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Abstract

The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is an established,

first-principles based scene simulation tool that produces synthetic multispectral and hyperspec-

tral images from the visible to long wave infrared (0.4 to 20 microns). Over the last few years,

significant enhancements such as spectral polarimetric and active Light Detection and Ranging

(lidar) models have also been incorporated into the software, providing an extremely powerful

tool for multi-sensor algorithm testing and sensor evaluation. However, the extensive time re-

quired to create large-scale scenes has limited DIRSIG’s ability to generate scenes ”on demand.”

To date, scene generation has been a laborious, time-intensive process, as the terrain model, CAD

objects and background maps have to be created and attributed manually.

To shorten the time required for this process, this research developed an approach to reduce

the man-in-the-loop requirements for several aspects of synthetic scene construction. Through

a fusion of 3D lidar data with passive imagery, we were able to semi-automate several of the

required tasks in the DIRSIG scene creation process. Additionally, many of the remaining tasks

realized a shortened implementation time through this application of multi-modal imagery.

Lidar data is exploited to identify ground and object features as well as to define initial tree

location and building parameter estimates. These estimates are then refined by analyzing high-
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resolution frame array imagery using the concepts of projective geometry in lieu of the more com-

mon Euclidean approach found in most traditional photogrammetric references. Spectral imagery

is also used to assign material characteristics to the modeled geometric objects. This is achieved

through a modified atmospheric compensation applied to raw hyperspectral imagery.

These techniques have been successfully applied to imagery collected over the RIT campus

and the greater Rochester area. The data used include multiple-return point information provided

by an Optech lidar linescanning sensor, multispectral frame array imagery from the Wildfire Air-

borne Sensor Program (WASP) and WASP-lite sensors, and hyperspectral data from the Modular

Imaging Spectrometer Instrument (MISI) and the COMPact Airborne Spectral Sensor (COMPASS).

Information from these image sources was fused and processed using the semi-automated ap-

proach to provide the DIRSIG input files used to define a synthetic scene. When compared to the

standard manual process for creating these files, we achieved approximately a tenfold increase in

speed, as well as a significant increase in geometric accuracy.
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”Every honest researcher I know admits he’s just a professional amateur.

He’s doing whatever he’s doing for the first time. That makes him an

amateur. He has sense enough to know that he’s going to have a lot of

trouble, so that makes him a professional.”

Charles Franklin Kettering, U. S. Engineer and Inventor

1
Introduction

In recent years, the remote sensing community has seen significant advances in the development

of non-traditional imaging techniques. With the advent of commercial imaging spectrometers,

hyperspectral image analysis has been near the forefront of this boom, and algorithms exploiting

spectral information continue to evolve. However, in many cases, testing, validation and train-

ing of these algorithms requires the use of well-calibrated datasets, the generation of which can

be expensive and time prohibitive. As such, quality hyperspectral synthetic imagery can be a

tremendous asset, as often the simulated data is able to reduce or eliminate the need for costly

real-world data collection campaigns. Additionally, realistic synthetic image generation (SIG) en-

ables engineers to evaluate the final image products given the parameters of the sensor. This may

1
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be done to evaluate an existing sensor under a host of illumination, atmospheric and geometric

scene conditions, but it may also be done before the sensor is even built. As such, SIG is often a

critical component in the design process of new sensors.

Light Detection and Ranging (lidar) systems have undergone a similar maturation in the last

decade, and the use of laser-scanning systems to produce three-dimensional imagery is now

widespread. However, even with the proliferation of this technology, many researchers are still

lacking quality data sets with corresponding truth measurements. This is especially true for those

working in the area of multi-modal image fusion, where the lidar data is augmented by imagery

from an additional sensor. In this field, accurate registration of the imagery is critical, yet with-

out truth data the quality of this registration is often difficult to ascertain. However, with a good

multi-modal SIG model, synthetic combined datasets with associated truth values are easy to

obtain. Additionally, synthetic lidar images may be used for the characterization and design of

sensors, much as they were in the hyperspectral case. For these reasons, the ability to produce

accurate simulated imagery can be of great benefit to the lidar community as well.

The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model described in Sec-

tion 2.4 is a tool capable of creating this desired synthetic imagery. Given a pre-defined scene, it

generates an accurate representation of what a modeled passive electro-optical (EO) or active lidar

sensor would detect under specified conditions by modeling the relevant physical processes in the

imaging chain. Its use has been well documented in the literature (see [Ientilucci and Brown 2003]

and [Schott et al. 1999] for example), and it is currently being used in both academia and industry.

However, while it is fairly easy to model different sensor designs, atmospheric conditions and

geometries for a given scene, the current process for actually generating a DIRSIG scene is quite

involved. As a case in point, the creation of the MegaScene documented in [Ientilucci and Brown

2003] took a team of researchers well over a year to complete.

This work aims to shorten the time required for this process by reducing the man-in-the-loop

requirements for many of the aspects of DIRSIG scene construction. Through a fusion of 3D lidar
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data with passive EO imagery, many of the tasks required in the scene creation process may be at

least partially automated. Additionally, most of the remaining tasks will also realize a shortened

implementation time through the application of multi-modal imagery. It is anticipated that once

the data have been collected, a scene on the order of the Megascene effort could be constructed by

a single individual in approximately three weeks, and most of this time would be applied to the

final human inspection of the results.

In addition to reducing the time required to generate a DIRSIG scene, such automated tech-

niques also facilitate the creation of an accurate simulated environment for which ground truth is

either difficult or impossible to obtain. In many practical scenarios, direct access to the region of

interest is restricted, and the scene construction must be completed solely from remotely-sensed

data. This is especially true in rapid-response disaster relief efforts and military applications. In

these instances, the ability to properly fuse all data sources in a timely manner may be as impor-

tant as the final fidelity of the resultant model.

The techniques described in this dissertation also have a host of applications outside the realm

of synthetic scene construction. Many of these algorithms may be effectively used to generate dig-

ital city models used for urban planning, environmental planning and monitoring, and location-

based services. Additional applications include cartography, corridor mapping, flood and risk

assessment, and forestry management (See [Behan et al. 2000] and [Ma 2004]). With the decreas-

ing costs of lidar and other three-dimensional imaging technologies, traditional photogrammetric

efforts are likely to be replaced in many applications by multi-modal fused imaging methods.

This work focuses primarily on the development of the algorithms needed to achieve these

objectives, as well as the application of these algorithms to data collected over the RIT campus

and the surrounding area. Additional emphasis is placed on describing how well each step in the

process was performed, evaluating the effectiveness of the process taken as a whole, and compar-

ing these results to those obtained by traditional methods. While the results in general are most

accurate when all data types are present, the methods presented here are often quite flexible, and



4 CHAPTER 1. INTRODUCTION

the approach describes how individual techniques should be modified when certain data sources

are degraded or unavailable.

1.1 Research Objectives

This section provides a general overview of the main objectives associated with this research ef-

fort. As noted above, the primary goal of this work was to create a spectrally-accurate scene by

fusing multiple image modalities in a nearly-autonomous manner. However, early on this goal

was broken down into a series of more easily achieved task-oriented objectives. These objectives

comprised the minimum set of accomplishments necessary to adequately complete this research.

As defined in the research proposal, these tasks were as follows:

1. Develop or adapt a means to co- and geo-register image data from multiple sensing sources,

including high-resolution framed-array imagery, multi-spectral framed-array imagery, hy-

perspectral line-scanned imagery, and line-scanned lidar point clouds. The intent of this

portion of the research was to provide an accurate method of performing the registration,

and automation of this task was not required. Additional difficulties and issues that arose in

relation to the specific sensors used in this research were also to be addressed. An example

of this was the co-registering of bands from a hyperspectral sensor whose bands exhibit a

relative spatial offset, such as the Rochester Institute of Technology’s Modular Imaging Spec-

trometer Instrument (MISI). Although this requirement is discussed briefly in this work, a

more complete development is included in [Casey et al. 2007] and [Casey 2008].

2. Using the image data, extract a bare-earth Digital Terrain Model (DTM) for the desired

area. Although in many cases, an adequate terrain model may be obtained from the U.S.

Geological Survey, one of the motivations behind this work was to recreate scenes for which

ground truth is unavailable. As such, extraction of the DTM directly from the collected

imagery was a requirement. Additionally, the methods chosen to extract this model needed
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to be robust with regard to location and image resolution; that is, they should work with

data from a variety of sensors operating in both rural and urban environments.

3. Identify, isolate, characterize and synthetically construct trees. Although a significant

amount of work has been done with regard to identifying and analyzing tree canopy struc-

ture, there is very little information available on the fusion of multiple image modalities for

individual tree reconstruction in densely-forested areas. This work sought to define a means

to combine the height data inherent in a lidar point cloud with traditional optical imagery

for improved tree analysis.

For DIRSIG scene generation, the geometric modelling of trees typically has been done using

commercial software such as Tree Professional [Onyx Computing Inc. 2006]. Although such

software was used to a limited extent in this research, in most cases tree geometries were

selected from a previously-defined library based on image-derived parameters.

4. Identify, isolate, and reconstruct man-made structures (buildings). Through a fused-imagery

approach, it was anticipated that buildings would be more accurately defined than through

traditional photogrammetric techniques. As a starting point in this analysis, techniques re-

lying primarily on lidar data were considered first. Although several general methods for

building reconstruction using this point data were pursued, only a variant of the method of

intersecting planar faces is fully examined in this report.

5. Derive a material map for the scene. Several aspects of the scene creation process require

access to a detailed material map. A material map is an indexed image where the pixel

value at a each location identifies the material type present at that position. The relation

between index values in the material map and associated material types is stored in a look-

up table. Traditional hyperspectral classifiers may be used as a starting point in producing

these maps, but in practice it has been found that these algorithms provide unsatisfactory

results when used in isolation. This research considered additional processing techniques,
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often using other imaging sources, to improve the material classification accuracy over the

area of interest. However, in most implementations of the process, high-resolution multi-

spectral imagery was used in lieu of hyperspectral imagery, as we achieved notably better

registration results with the multi-spectral frame-array data.

6. Derive a means to provide texture (reflective spectral region only) to the scene. This is

typically done using a texture image (or images) that is registered to the scene, and select-

ing spectral reflectance curves based upon brightness values in these images. Additional

work was done in an effort to augment this method with techniques to apply texture when

multiple spectral curves for a given material are not available, or when the texture mapping

image is not of an adequate resolution to accurately describe the spatial variability of a given

class. However, this additional work is still being investigated, and it is not discussed in this

dissertation.

7. Assign spectra to the objects in the scene. The two approaches for this task are to use the

sensor as a field spectrometer, or to use the image data to select spectra for distinct regions

from a library of previously collected spectra. This research relies on the former technique

in the baseline approach, but handles spectral selection from a library in the cases where

hyperspectral imagery is not available.

8. Specify the quality of the entire process. One of the more difficult tasks in many technical

efforts is to accurately describe how well the requirements were met. In the research effort

at hand, this evaluation translates into deriving scene quality metrics that describe how well

the resultant scene meets the needs for which it was created. Such metrics have proven

difficult to construct when dealing with the geometric nature alone. This difficulty is even

greater when dealing with a DIRSIG scene, not only due to the added spectral dimension,

but also to the fact that in many instances, accurate scene reproduction (relative to the real

world) may be less important than precise scenes that are less indicative of reality but are



1.2. SCOPE 7

carried out at centimeter resolutions. Although an all-encompassing scene metric was be-

yond the scope of this research, a few performance measures are presented, and the resultant

scenes are evaluated according to these criteria.

9. Apply techniques to real image data. The techniques developed through this research have

been applied to real data collected over RIT and the surrounding area, and the resulting

scenes have been compared to a traditionally-produced scene, as well as to measured ground

truth.

1.2 Scope

Although many of the algorithms and techniques developed for this thesis may either be applied

directly or with slight modifications to a wide variety of image types, this research has only been

verified using a limited set of image sources. When available, lidar data are assumed to be given

in raw point form, and are only sampled to a raster grid when noted in the text. Multiple return

data are assumed as well, as is the availability of point characteristics such as 3D position, return

intensity, return number, and time of return. Average point density is typically assumed to be

greater than one point per square meter, and in many cases densities on the order of 5-10 points

per square meter are used. Points are also assumed to have already undergone whatever initial

geometric processing was required to bring the individual scan lines into alignment. This is a

reasonable assumption, since this task is usually accomplished by lidar-imaging vendors before

data delivery.

Spectral imagery is limited to the 400-2500 nm range. Beyond this region, thermal emission be-

comes significant, a condition not dealt with in this research. When performing spectral matching

to a library of spectral reflectance curves, the spectral imagery is assumed to be accurately cali-

brated, although a discussion is included as to how to handle the cases when it is not. However,

coverage in the full range of 400-2500 nm is not required. This contrasts with using the hyperspec-
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tral sensor as a field spectrometer, where absolute calibration is not required if calibration panels

are present in the scene, but spectral coverage should be sufficient to encompass the wavelengths

required for the scene model.

It is also assumed that distortions of all frame-array imagery have been corrected, so that these

imagers are essentially line-preserving central-projection cameras. Although methods to correct

for such distortion are well known, these refinements were neither implemented nor used on

the actual data. Specifics related to the sensors used to collect the imagery and the parameters

describing the quality of the imagery are included as appropriate throughout the dissertation.

Most of the code related to this research was written in Matlab and is available on the CD

included in the bound copies of this document. Code written by other researchers is documented

in the code only, and no attempt is made to reference this material in the dissertation. Also, it

should be emphasized that the code created in support of this research is strictly of the ”proof-of-

concept” variety. Although an attempt was certainly made to ensure the programs execute quickly

and efficiently, the code was not optimized in any real sense.

1.3 Achievements and Contributions to Knowledge

The research proposed in this document contributes to the field of synthetic scene reconstruction in

several ways. Although this field has realized significant gains in recent years, most of the research

has been devoted to defining the geometry of a given scene. To date there has been very little work

done regarding the semi-autonomous construction of spatially and spectrally-accurate scenes. In

a conceptual sense, incorporating this spectral information represents a direct contribution to the

field, as such scenes are inherently more descriptive than basic geometric models.

This may similarly be viewed as an advancement to the simulated imagery work being per-

formed at RIT. By semi-automating the scene generation process, large scale scenes will be able

to be produced quickly and accurately. Additionally, through the methods proposed here, scenes

may be created even when little ground truth is available.
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From a more technical standpoint, this work contributes to several areas. Most significant

is the novel fusion of lidar data with more traditional imaging sources. This fusion not only

includes straightforward techniques such as draping imagery over a lidar-produced CAD model

to provide material and texture information, but also contains more integrated techniques such

as using the lidar data as a weighted constraint during a photogrammetric bundle adjustment.

Additional contributions include a novel method for registering various image types (including a

technique to ortho-rectify MISI data), a new technique for performing atmospheric compensation,

a modified method for extracting the terrain from lidar data, a refined approach to building and

tree extraction and reconstruction, and an improved method of assigning spectral characteristics

to vertical surfaces.

1.4 Dissertation Overview and Organization

The remainder of this dissertation is organized as follows. An overview of the various technolo-

gies and tools relevant to this work is given in Chapter 2. Chapter 3 builds on this background and

introduces several state-of-the-art image processing techniques that the reader may be unfamiliar

with. It is here that the technical foundation for the approach will be laid. This includes brief

introductions to iterative optimization and robust parameter extraction, as well as more detailed

descriptions of modern photogrammetry and computer vision. Chapter 4 develops the baseline

approach for this research, and describes the process flow assuming all required image types are

available. This chapter also includes a brief overview of current techniques and their limitations

for each of the required major tasks. When all data sources are not available, modifications to the

baseline approach are often required, and these changes are also detailed in Chapter 4. Chapter 5

presents the results of applying the approach to real data and also provides a description of the

quality of the approach. A summary of the research is included in Chapter 6, and ideas regarding

future work and potential extensions of this work are given in Chapter 7. The included appen-

dices serve as a tutorial/review for many of the required mathematical processes underlying the
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proposed techniques, as well as a reference for the basic input files required to define a DIRSIG

scene.



”A firm foundation is necessary for any building, institution, or individ-

ual to endure.”

Russell M. Nelson

2
Background

This chapter will provide an overview of several of the technologies and research fields pertinent

to the methods used throughout this research. Although not comprehensive by any means, it

should serve as an initial foundation for understanding the rest of this dissertation. Where addi-

tional background may be warranted, outside references are given; however, it is anticipated that

most readers with a basic technical foundation will be able to proceed without too much difficulty.

Specific algorithms and recent advances in these fields as they pertain to 3D object reconstruction

will not be included here. Rather, the recent work by other authors in relation to the specific

objectives addressed by this report will be presented in the relevant sections of Chapter 4.

11
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2.1 Traditional Remote Sensing and Optical Imaging

The field of remote sensing is primarily concerned with extracting useful information about ob-

jects without actually coming into physical contact with them. In practice, this has most frequently

referred to analysis of the radiometric content of the imaged scenes, although in a strict sense, pho-

togrammetry and photo interpretation may also be considered a part of the remote sensing field.

For years, the primary method of data collection was through the use of airborne film cameras.

In recent years however, advances in digital imaging technologies have resulted in the rapid ad-

vancement of digital electro-optical (EO) imagers. Rather than recording the image data on silver-

halide crystals, digital imagers use an array of solid state sensors such as charge-coupled devices

(CCDs) and complementary metal-oxide semiconductor (CMOS) detectors to record the intensity

of the incident electro-magnetic radiation. As such, greyscale digital images are represented by a

2D array of picture elements (pixels), with each pixel having a quantized brightness value (grey-

level) associated with it. Color and other multi-band digital images may simply be thought of

as stacked layers of 2D arrays, where each layer represents the brightness values within a certain

spectral band.

EO systems are usually classified according to the general architecture of their image forma-

tion. Due to its similarity with traditional film systems, in many ways the digital framing array is

the simplest to envision. This device consists of a 2D array of detectors mounted in the focal plane

of a camera. To acquire the image, all of the detectors are exposed simultaneously, thereby pro-

ducing the same type of perspective image that is generated by a film camera. Figure 2.1 shows a

schematic illustrating the basic geometry of this design.

Another common architecture for digital imagers is the pushbroom design, which makes use

of a linear array of detectors that collects the image as the camera sweeps over the terrain. Since

the 2D image is collected as the platform moves forward, the image is acquired in temporal in-

crements. As such, the perspective of these images is similar to the standard perspective image

only in the cross-track direction. In the direction of flight, the viewing angle to each line will be
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Figure 2.1: Digital framing camera geometry.

constant, and there will be no relief displacement in this dimension. This geometry is termed line

perspective, and the schematic for such an imager is given in Figure 2.2.

A third method for obtaining digital images is with the airborne line scanner. This system

records one pixel at a time, and uses a rotating mirror to scan lines on the ground. The sensor plat-

form advances during the collection of each line, and if the timing is correct, sequential rotations

will sweep out adjacent lines on the ground. A schematic of this imaging system is given be-

low in Figure 2.3. Although these systems are comparatively simple in design, they often exhibit

Figure 2.2: Digital pushbroom imager geometry.
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Figure 2.3: Digital line-scanner geometry.

significant geometric distortions which must be corrected before use in many applications.

While many imaging sensors integrate the received radiance across a single spectral band to

produce a greyscale image, it is possible to modify the above designs to record multiple spectral

bands. This is commonly done to produce standard red, green, blue (RGB) color imagery, but

the number of recorded bands need not be limited to three. In general, when several (usually

defined as three to approximately ten) bands of data are collected, the system is said to be multi-

spectral. Multi-spectral images often offer tremendous advantages over conventional greyscale

images when trying to extract scene information. In many cases, objects may be identified or

classified merely by processing the relative received radiance in various spectral bands.

Over the past few years, RIT has developed a sophisticated multi-spectral imager in support

of the Wildfire Airborne Sensor Program (WASP) [McKeown 2003]. The WASP sensor combines

a high-resolution visible RGB-sensing camera with three additional IR cameras operating in the

short-wave, mid-wave, and long-wave (SWIR, MWIR, and LWIR, respectively) portions of the

IR spectrum. The color camera is an off-the-shelf Pixel Physics mapping design, and it uses a

4000 × 4000 pixel frame array to record its images. The three IR sensors are from the Indigo

Phoenix line, and each uses a 640× 512 pixel array. These radiometric sensors are combined with

an Applanix inertial measurement unit and an on-board computer processor. When flying at an

altitude of 3000 meters, the RGB camera has a ground spatial resolution of 0.5 meters, while the
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Figure 2.4: Concept of a hyperspectral image cube [NASA JPL 2006].

IR sensors cover approximately 3 meters.

As the number of discrete spectral bands increases, we transition from multi-spectral to hyper-

spectral imaging. Hyperspectral sensors, or imaging spectrometers, record the image data at tens

to hundreds of narrow, adjacent spectral bands which essentially yields a continuous radiance

spectrum at each sample location. By so doing, a wealth of additional information is provided, as

subtle spectral features combined with the general spectral shape may be exploited in tasks such as

image segmentation and classification, target detection, and material identification. Additionally,

in many cases, these analyses may occur at sub-pixel resolutions. In order to describe the image

content of a hyperspectral dataset, the term image cube is often used. With this terminology, each

spectral band comprises an individual layer of the cube, and if we examine the grey-level values

for each layer of a given spatial (pixel) location, the spectral curve for that location is obtained.

Figure 2.4 [NASA JPL 2006] displays this concept in relation to the AVIRIS sensor.

The design approaches for multi-spectral and hyperspectral imagers are basically extensions

of the traditional designs that were explored above [Schott 2007]. For framing arrays, multiple
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bands may be recorded by either placing spectral filters in front of individual pixels, or by using

a tunable filter and collecting each band’s image sequentially. The pushbroom sensor may be

modified by introducing a prism or grating device to spatially separate the spectral components

of each line, and recording the subsequent spectral-spatial line data on a 2D sensor array. In a

similar manner, a linear array may be used with a line-scanning architecture to capture multiple

band data.

Of particular interest to this research effort is the array-based COMPact Airborne Spectral Sen-

sor (COMPASS), a hyperspectral imager that captures incident radiation from 400nm to 2350nm

on a single focal plane [Simi et al. 2004], [Zadnik et al. 2004]. This sensor was developed at the

Army Night Vision and Electronic Sensors Directorate (NVESD), and was used in this research

to provide moderately-well calibrated data for the description of target reflectance spectra. The

average bandwidth of this sensor is approximately 8nm over the instrument’s spectral range, and

the spatial resolution was on the order of 1m.

This research also makes use of data from a student-designed hyperspectral line scanner. The

Modular Imaging Spectrometer Instrument (MISI) is an airborne line scanning system with mod-

ular focal planes that has been under development at RIT for the past 11 years. Originally fitted

with a VNIR spectrometer and a LWIR focal plane, it has recently been upgraded to contain a

set of SWIR, MWIR and LWIR sensors to support a fire phenomenology program [Raqueno et al.

2005]. The VNIR spectrometer uses a 6-inch rotating mirror in combination with an f/3.3 Casseg-

ranian telescope, and its focal plane is sampled by two optical fiber cables. The fibers lead to two

separate 36-channel spectrometers which cover the electro-magnetic spectrum from 0.440µm to

1.020µm in 0.010µm spectral bands. Some of the incident radiation is redirected from the primary

focal plane to feed five HgCdTe detectors for LWIR imaging, while secondary focal planes are

used for imaging in the SWIR and MWIR. A simple schematic of the MISI design is presented in

Figure 2.5 [DIRS Laboratory 2006].

In addition to the geometric distortions inherent to all line scanning designs, the spatial offset
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Figure 2.5: MISI optical train.

between the two VNIR fibers in MISI causes an inherent spatial shift between the two sets of

spectral bands. This configuration causes a relatively complicated misregistration which cannot

be corrected with a simple shift, rotation or translation of the data. Coupled with aircraft roll,

pitch, and yaw variations, and elevation changes in the ground surface, these effects make geo-

rectification of the imagery quite challenging. The resolution of this issue as related to a set of

bands from a single fiber is discussed later in Section 4.3. The mismatch between spectral bands

carried on different fibers is discussed in [Casey et al. 2007] and [Casey 2008]. These sources

highlight that fact that this phenomenon severely degrades the spectral purity of each pixel for

the MISI sensor, an issue that can particularly reduce performance in sub-pixel target detection

applications.

2.2 Photogrammetry

While analysis of the radiometric content of a scene falls under the scope of remote sensing, when

the focus shifts to geometric measurement of scenes through analysis of imagery, we have entered
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the domain of photogrammetry. Although in general this field is defined as ”the art, science and

technology of obtaining reliable information about physical objects and the environment through

processes of recording radiant electromagnetic energy” [Wolf and Dewitt 2000], for the purposes

of this report, we will limit it to the metric sense, which is primarily concerned with determination

of the size, shape, orientation and location of objects in 3-dimensional (3D) space.

In order to use one or more images to extract the three-dimensional structure of objects, we

need to select a mathematical model that approximates the geometry of the imaging process. Such

a model will enable us to infer the nature of images given camera orientation parameters and the

geometry of a scene, as well as to do the 3D scene reconstruction given the images. In order to

ensure generality, we will assume that all images may be taken at oblique angles, and that the

camera system may have various distortions. However, when these distortions are accounted for,

a simple pinhole camera projection model may be assumed. We will also differentiate between

the camera coordinate system whose origin is at the projection center (typically the center of the

lens), the continuous image coordinate system (termed CIC coordinates here), whose origin is at

the center of the image, the pixel-based image coordinate system (relative to a pixel location (0, 0)

for digital images, termed PIC here), and the world (object) coordinate system. Unless otherwise

specified, all coordinate frames will be right-handed Euclidean systems.

It is common practice to separate the geometry related to the position and orientation of the

camera in space from the internal characteristics of the camera itself. Specification of the former re-

quires six parameters (three coordinates of the projection center plus three orientation angles) and

is termed exterior orientation (EOP1). The interior orientation (IOP) refers to the intrinsic camera

parameters which are needed to specify the direction of the projection ray to an object point, given

an image point and the exterior orientation [McGlone 2004]. In simple pinhole (projective center)

cameras, this may be limited to a description of the focal length; however, in most cases it also

1In many references, the more common acronym ”EO” is used to specify the exterior orientation. However, in this
dissertation, EO is used to mean electro-optical. Therefore, the exterior orientation will be termed EOP, which more
precisely refers to the ”exterior orientation parameters.” In order to maintain a parallel structure, interior orientation
will use the acronym ”IOP”
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contains parameters for principal point (the point in the image normal to the projection center)

offset and optical distortion. Interior orientation has traditionally been determined by calibration,

although recent techniques have been developed to derive at least some of these parameters from

image content. This contrasts with exterior orientation, which is usually determined from the im-

agery and in-scene control points, although recent advances in aircraft navigation technology also

often permit direct measurement of the parameters.

One the EOP and IOP have been recovered, image points representing a common location

(termed homologous or corresponding points) may be back-projected through the optical centers

of the corresponding cameras (as defined by the EOPs) and intersected in three dimensional space.

The location of this intersection point in world coordinates is the location of the object point corre-

sponding to the chosen image point. When these back-projected rays do not intersect due to errors

in the process, the point minimizing the orthogonal distance to each ray is often used to define the

object point.

The theory underlying these problems is presented in Section 3.1 and covers approaches using

both Euclidean and projective geometry.

2.3 Laser-Based Remote Sensing Systems

Lidar (Light Detection and Ranging or Laser Imaging Detection and Ranging) is an active remote sens-

ing technology that measures the backscattered radiation of a transmitted laser signal to determine

properties or position of a distant object. With the continuing advances in laser design, these sys-

tems have realized a tremendous development in recent years, and many sectors of the remote

sensing field have found uses for this technology. As such, lidar is currently being used in a wide

variety of applications, including water depth measurement (bathymetry), ocean research, and to-

pographic mapping of the earth’s surface. Lidar also plays a large role in atmospheric studies, as

systems that transmit multiple wavelengths are able to determine atmospheric absorption prop-

erties and the size distribution of atmospheric particles. Lidar is also used extensively in military
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Figure 2.6: A simple cartoon illustrating the basic concepts of lidar data collection
(aircraft and building clip art taken from [SIMoN 2006]).

systems to perform such tasks as vehicle tracking, and biological and chemical agent detection,

and automatic target recognition.

Topographic lidar systems typically are based on a laser ranging unit coupled with an opto-

mechanical line scanner, although other configurations (such as pushbroom or framing array de-

signs) have also been implemented successfully. When used in conjunction with a tightly-coupled

GPS/Inertial navigation system, these sensors are able to obtain measurements of the 3D coordi-

nates of a very large number of tightly spaced points in a short amount of time. For line-scanning

pulsed-laser systems, as the aircraft flies forward, the scanning mirror continually shifts the view-

ing angle of the laser ranger. At discrete time intervals, laser pulses are transmitted, reflected off

objects, and subsequently re-received by the sensor. By processing the travel time of each pulse in
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Figure 2.7: Perspective view of 3D lidar data using elevation-based coloring.

conjunction with the pointing angles of transmission, the precise location of the reflecting object

may be determined relative to the sensor orientation. When the sensor’s location and pointing

angles are known in absolute world coordinates, the location of the point of reflection may be

expressed in that domain as well. Figure 2.6 shows a cartoon of a generic line-scanning lidar sys-

tem in operation, and Figure 2.7 shows a resultant 3D mapping for a portion of the RIT campus.

The coloring of this image is based on an indexed scheme, where elevations (heights above the

coordinate system’s (x, y) plane) are depicted as variations in color.

For many topographic lidar sensors, point locations are not the only information extracted by

the system. In addition to the range information provided by the delay of the received signal, in

many cases the intensity of the received signal is recorded as well. This data yields information re-

lated to the reflectance properties (in the spectral region used by the source) of the illuminated ob-

ject, and may be used in post-processing to aid in point classification and feature extraction. Many

lidar sensors are also able to discriminate multiple returns from each transmitted pulse, based on

the time delay of the return signal. This often enables the sensor to discriminate points lying at the
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(a) (b)

(c) (d)

Figure 2.8: Lidar images: (a) Height-based image, perspective view, (b) Height-based image,
nadir view, (c) Intensity-based image, (d) Return number-based image.

top of a tree and on the ground plane, and has been used successfully to identify forested regions

without relying on hyperspectral imagery or spatial image analysis (see Section 4.2, for example).

Figure 2.8 depicts the elevation map in both perspective and nadir orientations, as well as the

corresponding intensity and multiple return images for the regions surrounding RIT’s Carlson

Center for Imaging Science.

For the purposes of this dissertation, much of the theory underlying the operation of the lidar

scanner will be ignored, and the system will be treated as a ’black box’ capable of producing range

and intensity information as noted above. For additional information regarding the operation of

these systems, the reader is referred to [Argall and Sica 2003].

It should be noted that in some fields, the term ladar (Laser Detection and Ranging) is preferred

when discussing this type of laser ranging technology. A distinction between these acronyms was

made in [Burton 2002], where the author specifies that ladar is typically used to denote systems
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which locate the position of objects, while lidar is used to describe sensors that derive proper-

ties of an object. However, in the field of 3D object reconstruction, the term lidar is used almost

exclusively. As such, lidar will be the acronym of choice for the remainder of this dissertation.

2.4 The DIRSIG Model

The DIRSIG model is a complex synthetic image generation utility that was developed at the

Digital Imaging and Remote Sensing (DIRS) Laboratory at the Rochester Institute of Technology

(RIT) over the last 20 years. The tool was originally designed to model the thermal infrared re-

gion of the electromagnetic spectrum, but was expanded several years ago to cover the full vis-

ible to long-wave infrared (0.4 to 20 micron) range. It effectively models broadband, multispec-

tral and hyperspectral imagery using a suite of first-principles based radiation propagation mod-

ules. These modules perform specific tasks such as predicting bi-directional reflectance functions

(BRDF), computing time and material dependent surface temperature values, and computing the

dynamic viewing geometries of scanning instruments on a moving platform. In addition to these

DIRSIG-specific modules, the tool leverages several utilities (such as MODTRAN and FASCODE)

that have been used extensively by the remote sensing community.

In 2002, a first-principles-based lidar model was incorporated into the passive radiometry

framework enabling the model to calculate arbitrary, time-gated photon counts at the sensor for

atmospheric, topographic, and volumetric backscattered returns. The DIRSIG lidar model was

first developed in [Burton 2002], and it was recently expanded by [Blevins 2005] to handle a wide

variety of complicated scene geometries, diverse surface and participating media optical char-

acteristics, and a variety of sensor models. The lidar module now includes the effect of multiple

scattering, multiple bounces from topographical targets, and absorption within non-homogeneous

finite volumes. Additionally, several noise sources are extensively modeled, such as speckle from

rough surfaces and atmospheric turbulence phase effects. As such, DIRSIG is now able to help

researchers evaluate design trades for topographic systems and the impact that scattering con-
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stituents (e.g. water vapor, dust, sediment, soot, etc.) may have on a Differential Absorption lidar

(DIAL) system’s ability to detect and quantify constituents of interest within volumes including

water and atmospheric plumes [Blevins 2005].

Although the passive and active models used by DIRSIG are valuable in their own right, in

many applications the ability to integrate passive EO and lidar simulations using a common scene

(and potentially common viewing geometries) is of even greater utility. The multi-modal capabil-

ities of the DIRSIG model allow designers to evaluate both passive and active approaches to solv-

ing specific imaging problems, as well as potential fusion techniques using both image modalities.

Additionally, the upper performance limit for a given approach may be more easily determined

when using a common baseline scene.

Two representative synthetic images produced by the DIRSIG model are included in Figure 2.9

(Courtesy of [Blevins 2005]). The first depicts a near-infrared (passive EO) image of MicroScene1

(a small test range on the RIT campus), and the second is a topographic lidar product of a portion

of the same area.

(a) (b)

Figure 2.9: DIRSIG Images (a) Near-infrared simulation of Microscene1 and (b) Simulated
topographic lidar image [Blevins 2005].
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Figure 2.10: Standard process: Block diagram.

2.5 Current Process for DIRSIG Scene Creation

The current method of creating a scene for use in DIRSIG simulations is straightforward, but

unfortunately it is also quite labor and time intensive. Figure 2.10 illustrates the process via a

simple block diagram. The detailed steps in this figure (and as described below) have been taken

from [Brown 2005], [Brown 2006] and [Ientilucci et al. 2003], and represent the techniques used at

the Rochester Institute of Technology. Although the specific methods employed in creating scenes

may be somewhat different at other organizations, the fundamental principles and basic steps

remain the same.

The first step in the generation of a new scene has typically been to acquire a digital terrain

model (DTM) of the area to be modeled. For scenes based on real-world locations in the United

States, we have used USGS Digital Elevation Models (with a 10 meter ground sample distance)
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with success, but other sources of these data are also available. For fictional scenes, the terrain

model may be designed as desired. Once the terrain geometry has been determined, it is usually

up-sampled and registered with any relevant aerial imagery, which facilitates several of the other

steps required in the scene specification. Additionally, the terrain model needs to be facetized,

which is often done using a triangular irregular network (TIN) generation program for terrains

with a near-constant slope. It should be noted that in many cases, the terrain must be smoothed

via some form of spatial averaging before the facetized version may be created.

Once the geometric properties of the terrain have been determined, the 3D objects that will

appear in the scene must be created. These objects include buildings, trees, vehicles, and any

other structures that are not a part of the terrain model. This is often a very time-intensive process,

especially if many unique object types are desired. The geometric description of these objects can

be generated using a variety of computer aided design (CAD) tools, as long as the specific utility

is able to output the final facetized structure as a Alias/Wavefront .obj file. At RIT, most of the

geometric models have been manually drawn with the Rhinoceros [Robert McNeel and Associates

2005] CAD package, which has proven to be well suited to the task. The one exception is the

modeling of tree structures, for which we have chosen to use Tree Professional [Onyx Computing

Inc. 2006]. This software allows the user to render a host of trees, palms, and other plants of

various species and sizes and output the result as a facetized model.

Next, the spectral reflectance and emissivity data must be acquired. This is typically accom-

plished either through a direct collection (using an instrument such as a field spectrometer) or by

accessing a spectral data library. This data is then included in a materials file that will be used

when accessing the scene.

The geometric objects are then attributed with material characteristics using DIRSIG’s Bull-

dozer tool. This utility allows the user to import the Alias/Wavefront .obj files created earlier and

assign material properties to each facet. This task is also quite time consuming, as each portion of

an object must be attributed manually.
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Road, material, texture, and other background maps (scene layers) are created next [Brown

and Schott 2000]. Road maps have traditionally been created in Adobe Photoshop, due to arti-

facts left behind when segmenting real imagery. These maps are created by opening the scene

file, and adding a new layer to the image. The roads are then drawn on the new layer with the

paintbrush tool, using the scene image as a guide. The scene layer is then removed, and a black

background is added to the road map layer. Materials may be attributed either via a material map

or through a direct assignment to individual facets. Material maps usually take the form of tradi-

tional classification maps, and are often generated through traditional segmentation algorithms on

real remotely sensed imagery. Direct facet assignment of materials is achieved manually through

a modification of an object’s CAD description.

Texture maps may also be created to drive in-material spatial-spectral variations. Such vari-

ations are important in mimicking the real-world phenomenology; without them all pixels of a

given material in the scene would have the same spectral characteristics, thereby appearing more

uniform than desired. Texture maps are usually just aerial images of the scene to be modeled. In

some cases where an image of the scene was not available, a simple noise image was used instead.

Use of the texture images is quite simple. If the grass material type has 300 different spectra in

its library, the particular spectral curve for each location in the final scene is selected based on a

look-up table relating pixel values of the texture image to spectral signatures. This look-up table

is created using the statistics of both the texture image and the spectral library.

Finally, the Bulldozer utility is used to place the attributed objects onto the facetized terrain

model. If aerial imagery is available, a ”tracing paper” layer may be employed to help with object

orientation. Once the objects are placed in the scene as desired, a DIRSIG configuration file is

created to link together all of the previous files. At this point, the scene has been constructed.

Once the scene has been defined, it is a simple matter to create physically-accurate synthetic

images. First, for a standard EO imager, a sensor is defined in terms of its spatial and spectral

properties, and an exterior orientation (position and rotation) is specified. A similar set of param-
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eters are defined if a lidar imager is to be used instead. Scene variables such as local time (which

dictates the relative solar positioning) and atmospheric conditions are also specified. DIRSIG is

then run to invoke the spectral ray-tracing (or photon-mapping, in the case of lidar sensors), and

the resultant synthetic imagery is produced. Various truth maps (related to such things as mate-

rial type) may also be produced, which are frequently used as the baseline when algorithms are

applied to the synthetic imagery.

Details regarding the required DIRSIG files and their proper formats are discussed later in

Appendix B. In that section, an overview of the DIRSIG file structure is presented, and several

example files are included. Additional information regarding the use of DIRSIG and proper for-

matting of the required input files may be found in [Brown 2005].

As has been demonstrated in this chapter, the current process for creating spectrally-accurate

scenes is effective but laborious and time-intensive. With the recent availability of improved lidar,

spectral and high-resolution optical sensors, we aim to reduce the effort involved in generating

such scenes through a fusion of these image modalities. Such an approach will enable automation

of many of the tasks required and will also permit increased accuracy in many instances. The

methods proposed for performing this fusion will be discussed in the following chapters.



He who loves practice without theory is like the sailor who boards ship

without a rudder and compass and never knows where he may cast.”

Leonardo da Vinci

3
Theory

This chapter will provide an overview of several of the technologies and research fields pertinent

to the methods used throughout this research. Although not comprehensive by any means, it

should serve as an initial foundation for understanding the rest of this dissertation. Where addi-

tional background may be warranted, outside references are given; however, it is anticipated that

most readers with a basic technical foundation will be able to proceed without too much difficulty.

Specific algorithms and recent advances in these fields as they pertain to 3D object reconstruction

will not be included here. Rather, the recent work by other authors in relation to the specific

objectives addressed by this report will be presented in the relevant sections of Chapter 4.

29
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3.1 Photogrammetry and Computer Vision

In recent years, researchers in the field of computer vision have been attempting to solve many

of the problems that have traditionally fallen under the auspices of photogrammetry. Computer

vision (CV) is a discipline concerned with discerning properties of the 3D world from one or more

2D digital images. However, unlike photogrammetry, whose interest is primarily in achieving

precise measurements in absolute coordinates, CV seeks a less tangible understanding of the scene,

which may or may not require high accuracy or even a solution in an absolute sense. This differ-

ence in requirements arises from differences in application areas; while the primary products of

photogrammetric analysis are related to topographic maps, CV tends to apply its methodologies

to object recognition, autonomous vehicle navigation, and object modeling [Hartley and Mundy

1993]. Still, it takes little exposure to both fields to see that the similarities outweigh the differences,

and that both fields rely heavily on the theory of using a pinhole-type camera to understand a 3D

world from 2D projections. As such, both address methods to determine camera calibration and

pose, as well as 3D model understanding (and often model construction in absolute world coordi-

nates). In this section, we will present a few of the key concepts from traditional photogrammetry.

However, since these techniques are a part of the curriculum for many remote sensing programs,

the review will be somewhat brief. More detail will be spent on the newer CV approaches that

make use of projective geometry and homogeneous coordinates, as many researchers will be un-

familiar with these techniques.

3.1.1 Traditional (Euclidean-based) Photogrammetry

As noted in Chapter 2, if the interior orientation of the sensing system is known, we may use an

ideal (distortionless) pinhole camera model to fully describe the constrained camera geometry. In

this case, all rays coming from the object space intersect at the projection center and proceed to

the image plane without any change in direction. As such, it is easy to see that this requires any

object point, the point’s projection in the image, and the exposure station to lie along a straight



3.1. PHOTOGRAMMETRY AND COMPUTER VISION 31

Figure 3.1: Illustration of the geometrical principles of collinearity and coplanarity.

line. This requirement is termed the collinearity condition, and is readily seen in Figure 3.1. In the

left image (image 1), object point A, its image a1, and the camera location L1 are all co-linear. The

mathematical description of this constraint may be written as

x = x0 − f
r11(X− XL) + r12(Y−YL) + r13(Z− ZL)
r31(X− XL) + r32(Y−YL) + r33(Z− ZL)

y = y0 − f
r21(X− XL) + r22(Y−YL) + r23(Z− ZL)
r31(X− XL) + r32(Y−YL) + r33(Z− ZL)

, (3.1)

where x and y are the photo coordinates of the image point, f is the camera’s focal length, the r’s

describe the angular orientation of the camera (see Section A.2), (X, Y, Z) are the object coordi-

nates, and (XL, YL, ZL) are the object space coordinates of the exposure station. The terms x0 and

y0 represent the location of the image principal point in image space coordinates. It is no surprise

that Equation 3.1 bears a strong resemblance to the equation representing a projective transform,

since imaging via central projection is inherently a projective process.

An extension of these concepts will also demonstrate that for two images, object point A, its

images (a1 and a2), and the exposure stations (L1 and L2) all lie in a common plane. An illustration

of this may also be seen in Figure 3.1, and this condition is termed coplanarity. The mathematical
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model describing this geometry is given by

0 = BX(D1F2 − D2F1) + BY(E2F1 − E1F2) + BZ(E1D2 − E2D1) (3.2)

where

BX = XL2 − XL1

BY = YL2 −YL1

BZ = ZL2 − ZL1

D = (r12)x + (r22)y + (r32) f

E = (r11)x + (r21)y + (r31) f

F = (r13)x + (r23)y + (r33) f . (3.3)

It is noteworthy that in the above notation, the object coordinates are not required, and the equa-

tion is completely specified by the relative exterior orientations of the two cameras.

Through the process of resectioning, we may apply the collinearity equation to three (or more)

control points and solve for the six exterior orientation parameters of each image, provided the

interior orientation has been previously measured. It should be noted that although it is possible

to use the coplanarity constraint to arrive at this same solution, this is not commonly done [Wolf

and Dewitt 2000]. Once the absolute orientations of the cameras are known, we may then reapply

the collinearity equations to determine the 3D locations of objects given their image coordinates in

each photo. This process is termed spatial intersection, as the object point is simply the intersection

of the rays
−−→
L1a1 and

−−→
L2a2. When these rays do not intersect, the point where the rays are closest

(in an orthogonal sense) is usually chosen as the solution. A brief tutorial on this technique as

applied to multiple images is given in [Slabaugh et al. 2001].



3.1. PHOTOGRAMMETRY AND COMPUTER VISION 33

3.1.2 Computer Vision

Unlike traditional photogrammetrists, who typically approach these problems using the tools of

analytical Euclidean geometry, CV researchers frequently opt to formulate their models using al-

gebraic projective geometry. As noted in [McGlone 2004], projective geometry is able to overcome

the limitations of Euclidean geometry by inherently including points, lines and planes at infinity,

which unifies the theory to include what has traditionally been a host of special cases. Addition-

ally, the use of homogeneous coordinates makes most of the pertinent relationships linear. Such an

approach has enabled additional insight into many aspects of the theory underlying both sciences,

and has directly contributed to many gains in both fields.

In lieu of using control points to obtain an absolute solution in the world coordinate system, a

relative solution of the three-dimensional object locations may also be achieved that describes ob-

ject locations up to an arbitrary projective transform. This is termed the projective photogrammetric

model, and it holds for the general case of straight-line preserving cameras. If the complete interior

orientation of the cameras is also known, this photogrammetric model may be computed in such a

way that it is unique up to a similarity transform. In cases where Euclidean 3D coordinates are ul-

timately required, these more general solutions may be refined by introducing object-image point

constraints. However, in many cases it is possible to extract the desired information directly from

the projective or similarity photogrammetric models without ever fixing the object coordinates in

an absolute sense.

It should be noted that in practice, more mature techniques are almost always used for 3D

reconstruction. In several approaches, the interior orientation parameters may be inserted into

the collinearity equation and solved for simultaneously with the other unknown terms. Also,

it is sometimes possible to use inferred geometric information about the scene (such as specify-

ing parallel and perpendicular lines in the scene) to enable a full Euclidean reconstruction from

a single image. Measurement of shadows with a known solar angle may also be used for this

purpose [Shufelt 1999].
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3.1.3 Photogrammetry Via Projective Geometry

This section will give a very brief introduction to the fundamental concepts of projective geometry

as used in modern computer vision and photogrammetric applications. A thorough discussion of

these concepts is well beyond the scope of this dissertation; the detail included here will be just

enough to describe the methods presented later in Chapter 4. For a more comprehensive review

of this topic, the reader should consult the excellent descriptions in [Hartley and Zisserman 2003],

[McGlone 2004], [Pollefeys 2002], and [Zhang 1996]. The following discussion is taken primarily

from these four sources, and will be presented without further reference.

3.1.3.1 Points, Lines and Planes

Most readers will be familiar with the concept of representing a point in R2 (2D Euclidean Space)

by the coordinate pair (x, y). In the algebraic sense, R2 may be viewed as a vector space, and

the 2D coordinate (x, y) is a vector in this vector space. In order to standardize this mathematical

development with the current literature, we will treat coordinate vectors as column vectors, and

therefore we describe the Euclidean point x = [x, y]T.

Geometric entities such as points, lines, planes, and conics are handled somewhat differently

in the projective representation. In projective geometry, these entities are described using homo-

geneous coordinates, which describe the entity only up to an arbitrary scalar multiplier. Therefore,

the homogeneous representation is not unique, and the entities a and ka represent the same thing.

In this framework, a point in 2D projective space P2 is actually a 3-element vector of the form

x = [kx, ky, k]T, where k is an arbitrary scalar constant. It should be clear from this that points

may easily be transported from projective to Euclidean coordinates by dividing through by the

last (homogeneous) coordinate k and then removing this element.

Lines in the plane may also be written in P2 and are again written as a 3-vector. The line

ax + by + c = 0 is defined by its parameters (a, b, c), and multiplying each of these parameters

by an arbitrary scalar leaves the resulting line unchanged. Since this retains the same equivalence
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relationship we defined earlier for homogeneous point coordinates, it is not surprising that the

homogeneous representation of a line in P2 is l = [a, b, c]T. Like points, lines in P2 have only two

degrees of freedom, since only the ratios of the parameters are important.

We are now in a position to see a small sampling of the usefulness of using homogeneous

coordinates in working with an algebraic geometry. In order to see if a point lies on a line, we

merely need to verify that xTl = 0. If this equation holds, the point is on the line, if not, it is

not. In an equally simply fashion, we may find the intersection of two lines l and l’ according to

x = l× l’, where × represents the cross product. Similarly, the line joining two points is defined

by l = x× x’.

In P3, points are represented as 4-element vectors according to the form x = [kx, ky, kz, k]T. For

vectors with k 6= 0, this corresponds to the point x = [x, y, z]T in R3. We may now see that while

a projective transform is a non-linear operation in R3, in P3 such a transform is linear, and may

be represented by X′ = HX. In this case, H is the homogeneous representation of the projection,

and as expected has 15 degrees of freedom, preserves straight lines and retains incidence relations

(such as the point of intersection between a line and a plane).

A plane in 3-space may be written as ax + by + cz + d = 0 with parameters (a, b, c, d) such

that [a, b, c] represents the direction normal to the plane, and d/ ‖ [a, b, c]T ‖ is the distance of the

plane to the origin. Since this plane is the same as the one defined by parameters (ka, kb, kc, kd),

it only has three degrees of freedom, and therefore may be represented by the homogeneous 4-

vector representation in P3 according to π = [a, b, c, d]T. In a manner similar to that of verifying

if a point is on a line in 2-space, we may determine whether or not πTX = 0 to see if a point lies

on a plane. When this condition is met, the point is on the plane, when it is not, the point is off

the plane. We may also find the plane defined by three points by determining the right nullspace

of [XT
1 , XT

2 , XT
3 ]T, and the point defined by the intersection of three planes by the right nullspace of

[πT
1 , πT

1 , πT
1 ]T. It should also be noted that for a point transformation X′ = HX, planes transform

not by H but rather according to π′ = H−Tπ.
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Lines in P3 are a bit more difficult to represent with 4-vectors, since their 4 degrees of freedom

would have a natural homogeneous representation via a 5-vector. Although several workarounds

have been implemented successfully (including the use of Plücker matrices and Plücker coordi-

nates, which is beyond the scope of this tutorial), such a representation is not required. For the

sake of simplicity, in this research, when 3D lines are required, we will usually return to Euclidean

coordinates for the solution.

3.1.3.2 Central Projection in P3

With the above development,we now have the tools necessary to describe the basic geometry of

a general pinhole (central projection) camera using homogeneous coordinates. We will assume

a positive-image (image plane in front of the projection center) model geometry, as seen in Fig-

ure 3.2. In this model, the center of projection (camera center), C, is the origin of the local camera

coordinate frame, and the plane Z = f , where f is the focal length of the camera, is the image (or

focal) plane. In this model, points in 3-space are imaged in the focal plane at the point x where the

ray connecting X to C intersects the image plane. This point of intersection may be specified us-

ing 3-dimensional camera frame coordinates [X, Y, Z]T, 2-dimensional continuous-space camera

frame coordinates using [xc, yc], 2-dimensional continuous-space image frame coordinates using

[x, y] or 2-dimensional discrete image frame coordinates. Generally, when working with discrete

image coordinates, we will divide all image measurements by the pixel pitch, and then round the

coordinates to provide the discrete pixel locations.

In Euclidean coordinates, it is fairly straightforward using similar triangles to show that a

point at [X, Y, Z]T maps to 2D camera coordinates [ f X/Z, f Y/Z]T. In homogeneous coordinates,

we may similarly write
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Figure 3.2: Geometry of central projection.
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If we wish to use continuous image coordinates instead, we must move the image’s origin off

of the principal point. This yields the solution
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This solution may then be extended to pixel-based image coordinates, given (potentially non-

square) pixel dimensions dx and dy. In this case, the principal point p = [px, py]T may be written
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in terms of the pixel dimensions according to x0 = px/dx and y0 = py/dy, and
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where
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= K[I | 0]X, (3.7)

and X is in 3D camera coordinates. In this notation, the 3× 3 matrix K is called the camera cali-

bration matrix, and it contains all of the required IOPs for a perfect central projection.

If the point location X is described in world coordinates instead of camera coordinates, we

must also account for the translation and angular orientation of the camera in order to properly

determine the location of the point’s image in the focal plane. This may be simply accomplished

by noting that the Euclidean representation of the 3D point in the camera frame, represented as

X̃cam, is equal to R(X̃− C̃), where X̃ is the Euclidean representation of the point, C̃ is the camera

center, both in world coordinates, and R is an ”active” rotation matrix of the form described in

Appendix A.2. This now permits us to write

x = KR[I | −C̃]X = K[R | t]X = PX, (3.8)

where t = −RC̃, and the 3 × 4 matrix P is termed the camera matrix. Determination of P is

equivalent to solving the full resection problem first discussed in Section 2.2.



3.1. PHOTOGRAMMETRY AND COMPUTER VISION 39

Figure 3.3: Epipolar geometry.

3.1.3.3 Epipolar Geometry and Multiple-Image Object Reconstruction

Epipolar geometry is the description of the fundamental projective relationship between two cam-

era systems. Given two camera centers located at C and C’ as shown in Figure 3.3, we may make

some interesting observations. First, for any point X, we may observe that X, its image in the first

camera x, and the image in the second image x’, C, and C’ are all coplanar. Also, the line connect-

ing C to C’ (termed the baseline) is in this plane, therefore the points of intersection between this

line and the two image planes (the epipoles e and e’) are also on this plane.

This provides a useful constraint on the relationship between corresponding points in the two

images, provided the relative geometry of the cameras is known. A point x in the left image

effectively defines the plane π via that point, C and e. This plane in turn defines the epipolar line

l′m, on which x′ is guaranteed to lie. When searching for image correspondences, this constraint

can greatly reduce the search space.

For uncalibrated cameras (K is unknown), the entire epipolar geometry can be specified via
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a 7 degree of freedom, 3× 3 matrix termed the fundamental matrix, F. This matrix effectively

provides a mapping between image points in one image and the corresponding epipolar line in

the conjugate image. We may note that for any pair of corresponding points in the two images x

and x’, x
′TFx = 0. This means that F may be computed from image correspondences alone, and

the epipolar geometry is dependent only on the two camera matrices, P and P′. However, while F

is determined uniquely from the two camera matrices (up to a scale factor), the inverse is not true.

The matrices P and P′ may only be recovered up to a projective ambiguity, since the cameras PH

and P′H yield the same fundamental matrix as P and P′, where H is any 4× 4 matrix representing

a projective transform in P3.

This ambiguity has a significant impact when we subsequently wish to perform the process

of intersection to determine the coordinates of the object points. Since F is specified by the image

correspondences x ↔ x’, but the camera matrices may only be recovered up to an arbitrary projec-

tive transform, the final 3D points in object space are valid only up to this same ambiguity. That

is, given an adequate number of point correspondences in the images with no additional informa-

tion, the location of a given image pair may be determined to be X. However, due to the projective

ambiguity, HX is also a valid solution, where H is the same for all points. It is only through a

knowledge of the IOPs (K matrices), through finding correspondences between the image points

and world points, or through a partial knowledge of the scene geometry (e.g. that certain features

are parallel or orthogonal) that this ambiguity may be removed.

If the IOPs are known a priori (or have been determined via in-scene techniques), the geometry

of Figure 3.3 is further specified. By knowing the principal point offsets and the focal lengths of

each camera, the fundamental matrix is further constrained, and is renamed the essential matrix, E.

E represents the six unknown quantities of the EOPs, but since there is an overall scale ambiguity,

the matrix has only five degrees of freedom.

In order to get a metric reconstruction of points in 3-space using the known IOPs, we may

proceed along two different paths. We may first process each point via x̂ = K−1x, where x̂ is the
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Figure 3.4: Approaches to 3D point recovery using multiple view geometry.

point expressed in what the literature terms normalized coordinates. However, since coordinates

may have to be ”normalized” in a different sense for numerical conditioning purposes, I prefer

to refer to the x̂ as compensated coordinates. We may then recover P and P′, and although they are

defined only up to an arbitrary similarity, they may be used to derive a metric reconstruction.

An alternate approach is to use to uncompensated matching points to first define F, then con-

vert F to E via the relationship E = K
′TFK. We then proceed as before. Of course, a third approach

is simply to perform the projective reconstruction using F, then using world-to-image correspon-

dences to remove the resultant ambiguity. These alternatives are illustrated in Figure 3.4.

3.2 Iterative Optimization: The Levenberg Marquardt Algorithm

In many practical problems, a ’best’ solution is found by assuming that the provided data fits the

form of a chosen mathematical model, and that in some sense the cumulative deviations from

this model should be minimized. The deviations are typically quantified by specifying a cost

function that measures the agreement between the observations and the model, given a set of

model parameters. In many cases, the cost function is as simple as the sum of the squared error

values at each data point.
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In many cases, the cost function may be linearized, and a direct solution may be found through

familiar techniques such as a traditional least squares regression or a Demming regression (refer

to Appendix A.1 for additional information regarding these techniques). However, when the

problem of optimization can not be linearized, iterative algorithms may still be used in an attempt

to find the parameters that drive the cost function to a minimum value.

The familiar gradient descent method takes incremental steps that are proportional to the neg-

ative of an approximate value of the local gradient at each iteration. For the case of a scalar-valued

function, we start with an initial set of parameters p0. We then compute the gradient of the func-

tion f at this location, ∇ f (p0) in order to determine the direction of steepest descent. The next

value is then chosen in a path along this direction according to

pi+1 = pi − η(i)∇ f (pi), (3.9)

where η is a positive scale factor that determines the step size [Duda et al. 2000]. Unfortunately,

there are many issues that plague the basic gradient descent approach. Intuitively, we would want

to take large steps when the gradient is small and smaller steps when the gradient is steep so as

to not overshoot the minimum point. However, gradient descent inherently does the opposite.

Ignoring the local curvature is another issue. As noted in [Roweis 1996], if there is a long narrow

valley in the error surface, the component of the gradient in the direction along the base will be

small relative to the component in the direction of the walls. As such, the dominant motion will

be in the direction of the walls rather than directly down to the base.

By taking local curvature into account, a significantly better solution may be realized, and

this forms the basis of Newton’s method. By expanding the expression of the gradient at pi us-

ing a Taylor series, ignore the higher-order terms, and solve for the minimum point, we get the

improved update rule

pi+1 = pi − (∇2 f (pi))
−1∇ f (pi), (3.10)
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This approach does not need to evaluate the Hessian (H = ∇2 f (x)) exactly, and the approx-

imation ∇2 f (x) = J(x)T J(x) may be substituted, where J represents the Jacobian matrix. In this

case, the method is termed the Gauss-Newton algorithm, and convergence is usually fairly rapid.

It can be seen that both the gradient descent and the Gauss-Newton algorithms provide certain

advantages. In order to try to capture the best features of each of these approaches, Levenberg

created a blended approach, using the update rule

pi+1 = pi − (H + λI)−1∇ f (pi). (3.11)

In this method, if the error is reduced in a given iteration, the iteration is accepted, and λ is

reduced by a scale factor (usually 10) in order to reduce the degree of gradient descent. However,

if the error goes up, the iteration is discarded, λ is increased by the scale factor, and the iteration

is re-attempted. This increase in λ moves the process more towards gradient descent.

Marquardt sought to improve this composite method by making use of the Hessian matrix

(and scaling each component of the gradient according to curvature), even for large values of

λ [Roweis 1996]. This modification results in larger movements along the direction where the

gradient is smaller, which is intuitively what we desire. In this, the Levenberg-Marquardt (LM)

algorithm, the modified update rule is therefore

pi+1 = pi − (H + λdiag[H])−1∇ f (pi). (3.12)

Although this method is not strictly an optimal descent, it tends to work very well in practice,

and has been widely used in the field of computer vision over the past several years. In modern

photogrammetric research, the LM algorithm is frequently used to refine the solution for camera

matrices and computed homographies. These applications are also relevant to this work, and we

will also use this method to fit non-planar surfaces to clusters of 3D lidar points.
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3.3 Robust Parameter Estimation

The classical least squares approach to parameter estimation optimizes the model relative to all

of the given data. Such a technique implicitly assumes that all data points are valid, and in many

cases that the noise associated with each point is Gaussian. When these assumptions are not met,

the quality of the solution may be significantly reduced.

Robust parameter estimators, on the other hand, seek to provide good solutions, even in the

event that the baseline assumptions are not fully met. They typically do this by removing or

mitigating the effect that gross outliers have on the final solution. Such outliers often arise due to

gross measurement errors or the presence of multiple structure in the data, but other causes are

also possible. Such errors are especially common in automated systems, where the data is often

the product of error-prone processes. By removing the majority (or all) of the effects of outliers

in the estimation, the final solution is much more likely to be useable. This idea is illustrated

in Figure 3.5, which was adapted from one of the seminal papers on robust estimation [Fischler

and Bolles 1981]. The data in this figure contains 7 well-behaved data points, and a single gross

outlier. The resulting models include those from a standard least squares regression (the initial

least squares fit), an incorrect approach to robust fitting (described below) and a well-conceived

robust algorithm (RANSAC), where the effect of the outlying datum is not included in the final

solution.

In order to handle data outliers, a potential technique is to first compute the least squares

solution using all of the available data, then discarding those points that lie farthest from the

solution. A new least squares solution is then achieved using only the remaining points. This

process is iterated until no more outliers remain, or until the model is deemed satisfactory in

some other sense.

It is a simple matter to show that this approach may fail when even a single gross error is

included in a set of otherwise good data points. Consider again the data shown in Figure 3.5.

After the initial least squares fit, the error of point A to the line is actually larger than that for
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Figure 3.5: Line fitting via RANSAC and iterative least squares
(adapted from [Fischler and Bolles 1981].

point B. Therefore, this approach would remove point A, then perform an additional least squares

fit. With point A now removed, the regression will be weighted even more towards point B, and

another ’good’ data point is removed. The final iterated least squares fit is indicated by the lower

dashed line in the figure. Although this approach is still advocated occasionally, it clearly should

be avoided.

The robust method considered in this research, the RANdom SAmple Consensus (RANSAC) [Fis-

chler and Bolles 1981], provides a completely different paradigm for the removal of outliers.

Whereas most least squares approaches use as much data as possible for the initial fit then at-

tempt to remove outliers, RANSAC starts with a minimal initial data set, and then evaluates how

many data points tend to agree with this model hypothesis. If the agreement rate is high enough,

then the points in agreement are considered inliers, and they are (all) used to re-fit the model in

a least-squares sense. If the fit does not meet the agreement rate, a new minimal set is selected,

and the process is performed again. The iterations continue until the agreement rate is sufficiently

high, or a pre-defined number of iterations has been realized, at which point the largest inlier

set from the previous iterations is used. Looking again at Figure 3.5, we see that this method,
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while still including point C in the final regression, fits the data much better than the other two

techniques.

In a bit more detail, this algorithm may be described by the following pseudocode.

• Assume:

– S = set of all data points (including outliers)

– N = minimum number of points to define the parameterized model

• Define:

– k = maximum number of iterations

– t = distance threshold for determining if a point is an inlier to

a given model

– d = minimum number of inliers to exit the algorithm early

1. Randomly select N points and define the model from these points

2. Determine the set Si (the consensus) of points that are within t of the model

3. If size of Si is greater than d, re-estimate model using Si and END

4. If size of Si is less than d, return to Step 1

5. After N trials, select largest Si so far, re-estimate model using this Si, and END

Note that only the parameters N, t, k, and d need to be specified, and N is actually set by the

form of the assumed model. The parameter k should be large enough that there is a fairly high

probability of selecting at least one set of N points that are all inliers. As noted in [Fusiello 2007],

given a fraction of outliers ε, the probability of randomly selecting p inliers in k trials is

P = 1− (1− (1− ε)p)k. (3.13)

Therefore, by selecting a value of P near 1, we may solve for the required value of k.
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In this dissertation, RANSAC will be used for a variety of purposes. In the polyhedral building

modeling from lidar data, it will be used to fit planes to data points in 3-dimensions. Addition-

ally, through an analysis of the outliers, multiple planes may be recovered from a single dataset.

RANSAC will also be used for less obvious purposes as well. When attempting to establish feature

correspondences between a 3D model and a 2D image, RANSAC will enable a robust fit where

additional unmatched features may be defined in each domain. A similar approach may be used

when selecting homologous points in multiple images in order to form a photogrammetric model.
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Method is much, technique is much, but inspiration is even more.

Benjamin Cardozo

There are some enterprises in which a careful disorderliness is the true

method.

Herman Melville

”Aelius Donatus (fourth century) is quoted by his student St. Jerome as

saying ’Pereant qui ante nostra dixerunt,’ freely translated as ’Damn the

guys who published our stuff first.’”

As noted by mathematician Ralph P. Boas, Jr.

4
Approach

Although the current process for creating DIRSIG scenes has proven to yield excellent resultant

images, a streamlining of the construction of large scenes would be beneficial to many users. To

this end, a new process has been created where several of the scene design tasks have been re-

placed by semi-automated methods. The baseline approach is to initially extract enough feature

information from the lidar data to perform a registration among the various data sets, then to

refine and add to these features using all available imagery. These steps are depicted below in

Figure 4.1, and will be explained in greater detail throughout the remainder of this chapter. This

approach assumes that multiple image types are available, including lidar, hyperspectral, and

high resolution frame-array imagery. If any of these image types is not available, the approach

49
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Figure 4.1: New process for scene reconstruction.

requires modification, as described in Section 4.8.

4.1 Extraction of the Terrain Model

For many years, models of the earth’s terrain were obtained almost exclusively through the labo-

rious use of traditional surveying techniques. This practice was augmented in the 1970’s by the

development of terrain-modeling photogrammetric techniques, which reduced the modeling time

required in many cases. However, with the recent advances in laser sensors, digital versions of

these terrain models are increasingly being collected with lidar systems. Lidar offers the advan-

tages of rapid, high-density data collection that in most cases has a vertical accuracy significantly

better than that of more traditional methods. Additionally, lidar models do not require the diffi-
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cult task of identifying homologous points between images, thereby making lidar-derived terrain

extraction algorithms much more amenable to automation. As such, the baseline approach to ter-

rain extraction pursued for this research uses lidar point data. This also has the advantage that

it will later help to isolate building structures, which aids in the registration lidar data to other

imagery. If lidar data are not available, a digital elevation model and digital terrain model may be

obtained from other imagery using the photogrammetric methods discussed in Section 4.8.

Before proceeding, it would be beneficial to clarify a few terms that will be relevant to the fol-

lowing discussion. In this dissertation, a digital elevation model (DEM) will be used as specifica-

tion of the ground that includes objects such as buildings, vegetation, and vehicles. This contrasts

with the digital terrain model (DTM)1, which has removed such objects and retained only the ge-

ometry of the bare earth. A digital canopy model (DCM), which will be used to identify individual

tree locations, retains only the ground and the outer-boundary points of trees. These definitions

are illustrated in Figure 4.2. In most cases, each of these models may be specified as either a set

of irregularly-spaced points that are connected via a triangular irregular network (TIN), or they

may be in a rasterized form, where the model points have been interpolated to a regularized grid.

Also possible, although significantly less common, is to use parametric functions to define these

models.

4.1.1 DTM Extraction from Lidar Data

Due to the nature of the lidar imaging process, the data resulting from a collection are really

just a listing of points in arbitrary locations, where each point contains a location (x, y, z) in 3-

dimensional space, a return intensity value, a return number (1 meaning that the point represents

the first echo received back from a given transmitted pulse, 2 being the second received echo from

the same transmitted pulse, etc.), a time stamp, and potentially other information as well. This

listing of arbitrarily-located points is termed a point-cloud, and it represents the laser data in the

1Many references also make use of the term digital surface model (DSM), but its use in somewhat inconsistent. In
many applications it references to the DEM, but it is occasionally used to represent the DTM instead
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(a)

(b) (c)

Figure 4.2: Digital models: (a) Digital Elevation Model (DEM), (b) Digital Terrain Model (DTM),
and (c) Digital Canopy Model (DCM).

rawest form that will be considered here.

Although many algorithms make use of the point cloud directly, due to the non-uniform

spacing of the data in 3-space, it is often advantageous to resample the data to a regularised 2-

dimensional grid. In doing so, the data takes the form a basic 2D array of values, and may be

processed using conventional image processing techniques. Such a resampled dataset will be re-

ferred to in this work as a rasterized image.

Many rasterized images may be produced from a given lidar point cloud. If the array values

are range (z-coordinate height values), the raster image is termed a range image. In this research,

we define five different range images and seven different intensity images. The R1 image is ob-

tained by performing a bilinear interpolation using only the first return values. Similarly, the RL

image uses only the last return of each pulse, while the RA raster image makes use of all range

data in performing the interpolation. If we assign a grid value based simply on the minimum

range value in a region (where empty cells are filled in by interpolating neighboring values), the
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Figure 4.3: Block diagram for DTM extraction.

raster image is termed RMN . The RMX raster uses maximal local values to assign the grid value.

A corresponding set of rasterized intensity images are also available. Note that the IMN and IMX

images use the minimum or maximum intensity values within a grid region. If we wish to use

the intensity value corresponding to the minimum or maximum range points in each cell, the

corresponding raster images are termed IMNR and IMXR. Although many of these raster images

are used throughout this dissertation, several are not. However, the code included in the bound

copies of this work makes use of all of these, so for completeness, all are defined here.

When point locations are explicitly given, the raw lidar point cloud may be thought of as a type

of DEM, as it is a straightforward process to produce a TIN representation from the 3D points. In

producing a DTM from this DEM, the fundamental concept is to separate the ground points from

the non-ground points, then to remove the non-ground points (and potentially interpolate across

them). Due to the simplified nature of processing data in range image format, this will be the pri-

mary baseline for the methods discussed here. However, it should be emphasized that processing

may be carried out in either a point-based or rasterized form. Even when the final model is to be

specified via a list of points and a TIN connectivity, the processing may be performed on raster-

ized images, in order to reduce computational requirements. The generic process for converting a

DEM to a DTM using lidar data is highlighted in Figure 4.3.



54 CHAPTER 4. APPROACH

4.1.1.1 DTM Extraction in the Literature

Due to the many features that distinguish ground points from adjacent objects, a multitude of

DTM extraction techniques have been proposed in the literature. As illustrated in Figure 4.4,

these may be divided into three broad categories, based on the underlying assumptions about

what ”ground” consists of, as well as the methods used to identify these ground points. The

first approach, which is termed region-based here, makes the assumption that object points are

locally at a higher elevation than are ground points. Such algorithms typically make use of local

minimum points, height differences, or the angular relationship between points. The second class

of DTM filters is termed function-based, and it assumes that the ground model may be described

by a parametric function that best fits the data according to certain rules. The final class of filter,

which includes those algorithms which are feature-based or segmentation-based, assigns properties

to each data point. The points are then classified with standard pattern classification algorithms

using the pre-defined properties as feature vectors. In the following paragraphs, a selection of

techniques from the literature will be explored in slightly greater detail.

Using the assumption that object points are higher than the adjacent ground, morphology fil-

ters were among the first applied to distinguish terrain points from other features in the lidar data.

As shown in Chapter 3, replacing a pixel’s value with the minimum value over a windowed area

is equivalent to performing a gray-scale erosion with a uniform structuring element. Intuitively,

such a technique makes sense for ground extraction, provided the window is sufficiently large to

span the broadest object structures (see Figure 4.5. By applying a dilation (point replacement with

a regional maximum) after this erosion (an opening), improved results may be obtained. This

idea was first proposed in ( [Lindenberger 1993], and other morphological approaches have been

presented in [Weidner and Forstner 1995], [Petzold et al. 1999], and [Morgan and Habib 2002]).

These techniques define a window that is larger than the largest building, and this window is

used to specify a neighborhood of pixels used at each point during the processing. For each pixel

in the DEM, the minimum value in it’s neighborhood (with the window centered on the pixel of
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(a) (b)

(c)

Figure 4.4: Methods of DTM extraction: (a) Local region-based, (b) Function-based,
and (c) Feature/segmentation-based.

interest) is found and assigned to that pixel. After this erosion operation is completed, a dilation is

performed, whereby each pixel in the processed image is examined relative to its neighbors, and

the maximum pixel value in the neighborhood is assigned to the pixel of interest.

Many modifications to the standard morphological approach have also been proposed. In [Kil-

ian et al. 1996], multiple window sizes are used, and the ground points identified at each iteration

are assigned weights based on the current window size. A weighted calculation is then performed

to create the final ground model. In [Lohmann 2000], a sequential operation (dual-rank filter) is

used. Progressive filtering using different window sizes was also shown to be effective in [Zhang

et al. 2003] and [Zhang and Whitman 2005]. These method of terrain extraction have proven to

be successful in many applications, but they have also been found to be susceptible to noise in

the DEM. Although a median filter may be applied to mitigate some of the noise effects, such an

approach is unable to compensate for larger patches of noisy data [Ma 2004].

Many authors have also proposed functional techniques for extracting the terrain model. The
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Figure 4.5: Illustration of morphological erosion (local minimum) terrain filtering.

authors of [Kraus and Pfeifer 1998] use a hierarchic approach, where at each level, a polynomial

function is fit to the data. At each iteration, weights are assigned to the points based on residual

values. Points below the surface are given larger weights, so that when the final surface is derived

using a kriging technique based on the previously computed weights, the surface is attracted to

the lower data. This technique was modified in [Pfeifer et al. 2001] to produce improved results in

an urban setting. Active contours are used in [Elmqvist 2001], [Elmqvist et al. 2001], and [Elmqvist

2002]. A conformable membrane is brought up from below the data, and is allowed to stick to the

data subject to energy constraints.

Iterative approaches where individual points are incrementally added or removed have also

proven effective. The method described in [Haugerud and Harding 2001] analyzes the local cur-

vature at each point. Ground points are then identified by removing tree points in an iterative

algorithm. In [Axelsson 1999], a sparse TIN estimate of the ground is progressively densified,

subject to certain constraints, until the full set of ground points has been identified.

4.1.1.2 DTM Extraction Techniques Used in This Research

In addition to the above methods, this research sought to investigate the feasibility of a few ad-

ditional simple techniques. One potential method for determining non-ground pixels is based on
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fitting polynomial splines to each row and column of the range image. The height of each pixel

above these curves is then determined, and through a simple thresholding points may be classi-

fied as being ground-level or not. Although this technique was successful in several cases, it was

found to be difficult to determine parameters that were robust with respect to different sampling

densities and different sized scenes. Additionally, in many cases this method failed to produce

accurate results at the scene edges. As such, this technique was determined to be unsatisfactory.

An alternate approach, the modified minimum filter (MMF), was used in the early stages of

this research and was first presented in [Lach et al. 2006]. This technique uses a variation of the

erosion operator (spatial sliding window minimum filter) to identify points that are significantly

higher than their neighbors. Although in many cases a standard erosion filter could be used,

as noted above, care must be taken to ensure that the kernel is large enough to span the roof

structures of the largest buildings in the scene. If it is not, the central points of large objects may not

be flagged as being non-ground, and more complicated processing would be required. However,

when the kernel is large, this technique may fail in regions where there is a low ratio of ground

to non-ground points. We avoid these issues by computing the minimum value for a small region

(typically 10m x 10m), and then flagging points in a larger region that are significantly higher than

this median value. This modified minimum filter also has the advantage of being much more

computationally efficient, and a similar technique may be employed directly on the point cloud,

if desired. Figure 4.6 illustrates this concept for a single location of the filter’s sliding windows.

Note that the window still moves on a pixel-to-pixel basis, and not block-by-block.

Once the points that are significantly higher than their surroundings have been flagged as

being non-ground locations, a second filtering operation must be performed in order to remove

additional objects from the terrain. These include large tree canopies, isolated small trees, vehicles,

and other man-made objects, which would all be ignored by median filter processing. In order to

effectively remove these points, the lidar range image is high-pass filtered, thereby highlighting

regions with rapid changes in elevation. Bright pixels in this second filtered image (those with
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Figure 4.6: Illustration of the Modified Minimum Filter at a single location; minimum height
value is calculated in smaller window, points 3m above minimum in larger window are flagged

as non-ground points.

maximum rate of change) are also flagged as being non-ground. A simple sliding window filter

based of the Laplacian of the form

∇2 f =
∂2 f
∂x2 +

∂2 f
∂y2 =⇒

1 1 1

1 −8 1

1 1 1

(4.1)

may be used for this purpose. We have also noted that first-derivative based approaches also work

well in most applications for determining transition regions.

After the non-ground pixels have been identified, they are removed from the data set, an ini-

tial rasterized version of the terrain model may be obtained by interpolating across the removed

points. If desired, a smoothing filter may be applied to remove remaining high-frequency con-

tent in the resultant data, and the output is then facetized to produce the final DTM. If the terrain

model does not need to be in a rasterized form, this interpolation may not be needed, but a final

smoothing may still prove to be desirable.

More recently, this research has replaced the MMF approach with a modified version of a
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Figure 4.7: Slope-based terrain extraction.

different region-based algorithm from the literature. In [Vosselman 2000] (and updated in [Vos-

selman and Maas 2001]), the authors propose using a slope-based filter to identify object points.

In this approach, a point is classified as being non-ground if the maximal slope of the vectors con-

necting a point to its neighbors is above a pre-defined threshold, where the threshold may be a

function of the planimetric distance between the points. This is equivalent to placing a funnel-

shaped structuring element representing the functional threshold at each point, and determining

if any other data points fall beneath the funnel (see Figure 4.7). If a point falls below the funnel,

the original point is labeled as an object point. When viewed in this way, the slope approach may

be seen to have close ties to a grayscale erosion operation. In his original work, Vosselman demon-

strated that this approach could be viewed as performing a grayscale erosion on the scene, and

then checking the resulting values. A point was considered a ground point if its z-coordinate did

not exceed the z-coordinate of the eroded surface. This technique was further modified in [Sithole

2001], where the slope function was made adaptive based on local terrain features.

This approach is extremely attractive for two reasons. First, the technique inherently accounts

for the non-uniform nature of the data. When comparing points using only a height threshold, no

measure was used to account for the potentially variable distance between the points. Points that

are further apart should conceivably be permitted to also have larger height differences. This is

inherently captured in Vosselman’s approach. Second, although the original authors implemented
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the algorithm in point form, they also show that the slope-based approach is very similar to the

morphological filters in a mathematical sense.

As such, an implementation of the slope-based approach may be implemented efficiently on

a rasterized range image. If a TIN model is ultimately desired, the subset of the original data

belonging to the ground may be found by finding all points within a given region of the filtered

(rasterized) surface. It is this approach that has ultimately been used as the baseline approach for

the initial terrain filtering.

4.1.2 Subsampling the DTM

The output of the above approaches provides either a raster image of the terrain or a TIN represen-

tation of the full set of ground points. For small regions or low spatial resolutions, these models

may be used as-is, as their storage and processing requirements will not be prohibitively large.

However, for broader scenes, the data may have to be sub-sampled in order to yield useable run

times when producing simulated imagery from the scene models. In working with DIRSIG on cur-

rent hardware, we have found that an upper limit to the number of ground facets is approximately

300,000, with 100,000 providing significantly faster results.

While raster models are inherently subsampled uniformly through standard techniques, sev-

eral options are available for raw point DTMs. If a reduced point count is desired, a simple ap-

proach would be to simply remove a certain percentage of the ground points, either uniformly

or randomly. In general, this produces acceptable results in most cases; however, if we know in

advance that certain regions will be more important in the final imagery, it makes sense to provide

more terrain detail in these regions and less elsewhere.

Many techniques are available in the literature for intelligently reducing point data in such a

way as to retain the most shape information for a given percentage of retained points. Examples

include [Ma and Saetzler 2008] and [Lafontaine 2000]. However, these techniques all assume that

rapid shape transitions imply importance, so most of the final points are in regions where the sur-
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(a) (b)

Figure 4.8: Subsampling the DTM: (a) Subsampled point densities are specified for each region A,
B, C, D, (b) Each region is then divided into 25 smaller regions, each with a point density defined

through a bilinear interpolation of the original regions A, B, C, and D.

face is varying rapidly. This contrasts with the typical DIRSIG requirement, where the important

regions, which contain residential neighborhoods, factories, and other urban-type environments,

are typically the flattest in the scene. Mountains, hills, cliffs and ravines, although required in

many scenes, may often be represented at much lower resolutions. Therefore, a re-sampling ap-

proach that does exactly the opposite of those in the literature is required.

We begin by dividing the terrain model up into equally-sized square regions, each being ap-

proximately 2.25× 104m2. Each region is then assigned a reduction ratio, based on the data with

that particular region. These ratios may be defined manually, they may be related to the number

of houses, trees, or other features in the region (items that will be determined during later steps in

the scene-building approach), or they may be based on the terrain model.

One useful method for assigning reduction ratios has been to base them on the average angle

between normal vectors of a smoothed model of the terrain. In this approach, the TIN DTM is

sampled to a raster grid at 2m point spacing. The image is then low-pass filtered using a 5× 5

uniform convolution filter, and the normal vector of each point is then computed. The angle
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between each normal vector n1 and that of each of its neighbors, ni, is then computed according

to θ = cos−1( |n1·ni |
‖n1‖‖ni‖ ), and an average angle for each region is determined. The average normal

separation angle for each region θavg i is divided by a scalar k to produce the initial reduction ratio

ri = θavg ik for each square. The value k is calculated according to

k =

M

∑
i=1

θavg i

N
, (4.2)

where M is the number of square regions and N is the desired number of points in the final model.

Although we may now use ri to randomly remove that ratio of data from each square, if we do

this directly, the different resolutions of each area will be visible in the resultant terrain model. To

reduce this effect, we subdivide each square into 25 smaller squares, per Figure 4.8 (b). The initial

ri values are then assigned to the central small squares in each larger square. Additional reduction

ratio values ri (i,j) are then assigned to the remaining small squares. A bilinear interpolation is

used, where the distance to the 4 nearest central squares and their corresponding ratios are the

relevant parameters.

4.2 Initial Segmentation of Trees from Buildings

Through the method proposed in the previous section, a digital model of the terrain was extracted.

We may now subtract the DTM from the original data (in either point or raster form) to obtain a

normalized digital elevation model, or NDEM. From the NDEM, by simply selecting data with a z-

coordinate larger than a certain threshold, we may extract a set of points that are significantly

higher than the terrain. If the threshold is set to approximately 2 meters, this effectively removes

most shrubs and vehicles from consideration, while retaining larger vegetative structures (termed

’trees’ here) and larger man-made objects (termed ’buildings’). A ’high-point’ mask may be cre-

ated from this thresholded image, where high points are assigned a value of one, while the points

not exceeding the threshold are set to zero. The next logical task is to identify to which class each of
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these points belongs. With finely registered multi-modal imagery, many features are available for

addressing this problem. However, at this stage, the other data sources are not yet co-registered

with the lidar data so we must first perform an initial segmentation using only information avail-

able in the lidar data. This segmentation will permit us to handle trees and buildings differently

(if desired) during the initial data registration process.

Previously documented approaches have exploited various lidar-related differences between

these two classes. In [Ma and Meyer 2005], the author lists several approaches for building detec-

tion that, given certain assumptions, could also be used for the building-tree classification prob-

lem. These include techniques for finding buildings based on homogeneity of both height and

lidar return intensity, using the average length of extracted surface edges as a distinguishing pa-

rameter, and identifying buildings through the detection of planar patches. Additionally, [Ma

and Meyer 2005] notes that multiple returns are more likely in forested regions, and examining

the number of secondary returns over a small neighborhood enables the classification of spatially

clustered points. Taking a cue from the first of these methods, we were able to show that the local

average magnitude of the high-pass filter output (from the DTM extraction stage) may be used in

many cases to distinguish trees from buildings.

In the early stages of this research, we successfully implemented a simple segmentation using

the assumption that building regions have larger areas without holes than do tree regions [Lach

et al. 2006]. When considering the point cloud or RA, it was noted that even in fairly densely

forested regions, many points were able to penetrate the foliage. In cases where the building

regions had few vertical transitions, their data structure had significantly fewer low points. A

binary image was created in which all locations were initially set to 0. Then, cells where all of the

points inside the cell were greater than 2m above the NDEM were set to 1. Each region of this

image was then identified through a connected-components analysis as described in [Gonzalez

and Woods 2002]. A binary morphological opening was then performed, using a kernel sized to

preserve just a few pixels from the smallest building in the scene. This effectively removed all tree
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Figure 4.9: Approach for segmenting buildings from trees.

regions. Objects in the connected-components image that contained pixels in common with the

opened image were then specified as buildings, and the remaining objects were classified as trees.

Although this method proved to be adequate in identifying building and tree locations in

many scenes, trees adjacent to buildings tended to be classified as buildings as well. Additionally,

in the event of actual low points inside building boundaries, or internal vertical transitions causing

multiple returns, entire buildings had the potential to be omitted. To this end, a new approach

was created that is considerably more robust. It uses a methodology similar to that first presented

in [Persson 2001], although the features used and the specifics in implementation are somewhat

different. This modified approach is depicted in Figure 4.9.

In the updated approach, we make use of several of the previously defined raster images to

create a feature vector at each pixel location. These feature vectors are then segmented using

standard binary-class pattern recognition techniques. Additional processing is then performed on

the resultant classification image in order to improve the results.

The first few features make use of the fact that local height variations occur much more rapidly

in vegetative regions than on building roof structures. Entropy, which may be defined as

H = −∑
i
(pi) ln(pi), (4.3)

where p is the probability of a certain pixel value i occurring, which may be estimated from a
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histogram of values. We may create a local entropy image by computing the entropy within a

small window (5× 5 was used in this work) around each pixel, and assigning that value to the

corresponding pixel in the entropy image. Symmetric padding is used on the edges so that the

final entropy image is of the same size as the original image. In a similar manner, additional

texture images are created by considering the variance of pixel values, maximum pixel brightness

difference, maximum slope difference, and Laplacian (see Equation 4.1). These features tend to be

significantly higher in tree regions than in building regions, due to the rapid height fluctuations.

However, the values around building edges and vertical transitions are also usually high.

Similar features are also created from the intensity images. Intensity-based entropy, maximum

pixel brightness difference, variance, and Laplacian are used in this work. An additional feature

image is also created at this time by counting number of non-first return points there are within

the area defined by each cell. As noted above, this feature will also tend to be larger in vegetative

regions than it is over building structures.

As noted in [Persson 2001], we may amplify the effect of each of the window-based measures

by using multiple images to populate the local window when the features are being computed.

By using the RMX (or IMX image value for the central window point and RMN (or IMN values

for the surrounding points, we effectively enhance the local variations in height. Another idea

borrowed from this source is to perform a median filtering on each texture image in order to reduce

unwanted noise effects as well as to degrade the strong texture values due to height variations at

building edges.

The feature images are then combined such that each pixel location has a corresponding feature

vector associated with it, where all features except the multiple return feature are used. A binary

classifier is then employed to separate the pixels into two classes, based on the feature vectors. Due

to the nature of the data, this is an inherently difficult problem. Using the defined texture images,

building and tree points are not fully separable in the feature space. Additionally, the spread of

the data is somewhat large relative to the distance between class means, so simple techniques such
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as minimum distance to the class mean tend to work poorly.

Many other relevant classifiers exist in the literature, and may be found in any text on pat-

tern recognition (see [Duda et al. 2000], for example), including support vector machines, neural

networks, and genetic algorithms. The Bayesian approach, which was used by Persson in his

work, is optimal in terms of yielding the lowest probability of classification error if certain statis-

tics are known. If the distribution of the data within each class may be assumed to be Gaussian,

the Bayesian approach takes on the form of the Gaussian Maximum Likelihood (GML) detector.

Although the classes in this instance are not strictly Gaussian (since at a minimum the individual

feature values are not negative), they are close enough for this approach to work effectively.

As developed in [Schott 2007], we may begin by defining the a posteriori probability of a pixel

with feature vector x belonging to class ωi as

p(ωi|x) =
p(ωi)p(x|ωi)

p(x)
, (4.4)

If the conditional probabilities are normally distributed, we may express them as

p(x|ωi) =
1

(2π)
k
2 |Si| 1

2
e−

1
2 (x−mi)TS−1

i (x−mi), (4.5)

where k is the number of features and mi and Si are the mean vector and covariance matrix for ωi.

Combining these equations yields

p(ωi|x) =
p(ωi)

p(x)(2π)
k
2 |Si| 1

2
e−

1
2 (x−mi)TS−1

i (x−mi). (4.6)

Since the decision as to which class produces a larger value of p(i|x) does not depend on p(x),

this term may be ignored. Taking the natural logarithm of the remaining terms and removing

constant terms does not change the rank ordering, so we may define the discriminant function as

di(x) = ln(P(ωi))− 1
2

ln |Si| − 1
2
(x−mi)TS−1

i (x−mi). (4.7)
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The class producing the larger value of di(x) is the class to which x is assigned.

It is apparent that this approach requires training data to be provided by the user. In this

research, such a region was initially input manually by right- or left- clicking on range image

points. However, we have also achieved success with a more automated approach in regions

where there is an abundance of individual trees. Although all building points due not have an

entropy value below a given threshold, if the maximum entropy value in a given region is below

a certain threshold, such a region is very likely to represent a building. Additionally, regions

with very small areas are likely to represent vegetation. A connected components analysis is first

done to assign a unique label to each contiguous region. Small regions (under 100m2) are then

temporarily assigned to the tree class. Next, the regions are eroded by a 5× 5 structuring element

to remove the region boundaries. If a formerly-labelled tree region is completely removed by this

process, then it is ignored. If the eroded tree region has an average entropy of greater than a given

threshold, then the entire original region is kept as training data for the tree class. Each additional

eroded region is then checked to determine the density of non-first return points present in that

region. If the non-first return point density is below a second threshold, and the average entropy

is below the first threshold, then the entire original region is kept as training data for the building

class.

Of course, training data may also be provided in advance by analyzing other imagery contain-

ing similar features and with the same grid spacing. This has been shown to be an effective means

of removing the man-in-the-loop requirement. In the simplest implementation of this concept,

we were able to achieve useable results in many images by simply thresholding the local entropy

value at 0.8 (grid spacing was 0.35m) and ignoring other feature values altogether.

Once an initial classification of the points has been made, refinements may still need to be

made. These typically occur around the boundary of objects. To address this, another connected

components analysis is performed to assign a unique label to each contiguous region. The regions

are then eroded by a 5× 5 structuring element to remove the region boundaries. These pixels are
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then re-filled using the the nearest object point for the assignment. After this is performed, the

entire image is median filtered with a 3× 3 structuring element, and the result is re-masked by the

original high-point mask.

The output from this processing stage is either an indexed image or a classification value asso-

ciated with each original non-rasterized data point.

4.3 Coarse Image Registration

When working with multi-modal imagery, the proper registration of all data sources is critical if

we wish to fully exploit the complementary nature of the data. Although in certain fields, full

registration also requires an adjustment of image intensity values, in this research registration’s

sole aim is to determine the best spatial mapping between two (or more) images. That is, the

registration represents the transform which brings two images into alignment with each other in

such a way that features in one image may be related to their corresponding features in the other.

In this research, the registration is performed in two separate stages. The initial registration is a

coarse alignment of the spectral and nadir-viewing frame-array imagery with the lidar data. This

registration does not take into account the full projective geometry, and uses only approximate

values for sensor exterior orientation. It is used for multi-pixel tasks such as improved isolation

of building structures, identifying tree-regions, defining coarse material maps and assigning tex-

ture. Once initial building models are retrieved, a finer registration is be performed using a full

photogrammetric solution in order to refine the location of object models. This second registration

process is discussed in Section 4.6.5.

It should be emphasized that while a technique for automating a portion of the registration

process is included in this dissertation, there are currently no fully-automated techniques that

work well in all situations. In this work, accuracy of the registration is deemed to be more impor-

tant than autonomy; therefore manual intervention will be used as required in order to produce

the best results possible. This includes a validation and adjustment of every registration result,
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Figure 4.10: Two perspective images of a single 3D object.

even those that are performed autonomously.

4.3.1 Fundamental Concepts

Traditionally, images have been registered through a process that begins with a manual selection

of matching points. The point correspondences are then used to determine the parameters of a

mapping function which ’best’ transforms the selected sample image points to those of the reference

image. This same transform is subsequently used on all other sample image points in order to

bring them into the geometric frame of the reference image. If a registered version of the sample

image is needed, a re-sampling is typically required; however, in many cases all that is needed

is knowledge of the transformation itself, and features such as lines or areas in the sample image

may be transformed without need for an entirely new image.

The standard transform models that are usually assumed include the Euclidean, similarity,

affine, and projective warpings as well as simple polynomial mapping functions of the form

xt = a0 + a1x + a2y + a3xy + a4x2

yt = b0 + b1y + b2x + b3yx + b4x2. (4.8)



70 CHAPTER 4. APPROACH

Although many introductory courses covering image registration techniques end the discus-

sion at this point, a simple example should illustrate that there are many images that can not be

fully registered by this technique. Consider the example shown in Figure 4.10. If ground-level

point correspondences are chosen, the top of the boxes will be out of alignment if we use any of

the previously-mentioned transforms. Similarly, if the top four corners of the box are selected as

control points, features along the ground plane will remain mis-registered. This effect is actually

quite simple to explain, although it its often overlooked. Assuming a central projection camera

model, images of a planar surface taken at two different locations and orientations may be per-

fectly registered via a projective transform. However, if the scene is not restricted to lying in a

plane, the relationship between the images can not be described by a simple homography. In

these cases, knowledge of the three dimensional scene geometry is required in order to fully map

all pixels in one image to the other. Because of this requirement, in this research we use an esti-

mate of the scene geometry to re-project the 3D scene content vertically onto a horizontal plane,

thereby producing an orthographic view of each image. These orthoimages may then be further

registered using one of the standard transform models.

An orthographic image (or orthoimage) is one in which all effects of image tilt and relief dis-

placement have been removed, as is seen in Figure 4.11. In the most common usage of the term,

relief displacement is removed by taking only a bare-earth DTM into account. This rectifies most

of the ground coordinates, but fails to properly display buildings in an orthographic sense. When

the full DEM (including building structures, trees, and other non-terrain objects) is used instead,

the resultant projection is termed truly orthographic, and the tops of buildings now appear in

their correct locations. Once all images are converted to orthoimages, relevant features are identi-

fied, and a final polynomial transform using control points is applied to fine-tune the registration.

Specific methods for orthorectifying frame-array and linescanner imagery are detailed in the fol-

lowing sections.
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Figure 4.11: Illustration of an orthographic projection.

Thus far, we have only covered the case of registering two 2D images of the same scene. Pro-

vided we can produce orthographic views from our images and that we can also find an appro-

priate number of point correspondences, this technique usually works fairly well. However, the

question remains as to what is desired when we wish to register a 3D point cloud obtained by a

lidar sensor with a standard 2D image. Fortunately, the answer is actually quite simple. Given

that by registration we mean the transformation that brings a sample image (or dataset) into the

space of a reference image, we may see that it is the camera model that accomplishes this for 3D

data. Stated another way, by specifying the EOP and IOP of the camera needed to image the 3D

data such that it appears at the image coordinates of the reference image, we have fully iden-

tified the transform required to perform point-to-point correspondences. In compact notation,

these parameters, and hence the registration, are fully captured in the camera matrix P (reference

Section 3.1.3.2). Although the EOP need to be defined in relation to the lidar data, since many

airborne-collected lidar point sets are stored using UTM coordinates, the relative orientation is

often the same as the world-coordinate orientation. This concept is illustrated by Figure 4.12.
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Figure 4.12: 3D to 2D registration.

One persisting difficulty is that this geometric mapping is only unambiguous in the forward

direction. That is, given a lidar point cloud, we may uniquely determine the location of each point

in the image plane given P. However, given the image and P, we can not uniquely specify the

location of the corresponding points in 3D space. Each image point represents a ray from that

point through the camera center. However, without any additional geometric information the

actual position of the point along this ray is ambiguous. Only through the addition of constraints

may we fully express the transformation in the reverse direction. This approach will be used

in Section 4.6.6, where we determine the 3D feature (we use lines instead of points) location by

finding the intersection of the back-projected feature with a previously-determined plane in object

space.

4.3.2 Orthorectification of Frame-Array Imagery

Once the calibrated interior distorting effects have been compensated for, frame-array images

depict a pinhole camera perspective view of the world to first order. In the general case, such

an image exhibits displacements due to tilt of the camera as well as vertical relief in the object

space. Even when the camera tilt is reduced to near-zero angles (as is often the case for aerial

photography), objects placed at the same (x, y) coordinate but at different heights will be projected
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to different positions in the resultant image, unless the points lie along the camera’s central axis.

As a result, objects at higher elevations appear larger in the image, and the scale across the image

is not constant. This effect is eliminated by converting the image to an orthographic projection;

that is, one where the rays are parallel rather than passing through a projective center. Such an

image has all perspective effects removed, and thereby maintains a constant scale throughout the

image.

Orthorectification is done through a reprojection of the image points back onto a model of the

object space terrain. As such, a detailed DEM is required in order to produce accurate results. This

has typically been done using photogrammetric techniques, although recently, lidar-produced

DEMs are becoming increasingly common (Section 4.1 of this report discusses DTMs and DEMs

produced from lidar data). The reprojection of image space rays may be done in one of two ways;

using either forward or backward projection techniques.

In the forward projection, the source image is directly projected back onto the model of the

terrain and the (x, y) coordinates of intersection of each projected ray and the DEM are recorded.

However, since these coordinates are irregularly spaced, they must be interpolated onto a raster-

ized array of points in order to produce an actual digital image. In backward projection, the spatial

location of a desired output pixel is projected backwards towards the source image. This replaces

the previously described interpolation with an interpolation in image space, which is typically

easier to implement. See [Nielsen 2004] for additional information on these techniques.

There are many commercial and freeware applications available for performing this frame-

array orthorectification process. Example utilities include OSSIM (the flagship freeware GIS util-

ity) [RadiantBlue Technologies Inc. 2006], GeoPixel-Ortho [Ahn et al. 2001], and VirtuoZo [Supre-

soft Inc. 2006], and studies have been conducted comparing these and many other products

(see [Baltsavias and Kaser 1998], for example). For the method implemented in this research,

Leica Geosystems’ ERDAS Imagine software [Leica Geosystems 2006] was selected to provide

orthographic rectification of the frame-array imagery.
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4.3.3 Georectification of Linescanner Imagery

While most airborne single-band and color imagery is collected using frame-array architectures,

multi-spectral, hyperspectral and lidar datasets are often collected with linescanning sensors. The

non-instantaneous image collection inherent in this design introduces additional difficulties when

orthorectifying data collected by these imagers. Two primary methodologies exist for georefer-

encing linescanned data: non-parametric and parametric.

Non-parametric techniques, also known as image warping, often use a least-squares fitting

polynomial or bi-variate mapping function to resample the airborne image from its collected array

format to a more desirable raster. A common polynomial used by many authors is of the form

given in Equation 4.8, but several sources have noted that additional terms may yield improved

results when dealing with linescanned images. As such, a mapping of the form

xt = a0 + a1x + a2y + a3xy + a4x2 + a5y2

yt = b0 + b1y + b2x + b3yx + b4y2 + b5x2, (4.9)

is often preferable, especially when applying this to linescanner imagery that has already under-

gone an initial georectifying projection [Zhang et al. 1994]. In these models, xt and yt refer to

pixel coordinates in the original (sample) image frame, while x and y represent the new location

in the transformed (reference) image. The an and bn parameters are the constants that define the

transformation.

In order to use this model, homologous features must be identified in each image. For the

standard case of corresponding points, the (x, y) and (xt, yt) values of the matching set are used

to solve for the constant parameters using traditional least squares regression. Once the geometric

relation between the images has been defined, we then determine a greyscale value for each (x, y)

location in the transformed image. This is typically done through a backwards transform, where

the (x, y) pixel is transformed to the original image space using the inverse of the defined model.



4.3. COARSE IMAGE REGISTRATION 75

The correct greyscale value for this pixel is then determined through an appropriate interpolation

using image data from the original image, and this interpolated greyscale value is inserted in

the transformed image at pixel (x, y). Such a technique avoids interpolation in the transformed

space, which is often difficult because neighborhood pixel values may not yet be defined. A more

complete description of this polynomial modeling technique may be found in [Schott 2007] and

[Goshtasby 1988].

Non-parametric mapping functions may be computed and applied globally to the entire im-

age, or locally to particular subregions within the image. As noted in [Schott 2007], for each

subregion, the input data should cover the entire solution space for which it will be applied. If

the model is employed outside the point area used to define the transform, severe distortions may

arise. This is particularly true when higher-order models are used.

Although such non-parametric techniques are well documented in the literature (see [Wiemker

1996] and [Gottesfeld-Brown 1992] for additional examples), it is generally agreed upon that they

produce less than satisfying results in many instances [Novak 1992] and [Breuer and Albertz

1996]. Furthermore, in the cases where non-parametric techniques are employed, a large number

of ground control points are typically required, and the image-to-image mapping usually requires

manual intervention [Pope and Scarpace 2000].

Parametric techniques model the 3D geometry between the aircraft, the scanning instrument,

and the terrain, and effectively perform a ray-tracing solution that maps image intensities to points

on the ground. However, the resulting ground positions are still in a temporary coordinate frame.

An additional re-gridding (interpolation) is required to convert these projected intensities into a

rasterized digital image, and in many cases a final polynomial transform using control points is

required to fine-tune the result ( [Zhang et al. 1994] and [Breuer and Albertz 1996]). Although

in most cases, parametric techniques provide a superior solution, use of these methods are based

on the assumption that highly accurate sensor position and orientation data are available. Loss

of GPS reception or INS equipment malfunctions may preclude the use of this approach in some
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cases.

To illustrate the use of a projection technique as derived for this research, we will briefly con-

sider a new method for the orthorectification of MISI imagery. As noted in Section 2.1, MISI makes

use of two fiber optics placed slightly off-axis in the focal plane. To take this effect into account,

we shall treat the sensor model’s contribution to the aircraft-leaving projection vector in our dis-

cussion.

The basic object-space (world) and camera-space (aircraft) coordinate frames used in our de-

velopment are shown in Figure 4.13. The aircraft is located at position pa relative to a defined

(usually local) origin, and it is re-oriented by relative rotations along the three aircraft axes. In

practice, the rotation angles are recorded from the chosen navigation hardware according to an

active RPYrelative standard. However, since many legacy datasets did not record aircraft yaw from

the inertial sensors, aircraft heading derived from successive positions must be used as at least an

initial approximation of the correct rotation about the za axis. In order to make use of this how-

ever, this rotation must be applied first, and the axis convention should be of a relative nature. As

such, the technique derived in Section A.2 is used to convert the given RPYrelative roll, pitch, and

heading values into corresponding YPRrelative angles. By doing the rotations in this manner, the

final projection of the xa axis onto the (x, y) plane will be in the direction of the aircraft heading.

It should also be noted that since the roll and pitch angles vary slowly with respect to most

of the other parameters, noise may be removed from these measurements by using an averaged

angle value for each rotation. Although an ideal way to do this would be to compute this average

for the ith pixel according to

angle(i) =
i+N/2

∑
j=i−N/2

angle(j), (4.10)

in practice we have found that we may simply average the roll or pitch data for each scan line and

apply those values for the entire line.

Since the image of a linescanner is collected one pixel at a time, a description of the image
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Figure 4.13: Object-space (world) and aircraft coordinate frames.

space in relation to the aircraft coordinate frame is not needed. However, an additional diagram

describing the internal sensor geometry model in terms of the aircraft axes is warranted. This is

depicted in Figure 4.14.

In this diagram, we see the internal components of the linescanner design. The center of the

scan mirror is defined as the origin, and a fold mirror is located in the negative xa direction.

Inbound radiation reflects off these surfaces and through the telescope optics (reflective in reality,

but modeled here as a single ideal refractive element) and into the fiber optics, which are located

slightly off the optical axis at the focal plane, one of which is at the location p f . In order to arrive

at the parametric solution, we will backproject rays from the fiber optics through the center of

the optical system and calculate where they intersect the ground. Note that lever-arm effects are

ignored in this discussion since the inertial sensors are in close proximity to this mirror and the
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Figure 4.14: MISI optical path geometry model.

positional offset of the GPS antenna produces only a small error. However, these will be taken

into account in the final georectification algorithm.

If we are willing to restrict our analysis to the angular effects of this projection (and ignore

the slight offset induced by projected rays not reflecting off the aircraft frame’s origin) we may

replace this model by the simpler representation shown in Figure 4.15. This model assumes that

the backprojected ray from each fiber optic intersects the scan mirror at its center, and that this

ray may be completely specified by the angles at which it approaches this surface. Since all optics

behind the scan mirror are designed to be stationary, this is a reasonable assumption, even in the

general case where the two mirror sources are not properly aligned. To simplify the notation, the

fiber optic from p f is now assumed to be at p
′
f , such that the angles of the reflected ray ma are the

same as they were in the model of Figure 4.14.

Once the sensor has been calibrated, the position p
′
f is known for each fiber. Therefore, at

the time a particular pixel’s digital count is recorded, the scan angle θm in combination with the

aircraft’s position and orientation define the object-space ray m which points to the location on the

ground at which the sensor was looking when the inbound radiance was received. If we assume
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Figure 4.15: Simplified geometrical model of MISI’s optical path.

the scan mirror was aligned properly, the point mV (and hence the ray m) may be computed as

follows.

First, the normal vector of the scan mirror is seen to be

ns =
1√
2




−1

sin θm

− cos θm




. (4.11)

Next, the ray from p
′
f to the aircraft origin may be reflected off the scan mirror by recasting p

′
f

in homogeneous coordinates, and applying Equation A.22 relative to ns and using an angle of π

radians. This basically computes the reflection by rotating the incident vector around the mirror’s

normal. This yields the outbound unit vector ma in aircraft-based coordinates.

We may view the vector ma as a point in 3D space, and specify a ray passing from the origin

through this point. This ray may then be transformed to object space by taking the aircraft position

and orientation into account. If the orientation is specified by the rotation matrix R, then the point

ma transforms to mV via
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mV = Rma + pa, (4.12)

where mV is the endpoint of a ray from pa in the direction of interest. Of course, this may also be

computed linearly using homogeneous coordinates.

We next assume a planimetric model of the ground, and see if m is parallel with this plane.

This is done by specifying the plane with a normal vector gn and a point in the plane gp. Then,

if and only if gn ·m = 0 is the line containing m not going to intersect the planar ground model.

In practice, this step may usually be omitted, since the aircraft roll angle is typically less than 10

degrees, and image data is not recorded at angles greater than ±π
4 radians.

We next project the line containing m to the ground plane and determine the point of intersec-

tion, pGP. This may be done according to

Sgp =
gn · (gp − pa)
gn · (m− pa)

(4.13)

and subsequently applying

pgp = pa + Sgp(m− pa). (4.14)

It should be noted that if Sgp is negative, m points upward, and it is an extension of the back-

side of the ray of interest that intersects the ground. In many cases involving aerial imagery, this

indicates an error, and the corresponding pixel should be flagged as such.

Once the point of intersection with the planar model of the ground has been determined, we

need to refine our solution by taking the full DEM into account. Assuming the DEM is extracted

per the discussion in Section 4.1, the ground model will ultimately be represented by a triangu-

lar facetization. Therefore, we need to determine which triangular facets are intersected by the

projected m (see Section A.3) and then select the one that is intersected first from these candidate

facets. Facets are examined based on their proximity to pgp, and currently an exhaustive search is

being used. The point of intersection, pg of m with the closest candidate facet is then computed
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using Equations 4.13 and 4.14.

Once all image points have been projected to their ground locations, an interim orthoimage

may be produced by defining a grid in object-space, and interpolating to this grid the greyscales

associated with the projected locations. In many cases, a nearest neighbor interpolation is used,

so as to not distort the spectral nature of the image. It should be noted that band data from each

fiber optic will be projected separately, and a separate grid interpolation should be performed for

each fiber. The initial orthoimage may be refined significantly in many cases if surveyed control

points are available. By applying a polynomial transformation model in the form of Equation 4.9

the final orthoimage is obtained.

A similar parametric approach is often used to rectify linescanned lidar data as well. In this

case, however, m is used in conjunction with range information, and the resultant points are com-

puted in 3D space. As such, a DEM is not required. However, a final polynomial fit may indeed

be employed by taking known ground points in 3D space (usually surveyed with a precise GPS

receiver) and forcing a facetized version of the lidar point data to intersect these control points.

4.3.4 Automating the Final Transformation

Once all of the images (frame-array, linescanned multi- and hyperspectral and lidar) have been re-

mapped as 2D orthographic perspective projections, a final least squares polynomial or projective

mapping may be required to remove any remaining geometrical discrepancies. An illustration of

why this is needed is given below in Figure 4.16. These images are both from the red channel

of WASP’s RGB camera. The left image was taken at 1100h local, while the right image was

flown later in the day at 1700h. Using the EOP provided by the Applanix navigational system as

well as a USGS-provided DTM1, ERDAS Imagine produced the orthoimages shown in the figure.

By zooming in on a prominent terrain feature, we are clearly able to see a mis-registration of

approximately 1.75m (15 pixels). In this work, we use an image warping technique to remove this

1USGS terms the product a DEM, but the data actually represents the bare earth
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(a) (b)

Figure 4.16: Mis-registration of two ortho-images: (a) 1100h Image, (b) 1700h Image. Both images
are WASP red channel, orthorectified using ERDAS Imagine.

effect.

Before discussing the final stage in the coarse image registration process, it is worthwhile to

note that in addition to the geometry underlying the transform used for the registration, we may

classify individual registration techniques according to whether they are predominantly manual

or automated. In manual approaches, feature correspondences (points or lines) are selected by

hand, and the location of these correspondences permits a direct solution for the transform pa-

rameters. In automated systems, a different approach is required. One approach attempts to

autonomously find correspondences, then proceed in a manner similar to the manual approach.

A feature detector (a corner detector is preferable) may be used to detect features in both the

sample and reference image. Next, an attempt at finding actual feature correspondences is made.

This is done through a robust (RANSAC-based) approach, where a minimal number (in the sense

of defining the transform) of matches are hypothesized through random matching, and the trans-

form arising from that particular feature set is applied to the sample image. The number of feature

points in the transformed sample at the same location as feature points in the reference image is
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then recorded for that particular set of hypothesized correspondences. A new set of correspon-

dences is then randomly chosen and the process performed again. The transform yielding the

largest number of correct feature-feature matches is the one selected to perform the registration

of the entire image. This approach is very similar to the one presented in [Hartley and Zisser-

man 2003], except those authors use the point correspondences to define the fundamental matrix

instead of image warping parameters.

A notably different approach for automation is also possible. In this alternate process, the

sample image is first warped according to an initial transform, and the transformed image is

compared to the reference image through the use of a merit function. The parameters of the

transform are then updated, and a new warped image is obtained and compared to the reference.

This process is iterated until a parameter set yielding the best value for the metric function is

obtained. In some cases, the entire transformed image is used to define the merit function; in

others, only pixels corresponding to autonomously-selected features (such as the output of an

edge detector) are used.

In this research, we use three different approaches for performing the final registration used

to bring the ortho-rectified images into alignment. The first approach is a simple manual point-

selection technique, where homologous pixels are selected in a pair of images. We then use these

point to define several transforms (typically affine, projective and polynomial), and the best one is

used for the registration. Although this is the most labor-intensive technique, it usually provides

accurate results.

The second approach uses the first paradigm defined above for automated registration. In [Yang

et al. 2007], the authors present their Generalized, Dual-Bootstrap Iterative Closest Point (GDB-

ICP) process. This technique is an end-to-end set of algorithms that extracts edge and corner

features across both images. However, unlike most other approaches using this general structure,

the GDB-ICP does not initially perform a global transformation. Rather, initial matches are used

to define transforms that are only valid in small regions surrounding the feature points. These
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regions are then grown while the transform parameters are updated through multiple iterations.

When needed, a higher-order transformational model may also be autonomously inserted in or-

der to produce a better fit. After the final transformation is defined, the approach transitions to a

decision algorithm whereby a decision is made as to whether or not the transform indeed provides

correct registration of the two images.

This algorithm is available as a DOS executable directly from [Stewart 2008]. It performs very

well on images where the phenomenology is similar and perspective effects are benign, even if the

overlap between the images is very small (less than 10%) and there are large scale differences. As

such, it is often the first choice for registering different bands of the WASP-lite sensor, or WASP-lite

to WASP RGB images. This algorithm does fail in the presence of even moderate perspective vari-

ations, but in many cases these projective effects are reduced through the initial ortho-rectification

process. A second difficulty arises when the images are obtained using sensors of differing modal-

ities. That is, the algorithm fails when attempting to register a rasterized lidar intensity image to

a single band from a nadir-viewing WASP-lite image set.

In order to autonomously handle the various phenomenologies encountered in multi-modal

data sets, a third approach is required. Although a portion of what follows is novel and was

created for this research, most of the technique was developed by Xiaofeng Fan for work on a

complimentary project. His full documentation, [Fan 2009] will be available in the near future.

For the coarse lidar to 2D frame-image registration, we must first construct a composite raster-

ized lidar image (CRLI) from the lidar height and intensity data. This image is created by using the

intensity image for locations within 2m of the DTM, and a scaled range image elsewhere. Raster-

ized range, intensity and CLRI images from a portion of the RIT campus are shown in Figure 4.17.

Once the CRLI is obtained, we may then register it to overhead imagery via a robust multi-

modal registration technique. Unfortunately, since the CLRI and frame array images recorded dif-

fering phenomenologies, using cross-correlation as the quality metric often produces sub-par re-

sults, as corresponding features may have differing radiometric properties across the bandwidths
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(a) (b)

(c)

Figure 4.17: Constructing the CRLI : (a) Range image, (b) Intensity image, (c) CRLI image.

of the sensors being used. In these instances, a metrics such as maximization of mutual informa-

tion (MMI) [Viola and Wells 1995] and phase correlation [Humblot et al. 2005] have been found to

be preferable. We consider a modified MMI-based approach here.

The entropy of the random variable X with probability density p(X) is defined as the expecta-

tion of the negative logarithm of the probability density. That is

H(X) = −EX[ln(p(X))] = −∑
xi

p(xi) ln(p(xi)). (4.15)

We now describe a pixel in the reference image as r(X) where r is the pixel value and X is the

location. The pixel in the sample image at the same location is similarly denoted s(X). The pixel at

location X in the transformed sample image therefore has the value s(T(X)), where T represents
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the transformation.

The similarity between r(X) and s(T(X)) may then be described according to their mutual

information

I(r(X), s(T(x))) = H(r(X))− H(r(X)|s(T(X)))

= H(r(X)) + H(s(T(X)))− H(r(X), s(T(X))). (4.16)

Here we see that this definition conveys the idea that mutual information is the sum of the

entropy of each random variable, minus the joint entropy of the two variables. By selecting the

transform that maximizing this metric, we effectively find the warping function that properly

registers the images.

The key contribution in [Fan et al. 2005] is finding that this approach may be improved by

first extracting edge and corner features in the imagery using a Harris-based [Harris and Stephens

1988] technique, then performing the MMI only on these featured pixels. Additionally, instead

of using the actual pixel values in the algorithm, non-feature pixels are replaced with the value

0, edge pixels are assigned a value of 1, and corners are given a pixel value of 2. This modified

MMI technique is termed Feature-Enhanced MMI (FE-MMI), and it has proven to be successful

in registering lidar, visible and long-wave infrared frame array imagery, linescanned imagery and

maps with each other. A detailed description of the FE-MMI technique may be found in [Fan et al.

2007].

It is worthwhile to note a final detail regarding the coarse registration process. Although the

final transformation may be obtained and applied locally to sub-regions of the imagery, it has

been found that when the initial ortho-rectification has been completed fairly accurately (aircraft

orientation artifacts removed to within approximately 10-15 pixels), the final polynomial mapping

may be applied globally with no noticeable degradation. Also, the preferred method being used

in this research is to map all sources to the most accurate image source, which in general is the

lidar data.
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4.4 Refined Building/Tree Segmentation

The spectral reflectance of plants has a distinct signature, and therefore multispectral and hyper-

spectral classification techniques excel at differentiating vegetation from most man-made objects.

Through the visible light region, vegetation has a relatively low reflectance on the order of 5% up

through approximately 680nm. However, there is an abrupt increase of reflectance in the near-

infrared, where a peak of 50% is often recorded at about 730nm. This rapid variation in reflectance

is commonly termed the red edge, and this distinctive signature may be used to easily distinguish

trees from most man-made objects.

Through the use of the popular normalized difference vegetation index (NDVI), we are able to

use a simple function of the digital counts for two bands to determine which positions in our list

of high points contain trees. NDVI was first presented in [Rouse, Haas, Schell, and Deering 1973],

and it attempts to reduce the atmospheric and illumination effects by using both differences and

ratios of the received radiance in the IR and red bands. [Schott et al. 1999] writes the formula for

NDVI as

NDVI =
DCIR − DCR

DCIR + DCR
, (4.17)

where DCIR and DCR represent the digital count values in the IR (approximately 0.86µm) and red

(0.66µm) bands, respectively. This ratio is computed for each pixel we have specified as an object.

High values of this index (above 0.25) at object locations are considered trees, and lower value are

considered buildings.

4.5 Geometric Reconstruction of Trees

Once all of the lidar points depicting trees have been effectively identified, further processing of

this data is required to determine the geometrical properties of each individual tree. Once these

geometries have been defined, CAD objects representing these trees may be produced in one of

two ways. The first is to use the extracted geometrical properties to define input parameters
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for software such as TreeProfessional [Onyx Computing Inc. 2006], and then to create each tree

separately from scratch using these parameters. The second approach is to use the calculated

tree geometry to select the best-matching member from a pre-defined object library, and then to

scale this object to fit the height and width estimates derived from the data. The primary method

employed in the preparation of this proposal was the latter.

In [Gray et al. 2000], the authors describe an approach to streamline the construction of

large forested scenes using high-resolution optical imagery. They assert that most coniferous tree

crowns may be identified and characterized using radially-symmetric correlation methods. By

first blurring the imagery then using circle functions at various scales, features with high radial

symmetry may be uncovered. A similar approach is also used on processed images where tree

regions are first extracted through an analysis of the NIR/red spectral ratio. Although the au-

thors’ primary intent was merely to recreate similar spatial aspects for the forested regions in the

synthesized scene, in many cases the results were an accurate representation of the real-world ob-

jects. However, in dense tree regions, individual tree locations and sizes were often in error, and

it should be stated that this work also notes poorer results when attempting to isolate deciduous

species. Additionally, such methods only provide information regarding tree location and canopy

diameter, while tree hight must be inferred.

For slightly improved results, this approach may be augmented by a similar technique using

lidar imagery. Through methods outlined above, lidar permits an accurate localization of tree

data without the need for spectral ratios, and with the fusion of multiple image modalities even

better results may often be obtained. By blurring the lidar data from the tree regions in order to

remove much of the high frequency content, likely tree centers may be found by identifying local

maxima in the resultant image. A radial analysis (using heights in place of grey-values) may then

be applied to determine individual tree canopy sizes.

In order to determine whether a given tree is deciduous or coniferous, we use two approaches,

depending on the density of trees in a given region. In stands where the trees overlap significantly,
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it is often difficult to use the lidar data to determine tree type, and we rely on a minimum distance

classification using the hyperspectral data and supervised training. However, in regions where

trees can be isolated, we may augment this approach with lidar-derived spatial information.

In [Pollock 1996], the author introduces a parametric model for tree geometry that he uses to

predict the appearance of trees in reflectance images. We have taken this model and extended its

use to determining whether trees are deciduous or coniferous. In a form slightly modified to that

presented by Pollock, we note that tree shapes may be approximated by the outline defined by the

generalized ellipsoid
(z− zo)n

an +
(x− xo)2 + (y− yo)2

bn = 1. (4.18)

In this equation, (xo, yo) represents the center of the tree model in the x − y plane, zo is the

ground elevation at the tree center, a represents the height of the tree above ground, b represents

the radial spread of the tree, and n is a parameter that modifies the general shape of the model. For

large value of n, the shape approximates a cylinder of height a. At n = 2, the shape become more

round (it is actually a 3D ellipsoid of revolution), and at n = 1 the model is a cone. For values of

n < 1, the model becomes increasingly concave. Figure 4.18 illustrates the form this model may

take for various parameter combinations.

In order to solve for the proper tree model parameters, a Levenberg-Marquardt approach is

used to determine the optimal values of xo, yo, zo, a, b, and n so that the model fits the raster NDEM

image in a least-squares sense. If we assume that conifers have a predominantly conical shape and

that deciduous trees are more convex, we may use the n parameter to distinguish between the two

types. In this work, we have set a simple threshold value of 1.2, but in general this threshold could

be a function of a and b. For each isolated tree, these parameters are used to select the closest fitting

tree from a previously defined library. The selected tree model is then scaled so that the height,

width, and location match the extracted tree parameters.
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(a)

Figure 4.18: Various shapes represented by the tree model. b = 3 in all caes. Top row: a = 3, n =
4,3,2. Middle row: a = 6, n = 2, 1.5, 1. Last row: a = 8, n = 2, 1.5, 1.

4.6 Geometric Reconstruction of Buildings

This section describes a novel method for constructing simplified building models from the avail-

able image sources. We use the term ’simplified’ when discussing the desired model since the lidar

data itself actually represent an overly-defined, noisy model of the objects we wish to define. By

simply connecting each point via a 2D triangulation, we obtain a facetized object that may easily

be represented in a CAD format. However, this model is not what we are after; we aim to reduce

the data such that the dominant (and hopefully important) features are described with a minimal

number of points, and unimportant features, or those smaller than the desired level of detail are

ignored.
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The literature describes this as building reconstruction, and the same terminology will be used

here. Traditionally, this has been a predominantly manual process, requiring high-quality cali-

brated imagery, trained analysts and specialized photogrammetric equipment. However, with the

tremendous rise in applications for 3D building models in recent years (many based on naviga-

tion and augmented reality, see [Brenner 2003]), a significant amount of work has been done in

the hope of automating, or at least semi-automating, this task. An overview of a selection of these

approaches is given below.

4.6.1 Recent Approaches to Building Reconstruction in the Literature

There are several ways to categorize the recent literature devoted to the field of building recon-

struction. As noted in [Brenner 2003], a primary classification is based on the degree of process

automation. Techniques range from fully manual, to interactive, to semi-autonomous, to fully-

autonomous. These approaches may also be categorized according to the data they use. For years,

photogrammetric processes using multiple images dominated the field. However, with the recent

advances in laser scanning, many techniques relying on an analysis of lidar-derived DEMs have

been developed over the last 10 years. Finally, building models may be classified according to the

general framework in which models are defined. Model-based approaches attempt to determine

the best-fitting member of a library of pre-constructed building models. These library models are

typically parametric, so their geometry is not completely rigid, although exact building geome-

tries are occasionally used as well. Data-based approaches, on the other hand, extract composite

geometric features directly from the data and combine these features to complete the reconstruc-

tion. Typically, these features are the dominant planes in the building’s roof structure, and by

intersecting these planes, the model construction is achieved.

Photogrammetric processes using calibrated aerial images remain a primary means of deriv-

ing 3D scene content, and this includes objects such as building structures. The standard meth-

ods based on using image-to-image point matches and surveyed ground-to-image control-point
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matches are mature and produce accurate results. Unfortunately, in many cases it has proven

difficult to adequately automate these techniques, especially when ground truth is unavailable.

While a fair amount of success has been realized in autonomous DEM generation in suburban

and rural environments (see [F. Ackermann and Krzystek 1991]), for example), difficulties persist

in applying these approaches to more urban scenes. However, significant progress has been made

in specific areas of autonomous image-based building reconstruction.

In [Haala 1996], the author first extracts a DEM and a disparity map from homologous points

in an image pair. Regions marking the potential location of buildings are then produced using

standard image processing techniques, and a line extraction is performed in these regions. Using

the image pair and the disparity map, these lines are transformed to 3D segments, which are

then filtered, grouped and processed in object space. The lines are then fit to simple geometric

primitives, which then undergo a second filtering stage. The filtered primitives are then fit to

a simple saddleback parametric building model, which is then re-filtered so as to minimize the

distance between the model and the line segments in 3D. Multiple variations of this model are

then built using various parameters. Finally, heuristics are employed to choose the best model of

the set that was produced. The drawbacks of this approach are that it requires a good estimate of

the DEM, that it is only viable in a suburban setting, and that it can only handle a single simple

building geometry [Brenner 2003].

The approach described in [Henricsson and Baltsavias 1997], termed ”ARUBA”, starts with

manually-selecting various regions of interest containing at most a single building Image color is

then combined with a previously derived DEM to determine candidate building locations. Then,

in a manner similar to that of Haala’s approach, line segments are extracted and transformed

into object space. By analyzing these line segments, potential plane candidates are determined.

The object boundary for each plane hypothesis is then determined based on additional geometric

metrics. The most likely set of planes are then selected from the original hypothesis, and these

are combined to produce an initial roof model. Vertical wall segments are added by extending the



4.6. GEOMETRIC RECONSTRUCTION OF BUILDINGS 93

horizontal outer roof boundary vertically to the ground. Although good results were produced,

like the previous approach, this methodology is unable to handle objects in an urban environment.

A hierarchical approach is presented in [Fischer et al. 1998], where both the 2D and 3D rep-

resentation of geometric entities is used throughout the process. Image features including points,

edges, and regions are first extracted from a stereo pair. These are then processed to yield hy-

pothesis for corner points in object space. These corners are then analyzed and categorized as

belonging to various roof parts, which are subsequently combined into more complex building

geometries. The resulting building hypotheses are then re-projected into 2D image space to verify

the resultant models.

In [Ameri 2000], the author extends the use of image pairs to a data-driven approach, where

the only constraint on building geometry is that the roof structure is strictly composed of inter-

connecting polygons. Ameri uses both 2D image and 3D object spaces in a bottom-up approach

that initially forms geometric primitives in the image domain, and subsequently combines these

in object space. A top-down verification stage is then performed whereby the model hypothesis is

back-projected into the images, and the resulting projections are then compared to the originally

extracted 2D image features. Topological model information is also used as additional constraints

in the verification process.

With the increased use of laser scanners starting in the early 1990’s, it is not surprising that

methods exploiting the inherent 3D nature of this data have received increasing attention in recent

years. While 2D image data had to handle the problem of finding matched features in multiple

images, lidar data was able to yield 3D information directly without any additional processing.

These benefits were exploited early on in [Weidner and Forstner 1995], [Weidner 1996], and [Wei-

dner 1997], where the author extracted DEMs using simple morphological techniques, detected

buildings via comparison of the DEM and DTM, and recreated simple buildings with a paramet-

ric model-based approach. More complicated building outlines made use of a prismatic model,

but building roof slopes were not derived for this case.
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In [Maas and Vosselman 1999], the authors present a model-based approach using lidar data

where invariant moments are applied to reconstruct simple rectangular shaped buildings with

non-flat roof structures. This approach works well if the data fits the assumed building model,

but does not degrade gracefully for more general geometries. In this same work, the authors also

describe a data-based approach using a variant of the Hough Transform to detect dominant planar

surfaces. They first used a Delaunay triangulation to create a TIN facetization of the point cloud,

then extracted planar parameters from each resultant triangle. These parameters were then used

to vote in parameter space, and the dominant parameter sets were identified as the planar faces of

the buildings. Additional studies have been performed using region-growing approaches. These

approaches use seed points that are then expanded based on the relative geometry of neighboring

points. The reader is directed to [Chen, Teo, Rau, Liu, and Hsu 2005] for details regarding the

implementation of this type of approach. In [Ma 2004], the author uses a different method for

detecting planes, namely employing a clustering routine on local normal vectors. A variation of

this approach is proposed as the primary method of building reconstruction for this research.

Schenk and Csatho note that due to the complimentary nature of lidar data and high-resolution

imagery, models may be improved by fusing the information provided by the two modalities [Schenk

and Csatho 2000]. Lidar data are inherently 3D in nature and they excel at defining planar sur-

faces. However, due to the comparatively low-point density, they may not precisely define object

transition regions. Also, although lidar data may suffer from occlusions, they are not hindered

by traditional solar shadows. This contrasts with high-resolution images, which excel at defin-

ing edges and other transition regions, but do not inherently convey 3D information. By fusing

the two modalities additional information may be obtained than is possible with either sensor by

itself.

An example of this fusion is given in [Rottensteiner and Briese 2003]. In this work, the author

uses local normal approximations and a region-growing algorithm to define the dominant roof

planes. An adjacency relationship is then created from the disjoint plane regions using a distance
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transform based approach first described in [Ameri 2000]. Aerial images are then used to help

identify additional planar segments that may have been missed by the initial lidar segmentation

(a variation of this concept is used in our approach). Rottensteiner also notes that imagery may be

used to help refine building model edges, but no detail is provided in that area. In [Rottensteiner

et al. 2005], the authors extend the use of multi-modal imagery in a Dempster-Shafer fusion ap-

proach for extracting building locations in an urban setting. Dempster-Shafer allows the com-

bination of probability masses from several input variables to be used to determine a combined

probability mass for each class. The authors use NDVI and their versions of the R1 and RL range

images as inputs, and the output at each grid location is an index indicating class membership.

Building, tree, grass, and soil classes are used.

A second approach for data fusion is found in [Ma 2004]. In this example, buildings are ex-

tracted through a thresholding of the lidar-derived NDEM followed by an area-based analysis

used in combination with planar-fitting errors. Buildings are reconstructed using a polygon-based

intersection-of-planes approach where dominant roof planes are determined by segmenting the lo-

cal normal vectors. Once an initial model estimate is generated, it’s exterior boundaries are refined

through the use of high resolution aerial image pairs. Corresponding edge features are identified

in each image using a Canny-based approach, and line segments are fit to these edges. The 3D lo-

cation of these segments are then found through a photogrammetric projection into object space,

and the building edge is adjusted to match the projected image edge if certain constraints are met.

The above approaches are by no means exhaustive. Additional surveys of the recent literature

may be found in [Ameri 2000], [Brenner 2003], [Ma 2004], and [Rottensteiner 2001]. Also, a large

selection of references is available via the topic bibliographies section of the data CD included in

the bound copies of this document.
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4.6.2 Overview of the Novel Building Reconstruction Approach

This dissertation makes use of a data-based, intersection of planes, building reconstruction ap-

proach that is fused with high-resolution aerial imagery. After the building regions are isolated

per Section 4.4, an initial estimate of a building’s outer boundary is obtained through a robust

boundary extraction algorithm operating on the raw point data. Initial plane estimates are then

found via a direct segmentation of feature vectors assigned to each raster image cell. These planes

are then processed using a modified split and merge technique, and are then combined to produce

an initial building model estimate. This estimate is then compared to the lidar data, and regions

showing large errors are further analyzed (in both the lidar data and high-resolution image data)

in an attempt to find additional building features. In regions where additional features are found,

they are added to the model; in regions where the data still does not fit the model, the raw points

are used to generate additional facets, and the user is flagged. Boundaries and internal vertical

transitions are then potentially updated by backprojecting edges found in a single frame-array

image to object space, and intersecting this projected edge with the building model.

In this section, it will be assumed that building locations have already been correctly identi-

fied, and that the described algorithms may work on a single region of raw data points (and the

corresponding interpolated raster images) uncontaminated by trees or other objects. It will also

be assumed that buildings are primarily composed of planar faces, and that their dominant in-

ternal and external edges are linear. Additionally, it is assumed that the lidar data were collected

from a predominantly downward-looking sensor, and that few point samples are available from

any building component other than its roof. This effect is amplified if the point cloud is interpo-

lated to a rasterized grid before processing is performed. As such, we will be assuming that the

roof boundary describes the location and orientation of the exterior vertical walls, and no effort is

made to identify wall structure from actual wall data points.
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4.6.3 Extraction of the Building’s Outer Boundary

In the approach presented here, buildings are reconstructed primarily by identifying the domi-

nant planes in their roof structure, then intersecting these planes to form edge lines. Due to the

availability of many points per plane (as well as the use of robust algorithms), these planes, and

subsequently the lines of intersection may be determined with high accuracy. However, since most

airborne lidar datasets are collected from near-nadir orientations, there are very few data points

that lie on vertical surfaces. As such, it is usually difficult to determine the planes corresponding

to exterior walls using data points on these walls. Thus, the determination of building outer wall

structure requires an alternative to the intersection of planes approach. If we assume that exterior

walls are oriented directly under the outer boundary of the roof structure, we may identify the

geometry of these walls by modeling the 2D shape of the building exterior.

4.6.3.1 Determining the Outer-most Data Points

In order to solve this problem, many researchers make the assumption that buildings have a

strictly convex boundary geometry. An example of such an approach is given in [Chen et al.

2005], where the authors use the exterior triangles from a Delaunay facetization to determine

outer boundary line segments. However, such techniques fail for more complex geometries. In

Figure 4.19(a), we present a set of points representing the outer boundary of an ’L-shaped’ object

in the (x, y) plane. The connectivity shown in (b) represents the intuitive (and desired) outer-

boundary points and their connectivity. In (c) we see the result of using a Delaunay-based convex

hull approach. This method fails to highlight all of the desired outer points, and more importantly,

it misses the interior angle. An alternative that was considered during this research was based on

minimal-area polygons that enclose the full point set. This approach usually provides a better so-

lution than the triangulation approaches, since it typically yielded additional (correct) boundary

points. However, in practice we found that algorithms using this method had two residual issues.

First, the approach still tended to miss points around interior angles in many cases, and second,
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(a)

(b) (c)

Figure 4.19: Determination of a group’s exterior boundary: (a) 2D data points (b) Desired outer
points (blue) and connectivity (red) (c) Convex hull points (blue) and connectivity (red) obtained

from Delaunay triangulation.

the connectivity among the points was not easily determined.

Even in cases when the building model fits the convex assumption, many of the published

techniques may fail to determine the proper exterior boundary. This is especially true if the data

is obtained by combining collections from two flightlines; in these cases, the criss-cross pattern

on one edge may be entirely concave between the corner points. As a case in point, data from

a square building on the RIT campus is considered in Figure 4.20. Plot (a) of this figure shows

the building data projected into the (x, y) plane, and (b) shows the points representing the convex

hull of the object. If we now use a Hough-based approach to try to find line segments representing

the four building sides, we run into difficulties. Diagram (c) of this figure shows that the left side

is not among the 10 most dominant line shapes in parameter space (which is shown in (d)). A

maximal-area polygon does provide a better solution in this case, and heuristics may be used to

fix the Hough solution. However, in general these techniques do not perform well with real data.
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(a) (b)

(c) (d)

Figure 4.20: Determination of a group’s exterior boundary via convex hull and Hough transform:
(a) Initial object points (b) Convex hull boundary points, (c) Dominant lines as determined by

Hough transform, (d) Hough parameter space representation.

To this end, we have opted to use alpha shapes for the determination of exterior object bound-

aries. Like the convex hull, alpha shapes are simply another approach to formally describe the

’shape’ of a set of spatial point data. Unlike the convex hull, however, alpha shapes are not lim-

ited to convex geometries, and may even represent holes inside the geometry. Additionally, for a

given point set, the resultant alpha shape is a function of a pre-determined structuring element.

Therefore, the final ’shape’ is actually an entire family of shapes.

Per [Edelsbrunner et al. 1983], alpha-shapes are actually a generalization of the convex hull

that are based on an additional parameter α. In non-rigorous terms, we may define the alpha

shape as follows. We begin by considering a set of points S, and a sphere of radius α (termed

the α-ball). For any α between zero and infinity, the α-hull of S is the compliment of the union

of all empty α-balls. From this, we can see that for α = ∞, the alpha-shape is the convex hull of
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S, and for α less than half the smallest distance between points, the alpha-shape is the full set S.

It is worthwhile to note that in the paper introducing alpha shapes [Edelsbrunner, Kirkpatrick,

and Seidel 1983], the authors use a different definition of alpha (which I term αd where αd = − 1
α )

than they used in later papers. This discrepancy, although not usually mentioned, has propagated

throughout some of the source code and applications available on the internet.

In two dimensions, alpha-shapes may be computed directly from a 2D Delaunay triangulation

of the data [Kavraki 2007]. In order to do this, we simply remove all edges and triangles that have

circumscribing spheres with radius greater than α. The α-complex is the portion of the Delaunay

triangulation that remains, and the alpha-shape is the boundary of the α-complex.

As described in [Edelsbrunner and Mucke 1992], we may conceptually think of alpha shapes

in the following manner. Assume we have a volume of chocolate chip ice cream, where the chips

represent a set of points. If we then used a spherical scoop to scoop away all the ice cream pos-

sible without bumping into the chips, and are somehow even able to scoop out holes in the same

manner on the inside of the volume, we would eventually end up with a shape bounded by arcs

and points. If we then replace these round facets with triangles by using line segments connecting

the points, the result would be a representation of the alpha shape of the points. In this example,

the parameter alpha is related to the radius of the scoop that was used.

As can be seen from the above description, a very small value of alpha will permit us to scoop

away all of the ice cream between the chips, just leaving us with the point locations in the final

shape. Similarly, a large scoop will be unable to scoop away concave regions between points,

and the resultant shape will be identical to the convex hull of the points. For intermediate alpha

values, there is a set of shapes that decrease and eventually develop cavities as alpha decreases.

Figure 4.21 depicts the convex hull and one of the alpha shapes for a given set of 2D data points.

To use alpha shapes for boundary extraction of lidar data, we need to augment the above

technique with a few additional steps. First, although the lidar data is in 3D, we will omit the

height information, and simply perform the shape extraction in R2. Additionally, since the lidar
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(a) (b)

Figure 4.21: ’Shape’ of a collection of 2D points: (a) Delaunay triangulation convex hull (b) Alpha
shapes with α-balls sized as shown.

sensor collects the data in strips, one dimension of the data may have a higher sampling density

than the orthogonal dimension. In order to still effectively use alpha shapes, we may opt to use

rotated ellipses as our structuring element. However, a simpler approach is to stretch the data

along either the flightline, or the dimension orthogonal to the flightline, whichever is sampled at a

greater frequency. Once this stretching has occurred, the sampling density will be approximately

uniform, and circular structuring elements may be used. A standard 2D alpha shapes analysis is

then be performed, with the α-ball sized to be slightly larger (roughly 20%) than the largest inter-

data spacing. Once the initial alpha-shapes process is completed, we are left with a grouping of

shape boundaries. Internal cavities should be discarded, and the remaining points represent the

outermost data points that describe the building’s exterior boundary. It should be noted that in

practice, we have also implemented alpha-shapes on real data without performing the initial data

stretching. Although the actual alpha-shape is slightly different, in most cases this is compensated

for by the boundary regularization procedure described later in this section.

After the points are extracted, they need to be arranged in the proper order, so that we may

proceed point-by-point around the boundary. Since the alpha-shape is a derivative of the De-

launay triangulation connectivity, a by-product of the alpha-shape process is the specification of

unstructured connectivity. That is, a listing of point pairs is produced, where each pair of points
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Figure 4.22: Estimation of local curvature; illustration of buffer regions and points used for slope
estimates.

is connected in the final shape. By reordering these pairs so that the second point in a given pair

is the first point in the next, we are able to proceed point-by-point around the shape.

4.6.3.2 Line Simplification

Once the alpha-shape points are extracted and ordered, we have an initial estimate of the building

boundary. However, since this shape typically has an irregular geometry, it is usually undesirable

to use this as the final building boundary. In general, a line simplification algorithm must be

employed to produce less noisy results. In the early work on lidar-based building reconstruction,

this was achieved through a point-merging algorithm where points are successively eliminated

”where the corresponding triangle height di in the triangle formed by the points i− 1 and i + 1 is

the minimum of the polygon until the minimum triangle height in an iteration is greater than a

prefixed threshold, or the prefixed minimum number of points is reached” [Weidner and Forstner

1995]. In [Sampath and Shan 2007], the authors extract points that lie near single line segments by

sequentially following the boundary and looking for positions where the slopes between adjacent

point-pairs is significantly different. In this way, consecutive point pairs with similar slopes are

grouped into longer segments.

In this research, we implemented two approaches for this line simplification. The first of these
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is a novel generalized slope-based approach, and the second is a modified sleeve-fitting algorithm.

In the slope-based approach, at each point we generate an estimate of the curvature using local

point data. For a given point being considered, two buffer regions are defined; one using points

preceding the point of interest (termed the ’left’ buffer) and one following it (the ’right’ buffer),

as shown in Figure 4.6.3.2. Lines are then fit to points within a window outside of each buffer

region using a Deming orthogonal regression (see Appendix A.1). The window is usually sized

based on absolute length, but windows based on a specific number of points have also been used.

If the angle between the fitting lines exceeds a given threshold, the point under consideration is

considered a critical point. Lines are then fit to all data points between (but not including) critical

points, and the intersection of these lines form the simplified building vertices. Although this

method works well for structures containing long boundary segments, it frequently fails if there

are regions of rapid directional changes. In these cases, additional heuristics are used to bridge

the gap between adjacent line segments that do not intersect near the original point data. In order

to provide a more robust solution without the need for heuristics, a second line simplification

method was adopted.

The second line simplification algorithm we implemented is based on the sleeve-fitting ap-

proach described in [Zhao and Saalfeld. 1997]. The sleeve method was originally published as

a polyline simplification algorithm for efficient reduction of map scales. Traditionally this ap-

proach has been regarded as slightly less effective (and less common) than the Douglas-Peuker

algorithm [Douglas and Peucker 1973], and recent work comparing the performance of several

simplification methods has verified this for mapping applications [Shi and Cheung 2006]. How-

ever, in [Ma 2004] the author states that the Douglas Peuker algorithm may generate unexpected

results when applied to building shapes (although Ma’s concerns may be alleviated through a

different implementation of the approach - see [Lee et al. 2008], for example). It was in this dis-

sertation that the sleeve algorithm was first applied to the building boundary problem, but both

Ma’s work and the present research make significant modifications to the baseline approach.
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(a) (b) (c)

(d) (e)

Figure 4.23: The sleeve method: (a) P2 falls within the sleeve defined by P1 and P3, (b) P2 and P3
fall within the sleeve defined by P1 and P4, (c) Points fall outside the sleeve defined by P1 and P5;
P4 identified as a critical point, (d) P5 falls outside the sleeve identified by P4 and P6; P5 identified

as a critical point, (e) The process continues around the set of boundary points.

The basic sleeve algorithm is better understood through the process illustrated in Figure 4.24.

The width of the sleeve is selected at the outset, and this determines the maximum deviations that

will be permitted before new line segments are defined. Starting at a chosen point P1 (which is

also labelled as a critical point), we then consider the distance of point P2 from the line segment

connecting P1 and P3 (a). If this distance is less than the sleeve width, P2 lies within the sleeve

and is considered a non-critical point. In the next iteration, we consider the segment P1 to P4 (b).

If all the intermediate points fall within the sleeve (which is the case in the Figure), P3 is deemed

non-critical. Moving to the next iteration, we connect P1 to P5 and see that intermediate points

now fall outside the sleeve (c). As such, the previous point, P4 is declared a critical point. The

process begins again starting at the location of this new critical point. Therefore, we now connect

P4 to P6, and find that P5 lies outside the sleeve (d). As such, P5 is also labeled a critical point.
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The process continues in (e), where P6 is connected to P8, and since P7 lies within the sleeve, it is

determined to be non-critical. This process is then continued until all points have been examined.

Algorithmically, the sleeve approach is implemented differently than would be indicated by

the previous discussion. Since each intermediate point effectively provides an angular constraint

on where the next point must be located in order to not produce a critical point, we may proceed

considering only the angular constraint and the most recent point at any given iteration. This

makes the algorithm both easy to code and quick to execute. The approach may be implemented

as follows [Zhao and Saalfeld. 1997], [Ma 2004]:

• Define: w = the half-width of the 2D sleeve

1. Pick a starting point P1 and consider its adjacent point P2

2. Determine the direction θ0 and length l0 of the line connecting these two points

3. Calculate the direction range d0 such that the angle range for the next point is θ0±
d0, where d0 = tan−1(w/2l0)

4. Connect the next point Pi+1 to P1, and determine the direction θ and length l of the

resulting segment

5. Calculate a new direction range d = tan−1(w/2l)

(a) If θ is within the direction range d0, the current point Pi is discarded.

Calculate a new direction range at the point Pi+1 where the new d is the

intersection of the old d and d0. Return to Step 3.

(b) If θ is outside of the direction range d0, the current point Pi is considered

a critical point. Pi

is taken as the first point in a new line segment and Pi+1 is the second point.

Repeat steps 1 through 5.

6. when all points have been considered, END
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Figure 4.24: An illustration of the angular bias in the standard sleeve algorithm when applied to
convex geometries.

We have modified the basic sleeve approach somewhat in order to select better critical points.

In the original paper, Zhao delineates the starting point as a critical point, and proceeds without

ever checking if this point truly represents a notable position of angular transition. In our work

we improve on this by running the algorithm multiple times. First, the algorithm is run to find

the initial set of critical points. We then run the algorithm again, starting at the third critical point,

in order to get a better characterization of the original starting location. Also, since the sleeve

algorithm on works in one direction, the critical points may have an angular bias to them that will

result in a undesired rotation on the final building shape. This is illustrated in Figure 4.6.3.2. We

typically need to have a wide enough sleeve to account for positional variations along each line

segment. However, this means that we may not detect a critical point until slightly after the true

corner point is reached. In convex shapes, this will always occur in a single direction, thereby

producing an undesired angular offset in the final shape. Although the effect is reduced for non-

convex shapes, a bias is still present in most cases. We correct this by running the sleeve algorithm

both in the forward and reverse directions, thereby producing two sets of critical points. If the

critical points for a given are not at consecutive points (or are not the same point), the center-most

point between them is selected as the true critical point.

In the original reference, Zhao uses the segments connecting the critical points as the simplified
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boundary, discarding the points in between. However, these points contain useful information, so

in way similar to that presented in [Ma and Meyer 2005] (who applied variation of the technique

to raster images), we improve the accuracy of the simplified lines by using an orthogonal regres-

sion through the points between (and including) the critical points. These regressions produce

lines, and consecutive lines are then intersected to produce a new set of critical points. In general,

these points do not lie at locations covered by the original data set, but they will more accurately

represent the location of building corners.

4.6.3.3 Boundary Regularization

In the vast majority of buildings, the outer boundary contains many edges that lie either parallel

or perpendicular to the dominant building orientation. We may use this fact to our advantage in

refining our simplified building edges through a process termed boundary regularization.

Most researchers have used variants of four main approaches to regularization in their work

thus far. The first of these, the Minimum Description Length (MDL) was introduced in [Weidner

and Forstner 1995], and it provides a statistics-based approach to perform a final adjustment of the

building boundary. MDL imposes orthogonality constraints and seeks to either merge or remove

the critical points while minimizing a shape complexity function. While this approach has the

advantage of favoring orthogonality in adjacent segments while not requiring it, it is a complex,

computationally intense approach that occasionally produces unexpected results. A hierarchical

least squares approach is described in [Sampath and Shan 2007], where the authors use a least-

squares regression to find initial slope estimates subject to the constraint that all segments must

be either parallel or perpendicular. A second adjustment is then performed where the slopes of

the long line segments are used as weight functions. Although this approach works well for many

data sets, We have noted that approaches based on slope rather than angular orientation may be

sensitive to noise for near vertical line orientations. Also, this approach is not fully robust when

a long edge does not lie either parallel or perpendicular to the other edges (we describe these



108 CHAPTER 4. APPROACH

edges as being rogue, while edges that align with the dominant orientation of the building are

conforming).

In [Mayer 2001], the author proposes the use of active contours to refine the building boundary.

However, this approach has difficulty in properly handling the small line segments that frequently

arise in the line simplification process. Also, as noted in [Ma 2004], active contours may not work

well with boundaries defined by a lidar-based DEM. In order to improve his results, Ma created

his own algorithm that used weighted averages of the angular orientation of each segment to

determine the dominant building orientation. However, like the approach of Shan, this method

relies on having two separate segment classes, and it does not adequately handle rogue edges.

In the present work, we have created an algorithm that forces boundary line segments to be

either parallel or perpendicular to the dominant building orientation when appropriate, and to

fit the data elsewhere. Additionally, the rogue segments do not influence the calculation of the

primary building orientation. A final benefit of this new approach is that all conforming seg-

ments are initially brought into a common space where a segment and one perpendicular to it

would have the same orientation. This allows the algorithm to work on all conforming segments

simultaneously, and is not a weighted average of the solution defined for each of two orientation

classes.

To begin our approach, we first collect all of the line segments defined in the line simplification

process (we term the set S) , and re-align them so that their azimuthal orientation angle is in the

range 0◦ ≤ θ < 90◦. For the segments shown in Figure 4.25, this would mean that A would be

rotated counterclockwise by 90o to C, and D would be rotated clockwise by 90o to B. The entire

set of (potentially rotated) segments is termed Sr. Note that a record is kept for each vector as to

whether or not it has been rotated, so later in the process this rotation may be undone.

The next step is to identify all line segments in Sr with a length l greater than a given threshold

(typically 3m) to use for the initial processing. We term this set of segments Slong. If at least four

segments of the required length are not available, all segments are assigned to Slong. We then step
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Figure 4.25: Line-segment re-alignment

through each segment of Slong in turn and determine the set of Slong segments that are within 15◦

of current segment. The set of segments for the ith segments is termed Si, and the Si with the

largest cumulative length is selected and redefined as Sa.

A weighted average angle is then obtained from the segments of Sa according to

θa =
∑

i∈Sa

liθi

∑
i∈Sa

li
, (4.19)

where the li and θi values are the lengths and azimuthal angles of the line segments in Sa. This is

the dominant orientation of the set Slong.

We now define the primary orthogonal azimuth as θb = θa ± 90◦, using whichever sign keeps

the orientation within the range −90◦ ≤ θb < 90◦.

Next, we return to the initial (unrotated) set S and evaluate an updated azimuth for each seg-

ment. Thresholds are defined for both angular matching (typically 15◦) and for minimum length

(typically 4m). Segments below the length threshold are assigned to the closest angular class (that
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is, they are given the slope θa or θb while keeping the location of the centroid point unchanged), re-

gardless of the degree of angular similarity. This assignment is made since it is fairly common for

the line simplification algorithm to detect multiple critical points at a single corner if the boundary

data is severely contaminated with spatial noise. By forcing all small segments to align with the

dominant building orientation, this effect is mitigated. Segments that are longer than the length

threshold have their slope modified to θa or θb if their original slope is within the angular thresh-

old of the potentially assigned slope value. Segments longer than the length threshold that have

an angular difference greater than the angular threshold are left unchanged.

Finally, adjacent segments whose slopes are the same are combined into a single segment

if the orthogonal distance between the segments is less than 3m. If the orthogonal distance is

greater than this threshold, a perpendicular connecting segment is added, and the user is flagged

that there may be an issue with the boundary regularization process at that location. In order to

combine adjacent segments having the same slope, the centroid of the combined segment is the

weighted average of the centroids of the two segments, where the segment lengths are used as

weight values and the slope is kept unchanged. That is

xn =
l1x1 + l2x2

l1 + l2

yn =
l1y1 + l2y2

l1 + l2
(4.20)

and θn = θ1 = θ2.

4.6.3.4 Illustration of the Boundary Extraction Process

Figure 4.26 presents an illustration of the entire boundary extraction process as applied to real

data from a typical suburban residence. In (a) we see the original point data projected to the

(x, y) plane. At this point, the data also includes points related to another house and two trees. In

general, these points would be removed by the building/tree segmentation process, but in the case
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.26: Illustration of the boundary extraction process.

at hand, they will be effectively identified and removed when the alpha-shapes are determined.

Diagram (b) shows the location of the α-balls applied to this data, and (c) shows the points selected

to represent the alpha-shape. Note that each object is assigned a unique alpha-shape index, and

only the alpha-shape of interest is retained. In (d) the points have been properly ordered, such

that we may trace the building outline by following a point-to-point path. The sleeve algorithm

is then run a total of four times (two forward and two reverse) and the critical point shown in
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(e) are identified. Orthogonal regression lines are then fit through all data between the critical

points, and an initial simplified building model is produced (f). In (g) we see the outcome of the

robust regularization algorithm. Note that all lines are either parallel or perpendicular, and the

boundary fits the data well. If the original data is modified to represent a building with a long

edge that is not at 90 degree increments with the other edges, other approaches not only miss

the uniquely oriented edge, but the orientation of other edges are also biased by the presence

of the non-orthogonal edge (h). Diagram (i) shows the result of applying our approach to this

modified data. Note that the uniquely oriented edge is fit appropriately, and the other edges

remain perpendicular while fitting the data without an angular offset.

4.6.4 Extracting the Internal Building Structure

After the outer boundary has been extracted, internal points are used to determine the remaining

portions of the exterior building geometry. Like many of the papers listed earlier, this work as-

sumes that the roof structure is primarily polyhedral in nature. That is, it is composed mostly of

planar facets whose edges may be described using a group of straight line segments. Although

many authors use a data-based approach in which initial seed regions are selected and grown to

define the planes [Rottensteiner and Briese 2003], [Vosselman 1999], this research proceeds more

along the lines of that given in [Ma 2004]. That is, instead of performing a point-based region

growing, local feature vectors are created for each pixel of a raster image, and these features are

then clustered using a segmentation algorithm. This segmentation is then processed in order to

more accurately represent the dominant planes and their spatial relationships. These planes are

then intersected to form edge lines, and edge lines are intersected to form the initial set of roof

model vertices. This model is then compared to the raw point data, and regions of potential error

are further processed to produce improved results. If the building has internal vertical transitions

(step edges where adjacent planes should not be intersected), additional techniques are required.

For the initial discussion of the approach used in this work, we will assume that the roof structure
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(a)

(b) (c)

Figure 4.27: (a) R1 Range image (b) N3 normal image, and (c) E3 plane-fitting error image.

does not contain any vertical transitions. We will then show how the approach is modified to

account for these steep edges. It is worthwhile to note that the majority of building reconstruc-

tion methods in the literature are unable to adequately handle internal roof vertical transitions

(including recent comprehensive works such as [Ma 2004]). As such the approach presented here

is applicable to a wider range of building geometries than most.



114 CHAPTER 4. APPROACH

4.6.4.1 Finding the Dominant Roof Planes

We begin the process of finding the dominant roof planes by building two different images of

local normal vectors from the R1 range image. Note that this version of the range image should

produce accurate estimates of a planar roof height at the pixel center, whereas the other range

images would introduce additional noise effects via their interpolation processes. In order to

produce the first normal image, we consider all the points (z-value for a given pixel (x, y) location)

within a small spherical regions (typically of radius 1m) around each point. We then do a singular

value decomposition (SVD) on a matrix containing the point coordinates. The singular vectors

corresponding to the two largest singular values represent the two dominant directions of variance

in the point set, which is simply the plane that best fits this data in an orthogonal, least squares

sense. The final singular vector is orthogonal to the first two, and therefore represents the direction

normal to this plane. It is this normal vector that is stored for each pixel location. The normal

image created via this approach is termed the N3 image. We produce a similar normal image

using points within a small circular region in the (x, y) dimension about each point location (that

is, we ignore the vertical distance in selecting ’close’ points. This normal image may contain

distant points at vertical transitions, and is termed the N2 image here. For each location (and for

each variant of normal image) we also compute the average error describing how well the local

points fit the plane defined by the first two singular vectors. In general, the error will be higher in

transition regions (where planes intersect or at steep edges) than in the central part of each plane.

These errors are combined into the ’error images’ E3 and E2, and will later be used to highlight

regions where the normal images are likely to be mis-classified. Figure 4.27 shows the R1, N3

and E3 raster images for the same house that was considered in the boundary extraction process.

In the image of N3, the x-component of each normal vector was set to the red image channel, y-

component to green, and the z-component to the blue channel. In the E3 image, all errors above

one standard deviation above the mean are set to red, and the rest are blue.

We then build up a feature vector at each pixel location, where the first three elements of
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each vector are the x, y, and z components of that particular N2 normal vector, and the final two

elements are the x and y locations of the pixel being considered. The set of feature vectors are

then segmented via the mean-shift algorithm. The mean-shift is a nonparametric mode-seeking

algorithm that uses a kernel for density gradient estimation. It was first introduced in [Fukunaga

and Hostetler 1975], and has subsequently been refined by many researchers. The discussion

that follows is based on [Comaniciu 2000], who proved the algorithm converges, provided certain

kernel criteria are met. By taking a subset of the data available and allowing these points to

migrate to points of local maximal density, density modes for the data may be identified. Once

these modes are refined, the space may be delineated based on a nearest-neighbor approach, so

each data point is identified with a particular mode, thereby producing the segmentation.

In order to perform a segmentation using mean-shift, we first define the multivariate kernel

density estimate as

f̂ (x) =
1

nhd

n

∑
i=1

K
(

x− xi

h

)
, (4.21)

where K(x) is the kernel and h is the radius of the window. K(x) must be selected such that it

satisfies

sup
x∈Rd

|K(x)| < ∞,
∫

Rd
|K(x)|dx < ∞, lim

x→∞
‖x‖K(x) = 0,

∫

Rd
K(x)dx = 1. (4.22)

Comaniciu discusses two typical kernels in his dissertation. The first of these, the multivariate

Gaussian, is defined as

KN(x) =
1

(2π)d/2 e−
1
2 ‖x‖2

, (4.23)
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and the second, the Epanechnikov is defined as

KE(x) = f (z) =





(d+2)(1−‖x‖2

2cd
for ‖x‖ ≤ 1

0 for ‖x‖ > 1
(4.24)

where cd is the volume of a d−dimensional unit sphere. This kernel arises when the mean inte-

grated squared error of f̂ is minimized.

By using a differentiable kernel (such as the two above), we may compute an estimate of the

density gradient by determining the gradient of the kernel density estimate. That is

∇̂ f (x) ≡ ∇ f̂ (x) =
1

nhd

n

∑
i=1
∇K

(
x− xi

h

)
. (4.25)

For the Epanechnikov kernel, this is given by

∇̂ fE(x) =
C
nx

∑
xi∈Sh(x)

xi − x. (4.26)

where C is any constant and Sh(x) is a hypersphere of radius h, centered on x, having the volume

hdcd, which contains nx data points. The last portion of this equation,

Mh(x) =
1

nx
∑

xi∈Sh(x)
xi − x (4.27)

is called the sample mean shift. Since this mean shift vector always points towards the direction of

the maximum density gradient, it may be used to navigate to a local maximal density point; that

is, a mode of the density. Additionally, it should be noted that the mean shift step size is inherently

large when the originating position is of low density, and it is smaller as x approaches a local max-

imum. This has the effect of allowing the algorithm to quickly advance in an appropriate direction

when the density is low, yet still hone in on the solution without significantly overshooting when

the desired modal point is nearly reached.
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Figure 4.28: Result of segmenting the normal and spatial data via mean-shift.

In order to use this approach to perform data clustering, the mean shift vector Mh(x) is com-

puted for a given initial position x, then the window Sh(x) is shifted by Mh(x). The new mean

shift vector is then computed, and the window shifted again. This process is performed itera-

tively until convergence. In practice, this is done with m starting values for x, where m << n,

the number of data points to be clustered. The m points should be selected such that the distance

between two neighboring points should never be smaller than h, and the points should not lie in

sparsely populated regions. Additionally, after the modes are found from the initial iterations on

the m points, the starting positions should be perturbed, and the procedure performed a second

time. This helps eliminate problems associated with local plateaus in the space being considered.

Cluster centers (the local density maxima) are then validated by ensuring the presence of a sig-

nificant density valley between it and its neighboring modes. Once the final cluster centers are

determined, all n data points are associated with a cluster center. Typically, a k-nearest neighbor

technique is used.
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Comaniciu discusses applying the mean-shift clustering to joint spatial-range data, but we

have found that this technique also works well with our spatial-normal orientation feature vectors.

Figure 4.28 shows the result of segmenting the feature vectors associated with the N2 image. As

can be seen, for this particular example, all of the major roof faces have been detected, but many

extraneous classes are also produced. These are typically in the transition regions, where the

points used to estimate the normal vectors were truly co-planar. Also, in many cases roof faces

with a similar orientation are segmented into the same class, even if these faces lie on different

planes in R3, and are spatially separated in the (x, y) plane. Although using the x and y pixel

coordinates help to have spatially separated segments assigned to separate classes, it is still fairly

common for facets lying on parallel planes to be classified together.

In order to improve this initial segmentation (termed SI1) and provide a single class for each

roof face, a refinement procedure is employed for the non-ground pixels. We begin this process

by performing a binary erosion on the building shape in order to remove the outer pixels along

the inner building boundary of the segmented image, producing the segmented image SI2. The

depth of this data removal should be at least as large as the radius used in selecting points for the

N2 image. These eroded pixels will be replaced with pixels of the proper class at a later stage in

the refinement.

Next, we identify pixels in the E2 image where the value (that is, the plane-fitting error) is

greater than a given threshold. We use a threshold value of greater than one standard deviation

above the mean error value over the image, although this tends to be constant across building for

a given resolution of the R1 image. The corresponding pixels in the SI2 image are then assigned to

a temporary class T. The segmented image with the high-error points assigned to T is termed SI3

We next use a split-and-merge approach to modify the SI3 segmentation. A binary image is

created for each non-T class, where pixels representing that class are set to 1, and the remaining

pixels are assigned a 0 value. A morphological region-counting routine is then performed on each

class image, and when multiple regions are found within a single class, unique class indices are
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assigned to each region. This process resolves the issue of multiple roof surfaces being classified

to the same class, so long as there is a spatial separation between the classes. It is for this reason

that we used the N2 image (instead of N3) in the clustering process. If two adjacent regions have

the same slope but lie on different planes, the N2 image will typically have a high-error region be-

tween the facets, but the N3 image may not. This high-error region serves to separate the surfaces,

enabling the simple splitting technique.

A more complex class splitting technique is also employed. This approach is able to split

classes representing data on two or more different planes, even if the classes are adjacent and

the planes are parallel. For each class, the data representing that class’s pixels are extracted from

the R1 image. A RANSAC-based plane-fitting routine is then performed on those pixels. That

is, three pixels are selected randomly, and the plane defined by those three pixels is identified.

The remaining pixels are then classified as inliers or outliers, depending on their proximity to this

plane. This is repeated with a new set of three pixels over many iterations, after which, the largest

set of inliers is used to define the true dominant plane. Note that since only three points are used,

the plane parameters may be solved for exactly, and an SVD of the data is not required. The inlier

points are then assigned a unique class index, are removed from the data being considered, and

the approach is re-run on the outlier data set. If the outliers do not represent errors, but are actually

from a second plane, a new set of inliers is found. This process of checking the outlier data for

additional planes is repeated until no new planes are found. This splitting process is similar to

the one described in [Khoshelham, Li, and King 2005], although this reference does not use the

RANSAC algorithm for the identification of outliers. The segmentation image after class splitting

operations has been completed is termed the S4 image.

Once the splitting operations have been completed, we perform a merging process to combine

adjacent regions that likely represent a common facet. Two neighboring regions are merged if

their slopes fall within an angular threshold and their distance from a common point (we use the
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origin) falls within a distance threshold. That is,

θ1 2 = cos−1(n1 · n2) < θthresh

d1 2 = |n1 · x1| − |n2 · x| < dthresh, (4.28)

where ni is the unit-length normal for class i, and xi represents a point in the ith class. Note that

many authors just use an angular threshold for the merging requirement; however, we have found

many house geometries where this incorrectly merges roof facets that are adjacent and parallel,

but not co-planar. Once two regions are merged, the index associated with each class is updated,

and the new segmented image is termed S5. As noted in [Khoshelham, Li, and King 2005], in

certain cases it may be advantageous to iterate through the split-and-merge process several times,

until no regions are changed in the process. However, in our work, this is a seldom-used option

that the user has to enable.

The S f inal (or simply ’final’) segmentation image is obtained by re-assigning the class T pixels

and boundary points that were removed during the initial refinement stage to the class of the

’closest’ non-ground pixels that are not also a part of either of these sets. Classes with membership

below a pre-defined area threshold (we use 4m2) are also re-assigned. We have used two variants

of the distance metric used in defining ’close.’ The first is a Euclidean distance in the x− y plane,

and the second is the angular separation of the normal vectors as obtained from the N3 (not N2)

image. Both techniques work reasonable well in practice, although the normal-vector matching

appears to perform slightly better in this class re-assignment. However, in producing the final

building models, the robustness built into the rest of the reconstruction process makes the choice

somewhat less important; we have yet to realize a notable difference in the resulting geometry as a

result of the distance metric used. The final segmentation image for the house data we have been

using is given in Figure 4.29.
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Figure 4.29: Final segmentation image (S f inal).

4.6.4.2 Initial Roof Reconstruction

Once the segmentation process is complete, we are in a position to begin reconstructing individual

roof facets. Each class of the segmentation is processed in turn, such that the facets are built in 3D

space one at a time. However, before beginning individual facet analysis, we will find the plane

best fitting each segmented region. We use a RANSAC-based approach for this process, using

only the R1 data contained in a given region for defining the plane representing that region. Once

the region representing each class has a plane associated with it, we proceed with the individual

facet reconstruction.

We start constructing a single facet by taking the binary image of a single class, dilating it, and

then subtracting the original binary image. This leaves an image that is all zeros except for the

pixels immediately outside the boundary for that class. We then use this image as a mask over

S f inal to produce the image shown in Figure 4.30 (a). This image contains all of the adjacency

relationships for that facet, and also gives a rough estimate as to the location of the facet edges in

the (x, y) plane.
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(a) (b)

(c) (d)

Figure 4.30: Reconstructing a single facet: (a) Exterior facet boundary showing adjacent facets, (b)
Split segment with a single DLS, (c) Split segment with 2 DLS’s, (d) A separate facet where the

ground-adjacent segment is composed of 2 split segments, each with a single DLS.

We term each colored region in this figure a segment, and each segment shows how the adja-

cent class planes intersect the plane being considered. In general, a segment may be a single line

segment, several line segments, or even two or more non-connected line segments. Within a given

facet, we now work on each segment individually. We first split any disjoint segments into multi-

ple split segments, each with an individual index. Each split segment is then broken down further

into disjoint linear segments (DLS), where the points separating each DLS are identified using the
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(a) (b)

Figure 4.31: 3D facet and initial building model.

sleeve algorithm. For our facet of interest, this is illustrated in Figure 4.30 (b) and (c). Diagram (b)

shows a segment containing a single split segment with only a single DLS. The sleeve algorithm

has identified the beginning and end points, but no intermediate critical points are present. In

(c), we see where the facet is adjacent to the ground. In this case, the single segment also has a

single split segment, but has two DLS’s and three critical points (circled). For the building model

being considered, the only facet with a segment containing more than one split segment is shown

diagram (d). This is the red ’rotated L’ facet shown in Figure 4.29, and the two split segments

are where the facet is adjacent to the ground. If the building model contains no internal vertical

transitions, the only places we will see a split segment having multiple DLS’s is for the segments

indicating adjacency with the ground. However, multiple DLS’s are possible for any segment if

interior vertical transitions are present (a case that will be considered later). For each segment

that does not represent an adjacency with the ground, we now replace the pixel-based line ap-

proximations representing each DLS with the vectorized (explicitly defined) 2D line obtained by

intersecting two planes, projected into the (x, y) plane. The planes needed are the ones we have

previously computed for the current class and the adjacent class represented by the DLS. Each

pixel-based DLS line is replaced by an intersection-determined 2D line in-turn, and these lines are
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then intersected to produce vertices in the (x, y) plane. Vertices for the ground DLS’s are obtained

by replacing the critical points found when working with the DLS’s with the vertices obtained

from the building boundary extraction process done earlier.

Since we know the equation of the plane for the facet of interest, we may now compute the

facet 2D vertices to 3D in-the-plane vertices by simply augmenting the (x, y) coordinates with

the proper z-coordinate at that position. A resultant facet created using this approach is given in

Figure 4.31 (a).

By reconstructing each facet in-turn, an initial 3D model of the roof structure is obtained. This

initial roof model is then refined by merging vertices that are within 1m of each other (through a

positional average), and an initial building model is created by adding vertical wall facets below

the external boundary segments. An example of an initial building model is shown in Figure 4.31

(b).

4.6.4.3 Dealing with Internal Vertical Transitions

Unfortunately, not all polyhedral roof types can be completely modeled using a set of intersecting

non-vertical planes. In many roof geometries, there are step edges or vertical transitions, where

a vertical planar segment is required to connect two planar facets that are adjacent in the (x, y)

plane but do not intersect. In general, a single split segment (representing a 2D adjacency) may be

composed of multiple DLS’s, and some of these DLS’s may or may not represent planar intersec-

tions while others may or may not represent vertical transitions. Due to the potential presence of

these regions, the above approach requires a slight modification.

For each DLS that is detected, we fit a 2D line to the pixels composing that DLS. We then

intersect the two planes whose adjacency is represented by that particular DLS, and project this

line of intersection into the (x, y) plane. If the line fitting the pixels is within a given distance

and angular threshold (we use 2.5m and 20◦), the DLS is deemed an actual intersection of planes,

and the boundary is defined by the projected line of intersection. If the lines do not match up,
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Figure 4.32: Single segment containing both a shared edge and a vertical transition.

the DLS is considered a vertical transition, and the line fitting the pixels is used to define the

step edge. In [Rottensteiner and Briese 2003] the pixels on the DLS are directly compared to the

projected line of planar intersection without first fitting a 2D line to them. This may represent

a potential improvement, but the investigation of which technique is preferable is reserved for

future research.

We use the location of vertical transitions to truncate the affected facet polygons at the location

of the step edge. This edge is then projected into the planes of the two classes bordering the

vertical transitions, and a vertical facet representing the height transition is created using these

projected edge lines in each plane.

If all DLS’s are found, the above approach works quite well. However, in cases where multiple

DLS’s are present in a single split segment but are not distinguished by the sleeve algorithm, the

process fails according to one of two failure modes. Consider the house shown in Figure 4.32.

The L-shaped split segment highlighted in yellow is composed of two DLS’s, a vertical segment

(representing the intersection of planes) and a horizontal one (the vertical transition). If both of

the DCS’s are detected, the reconstruction proceeds smoothly. However, if either the data density
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Figure 4.33: Two potential outcomes of an undetected DLS.

of the pixel density of the R1 image is small relative to the size of the DLS’s, we may only detect

a single DLS. In this case, that DLS is determined to either represent a vertical transition or an

actual intersection of planes. In the former case, we get the result shown in Figure 4.33 (a). Here,

the split segment is thought to be a vertical transition, so the line best fitting the edge pixels is

used to define the edge. When working with facet A, this edge is extended such that it spans P1

to P3. Since the nearest intersecting DLS for facet B is different, when working with this facet

the extension only covers the length P1 to P2. The A and B facets will then be defined in such

a way that they do not fit together properly. Additionally, P1 is higher when projected onto the

B-facet than it is when projected to facet A, but P2 and P3 are lower when projected to facet B.

This translates to an instantly-recognizable error in the final reconstruction.

The second failure mode is if the DLS is determined to represent an intersection of planes, as

illustrated in Figure 4.33 (b). In this case, neither facet A or facet B will be able to be reconstructed.

Consider the case for facet A. If we start at P1 we may start computing edge intersection points

working counterclockwise through segments 1 through 4, then proceeding to the vertical transi-

tion edge. However, the vertical transition edge and segment 4 do not intersect, so the process
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breaks down. A similar situation occurs for facet B.

In order to rectify either failure mode, we perform a check on the line fitting through the edge

pixels. If the location that this line intersects the adjacent segments is far from the actual edge pix-

els (we use a 1m threshold), the user is flagged and given the opportunity to split every segment

of the problem facets into multiple DLS’s. Although have had some success with automatically

rectifying this situation by using additional heuristics, these fixes are not yet robust. As such,

manual intervention is still preferable.

4.6.5 Refining Building Models Using High Resolution Imagery

Once a building has been reconstructed using lidar data, refinements may be made by incorporat-

ing information from other image modalities. Several references (see [Schenk and Csatho 2000],

for example) recommend the use of high resolution frame array imagery, as the information con-

tained in such images is often complimentary to the lidar data. As a case in point, 3D position

information is easily obtained from the lidar data, while definitive features such as edges and ver-

tical transitions are usually better represented in more conventional image types. Unfortunately,

the research in fusing these modalities usually concentrates on the theoretical benefits of such a fu-

sion, while there is comparatively little work detailing implementation methods. However, before

we can effectively fuse information from the two modalities, we require a more precise registration

between the datasets than was achieved during the coarse registration done in Section 4.3.

4.6.5.1 Registering 3D Lidar Data to 2D Frame-Array Imagery

As noted above, the first step in fusing the two modalities is to perform a precise geometric reg-

istration of the data sets. That is, we need to find a pair of transformations that permit us to take

a 2D image feature and determine it’s position in 3D space (relative to the lidar data), as well as

transforming 3D lidar information into the 2D image space. The first transform may be found

by projecting rays from the camera center through the feature of interest out into 3D space. If
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Figure 4.34: Features arising from the intersection of planes: (a) Points and (b) Line segments.

we then have additional information telling us what location along this projection is needed, we

may uniquely determine the 3D location of a 2D image feature. The additional information may

come from several sources. In certain cases we may have two or more images, each containing the

feature of interest. By back-projecting this feature from all images, the intersection of the surfaces

represents the location of the feature in 3D space. When using point features, this is the standard

photogrammetric solution. If we only have one image, but can constrain the location of the fea-

ture, we may also be able to uniquely determine its position. If either the range of a given point

from the camera center or the plane in 3D space upon which the feature lies is known, we may

also derive a unique solution.

Going the other way, it is easy to see that the transformation projecting the 3D lidar space into

the 2D image space is simply the camera matrix P defined in Section 2.2. That is, assuming a

central projection-type frame array camera, we may determine the corresponding image location

for any 3D feature by using the collinearity constraint given that we know the camera’s IOP and

EOP. Therefore, in order to precisely register the lidar data to the frame array imagery, we need to
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determine P.

If we assume that the internal camera parameters are known, the traditional approach to deter-

mining the EOP (and hence the registration) would be to manually select homologous image and

lidar data points, then perform a standard resection. Since the initial building model is derived

in the 3D lidar space, we may opt to use point locations on this model instead of from the actual

lidar data. If the model points correspond to locations where planes intersect, and the planes were

robustly fit to the data using RANSAC, these points will be very accurate. Therefore, model points

would be selected from internal points of intersection, and not from external boundary corners or

vertical transitions.

This idea was extended by [Habib et al. 2005] and [Ma 2004] to use linear features in place

of point features. As can be seen in Figure 4.34, in many cases there are more of these internal

linear features than point features. They also have the added benefit of being easier to extract in

the image sets. Both of these references use a traditional Euclidean development to perform the

resection using linear features. However, as is discussed in [Hartley and Zisserman 2003], such a

solution may also be done using homogeneous coordinates.

Following Hartley’s development, if we are given a set of point correspondences Xi ↔ xi, by

the collinearity constraint we have the following system of equations:
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where xi = (xi, yi, zi) is the homogeneous representation of the image point, Xi is the point in P3,

and PiT is the ith row of P. Since the third equation is linearly dependent on the other two, we may

shorten this to
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= 0, (4.30)

Next, we obtain a 2n× 12 matrix A by stacking up the above equations for n point correspon-

dences (n ≥ 6). P is then obtained by finding the right nullspace Ap = 0, where p contains the

elements of P rearranged into a 12× 1 vector. In the over-determined case (n = 6), a least-squares

solution may be found through the standard SVD-based approach.

In addition to resectioning via point correspondences, we may also use this approach to de-

termine P from a set of 3 or more line correspondences. The plane formed by back-projecting an

image line l is π = PTl. Therefore, the condition that a point Xj lies on this plane is given by

lTPXj. If we do this for two points X0 and X1, those two points define a line in P3. Therefore,

two equations are obtained for each line correspondence, so stacking 3 equation pairs permits a

solution for P.

Given a single point Xj = [x, y, z, w]T on a line in the 3D world coordinates and corresponding

line l = [a, b, c]T in the image, we thus may build a single equation to stack into A according to

[
a b c

]




P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16







x
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w




= 0 (4.31)

which yields

[
ax ay az aw bx by bz bw cx cy cz cx

]



P1

P2

P3




= 0. (4.32)
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This linear method of solving for P is termed the direct linear transform (DLT). However, rather

than applying this technique as written, a few additional points should be highlighted. First,

as noted in [Hartley 1997], data normalization (pre-conditioning) is crucial when working with

such an SVD-based algorithm. This normalization may be carried out according to the methods

discussed in [Hartley and Zisserman 2003]. Second, the DLT seeks to minimize the norm ||Ap||,
an algebraic error metric that does not necessarily minimize the residual error in a geometric or

statistical sense. In the previous reference, Hartley also discusses several additional (non-linear)

algorithms that address this issue. Many researchers have concluded that it is often best to use

the DLT to provide an initial estimate of the solution, then use a nonlinear technique to refine

this solution. However, for the initial work done in this research, only the linear solution was

implemented.

4.6.6 Building Edge Refinement

Once we obtain P in the method defined above for each frame image, we may project line segments

detected in these images in the lidar space. If two images are present, a unique solution may be

obtained using the geometry illustrated in Figure 4.35 (a). This is the approach taken by [Ma

2004]. By using two images, an explicit definition of the edge line may be found in 3D space

without any reliance on the building geometry. However, since we do know the equation for the

planes in which each roof facet lies, in this research we obtain the modified edge location using

the geometry of Figure 4.35 (b). This permits us to adjust our edges and vertical transitions when

only a single high resolution image is available.

In order to find the linear equation for the new edge, we simply take the plane representing

the back-projected line π = PTl and intersect it with the plane containing the roof facet of interest.

The endpoints for the 3D line segment are then obtained by intersecting this new edge with other

edge lines, which themselves may be back-projected lines from images.
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(a) Traditional dual image approach

(b) Single image approach

Figure 4.35: Improving edge locations with high-resolution imagery.
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4.7 Spectral Assignment

In order to assign material properties to the objects in the scene, we need to build a set of spectral

reflectance curves for each material. There are two primary ways that this may be accomplished.

When quality hyperspectral data are not available, or the spatial resolution is such that the materi-

als of interest are significantly sub-pixel, it is usually preferable to use the available image data to

select the best reflectance spectra from a previously collected spectral library. However, when high

SNR hyperspectral imagery is available with sufficient resolution to have fully-resolved pixels on

each material type, the reflectance spectra may be estimated directly from the imagery.

It should be emphasized that the spectral radiance received by the sensor is not solely based

on the reflectivity of the material being imaged. Rather, the received radiance is dependent on the

radiation incident to the target, which is then reflected and modified by the atmosphere. These

effects must be compensated for before reflectance values may be obtained from the received radi-

ance values. There are many methods of performing atmospheric compensation in the literature.

Physics-based models of the atmosphere such as the Moderate Resolution Atmospheric Trans-

mission (MODTRAN) [Berk et al. 1998] can be used to predict its radiative transfer properties,

thereby permitting a ground-based reflectance to be converted to a sensor-reaching radiance or

calibrated radiance values to be converted into reflectance units. The Fast Line-of-sight Atmo-

spheric Analysis of Spectral Hypercubes (FLAASH) [Adler-Golden et al. 1999] and the University

of Colorado’s Atmospheric Removal (ATREM) [CSES 1999] use an approach along these lines.

However, as noted in [Schott 2007], if large (approximately 3 times the ground instantaneous

field of view), near-Lambertian ground panels of known reflectance are available, one of the most

attractive techniques for recovering reflectance values from the sensed spectral radiance is through

the Empirical Line Method (ELM).

To perform the basic ELM per [Schott 2007], we assume a received radiance model of

Lsensor =
(

E′s cos θτ1

π
+ F · Ld

)
τ2r + Lu, (4.33)
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Figure 4.36: Definition of angles.

at each wavelength, where E′s is the direct exo-atmospheric solar irradiance, Ld is the downwelled

radiance, F is a shape factor between 0 and 1 used to scale Ld based on the percentage of sky seen

by the target, τ1 is the sun-target path transmission, τ2 is the target-sensor path transmission, r

is the target reflectance, and Lu is the upwelled radiance. θ is the angle between the target-to-

sun vector (s) and the target’s normal vector (n), and is effectively the angle at which direct solar

irradiance is incident upon the target. As such, this angle is the same as the solar zenith angle (σs)

for a horizontal target. This geometry is illustrated in Figure 4.36.

The atmospheric calibration may then be achieved by noting this model is linear with respect

to reflectance,

Lsensor = m · r + b. (4.34)

Thus, the slope (m) and intercept (b) may be determined through a regression with known re-

flectance values for each band. Frequently, these known reflectance values are obtained via ground

measurement of reflectance panels, and in the traditional implementation, both b and m are as-

sumed to be constant throughout the scene.

This concept is illustrated for a single spectral band in Figure 4.37 (a). In this figure, the re-

ceived radiance for a highly reflective target (Llight) and the radiance for a less reflective target
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(a) (b)

Figure 4.37: (a) Illustration of the ELM concept for a single spectral band , and (b) modifying the
ELM slope based on target orientation.

(Ldark) are indicated, as are the known reflectance values for each of these materials. By fitting a

line through these two points, we have effectively created a function that allows us to convert any

other received radiance value Li (in the specified spectral band) to its reflectance value ri.

4.7.1 Using Geometric Information to Improve the ELM

In the traditional ELM solution, all ground points are typically assumed to lie in the horizontal

plane. However, when lidar data or other three-dimensional information is available, improved

results may be obtained by using proper angular values (θt) and shape factors (Ft) at each target

point being considered. To illustrate how we may take these parameters into account, consider

Figure 4.37 (b). Assume we have arrived at the ELM solution represented by the blue line by

considering points on light and dark calibration panels, each lying flat in a horizontal orientation.

If we then consider target of interest with a received radiance of Lj, using the standard ELM

solution would yield a reflectance value of rmid for that material. However, if the target were

oriented such that its normal-to-sun angle (θt) is larger than the calibration panel’s normal-to-sun
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angle (θc), we would actually expect the target to have a higher reflectance than is yielded by

the standard ELM. This is easily understood, as the reflecting material would have its received

radiance lowered (to Lj) due to the increased area effect caused by the larger θt value. In order to

compensate for this effect, we would need to reduce the slope of the ELM regression line when

processing the pixel related to this target. This is illustrated by the green line in Figure 4.37.

Similarly, for targets that face the sun more than the calibration panels do, we would need to

increase the ELM slope in order to reduce the resultant reflectance value. This is illustrated by

the red line in the same figure. It is also desirable to modify the ELM slope to account for various

target shape factors Ft, which may differ from the shape factor for the calibration panels, Fc.

In a manner analogous to that given in [Schott 2007], we may compute the updated ELM slope

value mt for a given target if we know the original ELM slope m, θt, θc, Ft, Fc and the ratio of

downwelled radiance to total received radiance at the target, l. This is accomplished by applying

mt =
(

(m− l ·m)
cos θt

cos θc
+

Ft

Fc
· l ·m

)
, (4.35)

where

l =
Ld

E′s cos θcτ1π−1 + Ld
, (4.36)

and then completing the ELM solution according to

r =
Lsensor − b

mt
. (4.37)

If true values of F are not available, [Piech and Walker 1971] give the following approximation for

a point on a sloped plane whose normal vector is an angle σp away from zenith:

Fp ≈ 1− 1
2

cos(
π

2
− σp). (4.38)

In practice, l is ideally obtained through a field measurement at the time of the collection.
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However, if such a measurement is not feasible, this ratio may be estimated either through at-

mospheric propagation models such as MODTRAN or through in-scene techniques such as that

presented in [Piech and Walker 1974]. An alternate method for estimating this ratio is also avail-

able if fully-resolved pixels of a Lambertian material are available on two planar faces with known

orientations (such as a residential roof structure). In this case, the ratio l may be determined at each

wavelength by setting the reflectance values of the two planar faces equal to each other. That is,

we establish

[(m− lm)k1 + F1lm][L2 − Lu] = [(m− lm)k2 + F2lm][L1 − Lu] (4.39)

at each wavelength, which yields

l =
k1(L2 − Lu) + k2(Lu − L1)

(k1 − F1)(L2 − Lu) + (k2 − F2)(Lu − L1)
(4.40)

where

k1 =
cos θ1

cos θc
, k2 =

cos θ2

cos θc
, F1 =

Ftarget 1

Fc
, F2 =

Ftarget 2

Fc
. (4.41)

In this development, θi is the angle at which the solar irradiance is incident upon the ith facet

(i = 1, 2), and Li is the received radiance from a pixel on the image of the ith facet. When ap-

plying Equations 4.35, 4.37 and 4.40, we have termed the solution the geometrically-compensated

empirical line method (GC-ELM).

4.7.2 Brightness-Derived Orientation Mapping

If the orientation angles needed for the GC-ELM are unknown, this geometry may be estimated

from image brightness values if multiple images are available and certain constraints are met.

This approach is termed Brightness-Derived Orientation Mapping (BDOM), and it is essentially a

shape-from-shading approach to estimating a plane’s azimuth and elevation angles. Two cases of

this approach are presented below. The first, termed known/unknown, assumes that the orientation

of one of the surfaces is known, and we solve for the orientation of the second surface. In the
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(a) (b)

Figure 4.38: BDOM cases: (a) known/unknown, and (b) Rooftop. Check indicates the orientation
of the surface is known, while ’?’ indicates that it is not.

second case, termed rooftop, we do not know the absolute orientation of either surface, but we

establish a constraint on the relative geometry of the two surfaces. These two cases are illustrated

in Figure 4.38.

In order to complete the BDOM derivation, a simplified radiance propagation model is re-

quired. Typically, at higher wavelengths (above 1 micron), both the Ld and Lu terms from Equa-

tion 4.33 become negligible compared to the direct solar term. This is illustrated in Figure 4.39,

where we plot E′sτ1π−1/(Ld + Lu) versus wavelength. The data for this figure was obtained from

a DIRSIG simulation, where a mid-latitude summer/rural atmosphere was specified.

With the contributions of the downwelled and upwelled radiances removed, Equation 4.33 is

simplified to

Lsensor =
E′s cos θτ1τ2r

π
= A cos θr. (4.42)

We now need to assume that we have a Lambertian material with reflectance r at two locations

a and b, and each location is on a separate planar surface. These locations are imaged at times t1

and t2 to provide four brightness values, La1, La2, Lb1 and Lb2. Since the reflectance of each point
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Figure 4.39: The ration of direct solar to downwelled plus upwelled radiances as a function of
wavelength.

is the same, we are able to write two equations

cos θai =
Lai cos θbi

Lbi
. (4.43)

where i represents either the image at t1 or t2.

For the first BDOM case (known/unknown), we assume the orientation of one of the planar

faces (assume location b) is known (often this surface is assumed to be horizontal). Therefore, if

we know the solar geometry at both t1 and t2, we may easily determine θbi. This information is

then used to solve for θa at each imaging time, which may subsequently be used to determine

two azimuth/elevation angle pairs, each of which is a valid solution to the equations. The actual

orientation of the unknown facet will be one of these solutions.

We may conceptualize the geometry according to Figure 4.40. The image at time t1 reveals that

the normal vector of our unknown surface is a given angular offset θa1 away from a vector pointing

from the unknown facet towards the sun. That is, the potential orientations of the unknown

normal vector sweep out a cone of angular width 2θa1 centered on this solar vector, as shown in

(a). The second image sweeps out a cone of width 2θa2 about the vector pointing to the sun at time
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(a) (b)

(c) (d)

Figure 4.40: Illustration of the BDOM known/unknown case solution: (a) Possible n at t1, (b)
possible n at t2, (c) two solutions for n, (d) two planes intersecting the unit sphere representation .

t2, as shown in (b). In general, these two cones intersect along two lines, and these lines define

the potential normal vectors for the unknown surface, shown in (c). One line represents the actual

orientation of the surface, while the other is an artifact of the ambiguity in the solution. It is fairly

easy to see that if three imaging times are used, this ambiguity is effectively removed.

The actual equations used in isolating the target’s normal vector n = [n1, n2, n3]T given θa1, θa2,

and the two target-sun vectors si = [si1, si2, si3]T for i = (1, 2) are

s11n1 + s12n2 + s13n3 = cos(θa1) (4.44)

s21n1 + s22n2 + s23n3 = cos(θa2)

n1 + n2 + n3 = 1,



4.7. SPECTRAL ASSIGNMENT 141

which actually represent two planes and the unit sphere. As illustrated by Figure 4.40 (d), each

plane intersects the unit sphere along a circle, that when considered with the origin effectively

describes one of the cones highlighted in (a) and (b). The two solution points are where these two

circles intersect, and the vectors described by these two points’ coordinates are the same as those

shown in (c).

The full derivation of the BDOM known/unknown case is straightforward but lengthy, and

the closed form solution is not included here. In practice we have also found that this closed-form

solution may be ill-conditioned for certain orientations. As such, we usually simply cycle through

many combinations of azimuth and elevation candidates until the closest equality for Equation

4.43 is obtained.

For the second BDOM case, we do not require knowledge of either surface’s orientation. How-

ever, we do assume that the two surfaces have equal elevation angles and opposite azimuths (an

offset of π radians). This is the common configuration found on most residential roof structures.

With this constraint, we are able to determine the azimuth and elevation angles of each surface

without ambiguity, provided the Lambertian and other previously noted assumptions are met.

In this case, we again assume four instances of Equation 4.42, one each for brightness values,

La1, La2, Lb1 and Lb2. Assuming unit length vectors, we may therefore write each equation in the

form

Lj,i = Ai(si · nj,i)r, (4.45)

where si represents the vector from the target to the sun at time i, and nj,i is the unit normal vector

for surface location j at time i. Ai is a constant for each time i. These equations may be re-written

in terms of the unknown azimuth (α) and elevation (δ) angles according to

Lj,i

Ai
= si1 cos(αj,i) sin(δj,i) + si2 sin(αj,i) sin(δj,i) + si3) cos(δj,i), (4.46)

where sik represents the kth vector component of s at time i. Equating the reflectances of the two
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roof surfaces at a given time yields the equations

Lbi[si1 cos αi sin δi + si2 sin αi sin δi + si3 cos δi] = (4.47)

Lai[si1 cos(αi + π) sin δi + si2 sin(αi + π) sin δi + si3 cos δi].

Again, the analytical solution of the azimuth and elevation angles from these equations is

straightforward but lengthy, and it will not be included here. Also as before, in practice a useable

solution may be found by cycling through combinations of azimuth and elevation pairs until an

approximate solution is found. We have used Equation 4.47 to define the quality metric q = 1/ε ,

where

ε = |Lb1Q1 − La1Q2|+ |Lb2Q3 − La2Q4| (4.48)

and

Q1 = s11 cos α sin δ + s12 sin α sin δ + s13 cos δ (4.49)

Q2 = s11 cos(α + π) sin δ + s12 sin(α + π) sin δ + s13 cos δ (4.50)

Q3 = s21 cos α sin δ + s22 sin α sin δ + s23 cos δ (4.51)

Q4 = s21 cos(α + π) sin δ + s22 sin(α + π) sin δ + s23 cos δ. (4.52)

Figures 4.41 and 4.42 illustrate the utility of these techniques by example. After creating a sim-

ple synthetic scene consisting of a shed structure and its surroundings (the ’SAS’ scene discussed

later in Section 5.4), a synthetic hyperspectral image of the scene was produced using DIRSIG.

This synthetic image was then processed using the methods discussed above. Figure 4.41 shows

the result of applying the BDOM rooftop approach to two of the roof pixels in the image. As can

be seen in (a), the unknown orientation was determined to have an azimuthal angle of approxi-

mately 40 degrees and an elevation of 20 degrees, each of which was accurate to within 1 degree

of truth. The second plot of this figure shows the relative sharpness of the quality metric’s peak.
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(a) (b)

Figure 4.41: Quality metric q for BDOM rooftop example: (a) Contour plot and (b) 3D surface
plot.

(a) (b)

Figure 4.42: ELM vs. GC-ELM results (DIRSIG simulation): (a) True roof spectrum and
traditional ELM-derived reflectances for north and south roof face, and (b) GC-ELM results.

Once the roof orientations were obtained, atmospheric compensations based on the ELM were

performed. Figure 4.42 (a) shows the true roof reflectance spectra, as well as the results obtained

from a standard ELM process applied to the simulated image. Note that the northern roof face,

whose normal pointed more to the sun, had its reflectance estimates too large, while the southern

face values were under-estimated. Compare this with (b), where the truth spectra is now com-
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pared with reflectance spectra obtained through the GC-ELM approach. Note that at nearly all

frequencies the result shows a marked improvement, and the offset between the northern and

southern roof spectra has been removed.

It should be emphasized that when using the baseline ELM algorithm, the raw digital counts

from the sensor may be used as the effective received radiance values, as the sensed values do

not have to be calibrated for this technique to work [Schott 2007]. This insensitivity to sensor

calibration is also applicable for the GC-ELM and BDOM techniques discussed above.

4.7.3 Additional Considerations

Note that Equation 4.40 assumes that all parameters, including Ld, come from a homogeneous sky.

In practice, the atmosphere is not uniform for all pixels in an image, and at a given location, the

reflected skylight is not uniform in all directions. Also, this model does not account for the BRDF

effects of non-Lambertian surfaces. As such the solution provided is merely an approximation to

the actual material reflectance spectrum. As noted before, we may also use a tool such as FLAASH

to perform our atmospheric compensation. When the input parameters to FLAASH are available

and the hyperspectral imagery is well calibrated, this approach may be preferable. However, with

many of the datasets used for this work the spectral calibration was suspect. As such we often

had difficulty in getting FLAASH to yield reasonable results.

Instead of using the atmospherically-compensated spectra directly, we also have the option

of using the sensed data to select spectral curves from a previously defined spectral library. To

do this, we first atmospherically compensate the data. We then separate the scene into multiple

class types using a supervised minimum Mahalanobis distance classification. Typically, the ENVI

image processing tool is used for this purpose. Each material type is then matched to a library

material type according to which library spectral curve best fits (in a Euclidean distance sense)

a locally-averaged spectrum (within a 5× 5 pixel window) for that material. This approach pro-

duces spectral results that are more in line with the current scene production process. However, a
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drawback is that the scene being considered has a limited spectral set with which to work.

DIRSIG assigns spectra to spatial regions in the scene using two complimentary methodolo-

gies. The first of these is on a single material per-facet basis, where material types and corre-

sponding reflectance spectra are directly assigned to object facets. This approach is used to assign

spectra to building roof facets and other objects in the scene.

The preferred method of assigning ground spectra to the DIRSIG terrain model is through

the use of spectral material and texture maps. In order to specify spectra using this approach, a

spectral classification routine is used to assign a material identification index to each location of

a chosen facet or group of facets. A texture image is then used to select an appropriate spectral

curve from a library of spectra of that particular material type for each location on the facet. As

such, two adjacent roof shingles may both be classified as ”type 1 asphalt roof shingles”, but their

assigned spectra may be different due to differing gray levels in the texture image.

In order to fit a material map based on a frame-array image to a vertical building facet, per-

spective effects inherent to the imaging process must first be removed. Each point correspondence

matching a specific image location to a CAD vertex produces two constraints on the projection

needed to orthorectify the image of the facet. As such, four point correspondences allows the re-

covery of the projection matrix defining the perspective effects, as well as the inverse transform

which can remove them. Applying this inverse transform to all pixels belonging to the facet of

interest yields the desired orthographic view of the planar feature.

Typically, we generate material maps for the terrain via a supervised classification of a nearly

orthonormal RGB or spectral image. An unprocessed image of the same type is often used for the

terrain texture image. For building surfaces, oblique views of RGB images are reprojected such

that the facet of interest matches the geometry of the CAD model. Currently, the features used

to determine the appropriate projective transform are derived manually, but research to automate

this process is ongoing.
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4.8 Alternate Methods: Missing Image Modalities

Up to this point, we have assumed the availability of high resolution lidar data, nadir looking

frame-array imagery, obliquely orientated frame-images, and well-registered hyperspectral data

with a ground sample distance (GSD) smaller than the model facets. However, in most practical

cases, these data are not usually all available. Frequently, the hyperspectral information will have

a GSD larger than the largest building in the scene, or it may have serious registration artifacts.

In other cases, hyperspectral information may not be available at all, and we may have to do the

best we can with limited-band multispectral images or no spectral information at all. Perhaps

even more significant to the presented process, even with the recent proliferation of lidar sensors,

many data collects are restricted to passive imaging sensors. In order be able to build scenes when

confronted with these reduced data sets, this section presents some strategies for modifying the

previously-discussed process. It should be noted when we consider what image types we might

have available for a given data collection, the number of potential combinations is extremely large.

To this end, the following does not attempt to cover every possible case; rather, general strategies

are presented, and it is up to the user to intelligently decide how to best use the available data in

any specific scenario.

4.8.1 Degraded or Missing Hyperspectral Imagery

If high resolution, well-calibrated, hyperspectral radiance images are available, we may assign

spectra as described earlier, where the sensor is used as a field spectrometer. In this case, the

received radiance values are converted to reflectance curves using an approach such as that used

by FLAASH [Adler-Golden et al. 1999], and these reflectance curves are assigned to the various

objects or locations in the scene. If the hyperspectral imagery is not well calibrated, we may still

use the sensor as a spectrometer if we know (or can estimate) two or more spectra in the scene. This

is when techniques such as the standard or geometrically-compensated ELM become attractive.

If the hyperspectral imagery is not well calibrated and has poor noise performance, we will not
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usually want to use the data to directly define reflectance values. Rather, we use the compensated

imagery to pick appropriate reflectance spectra from a library of previously measured materials.

In this research, this was done when using MISI imagery by first mitigating atmospheric effects via

an ELM, then choosing a material type by minimizing the Euclidean distance (or spectral angle in

some cases) between the compensated imagery and a set of library spectra. The library spectra are

grouped into various material types, where each material type is populated by multiple spectral

curves. Each image pixel is matched to a particular library curve, but only the material type for

that particular curve is used. For a given material class (as defined by a material map), facet

or object in the scene, the material type is then chosen according to which material type is most

frequently chosen in the matching process. Individual spectra are still assigned through the use

of texture images and are not dependent on the hyperspectral imagery.

If the hyperspectral imagery has a large GSD (larger than most building roof facets, but smaller

than the local regions defined by the material map), it may still be used to define reflectance curves.

In regions where the scene does not contain any objects (such as large grassy patches), the spectral

imagery may be used as though it had a small GSD. In cases where subpixel objects are present in a

larger background region, a few options are available. First, a standard spectral unmixing process

could be performed at these locations using a selected few library spectra as endmembers. An

alternative approach is to use a physics-based, radiance space approach such as that presented

in [Healey and Slater 1999], [Ientilucci 2005], and [Foster 2007]. This concept will be further

explored in Chapter 7.

In addition to the use of hyperspectral data for the definition of spectral reflectance properties,

the baseline process also advocates the use of this data for creating the material map. In many

cases this is possible even if this data is noisy or uncalibrated, as we may often be able to perform

a simple supervised classification without concern for the absolute nature of the underlying data.

However, if the hyperspectral data is not well registered to the other data sources, we will often

have to use other image sources (such a multispectral, or even RGB imagery) to produce this map.



148 CHAPTER 4. APPROACH

In many instances where we need to use RGB imagery for the material map, a simple supervised

classifier using distance metrics on the spectral feature vectors will not produce adequate results.

In these cases, using a standard color segmentation routine (such as found in [Hill et al. 2003]

or [Santos et al. 2007]) should be applied to the imagery. The user is then required to manually

combine classes as appropriate. Although this process loses much in terms of the automation, in

practice, little time is lost, and an accurate material map may usually be created in a matter of

several minutes.

4.8.2 Only Lidar Data is Available

In many cases, most of the scene reconstruction may still be performed semi-autonomously if

the only data available is the lidar point cloud. In this scenario, the DTM extraction process is

unchanged. The initial tree/building may still be performed using the GML classifier. However,

without the subsequent NDVI refinement, additional steps may need to be performed to properly

isolate trees that are adjacent to buildings. The fundamental problem is that most of the features

used by the GML classifier are derived using a local window, so the inherent blurring may cause

tree and building regions to mix at the building boundaries. This is especially true since the

building boundaries already have significant ’tree-like’ properties than would be desired due to

the rapid height variation when transitioning from the building roof to the ground. In this work,

we have opted to refine building/tree boundaries via a manual region-of-interest (ROI) selection

process, although the use of intensity data to refine edge features has also shown promise. The

intensity value is not averaged over a small region, and therefore fine detail may be extracted if

the building roof and adjacent tree points have significantly different reflectance properties at the

wavelength used by the laser scanner.

Buildings are reconstructed using the described method, although the photogrammetric edge

refinement stage is omitted. Individual trees are selected from a library using parameters ex-

tracted via the generalized ellipsoid model. The tree models are then scaled so that they match
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the ellipsoid height and width parameters. For clustered trees, a standard watershed analysis is

performed on a blurred version of the rasterized DCM to identify tree center and boundary es-

timates, and the boundaries are adjusted so that the individual tree areas fall within predefined

limits.

A material map may be created directly from the lidar data by performing a color segmentation

on a color image where height and intensity values are mapped to the red and green channels.

We have used many different items to populate the blue channel, including zero values, height,

intensity and a ratio of height to intensity, and they have all shown varying degrees of success

depending on the data set being considered. The fundamental goal is to use features than enable

an over-segmentation of the image, then have the user manually combine the segmented classes

as appropriate. The texture image is a finely sampled (0.25m) version of the rasterized IA image.

Without any real spectral information (other than the returned pulse intensity), spectra should be

manually assigned.

4.8.3 Only Passive Imagery is Available (No Lidar Data)

Considering the wealth of geometric information provided by the lidar point cloud, the unavail-

ability of lidar data poses perhaps the greatest hindrance on performing semi-autonomous scene

construction. For the past ten years or so, great progress has been made in extracting DEM prod-

ucts from multiple-view frame images of significant resolution. However, current state-of-the-

art systems are generally still unable to handle full scene generation in an urban environment.

In [Kim 2001] and [Kim and Nevatia 2004], the authors present an approach to semi-autonomous

segmentation of building and tree regions from multiple perspective images using a Bayesian

network, but the general applicability of this technique is still undetermined. As was noted in

Section 4.6.1, several techniques have also been proposed for autonomously creating building

models from stereo image pairs, and a method for producing similar results from standard video

sequences is describe in [Gurram et al. 2007]. Gurram’s approach is to first build a pair (or triplet)
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of parallax-preserving stereo mosaics from the video sequences, then process these mosaics for

3D scene information. Rather than using a standard edge detector for identifying linear features

corresponding to facet edges, he first segments each mosaic based on the approach presented

in [Hill et al. 2003], then attempts to build segment correspondences between the mosaics. For

segments present in both mosaics, the 3D positioning of the segment may be determined, and

coplanar, adjacent segments are merged. A research effort being conducted in parallel with the

one described in this dissertation employs a similar technique applied to standard frame-array

image pairs. Unfortunately, these approaches all suffer from occlusion effects, and may perform

erroneously in the presence of solar shadows, incorrect camera calibration, or mis-segmentation.

These shortcomings are actually some of the primary drivers for the recent push for fusing lidar

data with more traditional photogrammetric techniques.

Since autonomous, purely-photogrammetric techniques are still several years away from work-

ing across generalized scenes, most vendors still perform the majority of their building recon-

struction tasks using photogrammetric software tools that require significant user interaction. It

is expected that as the computer vision and photogrammetric processes advance of the upcoming

years, this will change. However, until these advancements occur, it is recommended that scene

geometric content be derived either through the current DIRSIG procedures or through the use of

the digital photogrammetric tools previously mentioned. Once the geometry has been specified,

the additional scene content may be created using the methods presented in this work.



”No effect that requires more than 10 percent accuracy in measurement

is worth investigating.”

Walther Nernst (1864-1941) German physicist, chemist. Nobel prize,

1920

”They’ve done studies, you know. 60 percent of the time, it works every

time....”

Brian Fantana, from the movie Anchorman

5
Results and Discussion

In this chapter, we demonstrate the approach by applying the newly developed techniques to

several real-world scenes. The first scene we consider is a 26 acre portion of the RIT campus. This

region has a sloping terrain and contains both isolated and grouped trees. It is used to illustrate

a basic implementation of the entire synthetic scene-generation process as well as to analyze the

terrain extraction and tree modeling processes in greater detail. Although there are two buildings

in this scene, they do not have sloped roof surfaces. Therefore, in order to fully demonstrate the

building reconstruction techniques implemented in this work, we consider a second region which

contains two geometrically-complex residential structures. The third scene represents the only

region where we had high-resolution, low-noise hyperspectral imagery in conjunction with lidar

151
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Figure 5.1: RIT scene.

and RGB frame array images. Data collected over this region is used to create a small (1.9 acre)

full-fidelity synthetic scene which is subsequently compared to a synthetic scene produced using

current DIRSIG procedures and tools.

5.1 Illustration of the Process: RIT Scene

The first location we consider is from a portion of the RIT campus, as highlighted in Figure 5.1.

This area covers approximately 390 meters in the east-west direction and 270 meters north-to-

south, and it contains two full buildings, three tree clusters, numerous isolated trees, grass, asphalt

and concrete. The buildings contained in this scene include the Carlson Center for Imaging Science

at the lower left and the Bausch and Lomb Building at the lower right. A third, newly-constructed

building is partially contained at the south-western corner of the scene and is present in the lidar

data, but this building had not been constructed at the time the frame imagery was acquired.

There is more than a 10 meter change in ground elevation throughout the region, and a significant

amount of truth data for this locale has been collected. As such, this has proven to be an excellent

test scene for the techniques implemented in this research.
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The data used in modeling this scene came from the following sources:

• Lidar point data were collected by Leica Geosystems flying a commercial Optech ALS-50

linescanning sensor. Multiple data sets were provided, of which two were selected for

this analysis. The first contains approximately 5 points/m2, but sampling is significant

more dense in the cross-track direction since the east-west flightline was approximately

300m north of the scene being considered. The second data set contains approximately 13

points/m2, and is roughly uniform in both the in- and cross-track dimensions. Multiple-

return range and intensity data were provided.

• Hyperspectral imagery is from RIT’s Modular Imaging Spectrometer Instrument (MISI), the

70-band VNIR linescanning spectrometer with a 3m ground resolution described in Chapter

2. Low temporal resolution GPS information (one update per second) was available for this

image, but the complementary inertial measurement data describing the aircraft orientation

contains only roll and pitch data. At the time of this collection, MISI’s navigation system did

not record yaw data.

• Color imagery was provided by the Wildfire Airborne Sensor Program (WASP) high-resolution

(half-meter) RGB frame-array sensor. Although this camera was co-mounted with three

lower resolution (3m) IR cameras operating in the short-wave, mid-wave, and long-wave

regions, only the RGB imagery was used for this scene. This sensor was introduced in Chap-

ter 2.

The primary reason for selecting this scene for our initial modeling effort was to investigate the

performance of the slope-based DTM extraction technique described in the approach. However,

due to the rich features in the area, this region has also proven to be an excellent candidate for

demonstrating a basic implementation of the entire synthetic scene construction process. There-

fore, the remainder of this section will show how the presented techniques may be used to rapidly

construct a simple, yet physically-realistic model of the scene. For this initial demonstration, we
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will not attempt to use high fidelity models at each stage. Rather, the focus will be on showing

the general framework of the approach and a basic output of each step. Construction of a higher

fidelity scene will be addressed later in Section 5.4.

The baseline result considers all points from the lower density lidar data, but points with

identical (x, y) coordinates were filtered so that only the highest of these points was retained. The

filtered point set was subsequently rasterized by performing a bilinear interpolation to a grid with

0.5m x 0.5m pixels. This resulted in the RA image shown in Figure 5.2 (a). In this figure, the x-

and y-axes represent the pixel coordinates in the Universal Transverse Mercator (UTM) Zone 18

projection (after subtracting 280,000 from the easting coordinate and 4,770,000 from the northing

coordinate to ease the notation), a system where the coordinates represent the offset in meters from

a given origin for each zone. The elevation (height) values (z-axis) are indicated by color, where

dark blue represents lower points and red higher points. These elevation values are in meters

above the geoid.

We then applied the slope-based terrain extraction algorithm. This was done by defining a 35

meter radius, conical structuring element with a slope of 20 degrees, then eroding the RA image

using a grayscale morphological operation. Pixels in the RA image more than 0.5 meters above

the corresponding pixels in the eroded image were then flagged as non-ground pixels. The pixels

were then re-organized as points at the grid locations, and the non-ground points were removed

from the point list. The remaining (ground) point were then re-interpolated to the 0.5 m raster to

produce the rasterized DTM. The result of this process is given in Figure 5.2 (b), and the pixels

removed in the process are given in (c).

Note that all building and tree points have effectively been removed and replaced with inter-

polated values. Additionally, many of the smaller structures such as vehicles and shrubbery have

also been eliminated. Since the removed points were filled in with a bilinear interpolation of the

surrounding points, the outline of these features is still discernible to the human observer. This

is because the local height variations in these regions is lower than that of the terrain in general,
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(a) (b)

(c)

Figure 5.2: Terrain extraction: (a) Original RA image (b) Extracted DTM using slope-based
approach (c) Location of pixels removed in creating the DTM.

and the texture difference allows us to perceive the object locations. This effect may be reduced by

passing the resultant DTM through a low-pass filtering operation, but this comes at the expense

of reduced fidelity in regions of relatively rapid terrain transitions. Also, in many cases this is

not needed, as many of the objects will be modeled and inserted at these locations in the final

simulated scene.

In order to use this extracted terrain model, it has to be converted to a DIRSIG-compatible

format. DIRSIG accepts object in either the wavefront ’.obj’ format or the DIRSIG specific ’.gdb’

format, although in each of these cases, a material identification index number has to be associated
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(a) (b)

Figure 5.3: Initial tree/building segmentation: (a) Entropy image (b) Extracted tree regions using
only the entropy texture metric.

with each facet. In this work, material ID ’100’ was assigned to each facet of the terrain using

DIRSIG’s Bulldozer tool. Bulldozer accepts .obj, .gdb, and autoCAD .dxf files as input, and allows

the user to specify material IDs to these files at either the object or facet level. The file is then saved

in the .gdb format which will be referenced in the .odb file that consolidates the scene geometry. It

should be noted that in some cases, the Matlab code generated for this work created .obj files that

technically fit the wavefront specification, but were unable to be opened by Bulldozer. In these

cases, the .obj files were first opened in the Rhinoceros CAD tool, and immediately re-saved as

an .obj file. This process effectively converts all of the resultant .obj files into a format compatible

with Bulldozer. In future work, the terrain model (and other CAD objects) will be stored directly

as .gdb files without the need to convert them using other software utilities.

Once the terrain model has been obtained, the next step is to subtract the DTM from the R1

or Rmax image and produce a NDEM. NDEM points higher than 2 meters are then flagged as ’ob-

jects’, and need to be classified as either building or tree. For the simple case of using a single

texture feature, the GML classification process discussed in the approach is reduced to a simple

thresholding operation. In many cases, this is enough to provide a decent separation of the build-
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ings from the trees, with the exception of those trees which are adjacent to buildings. For the RIT

scene we used the entropy image (Figure 5.3 (a)) for this purpose, and the resulting initial tree

locations are shown in Figure 5.3 (b). Note that all trees have been identified, with the exception

of those that are adjacent to buildings. In more complicated scenes, additional texture measures

are often required, and the full (supervised) GML approach must then be used.

Once the tree regions have been identified, individual trees are located via a watershed anal-

ysis. Isolated trees are subsequently analyzed using the generalized ellipsoid model of Equa-

tion 4.18. This model is used to help define height, width, shape and location parameters, which

both enable selection of the proper tree type from a library of tree models as well a a fine-tuning

of these models so that their geometry fits the data as close as possible. In general, as noted

in Chapter 4, a second supervised GML classification may also be performed where the direct

shapes parameters and secondary parameters (such as height to width ratio) are feature vectors

used to classify trees as deciduous or evergreen. However, for this scene, a single tree model (a

red maple CAD object with associated spectral information stored in .gdb format) was used, and

the GML-based classification was deferred the higher-fidelity scene.

Once the trees were specified, the original data points in the ’building regions’ are processed

to extract simple building models. Instead of performing the full intersection of planes building

analysis, for this scene the raw points were used to extract the building boundary, and a simplified

flat roof building reconstruction was employed. This approach is suitable to scenes where precise

building roof models are not required, and the roof facets predominantly lie in planes parallel to

the (x, y) plane. In these cases, the manual intervention required to verify the correct handling

of each vertical transition in the roof structure is not warranted, and a single height value for the

entire roof is used instead. In most cases, we use the median roof height when building these

simplified models.

Although the roof models are simplified to reduce the required manual intervention, the full

robust boundary extraction technique was used. The resultant models were then output in .obj
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Figure 5.4: Simple CAD model of the Carlson building using exterior boundary information and
the median height value.

format, re-saved as .obj files using Rhinoceros, and assigned material indices using Bulldozer. An

example CAD model produced using this streamlined approach is given in Figure 5.4.

In order to obtain spectral reflectance curves associated with each location in the scene, we

next attempted to register the MISI hyperspectral imagery with the lidar data. By using either

a standard ELM approach (GC-ELM was not required since the scene contained few sloped sur-

faces), this imagery was converted to ground reflectance measures. By co-registering the data,

these reflectance spectra could then be used to pick proper materials from a previously-collected

materials database. For the case of low signal-to-noise hyperspectral data such as that provided

by the MISI sensor, this library selection process is usually preferable to directly assigning the

ELM-derived spectra as the reflectance curves for each material type.

To this end, we used the projection approach of Section 4.3.3 to geo-rectify the MISI hyperspec-

tral imagery. The result of this rectification is shown in Figure 5.5. The left image depicts the raw

hyperspectral image as collected, and the image on the right shows the result of projection and re-

sampling one of the data bands. Although the geo-rectified image shows a marked improvement,

a detailed inspection revealed spatial artifacts in excess of 25m throughout much of the image. It

is believed that these artifacts are the result of two main factors. First, the inertial measurement
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(a) (b)

Figure 5.5: Un-registered MISI image (left) and geo-rectified image (right).

unit used for the MISI sensor usually has marginal performance at best, and the sensor drift is sig-

nificantly higher than for the inertial sensors used on the WASP imager. Additionally, at the time

the RIT imagery was collected, the yaw information was not recorded. To compensate for this, a

yaw angle was selected such that final aircraft orientation projected into the (x, y) plane was along

the aircraft flight direction (see Appendix A.2). However, this approximation is rarely valid, as the

aircraft must usually crab (face away from the direction of flight) somewhat to counter the effects

of crosswinds. These angular errors ultimately translate to large positional errors on the ground,

and in the case of the RIT imagery, precluded the use of this hyperspectral data as a co-registered

image for the RIT scene.

Once it was determined that the MISI data could not be easily registered to the other im-

ages, we had two primary options regarding how to proceed. First, we could manually associate
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Figure 5.6: Illustration of lidar/WASP registration.

selected pixels from the MISI imagery to the other data sources, and proceed with the spectral

library selection process. However, given the limited number of materials in the scene, we chose

to pursue a second, quicker option. We decided to simply use the WASP color imagery to create

a material map for the scene, then manually assign material types to each material type present

in the material map. Building materials were attributed manually as well, assigning a single ma-

terial (dark-grey roof material) to the roof facets, and a separate material (red brick) to the wall

facets. The building material were attributed using Bulldozer, while the ground-based material

map assignments were specified directly in the DIRSIG configuration file.

In order to achieve this, the WASP color image had to first be coarsely registered to the lidar

data. For the RIT scene, this was accomplished using a simple point matching approach where

homologous features were identified manually through an interactive GUI. Once the matching

points were defined, we solved for the projective transform that best aligned the points. This

transform was then applied to the entire WASP image. Figure 5.6 depicts the quality of the regis-

tration where the passive imagery has been converted to HSV space, with the lidar height values

scaling the value channel. This registration was accurate to within 4 pixels (2 meters) throughout

most of the scene.

The original WASP image was then processed to obtain texture and material maps. The tex-
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(a) (b)

Figure 5.7: RIT Scene: Texture and material maps.

ture map was quickly obtained by averaging the red, green and blue pixel values at each location,

thereby producing a grayscale image. This image was then registered to the scene using the trans-

form parameters derived above. For the material map, we opted to use a minimum-distance

supervised classification to divide the scene into two classes, vegetation (grass) and asphalt. This

classification was performed using the ENVI image analysis software. After the initial classifica-

tion was performed, isolated pixels that were misclassified were adjusted by median-filtering the

image with a 5× 5 kernel filter. Additionally, the regions previously identified as containing either

buildings or trees were re-classified as grass. This map was also registered to the scene data using

the previously derived transform. Both the texture and material maps used for the RIT scene are

shown in Figure 5.7

Once all of the basic geometry and material files needed to specify the scene had been created,

the geometry was consolidated by creating a DIRSIG ’.odb’ file. This process, while requiring

some manual input, requires little time. Since insertion points for each object were determined

from the geometry, the actual text blocks were autonomously produced during the extraction

process. These text blocks are therefore simply copied to a common file to produce the .odb.

It should be noted that the entire scene construction process, which proceeds from the con-

solidation of image data to creation of the .odb file, took just over 45 minutes. Approximately
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Figure 5.8: RIT Scene: Simulated image of the scene model.

two-thirds of this time was spent on manual processes such as transferring data from one soft-

ware tool to another, and verifying the object geometries in Rhinoceros and Bulldozer. This rep-

resents a significant time savings over current DIRSIG scene modeling techniques, which would

typically require several man-days to complete a scene of this size. However, it should be noted

that a significant time savings and quality improvement was made by already having a library

of tree models and reflectance spectra in hand before beginning the process. Had these not been

available it would have taken an additional 4 hours (or more) to generate a tree model using the

TreeProfessional software, and the manually assigned reflectance spectra obtained from the MISI

imagery would have taken approximately one hour to process, it would have been significantly

noisier, and its range of spectral coverage would have been significantly reduced.

In order to visualize the scene model, slightly more effort is required. The location (filepath)

of all pertinent scene files must be specified manually, and a simulated sensor used to produce the

simulated image must be configured. Material reflectance files must also be associated with each

material ID, and parameters related to the mapping images must also be specified. These are all

performed in the DIRSIG configuration file. Once this file has been created, DIRSIG is executed,
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and a simulated image of the model scene is produced. An example simulated color image of the

RIT scene model is given in Figure 5.8.

In this image, we see that the scene model appears as expected, and that all of the geometries

are proportioned correctly and appear in their proper location. Regarding the spectral character-

istics, the grass and asphalt ground regions have appropriate texture, but no texture is apparent

in the building structures. This is due to the fact the grass and asphalt material types contain

300 spectral reflectance curves each (that is, their associated emissivity files contain 300 emissivity

curves), while the roof and brick material types contain a single reflectance spectra. Therefore,

the texture image is able to drive selection of different spectra at different locations for the grass

and asphalt regions, but the same spectra must be used across all building roof facets. Additional

spectral curves may be simulated even if only a single instance of a reflectance spectra is available

if we can define statistical properties (specifically mean and covariance) of the class. However,

this was not done for the spectra used in this scene. It should be noted when viewing the simu-

lated image that while trees and buildings have been re-created in true 3D, smaller objects such

as vehicles have not. The reason that some of these smaller objects seem to appear in the DIRSIG

image is that they were present in the texture map used for spectral assignment, and the spectral

variations give the appearance of additional objects.

5.2 RIT Scene: Analyzing the Geometric Quality of the Process

5.2.1 DTM Analysis

Although the above discussion yields credence that the proposed approach may actually produce

DIRSIG scenes with little manual intervention, there has not yet been a discussion of how accu-

rate the process is compared to current techniques. To fill this gap, the following sections aim to

analyze the quality and speed of the semi-automated results, as compared to fully-manual ap-

proaches using the software tools currently available for DIRSIG users. The case will be made that
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the new process produces results that are at least as accurate (and in many cases even more so)

than the current methods, and that the new approach is typically an order of magnitude or more

faster than the traditional techniques.

To start this analysis, we consider the approach used to derive the DTM. With the lidar-derived

DTM shown to produce visually-pleasing results in the above example, we next sought to compare

this DTM to one obtained from the USGS database since most DIRSIG scenes have been built

using their 30 meter or 10 meter rasterized DTM products. To this end, we downloaded the most

recent 10 meter DTM product for the greater Rochester region from their website [Survey 2008]

as a GeoTIFF elevation image. We then used the ENVI image processing software to convert

this GeoTIFF to UTM coordinates and extract the local region of interest. While doing this, we

discovered an approximately 185 meter bias toward the south in the USGS product, relative to the

lidar data. Coordinates for features found in Microsoft’s Google Earth imagery [Microsoft 2008]

coincided with those for the lidar data, so the USGS latitude values were increased by 185 meters

so that the two DTMs were registered. The native pixel spacing in the USGS product was 7.54

meters in the x (eastern) direction and 10.29 meters in the y (northern) direction.

In order to compare the USGS product with the lidar-derived DTM, we downsampled the

lidar-derived DTM to the grid locations of the USGS product using a bilinear interpolation. This

permitted us to compare elevation values between the two models at points in which the USGS

product was unaffected by an interpolation. Statistics related to this comparison would represent

those points actually specified by the USGS DTM, and would not be as influenced by small fea-

tures missed due to the USGS DTM’s relative low sampling density. We also sought to compare

the lidar-derived DTM with a version of the USGS product upsampled to 0.5 meter resolution.

This comparison would not only highlight errors where the USGS DEM was defined, but would

also conceivably show the effect of missing smaller spatial features due to undersampling. The

original lidar-derived DTM, re-colored to highlight elevation changes with no buildings present,

is given in Figure 5.10 (a). The upsampled USGS product, the downsampled lidar-derived DTM
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(a) (b)

(c) (d)

Figure 5.9: Comparison of DTMs: (a) DTM extracted from 0.5m raster range image with updated
color scaling, (b) USGS 10m DTM upsampled to 0.5m pixel spacings (c) lidar-derived DTM

downsampled to USGS 10m DTM spacing, (d) USGS 10m DTM at native resolution.

and the original USGS DTM are given in (b), (c), and (d) of this same figure.

Subtracting the USGS product from the lidar-derived DTM gives the error images shown in

Figure 5.10. Image (a) shows the 0.5 meter (lidar-baseline) case, and (b) shows the comparison at

the native USGS resolution. A qualitative comparison of these images shows that largest height

discrepancy is at the location of the Carlson building. The positive value in the error images at

this location indicates that the lidar-derived DTM has a higher value at this position than does

the USGS DTM. It was initially thought that this may be due to the lidar-processing not omitting
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(a) (b)

(c) (d)

Figure 5.10: Comparison of lidar-derived DTM with USGS product: (a) Error image using
baseline lidar DTM and upsampled USGS DTM (b) Error image using downsampled lidar DTM

and baseline USGS DTM, (c) histogram of (a), (d) histogram of (b).

all building points when the DTM was produced, but further analysis revealed that this is not

likely the case. What we believe is occurring is that in the lidar-derived DTM, the points used

in interpolating across the building gap are immediately adjacent to the building, which is at

the highest ground location in the scene. In the USGS product, the building was likely removed

and points some distance away (at lower elevations) were used in the interpolation. This would

translate into lower USGS values across the region being interpolated.

In the higher resolution difference image, we also see that many of the small, rapid terrain
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Table 5.1: Statistics on the difference images: lidar-derived DTM minus USGS 10m DTM (Error
values are in meters)

Metric USGS DTM upsampled lidar DTM downsampled
Mean -0.0243 -0.0270

Variance 0.6398 0.6275
Mean squared error 0.6404 0.6278

Root mean squared error 0.8002 0.7923
Mean absolute error 0.6098 0.5992

changes are missed in the USGS DTM, a fact that is also clearly visible from the smooth nature of

the USGS DTM itself. This effect is not present to the same extent in the lower-sampled difference

image. For a more qualitative comparison, histograms of the difference images were also created,

and are included in Figure 5.10 (c) and (d). The long histogram tail extending beyond 3m repre-

sents most of the error around the Carlson building interpolation noted above. Error in the 2m

range is seen in on a hill in the northeast, as well as a steep slope to the East of the location of the

Bausch and Lomb building. Small hill features that are captured by the lidar-DTM and are missed

by the USGS product are captured as yellowish horizontal lines in the error images, and the lower

parking lot locations are a dark shade of blue. Although it is not surprising to see these features

in the high resolution error image, it is interesting to note their statistically-similar presence in the

lower resolution error image as well. That is, the downsampling of the terrain did not filter out all

of the rapid terrain variations. Statistical metrics related to these difference images are also given

in Table 5.3.

The approximately -2.5 cm mean absolute error (for both pixel sizes) indicates that there is

very little bias present between the DTM products, and that the north-south registration of the

models (with the 185 meter bias) is likely adequate. Also, despite the obvious differences in the

terrain models, the two DTM products are much more similar than they are different. Most pixel

locations are within approximately 60cm from model to model, and the maximum deviation in

regions that will not be masked by building points are around 2m.
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Specifying which product is better for use as a terrain model when building a DIRSIG scene

is a bit more difficult to answer. In some cases, Bulldozer has had difficulty assigning a material

index to a 0.5m resolution terrain model of this size due to the large number of facets, so the

lower density products may be beneficial from than standpoint. Additionally, in many cases, the

scene designer is not interested in capturing every terrain feature, and instead prefers a smoothly

varying terrain to avoid the appearance of facetization in the resultant simulated scene images. In

these cases, the lidar-derived DTM may be smoothed with a low-pass filter, or the USGS terrain

product may be substituted with little hesitation. However, in cases where precise specification

of the terrain variations is important, such as trafficability studies and local floodplane analyses,

the resolution of the lidar-derived DTM becomes significant. The ability to create high-quality

terrain models from remotely-sensed airborne data is also critical when accurate DTM products

are unavailable and ground surveys would be difficult.

Next, we decided to investigate how the rasterized implementation of the slope-based DTM

extraction compares with a similar filter operating directly on the lidar point cloud. Although

working with the raw points means that we no longer may use the highly efficient image erosion

routine for determining non-ground points, we still investigate the point-to-point slopes could by

effectively placing a conic function at each point and determining if any other points fall under

this cone. Figure 5.11 shows the result of this process. Diagram (a) shows an oblique view of the

0.5 meter RA raster image for the square building in the south-east corner of the scene, and (b)

shows the DTM extracted using the rasterized process discussed above. Diagram (c) shows the

(non-interpolated) point data for this same building, connected via a Delaunay triangulation, and

(d) shows the result of DTM extraction without interpolation. Of note is the obvious gap present

at the object locations in (d). While the raster implementation requires interpolated values across

the location of the non-ground points in order to maintain its grid-based (matrix) form, the point-

based approach is able to remove non-ground points from the list without inserting additional

values. It is also able to eliminate any potential errors caused by the original interpolation of the
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(a) (b)

(c) (d)

Figure 5.11: Raster versus point-based terrain extraction: (a) original raster range data (b) DTM
obtained via slope approach applied to raster image and interpolating values to the non-ground
pixels, (c) original point data, and (d) DTM obtained via slope approach applied to point data.

data. However, it remains to be seen how these potential errors affect the final terrain model.

In order to answer this question, the raster DTM elevation values were interpolated to the

locations of the raw terrain points. The point elevation values were then subtracted from the re-

interpolated raster values in order to produce difference statistics. A histogram of these difference
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Figure 5.12: Comparison of raster and point-based DTMs: Histogram of difference between
raster DTM and ground points at ground point locations.

values is included in Figure 5.12 (a). As can be seen in this figure, the vast majority of raster DTM

points fall within 0.5 meters of the raw point values, but there are a small number of outliers in

which the difference between the terrain models approaches one meter. Differences between the

images arise for numerous reasons. Interpolation may cause rapid height variations in the raster

image, such that points may be removed from this image but not in the corresponding locations of

the point set. The undersampling in these regions may then lead to offsets. On the other hand, the

interpolation may also remove some of the point-to-point transitions that are significant enough

to identify object points. In these cases, the raster version would not flag an object as being present

at that location, but the raw points would. In either case, baseline truth should be taken as the raw

point values. However, this increased accuracy comes at a price. When using a 35 meter radius

conical structuring element on this small (14,424 point) data set, the 0.5 meter pixel raster-based

approach takes 5 seconds to perform the interpolation and 10 seconds to perform the filtering,

while the point based approach takes over 665 seconds.
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As was shown above, even with small scenes, the process of extracting the DTM can take a

significant amount of time. For larger scale scene geometries, such a process could potentially

dominate the computational requirements. To this end, we decided to investigate the time re-

quired to extract terrain models given multiple scene sizes and multiple structuring element sizes.

The baseline would be based on the raster approach, but results would also be run for the point-

based filtering.

To determine the computational requirements, three subsets of the lower point density RIT

lidar dataset were processed. The first set includes the entire RIT region of interest that we have

used this far in our discussion, which is roughly 390 meters east-to-west and 270 meters north-

to-south, and contains 183,733 raw data points. The second set includes a strip spanning the full

width of the scene, but only spanning approximately 85 meters in the north-south direction. This

set includes both buildings, and has 59,834 points. The final set that was used is the small example

scene containing the 14,424 points shown in Figure 5.11 (c). Results for the raster DTM extractions

are given in Figure 5.13. Part (a) gives the processing time as a function of pixel size (sampling

density for the interpolation) for the operations that are not dominated by the pixel size. These

include building the conical structuring element, performing the erosion of the range image, and

interpolating across the removed pixels. A 35 meter structuring element is assumed. Part (b)

yield similar information, although this plot includes the total processing time for all operations,

including reading in the data and removing duplicate (x, y) points. As can be seen, for all three

scene sizes, the processing starts to become significant for pixel sizes below 1 meter, and below

0.5 meters, they become increasingly prohibitive. Not only are the processing times significantly

longer with increasing pixel density, but the memory requirements are increased as well. For the

larger scene case, with a structuring element radius of 35 meters, the final interpolation failed due

to memory issues in the 0.25 meter pixel case (3GB RAM using Matlab).

Figure 5.13 (c) shows the increase in computation time as a result of varying the structuring

element radius for the mid-sized dataset with a pixel size of 0.25 meters. We see from this plot
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(a) (b)

(c) (d)

Figure 5.13: DTM extraction processing times: (a) Raster-based as a function of pixel size, only
includes times for generating the S.E., eroding the image, and interpolation (b)Raster-based as a
function of pixel size, total time, (c) Raster-based as a function of structuring element radius, (d)

Raster and point-based as a function of structuring element radius (two scene sizes used).

that as the structuring element radius is reduced, significant time savings may be realized. This

comes at a small price, however. Without additional processing, the structuring element radius

must be at least half the size of the largest building, or else points towards the center of the build-

ing may not be flagged as being non-ground. However, in many cases, these internal points may

be removed by applying additional heuristics that compare the height of ’ground’ points that are
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completely surrounded by non-ground points with the height of the non-ground points them-

selves. If they are of comparable height, the internal points are reclassified as object points and

are removed from the terrain model. An alternative is to permit the user to interactively select

any object regions that may have been missed by the initial slope-based filtering. We have im-

plemented both of these approaches in our work, and with them, we are able to obtain excellent

results with structuring element radii down to approximately 10 meters, even with much larger

buildings in the scene. In most cases with grid sizes below 0.3m, the extra work required by the

manual intervention or implementation of heuristics is a small price to pay for the significant

savings in computation time. However, for lower resolution range images, or in cases where the

process must run with full automation, using a larger structuring element is still warranted.

Two final time comparisons should still be made, and these are for the cases where the raw

points are processed directly. Figure 5.13 (d) contains a plot of execution time as a function of

structuring element radius for the raster case (medium scene) and for the point-based case (small

and medium scenes). We see here that the point-based approach operating on the small dataset

requires roughly the same time to execute as the rasterized approach operating on the mid-sized

dataset. The point-based approach operating on the mid-sized set takes an order of magnitude

longer for the 15 m radius case, and this time increases rapidly as the structuring element size

increases. With the small relative errors between the point-based and raster-based implementa-

tions combined with the significant execution time demanded by the point-based approach, the

raster-based approach is usually preferable.

5.2.2 Tree Parameter Estimation Using the Generalized Ellipsoidal Model

In the previous section, one of the things we considered was whether the terrain extraction should

be performed on a raster image or on the raw point cloud. A similar question arises for the tree

reconstruction uusing the generalized ellipsoid model of Equation 4.18. This model is used to

help define height, width, shape and location parameters, and if needed, these may also be used
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(a) (b)

(c) (d)

Figure 5.14: Tree model fitting: high data density (a) Original point cloud (b) model fit to point
cloud (c) Raster image (d) model fit to raster image.

to help classify the tree as deciduous or evergreen. Even though the terrain is usually processed

in raster form, after identifying tree regions in the NDEM, we may choose to either process these

tree regions using the pixel values or by processing the raw points contained in this region.

Figure 5.14 illustrates both cases for data from the high-density point cloud. Image (a) shows

the point data, consisting of approximately 270 tree points. Image (b) shows the best-fit model

when the point data is used in the fitting process. Image (c) shows the tree data interpolated to a

0.25 m range image, and (d) illustrates the best-fit model for the rasterized data. It is clear that the
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(a) (b)

(c) (d)

Figure 5.15: Tree model fitting: low data density (a) Original point cloud (b) Model fit to point
cloud (c) Raster image (d) Model fit to raster image.

two models are basically the same, and aside from a slight deviation in the shape parameter (in

(b) it is 1.55 while in (c) it is 1.45), the models are identical. The small difference in shape is due to

interpolation artifacts inherent in generating the range image. As such, the point-based model is

slightly more accurate in the high-density data case.

This contrasts with Figure 5.15, which shows the same illustrations for a similarly shaped tree,

but this time using the lower density point data. In this case, only 45 tree points are available,

and they are arranged in such a way that the best-fitting model actually has a significantly larger
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spread than the data would indicate. However, by re-sampling the data to a high-resolution grid

before fitting the tree model, a more accurate result is obtained. In this case, we achieve a result

almost as good as for the higher density data case.

As a result, we have found that in most cases, as long as the pixel spacing is sufficiently small,

the parameter fitting may be done in raster space with little penalty. However, as the pixel sizes

grow to be above approximately 1 meter, high density data sets should switch to using the points

directly. For low-resolution raster images where the underlying data is also low density, inaccurate

tree models will frequently arise. Although not ideal by any means, in certain low-density cases

the best performance is obtained by resampling the point data in the vicinity of the tree to a higher-

resolution (approximately 0.25m) grid before processing.
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(a) (b)

Figure 5.16: Residential building reconstruction: (a) House A (no vertical transitions) and (b)
House B (multiple vertical transitions and several small features).

5.3 Residential Scene: Building Reconstruction

The second location we will focus on is from a residential neighborhood in a town just east of

RIT’s campus. This area contains multiple buildings with complicated roof structures, two of

which we will use to illustrate some of the benefits of the automated building reconstruction pro-

cess presented earlier. The selected buildings are illustrated in Figure 5.16. These structures may

seem somewhat familiar; the first (Building A) was used to illustrate the boundary extraction and

facet reconstruction techniques in the previous chapter, and the second (Building B) was used to

illustrate the processing of internal vertical transitions.

While a description of the extracted building models may prove interesting in their own right,

of greater importance is how these derived models compare to those created by hand, both in

terms of geometric accuracy and the time required to produce the model. In order to perform

this comparison, two users experienced in creating CAD models of buildings were recruited to

create their own CAD models of Building A, and one of them also created a model of Building B.

They were instructed to use whatever tools they would if they needed to produce such a structure

for their own research. The only constraints were that the final models were to be specified in a

DIRSIG-compatible format, and that CAD drafters log the time it took to perform each task.
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(a) (b) (c)

Figure 5.17: Building A: (a) A1 manually-produced model, (b) A2 manually-produced model,
and AL semi-autonomous lidar-derived model.

The resultant building models for Building A are presented in Figure 5.17. As can be seen in

this figure, each model has the correct approximate shape, and no facets were missed in any of

the models. The A1 model (created by the first CAD drafter) is seen to have a somewhat shallow

sloping roof structure, and the ridge line at the top of the roof is fairly small. This contrasts with

the A2 model, where the roof structure shows significantly higher slopes, and the ridge line is

comparatively large. In the semi-autonomously lidar-derived structure AL, we see a model very

similar to the A1 model. The roof slopes appear to be about the same, and the overall ratio of

dimensions appear to be similar as well. One item of note is that in the building refinement stage

of creating the AL model, the two vertices representing the ridge line were merged into a single

vertex, as the reconstruction algorithm incorrectly assumed that two distinct roof vertices would

lie at a distance of more than 1.5 m apart. A better comparison of these structures may be made by

rotating and translating the models so that they share a common origin and primary orientation.

This was done in Figure 5.18. It is clear from Image (a) that the A2 model is of a significantly

different size than the other two. The drafter of this model made the initial assumption that the

garage was 16 feet wide, and scaled the rest of the house accordingly. The first drafter took a

more accurate (and more time consuming) approach, and ’measured’ the building sides using

coordinate values obtained from Google Earth [Microsoft 2008].

A summary of the vertex offset relative to the AL model is provided in Tables 5.2 through
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(a) (b)

(c) (d)

Figure 5.18: CAD models for Building A: Nadir and front views: (a) A2 model not scaled, (b) A2
model scaled in the (x, y) dimension.

5.4. Both the A1 and A2 models are considered, as well as a scaled version of the A2 such that the

(x, y) values were stretched by a factor of 1.4, while the height was kept unchanged. This rescaling

brought the A2 model into significantly better alignment with the other two models. The A and

B columns in these tables represent 2D (in the (x, y) plane) and 3D distance measures in the rows

where such a distinction is appropriate. Other than the initial offset values, all parameters were

adjusted so that the mean offset value was forced to zero.

There are several observations that may be made from a comparison of these building mod-
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els. Among the most prominent is the large size discrepancy between the two manually-derived

representations. In this example, two experienced CAD users arrived at two very different ge-

ometries (in an absolute sense), based on different assumptions on how best to scale the model.

This results in average vertex errors that vary by more than an order of magnitude from model to

model. Although potential gains in accuracy and speed were expected, we had not fully consid-

ered the aspect of model consistency. By using a pre-defined, semi-automated approach, there are

significantly fewer subjective decisions left to the scene creator.

Also included in these tables are the times taken to produce the DIRSIG compatible object

file. While each manually-produced model took approximately 40 minutes to complete, the lidar-

extracted model took less than 6 minutes to create. While accuracy and consistency of results

are certainly the primary drivers for most applications, an 85% reduction in the time needed to

produce each building model has potentially huge manpower impacts when considering urban

scenes on the order of several square miles. While the scene designer would likely need to review

each model even when using an automated approach, the time savings in not having to measure

and create each facet by hand is certainly quite significant. Although in general some manual

intervention may be required to ensure proper building segmentation and the correct handling of

vertical transition structures, Building A was extracted without any manual intervention.

Although the time savings was apparent in the previous example, we thought it would be

beneficial to show how the semi-automated approach compares to manual-derived models for a

significantly more complex building structure. To this end, we selected Building B as a second

residential structure to investigate. This building contains significantly more facets, multiple ver-

tical transitions, and several small features in the roof structure. Some of these features, such as

a small fan-shaped roof overhang over a bay window will not cause inconsistencies if they are

missed by the semi-automated algorithm. However, other features, such as split segments that

must be divided into multiple DLS’s will cause major artifacts in the resultant model if they are

not identified.
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Table 5.2: Statistics on building point differences: lidar-derived model minus A1 model
(Errors are in meters)

Metric A B
Mean x offset -0.3434
Mean y offset 0.1803
Mean z offset 0.1807

Mean distance (mean offset removed) 0.2632 0.3201
Variance (mean offset removed) 0.0435 0.0409

Mean squared error (mean offset removed) 0.1101 0.1408
Root mean squared error (mean offset removed) 0.3318 0.3753

Time to estimate vertex locations 25 mins
Time to create .obj file 30 mins

Total Time 55 mins

Table 5.3: Statistics on building point differences: lidar-derived model minus A2 model
(Errors are in meters)

Metric A B
Mean x offset 2.2331
Mean y offset 3.2021
Mean z offset 0.1535

Mean distance (mean offset removed) 5.9214 5.9703
Variance (mean offset removed) 18.2629 18.0179

Mean squared error (mean offset removed) 52.1843 52.5360
Root mean squared error (mean offset removed) 7.2239 7.2482

Time to estimate vertex locations 20 mins
Time to create .obj file 25 mins

Total Time 45 mins

Table 5.4: Statistics on building point differences: lidar-derived model minus scaled A2 model
(Errors are in meters)

Metric A B
Mean x offset -0.5344
Mean y offset 0.9933
Mean z offset 0.1535

Mean distance (mean offset removed) 1.0916 1.1405
Variance (mean offset removed) 0.4180 0.4477

Mean squared error (mean offset removed) 1.5834 1.7204
Root mean squared error (mean offset removed) 1.2583 1.3116
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(a) (b)

Figure 5.19: Building B: (a) range image and (b) boundary extracted from point data.

Figure 5.19 shows the range image and the boundary extracted from the raw point data. It

should be noted that the tree present in the upper-right corner of the range image was not removed

by the texture-based tree analysis and had to be removed via the included ROI tree removal tool

built into the code used to implement the semi-automated building reconstruction process. This

tool served to removed the tree data in both the raster image and raw point cloud data.

After local normal vectors were calculated at each pixel location on the roof structure, the

mean-shift algorithm was used to achieve the initial facet segmentation shown in Figure 5.20 (a).

As expected, this segmented image contains many additional (unwanted) classes, and the outer

boundary consists of somewhat jagged edges. By autonomously reclassifying those segments

that fall where at large values in the E2 image, all but two of these segments were removed. By

clicking on these remaining segments, they were also merged with the adjacent regions to produce

the segmented image of Figure 5.20 (b).

Each facet was then reconstructed in turn, and facets with potential vertical transitions or small

edge segments with high curvature were flagged to the user for additional information. By click-

ing on vertical transition DLSs and edge segments that need splitting, the reconstructed model
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(a) (b)

Figure 5.20: Building B segmentations: (a) initial facet segmentation obtained via applying
mean-shift to the N3 image, and (b) refined segmentation.

shown in Figure 5.21 (a) was produced. Although some manual intervention was required at this

step as well, the total time in proceeding from the segmented image to this initial building model

was under 3 minutes. In this nadir view of the resultant building model, it is apparent that several

of the exterior corners are not properly defined, and that the outer boundary shape (as derived

from the pixel analysis) is somewhat irregular. By forcing the boundary to fit the one described by

Figure 5.19 (b), the model is refined, and the BL geometry shown in Figure 5.21 (b) is achieved.

(a) (b)

Figure 5.21: Building B CAD models: (a) Initial CAD model produced by processing each facet
independently, and (b) Refined model using previously-derived outer edge information.
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(a) (b)

Figure 5.22: Building B CAD models: (a) semi-autonomously created and (b) manually-produced.

Figure 5.22 illustrates a perspective view of this lidar-derived CAD model in (a) and also shows

a manually produced CAD model (B1) in (b). As was the case with Building A, the two models

appear very similar. However, a few minor differences in the models reveal themselves when they

are inspected closer. First, the lidar-derived model is completely missing the fan-shaped feature

over the bay window (shown in black), and the facets forming one of the dormer structures do not

align perfectly. The fan structure was missed in the initial segmentation, and the dormer junction

was erroneously classified as a vertical transition.

However, this model did correctly handle all dormer structures aside from this vertical transi-

tion issue, while the manually-produced model has two dormer structures with slightly erroneous

shapes. The dormer by the fan structure is extended from the main roof structure in B1, and the

dormer opposite this one does not contain a proper vertical face.

Figure 5.23 shows nadir and front views of the roof structures of these building models. Images

(a) and (b) depict the BL model, (c) and (d) show the B1 model, and (e) and (f) plot the two models

on the same axis. Although the roof slope on the B1 model is a little shallower than the actual

value, the models are very similar, and both would be suitable for use in a simulated scene.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.23: CAD models for Building B: nadir and front views: (a-b) BL model, (c-d) B1 model,
and (e-f) both model plotted together.
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Statistics related to the vertex offsets are included in Table 5.5. Although the average vertex

error is slightly larger than it was in the A1 case, the average error is still on the order of a half

meter. However, most notable is the time it took to create the B1 model. It took an expert CAD

drafter nearly 2.5 hours to produce this model, while the BL model was extracted in under 6

minutes. This represents a 97% reduction in time to create this model.

Table 5.5: Statistics on building point differences: lidar-derived model minus B1 model
(Errors are in meters)

Metric A B
Mean x offset -0.5949
Mean y offset -0.3988
Mean z offset 1.2247

Mean distance (mean offset removed) 0.4123 0.5895
Variance (mean offset removed) 0.2273 0.2566

Mean squared error (mean offset removed) 0.3922 0.5984
Root mean squared error (mean offset removed) 0.6263 0.7736

Time to estimate vertex locations 25 mins
Time to create .obj file 120 mins

Total Time 145 mins

5.4 Shed Scene: Comparing the Semi-Automated and Manual Processes

The final scene considered for this dissertation consists of three simple aluminum shed structures

located in the middle of a dense grouping of trees. This region is significant since it is the only

one for which we have the full set of desired image modalities. In this scene, the high-resolution

lidar data and WASP frame array imagery is complemented by 1m GSD data from the COMPASS

hyperspectral sensor discussed in Chapter 2. Since all the desired image modalities are present

for this scene, this region was selected to perform a high-fidelity reconstruction using the methods

described in Chapter 4. This semi-autonomously generated scene is termed SAS in the following

discussion. Additionally, a manually produced synthetic scene (termed the MPS) of this same
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Figure 5.24: Aerial image of the shed scene region.

region has been prepared by an experienced DIRSIG scene builder. This enables a side-by-side

comparison of the methods and time required to produce DIRSIG input files using both semi-

automated and manual approaches.

Figure 5.24 presents an aerial view of the region used for the shed scene reconstruction. It con-

sists of a large shed structure with a roof that is not occluded by any trees and a smaller structure

of similar shape that is partially obstructed. A smaller, half-cylindrical storage shed lies nearby,

and a long, thin structure is present on the eastern edge of the region. The scene contains both

deciduous and evergreen trees, and the tree spacing is fairly dense around the immediate shed

region.

In order to reconstruct this scene using the semi-automated approach, we began with an ex-

traction of the DTM. The lidar data was interpolated to a 0.35m grid via the methods described

in Chapter 4 in order to produce the various range images. The Rall image was then processed

to extract the DTM using the slope-based approach with subsequent heuristics applied to remove

residual tree points. The Rall range image and the resultant DTM are shown in Figure 5.25, and

the colors in these images represent absolute elevations.

The NDEM was then created by subtracting the DTM from the R1 image, and the non-ground
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(a) (b)

Figure 5.25: Shed scene: (a) Rall image and (b) extracted DTM.

pixels higher than 1.5m above the NDEM were flagged as object points. Tree regions were then

identified using a local texture metric on the object points. As was the case in the RIT scene,

entropy proved to be adequate for distinguishing the tree and building regions, so the full GML

classifier using multiple texture metrics was not employed. Once the tree regions were identified,

individual tree crown locations were estimated using a watershed analysis on the smoothed CHM.

The normalized entropy image (values range from zero to one) and the resultant tree locations are

illustrated in Figure 5.26.

Once these tasks were completed, the main shed was reconstructed using the intersection

of planes approach. Although the reconstruction of both partially occluded and cylindrical/

ellipsoidal objects have been addressed during this research effort, these techniques have not yet

been fully developed, and the corresponding algorithms were not applied to this scene. As such,

since the second largest shed was significantly occluded by trees, its reconstruction failed. The

cylindrical shed also was not reconstructed, since it did not meet the polygonal assumption.

COMPASS hyperspectral imagery was used to build a library of spectral curves for each mate-

rial in the scene. This imagery was atmospherically compensated using FLAASH, and 20 instances
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(a) (b)

Figure 5.26: (a) Entropy image and (b) extracted tree locations.

of shed roof, grass, dirt, and gravel material types were extracted using ENVI. These spectral

curves are included at the end of this chapter in Figures 5.31 and 5.32

Spectral assignment for terrain features was accomplished through the use of a material map

overlaid on the terrain model. This map was produced by performing a supervised minimum-

distance classification on the WASP RGB imagery (which was better registered to the other data

sources than was the hyperspectral COMPASS data), then performing spatial median filtering

using a 5× 5 kernel to produce a more uniform result. Classes were related to actual material

types through manual specification. A grayscale version of the same WASP image was used as

the texture map, which was applied to the ground and shed roof classes.

Painted aluminum spectra (tan and black) were then assigned to the vertical surfaces of the

shed using DIRSIG’s UV mapping capability [Brown 2005]. These materials were obtained from

a previously collected spectral library, since the COMPASS imagery did not contain any spectra

related to the shed walls. Black was selected to be the material for the shed doors (in lieu of white)

since it would show up better in the resultant imagery. In this case, we were hoping to clearly

demonstrate the UV material mapping capability, and sacrificed ’spectral correctness’ as a result.

An initial UV material map came from re-projecting a perspective view of the shed’s wall

surface to the building model facet geometries, as shown in Figure 5.27. The region relating to

the facet of interest was then segmented into two classes (siding and door) using a minimum
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(a) (b)

Figure 5.27: Material map for shed model. (a) original frame array image (b) re-projected view
used to generate material map for one facet (building side).

distance classifier. Using the first material map as a baseline, a second UV material map was then

generated with standard drawing software. Small artifacts were removed in this second product,

which became the baseline UV map for the scene.

Concurrent with the semi-automated scene reconstruction, an experienced DIRSIG scene drafter

was asked to synthetically recreate the same region using standard scene construction techniques.

He obtained a DTM model from the USGS website, built the shed models using Rhinoceros, as-

signed spectral signatures using Bulldozer, and also used Bulldozer’s internal tree-planting tool

to position tree models. The shed and several tree locations were then refined manually so that

they lined up with the material and texture maps, which were obtained using WASP imagery

processed in ENVI.

The two resultant DIRSIG scenes were then used to create the simulated imagery shown in

Figure 5.28. The top image in this figure is a DIRSIG product created from the semi-autonomous

approach, while the lower image was obtained from the manual scene. Although the manual

scene appears to be of a higher resolution, this is merely due to the simulated sensor used in

producing the simulated image, and is not an inherent quality of the scenes themselves. Also, the

white balance used in displaying these two images was not held constant, thereby producing a
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(a)

(b)

Figure 5.28: Synthetic images of the shed scene models: (a) Semi-automated approach and (b)
Traditional manual approach.

noticeable color difference in the images. Figure 5.29 provides a more direct comparison of these

two scenes from a nadir perspective, as the simulated GSD and color display was set to mimic
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(a) (b) (c)

Figure 5.29: Shed scene images: (a) Real-world COMPASS, (b) SAS, (c) MPS.
(Note: north is to the right.)

that of a portion of the COMPASS image, which is also included in the figure.

In comparing the scenes, it is worthwhile to note several interesting items. First, it is apparent

that the creator of the manual scene had little difficulty recreating all three sheds in Rhinoceros,

while the semi-automated approach failed in cases where the structures were either non-planar or

heavily obstructed. Second, both scenes inadvertently omitted the thin structure contained on the

eastern edge of the scene.

However, the manual scene is not more accurate in all details. In investigating the location

of trees, it was found that the manually-derived scene had its trees planted somewhat arbitrar-

ily, with the exception of the evergreens in front of the main shed. After talking with the scene

designer, it was determined that while a few of the larger, isolated evergreen trees were located

manually using Google Earth [Microsoft 2008] as a reference, most of the trees were planted in

Bulldozer. While Bulldozer permits the rapid planting of tree models on the terrain using simple

clicks of the mouse, when this process is being accomplished, only the 3D models are visible. Since
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Figure 5.30: Comparison of tree center locations; blue crosses represent tree location in the SAS,
and red circles represent tree locations in the MPS.

the texture and material maps are not present during this process, many trees were planted at in-

correct locations, some of which had to be manually removed (those that ended up on the road,

for example). Figure 5.30 highlights the difference in tree locations between the two methods. The

blue crosses represent tree locations as determined by the semi-automated approach, while the

red circles are the locations selected during the manual process.

Figures 5.31 and 5.32 compare the spectra used in specifying the SAS and MPS scenes. As

noted above, the SAS spectra were obtained from FLAASH-compensated COMPASS imagery,

while the MPS spectra were obtained from a previously-collected spectral library. Figure 5.31(a)

and (d) show the full set of ’grass’ spectra used to define each scene. Of note is that while the

average spectral shape is nearly the same in both cases, the MPS spectra show a significantly

larger range of values. This fact is more clearly shown by plotting the band variances, as was

done in (b) and (e). These variances were subsequently used to place bounds of two standard

deviations above and below the mean spectra, as shown in (c) and (f). Although the MPS spectra

vary by more than was expected, the large number of individual spectra do provide a useful
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(a) SAS - grass spectra (b) SAS - variance of grass spectra (c) SAS - Mean grass spectra and
2σ bounds

(d) MPS - grass spectra (e) MPS - variance of grass spectra (f) MPS - Mean grass spectra and
2σ bounds

Figure 5.31: Grass Spectra: SAS (FLAASH-derived) and MPS

property; that is, the simulated imagery generated from the MPS scene will likely have better

spectral texture characteristics, at least from a correlation-covariance standpoint. However this

gain could potentially be more than offset by the problem of having unrealistic spectra in the

scene. The SAS spectra appear to be quite similar, nicely adequately represent the desired material.

However, since the number of SAS grass library is limited in size, the quality of the texturing

process could suffer.

It is believed that the increased variance in the MPS spectra are due to the method in which

the library was generated. It was initially thought that several grass spectra (on the order of 10-

20) were obtained manually (that is, with an ASD spectrometer), and the first and second-order

statistics of this set were computed. These parameters were then used to generate many addi-

tional spectral samples by modifying a large number of white noise samples so that they had

first and second-order statistics that matched the collected data. However, if the original data con-



5.4. SHED SCENE: COMPARING THE SEMI-AUTOMATED AND MANUAL PROCESSES 195

(a) SAS - gravel spectra (b) SAS - dirt spectra (c) SAS - green metal roof spectra

(d) MPS - gravel spectra (e) MPS - dirt spectra (f) MPS - green metal roof spectra

Figure 5.32: Reflectance Spectra: SAS (FLAASH-derived) and MPS

tained samples from two or three distinct grass classes (healthy and non-healthy, for example), this

spectra-generation procedure would significantly blur the class distinction. The newly-generated

spectra would be forced to have Gaussian characteristics, and many intermediate spectra would

be produced that would not accurately represent either class in the physically-collected data.

Figure 5.32 sheds additional light on this matter. These plots show the spectra used in defining

the other material types used in the scenes, and contain several items of note. Most significantly, it

was discovered that the library selected to represent MPS ’dirt’ actually pointed to the same file as

the MPS ’grass’ library. This lent further credence to the discussion above regarding large spectral

variances within a single class. Although the final library had notably Gaussian characteristics,

it is now believed that the originally collected data came from a mix of grass and grass-plus-

dirt classes. Also apparent in this figure is the large difference between the two gravel libraries.

While both libraries have a fairly large variance, the spectral character of the MPS gravel does not

indicate the presence of any vegetative spectral features. However, the SAS spectra for both the
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gravel and dirt have noticeable features between bands 45 and 120. Although the sharp red-edge

is not present to the extent it was in the grass spectra, both of these SAS libraries indicate at least

some level of vegetative spectral contamination (mixing).

However, as was the case with the building reconstruction process, the scenes are more similar

than they are different. Even with the noted spectral differences, the spectra still share many

similarities. Also, the scene geometries, while not exactly matching, would both provide realistic

and functional DIRSIG imagery. However, a very interesting comparison comes when we consider

the time it took to produce the two results. Table 5.4 presents the times required to complete each

task performed in the scene reconstruction process. While the manually-derived scene took over

18 hours to produce, the semi-automated approach achieve comparable results in just under 3

hours.

Table 5.6: Times to create simulated shed scene components (times in minutes)
Manual Approach Semi-Automated

Task (Using Standard DIRSIG Tools) Approach
Generate terrain model 30 8

Generate shed CAD model(s) 60 35
Create texture image(s) 5 3
Create material map(s) 45 10
Insert material map(s) 120 1

Assign shed roof and wall materials 20 15
Assign wall texture & material maps N/A 20

Assign ground materials 120 20
Insert terrain object 30 1
Insert shed objects 180 1

Insert tree instances 240 6
Additional worktime 240 55

Total time 1085 minutes (18h 05m) 175 minutes (2h 55m)



6
Summary and Conclusions

This research demonstrates an approach to reducing man-in-the-loop requirements for several as-

pects of synthetic hyperspectral scene construction. Through a fusion of 3D lidar data and passive

imagery, we were able to partially automate several of the required tasks in the DIRSIG scene

generation process. These included extraction of a bare-earth digital terrain model, identification

of buildings and trees, object reconstruction, and the generation of background maps. Through

the proper application of these techniques, we are also able to create synthetic scenes where truth

data is not available, as well as to significantly reduce the time required by current scene-building

methods.

The basic process first used lidar data to determine a digital model of the terrain. This terrain
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model was then subtracted from the original data points to yield a normalized data set. Points

in this normalized data were then thresholded to yield object points, which were then segmented

into building and tree regions using a GML-based approach applied to feature vectors built from

texture metrics. Individual trees were then isolated and matched to previously constructed models

stored in a tree library. Building geometries were extracted from the data using an intersection-of-

planes approach with additional techniques applied to refine the boundary and vertical transition

features. Finally, spectral assignment was done through assigning library spectra based on image

features, or through a direct atmospheric compensation of hyperspectral data.

After describing the new process for scene construction, we demonstrated the feasibility of the

techniques by applying them to various scenes. The DTM extraction, identification of buildings

and trees, geometric reconstruction of buildings and final production of DIRSIG scenes was shown

to be successful. However, due to the small number of scenes modeled, general trends related to

the process may not be readily inferred from these results alone. As such, in this section we will

discuss some additional aspects of the results that include trends observed from a larger number

of applications of the process.

Recall that the primary goal of the terrain modelling is to produce an accurate model of the

terrain, where all object points have effectively been removed. In this process, the goal is not to

minimize the error associated with classifying points as either object or terrain, but rather to re-

move all object points, potentially at the expense of also removing some ground points. In the

baseline slope and MMF processes, we achieve an inclusion of object points at a rate of approxi-

mately 2 to 4 percent. However, in the final implementation of the technique, the user is shown

the resultant terrain model and is given the opportunity to remove the remaining object points, a

process that nearly always removes all remaining error points. This manual intervention typically

requires under one minute for scenes sized comparably to those discussed in this dissertation.

Regarding the determination of tree individual locations, it has been determined that the

watershed-based approach presented here often underestimates the number of individual trees
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while overestimating their widths. This is due to the fact that such an algorithm is not inherently

designed to trace boundaries around neighboring objects separated by small non-object regions,

but instead seeks too identify a single boundary curve that separates the individual objects into

unique regions. Such an algorithm may be improved upon by invoking energy-minimization con-

straints. However, in practice the tree placement process is adequate for most DIRSIG users, as the

trees are located in vegetative regions, and in most cases, an exact forest structure is not required.

In reconstructing simple building structures without vertical transition features, we have found

that the correct segmentation of planar patches is the key to producing accurate results. In more

complex models, the proper identification of steep edges is equally critical. When both of these

tasks are performed well, useable building models with consistent geometries are nearly always

produced. Although these models may have some internal features that are not as precise as

those drawn manually, in general these models have slopes and internal edge geometries that are

significantly more accurate than those obtained via other means.

In general the time savings achieved by using the semi-automated approach in lieu of the

manual baseline methods depends heavily on the scene being modeled. In regions with many

trees and few building structures, the time savings may be limited to around 75%, since the current

DIRSIG tools allow an experienced user to complete the scene with a fair amount of automation.

Most of the time spent when using the manual approach on such a scene is used to fine tune

the placement of object geometries. However, when the scene being considered is more complex

and contains complicated building geometries, the time savings may approach 95 to 98%. In

these cases, the effort required to manually understand and define the building structures using

conventional CAD software makes the semi-automated approach extremely attractive.
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7
Future Work

Although this research has laid the foundation for producing spectrally accurate scenes in an

efficient manner, there are still many areas where the techniques could be improved. While some

of these have already been addressed in part while performing this work, most of theses areas

have realized very little progress.

A primary focus area for future research addresses the problem of how to extract of geomet-

ric features without the need for lidar imagery. Although this problem has received a significant

amount of attention in recent years due to a host of new applications for 3D city data as well as

recent advances in computer vision theory, the current state-of-the-art systems are still somewhat

lacking. Occluded surfaces, illumination effects, and difficulty in performing precise feature ex-
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traction all contribute to the difficulty of this task. In a parallel research effort, we have begun to

address this issue by considering new approaches to semi-autonomous digital photogrammetry.

Rather than attempting to combine corner features across multiple images using robust match-

ing algorithms, we are looking to define larger features in each image source, to include surface

patches and linear structures. However, despite the progress that has been made, significant work

is still required before we arrive at a system that can accurately handle arbitrary scene reconstruc-

tion with minimal user intervention.

A second topic for future research relates to the definition of vertical building walls. In the

present work, walls were assumed to lie directly below the buildings’ exterior roof boundary.

However, in many building structures, this is not the case. This is especially true in residential

environments, where porches and similar structures actually highlight walls that may be located

several meters into the roof structure’s interior. By considering ground-level or oblique aerial

imagery, it is conceivable that the geometry of these walls could be more accurately described.

An in-depth study of the quality/errors related to this work would also be worthwhile. While

an effort was made in this dissertation to demonstrate the overall quality of the process, there

is currently no method to adequately describe the quality of a simulated scene. One potential

method of approaching this would be through the use of simulated imagery. By using the con-

structed scenes to generate synthetic images similar (in terms of location, resolution, atmospheric

effects, spectral sampling, etc) to the original imagery, we could do utility-based comparisons

of the synthetic imagery with the original data. Examples of this include such things as target

detection performance (where we would implant fractional targets in each image type and gener-

ate receiver operating characteristic curves for each image) and classification performance (where

each image would be spectrally classified, and the classes compared statistically through a spa-

tial/spectral analysis). Assuming the synthetic image generation is done well, this would permit

an indirect comparison of the synthetic scene model to the real-world scene.

However, to date we have been restricted to merely describing the errors associated with in-
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dividual stages in the process. And even in this, more work would be beneficial. As an example,

consider the case of describing the quality of a building model. Although one may talk about the

statistics of the errors of individual vertices, or the slopes of facets, we currently have no way of

quantifying more significant errors, such as facets that are either missed or inadvertently added.

Creation of suitable metrics for a better analysis of the results would also be extremely useful in

comparing the algorithms of multiple researchers.

A more sophisticated method for creating texture images represents another area that would

be a good source of future research. The current approach of using single images for texture

often means that artifacts present in these images appear to be present in the resultant scenes. For

example, if a tree casts a shadow that is visible in the texture image, to a certain extent that shadow

will manifest itself through selection of darker spectra in the simulated imagery. Additionally,

when specifying texture on vertical surfaces, if a tree is blocking a portion of the surface in the

texture image, artifacts will persist throughout the scene generation process. However, by using

multiple images to understand what pixels do not lie on the facets of interest and potentially

inpainting new pixels, improved results could conceivably be obtained.

Another exciting front in the field of scene reconstruction deals with finding new ways to

incorporate additional information into the models. Presently, we use the available imagery to

extract the scene geometric and spectral content. However, if we were able to combine additional

sources of information such as GIS data and models obtained by other sources, improved results

could be obtained. We have briefly worked with combining multiple models, as the current re-

search also contains two additional approaches to building reconstruction not described in this

dissertation. These models may then be combined using a hypothesis and verify based approach,

where for each feature, the definition of that feature from each model is compared to the image

data. The best representation of this feature across all models is then retained. An additional

possibility for fusing multiple models into a refined solution would be to use a Bayesian-based

statistical technique.
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Further research is also warranted in the area of selecting the best spectra from a previously

collected library when the facets of interest are sub-pixel. As noted in Section 4.8.1, if the hy-

perspectral imagery has a large GSD, it may still be used to define reflectance curves. In regions

where the scene does not contain any objects (such as large grassy patches), the spectral imagery

may be used as though it had a small GSD. In cases where subpixel objects are present in a larger

background region, a few options are available. First, a standard spectral unmixing process could

be performed at these locations using a selected few library spectra as endmembers. An alterna-

tive approach is to use a physics-based, radiance space approach such as that presented in [Healey

and Slater 1999], [Ientilucci 2005], and [Foster 2007].

The basic idea of these approaches is to build up a space representing all possible ways that a

known target reflectance spectrum could appear in a radiance image, given a range of unknown

ground geometries and atmospheric conditions. In the first two approaches cited, individual tar-

get T and background B spaces are created, and a given image pixel is then compared to aB + n

and aB + cT + n, where a and c are scalars representing faction values and n is a noise term. If

the image pixel is ’closer’ to aB + cT + n than it is to aB + n in some sense, the pixel is deemed to

contain the target material. In the approach introduced by Foster, the two spaces propagated into

the radiance domain are a background space B and a target plus background space TB. That is,

the target and background are combined in reflectance space rather than in the hypothesis test.

Although not implemented for this dissertation, we propose that a modified version of the

model introduced by Foster could potentially be used for the subpixel spectral library selection

for object facets, assuming that all facets are made of the same material. In this case, a separate

TB space is computed for each of the chosen library spectra, which are in turn treated as ’target’

vectors. The background is assumed to be known from an analysis of the surrounding pixels.

The material whose TB space is ’closest’ to the hyperspectral radiance pixel is then selected as the

material of the object facets. The propagation model we propose is an extension of that introduced

by Foster, and it permits multiple object facets at known orientations and pixel fill ratios, so long
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as they contain identical materials. The assumption of diffuse facet materials is not made, but it is

assumed that BRDF effects are known.
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A
Tutorials

This appendix provides additional mathematical insights into some of the tasks performed in the

main text. Although it will not shy away from presenting these details rigorously, in many cases

the tone is intentially somewhat informal, as such a style often lends itself to easier reading. Since

these sections are meant to be viewed as mini-tutorials (and are not ground breaking research

concepts), it was determined that clarity and ease of comprehension would be a higher priority

than formalism. That being said, much care has been taken to ensure that the topics are accurately

and thoroughly covered. Through the inclusion of this material, it is hoped that the readers will

be able to gain a better understanding of those topics with which they are not fully familiar, as

well as be able to use the included formulas as a reference.
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Figure A.1: Traditional (left) and orthogonal (right) least squares residuals.

A.1 Orthogonal Least Squares:

Fitting Lines and Planes to Data

The method of least squares is often used to determine the line of best fit through a set of two-

dimensional data samples. In traditional least squares regression, it is assumed that the indepen-

dent variable (x, for the purpose presented here) is known exactly, and that the dependent variable

contains all of the error. In order to obtain a line of best fit, the goal is therefore to minimize the

sum of the squares of the vertical residuals (the traditional residuals are colored in red in the left

portion of Figure A.1). Such an analysis is appropriate when data measurements are taken at

precise intervals or known conditions, but the functional response values may be measured with

error. However, for the case of finding the best line through data where errors may exist in both

the x and y dimensions, and alternative solution is required. This is especially true if the data is

oriented so that small changes in the x value represent large changes in y (i.e. the data is spread

vertically).

‘ In these cases, it is better to minimize the sum of the squares of the orthogonal residuals, as

depicted in the right side of Figure A.1. In order to do this, we must take an alternate approach.

This method is referred to as Orthogonal Regression, Total Least Squares, or Deming Regression.

In this approach, there is no real distinction between the various axes (at least for the methods

presented here), and all variables are assumed to be measured with error. A standard method of

solving this problem is given in [Li 1984], and relies on defining the residual in terms of its x and
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y components, then doing a partial differentiation to determine the parameters of the line of best

fit. Without derivation, this approach may be implemented as follows:

Assume the line of best fit is of the form

y = mx + b (A.1)

We then let n be the number of data points, x̄ and ȳ are the arithmetic means of the x and y

values, and

A = ∑
i

xiyi − nx̄ȳ

B = ∑
i

y2
i − nȳ2 −∑

i
x2

i − nx̄2 (A.2)

Then our estimate of m and b are given as follows:

m = (B +
√

B2 + 4A2)/2A

b = ȳ−mx̄ (A.3)

As shown in [Shuchat 1985], this may be shown to be equivalent to doing a principal components

analysis (SVD) on the data. Per standard principal components theory, the first principal compo-

nent defines the direction of maximum variation in the data, and so intutively it makes sense that

this could at least be a possibility. Shuchat’s proof that this must be true is given below.

For generality, let us consider the case of a line in Rn. Let L be the line and x be the coordinates

of a point, and d(x, L) be the orthogonal distance from x to L. We therefore wish to minimize

the sum ∑k d(xk, L)2. By defining, v as a unit vector such that x = w + tv is an arbitrary line in

Rn, by the Pythagorean theorem, we see that d(x, L)2 = ‖x‖2 − (x · v)2. Therefore, we need to

minimize ∑k ‖xk‖2 −∑k(xk · v)2 over ‖v‖ = 1. This is the same as maximizing f (v) = ∑k(xk · v)2,

since ∑k ‖xk‖2 is a constant relative to v. We now define an m × n matrix X such that its rows
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are the xk data points, and an n× n matrix A as the symmetric correlation matrix XTX. Now, we

diagonalize A via the spectral theorem for symmetric matrices. A is orthogonally similar to the

diagonal matrix D of it eigenvalues (λi), so D = PT AP for an orthogonal matrix P. The quadratic

form corresponding to D is then

g(u) = Du · u = ∑
i

λiu2
i (A.4)

Since f (v) = g(PTv) and P is an isometry (preserves lengths and dot products),

max{ f (v) : ‖v‖ = 1} = max{g(u) : ‖u‖ = 1}. (A.5)

However, since g(u) lies in the interval spanned by the eigenvalues, its maximum value is

the largest eigenvalue, and occurs when u = e1 the first standard basis vector. Therefore, the

maximum value of f occurs when v = Pe1, which is the first column of P and the first principal

component value. Therefore, this vector yields the minimum squares solution in the orthogonal

sense.

This reasoning may be extended to fitting a plane to data in R3. In order to minimize the sum

of the squared orthogonal residuals, we should choose the plane as that defined by the first two

principal components. The third principal axis will be normal to this plane, so we may equiva-

lently use this normal vector and a point in the plane to define our least squares solution.

For an extended tutorial on PCA, the reader is referred to the excellent tutorial [Shlens 2005],

which is available on the author’s homepage.
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A.2 Rotation Matrices

Rotation matrices may be used to re-orient a vector in space (i.e. change its direction) without

changing its magnitude. In the fields of computer vision and photogrammetry, they are frequently

used as part of the process (along with scaling and translation) to transform points in two- or three-

dimensional space from one frame of reference to another. The fundamental ideas behind the

application of rotation matrices are quite simple, and are often introduced at the undergraduate

level. However, due to the numerous conventions, combined with a lack of resources describing

how these conventions are related, many students experience difficulty when forced to implement

rotations according to a different standard than what they were taught. The goal of this section is

to provide a quick tutorial on several of the ways rotation matrices may be specified, and to serve

as a reference for the different matrices underlying these conventions.

The primary reason students often run into difficulty when working with rotations is the many

standards that are available. Rotations may be either active or passive; they may be done using

roll, pitch and yaw, other Euler Angle conventions, direction cosines, or quaternions. Multiple

rotations may be defined to be relative to the original coordinate frame or relative to a previously

rotated coordinate frame. A rotation may also be simply specified by a single angle and an appro-

priate axis of rotation. Different coordinate frame definitions are also quite common.

This section will focus on explaining the relationship between the order of rotations and the

relative coordinate frame of these rotations. In practice, these are often the most difficult param-

eters to understand, and the remaining variations may be produced simply by following similar

derivations. To be consistent with the instruments used in this research, a roll, pitch and yaw

convention will be used to define the transform, and we will arbitrarily use a nose, left-wing, up

(x, y, z, respectively; see Figure A.2) local right-handed coordinate system and an east, north, up

global coordinate system. Additionally, for ease of discussion, we will often represent the local co-

ordinate frame as the frame representing the orientation of an aircraft. Under these conventions,

a positive ’relative’ (to the aircraft) roll is defined as a rotation about the local (aircraft) x axis such
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that the left wing rises and the right wing dips down. Similarly, a positive relative pitch is about

the local y axis, and causes the nose to dip in the −z direction. A positive local yaw is therefore

about the z axis, and is defined as the nose moving towards the +y direction.

Figure A.2: Nose, left wing, up coordinate frame

Let us first address the difference between an active and a passive rotation. Although this

tutorial will primarily use active rotations, many texts choose to use the passive notation, and the

reader should be aware of both conventions. An active rotation rotates a vector (or equivalently,

a point) by a specified angle relative to an unchanging coordinate system. An equivalent rotation

may also be realized passively by keeping the point fixed and rotating the coordinate system in the

opposite direction by the same angle. In two dimensions, this concept is illustrated in Figure A.3.

Here, the active rotation (left) shows a vector being rotated counterclockwise by an angle θ. The

passive equivalent (right) is realized by keeping the vector fixed and rotating the axes clockwise

by θ. In both cases, the rotated point will be in the same position relative to the final coordinate

frame, but the reader will note the change in what was being rotated, as well as the direction

of this rotation. As noted above, unless otherwise specified, we will be defining rotations in the

active sense.

Continuing the discussion in 2-dimensions, it is easy to see that for a point V0 = (x0, y0), we
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Figure A.3: Active (Left) vs. Passive (Right) Rotation

may define VR = (xR, yR) as being the same point rotated by an angle θ, where

xR = x0 cos θ − y0 sin θ

yR = x0 sin θ + y0 cos θ. (A.6)

This can be re-written in matrix notation as




xR

yR


 = R




x0

y0


 , (A.7)

where

R =




cos θ − sin θ

sin θ cos θ


 . (A.8)

Similarly, the standard rotations about the principal axes may also be specified in three dimen-

sions. A rotation of θR about the x−axis (roll) is defined as
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Rx(θR) =




1 0 0

0 cos θR − sin θR

0 sin θR cos θR




. (A.9)

.

Pitch, or a rotation of θP about the y−axis is defined as

Ry(θP) =




cos θP 0 sin θP

0 1 0

− sin θP 0 cos θP




, (A.10)

and finally, yaw, which is a rotation of θY about the z−axis is defined as

Rz(θY) =




cos θY − sin θY 0

sin θY cos θY 0

0 0 1




. (A.11)

In general, rotations are not limited to being about a principal direction, but may be defined

relative to any arbitrary axis. However, a rotation can always be decomposed into three sequential

rotations about specified axes, so long as these axes are chosen properly. If the chosen axes are the

three basis vectors defining the world coordinate frame, the rotation is said to be in absolute terms.

A relative rotation is one in which each of the three rotations is about the to the local coordinate

frame basis vectors. Given these definitions, the reader should note that an absolute roll then

pitch would first roll the aircraft about the world x−axis, then pitch it about the world y−axis.

However, a relative roll then pitch would roll the the aircraft about the local x−axis, then pitch it

about the newly produced (from the previous roll) local y−axis.

If we are given the appropriate rotation axes and angles for three rotations, it is quite simple to

determine the generalized rotation matrix R, if the absolute convention is assumed. If we choose

to roll, pitch, and yaw (in that order) about the world coordinate axes, it is easy to see that we
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should first multiply the point vector by Rx(θR). This result is in turn multiplied (on the left) by

Ry(θP), and that result is multiplied by Rz(θY). Therefore, the generalized rotation matrix is seen

to be the product of three individual rotations according to

RRPYabs = Rz(θY)Ry(θP)Rx(θR)

=




cos θY cos θP cos θY sin θP sin θR − sin θY cos θR cos θY sin θP cos θR − sin θY sin θR

sin θY cos θP sin θY sin θP sin θR − cos θY cos θR sin θY sin θP cos θR − cos θY sin θR

− sin θP cos θP sin θR cos θP cos θR


 . (A.12)

A fact that may not be entirely obvious, however, is that if the world and local coordinate

frames are aligned before rotation (that is, the aircraft is at the world origin, and is upright facing

in the +x direction), then the following relationship holds,

RRPYabs = RYPRrel . (A.13)

where RYPRrel represents starting with the yawing first, and proceeding though the pitch and roll

rotations in a relative sense.

Through a similar construction, it may be seen that by deriving the equation specifying abso-

lute yaw, pitch, and roll, the equation also specifies a relative roll, pitch yaw. The single general-

ized rotation matrix defined according to this convention is given below in Equation A.14.

RYPRabs = RRPYrel = Rx(θR)Ry(θP)Rz(θY)

=




cos θP cos θY − cos θP sin θY sin θP

sin θR sin θP cos θY + cos θR sin θY − sin θR sin θP sin θY + cos θR cos θY − sin θR cos θP

− cos θR sin θP cos θY + sin θR sin θY cos θR sin θP sin θY + sin θR cos θY cos θR cos θP


 .(A.14)

Now, if we are able to take a given generalized rotation matrix of the form
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R =




R11 R12 R13

R21 R22 R23

R31 R32 R33




. (A.15)

and find the appropriate Euler angles according to any of the above conventions, it becomes a

simple matter to convert a set of angles in one convention to the analogous angle set in the other

convention. In order to do this conversion, we simply take the three angles defined using the first

convention and use either Equation A.12 or A.14 to determine the single transformation R. We

then use R to solve for the angles in the desired convention. However, although many authors

claim the recovery of Euler angles from a rotation matrix is trivial (see [Trucco and Verri 1998], for

example), the non-uniqueness of the solution and potential degenerate cases present the potential

for error.

A good discussion of how one may find all possible Euler angles from a rotation matrix is

given in [Slabaugh 1999]. Table A.2 summarizes the results Slabaugh gives for the RPYabs case,

and extends the analysis to include the RPYrel case. Note that For the RPYabs convention, CV (the

critical matrix value) is the R31 entry, while for the RPYrel , it is the R13 value.

As stated before, R may be described not only in terms of three Euler angles, but may be

completely specified by a single angle of rotation (θ) about an appropriate axis (specified by the

vector v). If the components of v are given by

v =




x

y

z




, (A.16)

then the rotation matrix may be found according to Equation A.17.
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Table A.1: Determining Euler Angles from a General Rotation Matrix
(CV for RPYabs is the R31 entry, and the R13 entry for RPYrel)

RPYabs RPYrel
if CV 6= ±1

θP1 − sin−1(R31) sin−1(R13)
θP2 π − θP1 π − θP1

θR1 atan2( R32
cos θP1

, R33
cos θP1

) atan2(− R23
cos θP1

, R33
cos θP1

)
θR2 atan2( R32

cos θP2
, R33

cos θP2
) atan2(− R23

cos θP2
, R33

cos θP2
)

θY1 atan2( R21
cos θP1

, R11
cos θP1

) atan2(− R12
cos θP1

, R11
cos θP1

)
θY2 atan2( R21

cos θP2
, R11

cos θP2
) atan2(− R12

cos θP2
, R11

cos θP2
)

if CV = 1
θY anything (set to 0) anything (set to 0)
θP π/2 π/2
θR atan2(R12, R13) + θY atan2(R21,−R31)− θY

if CV = −1
θY anything (set to 0) anything (set to 0)
θP −π/2 π/2
θR atan2(−R12,−R13)− θY atan2(−R21, R31) + θY

R(v, θ) =




cos θ + (1− cos θ)x2 (1− cos θ)xy− (sin θ)z (1− cos θ)xz + (sin θ)y

(1− cos θ)yx + (sin θ)z cos θ + (1− cos θ)y2 (1− cos θ)yz− (sin θ)x

(1− cos θ)xz− (sin θ)y (1− cos θ)yz + (sin θ)x cos θ + (1− cos θ)z2




.

(A.17)

A similar construction using homogeneous coordinates is also frequently used [Bourke 2002].

This method translates the space so that the rotation axis goes through the origin, then rotates the

space so that the rotation axis lies in the x− z plane. The space is rotated again so that the rotation

axis is the z−axis, and then the desired rotation is performed. The space is then unrotated about

the y− and x− axes to return to the original coordinate frame. To implement this technique, we

specify the axis vector as v = [vx, vy, vz, 1]T and the point to be rotated as P = [Px, Py, Pz, 1]T. We

then define d =
√

v2
y + v2

z ,
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T =




1 0 0 −Px

0 1 0 −Py

0 0 1 −Pz

0 0 0 1




, (A.18)

Rx =




1 0 0 0

0 vz
d

−vy
d 0

0 vy
d

vz
d 0

0 0 0 1




, (A.19)

Ry =




d 0 −vx 0

0 1 0 0

−vx 0 d 0

0 0 0 1




, (A.20)

and

Rz =




cos(θ) sin(θ) 0 0

− sin(θ) cos(θ) 0 0

0 0 1 0

0 0 0 1




. (A.21)

Then, the rotated point is seen to be

PR = T−1R−1
X R−1

Y RZRYRXTP. (A.22)

Determining v and θ from a given rotation matrix R is also straightforward. The eigenvalues of

all orthonormal matrices lie on the unit circle, and for the particular case of 3× 3 rotation matrices,

the eigenvalues will always be of the form 1, eiθ , and e−iθ , where θ represents the angle of rotation
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in a counterclockwise direction around the axis specified by v. This axis may in turn be found by

noting that v is simply the eigenvector associated with the eigenvalue whose value was equal to

1.
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A.3 Determining Whether or Not a Ray Intersects a Triangle

As noted in [Scott 2006], A common way to check if a point is in a triangle is to find the vectors

connecting the point to each of the triangle’s three vertices and sum the angles between those

vectors. If (and only if) the sum of the angles is 2π, then the point is inside the triangle. This

technique works, but in practice it is quite slow. Scott’s methodology, as detailed below, is much

more efficient.

Starting with a triangle with vertices A, B, and C, we note that a point P inside the triangle

must be on the proper side of the segments AB, BC, and AC. To determine if it is, we take the

cross product of [B − A] and [P − A], and see if it points in the same direction as [B − A] cross

[C−A] (that is, P is on the same side of the line segment AB as is C). If this test holds, we test P

with the other line segments as well. If P is seen to be on the same side of AB as C and is also on

the same side of BC as A and is on the same side of CA as B, then P is inside the triangle.

Per the code sample in the reference, this may be implemented in Matlab as follows:

function return_val = point_in_tri(p,a,b,c);

return_val=0;

if sameside(p,a,b,c) & sameside(p,b,a,c) & sameside(p,c,a,b)

return_val=1;

end

function return_val = sameside(p1,p2,a,b);

return_val=0;

cp1=cross(b-a,p1-a);

cp2=cross(b-a,p2-a);

if dot(cp1,cp2) >=0

return_val=1;

end
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A.4 Line of Intersection of Two Planes

Given two planes

Z = a1X + b1Y + c1

Z = a2X + b2Y + c2, (A.23)

we may solve each equation for cn, then subtract the second from the first to remove Z and produce

(a1 − a2)X + (b1 − b2)Y = −c1 + c2. (A.24)

Therefore, we find the line of intersection of the two planes to be defined by

X = X (given X, solve for the other parameters)

Y =
(c2 − c1) + (a2 − a1)X

b1 − b2

Z = a1X + b1
(c2 − c1) + (a2 − a1)X

b1 − b2
+ c1 (A.25)
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B
DIRSIG Input Files

Although some of the required DIRSIG input files were introduced in Section 2.5, specifics regard-

ing the proper formating of these files were not discussed. However, a brief description of these

files is relevant, since without the ability to convert the extracted models to DIRSIG compatible

input files, they are of reduced utility. This appendix will briefly cover the required file types and

their basic formatting. Examples of each file are provided, and code used to convert the extracted

models into the proper format is also given. Additional details regarding file formats may be

found in [Brown 2005].

223
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B.1 Conversion of Models to DIRSIG Compatible Files

Most of the discussion in this dissertation has focused on obtaining the parameters necessary

for specifying a DIRSIG scene. However, there has been little information on how to take the

input parameters and create actual DIRSIG input files. The code included in this section should

help those who are interested convert their geometry and spectral files into a DIRSIG compatible

format.

B.1.1 DTM Raster or Points to DTM .obj File

The following code may be used to convert the terrain raster image to a DIRSIG compatible .obj

file. It is assumed the x-coordinate of each pixel is specified in the matrix XI, the y-coordinate

in YI and the height values are in Zgnd a all. XI and YI are in a form obtained via the meshgrid

command. If the terrain data is stored as point data, the first few lines that convert the pixels to

point values may be omitted, and the point data may be processed directly. Once the .obj file is

created, we take this file into Rhinoceros, open it and re-save it in order to easily create a new .obj

file with additional geometry included (such as normal vector orientations). This new .obj file is

the attributed with a singe ground class in the Bulldozer tool, and the result is saved as a .gdb file

that is accessed by the DIRSIG configuration file.

h=rand(size(XI)); %may be used to subsample the terrain, if desired...
k=find(h>.7);
Xc=XI(:); Yc=YI(:); Zc=Zgnd_a_all(:);
Xc=Xc(k); Yc=Yc(k); Zc=Zc(k);
pts=[Xc,Yc,Zc];
tri=delaunay(Xc,Yc);
[m_tri,n_tri]=size(tri);

[filename, pathname] = uiputfile(’*.obj’, ’Save terrain .obj as...’);

fid=fopen([pathname,filename],’wt’);
fprintf(fid,’%s\n’,’# Rhino’);
fprintf(fid,’%s\n’,’’);
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for i=1:length(k)
fprintf(fid,’%s’,’v ’);
fprintf(fid,’%6.3f %6.3f %6.3f\n’,pts(i,:));

end
fprintf(fid,’%s\n’,’’);
for i=1:m_tri

fprintf(fid,’%s’,’f ’);
fprintf(fid,’%1.0f %1.0f %1.0f\n’,tri(i,:));

end
disp(’Done creating terrain .obj’)

B.1.2 Spectral Curve to Emissivity File

The following code may be used to convert a spectral curve (as obtained from an ENVI .sli library,

from ASD measurements,or from atmospherically-compensated hyperspectral imagery) into a

DIRSIG compatible emissivity file. It is assumed that the spectral curve is in units of reflectance.

For converting an ENVI library into a DIRSIG emissivity file, we use:

[spectrum_name, pathname1] = uigetfile( {’*.TXT’},’Pick a file to convert ’);
fid=fopen([pathname1,spectrum_name],’rt’);
strings = textscan(fid,’%s%*[^\n]’);
q=strings{1};
fclose(fid);
flag=0;
indx=2;
while flag==0;

letters=char(q(indx));
if letters(1)~=’C’

outval=indx-3;
flag=1;

end
indx=indx+1;

end
n=outval;
spec_read=dlmread([pathname1,spectrum_name],’’,n+2,0);
spec_read(:,1)=spec_read(:,1)./1000;
spec_read(:,2:end)=1-spec_read(:,2:end);

spectrum=spec_read’;
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[filename2, pathname2] = uiputfile(’*.txt’, ’Save emissivity file as...’);

fid=fopen([pathname2,filename2],’wt’);
fprintf(fid,’%1.0f\n’,n);
dir_hem_weight_coeff=ones(91,1);
fprintf(fid,’%2.1f \n’,dir_hem_weight_coeff);

for i=1:n
a=spectrum(1:2,:);
a(2,:)=spectrum(i+1,:);
fprintf(fid,’%s\n’,’CURVE_BEGIN’);
fprintf(fid,’%8.7f %8.7f\n’,a);

end
fclose(fid);

If we instead wish to write out a reflectance curve as obtained from compensated hyperspectral

imagery, we may merely ignore the lines related to reading in the file. If we wish to read in data

from an ASD file, we replace the first set of commands with the following:

[spectrum_name, pathname1] = uigetfile( ...
{’*.TXT’}, ...
’Pick a file for the image to be mapped’);

spectrum=dlmread([pathname1,spectrum_name]);
spectrum(:,2)=1-spectrum(:,2);
spectrum=spectrum’;

B.2 Example DIRSIG Input Files

B.2.1 Example DIRSIG Configuration File (.cfg)

DIRSIG_CFG

PATHS {
GDB_PATH = /cis/phd/sfl1194/dirsig_shed/gdb
ODB_PATH = /cis/phd/sfl1194/dirsig_shed
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EXTINCTION_PATH = /dirs/home/dirsig/megascene1/extinction
ABSORPTION_PATH = /dirs/pkg/dirsig/lib/data/absorption
MATERIAL_PATH = /cis/phd/sfl1194/dirsig_shed
EMISSIVITY_PATH = /cis/phd/sfl1194/dirsig_shed/emissivity
WEATHER_PATH = /dirs/pkg/dirsig/lib/data/weather
TAPE5_PATH = /dirs/pkg/dirsig/lib/data/tape5
MAPS_PATH = /cis/phd/sfl1194/dirsig_shed
SOURCES_PATH = /dirs/pkg/dirsig/data/sources
RESPONSE_PATH = /dirs/pkg/dirsig/lib/data/responses
PROFILE_PATH = /dirs/pkg/dirsig/lib/data/data/responses

}

SCENE {
GDB_UNITS = METERS
ODB_FILENAME = shed.odb
MATERIAL_FILENAME = shed.mat
GROUND_ALTITUDE = 0.300
DATE = 6 7 2004

#GMT_TIME = 12.000
GMT_OFFSET = 04.000
LOCAL_TIME = 08.000
LATITUDE = 43.000
LONGITUDE = 77.000

}

ENVIRONMENT {
TAPE5_FILENAME = mls.tp5
ADB_FILENAME = shed.adb
WEATHER_FILENAME = mls.wth

}

PLATFORM {
NAME =
INSTRUMENT {

NAME = hydice
TYPE = FRAMING_ARRAY
FOCAL_LENGTH = 1208
BAND_LIST {

BAND {
NAME = VNIR spectral
X_PIXELS = 400
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Y_PIXELS = 400
OVERSAMPLE = 2
MINIMUM_WAVELENGTH = 0.4000
MAXIMUM_WAVELENGTH = 2.500
DELTA_WAVELENGTH = 0.0500
RESPONSE_FILENAME = SPECTRAL
IMAGE_FILENAME = output_pics/shed_hydice_0800local.img

}
}

}

POSITION {
#TARGET_LOCATION = 0.00,0.000,0
#DECLINATION_ANGLE = 90.0
#AZIMUTH_ANGLE = -90.000000
#DISTANCE = 2000.0
PLATFORM_LOCATION = 50,40,460
TARGET_LOCATION = 50,40,0

}

}

OPTIONS {
ENABLE_TRUTH_IMAGES = TRUE
ENABLE_THERMAL_MODEL = FALSE
ENABLE_BRDF = FALSE
ENABLE_MAPS = TRUE
ENABLE_SOURCES = FALSE
ENABLE_PLUME = FALSE
#REMOVE_SENSOR_PATH = TRUE
ENABLE_LINE_SKEW = FALSE
ENABLE_EARTH_ROTATION = FALSE
REGISTER_BANDS = FALSE
REGISTER_DETECTORS = FALSE
GENERATE_IMAGE_PER_SCAN = FALSE
GENERATE_TRUTH_PER_SCAN = FALSE
USE_SCENE_PLATFORM_ANGLES = FALSE
USE_ALT_EPHEMERIS_GEOMETRY= TRUE
ENABLE_APODIZATION = FALSE
ENABLE_OFF_AXIS_ERROR = FALSE
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ENABLE_OPD_ERROR = FALSE
#ZENITH_SAMPLES = 6
#AZIMUTH_SAMPLES = 12
USE_STEPWISE_PLUME = FALSE

}

TRUTH_IMAGES {
IMAGE_FILENAME = output_pics/shed_truth.T.img
MATERIAL_MAPS = TRUE
HIT_MAPS = TRUE

}

MAPS {
MATERIAL_MAP {

IMAGE_FILENAME = shed_material_map_nadir.pgm
MATERIAL_ID = 100
INSERT_POINT = 0.000, 0.000, 0.0000
GSD = 0.3500
LUT {

0 = 8000
10 = 8048
20 = 3008

}
}

MATERIAL_MAP {
IMAGE_FILENAME = matmap2.pgm
MATERIAL_ID = 101
INSERT_POINT = 0.000, 0.000, 0.0000
GSD = 0.3500
LUT {

50 = 1012
51 = 1012
52 = 1012

53 = 1010
54 = 7076
#55 = 1021
55 = 11

}
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}
TEXTURE_MAP {

IMAGE_FILENAME = shed_texture_map_nadir.pgm
MATERIAL_ID = 8000, 8048, 3008
INSERT_POINT = 0.000, 0.000, 0.0000
MINIMUM_WAVELENGTH = 0.4000
MAXIMUM_WAVELENGTH = 0.7000
GSD = 0.3500

}

}

B.2.2 Example DIRSIG Object Database File (.odb)

DIRSIG_ODB = 1.0

OBJECT {
GDB_FILENAME = /cis/phd/sfl1194/dirsig_shed/gdb/shed_terrain.gdb
UNITS = METERS
INSTANCES {

INFO = 0.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 0.000
}

}
OBJECT {

OBJ_FILENAME = /cis/phd/sfl1194/dirsig_shed/gdb/shed_uv.obj
UNITS = METERS
INSTANCES {

INFO = 0.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 0.000
}

}

OBJECT {
GDB_FILENAME = /cis/phd/sfl1194/dirsig_shed/gdb/Red_Maple_2.gdb
UNITS = METERS
INSTANCES {

INFO = 75.95 , 12.25 , -0.41 ,0.751 ,0.751 ,0.751 ,0.0 ,0.0 ,0.0
INFO = 82.25 , 21.00 , -0.67 ,0.576 ,0.576 ,0.576 ,0.0 ,0.0 ,0.0
INFO = 87.15 , 29.75 , -1.23 ,0.851 ,0.851 ,0.851 ,0.0 ,0.0 ,0.0
INFO = 91.35 , 24.50 , -0.86 ,0.790 ,0.790 ,0.790 ,0.0 ,0.0 ,0.0
}

}
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B.2.3 Example CAD Object Files (.obj)

# Rhino

g object_1
v 20.64999961853027 52.84999847412109 6
v 25.20000076293945 59.84999847412109 3
v 25.20000076293945 59.84999847412109 -5
v 20.64999961853027 52.84999847412109 -5
vn -0.8384435772895813 0.5449884533882141 0
vn -0.8384435772895813 0.5449884533882141 0
vn -0.8384435772895813 0.5449884533882141 0
vn -0.8384435772895813 0.5449884533882141 0
f 1//1 2//2 3//3 4//4
g object_2
v 25.20000076293945 59.84999847412109 3
v 59.84999847412109 37.09999847412109 3
v 59.84999847412109 37.09999847412109 -5
v 25.20000076293945 59.84999847412109 -5
vn 0.5488408803939819 0.8359268307685852 0
vn 0.5488408803939819 0.8359268307685852 0
vn 0.5488408803939819 0.8359268307685852 0
vn 0.5488408803939819 0.8359268307685852 0
f 5//5 6//6 7//7 8//8
g object_3
v 54.95000076293945 29.75 6
v 54.95000076293945 29.75 -5
v 59.84999847412109 37.09999847412109 -5
v 59.84999847412109 37.09999847412109 3
vn 0.8320503234863281 -0.5547001361846924 0
vn 0.8320503234863281 -0.5547001361846924 0
vn 0.8320503234863281 -0.5547001361846924 0
vn 0.8320503234863281 -0.5547001361846924 0
f 9//9 10//10 11//11 12//12
g object_4
v 54.95000076293945 29.75 6
v 59.84999847412109 37.09999847412109 3
v 25.20000076293945 59.84999847412109 3
v 20.64999961853027 52.84999847412109 6
vn 0.1825522780418396 0.2745251953601837 0.9440924525260925
vn 0.1825522780418396 0.2745251953601837 0.9440924525260925
vn 0.1825522780418396 0.2745251953601837 0.9440924525260925
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vn 0.1825522780418396 0.2745251953601837 0.9440924525260925
f 13//13 14//14 15//15 16//16
g object_5
v 15.75 46.20000076293945 3
v 20.64999961853027 52.84999847412109 6
v 20.64999961853027 52.84999847412109 -5
v 15.75 46.20000076293945 -5
vn -0.8050557971000671 0.5931991338729858 0
vn -0.8050557971000671 0.5931991338729858 0
vn -0.8050557971000671 0.5931991338729858 0
vn -0.8050557971000671 0.5931991338729858 0
f 17//17 18//18 19//19 20//20
g object_6
v 54.95000076293945 29.75 6
v 50.40000152587891 23.10000038146973 3
v 50.40000152587891 23.10000038146973 -5
v 54.95000076293945 29.75 -5
vn 0.825307309627533 -0.5646838545799255 0
vn 0.825307309627533 -0.5646838545799255 0
vn 0.825307309627533 -0.5646838545799255 0
vn 0.825307309627533 -0.5646838545799255 0
f 21//21 22//22 23//23 24//24
g object_7
v 50.40000152587891 23.10000038146973 3
v 15.75 46.20000076293945 3
v 15.75 46.20000076293945 -5
v 50.40000152587891 23.10000038146973 -5
vn -0.5547001957893372 -0.8320503234863281 0
vn -0.5547001957893372 -0.8320503234863281 0
vn -0.5547001957893372 -0.8320503234863281 0
vn -0.5547001957893372 -0.8320503234863281 0
f 25//25 26//26 27//27 28//28
g object_8
v 50.40000152587891 23.10000038146973 3
v 54.95000076293945 29.75 6
v 20.64999961853027 52.84999847412109 6
v 15.75 46.20000076293945 3
vn -0.1921903192996979 -0.2868295311927795 0.9385050535202026
vn -0.1921903192996979 -0.2868295311927795 0.9385050535202026
vn -0.1921903192996979 -0.2868295311927795 0.9385050535202026
vn -0.1921903192996979 -0.2868295311927795 0.9385050535202026
f 29//29 30//30 31//31 32//32
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# Rhino
mtllib temp.mtl
g object_1
usemtl 101
v 59.84999847412109 37.09999847412109 3
v 59.84999847412109 37.09999847412109 -5
v 54.95000076293945 29.75 6
v 54.95000076293945 29.75 -5
v 50.40000152587891 23.10000038146973 3
v 50.40000152587891 23.10000038146973 -5
v 25.20000076293945 59.84999847412109 3
v 25.20000076293945 59.84999847412109 -5
v 20.64999961853027 52.84999847412109 6
v 20.64999961853027 52.84999847412109 -5
v 15.75 46.20000076293945 3
v 15.75 46.20000076293945 -5
vt .4655 .40533
vt .4655 .93
vt .2513 .17899
vt .2513 .93
vt .036974 .40533
vt .036974 .93

vt .039496 .6864
vt .9874 .6864
vt .9874 .999
vt .039496 .999

vt .5882 .4438
vt .84034 .4438
vt .84034 .5917
vt .5882 .5917

vn 0.818958044052124 0.2911122143268585 0.4945315420627594
vn 0.9798856973648071 0.1995595395565033 0
vn 0.6000692248344421 -0.4121401011943817 0.685607373714447
vn 0.8286938667297363 -0.5597021579742432 0
vn 0.04064996168017387 -0.8727313876152039 0.486505389213562
vn 0.1902058124542236 -0.9817442297935486 0
vn -0.05608460679650307 0.8672990798950195 0.4946179091930389
vn -0.2052528262138367 0.9787089824676514 0
vn -0.6018515825271606 0.4098961651325226 0.6853902935981751
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vn -0.8221031427383423 0.5693386197090149 0
vn -0.8218757510185242 -0.278388649225235 0.4970110952854157
vn -0.9849203228950501 -0.173008531332016 0

f 5/13/5 3/12/3 9/11/9 11/14/11
f 5/8/5 11/7/11 12/10/12 6/9/6
f 3/3/3 5/5/5 6/6/6 4/4/4
f 11/5/11 9/3/9 10/4/10 12/6/12
f 3/11/3 1/14/1 7/13/7 9/12/9
f 3/3/3 4/4/4 2/2/2 1/1/1
f 7/8/7 1/7/1 2/10/2 8/9/8
f 9/3/9 7/1/7 8/2/8 10/4/10

B.2.4 Example DIRSIG Material File (.mat)

MATERIAL_ENTRY {
NAME = Black Tarp
ID = 1
SPECIFIC_HEAT = 0
THERMAL_CONDUCTIVITY = 0
MASS_DENSITY = 0
SPECULARITY = 0
EXPOSED_AREA = 0.5
THICKNESS = 0
OPTICAL_DESCRIPTION = OPAQUE
EMISSIVITY_FILE = mine/black_tarp.ems
EDITOR_COLOR = 1.0000, 1.0000, 1.0000
DOUBLE_SIDED = TRUE

}
MATERIAL_ENTRY {

NAME = Grass
ID = 2
SPECIFIC_HEAT = 0
THERMAL_CONDUCTIVITY = 0
MASS_DENSITY = 0
SPECULARITY = 0
EXPOSED_AREA = 0.5
THICKNESS = 0
OPTICAL_DESCRIPTION = OPAQUE
EMISSIVITY_FILE = megascene1/grass.ems
EDITOR_COLOR = 1.0000, 1.0000, 1.0000
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DOUBLE_SIDED = TRUE
}

B.2.5 Example DIRSIG Emissivity File (.ems)

2
1.0
1.0
1.0
1.0
.
.
.
1.0
1.0
1.0
1.0
1.0
1.0
1.0
CURVE_BEGIN
0.3500000 0.9679560
0.3510000 0.9774490
0.3520000 0.9755070
0.3530000 0.9454230
.
.
.
2.4970000 0.7849070
2.4980000 0.7816680
2.4990000 0.7806690
2.5000000 0.7814130

CURVE_BEGIN
0.3500000 0.9579560
0.3510000 0.9874490
0.3520000 0.9455070
0.3530000 0.9554230
.
.
.
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2.4970000 0.7449070
2.4980000 0.7616680
2.4990000 0.7206690
2.5000000 0.7314130
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