
Low-Shot Learning for the Semantic Segmentation
of Remote Sensing Imagery

by

Ronald Kemker

B.S. in Computer Engineering, Michigan Technological University, 2010

B.S. in Electrical Engineering - Photonics, Michigan Technological University, 2010

M.S. in Electrical Engineering, Michigan Technological University, 2011

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

in the Chester F. Carlson Center for Imaging Science

College of Science

Rochester Institute of Technology

August 17, 2018

Signature of the Author

Accepted by
Coordinator, Ph.D. Degree Program Date

CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE

COLLEGE OF SCIENCE

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

Ph.D. DEGREE DISSERTATION

The Ph.D. Degree Dissertation of Ronald Kemker
has been examined and approved by the

dissertation committee as satisfactory for the
dissertation required for the

Ph.D. degree in Imaging Science

Dr. Christopher Kanan, Dissertation Advisor

Dr. Pengcheng Shi, External Chair

Dr. Carl Salvaggio

Dr. Michael Gartley

Date

ii

To my wife Christine.

iii

Low-Shot Learning for the Semantic Segmentation
of Remote Sensing Imagery

by

Ronald Kemker

Submitted to the
Chester F. Carlson Center for Imaging Science

in partial fulfillment of the requirements
for the Doctor of Philosophy Degree

at the Rochester Institute of Technology

Abstract

Deep-learning frameworks have made remarkable progress thanks to the creation of
large annotated datasets such as ImageNet, which has over one million training images.
Although this works well for color (RGB) imagery, labeled datasets for other sensor
modalities (e.g., multispectral and hyperspectral) are minuscule in comparison. This is
because annotated datasets are expensive and man-power intensive to complete; and since
this would be impractical to accomplish for each type of sensor, current state-of-the-art
approaches in computer vision are not ideal for remote sensing problems. The shortage
of annotated remote sensing imagery beyond the visual spectrum has forced researchers
to embrace unsupervised feature extracting frameworks. These features are learned on a
per-image basis, so they tend to not generalize well across other datasets. In this disser-
tation, we propose three new strategies for learning feature extracting frameworks with
only a small quantity of annotated image data; including 1) self-taught feature learn-
ing, 2) domain adaptation with synthetic imagery, and 3) semi-supervised classification.
“Self-taught” feature learning frameworks are trained with large quantities of unlabeled
imagery, and then these networks extract spatial-spectral features from annotated data for
supervised classification. Synthetic remote sensing imagery can be used to boot-strap a
deep convolutional neural network, and then we can fine-tune the network with real im-
agery. Semi-supervised classifiers prevent overfitting by jointly optimizing the supervised
classification task along side one or more unsupervised learning tasks (i.e., reconstruc-
tion). Although obtaining large quantities of annotated image data would be ideal, our
work shows that we can make due with less cost-prohibitive methods which are more
practical to the end-user.

iv

Acknowledgements

First and foremost, I would like to thank my wife Christine. She has made many sacrifices
for our family including a deployment two months after we were married and now a time-
intensive PhD program. I love you very much and I look forward to spending the rest of
my life making it up to you.

Second, I would like to thank my parents, Brian and Terri; parents in-law, Tom and
Karen; my sister Stephanie, her wife Courtney, and my brothers-in-law Travis and Jimmy.
You have always loved and supported Christine and I, which we are eternally grateful for.

Third, I would like to thank the countless number of people from previous assignments
that have invested so much time into my development and made this opportunity possible.
I would like to give a special shout-out to all of my military and civilian mentors, including
Michael Roggemann, Chris Middlebrook, Glen Archer, Nikola Subotic, Tyler Erickson,
Colin Brooks, Joel LeBlanc, John Valenzuela, Frank Scenna, Brian McKellar, Andrew
Hoff, Ian Cameron, Wendy Kunkle, Carl Brenner, Jeffrey Kwok, Paul Sebold, Michael
Grogan, Michael Belko, Bobby Bankston, and the many others that have and continue to
shape my personal and professional career. Good luck to all of you, and your families, in
your future endeavors.

Fourth, I would like to thank the people here that made this all possible. First, I
would like to thank my advisor Dr. Kanan for his mentorship and for pushing me over
the last three years to do above and beyond what was expected of me. You put a lot
of trust and faith in my work and ability to get things done. I would also like to give
a special thanks to Dr. Salvaggio for helping me build the RIT-18 dataset and to Dr.
Gartley for helping me with my DIRSIG problems. We would like to thank Nina Raqueno,
Paul Sponagle, Timothy Bausch, Michael McClelland II, and other members of the RIT
Signature Interdisciplinary Research Area, UAS Research Laboratory that supported with
data collection efforts for RIT-18. I would like to thank Kushal Kafle and Tyler Hayes for
being a sounding board during this process and for putting up with me in the lab.

Finally, Christine and I would both like to thank the US/Canadian Air Force students,
and all of our friends, that have either already moved on to their next big thing or are still
grinding away here at RIT today. You have provided a community that made our time
here a bit easier and more enjoyable. Good luck to all of you and I hope that our paths
cross again really soon!

v

vi

Author Publications

† indicates that a modified version of this publication is included in this dissertation.

Refereed Publications

• Kemker, R. and Kanan, C. (2018) FearNet: Brain-Inspired Model for Incremental
Learning. In the Proceedings for the Sixth International Conference for Learning
Representations.

• Kemker, R. , McClure, M., Abitino, A., Hayes, T., and Kanan, C. (2018) Measuring
Catastrophic Forgetting in Neural Networks. In the Proceedings for the Thirty-
Second Association for the Advancement of Artificial Intelligence (AAAI).

† Kemker, R. and Kanan C. (2017) Self-Taught Feature Learning for Hyperspectral
Image Classification. IEEE Transactions on Geoscience and Remote Sensing (TGRS),
55(5): 2693-2705. 10.1109/TGRS.2017.2651639.

Submitted/In-Review

† Kemker, R., Salvaggio C., and Kanan C. (In Review) Algorithms for Semantic Seg-
mentation of Multispectral Remote Sensing Imagery using Deep Learning. In re-
view at the ISPRS Journal of Photogrammetry and Remote Sensing - “Deep Learn-
ing for Remotely Sensed Data”.

† Kemker, R., Luu, R., and Kanan C. (In Review) Low-Shot Learning for the Seman-
tic Segmentation of Remote Sensing Imagery. In review at the IEEE Transactions
on Geoscience and Remote Sensing (TGRS).

• Parisi, G., Kemker, R., Part, J., Kanan, C., and Wermter, S. (In Review) Continual
Lifelong Learning with Neural Networks: A Review. In review at Neural Networks.

Technical Reports

† Kemker, R., Salvaggio, C, and Kanan C. (2017) High-Resolution Multispectral
Dataset for Semantic Segmentation. arXiv preprint arXiv:1703.06452.

Contents

Dedication iii

Dissertation Title & Abstract iv

Acknowledgements v

Author Publications vi

Table of Contents vii

List of Figures xi

List of Tables xv

1 Introduction and Motivation 1
1.1 Context . 1

1.1.1 Self-Taught Learning . 1
1.1.2 Domain Adaptation . 2
1.1.3 Semi-supervised Learning . 3

1.2 Objectives . 3
1.3 Dissertation Layout . 4

1.3.1 Chapter 2: Self-Taught Feature Learning for Hyperspectral Image
Classification (Objectives #1 and #2) 4

1.3.2 Chapter 3: Algorithms for the Semantic Segmentation of Remote
Sensing Imagery (Objective #2 and #3) 5

1.3.3 Chapter 4: Low-Shot Learning for the Semantic Segmentation of
Remote Sensing Imagery (Objective #4) 5

vii

CONTENTS viii

1.4 Novel Contributions . 6
1.5 Related Publications . 7

2 Self-Taught Feature Learning for Hyperspectral Image Classification 9
2.1 Background . 11

2.1.1 Unsupervised Feature Learning 11
2.1.2 Self-Taught Learning . 12
2.1.3 Feature Learning for HSI Classification 13

2.2 Self-Taught Learning Frameworks . 14
2.2.1 Multi-scale ICA (MICA) . 14
2.2.2 Stacked Convolutional Autoencoders (SCAE) 17

2.3 Experiments and Results . 19
2.3.1 HSI Datasets . 20
2.3.2 Experimental Setup . 22
2.3.3 Experimental Results . 25
2.3.4 Additional Experiments . 31

2.4 Discussion and Conclusions . 36

3 Algorithms for Semantic Segmentation of Multispectral Remote Sensing Im-
agery using Deep Learning 39
3.1 Related Work . 42

3.1.1 Semantic Segmentation of RGB Imagery with Deep Networks . . 42
3.1.2 Deep-Learning for Non-RGB Sensors 43
3.1.3 Semantic Segmentation of High Resolution Remote Sensing Im-

agery . 44
3.1.4 MSI Semantic Segmentation Datasets for Remote Sensing 45
3.1.5 Deep Learning with Synthetic Imagery 46

3.2 Methods . 47
3.2.1 Synthetic Image Generation using DIRSIG 47
3.2.2 Fully-Convolutional Deep Networks for Semantic Segmentation . 49
3.2.3 Comparison Semantic Segmentation Algorithms 53

3.3 RIT-18 Dataset . 56
3.3.1 Collection Site . 56
3.3.2 Collection Equipment . 57
3.3.3 Dataset Statistics and Organization 58

3.4 FCN Training Procedures . 60

CONTENTS ix

3.4.1 Pre-Training the ResNet-50 DCNN on Synthetic MSI 60
3.4.2 DCNN Fine-Tuning . 60

3.5 Experimental Results . 61
3.5.1 RIT-18 Results . 61
3.5.2 Band Analysis for RIT-18 . 65

3.6 Discussion . 65
3.7 Conclusion . 67

4 Low-Shot Learning for the Semantic Segmentation of Remote Sensing Im-
agery 69
4.1 Related Work . 72

4.1.1 Self-Taught Feature Learning 72
4.1.2 Semi-Supervised Learning . 73

4.2 Methods . 74
4.2.1 Multi-Loss Convolutional Autoencoder 74
4.2.2 Semi-Supervised Multi-Layer Perceptron Neural Network 76
4.2.3 Adaptive Non-Linear Activations 77

4.3 Experimental Setup . 78
4.3.1 Data Description . 78
4.3.2 Training Parameters . 80

4.4 Experimental Results and Discussion . 83
4.4.1 Single- vs. Multi-Loss CAE . 83
4.4.2 Stacked Feature Representations 84
4.4.3 Multi-Sensor Fusion . 85
4.4.4 State-of-the-Art Comparison . 86
4.4.5 Dissimilarity Between Learned Features 88

4.5 Conclusion . 91

5 Conclusion 92

A RIT-18: Dataset Creation Details 107

B RIT-18: Class Descriptions 110
B.1 Water/Beach Area . 110
B.2 Vegetation . 110
B.3 Roadway . 111
B.4 Underrepresented Classes . 111

CONTENTS x

C SCAE Architecture Used for RIT-18 112

D Additional Results 115

List of Figures

2.1 ICA filters learned from color (RGB) imagery. Most of the filters resem-
ble Gabor filters. The green-red, dark-light, and yellow-blue opponency
are an emergent phenomenon. 12

2.2 Our self-taught learning model using multiscale ICA (MICA) filters. This
framework learns low-level feature extractors from one (or more) hyper-
spectral dataset(s) and then applies them to a separate target dataset. Mul-
tiple datasets with varying GSDs can be used to make the filters scale
invariant. 15

2.3 A visualization of the learned 15 × 15 ICA filters from the Indian Pines
dataset. It was generated by summing across the spectral dimension of
the filters (hundred of bands). Despite summing across all spectral di-
mensions, this visualization still resembles the Gabor-like filters found in
primary visual cortex. 17

2.4 This figure shows the CAE modules used in this chapter. The refinement
layer combines features from different parts of the network to provide a
better reconstruction. 19

2.5 A two-layer stacked convolutional autoencoder. This figure shows how
a pre-trained network can extract features from labeled data and classify
them. 20

2.6 The ground truth maps for Indian Pines 2.6(a), Salinas Valley 2.6(b), and
Pavia University 2.6(c) HSI datasets. 21

2.7 The classification maps for the Indian Pines dataset. Figures a-c were gen-
erated with the SCAE-AVIRIS filters while Figures d-f were generated
with the SCAE-Hyperion filters. These class maps correspond, respec-
tively, to the following three training sets: 5% training data, 10% training
data, and a training set commonly found in literature[1]. 27

xi

LIST OF FIGURES xii

2.8 Results for the Indian Pines dataset in terms of kappa statistic as a function
of percent training samples per class. 28

2.9 The classification maps for the Salinas Valley dataset. Figures a-c were
generated with the SCAE-AVIRIS filters while Figures d-f were generated
with the SCAE-Hyperion filters. These class maps correspond, respec-
tively, to the following three training sets: 1% training data, 5% training
data, and 50 samples per class. 30

2.10 The classification maps for the Salinas dataset. Figures a-c were gener-
ated with the MICA-AVIRIS filters while Figures d-f were generated with
the MICA-Hyperion filters. These class maps correspond to the following
three training sets: 1% training data, 5% training data, and 50 samples per
class respectively. 31

2.11 Results for the Salinas Valley dataset in terms of kappa statistic as a func-
tion of percent training samples per class. 32

2.12 The classification maps for the Pavia University dataset. Figures a-c were
generated with the SCAE-AVIRIS filters while Figures d-f were generated
with the SCAE-Hyperion filters. These class maps correspond, respec-
tively, to the following three training sets: 5% training data, 10% training
data, and a training set commonly found in literature [2]. 34

2.13 Results for the Pavia University dataset in terms of kappa statistic as a
function of percent training samples per class. 35

2.14 This figure shows that the learned MICA filter bank is scale-invariant. The
solid lines represent the overall (red) and mean-class (blue) accuracies for
the original data. The dashed lines represent the overall (red) and mean-
class (blue) accuracies for the re-sized data. 36

2.15 This figure shows the classification performance of the Salinas Valley
dataset as the GSD is artificially changed through image resizing in terms
of overall accuracy (OA), mean-class accuracy (AA), and kappa statistic
(κ). The training set was fixed at 50 samples per class. 37

3.1 Our proposed model uses synthetic multispectral imagery to initialize a
DCNN for semantic segmentation. This model is then fine-tuned on real
imagery. 40

3.2 RGB visualization of RIT-18 dataset. This dataset has six spectral bands. . 41
3.3 The DIRSIG Trona Scene. 48

LIST OF FIGURES xiii

3.4 Our Sharpmask model. The spatial dimensions of each module’s output
are provided to illustrate that the refinement layer combines features from
the feed-forward network (convolutional blocks) and the upsampled fea-
tures in the reverse network to restore the original image dimensions. The
output is a class probability matrix for each pixel. 50

3.5 Sharpmask refinement with batch normalization. This layer learns mask
refinement by merging features from the convolution F i and segmentation
M i networks. 51

3.6 Network Architecture incorporating RefineNet modules for semantic seg-
mentation. 52

3.7 RefineNet architecture. 53
3.8 Tetracam Micro-MCA6 mounted on-board the DJI-S1000 octocopter prior

to collection. 57
3.9 Class labels for RIT-18. 59
3.10 Class-label instances for the RIT-18 dataset. Note: The y-axis is logarith-

mic to account for the number disparity among labels. 59
3.11 Experimental results for Sharpmask and RefineNet models. These images

are small patches taken from the test orthomosaic. 64

4.1 Our proposed SuSA architecture for semantic segmentation of remote
sensing imagery. For feature extraction, SuSA uses our SMCAE model, a
stacked multi-loss convolutional autoencoder that has been trained on un-
labeled data using unsupervised learning. For classification, SuSA uses
our semi-supervised multi-layer perceptron (SS-MLP) model. 70

4.2 MCAE model architecture. Dashed lines indicate where the mean-squared
error loss Lj is calculated for layer j, and solid lines are the feed-forward
and lateral network connections where information is passed. The refine-
ment layers (Fig. 2.4 are responsible for reconstructing the downsampled
feature response. 74

4.3 Refinement layer used in CAE and MCAE. 76
4.4 The stacked multi-loss convolutional autoencoder (SMCAE) spatial-spectral

feature extractor used in this paper consists of two or more MCAE mod-
ules. The red lines denote where features are being extracted, transferred
to the next MCAE, and concatenated into a final feature response. 77

4.5 The semi-supervised multi-layer perceptron (SS-MLP) classification frame-
work used in this paper. 78

LIST OF FIGURES xiv

4.6 RGB visualization of HSI from all three sensors used to train SCAE and
SMCAE. 79

4.7 RGB visualization for Indian Pines, Pavia University, and Salinas Valley
HSI datasets. See Table 4.2 for scale. 81

4.8 Classification truth maps for Indian Pines, Pavia University, and Salinas
Valley HSI datasets. 81

4.9 SMCAE performance on four different classifiers: linear kernel SVM,
radial basis function (RBF) SVM, standard MLP, and our SS-MLP. Our
SS-MLP model does the best. 85

4.10 Classification maps for SuSA on the Indian Pines and Pavia University
datasets from the IEEE GRSS Data and Algorithm Standard Evaluation
website. 90

A.1 Orthomosaic Processing Pipeline . 107
A.2 Difference between manufacturer’s affine transformation and our perspec-

tive transformation. The registration error in the affine transformation
looks like a blue and red streak along the top and bottom of the parking
lines, respectively. 108

C.1 The SCAE model used in this paper. Architecture details for each CAE
are shown in Fig. C.2. 113

C.2 The convolutional autoencoder (CAE) architecture used in SCAE. This
CAE is made up of several convolution and refinement blocks. The SCAE
model in this paper uses three CAEs. 114

D.1 Heatmap visualization of the confusion matrices for all four models. Each
row is normalized to itself to highlight the most common errors. 116

D.2 Training (red) and validation (blue) loss and accuracy plots for Sharp-
Mask (solid line) and RefineNet (dashed line) models with DIRSIG weight
initialization. 117

D.3 Histogram of class distribution for DIRSIG training set. 118

List of Tables

2.1 The convolutional autoencoder model used for this chapter where z is ei-
ther the number of spectral bands in the input image (first CAE) or the
number of features extracted from the previous CAE (subsequent CAEs).
The ‘Refinement 1’ layer is the feature response that will be passed to
other CAEs and classified. Each convolutional layer consists of a convo-
lution followed by batch normalization and ReLU activation. The refine-
ment layer is outlined in Section 2.2.2. 23

2.2 The classification results for MICA and SCAE on the Indian Pines dataset.
The three training sets include #1) 5% per class, #2) 10% per class and
#3) 50 samples per class (15 for smaller classes). We compare against
state-of-the-art algorithms found in literature. Some statistics, including
standard deviations, were not provided by the authors, so they could not
be included. 26

2.3 The classification results for MICA and SCAE on the Salinas Valley dataset.
The three training sets include #1) 1% per class, #2) 5% per class and
#3) 50 samples per class. We compare against state-of-the-art algorithms
found in literature. Some statistics, including standard deviations, were
not provided by the author, so they could not be included. 29

2.4 The classification results for MICA and SCAE on the Pavia University
dataset. The three training sets include #1) 5% per class, #2) 10% per
class, and #3) a standard training set commonly found in literature. We
compare against state-of-the-art algorithms found in literature. Some
statistics, including standard deviations, were not provided by the author,
so they could not be included. 33

xv

LIST OF TABLES xvi

2.5 A comparison of the filter transfer learning experiment done in [2] and
our MICA and SCAE models. The training set included 50 samples per
class. 33

2.6 RSA between MICA and SCAE feature responses built from Pavia Uni-
versity (see Section 2.3.4). This table shows R2 values for predicting a
column (Y) from a row (X). A value of 1 means a perfect fit. The results
are presented as the mean and standard deviation R2 on the test data from
10 cross-validation folds. Because test data is being studied, the diagonal
is not necessarily all 1s. 35

2.7 RSA for SCAE-AVIRIS trained with an identical network initialization.
The results are presented as the mean and standard deviation R2 on the
test data from 10 cross-validation folds. This table shows R2 values for
predicting a column from a row. 36

3.1 Benchmark MSI semantic segmentation datasets, the year they were re-
leased, the sensor that collected it, its ground sample distance (GSD) in
meters, and the number of labeled object classes (excluding the back-
ground class). Our RIT-18 dataset is in bold. 46

3.2 Collection parameters for training, validation, and testing folds for RIT-18. 57
3.3 Data Collection Specifications . 58
3.4 Per-class accuracies as well as mean-class accuracy (AA) on the RIT-

18 test set. The two initializations used for our Sharpmask and RefineNet
models include random initialization (Rdm) and a network initialized with
synthetic data (Sim). We compare our results against the benchmark clas-
sification frameworks listed in Section 3.5. 63

3.5 The effect of band-selection on mean-class accuracy (AA). For compari-
son, the last entry is the experiment from Table 3.4 which used all six-bands. 65

3.6 Performance of RefineNet-Sim on the RIT-18 test set using 4-band (VNIR)
and the full 6-band images. These results include per-class accuracies and
mean-class accuracy (AA). 66

4.1 Various HSI sensors used in this paper to train and evaluate our SMCAE
SS-MLP framework. 79

4.2 Benchmark HSI datasets used in this paper to evaluate the algorithms. . . 80
4.3 Training parameters for CAE and MCAE. 82
4.4 Training parameters for SS-MLP. 83

LIST OF TABLES xvii

4.5 Classification results on the Pavia University dataset using a single CAE
and MCAE model trained on unlabeled AVIRIS data. These results were
generated by training SS-MLP on L labeled samples per class. Best per-
formance for each experiment is in bold. 84

4.6 Classification performance using features extracted from SMCAE models
that were trained with data from different HSI sensors. 86

4.7 Results of low-shot learning experiment where the training set contains
only L=10 samples per class. 87

4.8 Performance comparison of SuSA against the other semi-supervised and
self-taught learning frameworks discussed in this paper. 88

4.9 Classification results for the Indian Pines and Pavia University datasets
from the IEEE GRSS Data and Algorithm Standard Evaluation website. . 89

4.10 Dissimilarity between the feature responses from all three SMCAE mod-
els. The higher the value, the more dissimilar the two feature representa-
tions are. 89

Chapter 1

Introduction and Motivation

1.1 Context
Unsupervised and supervised feature learning has received a lot of attention over the
past few years thanks to advancements in machine- and deep-learning. In computer
vision, deep convolutional neural networks (DCNNs) have shattered previous state-of-
the-art frameworks for nearly every supervised learning task such as object recognition,
object detection, semantic segmentation, etc. These breakthroughs have been made pos-
sible by advancements in computer hardware (e.g. graphical processing units (GPUs),
more efficient learning optimization schemes [3], fast and effective non-linear activations
(e.g. rectified linear units (ReLU)), and massive labeled datasets such as ImageNet[4]
and MSCOCO[5]. Although computer vision has made significant progress over the past
several years, these frameworks still require large labeled datasets to learn discriminative
features that generalize well.

1.1.1 Self-Taught Learning
The ImageNet Challenge uses an object recognition dataset that contains 1.2 million train-
ing images distributed across 1,000 object classes. This dataset was considered by the
computer vision community to be particularly challenging; and in 2012, the authors in [6]
released the AlexNet DCNN which crushed the competition. This network-architecture
opened the door to even deeper networks that have continued to push state-of-the-art de-
velopment on the ImageNet challenge[7–9]. These DCNN frameworks have also been
re-purposed to learn additional tasks with orders-of-magnitude less labeled data[10, 11].

1

CHAPTER 1. INTRODUCTION AND MOTIVATION 2

Although deep-learning frameworks have been remarkably successful with color (RGB)
imagery, supervised deep-learning frameworks for non-RGB sensors tend to not perform
as well. This is because there is not an ImageNet-sized dataset for non-RGB image modal-
ities such as multispectral (MSI) and hyperspectral imagery (HSI). Previous attempts to
train DCNN frameworks to classify HSI resulted in mediocre performance because there
are not enough samples to learn generalized features, so remote sensing researchers have
embraced unsupervised spatial-spectral feature extractors such as stacked autoencoders.
Although these frameworks have historically achieved state-of-the-art performance on in-
dividual datasets, no work has demonstrated that these features transfer across multiple
datasets/sensors. A real-time deployable framework should not learn a feature representa-
tion on a per-image basis because of time and memory constraints, so it will need extract
generalized features that are also discriminative enough to perform well across many im-
ages.

In our work, we used self-taught learning to build spatial-spectral feature extractors
for HSI classification. Instead of learning features that are specific to a single labeled
dataset, self-taught learning uses large quantities of unlabeled data to learn discriminative
features that generalize well. Once the framework is learned, it can be deployed to work
across a variety of different datasets.

1.1.2 Domain Adaptation
The self-taught learning paradigm works well for some remote sensing scenes; however,
very high resolution imagery requires the discriminative power of DCNN-based semantic
segmentation frameworks. These models use combinations of convolution and spatial
downsampling (pooling) layers that allow for the network to learn semantic information
from large-scale scenes and to form associations between different objects present in the
scene.

In our work, we used large quantities of synthetic remote sensing imagery to augment
the requirement for large annotated MSI/HSI datasets. We then fine-tuned these DCNN
frameworks using real imagery, which is a technique commonly referred to as domain
adaptation. This strategy prevents overfitting in DCNN-based segmentation frameworks,
which will allow the network to provide superior classification performance.

CHAPTER 1. INTRODUCTION AND MOTIVATION 3

1.1.3 Semi-supervised Learning
A third approach to training deep learning frameworks using only a small quantity of
annotated image data is semi-supervised learning. Semi-supervised frameworks jointly
train neural networks to perform supervised (i.e., classification) and unsupervised tasks
(i.e., reconstruction) to prevent over-fitting. These models learn a more meaningful fea-
ture representation from the image data; and as a result, they better generalize on the test
data.

In our work, we introduce a semi-supervised classification framework that is jointly
optimized to classify individual pixels and reconstruct the image data.

1.2 Objectives
This dissertation will address the training of supervised machine- and deep-learning frame-
works with relatively small quantities of annotated remote sensing imagery (i.e. low-shot
learning). The main objectives of our work include:

1. Develop universal feature extracting frameworks from large quantities of unlabeled
data that work well across multiple datasets and sensors (i.e. self-taught learning).

(a) Evaluate the transferability of low- and high-level features built by self-taught
learning frameworks (Chapters 2 and 4)

(b) Demonstrate that the discriminative power of these frameworks are more pow-
erful when trained on large quantities of unlabeled data versus on the labeled
data alone (Chapter 2 and 4)

(c) Demonstrate that these generalized features transfer across sensors (Chapter 2
and 4)

2. Establish new training/testing methodologies that enable the development of de-
ployable classification frameworks for remote sensing imagery

(a) Identify issues with current training/testing methodologies in remote sens-
ing literature which can affect the future deployability of these classification
frameworks. (Chapter 2)

(b) Establish a new benchmark dataset that address these issues. (Chapter 3 and
Appendix A)

CHAPTER 1. INTRODUCTION AND MOTIVATION 4

3. Develop universal feature extracting frameworks from large quantities of synthetic
data (i.e. domain adaptation). (Chapter 3)

(a) Evaluate performance on new benchmark established in Chapter 3

(b) Demonstrate the utility of our learning strategy when model capacity increases

4. Develop modular self-taught feature learning paradigm for the semantic segmenta-
tion of remote sensing imagery. (Chapter 4)

(a) Improve original self-taught learning frameworks from Chapter 2 by incorpo-
rating multiple reconstruction losses throughout the framework.

(b) Evaluate the discriminative power of these learned features learned and com-
pare it to previous feature extraction methods presented in Chapter 2.

(c) Develop semi-supervised classification framework that works well with small
quantities of annotated image data.

(d) Demonstrate that the improved feature extraction framework and a semi-supervised
classifier yield state-of-the-art performance for the semantic segmentation of
non-RGB remote sensing imagery.

1.3 Dissertation Layout
This dissertation consists of five chapters, including the introduction (Chapter 1) and con-
clusion (Chapter 5).

1.3.1 Chapter 2: Self-Taught Feature Learning for Hyperspectral
Image Classification (Objectives #1 and #2)

In Chapter 2, we study self-taught learning for hyperspectral image classification. Su-
pervised deep learning methods are currently state-of-the-art for many machine learning
problems, but these methods require large quantities of labeled data to be effective. Unfor-
tunately, existing labeled hyperspectral image benchmarks are too small to directly train
a deep supervised network. Alternatively, we used self-taught learning which is an un-
supervised method to learn feature extracting frameworks from unlabeled hyperspectral

CHAPTER 1. INTRODUCTION AND MOTIVATION 5

imagery. These models learn how to extract generalizable features by training on suf-
ficiently large quantities of unlabeled data that is distinct from the target dataset. Once
trained, these models can extract features from smaller labeled target datasets. We studied
two self-taught learning frameworks for hyperspectral image classification. The first is a
shallow approach that uses independent component analysis, and the second is a three-
layer (stacked) convolutional autoencoder. Our models are applied to the Indian Pines,
Salinas Valley, and Pavia University datasets, which were captured by two separate sen-
sors at different altitudes. Despite large variation in scene-type, our algorithms achieve
state-of-the-art results across all three datasets.

1.3.2 Chapter 3: Algorithms for the Semantic Segmentation of Re-
mote Sensing Imagery (Objective #2 and #3)

Deep convolutional neural networks (DCNNs) have been used to achieve state-of-the-art
performance on many computer vision tasks (e.g., object recognition, object detection, se-
mantic segmentation) thanks to a large repository of annotated image data. Large labeled
datasets for other sensor modalities, e.g., multispectral imagery (MSI), are not available
due to the large cost and manpower required. In this chapter, we adapt state-of-the-art
DCNN frameworks in computer vision for semantic segmentation for MSI imagery. To
overcome label scarcity for MSI data, we substitute real MSI for generated synthetic MSI
in order to initialize a DCNN framework. We evaluate our network initialization scheme
on the new RIT-18 dataset that we present in this chapter. This dataset contains very-high
resolution MSI collected by an unmanned aircraft system. The models initialized with
synthetic imagery were less prone to over-fitting and provide a state-of-the-art baseline
for future work.

1.3.3 Chapter 4: Low-Shot Learning for the Semantic Segmentation
of Remote Sensing Imagery (Objective #4)

Recent advances in computer vision using deep learning with RGB imagery (e.g., object
recognition and detection) have been made possible thanks to the development of large
annotated RGB image datasets. In contrast, multispectral image (MSI) and hyperspectral
image (HSI) datasets contain far fewer labeled images, in part due to the wide variety
of sensors used. These annotations are especially limited for semantic segmentation, or
pixel-wise classification, of remote sensing imagery because it is labor intensive to gen-

CHAPTER 1. INTRODUCTION AND MOTIVATION 6

erate image annotations. Low-shot learning algorithms can make effective inferences
despite smaller amounts of annotated data. In this paper, we study low-shot learning us-
ing self-taught feature learning for semantic segmentation. We introduce 1) an improved
self-taught feature learning framework for HSI and MSI data and 2) a semi-supervised
classification algorithm. When these are combined, they achieve state-of-the-art perfor-
mance on remote sensing datasets that have little annotated training data available. These
low-shot learning frameworks will reduce the manual image annotation burden and im-
prove semantic segmentation performance for remote sensing imagery.

1.4 Novel Contributions
Chapter 2: Self-Taught Feature Learning for Hyperspectral Image Classification

The main contribution of this chapter was to introduce the self-taught learning paradigm
to the remote sensing community. We trained spatial-spectral feature extracting frame-
works on large quantities of unlabeled hyperspectral imagery (HSI). The large quantities
of data allow our frameworks to learn discriminative features that can transfer across
datasets.

We used two feature extracting frameworks to demonstrate that our self-taught learn-
ing paradigm is capable of transferring features across multiple datasets by achieving
state-of-the-art classification results on the Indian Pines, Salinas Valley, and Pavia Uni-
versity datasets. One of these frameworks uses independent component analysis to build
low-level feature extracting filters that resemble Gabor patterns (i.e. bar/edge detectors).
The other is a stacked convolutional autoencoder framework that is capable of extracting
deep spatial-spectral features from image data. We demonstrated that features from both
frameworks can be transferred across different sensors through band-resampling.

We identified two problems with how HSI classification is currently performed in the
remote sensing community. First, training and testing folds are traditionally built from
the same HSI cube. This is ok with spectral-only classification; but if we want to include
neighboring pixel information, there is a high chance of overlap between training and
testing data. This can artificially inflate performance. Second, training/testing folds are
built by randomly sampling available labeled data, and the results are reported as the
mean/standard-deviation of N runs.

Chapter 3: Algorithms for the Semantic Segmentation of Remote Sensing Im-
agery

We are the first to adapt recent fully-convolutional DCNNs to semantic segmenta-

CHAPTER 1. INTRODUCTION AND MOTIVATION 7

tion of multispectral remote sensing imagery. We demonstrated that pre-training these
networks on synthetic imagery can prevent overfitting and significantly improve their per-
formance on the semantic segmentation task.

We released the new RIT-18 dataset for evaluating MSI semantic segmentation al-
gorithms. RIT-18 addresses the problems listed in Chapter 2. RIT-18 was built using
high-resolution (4.7 cm) multispectral imagery captured by an unmanned aerial system
and has been pre-split into training, validation, and testing folds. This dataset contains 18
labeled object classes and we have shown that this dataset is very difficult to perform well
on due to the highly unbalanced class distribution. We are working on making RIT-18
available through the IEEE Geoscience and Remote Sensing Society (GRSS) evaluation
server. This will standardize evaluation and push state-of-the-art development.

Chapter 4: Low-Shot Learning for the Semantic Segmentation of Remote Sens-
ing Imagery

We introduced the semantic segmentation framework SuSA (self-taught semi-supervised
autoencoder). SuSA is designed to perform well on MSI and HSI data where image an-
notations are scarce.

We developed the stacked multi-loss convolutional auto-encoder (SMCAE) model for
spatial-spectral feature extraction in non-RGB remote sensing imagery. SMCAE uses
unsupervised self-taught learning to acquire a deep bank of feature extractors. SMCAE is
used by SuSA for feature extraction.

We propose the semi-supervised multi-layer perceptron (SS-MLP) model for the se-
mantic segmentation of non-RGB remote sensing imagery. SuSA uses SS-MLP to clas-
sify the feature representations from SMCAE, and SS-MLP’s semi-supervised mecha-
nism enables it to perform well at low-shot learning.

We demonstrate that SuSA achieves state-of-the-art results on the Indian Pines and
Pavia University datasets hosted on the IEEE GRSS Data and Algorithm Standard Evalu-
ation website.

1.5 Related Publications
Portions of this dissertation have been published in the following outlets:

• Kemker, R., Kanan C. (2017) Self-Taught Feature Learning for Hyperspectral Im-
age Classification. IEEE Transactions on Geoscience and Remote Sensing (TGRS),
55(5): 2693-2705. 10.1109/TGRS.2017.2651639

CHAPTER 1. INTRODUCTION AND MOTIVATION 8

• Kemker, R., Salvaggio, C, and Kanan C. (2017) High-Resolution Multispectral
Dataset for Semantic Segmentation. arXiv preprint arXiv:1703.06452.

• Kemker, R., Salvaggio C., and Kanan C. (2017) Algorithms for Semantic Segmen-
tation of Multispectral Remote Sensing Imagery using Deep Learning. In review
at ISPRS Journal of Photogrammetry and Remote Sensing - “Deep Learning for
Remotely Sensed Data”.

• Kemker, R., Luu, R., and Kanan C. (2018) Low-Shot Learning for the Seman-
tic Segmentation of Remote Sensing Imagery. In review at IEEE Transactions on
Geoscience and Remote Sensing (TGRS).

Chapter 2

Self-Taught Feature Learning for
Hyperspectral Image Classification

Hyperspectral image (HSI) classification, known in computer vision as semantic seg-
mentation, involves assigning class labels to pixels. In this task, one of the greatest
challenges is determining what types of features should be extracted from the pixels.
In the past, researchers used have hand-engineered features, e.g., Gabor filters [12, 13],
wavelets [14–16], extended morphological profiles [17], morphological attribute profiles
[18], extended multi-attribute profiles (EMAP) [1], and rotation invariant spatial-spectral
feature representations [19]. These features have major limitations and often require a
great deal of tuning to get them to work well on a particular dataset. An alternative ap-
proach is to train an algorithm that learns how to extract useful features directly from
the pixels. Deep convolutional neural networks (CNNs) have been widely adopted in
computer vision for this purpose, but they require large labeled datasets to train; other-
wise, they will work poorly on test data. Existing labeled HSI datasets for remote sensing
are minuscule in comparison to the color (RGB) datasets used in computer vision. This
problem is compounded by the far greater dimensionality of pixels in HSI compared to
RGB, making it difficult to use supervised feature learning techniques on today’s HSI
datasets. However, unsupervised feature learning can be used because these techniques
do not require labels. A variation of this approach is self-taught learning [20], which
uses unsupervised learning to train a model by extracting features from large unlabeled
datasets. The self-taught model is then applied to a target labeled dataset. The assumption
behind self-taught models is that the features they learn to extract are generalizable, i.e.,
they will work well across datasets if their underlying natural statistics are similar. In

9

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 10

this chapter, we study two distinct self-taught learning algorithms for classifying pixels in
HSI.

A number of researchers have used unsupervised learning to extract features from
HSI data. The earliest of these did this by learning linear combinations of individual
pixels using principal component analysis (PCA) [21] and independent component anal-
ysis (ICA) [22–25]. These methods were pixel-specific, and did not include information
about the neighborhood around the pixel. As the ground sample distance (GSD) for HSI
improved, it was shown that spatial and spectral features could be combined to improve
classification performance [26]. A number of algorithms have been used to extract spatial-
spectral features from HSI data, including stacked autoencoders [2, 27–31], dictionary
learning [32,33], and ICA [34]. These methods discover salient information buried in the
data.

The majority of published unsupervised feature learning frameworks involve learning
spatial-spectral features from a single HSI dataset, breaking these feature responses up
into test and train data, and then classifying that dataset [2,15,35–37]. In some cases, the
features are learned on both training and testing data, which may skew results compared
to what can be expected when the system is deployed [15, 36]. In self-taught learning for
HSI classification, three steps are needed: 1) learn a set of filters from dataset #1, 2) use
these filters to generate features from dataset #2, and then 3) classify dataset #2. Self-
taught learning frameworks are more representative of an operational or deployed system
since the test data is not used for unsupervised feature extraction or classifier training.

In this chapter, we propose two distinct self-taught learning frameworks for HSI clas-
sification: 1) multi-scale ICA (MICA) and 2) the stacked convolutional autoencoder
(SCAE). Both models learn a set of generalizable filters from a diverse set of unlabeled
HSI data, but MICA learns a low-level feature representation whereas SCAE learns deeper
features. These filters are then applied to classify three popular labeled HSI benchmark
datasets: Indian Pines, Salinas Valley, and Pavia University. Although these datasets have
different GSDs, we show that MICA and SCAE are still able to produce state-of-the-art
results. We also demonstrate that their features can be transferred across different sensors
through band-resampling.

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 11

2.1 Background

2.1.1 Unsupervised Feature Learning
There are many limitations to using engineered features, especially with HSI. A way to
overcome these limitations is using unsupervised feature learning algorithms that analyze
the data in order to create a filter bank. These algorithms identify common features such
as spatial edges and spectral transitions. These features take the form of spatial-spectral
filters that can be applied to the labeled data prior to classification. Three of the most
common algorithms for unsupervised feature learning in RGB images are k-means [38],
sparse coding[39–41], and ICA [42, 43], with ICA generally yielding the best results in
the literature.

Figure 2.1 shows filters learned using ICA on natural color images [44]. Each filter
resembles Gabor filters that have been widely used to model simple cells in the human
visual cortex. Red-green, blue-yellow, and light-dark opponency is an emergent phe-
nomenon with ICA filters learned from RGB images, and this same kind of opponency
is found in the human visual system [43]. The ICA algorithm used is a sparse coding
algorithm that was designed to separate a signal into its statistically independent (non-
Gaussian) components. ICA builds sparse features from whitened data by learning a set
of orthonormal basis vectors.

ICA has been heavily used for HSI data analysis problems, including spectral unmix-
ing [25, 45], target detection [46], clustering [34] (sometimes called unsupervised classi-
fication), and classification [22, 23]. While spectral features learned from HSI data with
ICA have been widely used, little work has been done to learn spatial-spectral features
from neighborhood pixel information.

An autoencoder is an unsupervised neural network that learns useful encodings from
the input data [47]. The learned feature representation can be used for unsupervised fea-
ture extraction in semi-supervised classification networks [48] and for dimensionality re-
duction [49]. Different variations of these autoencoders, including sparse [50], denoising
[51], and convolutional [52] have been used to improve image classification performance
by extracting discriminative features from data and feeding them to a classifier. The
convolutional autoencoder (CAE) uses a combination of convolution and max-pooling
hidden-layers, similar to that of a traditional CNN, to learn the input coding. Stacked
autoencoders (SAE) use several autoencoders to learn a hierarchical feature representa-
tion, resulting in more discriminative features[52, 53]. The first-layer of the CAE will
have a similar bar/edge detector structure like the ones shown in Figure 2.1, but the SAE

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 12

Figure 2.1: ICA filters learned from color (RGB) imagery. Most of the filters resemble
Gabor filters. The green-red, dark-light, and yellow-blue opponency are an emergent
phenomenon.

will also learn higher-level features not present in ICA. SAEs have become extremely
prevalent in HSI classification literature [27,28] including sparse [2], denoising [29], and
convolutional [30, 31].

2.1.2 Self-Taught Learning
Traditional supervised classification methods use only labeled data, which is often scarce
or difficult to obtain. To compensate, several alternative frameworks have been proposed
that harness unlabeled data or data from other datasets. Semi-supervised methods use
both labeled and unlabeled data from a dataset [54]. A commonly used semi-supervised
approach in remote sensing is active learning. Active learning uses an initial prediction
from a classifier to feed more training data back into the classifier [55–57]. Transfer-
learning frameworks exploit labeled data from other datasets to improve the performance
of the supervised classifier. The additional labeled data does not necessarily need to share
class labels with the original dataset, but it should be sufficiently representative of the
data that will be classified [58–60]. For RGB image analysis in computer vision, training
CNNs on very large labeled datasets and then using them on smaller labeled datasets has
been enormously successful.

Self-taught learning seeks to leverage the advantages of both the semi-supervised and
transfer learning paradigms [20], and it has been widely adopted for unsupervised feature
learning [20,43,61,62]. Self-taught learning uses a large quantity of unlabeled data from
alternative datasets to improve supervised classification on a target dataset. Additionally,

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 13

the unlabeled data does not necessarily need to have the same classes present as the la-
beled data. It only requires that the data share the same underlying statistics, e.g., natural
images.

2.1.3 Feature Learning for HSI Classification
Early frameworks only leveraged spectral information during the classification process,
but many modern techniques use spatial-spectral features that harness neighboring pixel
information to improve performance. In [1], supervised spectral feature extraction and
EMAPs were used to automatically extract spatial-spectral features and classify the In-
dian Pines and Pavia University datasets. In [15], the authors used combinations of three-
dimensional Gabor wavelets to extract spatial-spectral features from the Indian Pines
dataset. These fused filters reduced the number of redundant features, resulting in more
discriminative features. Other papers have extended these successes by fusing large com-
binations of different spatial-spectral features. One of the most successful papers iterated
through 54 different sets of spectral (raw spectrum, PCA, linear discriminant analysis
(LDA), and non-parametric weighted feature extraction) and spatial (morphological pro-
files, Gabor, grey-level co-occurrence matrices (GLCMs), and segmented GLCMs) fea-
tures [36]. This chapter still holds some of the best results for the Salinas Valley and Pavia
University datasets; however, each of their state-of-the-art results were achieved with a
different combination of spatial-spectral features. This highlights a need for methods that
can extract features that generalize across datasets with minimal tuning.

Unsupervised feature learning frameworks require less tuning than hand-crafted fea-
tures. These methods learn a set of spatial-spectral filters by analyzing natural scenes.
Some of the most successful methods are sparse coding algorithms and stacked-sparse
autoencoders (SSAEs). Spatially-weighted sparse coding uses neighboring pixel infor-
mation to improve the performance of spectral unmixing in HSI data [33]. The author
used the dominant end-member to classify a given pixel, achieving an impressive perfor-
mance on the Indian Pines dataset. In [35], the author used SSAEs to extract deep features
from the three labeled datasets featured in this chapter. Other frameworks have been de-
veloped to automatically tune spatial-spectral filters that were previously hand-crafted to
provide the optimal class separation [63]. While ICA has been extensively used for un-
supervised spatial-spectral feature learning with RGB imagery, less work has been done
with HSI data and most of it is concentrated solely on spectral features of a single pixel
and ignore neighborhood information [22–25, 34].

Each unsupervised feature learning framework listed above learned a set of spatial-

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 14

spectral features from a single data source; however, these filters may not be representative
of spatial-spectral features found in other datasets. In [2], the author transferred a set of
filters learned from one HSI dataset onto another. Both of these datasets had the same
GSD and were imaged by the same sensor, so the ability of the features to generalize to
other sensors or GSDs is unclear.

2.2 Self-Taught Learning Frameworks
We propose two distinct self-taught learning frameworks. MICA uses ICA to learn a
shallow filter bank at multiple scales. SCAE is a deep neural network approach, which
can potentially learn richer non-linear features than MICA. We use models with shal-
low and deep feature representations to demonstrate the utility of our self-taught training
methodology. Each model is trained on multiple unlabeled HSI datasets to add spatial-
spectral variation to filters learned by the models. After training, both models are then
used to extract features from the three labeled datasets, which are then fed to a classifica-
tion algorithm. In this section, we give high-level descriptions for both models. Specific
implementation details are provided in Section 2.3.

Acquiring large quantities of unlabeled HSI data is straight-forward thanks to gov-
ernment and university sponsored websites containing open-source airborne/satellite im-
agery. For this chapter, we used unlabeled data from the Airborne Visible / Infrared
Imaging Spectrometer (AVIRIS) and Hyperion HSI sensors. The goal is to show that we
can use self-taught learning to train a model that can extract features which generalize
across datasets and sensors.

2.2.1 Multi-scale ICA (MICA)
Our proposed MICA model, illustrated in Figure 2.2, will learn a set of low-level feature
extracting filters at multiple scales. When ICA is applied to image data, it tends to learn
bar/edge, gradient, and corner detectors. MICA obtains robustness to multiple scales
because it is trained on datasets collected at different altitudes. For example, a horizontal
bar filter will detect the edge of a house or the outline of a long highway. These objects
may be captured at different scales, but the same filter may respond similarly to them.

The input to MICA is a contrast-stretched image, i.e., the pixels in each image are
normalized to be between 0 and 1. To cope with the enormous luminance variance in
the scene, these normalized pixels are pushed through a non-linear function that pro-

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 15

Figure 2.2: Our self-taught learning model using multiscale ICA (MICA) filters. This
framework learns low-level feature extractors from one (or more) hyperspectral dataset(s)
and then applies them to a separate target dataset. Multiple datasets with varying GSDs
can be used to make the filters scale invariant.

duces better behaved first-order natural image statistics [64]. This kind of transforma-
tion is common when learning filters using ICA in RGB, LMS, and monochrome col-
orspaces [42, 43, 61, 62, 65]. These functions resemble transformations done in the retina
to help the human visual system handle large changes in luminance. Typically, a mono-
tonically increasing function is used, with its shape resembling a logarithm. Here, we
used the cumulative distribution function (CDF) of an exponential distribution for this
pre-processing step, which others have also used with ICA [65]:

ri = 1− exp(−λi|xi|) (2.1)

where xi is the i spectral band of pixel x ∈ Rz, and λi is a parameter fit to the pixels from
band i using the unlabeled datasets. In preliminary experiments, we found this worked
better than using two alternative functions that used logarithms [42, 61].

To learn ICA filters, we extracted k patches of size p × p × z at random locations
from N unlabeled HSI datasets, where z is the number of spectral bands. Each patch is
vectorized to form a column vector and then stacked along the second dimension to create

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 16

an zp2 × kN patch array R. Whitened PCA (WPCA) is then used to whiten the data and
reduce the dimensionality:

X = D−
1
2 ETR (2.2)

where X is the whitened patch array, E is the eigenvectors of the covariance matrix RRT ,
and D is a diagonal matrix containing the corresponding eigenvalues of the E matrix [42].
Consistent with others [43,62,66], the first principal component (PC) is discarded because
it mainly corresponds to the brightness across patches, and the corresponding eigenvalue
is orders of magnitude larger than the other PCs, which hinders the ability of ICA to learn
discriminative features. These steps result in X being a d × kN patch array, where d
specifies the reduced dimension where d � zp2. The value for d is found using cross-
validation.

Next, ICA is used to learn a d × d linear transformation matrix A from the whitened
data, which makes the data linearly statistically independent. Our spatial-spectral filters
are built by multiplying the ICA transformation matrix A with the WPCA transformation,
i.e., W = AD−

1
2ET , where W will be a d × zm2 matrix, where the rows of W contain

the filters. Each row of W is then reshaped to the correct spatial dimension, producing a
collection of d filters of size p × p × z [43]. A visualization of the filters learned using
this procedure is shown in Figure 2.3. These low-level ICA feature extractors include
Gabor-like bar/edge detectors, image gradients, and various spatial textures. Convolving
a m×n× z HSI with the learned filter bank, while using symmetric border padding, will
yield a m× n× d array of feature responses.

Subsequently, mean-pooling is applied to the feature response array to incorporate
translation robustness into MICA. We convolve each channel of the ICA feature responses
with an a× a mean pooling filter. We used padding to preserve the spatial dimensions of
the ICA filter response map.

Finally, we increased the discriminative utility of the MICA feature responses by ap-
plying a non-linear function to them. Previous work has shown that the discriminative
power of ICA filters for images can be increased by taking the absolute value of the filter
responses and then applying a CDF-like function [43, 61, 67]. Following [61], we apply
the CDF of an exponential distribution to the ICA filter responses

gi = 1− exp(−λi|qi|) (2.3)

where qi is the mean-pooled feature response of channel i and λi is the learned scale
parameter of the exponential distribution. The λi parameters were fit using the unlabeled
HSI datasets.

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 17

Figure 2.3: A visualization of the learned 15×15 ICA filters from the Indian Pines dataset.
It was generated by summing across the spectral dimension of the filters (hundred of
bands). Despite summing across all spectral dimensions, this visualization still resembles
the Gabor-like filters found in primary visual cortex.

2.2.2 Stacked Convolutional Autoencoders (SCAE)
As a form of deep neural network, SCAE can extract higher-level features than the ones
extracted by MICA. SCAE is made up of several autoencoders, so it is important to un-
derstand how they operate.

An autoencoder is a type of neural network that can be trained in an unsupervised
manner to learn an encoded representation of the data. A typical autoencoder f is given
by x̂ = f (x) , where x is the input. It is trained to try to make x̂ as close to x as possible,
i.e., to learn an identity function. Typically, an autoencoder will have internal constraints
so that the hidden layers of its neural network will learn interesting features, e.g., sparsity
constraints or a bottle neck. After training, the output of the hidden layers can be used as
an alternative encoding of the data. While an autoencoder could be trained end-to-end as a
deep network, which is often done when using bottle-neck constraints, each autoencoder
in an SAE is typically trained individually. An autoencoder with a single hidden layer is
given by

h = σ (Wx+ b) (2.4)

where σ is the activation function, W are the learned weights, and b are the learned
biases. Typically, h is referred to as the encoding of x produced by the hidden layer.

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 18

Recovering x̂ is then given by

x̂ = σ (W′h+ b′) (2.5)

where W′ is typically constrained such that W′ = WT .
A CAE is an autoencoder variation in which the hidden layers are convolutional lay-

ers [52]. This allows them to efficiently process image data. The output of a convolutional
hidden layer is given by

H = σ (W ∗X) , (2.6)

where ∗ denotes the convolution operation, X is the input (e.g., a 3-tensor HSI image), W
is a learned filter bank (a 4-tensor), and H is the output feature response map (a 3-tensor).
For brevity, we have dropped the biases in the equations.

Autoencoders, including CAEs, can be stacked to learn a hierarchical features [30,31,
52, 53]. When this is done with CAEs, it gives rise to the SCAE. The output of layer k in
an SCAE is then given by

Hk = σ
(
Wk ∗Hk−1) , (2.7)

where H0 = X. Each layer in an SCAE is trained individually to minimize reconstruction
error and then its encoding is used as the input to the next CAE layer.

In this chapter, our SCAE uses three stacked CAE models; but as shown in Figure
2.4, the hidden layers we use are more complex than traditional CAEs. The feed-forward
network resembles a traditional CNN architecture by incorporating max-pooling layers,
which requires our model to upsample for reconstruction. In Figure 2.4, convolution
#3 is a fully-connected layer followed by refinement modules [68], which are used to
reconstruct the image. These modules use skip connections to merge low-level features
from the feed-forward network with the high-level semantic features at the end of the
network. This is followed by an upsampling operation until the image has been restored
to its original dimensionality. As shown in Figure 2.4, each refinement module contains
three separate convolution layers with trainable weights.

As shown in Figure 2.5, the feature responses Hk from each CAE are concatenated
and mean-pooled to introduce translation invariance. These features are then made unit
length by dividing by the L2-norm. Since the dimensionality is much higher than the
number of training samples, we use WPCA to reduce the dimensionality prior to classifi-
cation.

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 19

Figure 2.4: This figure shows the CAE modules used in this chapter. The refinement layer
combines features from different parts of the network to provide a better reconstruction.

2.3 Experiments and Results
We evaluated MICA and SCAE against three standard HSI benchmark datasets: Indian
Pines, Salinas Valley, and Pavia University. The ground truth maps are shown in Figure
2.6. Section 2.3.1 discusses these datasets and the training sets that we will use to compare
our frameworks against.

Section 2.3.2 lays out the specific network architectures proposed for this chapter and
any other relevant information regarding training and evaluation. Section 2.3.3 lists the
experimental results for both MICA and SCAE on the three benchmark datasets. Section
2.3.4 highlights some additional experiments that justify some of the decisions made for
our proposed models.

The scikit-learn library [69] was used to implement ICA and the support vector ma-
chine (SVM) classifier. Keras [70], with the Theano backend, was used to implement the
SCAE. The Spectral Python library [71] was used to perform band-resampling. This li-
brary maps the band centers and full width at half maximum values of the source spectrum
to the target spectrum by assuming a Gaussian sensor response.

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 20

Figure 2.5: A two-layer stacked convolutional autoencoder. This figure shows how a
pre-trained network can extract features from labeled data and classify them.

2.3.1 HSI Datasets
We used unlabeled data from the AVIRIS and Hyperion HSI sensors to train our self-
taught learning frameworks. We trained two MICA and SCAE models from each of the
unlabeled data sources; MICA-AVIRIS, MICA-Hyperion, SCAE-AVIRIS, and SCAE-
Hyperion. We used three unlabeled datasets to train the MICA models and 20 datasets to
train SCAE.

AVIRIS is an airborne sensor operated by NASA’s Jet Propulsion Laboratory. It has
224 visual/near-infrared (VNIR) and short-wave infrared (SWIR) spectral bands. The
GSD varies with the elevation in which the data was collected.

Hyperion is a HSI sensor located on NASA’s EO-1 satellite. Hyperion data contains
242 VNIR/SWIR spectral bands; however, this experiment only used the 198 calibrated
bands. The GSD of each HSI dataset is 30.5 meters, which is larger than all of the labeled
datasets used in this chapter. The AVIRIS and Hyperion data is radiometrically calibrated
using gain factors provided by NASA.

We denote the dimensionality of each labeled dataset by # of pixels × # of pixels
× # of bands. Bands that were in the atmospheric absorption region or bands with low
signal-to-noise ratio (SNR) were removed.

Indian Pines, Figure 2.6(a), is a 145 × 145 × 200 dataset that was collected over
Northwestern Indiana [72]. The original Indian Pines dataset has 224-bands, but bands

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 21

(a) (b) (c)

Figure 2.6: The ground truth maps for Indian Pines 2.6(a), Salinas Valley 2.6(b), and
Pavia University 2.6(c) HSI datasets.

104-108, 150-163, and 220-224 were removed due to atmospheric absorption or low SNR.
The ground-truth contains 16 classes of different crops and crop-mixtures. Indian Pines
has a GSD of 20 meters. Our self-taught learning algorithms were compared against three
common training sets including #1) 5% per class[15], #2) 10% per class[33], and #3) a
common training set containing 50 samples per class (except with a few smaller classes
where 15 samples are reserved for training[1]).

Salinas Valley, Figure 2.6(b), is a 512×217×204 dataset that contains 16 ground-truth
classes related to crops at different stages in their growth. The original dataset has 224-
bands, but bands 108-112, 154-167, and 224 were removed due to atmospheric absorption
or low SNR. The GSD for Salinas Valley is 3.7 meters. Our algorithms were compared
against three standard training sets including #1) 1% per class[35], #2) 5% per class[36],
and #3) 50 samples per class [36].

Pavia University, Figure 2.6(c), is a 610× 610× 103 dataset that was collected during
a campaign flown over Northern Italy. The original dataset was band-resampled from 115
bands to 103 bands. Pavia University has 9 ground truth classes containing a mixture of
man-made and natural scenery. The GSD for Pavia University is 1.3 meters. Our algo-
rithms were compared against three common training sets including #1) 5% per class[36],
#2) 10% per class[16], and #3) a custom training set commonly used in literature [2].

The Indian Pines and Salinas Valley datasets were both collected by the AVIRIS sen-
sor. The Pavia University dataset was collected by the Reflective Optics System Imaging

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 22

Spectrometer (ROSIS) sensor which only operates in the VNIR spectral range.

2.3.2 Experimental Setup
MICA Setup and Parameters

The MICA ICA filter size is fixed to m = 15 across every dataset, which worked well in
preliminary experiments. MICA’s mean pooling layer uses a 11 × 11 filters. We trained
MICA using unlabeled datasets that came from different sensors. MICA-AVIRIS is solely
trained with data from the AVIRIS sensor and MICA-Hyperion solely from data from
the Hyperion sensor. In both cases, the filters were created by extracting 5,000 random
patches from each of the three unlabeled datasets (15,000 patches total). The unlabeled
AVIRIS datasets are orthorectified, so these rotated images have gaps in the corners with
no data, and we did not extract patches from these empty regions. This quantity of data
was sufficient to learn low-level bar/edge filters since these features can be found in most
scenes.

SCAE Setup and Parameters

We trained two separate SCAE networks from AVIRIS (SCAE-AVIRIS) and Hyperion
(SCAE-Hyperion) data. Each SCAE network stacks three CAEs with an identical archi-
tecture. This architecture is outlined in Table 2.1. The last hidden layer of the preceding
CAE becomes the input of the following CAE.

Each convolution module in Table 2.1 uses convolution followed by batch normaliza-
tion and ReLU activation. Batch normalization is a regularization technique that speeds
up and stabilizes training by reducing internal covariate shift [73]. Every convolutional
layer is randomly initialized with a zero-mean normal distribution [74].

The only pre-processing step for the unlabeled data is subtracting the channel mean
and dividing by the channel standard deviation. This mean and standard deviation is
stored and applied to the labeled data. SCAE was trained by extracting 2,000 16 × 16
patches from 20 unlabeled datasets and feeding it in batches of 256 through the network.
Theoretically, we could have trained SCAE on entire HSI datasets; but due to graph-
ical processing unit (GPU) memory limitations, this was not feasible. The amount of
data used to train SCAE is larger than the quantity used to train MICA because it has
more trainable parameters. This is because MICA is only learning a single-layer net-
work; whereas, SCAE is stacking three multi-layer networks together. Twenty unlabeled
datasets seemed to be sufficiently large for SCAE to learn discriminative filter banks.

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 23

Table 2.1: The convolutional autoencoder model used for this chapter where z is either
the number of spectral bands in the input image (first CAE) or the number of features
extracted from the previous CAE (subsequent CAEs). The ‘Refinement 1’ layer is the
feature response that will be passed to other CAEs and classified. Each convolutional
layer consists of a convolution followed by batch normalization and ReLU activation.
The refinement layer is outlined in Section 2.2.2.

Layer Name Output Shape Filter Size

Input m× n× z N/A
Convolution 1 m× n× 256 3× 3× 256

Max Pooling 1 m
2
× n

2
× 256 2× 2

Convolution 2 m
2
× n

2
× 512 3× 3× 512

Max Pooling 2 m
4
× n

4
× 512 2× 2

Convolution 3 m
4
× n

4
× 512 3× 3× 512

Max Pooling 3 m
8
× n

8
× 512 2× 2

Convolution 4 m
8
× n

8
× 1024 1× 1× 1024

Refinement 3 m
4
× n

4
× 512 3× 3× 512

Refinement 2 m
2
× n

2
× 512 3× 3× 512

Refinement 1 m× n× 256 3× 3× 256

Output m× n× z N/A

Each CAE was trained independently using the Adam optimizer with Nesterov momen-
tum [3] and a mean-squared-error cost function. We used an initial learning rate of 2e-3
and dropped the learning rate by a factor of 10 (four times) as the validation loss plateaued.

After learning its filters, each labeled dataset is passed through the SCAE network.
These feature responses are concatenated, fed through a 5 × 5 mean-pooling layer, and
normalized with the L2-norm. WPCA is used to reduce the dimensionality of the feature
responses to 97.5% (SCAE-Hyperion) and 97% (SCAE-AVIRIS) of the original variance.
This variance was tuned to Indian Pines and found to work well on the other two labeled
datasets as well.

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 24

Band-Resampling

Band-resampling is used to maximize large quantities of unlabeled, open-source data. For
MICA, filters are learned from the unlabeled data and then resampled to match the spectral
bands of the target (labeled) data. For SCAE, the network is trained on the unlabeled
data and the labeled data is resampled so it can be passed through the network. When
deployed, unlabeled data from the sensor would be used to build these feature extracting
frameworks.

Band-resampling could also be useful to take advantage of existing training data. For
example, if we increased the spectral resolution of our sensor, we may be able to upsample
existing labeled datasets in order to increase the quantity of annotated data. Labeled data
is expensive and difficult to come by.

Classification

The training/testing sets were built by randomly sampling the feature responses generated
by our MICA and SCAE frameworks. The number of samples extracted for training data
was selected based on current state-of-the-art solutions found in literature, and a plot for
each labeled dataset was generated to illustrate mean per-class accuracy as a function of
percent of training samples. These feature responses were classified using a radial basis
function SVM (RBF-SVM). Cross-validation was used to determine the optimal penalty
term C and kernel width (γ) hyperparameters. For MICA, the feature responses were
flipped across the horizontal axis to augment the training data.

The peak performance for the MICA framework in Section 2.3.3 was achieved by us-
ing a different number of learned filters, which corresponds to the number of PCs retained
during Section 2.2.1. If there are too many PCs, then the learned ICA filters will be noisy
and less discriminative. We found that the ideal number differed for each labeled dataset,
since they all cover different spectral bands and have a different quantity of labeled data
available. For a deployable system, where the size of the image and spectral bands are
fixed, the number of filters can be easily determined through cross-validation and fixed
for future classification. In this chapter, we cross-validated by a step-size of 5 filters to
determine the optimal quantity; however, adding or removing a few filters will not have a
major impact on classification performance.

The major advantage that the SCAE network has over MICA is that it requires no
tuning for different datasets, which means we are universally applying the same SCAE
network across all three benchmark datasets.

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 25

2.3.3 Experimental Results
In this section, we compare MICA and SCAE against the best algorithms in literature
found for each of the standard benchmark datasets we used. This comparison is chal-
lenging since each paper uses a different training methodology for their algorithm, so we
selected the training sets we found to be the most common. All of our results are reported
as the mean and standard deviation of 30 sample runs in terms of overall accuracy (OA),
mean-class accuracy (AA), and kappa statistic (κ). Additionally, we provide kappa statis-
tic plots as a function of training size (percent samples per class). The kappa statistic was
selected because it takes both overall and mean-class accuracy into account. Finally, we
provide classification maps for the three state-of-the-art comparisons for each dataset.

Indian Pines

Table 2.2 compares MICA and SCAE to state-of-the-art solutions for the Indian Pines
dataset found in literature. We used the first 210 feature extracting filters for the MICA
framework. The first training set, 5% training data, is compared against a spatial/spectral
feature extraction method that uses three-dimensional Gabor wavelets (3DGW) [15]. The
second training set, 10% training data, is compared against a spatially weighted sparse
coding (SWSC) unmixing approach [33]. The third training set, 50 samples per class
(except 3 smaller classes that use 15 samples per class), is compared to a paper that
uses extended morphological attribute profiles for supervised feature extraction (DAFE)
[1]. Contextual deep learning multinomial logistic regression (CDL-MLR) had a percent
higher mean class accuracy for the second training set. Our classifier was cross-validated
by using overall accuracy as the metric, and our algorithm yielded state-of-the art results
for this metric. Overall, our self-taught learning frameworks, especially SCAE, proved to
be more discriminative than the algorithms listed above.

Figure 2.7 shows classification maps for the three training sets in Table 2.2 using our
SCAE models. The majority of the errors reside in the pixel edges between classes, espe-
cially between contiguous classes. Possible causes include adjacency effect and feature
blurring with the mean-pooling layer. The errors between frameworks are not consistent,
suggesting that ensembling may improve classification performance.

The kappa statistic for the Indian Pines dataset is shown in Figure 2.8. The smallest
training percentage used for this plot is 1%; however, some of the classes will provide
only one training sample at that level. Even at 5% training data, four classes have five
or fewer samples to train on, but both frameworks still achieve impressive results. SCAE
has a slight advantage over MICA likely due to the requirement for higher-level features

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 26

Table 2.2: The classification results for MICA and SCAE on the Indian Pines dataset.
The three training sets include #1) 5% per class, #2) 10% per class and #3) 50 samples
per class (15 for smaller classes). We compare against state-of-the-art algorithms found
in literature. Some statistics, including standard deviations, were not provided by the
authors, so they could not be included.

OA AA κ

Training Set #1
3DGW [15] 96.04 92.81 Unk
MICA-AVIRIS 95.42±0.76 92.29±1.68 0.9478±0.0087
MICA-Hyperion 95.71±0.63 91.56±1.52 0.9510±0.0072
SCAE-AVIRIS 96.21±0.67 93.32±1.76 0.9567±0.0077
SCAE-Hyperion 96.61±0.50 94.58±1.50 0.9613±0.0057
Training Set #2
CDL-MLR [35] 98.23 98.70 0.9799
SWSC [33] 98.30 97.70 0.981
MICA-AVIRIS 98.32±0.23 96.60±1.28 0.9809±0.0026
MICA-Hyperion 98.31±0.39 97.10±1.15 0.9807±0.0044
SCAE-AVIRIS 98.66±0.22 97.07±1.56 0.9848±0.0026
SCAE-Hyperion 98.68±0.27 97.83±0.84 0.9849±0.0031
Training Set #3
DAFE [1] 93.27 95.86 0.923
MICA-AVIRIS 94.63±1.00 97.31±0.37 0.9385±0.0114
MICA-Hyperion 94.26±0.99 96.84±0.51 0.9340±0.0113
SCAE-AVIRIS 95.35±0.68 97.61±0.43 0.9466±0.0078
SCAE-Hyperion 96.12±0.78 98.03±0.35 0.9554±0.0089

on larger GSD imagery, which is why there is a slight improvement on smaller training
sets.

The quantity of data used for smaller training sets could cause the classifier to suffer
from the curse of dimensionality. We mitigated this issue by selecting the RBF kernel
for our SVM. The large margin assumption in the RBF kernel helps compensate for this
issue through regularization. The excellent performance of MICA and SCAE on smaller
training sets demonstrates that our classifier is capable of discriminating between classes.

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 27

(a) (b) (c)

(d) (e) (f)

Figure 2.7: The classification maps for the Indian Pines dataset. Figures a-c were gen-
erated with the SCAE-AVIRIS filters while Figures d-f were generated with the SCAE-
Hyperion filters. These class maps correspond, respectively, to the following three train-
ing sets: 5% training data, 10% training data, and a training set commonly found in
literature[1].

Salinas Valley

Table 2.3 compares MICA and SCAE to state-of-the-art solutions for the Salinas Valley
dataset found in literature. We used the first 130 and 145 feature extracting filters for
MICA-AVIRIS and MICA-Hyperion respectively. The first training set, 1% training data,
was compared to the CDL-MLR framework built by [35]. The second and third training
sets, 5% training data and 50 samples per class respectively, were compared against a fea-
ture combination strategy (GLCM+) developed by [36]. The second training set combines

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 28

Figure 2.8: Results for the Indian Pines dataset in terms of kappa statistic as a function of
percent training samples per class.

the HSI data with features from morphological profiles and segmented GLCM features.
The third training set combines the features from the second training set along with Gabor
and non-segmented GLCM features. MICA and SCAE both exceeded all earlier methods.

Figures 2.9 and 2.10 show the classification maps for the three training sets in Table
2.3 using both our SCAE and MICA models respectively. The results indicate that our
self-taught learning frameworks perform well on the fine-grain material identification task
(lettuce at different growth stages and fallow conditions). The small error that is present
mostly resides in the untrained grapes and untrained vineyards classes, which may have
similar spectral characteristics.

The kappa statistic for the Salinas Valley dataset is shown in Figure 2.11. Both of
our frameworks work well for the Salinas Valley dataset, even with a low number of
training samples. The close performance between MICA and SCAE indicates that low-
level spatial-spectral features from MICA may be sufficient for this particular dataset.

In Section 2.2, we stated that the band-resampling function assumes that the source
and target sensors have a Gaussian spectral response function. Although this is not always
the case, Figure 2.11 quantitatively shows that MICA-AVIRIS and MICA-Hyperion per-
form equivalently well. Since MICA-Hyperion was band-resampled and MICA-AVIRIS
was not, it could be concluded that band-resampling had a negligible effect in perfor-
mance.

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 29

Table 2.3: The classification results for MICA and SCAE on the Salinas Valley dataset.
The three training sets include #1) 1% per class, #2) 5% per class and #3) 50 samples per
class. We compare against state-of-the-art algorithms found in literature. Some statistics,
including standard deviations, were not provided by the author, so they could not be
included.

OA AA κ

Training Set #1
CDL-MLR [35] 98.26 98.72 0.9806
MICA-AVIRIS 98.36±0.40 98.56±0.31 0.9817±0.0044
MICA-Hyperion 98.15±0.31 98.34±0.48 0.9794±0.0034
SCAE-AVIRIS 98.20±0.34 97.41±0.56 0.9799±0.0038
SCAE-Hyperion 97.98±0.36 98.41±0.30 0.9776±0.0040
Training Set #2
GLCM+ [36] 98.61 Unk Unk
MICA-AVIRIS 99.87±0.03 99.82±0.12 0.9985±0.0008
MICA-Hyperion 99.90±0.05 99.88±0.06 0.9989±0.0005
SCAE-AVIRIS 99.75±0.06 99.69±0.09 0.9972±0.0007
SCAE-Hyperion 99.75±0.07 99.71±0.08 0.9973±0.0008
Training Set #3
GLCM+ [36] 95.41 Unk Unk
MICA-AVIRIS 97.15±0.56 98.57±0.29 0.9683±0.0062
MICA-Hyperion 95.95±0.66 98.34±0.24 0.9549±0.0073
SCAE-AVIRIS 98.06±0.45 98.94±0.22 0.9784±0.0050
SCAE-Hyperion 97.50±0.54 98.85±0.22 0.9722±0.0060

Pavia University

Table 2.4 compares MICA and SCAE to state-of-the-art methods on the Pavia University
dataset. The first training set, 5% training data, was compared to the same GLCM+ feature
combination framework developed by [36]. The second training set, 10% training data,
was compared to a three-dimensional scattering wavelet (3DSW) transform developed by
[16]. The third training set, a common training set used widely throughout literature, was
compared to a SSAE developed by [2]. The results for MICA involved the use of 100
feature extracting filters. Both of our frameworks achieve state-of-the art results on all
three training sets.

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 30

(a) (b) (c) (d) (e) (f)

Figure 2.9: The classification maps for the Salinas Valley dataset. Figures a-c were gen-
erated with the SCAE-AVIRIS filters while Figures d-f were generated with the SCAE-
Hyperion filters. These class maps correspond, respectively, to the following three train-
ing sets: 1% training data, 5% training data, and 50 samples per class.

Figure 2.12 shows the classification maps for the three training sets in Table 2.4 using
SCAE features. There are only minor errors, which include confusing shadows for trees
and bare soil for meadows.

The kappa statistic for this dataset is shown in Figure 2.13. MICA-AVIRIS and
MICA-Hyperion performed equally well with the exception of the smaller training sets
where MICA-Hyperion yielded optimal results. This near-equivalent performance could
indicate that spatial features are more important than spectral information for this dataset.

Table 2.5 shows a comparison of MICA and SCAE against the transfer learning ex-
periment done in [2]. In this experiment, the author learned filters using a SSAE from the
Pavia Center dataset and applied them to the Pavia University dataset. The Pavia Center
and Pavia University datasets were both captured with the ROSIS sensor; and since both
of these datasets were captured during the same campaign, they have approximately the
same GSD. The results in Table 2.5 were calculated using a training set of 50 samples
per class. Although MICA and SCAE were trained from data captured by completely
separate sensors, our classification yielded better results because these filters were able to
extract more salient information from the labeled data than the SSAE.

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 31

(a) (b) (c) (d) (e) (f)

Figure 2.10: The classification maps for the Salinas dataset. Figures a-c were generated
with the MICA-AVIRIS filters while Figures d-f were generated with the MICA-Hyperion
filters. These class maps correspond to the following three training sets: 1% training data,
5% training data, and 50 samples per class respectively.

2.3.4 Additional Experiments
Scale-Invariance of MICA

Earlier, we stated that the MICA filter-band is somewhat scale-invariant. Despite all three
labeled datasets having different GSDs, MICA performed well on them. This is because
some of the filters learned by MICA-AVIRIS and MICA-Hyperion resemble Gabor-type
edge detectors at various sizes. One of these filters can work well at detecting a building
from an image taken by an airborne sensor and could work just as well at detecting a long
road imaged by a satellite sensor. MICA-AVIRIS is even more scale-invariant because it
learns filters from a variety of datasets taken at different GSDs.

To prove our hypothesis, we re-sized the Indian Pines data and ground-truth map by
half the original size. As a fair comparison, we used the same MICA-AVIRIS filters
discussed in Section 2.3.3. In Figure 2.14, we see that re-sizing the image had a minimal
impact on the classification performance, which could indicate that the filters work just
as well across different scales. The minor differences in performance are likely due to
re-size interpolation errors.

In Figure 2.14, the quantity of training data is equivalent to the training data from Sec-
tion 2.3.3. To further demonstrate that MICA is scale-robust, Figure 2.15 shows the clas-

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 32

Figure 2.11: Results for the Salinas Valley dataset in terms of kappa statistic as a function
of percent training samples per class.

sification performance when the GSD of the Salinas Valley dataset is artificially changed
through image re-sizing. During this experiment, the training size was fixed at 50 samples
per class. There was a minor increase in performance due to image blurring; however, the
overall performance of the MICA filter bank indicates that there is some resistance to
scale-invariance.

Representation Similarity Analysis

How similar are the features learned across sensors and models? To address this question,
we performed a representation similarity analysis (RSA) [75, 76] to compare the features
extracted by the MICA and SCAE frameworks across sensors. RSA is a quantitative
measure used by neuroscientists to assess the similarity of features from multiple models
(or sources). Since MICA and SCAE have different dimensionality, we used reduced-
rank regression (RRR) [77, 78] to do our RSA analysis. RRR is ordinary least-squares
(OLS) regression with a low-rank constraint. This approach allows us to build a linear
regression model from feature representation X to feature representation Y. We can then
assess goodness of fit on test data to determine how well Y’s features can be reconstructed
from X’s. If this can be done well, then X is considered to contain the same feature
information as Y. Note that Y may only contain a subset of the features in X, so this
regression analysis must be done from Y to X as well.

We use the standard RRR formulation to assess how well Y’s features can be predicted

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 33

Table 2.4: The classification results for MICA and SCAE on the Pavia University dataset.
The three training sets include #1) 5% per class, #2) 10% per class, and #3) a standard
training set commonly found in literature. We compare against state-of-the-art algorithms
found in literature. Some statistics, including standard deviations, were not provided by
the author, so they could not be included.

OA AA κ

Training Set #1
GLCM+ [36] 98.95 Unk Unk
MICA-AVIRIS 99.21±0.18 98.40±0.36 0.9895±0.0023
MICA-Hyperion 99.20±0.17 98.31±0.43 0.9894±0.0022
SCAE-AVIRIS 99.50±0.13 99.07±0.30 0.9934±0.0018
SCAE-Hyperion 99.41±0.15 99.01±0.31 0.9921±0.0021
Training Set #2
3DSW [16] 99.30±0.12 98.63±0.23 0.9907±0.0016
MICA-AVIRIS 99.70±0.07 99.39±0.17 0.9961±0.0009
MICA-Hyperion 99.78±0.08 99.51±0.18 0.9971±0.0010
SCAE-AVIRIS 99.88±0.05 99.77±0.12 0.9984±0.0006
SCAE-Hyperion 99.81±0.06 99.65±0.13 0.9975±0.0008
Training Set #3
SSAE [2] 98.63±0.17 97.64±0.22 0.9822±0.0013
MICA-AVIRIS 99.69±0.11 99.72±0.09 0.9957±0.0014
MICA-Hyperion 99.72±0.12 99.79±0.11 0.9962±0.0016
SCAE-AVIRIS 99.85±0.06 99.89±0.06 0.9980±0.0008
SCAE-Hyperion 99.88±0.05 99.87±0.06 0.9984±0.0006

Table 2.5: A comparison of the filter transfer learning experiment done in [2] and our
MICA and SCAE models. The training set included 50 samples per class.

OA AA κ

SSAE [2] 91.96±0.87 93.52±0.42 0.9025±0.0112
MICA-AVIRIS 92.87±1.11 94.79±0.64 0.9067±0.0142
MICA-Hyperion 93.92±1.38 95.58±0.64 0.9203±0.0177
SCAE-AVIRIS 94.30±1.13 96.82±0.54 0.9253±0.0145
SCAE-Hyperion 95.84±0.94 96.56±0.51 0.9451±0.0123

from X’s. First the regularized OLS regression is computed, i.e.,

BOLS =
(
X>X + λI

)−1 X>Y (2.8)

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 34

(a) (b) (c) (d) (e) (f)

Figure 2.12: The classification maps for the Pavia University dataset. Figures a-c were
generated with the SCAE-AVIRIS filters while Figures d-f were generated with the
SCAE-Hyperion filters. These class maps correspond, respectively, to the following three
training sets: 5% training data, 10% training data, and a training set commonly found in
literature [2].

where X is the data we are fitting, Y is the data we are making the prediction on, and λ
is the L2-regularization penalty term. Then, PCA is performed on ŶOLS = BOLSX to
obtain the first r PCs Ur. The RRR solution is given by

BRRR = BOLSUrU>r , (2.9)

where BRRR is used as a one-way linear mapping between feature representations.
Table 2.6 shows the coefficients of determination (R2) for the input X and the pre-

dicted output ŶRRR = BRRRX. We performed a 10-fold cross-validation using the MICA
and SCAE feature responses from the Pavia University dataset and reported the R2 values
for the test data in terms of mean and standard deviation across all folds. The vertical
and horizontal axes are the feature responses we fit and predicted respectively. We cross-
validated for the optimal rank r and L2 regularization penalty term λ.

Table 2.6 shows that the low-level MICA features learned from both AVIRIS and
Hyperion sensors are very similar to each other. Also, the MICA features can be predicted
from the SCAE fairly accurately (R2 > 0.9 in all cases). However, MICA does a relatively
poor job predicting the output of SCAE. This suggests that SCAE produces many of the
feature responses of MICA, but MICA omits some of the higher-level features that SCAE
generates.

The SCAE models trained on different sensors learn fairly similar features (R2 >
0.73), but there are differences. There are two possible factors, which are not mutually

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 35

Figure 2.13: Results for the Pavia University dataset in terms of kappa statistic as a func-
tion of percent training samples per class.

Table 2.6: RSA between MICA and SCAE feature responses built from Pavia University
(see Section 2.3.4). This table shows R2 values for predicting a column (Y) from a row
(X). A value of 1 means a perfect fit. The results are presented as the mean and standard
deviation R2 on the test data from 10 cross-validation folds. Because test data is being
studied, the diagonal is not necessarily all 1s.

MICA Framework SCAE Framework
#1 AVIRIS #2 Hyperion #3 AVIRIS #4 Hyperion

#1 1.000±0.000 0.982±0.000 0.411±0.004 0.388±0.006
#2 0.974±0.001 1.000±0.000 0.431±0.004 0.421±0.006
#3 0.921±0.002 0.935±0.002 0.999±0.000 0.740±0.002
#4 0.915±0.002 0.927±0.002 0.730±0.001 0.999±0.000

exclusive. The first is that the information produced by the different sensors is somewhat
different so they learn somewhat different features. An alternative explanation is that
SCAE is difficult to optimize because it is a deep model, so the model obtained will sig-
nificantly differ based on random weight initialization and the data fed to it. We tried to
tease these issues apart by training two new SCAE-AVIRIS models with separate training
sets, but with the same network initialization. Table 2.7 shows that using different train-
ing data yields slightly different feature responses. We also generated a third model by
combining the training sets to determine if additional training data could yield additional

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 36

Figure 2.14: This figure shows that the learned MICA filter bank is scale-invariant. The
solid lines represent the overall (red) and mean-class (blue) accuracies for the original
data. The dashed lines represent the overall (red) and mean-class (blue) accuracies for the
re-sized data.

Table 2.7: RSA for SCAE-AVIRIS trained with an identical network initialization. The
results are presented as the mean and standard deviation R2 on the test data from 10
cross-validation folds. This table shows R2 values for predicting a column from a row.

Set #1 Set #2 Combined

Set #1 0.9987±0.0000 0.8269±0.0010 0.7966±0.0014
Set #2 0.8157±0.0010 0.9987±0.0000 0.8074±0.0015
Combined 0.8090±0.0011 0.8290±0.0012 0.9987±0.0000

features, but there was only a small decrease in similarity.

2.4 Discussion and Conclusions
In this chapter, we introduced two self-taught learning frameworks that work well with a
small amount of labeled training data. MICA has solely a low-level feature representa-
tion, while SCAE can learn higher-level feature representations. We evaluated on several
common HSI benchmark datasets. Both models yielded state-of-the-art or near state-of-

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 37

Figure 2.15: This figure shows the classification performance of the Salinas Valley
dataset as the GSD is artificially changed through image resizing in terms of overall accu-
racy (OA), mean-class accuracy (AA), and kappa statistic (κ). The training set was fixed
at 50 samples per class.

the-art results across all of the datasets. MICA and SCAE can learn filters from datasets
with different GSDs making them robust to changes in scale.

The low-level features learned by MICA yielded superior results compared to the
deeper stacked autoencoder architectures found in [2, 27–30]. This further demonstrates,
as is true in any machine or deep learning problem, that the diversity and quantity of the
training data can be just as important as the depth of our network. In most cases, our
SCAE model yielded superior performance to our MICA model, showing that higher-
level features can be advantageous in some cases.

The framework that achieved the best results also tells us something about the types of
features that are necessary for good performance. SCAE-Hyperion, built from 30 meter
GSD imagery, performed the best for the Indian Pines dataset, which may indicate that
spectral features may be more important for high-GSD datasets. Salinas and Pavia Univer-
sity seemed to prefer spatial features (MICA and SCAE-AVIRIS). A deployable system
could ensemble multiple spatial-spectral feature extracting frameworks to be more robust.

A good self-taught filter bank for HSI remote sensing data will have features that are
common to any HSI remote sensing dataset. Low-level feature extractors, such as MICA,
will look for edges, bars, gradients, and basic textures that can be commonly found in
image data. High-level feature extractors, such as SCAE, will identify deeper features,

CHAPTER 2. SELF-TAUGHT LEARNING FOR HSI CLASSIFICATION 38

such as parts, objects, and the semantic relationship between pixels and spectral channels.
High-level feature extractors will likely have more discriminative power than shallow
ones, but they take longer to train and are often slower to run.

As we have demonstrated, self-taught learning can be useful for HSI classification. It
allows massive quantities of unlabeled HSI data to be used for training. This enables good
performance to be achieved across datasets using only a small amount of labeled data.

Acknowledgement
This chapter is a reprint of the material as it appears in IEEE Transactions on Geoscience
and Remote Sensing, Volume 55, Issue 5, pages 2693 - 2705, 2017. I was the primary
investigator on this paper.

We would like to thank Purdue University, Pavia University, and the Hysens project
for making their labeled hyperspectral image (HSI) data available to the public. We would
also like to thank NASA/JPL-Caltech and the United States Geological Survey for their
repository of unlabeled HSI data.

Chapter 3

Algorithms for Semantic Segmentation
of Multispectral Remote Sensing
Imagery using Deep Learning

Semantic segmentation algorithms assign a label to every pixel in an image. In remote
sensing, semantic segmentation is often referred to as image classification, and seman-
tic segmentation of non-RGB imagery has numerous applications, such as land-cover
classification [79], vegetation classification [80], and urban planning [81, 82]. Semantic
segmentation has been heavily studied in both remote sensing and computer vision. In
recent years, the performance of semantic segmentation algorithms for RGB scenes has
rapidly increased due to deep convolutional neural networks (DCNNs). To use DCNNs
for semantic segmentation, they are typically first trained on large image classification
datasets that have over one million labeled training images. Then, these pre-trained net-
works are then adapted to the semantic segmentation task. This two-step procedure is
necessary because DCNNs that process high-resolution color (RGB) images have mil-
lions of parameters, e.g., VGG-16 has 138 million parameters [7]. Semantic segmentation
datasets in computer vision are too small to find good settings for the randomly initial-
ized DCNN parameters (weights), and over-fitting would likely occur without the use of
pre-trained networks. For example, to evaluate a semantic segmentation method on the
RGB PASCAL VOC datasets [83], state-of-the-art methods use a DCNN pre-trained on
ImageNet (1.28 million training images), fine-tune it for semantic segmentation on the
COCO dataset (80K training images) [5], and then fine-tune it again on PASCAL VOC
(1,464 training images) [84, 85].

39

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 40

Figure 3.1: Our proposed model uses synthetic multispectral imagery to initialize a
DCNN for semantic segmentation. This model is then fine-tuned on real imagery.

Utilizing pre-trained networks to prevent overfitting works well for RGB imagery be-
cause massive labeled datasets are available; but in the non-RGB domain, label scarcity
is a far greater problem. For example, existing semantic segmentation benchmarks for
hyperspectral imagery consist of a single image mosaic. Therefore, pre-training DC-
NNs on hand-labeled datasets consisting of real images is not currently possible in non-
RGB domains. In this chapter, we explore an alternative approach: using vast quantities
of automatically-labeled synthetic multispectral imagery (MSI) for pre-training DCNN-
based systems for semantic segmentation.

We propose to use the Digital Imaging and Remote Sensing Image Generation (DIRSIG)
modeling software to generate large quantities of synthetic MSI and corresponding label
maps. We use DIRSIG to build a large, diverse scene model, in which we can simu-
late various weather and lighting conditions. We then capture synthetic aerial images
of the scene with a MSI sensor model. We use the synthetic data to initialize a DCNN
for object recognition, and then we combine the pre-trained DCNN with two different
fully-convolutional semantic segmentation models using real MSI.

In the past, researchers have used DCNNs pre-trained on ImageNet to yield state-of-
the-art results for the semantic segmentation of high-resolution multispectral aerial im-
agery [86,87] because the most widely used benchmarks [81] only use a single non-RGB
band. What happens when the spectral range of the dataset increases? The real MSI used

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 41

(a) Train (b) Validation (c) Test

Figure 3.2: RGB visualization of RIT-18 dataset. This dataset has six spectral bands.

to evaluate our network initialization scheme comes from a new semantic segmentation
dataset that we built called RIT-181. RIT-18 consists of high-resolution MSI (six bands)
acquired by an unmanned aircraft system (UAS). The primary use of this dataset is for
evaluating semantic segmentation frameworks designed for non-RGB remote sensing im-
agery. The dataset, shown in Fig. 3.2, is split into training, validation, and testing folds to
1) provide a standard for state-of-the-art comparison, and 2) demonstrate the feasibility
of deploying algorithms in a more realistic setting. Baseline results demonstrate that the
large spatial variability commonly associated with high-resolution imagery, large sample
(pixel) size, small and hidden objects, and unbalanced class distribution make this a diffi-
cult dataset to perform well on, making it an excellent dataset for evaluating our DCNN
frameworks for semantic segmentation.

Contributions: This chapter makes three major contributions: 1) We are the first
to adapt recent fully-convolutional DCNNs to semantic segmentation of multispectral
remote sensing imagery; 2) We demonstrate that pre-training these networks on synthetic
imagery can significantly improve their performance; and 3) We describe the new RIT-18
dataset for evaluating MSI semantic segmentation algorithms.

1The dataset is available at https://github.com/rmkemker/RIT-18

https://github.com/rmkemker/RIT-18

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 42

3.1 Related Work

3.1.1 Semantic Segmentation of RGB Imagery with Deep Networks
In this chapter, pixel-wise classification and semantic segmentation are synonymous. Se-
mantic segmentation is the term more commonly used in computer vision and is becoming
increasingly used in remote sensing. State-of-the-art semantic segmentation frameworks
for RGB imagery are trained end-to-end and consist of convolution and segmentation sub-
networks. The convolution network is usually a pre-trained DCNN designed to classify
images from ImageNet [68,84,88,89], and current state-of-the-art performers use VGG-
16 [7] or ResNet [4]. The segmentation network is appended to the convolution network
and is designed to reconstruct the feature response to the same spatial dimensions as the
input before assigning semantic labels. The resulting semantic segmentation network can
be fine-tuned with orders of magnitude fewer training images (thousands versus millions
of images) because the convolutional network is already trained. We describe some of the
best performing recent models below, all of which used non-aerial RGB scenes.

The first fully-convolutional network (FCN) designed for semantic segmentation [88]
used the VGG-16 network [7], which has approximately 138 million parameters. VGG-
16 is trained to do image classification on ImageNet [4], rather than directly for semantic
segmentation. Their FCN model used coarse upsampling and deconvolution in the seg-
mentation network to classify each pixel. The net’s major disadvantage was that VGG-
16’s 5 max-pooling layers shrunk the original image by a factor of 32, resulting in a coarse
label map [88].

In [89], they proposed to improve the FCN model by building a symmetric (deconvo-
lution) network using spatial unpooling and deconvolution layers. This increased perfor-
mance when classifying objects at multiple resolutions (i.e. small or large objects in the
image); however, it still produced a coarse label map. As a post-processing step, the au-
thors used a conditional random field (CRF) to sharpen the classification boundaries [90].
The major downside to this deconvolution network was that it required more memory and
time to train compared to [88].

The DeepLab semantic segmentation network [84] was built with the ResNet DCNN.
DeepLab mitigates downsampling issues and makes segmentation boundaries sharper by
replacing conventional convolution layers with atrous convolutions. An atrous convolu-
tion filter is filled with zeros between the sample points; so although the effective size
of the filter increases, the number of trainable parameters remains constant. When these
filters are convolved with an image, it can preserve the original dimensions. The authors

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 43

found that using atrous filters throughout the entire network was inefficient, so they used
both conventional and atrous filters, reducing the image only by a factor of eight. A dense
CRF was used as a post-processing step to make the predicted label map sharper.

Many of these earlier models used a CRF as a post-processing step to sharpen the
classification masks, but it may be better to allow the network to directly optimize itself
towards creating a sharper label mask. Two recent models that did this, Sharpmask [68]
and RefineNet [85], used skip-connections to incorporate image refinement into the end-
to-end model. Sharpmask used a refinement module to combine features from the con-
volution network with the upsampled features from the segmentation network. RefineNet
improved the Sharpmask model with multi-resolution fusion (MRF) to combine features
at different scales, chained residual pooling (CRP) to capture background context, and
residual convolutional units (RCUs) to improve end-to-end training. In this chapter, we
adapt the Sharpmask and RefineNet models to multispectral remote sensing imagery and
use them to evaluate our proposed initialization procedure. These DCNN algorithms are
described in more detail in Sections 3.2.2 and 3.2.2.

3.1.2 Deep-Learning for Non-RGB Sensors
Deep learning approaches to classify and analyze RGB remote sensing imagery have
advanced considerably thanks to deep learning, including the use of DCNNs pre-trained
on ImageNet and unsupervised feature extraction [91–93]. Deep-learning frameworks for
the semantic segmentation of multispectral and hyperspectral images have been explored
by the remote sensing community; however, the paucity of annotated data available for
these sensor modalities has pushed researchers to embrace unsupervised feature extraction
methods [94] and object based image analysis [95] (see Section 3.1.3). Deep features
extracted from every pixel of the labeled data are then used with a classifier, often a
support vector machine, to generate a pixel-wise classification map.

The authors in [96] determined that spatial (texture) information influenced classifica-
tion performance the most, which is why current state-of-the-art methods extract spatial-
spectral features from the image data. Early spatial-spectral feature extractors had hyper-
parameters that required tuning (e.g. gray-level co-occurrence matrices [36], Gabor [97],
sparse coding [33], extended morphological attribute profiles [1], etc). These hand-crafted
features could fail to generalize well across multiple datasets, so they were replaced with
learned features that were automatically tuned from the data itself.

Arguably, the most successful of these learned feature extraction methods for remote
sensing imagery is the stacked autoencoder [2, 27, 29, 30, 35]. An autoencoder is an un-

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 44

supervised neural network that learns an efficient encoding of the training data. These
autoencoders can be stacked together to learn higher feature representations.

In [2], stacked sparse autoencoders (SSAE) were used to learn feature extracting filters
from one hyperspectral image, and then these filters were used to classify the same image
as well as a different target image. The SSAE features learned on the one dataset failed
to properly transfer to another dataset because these features failed to generalize well.
One possible way to overcome this limitation would be to do the unsupervised training on
multiple images, which may lead to more discriminative features that generalize between
different target datasets.

This idea was explored in [94], where the authors showed that training on large quan-
tities of unlabeled hyperspectral data, which is known as self-taught learning [20], im-
proved classification performance. The authors proposed two different frameworks for
semantic segmentation that used self-taught learning: multi-scale independent component
analysis (MICA) and stacked convolutional autoencoders (SCAE). SCAE outperformed
MICA in their experiments, but both approaches advanced the state-of-the-art across three
benchmark datasets, showing that self-taught features can work well for multiple images.

3.1.3 Semantic Segmentation of High Resolution Remote Sensing Im-
agery

As the resolution of available image data increased, researchers explored geographic ob-
ject based image analysis (GEOBIA) to deal with the high spatial variability in the image
data [98]. According to [99], GEOBIA involves the development of “automated methods
to partition remote sensing imagery into meaningful image-objects, and assessing their
characteristics through spatial, spectral and temporal scales, so as to generate new geo-
graphic information in GIS-ready format.” The model can generate superpixels through
clustering (unsupervised) or segmenting (supervised) techniques, extrapolate information
(features) about each superpixel, and use that information to assign the appropriate label
to each superpixel. Clustering/Segmenting the image into superpixels could prevent the
salt-and-pepper misclassification errors that are characteristic of high-resolution imagery.
Another strategy for mitigating this type of error is post-processing the classification map
with a Markov Random Field [100] or CRF [101].

Classifying superpixels is another semantic segmentation strategy found in the com-
puter vision literature [102,103], but it is less used with the development of fully-convolutional
neural networks for end-to-end semantic segmentation [88]. In contrast, remote sensing
researchers have been very successful employing this strategy, via GEOBIA, for seg-

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 45

menting high resolution imagery. Our DCNN approach had multiple advantages: 1)
it did not require a time-consuming unsupervised segmentation, 2) it could be trained
end-to-end, 3) it increased classification performance, and 4) it can be done much faster.
Incorporating a CRF or employing GEOBIA methods could tighten classification map
boundaries and reduce salt-and-pepper label noise [90]. In addition, skip-connections
that pass low-level features to the segmentation network were shown to tighten classi-
fication boundaries and reduce salt-and-pepper errors in end-to-end semantic segmenta-
tion frameworks [68, 85]. In our work, we chose to use end-to-end, fully-convolutional
networks with skip-connections for classification, but future work could include a CRF
and/or GEOBIA methods to further increase performance.

3.1.4 MSI Semantic Segmentation Datasets for Remote Sensing
Most remote sensing semantic segmentation datasets have been imaged by airborne or
satellite platforms. The existing publicly available MSI datasets are shown in Table 3.1.
The gold-standard benchmark for the semantic segmentation of visual near-infrared (VNIR)
MSI are the Vaihingen and Potsdam datasets hosted by the International Society for Pho-
togrammetry and Remote Sensing (ISPRS) [81]. These datasets have comparably high
spatial resolution, but only five classes. Newer datasets, such as Zurich [82] and EvLab-
SS [104], have sacrificed some spatial resolution but include additional labeled classes.
Additional competitions hosted by the IEEE Geoscience and Remote Sensing Society
(GRSS) [79] and Kaggle [105] involve the fusion of multi-modal imagery captured (or
resampled) to different ground sample distances (GSDs).

In this chapter, we describe a new semantic segmentation dataset named RIT-18.
Some of the advantages of our dataset over existing benchmarks include:

1. RIT-18 is built from very-high resolution (4.7 cm GSD) UAS data. The ISPRS
datasets are the only comparable datasets, but these datasets only use 3-4 spectral
bands and 5 object classes.

2. RIT-18 has 18 labeled object classes. The 2017 IEEE GRSS Data Fusion has 17
object classes, but all of the data has been spatially resampled to 100 meter GSD
(land-cover classification).

3. RIT-18 has 6 VNIR spectral bands, including two additional NIR bands not in-
cluded in the ISPRS benchmarks. These additional bands increase the discrimina-
tive power of classification models in vegetation heavy scenes (see Table 3.5.)

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 46

4. RIT-18 was collected by a UAS platform. A UAS is cheaper and easier to fly
than manned aircraft which can allow the end-user to collect high spatial resolution
imagery more frequently.

5. RIT-18 is a very difficult dataset to perform well on. It has an unbalanced class
distribution. A system that is capable of performing well on RIT-18 must be capable
of low-shot learning.

Dataset Year Sensor(s) GSD Classes

ISPRS Vaihingen [81] 2012 Green/Red/IR 0.09 5
ISPRS Potsdam [81] 2012 4-band (VNIR) 0.05 5
Zurich Summer [82] 2015 QuickBird 0.61 8

EvLab-SS [104] 2017 World-View-2, GF-2, 0.1-1.0 10QuickBird, & GeoEye

GRSS Data Fusion [79] 2017 Landsat & 100 17Sentinel 2
Kaggle Challenge [105] 2017 World-View 3 0.3-7.5 10
RIT-18 2017 6-band (VNIR) 0.047 18

Table 3.1: Benchmark MSI semantic segmentation datasets, the year they were released,
the sensor that collected it, its ground sample distance (GSD) in meters, and the number
of labeled object classes (excluding the background class). Our RIT-18 dataset is in bold.

3.1.5 Deep Learning with Synthetic Imagery
Synthetic data has been used to increase the amount of training data for systems that
use deep neural networks, and this has been done for many applications, including ob-
ject detection [106], pose estimation [107], face and hand-writing recognition [108], and
semantic segmentation [109]. Past work used various methods to generate large quanti-
ties of synthetic data including geometric/color transformations, 3D modeling, and virtual
reality emulators.

The major upside to synthetic imagery is that it is normally cheaper and easier to
obtain than images that are manually annotated by humans; however, the difference in
feature-space distributions, also known as the synthetic gap, can make it difficult to trans-
fer features from synthetic to real imagery. Researchers have adopted domain adaptation

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 47

techniques [110] to mitigate this phenomenon, including training autoencoders to shift
the distribution of the synthetic data to the distribution of the real data [108, 111]. This
can allow for a classifier to be trained using synthetic images and then make predictions
on real data.

Network fine-tuning, has been widely-adopted in the computer vision community for
re-purposing DCNNs trained for image classification for a variety of alternative applica-
tions, such as semantic segmentation. Typically, a portion of the network is pre-trained
on a large image classification dataset (e.g., ImageNet), and then adapted to a dataset with
different class labels and feature distributions. However, it is possible to use synthetic
data instead. In [109], the authors built a synthetic dataset using a virtual reality generator
for the semantic segmentation of autonomous driving datasets, and then they combined
the synthetic and real imagery to train their semantic segmentation model. In our work,
we initialized the ResNet-50 DCNN to classify synthetic MSI, and then we fine-tuned
these weights to perform semantic segmentation on real MSI.

3.2 Methods
In this section, we first describe how we generated synthetic imagery for pre-training
DCNNs to classify MSI data. Then we describe two fully convolutional semantic seg-
mentation algorithms, which we adapt for MSI imagery. Lastly, we describe both simple
baseline and state-of-the-art algorithms for semantic segmentation for remote sensing im-
agery, which will serve as a comparison to the FCN models.

3.2.1 Synthetic Image Generation using DIRSIG
Because there are no publicly-available ImageNet sized datasets for non-RGB sensor
modalities, we used DIRSIG to build a large synthetic labeled dataset for the semantic
segmentation of aerial scenes. DIRSIG is a software tool used heavily in the remote sens-
ing industry to model imaging sensors prior to development. It can be used to simulate
imaging platforms and sensor designs, including monochromatic, RGB, multispectral,
hyperspectral, thermal, and light detection and ranging (LIDAR).

DIRSIG images an object/scene using physics-based radiative transfer/ propagation
modeling [112,113]. A realistic object can be defined in the DIRSIG environment with 3D
geometry, textures, bi-directional reflection distribution function (BRDF), surface temper-
ature predictions, etc. A custom sensor (e.g. MSI sensor) and platform (e.g. UAS) can

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 48

Figure 3.3: The DIRSIG Trona Scene.

be defined in the DIRSIG environment to “fly-over” a scene and image it. The position of
the sun/moon, the atmosphere profile, and the flight plan can all be modified to generate
realistic data as well as provide a pixel-wise classification map.

We used the synthetic scene shown in Fig. 3.3, which resembles Trona, an unincorpo-
rated area in Southern California. It is an industrial and residential scene containing 109
labeled classes, including buildings, vehicles, swimming pools, terrain, and desert plant
life.

Trona is only accurate to a GSD of 0.5 meters, and creating images with smaller
GSDs produces image artifacts. The GSD of RIT-18 is about ten times higher; however,
Trona was the only available scene that was 1) sufficiently large, 2) had enough object
classes, and 3) had an accurate ground truth map. To mitigate this problem, we forced our
networks to learn scale-invariant features by generating MSI at multiple GSDs (0.5, 0.75,
and 1 meter). This is accomplished by flying the simulated UAS at different elevations.

We “flew” the drone across the entire synthetic scene with some overlap to make sure
all objects located at the edges of some images are located near the center of other images.
We varied the time-of-year (summer and winter), time-of-day (morning and afternoon),
and the corresponding atmospheric conditions (mid-latitude summer and winter). The
semantic label for each pixel is the dominant class that lies within the instantaneous field

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 49

of view of that pixel. We built the final synthetic dataset by breaking the scene into smaller
image patches, resulting in 4.7 million training and 520 thousand validation 80x80 MSI.
The label for each image is the majority category present.

3.2.2 Fully-Convolutional Deep Networks for Semantic Segmenta-
tion

There are several ways to sharpen the object boundaries in a classification map. Post-
processing techniques such as a fully-connected CRF can be used to eliminate small errors
and sharpen object boundaries. GEOBIA methods use the superpixel boundaries to help
sharpen the output mask. The authors in [114] combined CNN features with superpixel
features to increase the detail in the object boundaries and reduce salt-and-pepper noise.
Both CRFs and GEOBIA methods require an additional step to sharpen the output mask
which adds additional processing time; and in many cases, requires tuning of additional
hyperparameters. In our work, we adapted two recent fully-convolutional deep neural
networks for the semantic segmentation of MSI: SharpMask [68] and RefineNet [85].
Both of them produced state-of-the-art results on standard semantic segmentation bench-
marks in computer vision. The Sharpmask and RefineNet models were designed to learn
the mask sharpening operation in their respective end-to-end frameworks without post-
processing with a CRF or clustering/segmenting the image. This is done by passing lower
level features from the DCNN to the parts of the segmentation network that are respon-
sible for upsampling the feature map. This restores high spatial frequency information
(such as object boundaries or other detail) that was lost when the feature map was down-
sampled.

The DCNN used for both of these models was ResNet-50 [8] with the improved net-
work architecture scheme proposed in [115], where batch-normalization and ReLU are
applied prior to each convolution. Both models were implemented using Theano/Keras [70]
and trained on computers with a NVIDIA GeForce GTX Titan X (Maxwell) graphical pro-
cessing unit (GPU), Intel Core i7 processor, and 64 GB of RAM. Our goal is to compare
the performance of these algorithms to baseline and state-of-the-art methods for semantic
segmentation of remote sensing imagery, and to measure the benefit of pre-training with
synthetic imagery.

We describe the architectural details of these two models in this section, but details
regarding training of these networks is given in Section 3.4.

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 50

Figure 3.4: Our Sharpmask model. The spatial dimensions of each module’s output are
provided to illustrate that the refinement layer combines features from the feed-forward
network (convolutional blocks) and the upsampled features in the reverse network to re-
store the original image dimensions. The output is a class probability matrix for each
pixel.

SharpMask

The Sharpmask model [68] used for this chapter is illustrated in Fig. 3.4. The network
is broken into the convolution, bridge, and segmentation sub-networks. Note that Sharp-
mask does not use all of the ResNet-50 model. As shown in Fig. 3.4, it only uses the
first four macro-layers. A macro-layer contains the convolution, batch-normalization,
and ReLU activation layers right up to where the feature map is down-sampled by a fac-
tor of 2x. This corresponds to the first 40 ResNet-50 convolution layers. SharpMask was
developed by Facebook to be lightweight and fast, possibly for deployment on a plat-
form where size, weight, and power (SWaP) constraints are limited (e.g. UAS, embedded
platform). They tested and compared the classification performance and prediction time
for models with various capacities including models that used only the first three and
four ResNet macro-layers. This trade-off study showed that SharpMask with four macro-
layers provided the desired classification accuracy while also providing a 3x speed-up to
their previous state-of-the-art DeepMask model[116]. We slightly modified the Sharp-
Mask model to retain the batch normalization layers for regularization.

The bridge network is a M × 1 × 1 convolution layer between the convolution and
segmentation networks, where M is selected as a trade-off between performance and
speed. The main goal of this network is to add some variability to the features fed into

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 51

Figure 3.5: Sharpmask refinement with batch normalization. This layer learns mask re-
finement by merging features from the convolution F i and segmentation M i networks.

the segmentation network at refinement module #4. We use a value of M = 512, which
worked well in preliminary experiments.

The segmentation network uses refinement modules to restore the bridge layer output
to the original dimensionality of the input data. Instead of using a fully-connected CRF,
the segmentation sharpening was learned as a part of the end-to-end network. The re-
finement module merges low-level spatial features Fi from the convolution network with
high-level semantic content in the segmentation network Mi, as illustrated in Fig. 3.5.

Each refinement module uses convolution and sum-wise merge layers prior to upsam-
pling the feature response. The upsampled feature response is fed into the refinement
module at the next higher dimension. The number of filters used in the i-th refinement
module are given by

kis = kim =
128

2i−1
, i ≤ 4. (3.1)

These parameters differ slightly from [68] because the higher dimensionality of RIT-18
required a slightly larger model capacity.

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 52

Figure 3.6: Network Architecture incorporating RefineNet modules for semantic segmen-
tation.

RefineNet

The RefineNet model [85] used in this chapter (Fig. 3.6) follows the same basic structure
as the Sharpmask model with a few minor changes. The refinement block in Fig. 3.5 is
replaced with a more complex block called RefineNet (Fig. 3.7(a)), which is broken up
into three main components: residual convolution units (RCUs), multi-resolution fusion
(MRF), and chained residual pooling (CRP). Our model uses batch normalization for
regularization. The convolutional network uses all five ResNet-50 macro-layers, so it is
using every convolution layer in ResNet-50 except for the softmax classifier.

The RCUs (Fig. 3.7(b)) are used to propagate the gradient across short- and long-range
connections, which makes end-to-end training more effective and efficient. The MRF is
used to combine features at multiple scales, which in our work, will be two. The CRP
module (Fig. 3.7(c)) pools features across multiple window sizes to capture background
context, which is important for discriminating classes that are spatially and spectrally
similar. Fig. 3.7(c) uses two window sizes to illustrate how CRP works; however, our
model pools features across four window sizes.

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 53

(a) RefineNet Block

(b) Residual Convolution Unit (c) Chained Residual Pooling with two window
sizes

Figure 3.7: RefineNet architecture.

3.2.3 Comparison Semantic Segmentation Algorithms
Because RIT-18 is a new dataset, we compared the two FCN models to a number of
classic approaches, including classifying individual or mean-pooled pixels. We also
used two spatial-spectral feature extraction methods, MICA and SCAE, which recently
achieved state-of-the-art performance on the semantic segmentation of hyperspectral im-
agery. These methods use unsupervised learning to acquire spatial-spectral feature rep-
resentations making them sample efficient. As another baseline, we also used a method
inspired by GEOBIA.

Simple Classification Algorithms

One simple approach to semantic segmentation that has been widely used in remote sens-
ing is running a classifier directly on each individual pixel. Using this approach, we es-
tablish baseline results using three different classifiers: k-nearest neighbor (kNN), linear

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 54

support vector machine (SVM), and multi-layer perceptron (MLP). We also used spatial
mean-pooling (MP) as a simple way of incorporating neighboring spatial information into
the classifier.

The kNN classifier used the Euclidean distance metric and we cross-validated for k
over the range of 1-15.

For the linear SVM, we used the LIBLINEAR implementation [117], which works
well with large datasets. During training, it uses L2 regularization and adopts the one-
vs-rest paradigm to multi-class classification. The input was scaled to zero-mean/unit-
variance, where the mean and standard deviation were computed using the training data.
The SVM used RIT-18’s validation set to cross-validate for its cost parameter C over the
range of 2−9− 216, and then the training and validation sets were combined to fit the final
model. The loss function was weighted by the inverse class frequency.

Our MLP implementation is a fully-connected neural network with a single hidden-
layer of 64 units, chosen through cross-validation. This hidden layer is preceded by a
batch-normalization layer and followed by a ReLU activation. To compensate for class
unbalance, we assign each class distinct weights, which are given for class i by

wi = µ ∗ log10
∑N

1 hi
hi

, (3.2)

where hi is the number of pixels labeled as class i, N is the number of classes (N = 18),
and µ is a tunable parameter. The MLP was trained using the NAdam optimizer [3],
with a batch size of 256, L2 regularization value of 10−4 in the convolution and batch
normalization layers, and the class weighted update in Equation 3.2 where µ = 0.15.

Running classifiers on individual pixels ignores neighboring pixel information. This
will negatively impact performance due to the high spatial variability commonplace in
high resolution imagery. To address this, we also test the MP model. We convolve the
original data with a 5 × 5 mean-pooling filter and then pass the response to the same
Linear SVM described earlier.

MICA

MICA achieved excellent performance at semantic segmentation of HSI data [94], and we
use it here as one of our baseline algorithms. MICA uses the unsupervised learning algo-
rithm independent component analysis (ICA) to learn a spatial-spectral filter bank from
images captured by the sensor. The filters that it acquires exhibit color opponency and
resemble Gabor-type (bar/edge) filters. These filters are then convolved with the image,

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 55

like a single layer convolutional neural network, and their responses are normalized using
a non-linear activation function. These responses are then pooled to incorporate transla-
tion invariance, and then a classifier is applied to each of the pooled responses. While the
work in Chapter 2 used an RBF-SVM to classify these responses, that is not feasible due
to the size of RIT-18. Instead, we fed these responses into an MLP classifier.

The MICA model used in this chapter had F = 64 learned filters of size 25× 25× 6
and a mean pooling window of 13. The MLP model used to classify the final MICA
feature responses used one hidden layer with 256 ReLU units and a softmax output layer.
The MICA filters were trained with 30,000 25 × 25 image patches randomly sampled
from the training and validation folds. Additional details for the MICA algorithm can be
found in [94].

SCAE

SCAE is another unsupervised spatial-spectral feature extractor that achieved excellent
results on the semantic segmentation of hyperspectral imagery [94]. SCAE extracts fea-
tures using stacked convolutional autoencoders, which are pre-trained using unsupervised
learning. SCAE has a deeper neural network architecture than MICA and is capable of
extracting higher-level semantic information. The SCAE model used in this chapter is al-
most identical to the model proposed in [94] with a few notable exceptions. First, SCAE
was trained with 30,000 128 × 128 image patches randomly extracted from the training
and validation datasets. This increase in receptive field size was done to compensate for
higher GSD imagery, which assisted the model in learning local relationships between
object classes.

Second, the network capacity of each convolutional autoencoder (CAE) was decreased
to compensate for the reduced dimensionality of RIT-18 (only six bands). For each CAE,
there are 32 units in the first convolution block, 64 units in the second convolution block,
128 units in the third, and 256 units in the 1× 1 convolution. The refinement blocks have
the same number of units as their corresponding convolution block, so the last hidden
layer of each CAE has 32 features.

Third, as was done with MICA, the RBF-SVM classifier was replaced with a MLP
classifier in order to speed up training. An entire orthomosaic is passed through the
SCAE network to generate three N × 32 feature responses. These feature responses are
concatenated, convolved with a 5× 5 mean-pooling filter, and then reduced to 99% of the
original variance using whitened principal component analysis (WPCA). The final fea-
ture response is passed to a MLP classifier with the same architecture used by the MICA

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 56

model in Section 3.2.3.
We also introduce a multi-resolution segmentation (MRS) method that uses SCAE

features. We combined object-based features with learned spatial-spectral features ex-
tracted from the SCAE deep learning framework. For object-based features, we hyper-
segmented the orthomosaic images using the mean-shift clustering algorithm. These or-
thomosaics were hyper-segmented at different scales to improve the segmentation of ob-
jects at different sizes. Mean-shift was chosen because it automatically determines how
many clusters should be in the output image. The inputs to the mean-shift algorithm
were the six spectral channels, the pixel location, and computed normalized-difference
vegetation index (NDVI) for each pixel. The object based features for the pixels in each
cluster are the area and both spatial dimensions for each cluster. We denote this method
MRS+SCAE.

3.3 RIT-18 Dataset
RIT-18 is a high-resolution (4.7 cm) benchmark, designed to evaluate the semantic seg-
mentation of MSI, collected by a UAS. UAS collection of non-RGB imagery has grown
in popularity, especially in precision agriculture, because it is more cost effective than
manned flights and provides better spatial resolution than satellite imagery. This cost
savings allows the user to collect data more frequently, which increases the temporal res-
olution of the data as well. The applications for UAS with MSI payloads include crop
health sensing, variable-rate nutrient application prescription, irrigation engineering, and
crop-field variability [118].

3.3.1 Collection Site
The imagery for this dataset was collected at Hamlin Beach State Park, located along the
coast of Lake Ontario in Hamlin, NY. The training and validation data was collected at
one location, and the test data was collected at a different location in the park. These two
locations are unique, but they share many of the same class-types. Table 3.2 lists several
other collection parameters.

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 57

Train Validation Test

Date 29 Aug 16 6 Sep 16 29 Aug 16
Time (UTC) 13:37 15:18 14:49
Weather Sunny, clear skies
Solar Azimuth 109.65° 138.38° 126.91°
Solar Elevation 32.12° 45.37° 43.62°

Table 3.2: Collection parameters for training, validation, and testing folds for RIT-18.

Figure 3.8: Tetracam Micro-MCA6 mounted on-board the DJI-S1000 octocopter prior to
collection.

3.3.2 Collection Equipment
The equipment used to build this dataset and information about the flight is listed in
Table 3.3. The Tetracam Micro-MCA6 MSI sensor has six independent optical systems
with bandpass filters centered across the VNIR spectrum. The Micro-MCA6 has been
used on-board UASs to perform vegetation classification on orthomosaic imagery [80]
and assess crop stress by measuring the variability in chlorophyll fluorescence [119] and
through the acquisition of other biophysical parameters [120]. Fig. 3.8 shows an image
of the Micro-MCA6 mounted on-board the DJI-S1000 octocopter.

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 58

Imaging System

Manufacturer/Model Tetracam Micro-MCA6
Spectral Range [nm] 490-900
Spectral Bands 6
RGB Band Centers [nm] 490/550/680
NIR Band Centers [nm] 720/800/900
Spectral f [nm] 10 (Bands 1-5)

20 (Band 6)
Sensor Form Factor [pix] 1280x1024
Pixel Pitch [µm] 5.2
Focal Length [mm] 9.6
Bit Resolution 10-bit
Shutter Global Shutter

Flight

Elevation [m] 120 (AGL)
Speed [m/s] 5
Ground Field of View [m] ≈60x48
GSD [cm] 4.7
Collection Rate [images/sec] 1

Table 3.3: Data Collection Specifications

3.3.3 Dataset Statistics and Organization
The RIT-18 dataset (Fig. 3.2) is split up into training, validation, and testing folds. Each
fold contains an orthomosaic image and corresponding classification map. Each ortho-
mosaic contains the six-band image described in Section A along with a mask where the
image data is valid. The spatial dimensionality of each orthomosaic image is 9,393×5,642
(train), 8,833×6,918 (validation), and 12,446×7,654 (test).

Figure 3.9 lists the 18 class labels in RIT-18 and their corresponding color map (used
throughout this chapter). Each orthomosaic was hand-annotated using the region-of-
interest (ROI) tool in ENVI. Several individuals took part in the labeling process. More
information about these classes can be found in B.

The class-labeled instances are, as illustrated in Fig. 3.10, orders of magnitude dif-

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 59

Figure 3.9: Class labels for RIT-18.

Figure 3.10: Class-label instances for the RIT-18 dataset. Note: The y-axis is logarithmic
to account for the number disparity among labels.

ferent from one-another. These underrepresented classes should make this dataset more
challenging.

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 60

3.4 FCN Training Procedures

3.4.1 Pre-Training the ResNet-50 DCNN on Synthetic MSI
The two FCN models are assessed with and without DCNNs that are pre-trained on syn-
thetic DIRSIG imagery. For the pre-trained model, the ResNet-50 DCNN was initialized
using 80×80 pixel patches, which is approximately 4.7 million DIRSIG training images.
The network was trained using a mini-batch size of 128 and a weight-decay of 1e-4.
The weights were randomly initialized from a zero-mean normal distribution. The labels
provided by DIRSIG are a class-label for each pixel; however, the ResNet-50 DCNN is
trained to perform image classification. We assigned a label to each image patch based on
the most common label.

We compute the channel-mean and standard-deviation using the entire DIRSIG train-
ing set, and these parameters were used to scale each image to zero-mean/unit-variance.
During training, the images are shuffled for each epoch, and we use random horizontal
and vertical flips for data augmentation. Because the class distribution for the DIRSIG
data is unbalanced, we use the class-weights wi for the entire training set to build sample
(per-pixel) weights. The class-weights were assigned using Equation 3.2 with µ = 0.15.
We optimized the network using Nadam with an initial learning rate of 2e-3. We then
dropped the learning rate when the validation loss plateaued.

3.4.2 DCNN Fine-Tuning
We trained both semantic segmentation frameworks using randomly initialized DCNNs
and with the DCNN pre-trained on the DIRSIG dataset. Because of the high-resolution of
each orthomosaic, the data is broken into 160× 160 patches and fed to the segmentation
frameworks. The randomly initialized models are trained end-to-end in one stage because
the filters of its DCNN need to be tuned. All weights that do not come from the pre-
trained DCNN are randomly initialized from a zero-mean Gaussian distribution. For the
models that did not use pre-training, an initial learning rate of 2e-3 is used, and then the
learning rate is dropped by a factor of 10 four times as the validation loss plateaued.

For the models that use the pre-trained DCNN, we train them in two stages. First, the
pre-trained portion of the model is frozen and the remaining layers are trained to adapt
the weights of the segmentation network to the pre-trained weights in the convolution
network. An initial learning rate of 2e-3 is used for this stage, and then it is dropped by
a factor of 10 when validation loss plateaus. Second, we fine-tune both the pre-trained

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 61

portion and the segmentation network jointly using an initial learning rate of 2e-5; and
again, drop it by a factor of 10 four times as the validation loss plateaued.

All models are optimized using the Nadam optimizer, batch size of 32, weight decay
of 1e-4, and class-weight parameter of µ = 0.25, which optimizes for AA. Plots for the
training and validation accuracy and loss, for both FCN models, are provided in D. We
observed that the pre-trained models, especially RefineNet, saturated at the peak accu-
racy more quickly (fewer epochs) than the randomly initialized networks because most
of the weights are close to their final solution. The fine-tuned models continue to make
minor improvements over a longer period of time because it employs a lower learning
rate to prevent from completely overwriting the pre-trained DIRSIG weights; whereas,
the random weight initialization stops training more quickly because it is not attempting
to preserve any pre-trained weights.

3.5 Experimental Results

3.5.1 RIT-18 Results
Results for all algorithms on the RIT-18 test set are listed in Table 3.4. The table shows the
classification performance of our DCNN segmentation models, with (Sim) and without
(Rdm) initializing the network using synthetic data. Pretraining the ResNet-50 DCNN on
the synthetic imagery required three weeks on our GPU. The number of batch updates
performed which was higher than the number performed in [35]. The network fine-tuning
operation took 17.1 hours for Sharpmask and 56.7 hours for RefineNet. Each algorithm
is evaluated on per-class accuracy and mean-class accuracy (AA). AA is used as our
primary metric due to the disparity in class distribution, and all algorithms except kNN
were trained to compensate for class unbalance. Random chance for assigning a class to a
given pixel is 5.6%. Models that perform poorly on some classes, especially classes that
perform worse than chance, have over-fit to perform better on classes with more training
samples.

When synthetic image initialization was used, both Sharpmask and RefineNet outper-
form all of the other algorithms in mean-class accuracy performance, demonstrating that
advanced techniques used in computer vision can be effectively used with remote sensing
MSI data. For mean-class accuracy, the best performing model is RefineNet-Sim. Both
of the FCN models that do not use pre-training perform better on classes with more sam-
ples, but the mean-class accuracy shows that these models are not as discriminative as

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 62

their counterparts that are initialized with synthetic data. RefineNet-Rdm overfit to the
classes with the most samples, whereas RefineNet-Sim was more discriminative with the
pre-trained ResNet-50 weights.

Sharpmask-Rdm performed only slightly worse than Sharpmask-Sim, whereas
RefineNet-Sim’s results were far greater than RefineNet-Rdm. This discrepancy is likely
because RefineNet has 5.8 times as many trainable parameters compared to Sharpmask.
Sharpmask is a relatively shallow semantic segmentation framework, it only uses the early
layers of ResNet-50, and it only has 11.9 million trainable parameters. In comparison, Re-
fineNet has 69 million trainable parameters. The more parameters a model has the greater
its capacity, but more parameters also mean more labeled data is needed to prevent overfit-
ting. We suspect that if a deeper pre-trained network was used, e.g., ResNet-152, then we
would see even greater differences between pre-trained and randomly initialized models.

Comparing the baseline models, we see that MICA yielded a 4.8 percent increase in
mean-class accuracy from the simpler MP experiment, demonstrating that unsupervised
feature extraction can boost classification performance for high-resolution imagery. Un-
like earlier work [94], MICA outperformed SCAE showing that low-level features over
a larger receptive field could be more important than higher-level features over a smaller
spatial extent. MRS+SCAE improved performance over SCAE for objects where the con-
fusion between class predictions was based on the object’s size, which means that object
based methods, such as CRF or GEOBIA, could increase segmentation performance in
future frameworks, especially when the dominant source of error is salt-and-pepper label
errors.

The main issue with unsupervised feature extraction methods like SCAE is that they
are unable to learn object-specific features without image annotations and will instead
learn the dominant spatial-spectral features present in the training imagery (i.e., they
may miss small objects and other classes not commonly present). In contrast, super-
vised DCNN frameworks, if properly trained and regularized, can better learn the spatial-
spectral feature representation for each object class; however, these models need to be
pre-trained with large annotated datasets to generalize well in the first place. This is why
the end-to-end FCN frameworks pre-trained with synthetic imagery is important for the
remote sensing community. It is entirely possible to train these FCN models with object
based features in the end-to-end framework, but this comes with an additional computa-
tion burden in contrast to end-to-end FCN models that learn to sharpen object boundaries.

The FCN models failed to classify the black panel, low-level vegetation, and the pond.
According to the confusion matrices (D), the black-panel was predominantly misclassified
as asphalt, likely because 1) black-panel had very few training samples and 2) they shared

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 63

kNN SVM MLP MP MICA SCAE MRS+ Sharpmask RefineNet
SCAE Rdm Sim Rdm Sim

Road Markings 65.1 51.0 75.6 29.6 43.2 37.0 63.3 78.3 92.5 0.0 59.3
Tree 71.0 43.5 62.1 44.1 92.6 62.0 90.5 93.0 89.8 91.0 89.8

Building 0.3 1.5 3.7 0.6 1.0 11.1 0.7 6.3 16.5 0.0 17.0
Vehicle 15.8 0.2 1.0 0.2 47.5 11.8 53.6 51.7 20.8 0.0 61.9
Person 0.1 19.9 0.0 31.2 0.0 0.0 2.3 29.9 14.9 0.0 36.8

Lifeguard Chair 1.0 22.9 3.1 16.9 50.8 29.4 2.8 44.5 85.1 0.0 80.6
Picnic Table 0.6 0.8 0.0 0.6 0.0 0.0 30.3 11.4 32.9 0.0 62.4
Black Panel 0.0 48.3 0.0 47.9 0.0 0.0 18.9 0.0 0.0 0.0 0.0
White Panel 0.1 0.3 0.0 0.8 0.0 0.4 0.0 4.6 9.8 0.0 47.7
Orange Pad 14.6 15.2 77.4 22.1 66.3 99.3 0.0 100.0 97.1 0.0 100.0

Buoy 3.6 0.7 1.8 10.1 0.0 7.2 55.6 71.0 82.4 0.0 85.8
Rocks 34.0 20.8 38.8 33.4 66.5 36.0 42.8 79.0 87.8 87.3 81.2

Low Vegetation 2.3 0.4 0.3 0.1 13.3 1.1 5.1 22.9 0.5 0.0 1.2
Grass/Lawn 79.2 71.0 85.4 73.1 84.8 84.7 83.6 84.8 87.4 88.4 90.3
Sand/Beach 56.1 89.5 36.4 95.2 78.2 85.3 8.0 73.4 91.2 6.8 92.2

Water (Lake) 83.6 94.3 92.6 94.6 89.1 97.5 90.0 96.2 93.3 90.4 93.2
Water (Pond) 0.0 0.0 0.0 0.2 3.4 0.0 0.0 0.0 0.0 0.0 0.0

Asphalt 80.0 82.7 93.1 93.3 46.9 59.8 72.0 96.2 92.1 95.9 77.8

AA 27.7 29.6 30.4 31.3 36.2 32.1 34.4 52.4 57.3 30.1 59.8

Table 3.4: Per-class accuracies as well as mean-class accuracy (AA) on the RIT-18 test
set. The two initializations used for our Sharpmask and RefineNet models include random
initialization (Rdm) and a network initialized with synthetic data (Sim). We compare our
results against the benchmark classification frameworks listed in Section 3.5.

similar spatial/spectral characteristics in the VNIR spectrum. The low-level vegetation
was misclassified as trees and the pond water was misclassified as grass/lawn for similar
reasons. Large portions of the pond, especially in the test image, contain some vegetation
in and on-top of the water which is why it could have been confused for grass. A possible
solution to correcting this problem is to initialize the DCNN with DIRSIG imagery that
replicates these conditions (e.g., vegetation in a body of water).

Fig. 3.11 shows a sample of the predictions made by our Sharpmask-Sim and
RefineNet-Sim frameworks. Sharpmask does a better job at classifying the road, road
markings, and vehicles; and RefineNet had fewer classification artifacts over the beach

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 64

(a) Test Image (b) Ground Truth (c) Sharpmask (d) RefineNet

Figure 3.11: Experimental results for Sharpmask and RefineNet models. These images
are small patches taken from the test orthomosaic.

area. This shows that certain model architectures can be robust to illumination invariance
in rough surfaces caused by BRDF effects. RefineNet is likely more robust because it
extracts features from deeper convolutional layers and the chained residual pooling aids
in capturing background context. Both models did a good job classifying the grass and,
for the most part, the lake; however, the low-level vegetation area seemed to be mis-
classified as trees - which has orders of magnitude more training samples. Sharpmask
and RefineNet would also tend to mis-classify the parts of Lake Ontario, where the wave-
crest is whiter than the rest of the body of water, as rocks. This is likely because the
rocks in RIT-18 are dominantly surrounded by darker lake water, so the DCNN models
have been trained to associate the relatively brighter patches in the lake as rocks. This
could be remedied during training by revisiting areas in the lake that have a higher spatial
variability or collecting additional examples where the white wave-crests occur.

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 65

AA

SVM-RGB 19.9
SVM-NIR 26.0
SVM-CIR 25.3
SVM-VNIR 25.7
SVM 29.6

Table 3.5: The effect of band-selection on mean-class accuracy (AA). For comparison,
the last entry is the experiment from Table 3.4 which used all six-bands.

3.5.2 Band Analysis for RIT-18
The focus of our work is on semantic segmentation of MSI data using FCN models with
and without pre-training, but how useful are the non-RGB bands? To assess this, we
conducted two experiments using RIT-18. First, we trained the SVM model on different
channels. This analysis, shown in Table 3.5, includes only the RGB bands (SVM-RGB),
only the three NIR bands (SVM-NIR), a false-color image (SVM-CIR), and a four band
RGB-NIR (SVM-VNIR). The 720 nm band was used for the SVM-CIR and SVM-VNIR
experiments.

This analysis suggests that the additional NIR bands have a large impact on perfor-
mance; consistent with the fact that most of the scene is vegetation. To further test this
hypothesis, we pre-trained ResNet-50 using 4-band DIRSIG data, and then it was used
to fine-tune RefineNet on the first four spectral channels of RIT-18. The results of the
4-band model compared to the full 6-band model are shown in Table 3.6. These results
indicate that the Micro-MCA6 increase classification performance compared to simpler
4-band MSI systems. The 4-band solution overfits to the dominant classes in RIT-18. This
type of sensor could, in the future, provide an option for the fine-grained classification of
various plant life.

3.6 Discussion
In this chapter, we demonstrated the utility of FCN architectures for the semantic segmen-
tation of remote sensing MSI. An end-to-end segmentation model, which uses a combi-
nation of convolution and pooling operations, is capable of learning global relationships

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 66

4-Band 6-Band

Road Markings 0.0 59.3
Tree 95.8 89.8

Building 0.0 17.0
Vehicle 0.0 61.9
Person 0.0 36.8

Lifeguard Chair 0.0 80.6
Picnic Table 0.0 62.4
Black Panel 0.0 0.0
White Panel 0.0 47.7
Orange Pad 0.0 100.0

Buoy 0.0 85.8
Rocks 0.0 81.2

Low Vegetation 0.0 1.2
Grass/Lawn 82.8 90.3
Sand/Beach 18.4 92.2

Water (Lake) 84.0 93.2
Water (Pond) 0.0 0.0

Asphalt 6.9 77.8

AA 15.2 59.8

Table 3.6: Performance of RefineNet-Sim on the RIT-18 test set using 4-band (VNIR)
and the full 6-band images. These results include per-class accuracies and mean-class
accuracy (AA).

between object classes more efficiently than traditional classification methods. Table 3.4
showed that an end-to-end semantic segmentation framework provided superior classifi-
cation performance on fourteen of the eighteen classes in RIT-18, demonstrating that the
learned features in supervised DCNN frameworks are more discriminative than features
built from unsupervised learning methods.

We showed that generated synthetic imagery can be used to effectively initialize
DCNN architectures to offset the absence of large quantities of annotated image data.
Models that were initialized randomly showed degraded mean-class accuracy, a good
metric for datasets with unbalanced class distributions.

DIRSIG could be used to generate large custom datasets for other imaging modalities
such as multispectral, hyperspectral, LIDAR, or a combination of all the above. These
types of scenes could be developed thanks to the increase in UAS collection of remote
sensing data. Our work could be adapted to these sensors. Evolving from multispectral to

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 67

hyperspectral data will likely require modifications to our current models in order to deal
with the higher dimensionality. Initializing networks using DIRSIG could improve, not
only semantic segmentation, but also networks for other tasks, such as object detection or
target tracking in hyperspectral imagery.

Finally, we introduced the RIT-18 dataset as a benchmark for the semantic segmenta-
tion of MSI. This dataset benefits from higher spatial resolution, large number of object
classes, and wider spectral coverage to improve performance in vegetation-heavy scenes.
Datasets that are built from UAS platforms could be more practical for any commercial
or research purpose. The orthomosaic generation pipeline provided in A could be utilized
to quickly generate remote sensing products with little intervention.

The absolute accuracy of the orthomosaic images in RIT-18 are limited to 10 feet due
to the accuracy of the on-board GPS. This keeps us from being able to overlay this dataset
with other imagery; however, this will not affect our semantic segmentation results since
the images have the same GSD and are registered relative to one another. Our lab has
recently acquired a higher-accuracy GPS and inertial navigation system (INS) to make
overlaying multiple sensors (e.g., LIDAR, multispectral, and hyperspectral) possible for
future collections. In addition, the ability to quickly and accurately register multi-modal
remote sensing data could enable the construction of larger DIRSIG scenes with improved
spatial and spectral resolution. The increase in quantity and quality of synthetic imagery
could improve the network initialization scheme proposed in our work for any sensor
modality.

3.7 Conclusion
We have shown that synthetic imagery can be used to assist the training of end-to-end
semantic segmentation frameworks when there there is not enough annotated image data.
Our network initialization scheme has been shown to increase semantic segmentation
performance when compared to traditional classifiers and unsupervised feature extraction
techniques. The features learned from the synthetic data successfully transfered to real-
world imagery and prevented our RefineNet-Sim model from overfitting during training.
This work will enable remote sensing researchers to take advantage of advancements in
deep-learning that were not previously available to them due to the lack of annotated
image data.

In addition, we have introduced the RIT-18 dataset as an improved and more challeng-
ing benchmark for the semantic segmentation of MSI. We will make this data available

CHAPTER 3. ALGORITHMS FOR SEMANTIC SEGMENTATION OF MSI 68

on the IEEE GRSS evaluation server in order to standardize the evaluation of new seman-
tic segmentation frameworks. Although not the largest, RIT-18 is more practical because
UAS platforms are easier/cheaper to fly. RIT-18 is difficult to perform well on because of
the high-spatial variability and unbalanced class distribution.

In the future, we hope to improve our model by 1) exploring deeper ResNet models;
2) using newer state-of-the-art convolution (ResNeXt [121]) and segmentation models;
3) improving the inherent GSD of the DIRSIG scene; and 4) including additional diverse
classes to the synthetic data. The DCNN models we explored still produce classifica-
tion maps with some salt-and-pepper label noise. This could be remedied in future work
by newer end-to-end DCNN segmentation frameworks, GEOBIA methods, or CRF-based
algorithms. e These techniques should aid the development of more discriminative frame-
works that yield superior performance.

Acknowledgements
This chapter is a reprint of the material as it appears in our submission to the ISPRS
Journal of Photogrammetry and Remote Sensing. I was the primary investigator on this
paper. We would like to thank Nina Raqueno, Paul Sponagle, Timothy Bausch, Michael
McClelland II, and other members of the RIT Signature Interdisciplinary Research Area,
UAS Research Laboratory that supported with data collection. We would also like to
thank Dr. Michael Gartley with DIRSIG support.

Chapter 4

Low-Shot Learning for the Semantic
Segmentation of Remote Sensing
Imagery

Semantic segmentation is a computer vision task that involves assigning a categorical
label to each pixel in an image (i.e., pixel-wise classification). For color (RGB) imagery,
deep convolutional neural networks (DCNNs) are continually pushing the state-of-the-
art for this task. This is enabled by the availability of large annotated RGB datasets.
When small amounts of data are used, conventional DCNNs generalize poorly, especially
deeper models. This has made it difficult to use models designed for RGB data with
multispectral imagery (MSI) and hyperspectral imagery (HSI) that are widely used in
remote sensing, since publicly available annotated data is scarce. Due to the limited
availability of annotated data for these “non-RGB” sensors, adapting DCNNs to remote
sensing problems requires using low-shot learning. Low-shot learning methods seek to
accurately make inferences using a small quantity of annotated data. These methods
typically build meaningful feature representations using unsupervised or semi-supervised
learning to cope with the reduced amount of labeled data.

Many researchers have explored unsupervised feature extraction as a way to boost
performance in semantic segmentation of MSI and HSI. They have tried shallow fea-
tures (e.g., gray-level co-occurrence matrices [36], Gabor [97], sparse coding [33], and
extended morphological attribute profiles [1]), and deep-learning models (e.g., autoen-
coders [2,27,29,30,35]) that learn spatial-spectral feature extractors directly from the data.
Recently, self-taught learning models have been introduced to build feature-extracting

69

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY70

Figure 4.1: Our proposed SuSA architecture for semantic segmentation of remote sensing
imagery. For feature extraction, SuSA uses our SMCAE model, a stacked multi-loss
convolutional autoencoder that has been trained on unlabeled data using unsupervised
learning. For classification, SuSA uses our semi-supervised multi-layer perceptron (SS-
MLP) model.

frameworks that generalize well across multiple datasets [94]. In self-taught learning,
spatial-spectral feature extractors are trained using a large quantity of unlabeled HSI and
then used to extract features from other datasets that we may want to classify (i.e. the
target datasets). Self-taught learning for HSI semantic segmentation was pioneered in
[94].

As the dimensionality of each feature vector increases, the performance for many
deterministic models (e.g., support vector machine (SVM)) will degrade [122]. The most
common method for preventing this is to reduce the dimensionality of the feature space
(e.g., using principal component analysis (PCA)); however, this involves tuning at least
one more hyperparameter (i.e., number of dimensions to retain) through cross-validation.

Multi-layer perceptron (MLP) neural networks can learn which features are the most
important for classification; however, they normally require a large quantity of annotated

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY71

data to generalize well. Semi-supervised learning uses an unsupervised task to regularize
classifiers that do not have enough annotated data to work with. For example, the ladder
network architecture proposed by Rasmus et al. [123] trains on labeled and unlabeled
data simultaneously to boost segmentation performance on smaller training sets. Semi-
supervised frameworks give the model the ability to increase the dimensionality in the
feature space, which allows them to learn what features are most important for optimal
performance, and also enables them to perform well with little annotated data.

In this paper, we describe the semantic segmentation framework SuSA (self-taught
semi-supervised autoencoder) shown in Fig. 4.1. SuSA is designed to perform well on
MSI and HSI data where image annotations are scarce. SuSA is made of two modules.
The first module is responsible for extracting spatial-spectral features, and the second
module classifies these features.

We evaluated SuSA across multiple training/testing paradigms, and we compared our
performance against state-of-the-art solutions for each respective paradigm found in lit-
erature, including two recent self-taught feature learning frameworks: MICA-SVM and
SCAE-SVM [94]. We describe these in more detail in later sections.

This paper’s major contributions are:

• We describe the stacked multi-loss convolutional auto-encoder (SMCAE) model
(Fig. 4.4) for spatial-spectral feature extraction in non-RGB remote sensing im-
agery. SMCAE uses unsupervised self-taught learning to acquire a deep bank of
feature extractors. SMCAE is used by SuSA for feature extraction.

• We propose the semi-supervised multi-layer perceptron (SS-MLP) model (Fig. 4.5)
for the semantic segmentation of non-RGB remote sensing imagery. SuSA uses
SS-MLP to classify the feature representations from SMCAE, and SS-MLP’s semi-
supervised mechanism enables it to perform well at low-shot learning.

• We demonstrate that SuSA achieves state-of-the-art results on the Indian Pines and
Pavia University datasets hosted on the IEEE GRSS Data and Algorithm Standard
Evaluation website.

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY72

4.1 Related Work

4.1.1 Self-Taught Feature Learning
The self-taught feature learning paradigm was recently introduced as an unsupervised
method for improving the performance for the semantic segmentation of HSI [94]. In
the past, researchers learned spatial-spectral features directly from the target data and
then passed them to a classifier [2, 16, 35, 36]. Learning spatial-spectral features on a
per-image basis is computationally expensive, which may not be ideal for near-real-time
analysis. Self-taught feature learning uses large quantities of unlabeled image data to
build discriminative feature extractors that generalize well across many datasets, so there
is no need to re-train these types of feature extracting frameworks [20].

The authors in [94] introduced two self-taught learning frameworks for the seman-
tic segmentation of HSI. The first model, multi-scale independent component analysis
(MICA) learned low-level feature extracting filters corresponding to bar/edge detectors,
color opponency, image gradients, etc. The second model, the stacked convolutional
autoencoder (SCAE), is a deep learning approach that is able to extract deep spatial-
spectral features from HSI. These pre-trained models would extract features from the
source image (i.e., the image we want to classify) and pass them to a support vector
machine (SVM) classifier. Since MICA-SVM and SCAE-SVM provide state-of-the-art
performance across multiple benchmark datasets, we compare our proposed work against
them.

The SCAE model consisted of three separate convolutional autoencoder (CAE) mod-
ules trained in sequence. The training loss for each CAE was the mean-squared error
(MSE) between the input data and the reconstructed output (also known as the data layer).
It was shown in [124] that backpropagation is better at optimizing trainable parameters
that are closer to where the training loss is computed (i.e., training error signal) than the
trainable parameters in deeper layers. The solution was to take a weighted sum of the
reconstruction loss for every encoder/decoder pair, which allowed the network to reduce
reconstruction errors that occur in deeper layers.

In this paper, we introduce the stacked multi-loss convolutional autoencoder (SM-
CAE) spatial-spectral feature extracting framework (Fig. 4.4). It is made up of multiple
MCAE modules, where each uses multiple loss functions to incorporate and correct re-
construction errors from both shallow and deeper CAE layers. SMCAE trains, extracts,
and concatenates feature responses from the individual MCAEs in the way SCAE is built
from individual CAEs. SMCAE allows the user to extract deep spatial-spectral features

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY73

directly from the image data.

4.1.2 Semi-Supervised Learning
Self-taught feature learning focuses on unsupervised learning of features on additional
data, and then use these features with a supervised system. Semi-supervised algorithms
use supervised and unsupervised learning to improve generalization on supervised tasks;
which in turn, improves classification performance on test data [123–125]. In both cases,
unsupervised learning helps these algorithms to avoid overfitting when given only a small
number of labeled HSI samples.

A number of discriminative semi-supervised methods have been adapted for HSI
classification. The transductive support vector machine (TSVM) is a low-density sep-
aration algorithm that saw early success. TSVM seeks to choose a decision boundary
that maximizes the margin between classes using both labeled and unlabeled data [126].
The TSVM outperformed the inductive SVM when evaluated on the Indian Pines HSI
dataset [127]. TSVM is computationally expensive and has a tendency to fall into a local
minima.

Camps-Valls et al. [128] trained graph-based models for HSI classification using la-
beled and unlabeled data. Their model iteratively assigned labels to unlabeled pixels that
were clustered near labeled pixels. Their model outperformed a standard SVM on the In-
dian Pines dataset. Using manifold regularization, the Laplacian support vector machine
(LapSVM) expanded the graph-based model and showed promise in MSI classification
and cloud screening [129]. LapSVM was later modified to incorporate spatial-spectral in-
formation [130] and semi-supervised kernel propagation with sparse coding [131]. Ratle
et al. [132] recognized the shortcomings of using an SVM and replaced it with a semi-
supervised neural network. This neural network outperformed LapSVM and TSVM on
the Indian Pines and Kennedy Space Center HSI datasets in both classification accuracy
and computational efficiency.

Dopido et al. [133] introduced a semi-supervised model that jointly learned the classi-
fication and spectral unmixing task to help improve classification performance on training
sets with only a few labeled samples. Liu et al. [134] used the ladder network architecture
proposed by [123] to semantically segment HSI. Their ladder network model used convo-
lutional hidden layers in order to learn spatial-spectral features directly from the image.
Both of these frameworks introduce an unsupervised task that is jointly optimized with
the classification task to help regularize the model, which helped the model generalize
and perform well with smaller training sets.

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY74

Figure 4.2: MCAE model architecture. Dashed lines indicate where the mean-squared
error loss Lj is calculated for layer j, and solid lines are the feed-forward and lateral
network connections where information is passed. The refinement layers (Fig. 2.4 are
responsible for reconstructing the downsampled feature response.

4.2 Methods

4.2.1 Multi-Loss Convolutional Autoencoder
Here, we describe the MCAE model (Fig. 4.2), a significant improvement over the original
CAE model [94]. Formally, an autoencoder f is an unsupervised neural network that
attempts to reconstruct the input x (e.g., sample from HSI) such that x̂ = f(x), where x̂
is the autoencoder’s reconstruction of the original input x. An autoencoder can be trained
with various constraints to learn a meaningful feature representation that can still be used
for reconstruction. Typically, autoencoders include a separate encoder network that learns
a compressed feature representation of the data and a symmetrical decoder network that
reconstructs the compressed feature representation back into an estimate of the original
input. These networks have hidden layers that use trainable weights W and biases b to
compress and then reconstruct the input. Since this is an unsupervised learning method,
the MSE between x and x̂ is the loss used to train the network. Once trained, we can
extract the features h from an autoencoder with a single hidden-layer such that,

h = σ (Wx + b) (4.1)

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY75

where σ is the non-linear activation function (e.g., CAE used the Rectified Linear Unit
(ReLU) activation). A CAE replaces multiply/add operations with 2-D convolution oper-
ations,

H = σ (W ∗ X) (4.2)

where ∗ denotes the 2-D convolution operation and X is the 2-D image data that will be
convolved. 2-D convolution operations learn position invariant feature representations;
that is, the feature response for a given object in an image is independent of the pixel
location. It slides learned convolution filters across the target image, so the number of
trainable parameters are k2 × Fin × Fout, where k is the number of pixels along the edge
of the convolution filter (e.g., typically k = 3), and Fin and Fout are the number of in-
put/output features respectively . Standard multi-layer perceptron (MLP) neural networks
have a trainable parameter relating every pixel to every input/output feature, resulting in
N2

pixels×Fin×Fout trainable parameters, where Npixels is the number of pixels in the im-
age data. DCNNs almost always have fewer trainable parameters than MLPs of equivalent
depth, which can prevent the model from overfitting. In [94], the stacked CAE (SCAE)
model is built using several CAEs, where the input to the k-th CAE is the output from the
last hidden-layer of the k − 1-th CAE,

Hk = σ
(
Wk ∗Hk−1) (4.3)

where H0 = X. This allowed the model to learn a deeper feature representation from
the input data. Each CAE contains multiple hidden-layers and the down-sampled feature
response is reconstructed by the refinement layer shown in Fig. 4.3.

Valpola [124] showed that, for an autoencoder with multiple hidden-layers, errors in
deeper layers had a harder time being corrected during back-propagation because they are
too far from the training signal. To fix this, we train each CAE using a weighted sum of
the reconstruction losses for each hidden-layer,

L =
M∑
j=1

λmcae,jLmse,j (4.4)

where M is the number of hidden-layers, Lmse,j is the MSE of the encoder and decoder
at layer j, and λmcae,j is the loss weight at layer j. We refer to this new feature extracting
model as MCAE. The SMCAE model (Fig. 4.4) trains, extracts, and concatenates feature
responses from the individual MCAEs in the same manner as SCAE.

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY76

Figure 4.3: Refinement layer used in CAE and MCAE.

4.2.2 Semi-Supervised Multi-Layer Perceptron Neural Network
In [94], a major bottleneck in their self-taught learning model was that it used PCA to re-
duce the feature dimensionality prior to being classified by an SVM. This was necessary
because SVMs can suffer from the curse of dimensionality when the feature dimension-
ality is too high. The ideal number of principal components varied across datasets and
required cross-validation. In contrast, MLP-based neural networks are able to learn what
features are most important for semantic segmentation. The downside is that standard
MLPs require large quantities of labeled data or they will overfit.

To overcome this problem we propose a semi-supervised MLP (SS-MLP). As shown
in Fig. 4.5, SS-MLP has a symmetric encoder-decoder framework. The feed-forward en-
coder network segments the original input and the decoder reconstructs the compressed
feature representation back to the original input. The reconstruction serves as an addi-
tional regularization operation that can prevent the model from overfitting when there
are only a few training samples available. SS-MLP is trained by minimizing the total
supervised and unsupervised loss

L = Lclass +
M∑
j=1

λrecon,j · Lrecon,j (4.5)

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY77

Figure 4.4: The stacked multi-loss convolutional autoencoder (SMCAE) spatial-spectral
feature extractor used in this paper consists of two or more MCAE modules. The red
lines denote where features are being extracted, transferred to the next MCAE, and con-
catenated into a final feature response.

where Lclass is the cross-entropy loss for classification, Lrecon,j is the MSE of the recon-
struction at layer j, λrecon,j is the importance of the unsupervised loss term at layer j, and
M is the number of hidden layers in SS-MLP. The λrecon,j weights are set empirically.
This optimization strategy is similar to the ladder network introduced in [134], where the
network uses convolutional units to learn spatial-spectral features from a single HSI cube.
In this case, the learned spatial-spectral features are specific to this dataset alone and may
not transfer well to other HSI we wish to classify. Self-taught learning features, which
are learned from a large quantity of imagery, can be more discriminative and generalize
well across multiple datasets. In this paper, we will use pre-trained SMCAE models to
extract features from the labeled data and then pass them to SS-MLP to generate the final
classification map.

4.2.3 Adaptive Non-Linear Activations
Kemker and Kanan [94] showed that classification performance with low-level features
could be improved by applying an adaptive non-linearity to the feature response. The

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY78

Figure 4.5: The semi-supervised multi-layer perceptron (SS-MLP) classification frame-
work used in this paper.

SCAE is a deep-feature extractor, but it only used a Rectified Linear Unit (ReLU) ac-
tivation which just sets all negative values to zero. Fixed activations like this may not
be the ideal non-linearity required for every network layer; so in this paper, we use the
Parametric Exponential Linear Unit (PELU) activation [135],

σ (h; a, b) =

{
a
b
h if h ≥ 0

a
(
exp

(h
b

)
− 1
)

otherwise
(4.6)

where a and b are positive trainable parameters. PELU was shown to increase perfor-
mance by learning the ideal activation function for each network layer [135]. Depending
on the values of a and b, PELU can approximate a ReLU activation function or a num-
ber of other commonly used activation functions (e.g., LeakyReLU [136] and exponential
linear units [137]). In this paper, we use PELU activations with our SMCAE feature
extractor and SS-MLP classifier.

4.3 Experimental Setup

4.3.1 Data Description
The SCAE and SMCAE frameworks were trained using publicly-available HSI data col-
lected by three different NASA sensors: 1) NASA Jet Propulsion Laboratory’s Airborne

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY79

Table 4.1: Various HSI sensors used in this paper to train and evaluate our SMCAE SS-
MLP framework.

AVIRIS Hyperion GLiHT ROSIS

Platform Airborne Satellite Airborne Airborne
Spectral 400-2500 400-2500 400-1000 430-838Range [nm]
Spectral 224 220 402 115Bands [#]
FWHM [nm] 10 10 5 5
GSD [m] Varies 30 < 1 0.3-0.7 (best)

Sensor Type Whisk Grating Image 2-D CCD Grating Image
Broom Spectrometer Imager Spectrometer

AVIRIS - Airborne Visible/Infrared Imaging Spectrometer
CCD - Charged Couple Device
FWHM - Full-width, Half-Max
GSD - Ground Sample Distance
GLiHT - Goddard’s LiDAR, Hyperspectral & Thermal Imager
ROSIS - Reflective Optics System Imaging Spectrometer

Visible/Infrared Imaging Spectrometer (AVIRIS), 2) EO-1 Hyperion imaging spectrome-
ter, and 3) Goddard’s LiDAR, Hyperspectral & Thermal Imager (GLiHT). Relevant tech-
nical specifications for each sensor are available in Table 4.1. We attempted to collect
data from a wide variety of different locations and climates (e.g., urban, forest, farmland,
etc.) so that the frameworks would learn spatial-spectral features that generalize across
multiple labeled datasets. Samples from all three sensors can be seen in Fig. 4.6.

(a) AVIRIS (b) Hyperion (c) GLiHT

Figure 4.6: RGB visualization of HSI from all three sensors used to train SCAE and
SMCAE.

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY80

Table 4.2: Benchmark HSI datasets used in this paper to evaluate the algorithms.
Indian Pavia Salinas
Pines University Valley

Sensor AVIRIS ROSIS AVIRIS
Spatial Dimensions [pix] 145× 145 610× 340 512× 217

GSD [m] 20 1.3 3.7
Spectral Bands 224 103 224

Spectral Range [nm] 400-2500 430-838 400-2500
Number of Classes 16 9 16

GSD - Ground Sample Distance
ROSIS - Reflective Optics System Imaging Spectrometer
AVIRIS - Airborne Visible/Infrared Imaging Spectrometer

The three annotated HSI datasets used to evaluate the SuSA framework are Indian
Pines (Fig. 4.7(a)), Pavia University (Fig. 4.7(b)), and Salinas Valley (Fig. 4.7(c)). Indian
Pines and Salinas Valley were captured by the AVIRIS HSI sensor and contain mostly
agricultural scenes. Pavia University was collected by the Reflective Optics System Imag-
ing Spectrometer (ROSIS) airborne sensor and is an urban scene with several man-made
objects. Fig. 4.7 shows a RGB visualization of all three datasets and Fig. 4.8 shows their
corresponding ground truth maps.

4.3.2 Training Parameters
MCAE

The CAE and MCAE frameworks use the parameters listed in Table 4.3 throughout this
paper. We used the same layer shape found to work well in [94] for CAE and MCAE to
provide a fair comparison between the two models. These networks were trained using
the open-source imagery listed in Table 4.6. We randomly sampled a total of 50,000
32×32×B image patches from these different HSI images, where B is the number of
spectral bands that correspond to each sensor. Of the 50,000 image patches, 45,000 are
reserved for training and 5,000 are reserved for validation. Bands that correspond to low
SNR and atmospheric absorption are removed. We center each feature in the patch array
to zero-mean and unit-variance prior to training the model. The weights are initialized
with Xavier initialization [138](i.e., drawn from a normal distribution with its variance

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY81

(a) Indian Pines (b) Pavia Univ. (c) Salinas

Figure 4.7: RGB visualization for Indian Pines, Pavia University, and Salinas Valley HSI
datasets. See Table 4.2 for scale.

(a) Indian Pines (b) Pavia Univ. (c) Salinas

Figure 4.8: Classification truth maps for Indian Pines, Pavia University, and Salinas Valley
HSI datasets.

chosen based on the number of units), and the biases and PELU parameters are initialized
with ones.

SCAE and SMCAE were trained using the Nadam optimizer, which is a common vari-
ant of stochastic gradient descent used to speed up training of deep learning models [139].
During training, the learning rate was dropped by a factor of 10 when the validation loss
did not improve for five consecutive epochs. The models were also trained using early

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY82

Table 4.3: Training parameters for CAE and MCAE.
CAE MCAE

Multi-Loss Weights None 1, 10−1, 10−2, 10−2

Convolution Layer 256,512,512,1024
Refinement Layer 512,512,256
Activation ReLU PELU
Initial Learning Rate 2× 10−3

Batch Size 512

stopping, where training terminated when the validation loss did not improve for ten con-
secutive epochs. The output of the last hidden layer is then fed to the next CAE/MCAE
to build the corresponding SCAE/SMCAE frameworks.

After training SCAE and SMCAE, we use them to extract features from the annotated
datasets. First, we re-sample the data to match the same spectral-bands and full-width,
half-maxes (FWHMs) as the data used to train the corresponding feature extracting frame-
work. Throughout this paper, we use the band resampling method used in [71], which has
been made publically available. This method assumes that the target sensor has a (per-
band) Gaussian response. For each target band and corresponding full-width, half-max
(FWHM), the algorithm searches for the source bands that overlap and then integrates
those responses over the region of overlap in the target sensor.

Next, we center each feature in the data to zero-mean/unit-variance. Finally, we pass
this data through the first CAE/MCAE and extract the features from the last hidden layer.
These features are fed to the second CAE/MCAE, and so on. The output from each
CAE/MCAE is concatenated along the feature dimension. Each feature in the feature
response is centered to zero-mean, unit-variance. Finally, we incorporate translation in-
variance into our final feature response by pooling the feature response with a 5×5 mean-
pooling filter. The receptive field of this filter is considerably smaller than the one used
in [94], which will prevent the mean-pooling operation from blurring out small objects
and will also preserve sharp boundaries between object classes.

SS-MLP

The input to the SS-MLP classifier is the extracted features from SMCAE. The HSI cube
is reshaped into a 2-dimensional vector (i.e., number of pixels× number of features). The
parameters for the SS-MLP classifier used in this paper are shown in Table 4.4. The rela-
tively high weight decay term was shown in [135] to work well for the PELU activation.

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY83

Table 4.4: Training parameters for SS-MLP.
Hidden Layer Shapes [1600, 950, 250, 225]

Activation PELU
λrecon [1, 1, 0.1, 0.1, 0.1, 0.1]

Initial Learning Rate 2 · 10−3

Mini-Batch Size 8
Weight Decay 10−3

The weights are initialized with Xavier initialization [138], and the biases and PELU
parameters are initialized with ones. We optimize the joint loss function using the Nadam
optimizer. The initial learning rate is the default 2 · 10−3. We drop the learning rate by
a factor of 10 when the validation accuracy plateaus for 25 consecutive epochs; and we
stop training the model when the validation accuracy plateaus for 50 consecutive epochs.
The training/validation folds are built by randomly sampling the available training data
90%/10% respectively.

4.4 Experimental Results and Discussion
We conducted experiments to measure the performance of our proposed SuSA framework.
All of the results are reported as the mean and standard deviation of 30 trials. In each
trial, we randomly sample L labeled samples from the HSI dataset for training. The
reported performance is the semantic segmentation result on all available labeled samples.
The three reported metrics used for this section are overall accuracy (OA), mean-class
(average) accuracy (AA), and Cohen’s kappa coefficient (κ).

Before giving the results of the full model across three datasets in Section 4.4.3, we
first describe preliminary experiments to compare single- vs. multi-loss CAE and study
the effect of stacking features using the Pavia University dataset.

4.4.1 Single- vs. Multi-Loss CAE
In this section, we compare the CAE model proposed earlier in [94] to the MCAE model
proposed in this paper using the Pavia University dataset for both L = 10 and L = 50
samples per class. In this experiment, we extracted the features from a single CAE/MCAE
trained on unlabeled AVIRIS HSI. The results are given in Table 4.5. We also show perfor-
mance on the raw spectrum (i.e., pass the original HSI to SS-MLP). MCAE outperforms

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY84

Table 4.5: Classification results on the Pavia University dataset using a single CAE and
MCAE model trained on unlabeled AVIRIS data. These results were generated by training
SS-MLP on L labeled samples per class. Best performance for each experiment is in bold.

OA AA κ

L = 10
Raw Spectrum 77.58± 2.41 76.37± 3.31 0.7041± 0.0306
CAE 83.47± 2.66 84.78± 2.99 0.7844± 0.0325
MCAE 84.07± 2.49 84.95± 2.54 0.7923± 0.0305

L = 50
Raw Spectrum 87.93± 0.92 87.55± 1.15 0.8411± 0.0117
CAE 92.08± 1.23 92.53± 1.55 0.8960± 0.0158
MCAE 94.19± 0.99 94.74± 1.16 0.9234± 0.0130

its CAE predecessor, although the gap is not large. In the next sections, we increase
this gap by including features from stacked MCAEs trained by HSI from three different
sensors.

4.4.2 Stacked Feature Representations
In this experiment, we examine the impact of stacking MCAE feature representations on
classification performance. We extracted features from the SMCAE model, trained on
unlabeled AVIRIS HSI, and fed it to four different classifiers: linear kernel SVM, radial
basis function (RBF) SVM, standard MLP, and our SS-MLP. For the SVM experiments,
we cross-validate for the optimal cost C and kernel width γ (RBF only) hyperparameters.
We use the same hyperparameters in Table 4.4 for the standard and semi-supervised MLP
classifiers.

Each model was trained on Pavia University using L = 50 samples per class. Fig. 4.9
shows the mean-class test accuracy of each classifier (as a mean of 30 runs) as additional
stacked MCAE feature representations are added. SS-MLP model outperformed these
standard classification methods and the performance improves as more MCAE features
are added. Since the performance saturates at 4-5 MCAEs, we will use 5 MCAEs from
each sensor for the remainder of this paper. The SVM classifier’s peak performance
occurs at 2-3 CAEs and then decreases when additional CAE features are added due to
overfitting.

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY85

1 2 3 4 5
Number of MCAEs

92

93

94

95

96

97

98

99

100

O
ve

ra
ll
Ac

cu
ra
cy
 [
%
]

SVM-Linear
SVM-RBF
MLP
SS-MLP

Figure 4.9: SMCAE performance on four different classifiers: linear kernel SVM, radial
basis function (RBF) SVM, standard MLP, and our SS-MLP. Our SS-MLP model does
the best.

4.4.3 Multi-Sensor Fusion
In this section, we show how combining features from SMCAE models trained on HSI
collected from different sensors can significantly improve semantic segmentation perfor-
mance. In this experiment, we evaluate performance using the Pavia University dataset,
where our framework is trained using L = 50 samples per class. We trained three variants
of SMCAE, where the model is trained on HSI from the AVIRIS, Hyperion, and GLiHT
sensors. We also tested each possible combination of SMCAE frameworks, where the out-
put of each SMCAE is concatenated along the feature axis. Table 4.6 shows the impact
that each SMCAE has on performance. Performance across models differs noticeably,
and combining features from multiple sensors yields the best performance. This could
indicate that each SMCAE model learns novel information that is not available from the
SMCAE models trained on different sensors (see Section 4.4.5 for more details). The
SMCAE model trained on GLiHT yielded superior results than the other two SMCAE
models. This is likely because Pavia University and GLiHT share similar spectral range
and bands; whereas AVIRIS and Hyperion expand beyond the range covered by the RO-
SIS sensor that collected Pavia University.

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY86

Table 4.6: Classification performance using features extracted from SMCAE models that
were trained with data from different HSI sensors.

Data Source(s) OA AA κ

AVIRIS 95.07± 0.69 96.03± 0.85 0.9350± 0.0090
Hyperion 95.93± 0.90 96.47± 0.56 0.9463± 0.0117
GLiHT 97.83± 0.67 98.03± 0.57 0.9713± 0.0088

AVIRIS/Hyperion 96.51± 0.91 96.85± 1.06 0.9538± 0.0120
AVIRIS/GLIHT 97.96± 0.57 98.13± 0.49 0.9730± 0.0075

Hyperion/GLiHT 98.13± 0.36 98.21± 0.38 0.9752± 0.0048
AVIRIS/Hyperion/ 98.18± 0.53 98.29± 0.38 0.9759± 0.0069GLiHT

4.4.4 State-of-the-Art Comparison
In this section, we use the same SMCAE configuration discussed in Section 4.4.3, where
we stacked features from all three sensors listed in Table 4.6. Table 4.7 shows the clas-
sification performance when L = 10 samples per class. We compared against models
found to work well using this training paradigm. For Indian Pines and Pavia University,
we compare against a semi-supervised classification approach that uses spectral-unmixing
to help improve classification performance [133]. They showed that introducing the un-
supervised task helped regularize the model, thus improving generalization when only
small quantities of annotated image data are available. Their results were reported as the
mean and standard deviation of 10 separate runs. Imani and Ghassemian [140] proposed
a model that was supposed to work well on all three of the annotated HSI datasets eval-
uated in this paper; however, they showed that a SVM classifier yielded the best results.
They only reported the mean (no standard deviation) of the mean-class accuracy over
three runs. To generate more detailed results, we reproduced this experiment using an
SVM-RBF classifier. We reported the overall accuracy, mean-class accuracy, and kappa
statistic as the mean and standard deviation over 30 trials. Our SuSA framework achieved
superior results compared to each of these frameworks.

Table 4.8 directly compares against previous self-taught and semi-supervised frame-
works discussed in this paper. The SCAE-SVM framework introduced by [94] performed
well on the L = 50 samples per class training paradigms. Note, the Indian Pines dataset
used L = 50 samples per class except for the three classes that had the smallest number
of annotated training samples available, where we only used L = 15 samples per class.
Liu et al. [134] only evaluated their ladder network on Pavia University with L = 200

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY87

Table 4.7: Results of low-shot learning experiment where the training set contains only
L=10 samples per class.

Model OA AA κ

Indian Pines
Dopido et al. [133] 75.29± 2.40 79.05± 2.00 0.7184± 0.0275
MICA-SVM [94] 66.32± 2.17 81.47± 1.27 0.6261± 0.0237
SCAE-SVM [94] 80.58± 2.13 89.24± 1.08 0.7816± 0.0234
SuSA 81.16± 1.85 89.01± 1.26 0.7874± 0.0205

Pavia University
Dopido et al. [133] 84.14± 1.97 84.48± 1.04 0.7923± 0.0237
MICA-SVM [94] 75.74± 3.81 78.85± 4.01 0.6907± 0.0446
SCAE-SVM [94] 84.67± 3.36 87.32± 2.04 0.8028± 0.0405
SuSA 89.28± 2.64 89.58± 1.62 0.8595± 0.0330

Salinas Valley
SVM-RBF [140] 82.65± 1.49 90.01± 0.92 0.8075± 0.0165
MICA-SVM [94] 90.08± 1.50 94.17± 0.99 0.8899± 0.0165
SCAE-SVM [94] 92.74± 1.42 95.56± 0.80 0.9193± 0.0157
SuSA 93.47± 1.27 96.46± 0.71 0.9274± 0.0142

samples per class. In every case, SuSA outperforms the previous state-of-the-art classifi-
cation frameworks.

We performed a statistical significance test (using a 99% confidence interval) on the
mean-class accuracy results in Table 4.8. We chose mean-class accuracy because the class
distributions are imbalanced, so this is a more meaningful measurement of model perfor-
mance. The results for all four training/testing paradigms were shown to be statistically
significant.

Finally, Table 4.9 shows that SuSA yielded state-of-the-art performance on the Indian
Pines and Pavia University HSI datasets hosted on the IEEE GRSS Data and Algorithm
Standard Evaluation (DASE) website. The training/testing folds are pre-defined, and the
server provides the classification performance on the test set. This dataset is more difficult
to perform well on because the training samples are co-located instead of being randomly
sampled across the image. At this time, the server only lists the top-10 performers, so
we are unable to ascertain the identity of the previous state-of-the-art performer or what
method they used. It also only lists their overall accuracy; however, we have provided
all of the relevant statistics, including the classification maps in Fig. 4.10. The main
performance degradation for Pavia University occurred when SuSA predicted meadows

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY88

Table 4.8: Performance comparison of SuSA against the other semi-supervised and self-
taught learning frameworks discussed in this paper.

Model OA AA κ

Indian Pines (L = 50/15)
DAFE [1] 93.27 95.86 0.923
MICA-SVM [94] 94.63± 1.00 97.31± 0.37 0.9385± 0.0114
SCAE-SVM [94] 96.12± 0.78 94.58± 0.31 0.9554± 0.0078
SuSA 96.49± 0.69 98.34± 0.31 0.9602± 0.0089

Pavia University (L = 50)
SSAE [2] 91.96± 0.87 93.52± 0.42 0.9025± 0.0112
MICA-SVM [94] 93.92± 1.38 95.58± 0.64 0.9203± 0.0177
SCAE-SVM [94] 95.84± 0.94 96.56± 0.51 0.9451± 0.0123
SuSA 98.18± 0.53 98.29± 0.38 0.9759± 0.0069

Pavia University (L = 200)
SS-CNN [134] 98.32 98.47 Unknown
MICA-SVM [94] 98.20± 0.33 98.96± 0.17 0.9763± 0.0043
SCAE-SVM [94] 98.57± 0.24 99.07± 0.17 0.9812±0.0032
SuSA 99.66± 0.11 99.70± 0.09 0.9954± 0.0014

Salinas Valley (L = 50)
GLCM+ [36] 95.41 Unknown Unknown
MICA-SVM [94] 97.15± 0.56 98.57± 0.29 0.9683± 0.0062
SCAE-SVM [94] 98.06± 0.45 98.94± 0.22 0.9784± 0.0050
SuSA 98.10± 0.61 99.11± 0.26 0.9788± 0.0068

(largest object class) when it should have predicted bare soil. There was also a problem
predicting trees when it should have predicted meadows. For Indian Pines, SuSA mis-
predicted corn for corn no-till and corn-min, and pasture/mowed grass was confused for
soybeans-min.

4.4.5 Dissimilarity Between Learned Features
In this paper, we show that our SuSA framework yields state-of-the-art performance when
only a few training samples are available. We also show that transferring spatial-spectral
features from multiple sensors can improve classification performance. This would mean
that SMCAE learns different features from different data and sensor modalities. To quan-
tify the dissimilarity between different SMCAE models, we used the dissimilarity metric
proposed by [75]. The authors computed the dissimilarity of two feature representations

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY89

Table 4.9: Classification results for the Indian Pines and Pavia University datasets from
the IEEE GRSS Data and Algorithm Standard Evaluation website.

Indian Pines Pavia University

State-of-Art Performer:
OA 90.73 73.06

SuSA:
OA 91.32 81.86
AA 81.17 74.09
κ 0.90 0.77

Table 4.10: Dissimilarity between the feature responses from all three SMCAE models.
The higher the value, the more dissimilar the two feature representations are.

AVIRIS GLiHT Hyperion

AVIRIS 0.000 0.108 0.093
GLiHT 0.000 0.105

Hyperion 0.000

X,Y such that,

d (X,Y) = 1− 1

N

N∑
i

max
j
r (Xi,j,Yi,j) (4.7)

where r is the Spearman-correlation matrix and N is the number of rows in r. We select a
random AVIRIS HSI, generate SMCAE features from all three sensors, and then compute
the dissimilarity metrics for every feature response pair (Table 4.10). Although there is
some feature overlap between different SMCAE models, there is some new information
that comes from combining learned features from multiple sensors. The SMCAE models
trained on Hyperion and AVIRIS are more similar than any combination with the SMCAE
trained on GLiHT because AVIRIS and Hyperion span the short-wave infrared spectrum
whereas GLiHT only spans through the near infrared.

The annotated benchmarks evaluated in this paper all have dramatically different
ground sample distances (GSDs) ranging from 1.3 meters to 20 meters; yet, the state-
of-the-art performance on each of these datasets could indicate that SMCAE is learning
scale-invariant features. In addition, the collection of HSI from different climates, scenes,
and weather/atmosphere conditions further improve learned feature generalization; and

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY90

(a) Indian Pines

(b) Pavia University

Figure 4.10: Classification maps for SuSA on the Indian Pines and Pavia University
datasets from the IEEE GRSS Data and Algorithm Standard Evaluation website.

ultimately, could enable the seamless transfer of spatial-spectral features across different
sensors, environments, and machine learning tasks.

CHAPTER 4. LOW-SHOT LEARNING FOR THE SEGMENTATION OF RS IMAGERY91

4.5 Conclusion
In this paper, we demonstrated that SMCAE learns more discriminative self-taught learn-
ing features by correcting errors in both shallow and deeper layers during training. We
have also shown that our SS-MLP classifier is effective at low-shot learning and able to
handle high-dimensional inputs. Our SuSA framework achieved state-of-the-art perfor-
mance on both IEEE GRSS benchmarks for HSI semantic segmentation and have estab-
lished a high bar for low-shot learning of HSI datasets. Future work will include scaling
these frameworks to other data modalities (e.g., MSI, thermal, synthetic aperture radar,
etc.), higher GSD imagery (e.g., centimeter resolution imagery taken from drones), and
other remote sensing tasks (e.g., target detection, crop health estimation, etc.).

Acknowledgements
This chapter is a reprint of the material as it appears in our submission to the IEEE Trans-
actions on Geoscience and Remote Sensing. I was the primary investigator on this paper.
We would like to thank Purdue, Pavia University, the Hysens project, and NASA/JPL-
Caltech for making their remote sensing data publicly available.

Chapter 5

Conclusion

In this dissertation, we focused on different strategies that compensate for the lack of
sensor-specific remote sensing imagery with corresponding annotations. First, our self-
taught feature learning frameworks (i.e., MICA, SCAE, and SMCAE) used large quanti-
ties of unlabeled imagery to learn a set of spatial-spectral feature extractors that transfer
between different sensors and imagery (i.e. they generalize well) and they improve the
discriminative power required for supervised classification. In SMCAE, the additional re-
construction losses between the encoder and decoder layers deeper in the network allowed
the model to learn more discriminative features; which in turn, increase classification per-
formance over SCAE on every benchmark. Also, fusing features learned from different
sensors can also increase the discriminative power of the features extracted from the la-
beled data.

Second, we designed a new benchmark to assess performance for the semantic seg-
mentation of non-RGB remote sensing imagery (i.e., RIT-18). We have made this dataset
publicly-available and hope that the remote sensing community begins to adopt better
training and evaluation practices, which will in-turn push state-of-the-art performance for
this task.

Third, we used large quantities of synthetic MSI to initialize a DCNN-based semantic
segmentation framework so it can be fine-tuned on a much smaller quantity of real MSI.
Domain adaptation strategies like this could enable the deployment of semantic segmen-
tation frameworks that can make predictions quickly and also learn the mask sharpening
operation during end-to-end training without the need for some computationally expen-
sive post-processor (e.g., CRF).

Finally, our semi-supervised classifier was able to yield state-of-the-art classification

92

CHAPTER 5. CONCLUSION 93

results with training sets that have little annotated data available. When used with our self-
taught feature learning frameworks, we beat the state-of-the-art performers on the Indian
Pines and Pavia University HSI datasets hosted on the IEEE DASE evaluation server.

Future work for self-taught feature learning should focus on incorporating information
from multiple senor modalities (e.g., LIDAR, synthetic aperture radar (SAR), thermal,
etc.) and smart feature selection strategies that are capable of reducing the increasingly
large feature dimensionality to something that trains and predicts more quickly. We could
also expand our frameworks to operate on other non-semantic segmentation remote sens-
ing tasks such as object recognition, target detection and tracking, spectral unmixing,
etc. We could also theoretically expand our self-taught learning frameworks to different
domains and data modalities such as medical imaging and non-RGB robotic vision. We
demonstrated that self-taught feature learning still works when we use frameworks trained
on other sensor data, but we could possibly improve performance by using data captured
by the sensor we are planning to use in a more relevant environment.

The domain adaptation techniques used in this paper could be greatly improved as the
quantity and quality of DIRSIG scenes improves as well. In the future, we could pull data
from multiple DIRSIG scenes, increase the number of object classes in a given scene, in-
crease the variability of the objects in the scene, and also improve the GSD of the scenes
themselves. The RIT Signature Interdisciplinary Research Area, UAS Research Labora-
tory has made some sizable investments in UAS technology, including a platform capable
of simultaneously carrying a high-res RGB imaging system, LWIR microbolometer, LI-
DAR, and VNIR HSI push-broom sensor. This UAS platform also carries a GPS/IMU
with 1.5-3 cm resolution and a data acquisition unit that logs data from all of the sen-
sors. Their future acquisitions include a new platforms capable of carrying payloads up
to 24 lbs, a HSI sensor that extends spectral coverage into SWIR bands, a better thermal
imaging system, among others. A UAS with this type of configuration could be seen as a
high-fidelity DIRSIG scene generator; and with a bit of annotation, these scenes could be
used to generate higher quality/quantity synthetic images, which could enable the next-
generation of semantic segmentation frameworks for any remote sensing sensor.

Bibliography

[1] P. Ghamisi, J. A. Benediktsson, G. Cavallaro, and A. Plaza, “Automatic framework for
spectral–spatial classification based on supervised feature extraction and morphological at-
tribute profiles,” IEEE Journal of Selected Topics in Applied Earth Observations and Re-
mote Sensing, vol. 7, no. 6, pp. 2147–2160, 2014.

[2] C. Tao, H. Pan, Y. Li, and Z. Zou, “Unsupervised spectral–spatial feature learning with
stacked sparse autoencoder for hyperspectral imagery classification,” IEEE Geoscience and
Remote Sensing Letters, vol. 12, no. 12, pp. 2438–2442, 2015.

[3] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International
Conference on Learning Representations, 2015.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li, “ImageNet Large Scale Visual Recogni-
tion Challenge,” IJCV, vol. 115, no. 3, pp. 211–252, 2015.

[5] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in
European Conference on Computer Vision, 2014.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” in Advances in Neural Information Processing Systems 25,
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., 2012, pp. 1097–1105.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in International Conference on Learning Representations, 2014.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

94

BIBLIOGRAPHY 95

[9] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for
deep neural networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

[10] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmen-
tation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2015.

[11] R. Girshick, “Fast r-cnn,” in International Conference on Computer Vision, 2015.

[12] A. Jain and G. Healey, “A multiscale representation including opponent color features for
texture recognition,” IEEE Trans. Image Proc., vol. 7, no. 1, pp. 124–128, 1998.

[13] O. Rajadell Rojas, P. Garcı́a Sevilla, and F. Pla Bañón, “Spectral–spatial pixel character-
ization using gabor filters for hyperspectral image classification,” IEEE Geoscience and
Remote Sensing Letters, vol. 10, no. 4, pp. 860–864, 2013.

[14] L. M. Bruce, C. H. Koger, and J. Li, “Dimensionality reduction of hyperspectral data us-
ing discrete wavelet transform feature extraction,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 40, no. 10, pp. 2331–2338, 2002.

[15] L. Shen and S. Jia, “Three-dimensional gabor wavelets for pixel-based hyperspectral im-
agery classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49,
no. 12, pp. 5039–5046, 2011.

[16] Y. Y. Tang, Y. Lu, and H. Yuan, “Hyperspectral image classification based on three-
dimensional scattering wavelet transform,” IEEE Transactions on Geoscience and Remote
sensing, vol. 53, no. 5, pp. 2467–2480, 2015.

[17] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spectral and spatial clas-
sification of hyperspectral data using svms and morphological profiles,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 46, no. 11, pp. 3804–3814, 2008.

[18] M. Dalla Mura, J. Atli Benediktsson, B. Waske, and L. Bruzzone, “Extended profiles with
morphological attribute filters for the analysis of hyperspectral data,” International Journal
of Remote Sensing, vol. 31, no. 22, pp. 5975–5991, 2010.

[19] C. Tao, Y. Tang, C. Fan, and Z. Zou, “Hyperspectral imagery classification based on
rotation-invariant spectral–spatial feature,” IEEE Geoscience and Remote Sensing Letters,
vol. 11, no. 5, pp. 980–984, 2014.

BIBLIOGRAPHY 96

[20] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning: transfer learn-
ing from unlabeled data,” in Proceedings of the 24th international conference on Machine
learning. ACM, 2007, pp. 759–766.

[21] A. Plaza, P. Martinez, J. Plaza, and R. Perez, “Dimensionality reduction and classification
of hyperspectral image data using sequences of extended morphological transformations,”
IEEE Transactions on Geoscience and remote sensing, vol. 43, no. 3, pp. 466–479, 2005.

[22] N. Falco, J. A. Benediktsson, and L. Bruzzone, “A study on the effectiveness of different
independent component analysis algorithms for hyperspectral image classification,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 6,
pp. 2183–2199, 2014.

[23] I. Dópido, A. Villa, A. Plaza, and P. Gamba, “A quantitative and comparative assessment of
unmixing-based feature extraction techniques for hyperspectral image classification,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 5, no. 2,
pp. 421–435, 2012.

[24] F. Yan, H. Mingyi, S. Jianghong, and W. Jiang, “ICA-based neural network approach to
classification of hyperspectral image,” in Proc. Artificial Intelligence, 2006, pp. 835–839.

[25] J. Wang and C.-I. Chang, “Independent component analysis-based dimensionality reduction
with applications in hyperspectral image analysis,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 44, no. 6, pp. 1586–1600, 2006.

[26] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, “Advances in
spectral-spatial classification of hyperspectral images,” Proceedings of the IEEE, vol. 101,
no. 3, pp. 652–675, 2013.

[27] Z. Lin, Y. Chen, X. Zhao, and G. Wang, “Spectral-spatial classification of hyperspectral im-
age using autoencoders,” in Information, Communications and Signal Processing. IEEE,
2013, pp. 1–5.

[28] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based classification of
hyperspectral data,” IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 7, no. 6, pp. 2094–2107, 2014.

[29] Y. Liu, G. Cao, Q. Sun, and M. Siegel, “Hyperspectral classification via deep networks
and superpixel segmentation,” International Journal of Remote Sensing, vol. 36, no. 13, pp.
3459–3482, 2015.

BIBLIOGRAPHY 97

[30] W. Zhao, Z. Guo, J. Yue, X. Zhang, and L. Luo, “On combining multiscale deep learn-
ing features for the classification of hyperspectral remote sensing imagery,” International
Journal of Remote Sensing, vol. 36, no. 13, pp. 3368–3379, 2015.

[31] B. Du, W. Xiong, J. Wu, L. Zhang, L. Zhang, and D. Tao, “Stacked convolutional denoising
auto-encoders for feature representation,” IEEE transactions on cybernetics, vol. 47, no. 4,
pp. 1017–1027, 2017.

[32] H. Leigang, F. Xiangchu, H. Chunlei, and P. Chunhong, “Learning deep dictionary for
hyperspectral image denoising,” IEICE Transactions on Information and Systems, vol. 98,
no. 7, pp. 1401–1404, 2015.

[33] A. Soltani-Farani and H. R. Rabiee, “When pixels team up: spatially weighted sparse
coding for hyperspectral image classification,” IEEE Geoscience Remote Sensing Letters,
vol. 12, no. 1, pp. 107–111, 2015.

[34] P. Du, H. Zhao, B. Zhang, and L. Zheng, “Independent component analysis for hyper-
spectral imagery plant classification,” in Electronic Imaging 2005. International Society
for Optics and Photonics, 2005, pp. 71–81.

[35] X. Ma, J. Geng, and H. Wang, “Hyperspectral image classification via contextual deep
learning,” EURASIP Journal on Image and Video Processing, vol. 2015, no. 1, pp. 1–12,
2015.

[36] F. Mirzapour and H. Ghassemian, “Improving hyperspectral image classification by com-
bining spectral, texture, and shape features,” International Journal of Remote Sensing,
vol. 36, no. 4, pp. 1070–1096, 2015.

[37] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing data: A technical tutorial
on the state of the art,” IEEE Geoscience and Remote Sensing Magazine, vol. 4, no. 2, pp.
22–40, 2016.

[38] A. Coates, H. Lee, and A. Y. Ng, “An analysis of single-layer networks in unsupervised
feature learning,” Ann Arbor, vol. 1001, no. 48109, p. 2, 2010.

[39] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by
learning a sparse code for natural images,” Nature, vol. 381, no. 6583, p. 607, 1996.

[40] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding algorithms,” Advances
in neural information processing systems, vol. 19, p. 801, 2007.

BIBLIOGRAPHY 98

[41] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse cod-
ing for image classification,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2009, pp. 1794–1801.

[42] M. S. Caywood, B. Willmore, and D. J. Tolhurst, “Independent components of color natural
scenes resemble v1 neurons in their spatial and color tuning,” Journal of Neurophysiology,
vol. 91, no. 6, pp. 2859–2873, 2004.

[43] C. Kanan and G. Cottrell, “Robust classification of objects, faces, and flowers using natural
image statistics,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2010.

[44] A. Olmos and F. A. Kingdom, “A biologically inspired algorithm for the recovery of shading
and reflectance images,” Perception, vol. 33, no. 12, pp. 1463–1473, 2004.

[45] J. M. Nascimento and J. M. B. Dias, “Does independent component analysis play a role
in unmixing hyperspectral data?” IEEE Transactions on Geoscience and Remote Sensing,
vol. 43, no. 1, pp. 175–187, 2005.

[46] K. Tiwari, M. Arora, and D. Singh, “An assessment of independent component analysis for
detection of military targets from hyperspectral images,” International Journal of Applied
Earth Observation and Geoinformation, vol. 13, no. 5, pp. 730–740, 2011.

[47] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by
error propagation,” DTIC Document, Tech. Rep., 1985.

[48] M. A. Ranzato and M. Szummer, “Semi-supervised learning of compact document repre-
sentations with deep networks,” in Proc Int. Conf. Mach. Learn., 2008, pp. 792–799.

[49] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural
networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[50] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, “Efficient learning of sparse represen-
tations with an energy-based model,” in Proceedings of the 19th International Conference
on Neural Information Processing Systems. MIT Press, 2006, pp. 1137–1144.

[51] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing ro-
bust features with denoising autoencoders,” in Proceedings of the 25th international con-
ference on Machine learning. ACM, 2008, pp. 1096–1103.

[52] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolutional auto-encoders
for hierarchical feature extraction,” Artificial Neural Networks and Machine Learning–
ICANN 2011, pp. 52–59, 2011.

BIBLIOGRAPHY 99

[53] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising
criterion,” Journal of Machine Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[54] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, “Text classification from labeled
and unlabeled documents using em,” Machine learning, vol. 39, no. 2, pp. 103–134, 2000.

[55] S. Rajan, J. Ghosh, and M. M. Crawford, “An active learning approach to hyperspectral
data classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 4,
pp. 1231–1242, 2008.

[56] D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari, “A survey of active learning
algorithms for supervised remote sensing image classification,” IEEE Journal of Selected
Topics in Signal Processing, vol. 5, no. 3, pp. 606–617, 2011.

[57] B. Du, Z. Wang, L. Zhang, L. Zhang, W. Liu, J. Shen, and D. Tao, “Exploring representa-
tiveness and informativeness for active learning,” IEEE transactions on cybernetics, vol. 47,
no. 1, pp. 14–26, 2017.

[58] R. K. Ando and T. Zhang, “A framework for learning predictive structures from multiple
tasks and unlabeled data,” J. Mach. Learn. Research, vol. 6, pp. 1817–1853, 2005.

[59] R. Caruana, “Multitask learning,” Mach. Learn., vol. 28, no. 1, pp. 41–75, 1997.

[60] S. Thrun, “Is learning the n-th thing any easier than learning the first?” Adv. neural info.
Proc. Sys., pp. 640–646, 1996.

[61] C. Kanan, “Active object recognition with a space-variant retina,” ISRN Machine Vision,
vol. 2013, 2013.

[62] P. Wang, G. W. Cottrell, and C. Kanan, “Modeling the object recognition pathway: A deep
hierarchical model using gnostic fields,” in Cognitive Sci. Soc. Cognitive Science Society,
July 2015, pp. 2601–2606.

[63] D. Tuia, M. Volpi, M. Dalla Mura, A. Rakotomamonjy, and R. Flamary, “Automatic feature
learning for spatio-spectral image classification with sparse svm,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 52, no. 10, pp. 6062–6074, 2014.

[64] D. L. Ruderman, “The statistics of natural images,” Network: computation in neural sys-
tems, vol. 5, no. 4, pp. 517–548, 1994.

[65] T. Wachtler, E. Doi, T.-W. Lee, and T. J. Sejnowski, “Cone selectivity derived from the
responses of the retinal cone mosaic to natural scenes,” Journal of Vision, vol. 7, no. 8, pp.
6–6, 2007.

BIBLIOGRAPHY 100

[66] A. J. Bell and T. J. Sejnowski, “The independent components of natural scenes are edge
filters,” Vision research, vol. 37, no. 23, pp. 3327–3338, 1997.

[67] H. Shan and G. W. Cottrell, “Looking around the backyard helps to recognize faces and
digits,” in Proc. IEEE Comp. Vis. Patt. Recog. IEEE, 2008, pp. 1–8.

[68] P. H. O. Pinheiro, T. Lin, R. Collobert, and P. Dollár, “Learning to refine object segments,”
in European Conference on Computer Vision, 2016.

[69] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in python,”
Journal of Machine Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[70] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.

[71] T. Boggs, “Spectral python,” http://www.spectralpython.net, 2014.

[72] M. Baumgardner, L. Biehl, and D. Landgrebe, “220 Band AVIRIS Hyperspectral Image
Data Set: June 12, 1992 Indian Pine Test Site 3,” Sep 2015. [Online]. Available:
https://purr.purdue.edu/publications/1947/1

[73] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in International Conference on Machine Learning, 2015.

[74] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proc. Int. Conf. Artificial Intelligence Stats., 2010.

[75] N. Kriegeskorte, M. Mur, and P. A. Bandettini, “Representational similarity analysis-
connecting the branches of systems neuroscience,” Frontiers in systems neuroscience,
vol. 2, p. 4, 2008.

[76] C. F. Cadieu, H. Hong, D. L. Yamins, N. Pinto, D. Ardila, E. A. Solomon, N. J. Majaj, and
J. J. DiCarlo, “Deep neural networks rival the representation of primate it cortex for core
visual object recognition,” PLoS Comput Biol, vol. 10, no. 12, p. e1003963, 2014.

[77] T. W. Anderson, “Estimating linear restrictions on regression coefficients for multivariate
normal distributions,” Annals Math. Stats., pp. 327–351, 1951.

[78] A. J. Izenman, “Reduced-rank regression for the multivariate linear model,” J. multivariate
analysis, vol. 5, no. 2, pp. 248–264, 1975.

[79] (2017) 2017 IEEE GRSS Data Fusion Contest. [Online]. Available: http://www.grss-ieee.
org/community/technical-committees/data-fusion/

https://github.com/fchollet/keras
https://purr.purdue.edu/publications/1947/1
http://www.grss-ieee.org/community/technical-committees/data-fusion/
http://www.grss-ieee.org/community/technical-committees/data-fusion/

BIBLIOGRAPHY 101

[80] A. S. Laliberte, M. A. Goforth, C. M. Steele, and A. Rango, “Multispectral Remote Sensing
from Unmanned Aircraft: Image Processing Workflows and Applications for Rangeland
Environments,” Remote Sensing, vol. 3, no. 11, pp. 2529–2551, 2011.

[81] F. Rottensteiner, G. Sohn, J. Jung, M. Gerke, C. Baillard, S. Benitez, and U. Breitkopf, “The
isprs benchmark on urban object classification and 3d building reconstruction,” ISPRS Ann.
Photogramm. Remote Sens. Spat. Inf. Sci, vol. 1, no. 3, pp. 293–298, 2012.

[82] M. Volpi and V. Ferrari, “Semantic segmentation of urban scenes by learning local class
interactions,” in Earth Vision Workshop, 2015, pp. 1–9.

[83] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The PAS-
CAL Visual Object Classes (VOC) Challenge,” International Journal of Computer Vision,
vol. 88, no. 2, pp. 303–338, 2010.

[84] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs,” arXiv preprint, vol. arXiv:1606.00915, 2016. [Online]. Available:
http://arxiv.org/abs/1606.00915

[85] G. Lin, A. Milan, C. Shen, and I. D. Reid, “RefineNet: Multi-path refinement networks
for high-resolution semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[86] H. Wang, Y. Wang, Q. Zhang, S. Xiang, and C. Pan, “Gated convolutional neural network
for semantic segmentation in high-resolution images,” Remote Sensing, vol. 9, no. 5, 2017.

[87] D. Marmanis, J. D. Wegner, S. Galliani, K. Schindler, M. Datcu, and U. Stilla, “Semantic
Segmentation of Aerial Images with an Ensemble of CNNS,” ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, 2016, vol. 3, pp. 473–480,
2016.

[88] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmen-
tation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2015.

[89] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic segmenta-
tion,” in International Conference on Computer Vision, 2015.

[90] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected crfs with gaussian
edge potentials,” in Proceedings of the International Conference on Neural Information
Processing Systems, 2011.

http://arxiv.org/abs/1606.00915

BIBLIOGRAPHY 102

[91] G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classification: Benchmark and
state of the art,” IEEE, vol. 105, no. 10, pp. 1865–1883, Oct 2017.

[92] G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convolutional neural networks
for object detection in vhr optical remote sensing images,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 54, no. 12, pp. 7405–7415, 2016.

[93] X. Yao, J. Han, G. Cheng, X. Qian, and L. Guo, “Semantic annotation of high-resolution
satellite images via weakly supervised learning,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 54, no. 6, pp. 3660–3671, 2016.

[94] R. Kemker and C. Kanan, “Self-taught feature learning for hyperspectral image classifica-
tion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 5, pp. 2693–2705,
2017.

[95] G. Chen, Q. Weng, G. J. Hay, and Y. He, “Geographic object-based image analysis (geobia):
emerging trends and future opportunities,” GIScience & Remote Sensing, vol. 55, no. 2, pp.
159–182, 2018.

[96] R. Khatami, G. Mountrakis, and S. V. Stehman, “A meta-analysis of remote sensing re-
search on supervised pixel-based land-cover image classification processes: General guide-
lines for practitioners and future research,” Remote Sensing of Environment, vol. 177, pp.
89 – 100, 2016.

[97] L. Shen et al., “Discriminative gabor feature selection for hyperspectral image classifica-
tion,” IEEE Geoscience Remote Sensing Letters, vol. 10, no. 1, pp. 29–33, 2013.

[98] T. Blaschke, “Object based image analysis for remote sensing,” ISPRS Journal of Pho-
togrammetry and Remote Sensing, vol. 65, no. 1, pp. 2–16, 2010.

[99] G. Hay and G. Castilla, “Geographic Object-Based Image Analysis (GEOBIA): A new
name for a new discipline,” pp. 75–89, 01 2008.

[100] U. B. Gewali and S. T. Monteiro, “Spectral angle based unary energy functions for
spatial-spectral hyperspectral classification using markov random fields,” arXiv preprint
arXiv:1610.06985, 2016.

[101] P. Zhong and R. Wang, “A multiple conditional random fields ensemble model for urban
area detection in remote sensing optical images,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 45, no. 12, pp. 3978–3988, 2007.

BIBLIOGRAPHY 103

[102] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical features for scene
labeling,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8,
pp. 1915–1929, 2013.

[103] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous detection and segmen-
tation,” in European Conference on Computer Vision, 2014, pp. 297–312.

[104] M. Zhang, X. Hu, L. Zhao, Y. Lv, M. Luo, and S. Pang, “Learning dual multi-scale mani-
fold ranking for semantic segmentation of high-resolution images,” Remote Sensing, vol. 9,
no. 5, 2017.

[105] (2017) DSTL Satellite Imagery Feature Detection. [Online]. Available: https:
//www.kaggle.com/c/dstl-satellite-imagery-feature-detection

[106] X. Peng, B. Sun, K. Ali, and K. Saenko, “Learning deep object detectors from 3d models,”
in International Conference on Computer Vision, 2015, pp. 1278–1286.

[107] W. Chen, H. Wang, Y. Li, H. Su, Z. Wang, C. Tu, D. Lischinski, D. Cohen-Or, and
B. Chen, “Synthesizing training images for boosting human 3d pose estimation,” in 3D
Vision. IEEE, 2016, pp. 479–488.

[108] X. Zhang, Y. Fu, S. Jiang, L. Sigal, and G. Agam, “Learning from synthetic data using
a stacked multichannel autoencoder,” in International Conference on Machine Learning.
IEEE, 2015, pp. 461–464.

[109] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The synthia dataset:
A large collection of synthetic images for semantic segmentation of urban scenes,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.
3234–3243.

[110] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory
of learning from different domains,” Machine learning, vol. 79, no. 1-2, pp. 151–175, 2010.

[111] I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. W. Aha, “Unsupervised and transfer
learning challenge,” in Neural Networks (IJCNN). IEEE, 2011, pp. 793–800.

[112] E. Ientilucci and S. Brown, “Advances in wide area hyperspectral image simulation,”
Proc SPIE, vol. 5075, pp. 110–121, 2003. [Online]. Available: http://www.dirsig.org/docs/
megascene.pdf

[113] J. Schott, S. Brown, R. Raqueo, H. Gross, and G. Robinson, “An advanced synthetic im-
age generation model and its application to multi/hyperspectral algorithm development,”
Canadian Journal of Remote Sensing, vol. 25, no. 2, pp. 99–111, 1999.

https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
http://www.dirsig.org/docs/megascene.pdf
http://www.dirsig.org/docs/megascene.pdf

BIBLIOGRAPHY 104

[114] W. Zhao, S. Du, and W. J. Emery, “Object-based convolutional neural network for high-
resolution imagery classification,” IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, vol. 10, no. 7, pp. 3386–3396, July 2017.

[115] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in
European Conference on Computer Vision, 2016.

[116] P. O. Pinheiro, R. Collobert, and P. Dollár, “Learning to segment object candidates,” in
Advances in Neural Information Processing Systems, 2015, pp. 1990–1998.

[117] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “LIBLINEAR: A Library
for Large Linear Classification,” J. Mach. Learn. Rsrch., vol. 9, no. Aug, pp. 1871–1874,
2008.

[118] Y. Huang, S. J. Thomson, Y. Lan, and S. J. Maas, “Multispectral Imaging Systems for
Airborne Remote Sensing to Support Agricultural Production Management,” Int. J. Agri-
cultural & Bio. Eng., vol. 3, no. 1, pp. 50–62, 2010.

[119] P. J. Zarco-Tejada, J. A. Berni, L. Suárez, G. Sepulcre-Cantó, F. Morales, and J. R. Miller,
“Imaging Chlorophyll Fluorescence with an Airborne Narrow-band Multispectral Camera
for Vegetation Stress Detection ,” Remote Sens. of Env., vol. 113, no. 6, pp. 1262 – 1275,
2009.

[120] J. A. Berni, P. J. Zarco-Tejada, L. Suárez, and E. Fereres, “Thermal and Narrowband Mul-
tispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle,”
IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 722–738, 2009.

[121] S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations
for deep neural networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

[122] R. Bellman, Dynamic programming. Courier Corporation, 2013.

[123] A. Rasmus, H. Valpola, M. Honkala, M. Berglund, and T. Raiko, “Semi-supervised learning
with ladder networks,” in Advances in Neural Information Processing Systems, 2015, pp.
3546–3554.

[124] H. Valpola, “From neural pca to deep unsupervised learning,” Advances in Independent
Component Analysis and Learning Machines, pp. 143–171, 2015.

[125] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved
techniques for training gans,” in Advances in Neural Information Processing Systems, 2016,
pp. 2234–2242.

BIBLIOGRAPHY 105

[126] L. Bruzzone, M. Chi, and M. Marconcini, “A novel transductive svm for semisupervised
classification of remote-sensing images,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 44, no. 11, pp. 3363–3373, 2006.

[127] ——, “Transductive svms for semisupervised classification of hyperspectral data,” in Geo-
science and Remote Sensing Symposium, 2005. IGARSS’05. Proceedings. 2005 IEEE In-
ternational, vol. 1. IEEE, 2005, pp. 4–pp.

[128] G. Camps-Valls, T. V. B. Marsheva, and D. Zhou, “Semi-supervised graph-based hyper-
spectral image classification,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 45, no. 10, pp. 3044–3054, 2007.

[129] L. Gómez-Chova, G. Camps-Valls, J. Munoz-Mari, and J. Calpe, “Semisupervised image
classification with laplacian support vector machines,” IEEE Geoscience and Remote Sens-
ing Letters, vol. 5, no. 3, pp. 336–340, 2008.

[130] L. Yang, S. Yang, P. Jin, and R. Zhang, “Semi-supervised hyperspectral image classification
using spatio-spectral laplacian support vector machiney,” IEEE Geoscience and Remote
Sensing Letters, vol. 11, no. 3, pp. 651–655, 2014.

[131] L. Yang, M. Wang, S. Yang, R. Zhang, and P. Zhang, “Sparse spatio-spectral lapsvm with
semisupervised kernel propagation for hyperspectral image classification,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 5, pp.
2046–2054, 2017.

[132] F. Ratle, G. Camps-Valls, and J. Weston, “Semisupervised neural networks for efficient
hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 48, no. 5, pp. 2271–2282, 2010.

[133] I. Dópido, J. Li, P. Gamba, and A. Plaza, “A new hybrid strategy combining semisuper-
vised classification and unmixing of hyperspectral data,” IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, vol. 7, no. 8, pp. 3619–3629, 2014.

[134] B. Liu, X. Yu, P. Zhang, X. Tan, A. Yu, and Z. Xue, “A semi-supervised convolutional neu-
ral network for hyperspectral image classification,” Remote Sensing Letters, vol. 8, no. 9,
pp. 839–848, 2017.

[135] L. Trottier, P. Giguère, and B. Chaib-draa, “Parametric exponential linear unit for deep
convolutional neural networks,” CoRR, vol. abs/1605.09332, 2016. [Online]. Available:
http://arxiv.org/abs/1605.09332

http://arxiv.org/abs/1605.09332

BIBLIOGRAPHY 106

[136] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network
acoustic models,” in Proceedings of the International Conference on Machine Learning,
vol. 30, no. 1, 2013.

[137] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learn-
ing by exponential linear units (elus),” in Proceedings of the International Conference on
Learning Representations, 2016.

[138] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, 2010, pp. 249–256.

[139] T. Dozat, “Incorporating nesterov momentum into adam,” 2016.

[140] M. Imani and H. Ghassemian, “Boundary based supervised classification of hyperspectral
images with limited training samples,” ISPRS-International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences, no. 3, pp. 203–207, 2013.

[141] Agisoft LLC, Agisoft PhotoScan User Manual Professional Edition, Version 1.2. Agisoft,
2016. [Online]. Available: http://www.agisoft.com/pdf/photoscan-pro 1 2 en.pdf

http://www.agisoft.com/pdf/photoscan-pro_1_2_en.pdf

Appendix A

RIT-18: Dataset Creation Details

In 2016, the Chester F. Carlson Center for Imaging Science established a new UAS lab-
oratory to collect remote sensing data for research purposes. This laboratory is equipped
with several UAS payloads including RGB cameras, MSI/HSI sensors, thermal imaging
systems, and light detection and ranging (LIDAR). This section will provide detail on how
the RIT-18 dataset was created. Fig. A.1 provides a macro-level view of our orthomosaic
generation pipeline.

Figure A.1: Orthomosaic Processing Pipeline

The first step is to co-register the images from all six spectral bands. For each collec-
tion campaign, we filtered out data not collected along our desired flight path (i.e. takeoff
and landing legs). The six spectral images come from independent imaging systems, so
they need to be registered to one another. The manufacturer provided an affine transfor-
mation matrix that was not designed to work at the flying height this data was collected
at, which caused noticeable registration error. We used one of the parking lot images
to develop a global perspective transformation for the other images in our dataset. Fig.
A.2 illustrates the registration error caused by the affine transformation provided by the
manufacturer and how this error can be reduced with our perspective transformation.

The global transformation worked well for some of the images, but there were reg-
istration errors in other parts of the scene, indicating that the transformation needs to be

107

APPENDIX A. RIT-18: DATASET CREATION DETAILS 108

(a) Affine (b) Perspective

Figure A.2: Difference between manufacturer’s affine transformation and our perspective
transformation. The registration error in the affine transformation looks like a blue and
red streak along the top and bottom of the parking lines, respectively.

performed on a per-image basis. This is critical when the wind causes excessive plat-
form motion or when the UAV flies over trees. This was done by 1) extracting SIFT
features from each image, 2) using k-Nearest Neighbor to find the best matches, 3) keep
the best matches, 4) use RANSAC to find the best homography, and 5) transforming the
images with this homography using nearest-neighbor interpolation. If there were no good
matches, then we used the global perspective transformation. This was done by match-
ing SIFT features from each band to build custom homographies. If a good homography
could not be found, the global transformation was used instead. This was common for ho-
mogenous scene elements, such as water, or repeating patterns, such as an empty parking
lots.

The second step was to normalize the exposure for each band. Each collected frame
was acquired with a unique integration time (i.e. auto exposure) and each band of the
Tetracam Micro-MCA6 uses a different integration time proportional to the sensor’s rela-
tive spectral response. Another issue is that each image, including each band, is collected
with a different integration time. The longer integration times required for darker images,
especially over water scenes, resulted in blur caused by platform motion. We normalized
each image with its corresponding integration time and then contrast-stretched the im-

APPENDIX A. RIT-18: DATASET CREATION DETAILS 109

age back to a 16-bit integer using the global min/max of the entire dataset. The original
images are 10-bit, but the large variation in integration time groups most of the data to
lower intensity ranges. We extended the dynamic range of the orthomosaic by stretching
the possible quantized intensity states. We generated the othomosaics mostly because of
time-constraints; however, we are also interested in evaluating models that train on small
quantities of annotated imagery.

The remaining steps were performed using Agisoft PhotoScan [141]. Photoscan uses
the 720nm band to perform most of the procedures, and then the remaining spectral chan-
nels are brought back in the orthomosaic generation step. The PhotoScan workflow in-
volves:

1. Image Alignment: Find key points in the images and match them together as tie-
points.

2. Dense Point Cloud Reconstruction: Use structure from motion (SfM) to build a
dense point cloud from the image data.

3. 3D Mesh: Build a 3D mesh and corresponding UV texture map from the dense
point cloud.

4. Orthomosaic: Generate an orthomosaic onto the WGS-84 coordinate system using
the mesh and image data.

5. Manual Clean-up: Manually correct troublesome areas by removing photographs
caused by motion blur or moving objects.

PhotoScan can generate high-quality orthomosaics, but manual steps were taken to
ensure the best quality. First, not all of the images were in focus; and although Photo-
Scan has an image quality algorithm, we opted to manually scan and remove the defo-
cused images. Second, the 3D model that the orthomosaic is projected onto is built from
structure-from-motion. Large objects that move over time, such as tree branches blowing
in the wind, or vehicles moving throughout the scene, will cause noticeable errors. This
is corrected by highlighting the affected region and manually selecting a single (or a few)
alternative images that will be used to generate that part of the orthomosaic, as opposed
to those automatically selected.

Appendix B

RIT-18: Class Descriptions

B.1 Water/Beach Area
The two classes for water are lake and pond. The lake class is for Lake Ontario, which is
north of the beach. The pond water class is for the small inland pond, present in all three
folds, which is surrounded by marsh and trees. Along Lake Ontario is a sand/beach class.
This class also includes any spot where sand blew up along the asphalt walking paths.
Along the beach are some white-painted, wooden lifeguard chairs. The buoy class is for
the water buoys present in the water and on the beach. They are very small, primarily
red and/or white, and assume various shapes. The rocks class is for the large breakwater
along the beach.

B.2 Vegetation
There are three vegetation classes including grass, trees, and low-level vegetation. The
tree class includes a variety of trees present in the scene. The grass includes all pixels
on the lawn. There are some mixtures present in the grass (such as sand, dirt, or various
weeds), so the classification algorithm will need to take neighboring pixel information
into account. The grass spots on the beach and asphalt were labeled automatically using
a normalized-difference vegetation index (NDVI) metric. Grass spots that were missed
were manually added. The low-level vegetation class includes any other vegetation, in-
cluding manicured plants, around the building or the marsh next to the pond.

110

APPENDIX B. RIT-18: CLASS DESCRIPTIONS 111

B.3 Roadway
The asphalt class includes all parking lots, roads, and walk-ways made from asphalt; but
the cement and stone paths around the buildings are not consistent between different folds,
so they remain labeled as the background class. The road marking class is for any painted
asphalt surface including parking/road lanes. This class was automatically labeled with
posteriori, but there were a few parking lines in the shade that needed to be manually
added. The road markings in the validation image are sharper than those depicted in
the training image since the park repainted the lines between collects. The vehicle label
includes any car, truck, or bus.

B.4 Underrepresented Classes
Underrepresented classes, which may be small and/or appear infrequently, will be difficult
to identify. Since some of the land cover classes are massive in comparison, the mean-
class accuracy metric will be the most important during the classification experiments in
Table 3.4. Small object classes, such as person and picnic table, represent only a minute
fraction of the image and should remain very difficult to correctly classify. These small
objects will be surrounded by larger classes and may even hide in the shade.

There are also a few classes that are only present in the scene a couple of times, such
as the white/black wood targets, orange UAS landing pad, lifeguard chair, and buildings.
The building class is primarily roof/shingles of a few buildings found throughout the
scene. The similarity between the white wooden target and the lifeguard chair should
make semantic information in the scene vital to classification accuracy. There is only a
single instance of the orange UAS landing pad in every fold. The black and white targets
are not present in the validation fold, which could make it difficult to cross-validate for a
model that can correctly identify them.

Appendix C

SCAE Architecture Used for RIT-18

SCAE, illustrated in Fig. C.1, is another unsupervised spatial-spectral feature extractor.
SCAE has a deeper neural network architecture than MICA and is capable of extracting
higher-level features [94]. The architecture used in this paper involves three individual
convolutional autoencoders (CAEs) that are trained independently. The input and output
of the first CAE is a collection of random image patches from the training data, and the
input/output of the subsequent CAEs are the features from the last hidden layer of the
previous CAE. The output of all three CAEs are concatenated in the feature domain,
mean-pooled, and the dimensionality is reduced to 99% of the original variance using
WPCA. The final feature response is scaled to zero-mean/unit-variance and then passed
to a traditional classifier. Here, we use an MLP with one hidden layer.

The architecture of each CAE is illustrated in Fig. C.2. Each CAE contains a small
feed-forward network consisting of multiple convolution and max-pooling operations.
The feature response is reconstructed with symmetric convolution and upsampling op-
erations. The reconstruction error is reduced by using skip connections from the feed-
forward network, inspired by [68].

The SCAE model used in this paper has the same architecture shown in Fig. 2.5 and
C.2. It was trained with 30,000 128 × 128 image patches randomly extracted from the
training and validation datasets. Each CAE was trained individually with a batch size of
128. There are 32 units in the first convolution block, 64 units in the second convolution
block, 128 units in the third, and 256 units in the 1 × 1 convolution. The refinement
blocks have the same number of units as their corresponding convolution block, so the
last hidden layer has 32 features.

After training, the whole image is passed through the SCAE network to generate three

112

APPENDIX C. SCAE ARCHITECTURE USED FOR RIT-18 113

Figure C.1: The SCAE model used in this paper. Architecture details for each CAE are
shown in Fig. C.2.

N × 32 feature responses. These feature responses are concatenated, convolved with a
5× 5 mean-pooling filter, and then reduced to 99% of the original variance using WPCA.
The final feature response is passed to a MLP classifier with the same architecture used
by the MICA model.

APPENDIX C. SCAE ARCHITECTURE USED FOR RIT-18 114

Figure C.2: The convolutional autoencoder (CAE) architecture used in SCAE. This CAE
is made up of several convolution and refinement blocks. The SCAE model in this paper
uses three CAEs.

Appendix D

Additional Results

Fig. D.1 shows a heat-map of the confusion matrices for SharpMask and RefineNet -
with and without DIRSIG pre-training. These results were generated from the prediction
map on the RIT-18 test set. Each row is normalized to show the most common prediction
for each class. The brighter (yellow) squares indicate a high classification accuracy for
that particular class. A strong (bright) diagonal for each confusion matrix shows that the
model is doing well, and strong off-diagonal elements indicate that where the model is
commonly misclassifying a particular class. The RefineNet-Rdm model (Fig. D.D.1(c))
is clearly overfitting to the classes with more training samples; but when the model is
pre-trained with DIRSIG data (Fig. D.D.1(d); it does a better job classifying the test set.

Fig. D.2 shows the loss and accuracy curves for SharpMask-Sim (solid) and
RefineNet-Sim (dashed). Fig. D.D.2(a) shows that the training and validation loss stay
very close, which indicates that the model is not overfitting to the training data.

Fig. D.3 shows the class distribution of the generated DIRSIG dataset. This dataset is
also unbalanced, which is why we use a weighted loss function (Equation 3.2) to pre-train
the ResNet-50 DCNN.

115

APPENDIX D. ADDITIONAL RESULTS 116

0 1 2 3 4 5 6 7 8 9 101112131415161718

Predicted Label

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Tr
ue

 L
ab

el

(a) Sharpmask-Rdm

0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18

Predicted Label

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Tr
ue

 L
ab

el

(b) Sharpmask-Sim

0 1 2 3 4 5 6 7 8 9 101112131415161718

Predicted Label

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Tr
ue

 L
ab

el

(c) RefineNet-Rdm

0 1 2 3 4 5 6 7 8 9 101112131415161718

Predicted Label

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Tr
ue

 L
ab

el

(d) RefineNet-Sim

Figure D.1: Heatmap visualization of the confusion matrices for all four models. Each
row is normalized to itself to highlight the most common errors.

APPENDIX D. ADDITIONAL RESULTS 117

0 50 100 150 200 250
Training Epochs

2

4

6

8

10

Lo
ss

Train (SharpMask)
Validation (SharpMask)
Train (RefineNet)
Validation (RefineNet)

(a) Loss

0 50 100 150 200 250
Training Epochs

65

70

75

80

85

90

95

Ac
cu
ra
cy
 [
%
]

Train (SharpMask)
Validation (SharpMask)
Train (RefineNet)
Validation (RefineNet)

(b) Overall Accuracy

Figure D.2: Training (red) and validation (blue) loss and accuracy plots for SharpMask
(solid line) and RefineNet (dashed line) models with DIRSIG weight initialization.

APPENDIX D. ADDITIONAL RESULTS 118

0 20 40 60 80 100
Categories

103

104

105

106

107

108

109

1010

In
st
an

ce
s

Figure D.3: Histogram of class distribution for DIRSIG training set.

