
25 0.083 0.235 0.052 -0.230 -0.102  0.029
26 0.103 -0.153 -0.033 0.380 0.099 -0.068
27 0.055 0.075 0.050 -0.316 -0.064 -0.067
28 -0.096 -0.328 -0.218 0.085 0.427 -0.058
29 -0.119 0.135 0.171 -0.004 -0.343 -0.134
30 0.254 0.127 -0.449 -0.409 0.213 0.205
31 0.149 0.079 -0.048 0.447 0.079 -0.005
32 -0.530 -0.439 0.018 -0.246 -0.267 0.030
33 -0.164 0.070 0.272 0.037 0.150 0.720
34 -0.270 0.204 0.356 0.192 0.270 -0.235
35 0.085 -0.022 -0.051 -0.120 -0.044 -0.482
36 0.284 -0.110 -0.228 0.242 -0.484 0.216
37 0.138 0.219 0.126 -0.055 0.296 -0.013
38 0.041 0.063 0.150 0.051 -0.168 0.151
39 0.004 -0.047 0.051 0.031 0.027 -0.036
40 0.046 -0.059 0.073 0.078 0.026  0.050
41 0.066 -0.050 0.011 0.017 -0.001 0.090
42 0.038 -0.146 0.005 0.028 0.008 0.074
Band PC37 PC38 PC39 PC40 PC41 PC42
1 -0.059 0.137 0.049 -0.069 -0.017 0.007
2 0.016 -0.028 -0.011 -0.000 0.005 -0.006
3 -0.006 -0.003 0.012 0.006 0.018 -0.002
4 0.017 -0.046 -0.019 0.013 -0.005 0.016
5 -0.005 0.019 0.002 -0.004 0.002 -0.009
6 -0.009 -0.000 -0.019 -0.018 -0.014 0.003
7 -0.013 0.001 0.007 0.020 0.011 0.002
8 0.012 0.016 -0.012 -0.018 -0.009 -0.004
9 0.036 -0.019 0.013 0.018 0.014 -0.002
10 -0.032 -0.018 0.002 -0.007 -0.008 -0.001
11 0.020 0.033 -0.014 -0.001 0.004 0.012
12 0.021 -0.029 0.026 -0.008 -0.011 0.020
13 -0.048 0.035 -0.028 0.010 -0.017 -0.038
14 0.022 -0.054 -0.000 0.003 0.003 0.028
15 -0.016 0.040 0.032 -0.017 0.032 -0.013
16 0.003 0.026 0.028 0.017 0.008 -0.018
17 -0.024 0.022 0.011 -0.013 -0.005 0.003
18 -0.048 -0.002 -0.020 0.005 0.031 -0.019
19 0.117 0.004 -0.069 -0.014 -0.065 0.034
20 -0.040 -0.034 -0.033 -0.009 0.000 -0.014
21 0.106 -0.007 -0.016 0.036 0.019 -0.012
22 -0.046 -0.112 0.039 -0.017 0.010 0.020
23 0.006 0.019 -0.057 0.026 0.018 0.008
24 0.009 0.010 0.001 -0.019 0.014 -0.030
25 0.020 -0.092 -0.015 0.022 0.022 0.016
26 0.021 0.090 0.080 0.011 -0.006 -0.008
27 -0.064 -0.040 -0.055 0.014 -0.046 -0.007
28 0.088 0.010 0.108 -0.062 0.027 0.010
29 0.060 0.121 -0.081 0.061 -0.020 0.052
30 -0.160 -0.124 0.045 -0.037 0.016 0.004
31 0.002 0.020 0.067 0.002 -0.046  0.006
32 -0.126 -0.019 0.046 -0.044 -0.067 -0.033
33 0.208 0.437 -0.102 -0.026 0.029 0.045
34 -0.464 -0.201 0.045 0.039 0.014 -0.069
35 0.445 0.392 -0.037 0.019 -0.050 0.026
36 -0.385 0.024 -0.080 -0.055 0.063 -0.003
37 -0.077 0.098 -0.039 0.026 -0.072 0.039
38 0.395 -0.430 0.689 -0.114 0.030 0.031
39 0.202 -0.233 -0.358 -0.169 0.825 -0.158
40 0.235 -0.452 -0.536 -0.324 -0.462  0.257
41 0.162 -0.141 -0.135 0.286 -0.257 -0.872

42 0.101 -0.216 -0.121 0.862 0.082 0.358
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Appendix G

Eigenvalues for COUP 444 Subset

Component| Eigenvalue Proportion | Cumulative
1 5485800000000 0.623 0.623
2 2703700000000 0.307 0.930
3 193090000000 0.022 0.952
4 166530000000 0.019 0.971
5 8308800000( 0.009 0.980
6 3610800000( 0.004 0.984
7 1435900000( 0.002 0.986
8 1204400000( 0.001 0.987
9 1063800000( 0.001 0.989
10 9161318129 0.001 0.990
11 8661918888 0.001 0.991
12 8278939401 0.001 0.992
13 6213038241 0.001 0.992
14 5936007079 0.001 0.993
15 555948844( 0.001 0.994
16 5075589349 0.001 0.994
17 4989070817 0.001 0.995
18 4084620225 0.000 0.995
19 3981628161 0.000 0.996

20 3518224813 0.000 0.996
21 3273573251 0.000 0.996
22 3071969487 0.000 0.997
23 2683702811 0.000 0.997
24 2638508387 0.000 0.997
25 2544445558 0.000 0.998
26 2336962812 0.000 0.998
27 2193127824 0.000 0.998
28 1932914749 0.000 0.998
29 1867531664 0.000 0.999
30 1689332097 0.000 0.999
31 1529087747 0.000 0.999
32 1418222254 0.000 0.999
33 134416208( 0.000 0.999
34 1239097892 0.000 0.999
35 1066209823 0.000 1.000
36 918758024 0.000 1.000
37 721826174 0.000 1.000
38 647750008 0.000 1.000
39 424973629 0.000 1.000
40 3001820871 0.000 1.000
41 193401860 0.000 1.000
42 153394869 0.000 1.000
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Appendix H
Class Assignments After Each Clustering Method
COuUP Hierarchical K-Means Source Changed
Source Clustering Class Classes
Number Class Membership Marked With *
Membership

471 1 1

510 1 1

625 1 1

647 1 1

680 1 1

723 1 1

797 1 1

441 2 2

466 2 2

507 2 2

539 2 2

563 2 2

572 2 2

598 2 2

599 2 2

640 2 2

667 2 2

1123 2 2

1139 2 2

376 3 3

554 3 3

614 3 3

655 3 3

780 3 3

1075 3 3

1223 3 3

1297 3 3

1364 3 3

241 4 4

246 4 4

385 4 4

407 4 4

415 4 4

424 4 4

533 4 4

595 4 4

817 4 4

1054 4 4

1062 4 4

1067 4 4

1234 4 4

1298 4 4

1439 4 4
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COUP Hierarchical K-Means Source Changed
Source Clustering Class Classes
Number Class Membership Marked With *
Membership
1469 4
1480
1535
986
1053
111
224
292
548
896
970
1041
1128
1165
314
319
353
391
427
472
712
713
849
852
878
892
919
1056
1081
1137
1200
1276
1284
1296
1308
1579
1607
1609
165
192
332
418
435
481
520
610
627
653

WWOMOWMOOMMWMOMOONNNSNNNNSNSNSNSNNSNNNSNNNNNNNNANAODODODODOOO OO UUTA N
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COUP Hierarchical K-Means Source Changed
Source Clustering Class Classes
Number Class Membership Marked With *
Membership
751 8 8
1035 8 8
1112 8 8
1147 8 8
1154 8 9 *
1167 8 8
1399 8 8
1430 8 8
1471 8 8
1544 8 8
1561 8 8
8 9 9
321 9 9
331 9 9
338 9 9
365 9 9
561 9 9
658 9 9
697 9 9
837 9 9
1071 9 9
1140 9 9
1456 9 9
65 10 8 *
137 10 10
172 10 9 *
230 10 10
238 10 9 *
269 10 9 *
483 10 9 *
536 10 9 *
664 10 9 *
902 10 9 *
1110 10 9 *
1258 10 10
1357 10 10
1603 10 9 *
55 11 11
90 11 10 *
115 11 11
183 11 10 *
223 11 10 *
227 11 11
236 11 11
250 11 10 *
260 11 10 *
262 11 10 *
301 11 11



176 APPEIX H. CLASS ASSIGNMENTS AFTER CLUSTERING

COUP Hierarchical K-Means Source Changed
Source Clustering Class Classes
Number Class Membership Marked With *
Membership
310 11 11
322 11 10 *
323 11 11
373 11 10 *
414 11 11
454 11 10 *
485 11 10 *
514 11 11
515 11 11
612 11 11
624 11 10 *
645 11 10 *
649 11 10 *
660 11 10 *
789 11 11
790 11 10 *
823 11 10 *
897 11 10 *
921 11 11
939 11 10 *
949 11 11
976 11 11
998 11 11
1000 11 11
1008 11 10 *
1028 11 10 *
1045 11 11
1070 11 10 *
1074 11 11
1097 11 11
1104 11 10 *
1120 11 11
1141 11 11
1158 11 11
1191 11 11
1210 11 11
1231 11 10 *
1245 11 10 *
1275 11 10 *
1290 11 10 *
1292 11 11
1302 11 10 *
1316 11 10 *
1344 11 10 *
1356 11 11
1391 11 10 *
1407 11 11

1409 11 10 *
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COUP Hierarchical K-Means Source Changed
Source Clustering Class Classes
Number Class Membership Marked With *
Membership

1410 11 11

1419 11 11

1450 11 11

1474 11 11

1485 11 10 *
1503 11 11

1529 11 10 *
1531 11 11

1550 11 11

11 12 12

49 12 12

110 12 11 *

117 12 12

174 12 12

217 12 12

256 12 11 *

304 12 12

308 12 11 *

368 12 11 *

404 12 12

446 12 12

490 12 11 *

550 12 11 *

566 12 12

626 12 11 *

663 12 12

737 12 12

753 12 12

756 12 11 *

776 12 11 *

801 12 12

857 12 11 *

885 12 12

899 12 12

992 12 11 *
1019 12 12

1086 12 11 *
1100 12 12

1111 12 12

1117 12 12

1127 12 12

1193 12 11 *
1246 12 12

1261 12 12

1264 12 11 *
1374 12 12

1382 12 11 *

1449 12 12
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COUP Hierarchical K-Means Source Changed
Source Clustering Class Classes
Number Class Membership Marked With *
Membership

1462 12 12

1464 12 12

1466 12 11 *
1478 12 12

1570 12 12

17 13 13

29 13 13

154 13 13

177 13 13

226 13 13

244 13 13

312 13 11 *

431 13 13

499 13 13

648 13 13

671 13 13

710 13 13

750 13 13

783 13 13

856 13 12 *

903 13 13

1058 13 13

1101 13 13

1103 13 13

1132 13 13

1149 13 12 *
1155 13 13

1161 13 13

1172 13 13

1206 13 13

1216 13 13

1235 13 11 *
1336 13 13

1369 13 13

1447 13 13

1475 13 13

1588 13 11 *

6 14 14

28 14 14

40 14 15 *

43 14 14

54 14 14

62 14 14

66 14 14

67 14 15 *

96 14 14

109 14 15 *

112 14 14
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COUP Hierarchical K-Means Source Changed
Source Clustering Class Classes
Number Class Membership Marked With *
Membership
113 14 14
122 14 14
134 14 14
139 14 14
141 14 14
173 14 15 *
179 14 15 *
197 14 14
202 14 14
205 14 14
218 14 14
253 14 14
270 14 15 *
309 14 14
325 14 15 *
379 14 14
382 14 14
387 14 14
410 14 15 *
413 14 14
459 14 15 *
470 14 15 *
488 14 15 *
489 14 14
498 14 15 *
513 14 14
517 14 15 *
545 14 14
557 14 14
565 14 14
602 14 14
604 14 14
616 14 15 *
631 14 13 *
665 14 15 *
666 14 14
672 14 14
700 14 14
711 14 14
726 14 15 *
739 14 15 *
754 14 14
763 14 15 *
798 14 14
807 14 14
862 14 15 *
865 14 13 *

888 14 15 *
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COUP Hierarchical K-Means Source Changed
Source Clustering Class Classes
Number Class Membership Marked With *
Membership
914 14 15 *
924 14 14
936 14 14
960 14 14
969 14 15 *
972 14 14
1007 14 14
1009 14 14
1076 14 14
1095 14 15 *
1121 14 14
1126 14 15 *
1131 14 14
1134 14 14
1135 14 15 *
1143 14 14
1150 14 15 *
1151 14 14
1169 14 15 *
1177 14 15 *
1202 14 15 *
1212 14 15 *
1233 14 15 *
1236 14 15 *
1242 14 14
1279 14 14
1282 14 14
1291 14 13 *
1306 14 15 *
1311 14 15 *
1355 14 15 *
1384 14 14
1387 14 14
1388 14 15 *
1398 14 15 *
1423 14 15 *
1424 14 14
1429 14 15 *
1432 14 15 *
1433 14 14
1455 14 14
1463 14 15 *
1487 14 14
1492 14 15 *
1521 14 14
1546 14 15 *
1585 14 14

1608 14 14



APPENDIX H. CLASS ASSIGNMENTS AFTER CLUSTERING 181

COUP Hierarchical K-Means Source Changed
Source Clustering Class Classes
Number Class Membership Marked With *
Membership

1610 14 15 *

20 15 15

21 15 15

69 15 15

89 15 15

100 15 15

114 15 16 *

118 15 15

119 15 15

132 15 16 *

133 15 15

169 15 16 *

249 15 15

255 15 15

266 15 15

276 15 15

296 15 15

328 15 15

340 15 15

389 15 15

395 15 15

468 15 15

553 15 15

695 15 15

937 15 15

966 15 15

974 15 15

1066 15 15

1207 15 15

1360 15 15

1373 15 16 *
1404 15 15

1411 15 15

1438 15 15

1440 15 15

1454 15 15

1512 15 15

1516 15 15

1524 15 15

1539 15 15

1543 15 15

1553 15 15

1564 15 15

1571 15 16 *
1572 15 15

1591 15 15

1594 15 15

1595 15 15
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COUP Hierarchical K-Means Source Changed
Source Clustering Class Classes
Number Class Membership Marked With *
Membership

1612 15 15

1616 15 15

60 16 16

64 16 16

128 16 16

164 16 16

294 16 16

300 16 16

585 16 16

864 16 16

869 16 16

1199 16 16

1415 16 16

1457 16 16

1507 16 16

1537 16 16

948 17 17
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