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Abstract

A coupled hydrodynamic-optical water quality modeling teys based on Dy-
namic Data Driven Applications Systems (DDDAS) concepét #ssimilates remote
sensing data into a hydrodynamic model was developed atetdte§he modeling
system includes the hydrodynamic model (ALGE), a radiati&asfer model (Hydro-
light), and remote imagery (MODIS) as a dynamic feedbaclke DBDAS was imple-
mented through an Ensemble Kalman Filter (EnKF) with a seradkemble space.

Large scale thermal structure and circulation patternsakelOntario were sim-
ulated during the spring and summer seasons. High-resnlstream plume studies
were performed in Conesus Lake and for the plume of the Ng&aBarer in Lake On-
tario. This work provided validation of the capabilitiestbe ALGE code to simulate
the transport of sediment and passive tracer.

Although the ALGE model produces predictions of the disttidin of the TSS con-
stituents, visual examination of MODIS 250 m reflectance détarly shows discrep-
ancies between the model TSS output and the remote sensmdti@se errors are due

to the uncertainties in model physics, parameters, andniponditions. A Kalman



filter-based method was implemented in this research toigecw better estimate of
the modeled TSS. MODIS 250 m reflectance data was used as miutyigdback in
EnKF. A test was performed at the single simulation grid pairthe Genesee River
mouth to validate the performance of the EnKF method. TheFEegtimate and the
ensemble mean had similar and lower RMSE than any singleRFurther validation
was undertaken to examine the effects of assimilating MQOdita for all grid points
to estimate the plume dissipation. Results show that theasfiering via an EnKF is
capable of capturing the episodic nature of storm eventsimgiMODIS data as feed-
back. In this case the EnKF estimate RMSE is considerablylentiaan the ensemble

mean RMSE.
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Chapter 1

Introduction

1.1 Problem statement

Computer-based models have been utilized to study andatkae® the water quality
in the Great Lakes since 1960 (Alwis, 1999). Recently these@nmental simulation
models, so far primarily physical or biogeochemical, but limked, are increasingly
recognized as a fundamental method to provide diagnostigeadictive outputs for
spatially distributed, time-dependent environmentatpsses.

Physical processes such as the thermal cycle and watelatiotuin lakes have a
pronounced influence on water quality conditions. In laggagerate lakes stratifica-
tion characteristics, such as the thermal bar, the theimeodepth, and the upwelling
and downwelling dynamics are the major features of the thecycle that affect water
quality. For example, the thermal bar is a downwelling plushevater which arises
from the existence of a temperature of maximum density ishfr@ater. It slows the
horizontal mixing of water, which results in the higher centration of nutrients and

pollutants coming off the land to remain in a small band of mar water close to



1.1 Problem statement

23

the shore rather than distributing evenly over the entidybaf water. Therefore, the
presence of a thermal bar can affect carbon flow and lake ggdilp controlling the
seasonal distribution of dissolved or suspended watettitoasts in lakes.

The thermal characteristics of a lake together with windgoat are responsible
for the unique circulation patterns of each lake, that mayuiee complicated within
the nearshore zone. However, due to the limitation of nurakscales in time and
space, relatively little research has been concerned Wwehphysical properties of
nearshore areas in lakes. Nevertheless, the large-scalgations can drive many
of the coastal hydrodynamic phenomena. Thus it is alwaysssaey for local studies
with a nearshore focus to extend into the open lake to deterthie physical proper-
ties.

The transport and distribution of water constituents drivg the lake hydrodynam-
ics can determine the optical dynamics in coastal areast lingthe water is affected
by both absorption and scattering processes, and thesesgescare tightly coupled to
the type and amount of the components in the water, such agepig, suspended sed-
iments, and dissolved organic matter (Bukata et al., 199pjical properties of water
constituents provide the link between the color of waterchlgan be measured from
space using satellite sensors and the constituents in ttex tvady. The concentra-
tions of dissolved and particulate substances are tygibajher in coastal areas than
deep-lake regions, causing coastal waters to appear lypgraener and deep-lake
regions to appear bluer. The particulate and dissolvedaunbss in the water are also
related to the reflectance spectrum at visible wavelengtiosigh the radiative transfer
equations. Therefore, it is important to understand tHebgtween the remote sensing
parameters of lakes and the vertical structure of the watestduents and their optical

properties.
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Modeling of lake physical properties is a powerful tool, lewmer, due to the un-
certainties in model physics, parameters, and initial @i, hydrodynamic model
estimates are imperfect and drift away from reality throsghulation time. Data as-
similation is capable of coupling the space-time continoita hydrodynamic model
with intermittent remote observations in a framework thafabhces model and mea-
surement uncertainties to provide an optimal solution.dRemesearch has shown that
assimilation of remote sensing data can improve varioussyys simulations (Slater
and Clark, 2006) (Crosson et al., 2002) (Reichle et al., 2082dreadis, 2004). In this
research, the Dynamic Data-Driven Applications Systeni3JBS) concept (Darema,
2004) is used to implement the dynamic data assimilationetaglsystem. A DDDAS
can feed data into an executing application either as the idatollected or from a
data archive. The simulation makes predictions about thigyeagarding how it will
change and what its future state will be. The simulation @ntbontinuously adjusted
with data gathered from the entity. Simulations and measanés become a symbi-
otic feedback control system and the simulations can ewsr fiiture measurements
to where they will be most effective. By using a DDDAS desifpr,a water quality
monitoring and prediction system, the ability to incorgereeal-time data from satel-

lites or aircraft will greatly improve the overall relialiy of the simulation results.

1.2 Obijectives

The overall objective of this study is to develop and test@pted water quality mod-
eling system using the DDDAS concept that assimilates rersehsing data into the
hydrodynamic model to understand the link between the |gkieddynamics, includ-

ing thermal structure and circulations, lake optical dyitmmnand remote sensing pa-
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rameters. The motivation of this work is based on the ideattteacombination of
individual models into a modeling system provides a betteteustanding of the lake
hydrodynamics and water quality parameters that can befasgdediction and man-
agement. This coupled hydrodynamic-optical modelingesyistises remote sensing
data as a dynamic feedback for hydrodynamic modeling of maddetransport and
distribution that influence the optical dynamics in the lake

Specific objectives of the hydrodynamic modeling are to tewnformation on
how the thermal structure and circulation patterns arengtyoaffected by the thermal
bar in lakes during spring and summer. The physical prosesstuding the three-
dimensional thermal structure and seasonal circulatitiereat space and time scales
are studied. Additionally, this research also providesttaesport and distribution of
materials (dissolved and particulate) that enter the |&loes tributary streams. Since
the input to hydrodynamic model is geo-referenced and gikeiic, the output can
be directly overlaid with geo-referenced remotely senssaery for comparison and
feature extraction of regions of interest.

The optical dynamics in the coastal area are dependent afidtréoution of wa-
ter constituents that can be affected by the thermal cyadleflaw currents in lakes.
The spectral shape of the reflectance of a water body deperttie gtate of air-water
interface, bottom reflectance, and the absorption andestajtproperties of water
and other constituentdn situ measurements of optical properties, including the ab-
sorption and scattering properties as well as backsaagt@riobability of water con-
stituents, combined with distribution of the constitugmtsdicted from the hydrody-
namic model, enable the radiative transfer equations tutzak the expected remote
sensing reflectance spectrum at various simulation grideldVicalculated reflectance

is compared with remote observed reflectance iangitu measurements in the data
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assimilation step.

A hydrodynamic model can predict the transport and distidiouof water con-
stituents discharged into lakes. However, hydrodynamidetsare susceptible to
errors and uncertainties in model physics, parametersjmati@ conditions. Thus,
hydrodynamic models work best if they are periodically mialized with observa-
tions. Data assimilation is used to produce an improveanesé of the model state
by computing optimal weighting between a modeled and oleskstate if the esti-
mates of the errors in the model and observation are giveta &ssimilation provides
a framework to merge satellite observations and hydrodymamdel predictions to
estimate the model state in a way that accounts for both naakbbservation errors
(McLaughlin, 1995). In this work a dynamic data-driven ctagomodeling system
is implemented through an Ensemble Kalman Filter (EnKFyhHiesolution hydro-
dynamic simulations are performed in a coastal area to stuelyransport and 3D
distribution of sediments discharged into the lake. Sgtedlata is then dynamically
fed back into the hydrodynamic model through an EnKF to ohbaabetter estimate of

sediment distribution.

1.3 Overview of the study approach

A coupled measurement-modeling system incorporating adalyshamic model, a ra-
diative transfer model, remote sensing observations, atalaksimilation techniques
is developed and tested.

The lake-wide thermal structure, water circulation, andgsrtaansport are studied
using the three-dimensional finite differencing hydrodwiamodel ALGE. It solves

the hydrostatic form of the partial differential equatidhat model conservation of



1.3 Overview of the study approach 27

momentum, mass and thermal energy. ALGE is capable of pnoglidgh-resolution
simulations for node-to-node matching with airborne anélsge imagery. Physical
forcing factors, such as the initial water temperaturesrrdischarge, river source con-
centration of water constituents, meteorological dateluising wind speed/direction,
air temperature, precipitable water, and cloud coverkteige required.

As we know, the nearshore waters tend to have complicatedragde thermal and
circulation characteristics. However, only a few of thevwas hydrodynamic stud-
ies of Lake Ontario focused on the near-field phenomena suttheaflow circulation
and spatial extent of the Niagara River plume (Murthy anddvkn1992) (Masse and
Murthy, 1990). In this research, high-resolution streaomp studies are performed
in Conesus Lake and for the plume of the Niagara River in Lak&afib. This work
provided validation of the capabilities of the ALGE code tmglate the transport of
sediment and passive tracer.

The primary goal of this research is to study the impacts efttiibid plume of
the Genesee River on optical dynamics of the Rochester Emdxatyin Lake Ontario
using the coupled modeling system. High resolution plumeiations are carried out
to study the transport and distribution of water constitaeturing plume events by
ALGE. Color Dissolved Organic Matter (CDOM) and Total Susged Solids (TSS)
are modeled as passive tracers and patrticles, respectiaedytu and laboratory Ap-
parent optical Properties (AOPs) and Inherent Optical &togs (IOPs) measurements
are made both in and outside the plume. Simulated CDOM andpf&#es from the
hydrodynamic simulations are entered into the radiatimegfer model Hydrolight.
Hydrolight uses the water constituents’ distribution peestl from the hydrodynamic
model to calculate the amount of light scattering and alignrpvithin each layer of

the water body and thereby predict the reflectance. The Hgtitmutput is compared



1.3 Overview of the study approach 28

with the measured AOPs and satellite data in a data assionilstep.

Many of the requirements for hydrodynamic modeling can lregbed by exten-
sive use of remote sensing data. The water temperaturdesis dae retrieved from the
satellite images as one of the initial parameters of hydnadyic simulations. The sur-
face water temperatures needed to compare with the mogeritare seldom available
all over the lake except for the occasional stations on a.bidso, remotely sensed
data from satellites can be used to monitor the occurrentteedhermal bar and other
manifestations of the spatial patterns of water movemenmtuiber of satellite prod-
ucts are currently available and having the potential taraidevelopment of thermal
bar monitoring and modeling in Lake Ontario. However, mangortant environmen-
tal phenomena, such as stream plumes and the distributsuspended sediments, are
nearshore and cannot easily be examined in satellite imatyer to the large ground
pixel size. However, the MODerate resolution Imaging Smmeatiometer (MODIS)
sensor on board the Terra and Aqua satellites has two baA8safd 865 nm) that
acquires data at a 250 m ground spot diameter. While thesbawds do not provide
a rich optical signal, the 645 nm band does respond stroogiye sediment load in
the plume and thus is an accurate measure of its distribution

The models and the satellite data are brought together idataeassimilation step,
which is based on the ensemble Kalman filter. An EnKF is imjgleted and applied in
this research as a dynamic data assimilation tool to imptioerdnydrodynamic model
performance and provide more accurate estimates of madelsiing remotely sensed
observations. The model state is a probability distribuod represented by an en-
semble of open-loop simulations. Then the model state ista@gdusing the Bayes
theorem by observations and the associated error estimssesing the probability

distributions are approximately normal.



Chapter 2

Background

2.1 Lake hydrodynamics: physical processes

2.1.1 Water and heat budget

The water budget is the hydrologic balance of a lake whiclviges useful informa-
tion about the availability of water in lakes at any time. Tasic parameters of the
water budget are classified as recharge and discharge. Thedge further divided
as inflow from precipitation, surface runoff, and groundsvand outflow from river,
evaporation and groundwater.

Temperature changes in lakes are the results of the variafitveat flux. The
heat budget into and out of lakes includes several majooffsictsolar (short-wave)
radiation, long-wave radiation, sensible heat transéernit heat transfer, and inflow
and outflow. Radiation from sun and sky is the most importétiteheating processes.
Other heat sources are usually of much smaller importareggeraing on local and

seasonal circumstances. Evaporation is the main heaptossss. Figure 2.1 shows



2.1 Lake hydrodynamics: physical processes 30

an overview of energy exchange in and out of a lake.

Solar radiation penetrates the atmosphere to reach theslakace. Some of the
solar radiation is reflected at the water surface and the irgsleatransmits into the
lakes. Incoming solar energy varies seasonally and witHatigeide and is greatly
influenced by cloud cover. The fraction of the solar energy threflected away from
the lake surface depends upon the solar angle, the turloidite atmosphere, the wave
state of the lake, and the lake surface roughness.

Long-wave radiation originates from black-body radiati@oth the lake and the
atmosphere emit black-body radiation. The amount of radiagmitted by the lake
surface is proportional to the fourth power of the surfaceperature, which results
in a loss of thermal energy and cooling of the lake water. Hukation emitted by
the clouds and atmosphere overlying the lake depends piyrogon the amount and
height of the clouds and the temperature and moisture cootéhe atmosphere near
the lake surface.

A sensible heat flux is a movement of heat between the lakasignd the atmo-
sphere, which depends on the temperature difference betivedake surface and the
adjacent air. Sensible heat transfer can be intensified Inytanaing large temperature
gradient at the air-water surface from the wind.

Latent heat is the energy required to change a substanceadber lstate of matter
(solid — liquid — gas). This same energy is released from the substance wien th
change of state is reversed. Evaporation from the lake cdatracts heat from the
lake and results in cooling of the water surface. Condemsatxtracts heat from the
atmosphere and adds it to the water surface, resulting itinigeat the water surface.
This process is determined by the relative humidity of tmexad can only affect heat

at the very surface of a lake. Evaporation and condensat@also accompanied by a
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Figure 2.1: A schematic view of all the major energy inputsatdypical lake.
(http://ceprofs.tamu.edu/kchang/ocen689/ocen689difiP.

flux of water. Thus, they can also affect the total water btidga lake.
Hydrodynamics in large lakes, such as the stratificationmaixihg, water circula-
tion, and material transport, depends on many factorsdnfugeometry, surrounding
topography, hydrological and geochemical loadings, anteanelogical conditions.
wind, waves, and thermal structure are primary determgahtwater movements,
mixing, and circulation in large lakes. The movement andingpof water in natural
systems affects water quality, biological community stoe and productivity, and the

transport of sediment and contaminant, especially in heaesareas.
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2.1.2 Thermal stratification and mixing

Thermal stratification and mixing are the changes in the tatpre profile with depth
within a lake system. Most important for stratification is thater temperature depen-
dence of the water density, which reaches a maximum close @. &#igure 2.2 shows
an overview of the seasonal changes in a dimictic tempea&ee IDuring spring, the
lake water is generally the same temperature from the suttathe bottom after the
ice melts. Surface water can be pushed to the lake bottom @tahb water can rise
to the surface by wind. The mixing of the lake water at thisetiof year is called
spring turnover. As air temperatures rise in late springt fim the sun begins to
warm the lake resulting in the warm water with less densitgtiig over the cold wa-
ter. The layers of warm water at the surface and the cold lagéow it are called
the epilimnion and hypolimnion, respectively. These twyels are separated by the
thermocline which rapidly changes temperature with def@brring the summer the
epilimnion reaches a maximum depth and the stratificationastained for the re-
mainder of the summer. Typically, the warm water of the emilion is unable to drive
through the cold, dense water of the hypolimnion even if tinéase water is circu-
lated by wind. The epilimnion cools and becomes both densghaavier as the fall
approaches. The cooler and denser water sinks and fall wiindise epilimnion which
gradually erodes the thermocline. Eventually, the tentpezaof the entire lake is uni-
form. As the winter comes, surface water is in direct contatit the cold air and gets
cooled faster than the water below. The cold, dense watk&s sind further helps to
stratify the lake. The surface water stops sinking when @visntually cooled below
4 °C. Ice begins to cover the surface of the lake as surface wetgrerature reaches
0 °C, which prevents wind from mixing the lake water. A layer oivldensity water

colder than £C, but warmer than 0C forms just below the ice. The remainder of the
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Figure 2.2: Overview of the seasonal cycle in a dimictic lak& density profile
and the relationship between temperatures in the uppercavet regions are shown.
(http://ceprofs.tamu.edu/kchang/ocen689/ocen689difiP.

lake water is usually near“€. This is called winter stratification.

2.1.3 Thermal bar

As a result of the increased surface heating in the earlywgpthe nearshore littoral
zone begins warming more rapidly than deeper regions. bHa#ntthe lake water is
divided into two zones: offshore un-stratified water loweart 4°C and nearshore
weakly stratified water slightly higher than°€. The convergence of 4C water be-

tween the two zones starts sinking, which is referred to agltarmal bar. The near-
bottom currents moving from the bar and the near-surfaceeotg converging onto
the bar result in the region of strong downwelling currefiise thermal bar gradually

moves offshore as the heating of inshore areas continuesth&nmal bar is the main
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characteristic of the coastal lake hydrodynamics duriegshring in large lakes.

The thermal bar formation occurs during the spring whentpland animals in
lakes are in the early stages of development. It can enhdgakgaowth by effec-
tively trapping heat and nutrients because the sharp geinsitit across the thermal
bar effectively limits the exchange of materials betweearsieore and offshore. This
process is likely to encourage the growth of macrophytefiénrntearshore area and
have critical impacts on the ecosystem of the lake basin.n@mther hand, the ther-
mal bar also traps suspended sediments nearshore whicheunegade plant growth
due to light limitation. Measurements of the thermal barehiacluded satellite images
and detailed observations, such as temperatures, cuekatities, optical character-
istics, and bio-chemical characteristics. The study ofttieemal bar can be used to
determine the physical dynamics and also to investigatenipgct on water-quality
conditions during the spring.

Field investigations of the thermal structure in Lake Oiotauring the spring of
1970 were conducted by Rodgers (Rodgers, 1971). The suregygm consisted of
measuring temperature profiles at the stations in the deseetion of Lake Ontario.
Sampling took place during nine surveys and seven of thera a@nsecutive weekly
surveys from May 11 to June 24 (Figure 2.3). The near-surfac®erging currents
onto the bar were clearly observed. The thermal bar regiasean at over 12 km
from the shore (Figure 2.4). Since the formation and propag®f the thermal bar
can be affected by the slope of the lake bottom (Malm et aB3),9%the thermal bar
develops quickly in the north side of Lake Ontario, while soeith side of the lake has
a steeper slope compared to the north side and is heated upshoucer.
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Figure 2.4: One temperature profile in Lake Ontario from Rwdiield survey (1965)
(Rodgers, 1971).



2.1 Lake hydrodynamics: physical processes 36

2.1.4 Circulation structure of lakes

Wind, solar radiation, gravity, and the earth’s rotatioa @nportant forces causing wa-
ter movements in lakes. Knowing water movements is impotaocause currents and
waves influence the distribution of water constituentshsascthe dissolved substances,
nutrients, microorganisms, and plankton.

When the wind blows over the lake surface, if the lake is uatied, then all of
water is moving down-wind. During the stratification seasie vertical exchange
is greatly reduced and the main motions are almost entirefizbntal. As momen-
tum is transferred at the air-water surface, the lake resdirss than% of the wind
energy from the atmosphere. Surface waves transport asgbakis a portion of this
energy, whereas the remaining energy forms large-scalé-drinen currents. Veloc-
ity of wind-driven currents is about% of wind velocity and is independent of the
height of the surface waves. However, the wind-driven ¢aibon can occasionally
reach up to several tens of centimeters per second. In thet Gakes, a cyclonic gyre
is another type of large-scale horizontal current patteived by wind. Gyres form
mainly as a result of the Coriolis effect and non-uniform evfiorcing. Stratification

also contributes to the formation of vortices.

2.1.5 River plume effects on the lake hydrodynamics

When a river enters into a lake, a distinct color differeneeneen the river and lake
water can commonly be observed. The area that appears toddesion of river-
colored water into a lake is called a plume (Figure 2.5). Rivaer commonly appears
browner in color than the lake because the river is ordipaalrying more suspended
particles such as silt and clay.

However, the plume is not just different in color. There isialyy a density dif-
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Figure 2.5: An aerial view showing the sediment plume fronverrto a lake.

ference between the inflowing water and the ambient watey.bAdurface buoyant
overflow is formed if the inflow is less dense than the surfae¢ew If the inflow
is heavier than the surface water, it forms an underflow atbegbottom boundary.
River flow is a main source of nutrients, suspended sedimamdscontaminants to
lake. A large amount of rainfall in the watershed transfdesge amount of soil to the
rivers and leads to high sediment loads. River sedimentsisantransfer man-made
pollutants to the lake. As the soil is carried away by rain ard the rivers, it will
be transferred to the river mouth and deposited in the rie¢tad An understanding
of river plume dispersion is important for water quality ragement. The dispersion
of the river plumes represents a redistribution mechanidm.incoming river plumes
control the discharge of mass and constituents from thettily area and the processes
of redistribution and transformation in the water body a thke.

The geometry of a river plume as well as the sharpness of iadary may vary
considerably depending on a number of factors, such as wizxk, and current condi-
tions as well as the amount of material carried in suspen3iba tremendous amount

of sediment and toxic materials that are carried to the Qrakés daily by tributary
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rivers decrease the water quality of the lakes. As a resaitirol of the erosion of

sediment into streams is critical to maintaining high wageality in the Great Lakes.

2.2 Optical properties of natural water

The behavior of light within the water body determines thivcand clarity of water.
As a beam of light travels in a water body, it is attenuateddagtering and absorption.
Scattering and absorption are called inherent optical gntags (IOPs) because they
do not depend on the amount or direction of sunlight (i.e.y thepend solely upon
the medium through which the light is traveling). 10Ps ird#ithe absorption coeffi-
cient, the scattering coefficient, the volume scatterimgfion, the index of refraction,
the beam attenuation coefficient, and the single-scatferibedo. Apparent optical
properties (AOPs) which describe the optical behavior dewhodies in a particular
light field include the diffuse attenuation coefficientsg flradiance reflectance, and
the remote sensing reflectance.

The absorption coefficient,(\), defines the fraction of flux absorbed over an in-
finitesimal distance for a particular wavelength. Simitathe scattering coefficient,
b()), evaluates the fraction of radiant flux that is scattered awdistance for a partic-
ular wavelength. In pure water, light is scattered in a maooasistent with Rayleigh
scattering with approximately equal amounts being saadteackwards as forwards.
However, the shape of the scattering (scattering phasédmychanges drastically as
the particles are introduced to the water, so that the nigjofithe radiant flux is scat-
tered in the forward direction. The scattering phase famatiepends on the refractive

index of the scattering particles in the water and the siggillution of the particles.
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2.2.1 Components of natural water

The optical properties of water are dependent on the caestitcomposition of the
water body. The absorption and scattering cross sectioeaatf substance in a natu-
ral water body and its concentration level provide the ghtsom coefficienta(\) and

scattering coefficienti(\) as:
a(\) = Z Cia;(\) = Absorption coef ficient,
1=1

b(A) = Z C;bi(\) = Scattering coef ficient, (2.1)
i=1

where(; are the concentration levels(\) andb; () are the absorption and scattering
cross sections for each component.

Natural water bodies are comprised of an unlimited amourgubistances. Yet,
as a simplification, case Il water constituents are dividedhto pure water, colored
dissolved organic matter (CDOM), chlorophyll-a (CHL), atodal suspended solids
(TSS).

CDOM s produced from the decay of plants and is usually browgellow in
color. Surface run-off and river discharge introduce a wideety of CDOM into the
water. Both sources from within and outside the water canltr@s higher CDOM
concentrations in inland and coastal waters than they ateeiopen ocean or middle
of a large lake. For example, the range of concentratioregadfi CDOM in a river can
be several thousands of times higher than that in the degmardarge lake.

All phytoplankton in water bodies contain the photosynttaly active pigment
chlorophyll-a. Chlorophyll-a is the most prominent chlphyll since it exists in all

green algae. Bukata suggested that chlorophyll-a is a meh#® surrogate for the
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organic component of optically complex natural waters @aket al., 1995). The
knowledge of the concentration and location of chloroplayib important to estimate
the locations and concentrations of phytoplankton.

Suspended matter includes many types of fine organic andganar matter, clays,
microorganisms, and plankton. The suspended solids armtis¢ important of the
constituents in the suspended matter because of their tagtesang coefficients. They
enter the water body from wind deposition, erosion and sedtrtransport in tribu-
taries, and resuspension of bottom materials. These leartisually consist of finely
ground sand, clay minerals, and metal oxides. The size gktparticles can range
from 3~4 microns in diameter to several hundreds of microns. Als®cbncentration
level can range from 0.6020.17 g/n¥ in the open ocean to as high as hundreds ofg/m
in some inland lakes. The literature reports the conceatrével of these particles in

Lake Ontario is about 0:28.9 g/n¥ (Bukata et al., 1995).

2.2.2 Spectral response of water constituents

Variations in the spectral absorption of natural watersltesrectly from variations in
the concentrations and chemical compositions of matartatances distributed within
the water volume. These absorbing and scattering matenaysbe present either in
suspended particulates or as dissolved materials.

Bukata publishes the cross section curves for Lake Ontaaters in the range of
400 nm to 690 nm (Bukata et al., 1995). The cross section swakegiven in Figure
2.6. Algal particles are strong absorbers in the blue anghoetions of the light spec-
trum. By absorbing red and blue light, the chlorophyll anidtes] pigments in algae
make the water appear green. CDOM consists of humic sulestamd tannins from

decayed plant matter, including algae and terrestrialtplah strongly absorbs blue
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and ultraviolet light, so the absorption coefficient follban exponential decay with
increasing wavelength. In certain instances, there mayfiieient dissolved organic
matter in the water to reduce the penetration of light in tlagewcolumn. Pure water
absorbs light in the long wavelength of the spectrum caugng clear water to have a
bright blue appearance. Almost all of the incident nearairgd and shortwave-infrared
(0.7~ 2.5 microns) radiant flux entering a pure water body is akesbrtath negligible
scattering taking place. Water bodies appear very darkaninérared remote sensing
images because they absorb almost all of the incident raftiixn especially when the
water is deep and pure and contains little suspended setianerganic matter.
Scattering in the water column is important across all wawvgihs of the visible-
near infrared spectrum. The wave nature of light causesidtier more strongly from
very small particles of sizes on the order of a few wavelesgthorganic sediments
more strongly scatter light in the short wavelength regi@ntlong wavelength region.
The scattering coefficient of CDOM is generally accepteceternall enough to ignore.

Therefore, Eq. (2.1) can be rewritten as the following:

a(N) = aw(A) + Cepormacpom(A) + Csarasar(N) + Cen@eni(N),
b(A) = bw(A) + Csarbsar (A) 4+ Cenbeni(N). (2.2)

Figure 2.7 shows the mass-specific absorption coefficietifn) for brown earth,
calcareous sand, yellow clay, red clay, and Bukata's datab{&) and Sundman,
2000a). The absorption coefficient of the mineral parti§lsn) can be obtained
by multiplying these values with the concentration of malgrarticles in g/rh. The
wavelength dependence of the mineral specific scatteritagata shown in Figure 2.8
(Mobley and Sundman, 2000a). In shallow coastal waterswtter color is also in-

fluenced by the bottom reflectance and the water depth. Sewadiance reflectance
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Figure 2.7: Mineral specific absorption spectra used fosthmilations in Hydrolight
(Mobley and Sundman, 2000a).

spectra for different types of sea floors, including broved, rand green algae as well

as coral sand and clean sea grass are show in Figure 2.9 (Motde&Sundman, 2000a).

2.2.3 Impacts of PSD on IOPs

Particles in a natural water body are seldom all of the samee Jihe size of particles
may vary over quite a wide range. The range is normally brakgmto a number

of classes and the patrticles fall into each of the various einges. This range is
called Particle Size Distribution (PSD) and is typicallyosm as a histogram chart
with percentage-smaller-than on the y-axis and size raogdke x-axis. PSD is an
important parameter in modeling the fundamental IOPs afnahtvater body. Differ-

ent PSDs can result in different absorption and scatteoefficients and the scattering

phase function.
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Figure 2.8: Mineral specific scattering spectra used foristhmulations in Hydrolight

(Mobley and Sundman, 2000a).
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for the simulations in Hydrolight (Mobley and Sundman, 2800
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Figure 2.10: (a) A typical log-normal PSD plotted with resp® the radius (microns).
(b) The same PSD as in (a) plotted with respect to log(radmagyrons).

PSDs in the ocean are often found to be well approximated lyyparbolic (Junge-

like) distribution, which has the form:

N(D) = No(D/Do)™™, (2.3)

where N (D) is the number of particles per unit volume per unit bin widih, is the
maximum of the particle size. The exponent of the PSD typicaries between 3 and
5 so the number of smaller particles falls off with the ineecs a power of particle
size.

The most common PSD is log-normal distribution which is blase the Gaussian
distribution (Figure 2.10). If one specifies the median $izkich in this case corre-
sponds to the maximum frequency) and the spread of theldisitsn, the entire curve
is fully specified. Log-normal distribution is the way thabst PSDs are represented,
and almost any real distribution can be approximated invitaig

Even though both particle types and refractive index aff@gts, PSD is the main

factor. Figure 2.11 shows the absorption and scatterinfficieaits calculated for cal-
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Figure 2.11: Absorption and scattering coefficients calt@d for calcite with a refrac-
tive index of 1.486.

cite with a refractive index of 1.486 (J. Hamel, unpublisidada, Rochester Institute

of Technology).

2.3 Contributions to sensor reaching radiance over nat-
ural water

The total radiance 14, ¢, \) recorded by a remote sensing system (aircraft or sapellite
over a water body is a function of the electromagnetic enagy four sources (Figure
2.12) (Bukata et al., 1995):

L(0,6,)\) = Lo + Ly + Ly + Ly. (2.4)

e L, isthe atmospheric path radiance resulting from the dowinvgedolar (E....)
and sky (E,) radiation. This is an unwanted portion that never reaches t

air-water interface.
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e L, is the radiance that reaches the air-water interface byt pehetrates it a
millimeter or so and is then reflected from the water surfédberefore contains

spectral information about the near-surface charadsist the water.

e L, is called subsurface volumetric radiance resulting froexdbwnwelling radi-
ation that penetrates the air-water interface, interadts the organic/inorganic
constituents in the water, and re-emerges from the watemuolwithout en-
countering the bottom. It provides information about thelinal characteristics

of the water column.

e L, is the radiance that penetrates the air-water interfaeehes the bottom of
the natural water body, propagates back through the wakemeo and exits the
water column. It therefore represents the information aloe bottom (e.qg.,

depth, color).

Since it shows the direct result of aquatic absorption aatteseing processes im-
pacting on the photon flux in its subsurface propagatigncdntains most of the in-
formation on the natural water body., lis a function of the concentration of each
component in natural water, and the total amount of abswr@ind scattering attenua-

tion that takes place in the water column due to these conmiene

Ly = f(a(A),b(X)). (2.5)

Downwelling irradiance Ey, is due to the stream of downwelling light and rep-
resents the irradiance attributable to the hemisphereeath@/horizontal plane. The
upwelling irradiancef,, is due to the stream of upwelling light and represents the ir

radiance attributable to the hemisphere below the horaqine. Downwelling and
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Figure 2.12: Components of the radiance collecting by a tersensor over a natural
water body (Bukata et al., 1995)

upwelling irradiance are obtained by integrating over tppar hemisphere and the

lower hemisphere, respectively. They are defined as

2r  pm/2
E; = / / L(0, ¢)coslsinddldo, (2.6)
o Jo

2m ™
E, = —/ / L(0, ¢)cosbsinfdlide. (2.7)
0 w/2

Irradiance reflectancey, is the ratio of the upwelling irradiance at a point to the
downwelling irradiance at that point. It can interpret teenotely sensed spectral data
in terms of the compositions of natural water bodies. Thadiance reflectance is
defined as

R(O,0,\) = —. (2.8)
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The spectral remote-sensing reflectance (radiance reftia, ., measures how
much of the downwelled irradiance that is incident on theewsitsurface is returned
to the surface in a specific direction. The equation for thecspl remote-sensing

reflectance is given below:
L,

Rru(0,6.0) = 2. 2.9)

whereL, is the water leaving radiance as a function of the water tepdirection ¢,

¢), the wavelengthX), and the depth. The depth is set to the air just above tharf
of the water. The downwelled irradiance evaluated just alitve surface for each
wavelength. Spectral remote-sensing reflectanc€\R contains information about
the properties of the water body surface layer whose thkdepends on the inherent
and apparent optical properties.

Q-factor, Q = E,/L,), converts irradiance reflectancé; & £, /E,), to remote
sensing reflectanceR(; = L,/E;). Q-factor is dependent on the solar zenith angle
and the IOPs of the water column, specifically the volumetsdat function and the
single scattering albed@ is often considered to remain constant over wide geograph-

ical areas as well as over the visible spectrum.

2.4 Data assimilation concepts and methods

Data assimilation is a statistical technique to combinesueanents of state variables
with models that describe the time evolution of these véembo produce an optimal
estimate of state variables. The error statistics of bahmteasurements and the model
are used to estimate the best guess of the actual field. Tieevalisns of the variables
(current and/or past) are assimilated into the model systgrnaking advantage of

consistency constraints. When the measurements are vauyade, the best guess of
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the state variables will be close to the observations. Whemrtodel produces a good
forecast in comparison to the accuracy of the measurententjeld variables will
be adjusted only slightly. The assimilation may identife timodeling problems and
provide information about the quality of the measuremestsell.

Data assimilation methods are divided into two classesatiranal and sequential
methods. Variational data assimilation is based on optouatrol theory. 3-D Vari-
ational Assimilation (3DVA) and 4-D Variational Assimilah (4DVA) are the main
methods. The major difference between 3DVA and 4DVA is thessovations are only
used when available at the time of analyses in 3DVA, whered®WVA the past obser-
vations are included as wellétime dimension is added). An important advantage of
the variational approach is the ability to incorporate fatmeasurements in the anal-
ysis. In this sense there are twice as many measurementstd@aiompared to the
sequential technique, improving the accuracy of the assied field.

Most assimilation techniques analyze the measurementesgally. The sequen-
tial data assimilation methods use a probabilistic frant&vamd produce estimates of
the whole system state sequentially by propagating infaomanly forward in time.
When a measurement is available, a new analyzed field vakadaslated. After the
analysis, the field is propagated forward in time until th&tmaeasurement and the
procedure is repeated. An additional equation for the sleooder statistical moment
is integrated forward in time to predict error statistics lee model forecast as well.
The error statistics are then used to calculate a varianognizing estimate whenever

observations are available (Evensen, 1994) (Evensen)2003
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2.4.1 The Kalman Filter

Kalman Filter (KF) is a recursive sequential technique \whias been used widely in
the areas of control and prediction of dynamic systems (l&alni960) (Negenborn,
2003). The KF estimates the state of a linear dynamic systeichwnay be corrupted
by noise sources using its mean and the covariance matrigreTdre two recursive
operations involved: 1) Propagation of the state vector @ndriance in time; 2)
Analysis of the state vector and covariance based on the\aligms available at that
time.

A linear dynamic system governed by the following equatiomssists of a linear
system model and a linear measurement model. The system,miyderedicts the
evolution of the state,, over time. It relates the state at the previous time stépo the
state at the current stép The measurement modéef,, describes how measurements
2z, are related to states. In practice, the system model andumegasnt model might
change with each time step or measurement. The KF systemddgarhMarkov chain
since the state, . ; depends only on the statg but not on previous ones,.;_; and the
measurement, depends only on the state. The system model and the measurement
model are defined as

T = ATp_1 + wi—1, (2.10)
2z, = Hxy, + vy, (2.11)

The dynamics of systems and measurements are not perfextoRavariablesu;,
anduy, represent the process and measurement noise, respeclivelyare assumed to
be independent of each other, white, zero-mean, and witls€taudistributions. The
independence assumption implies the amount of noise irsyand measurements

have no effect on each other. The white noise assumptioriémfsiat errors are not
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correlated through time. The Gaussian assumption deakstidt amplitude of the
noise and states that the system and measurement noiséeareadfised by multiple
small noise sources. Since the noises are with the zero-ameh@aussian distribution

assumptions, they are defined as

p(w) ~ N(0,Q), (2.12)

p(v) ~ N(0, R). (2.13)

The process noise covarian@eand measurement noise covariartare defined as
matrices below and might change with each time step or meamnt. The main
diagonal of the covariance matricésand R contains the variance in the state and
measurement variables respectively. The off-diagonahefgs are zero due to the

assumption of independent noise:

o3 0 0 ... 0

0 0% 0 ... 0

Q= 0 0 o2 ... 0
0 0 0 o2,

oy, 0 0 0

0 o2 O 0
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Whereagq is the variance ajfth state variable changes with responding to one time step.
The process noise covariance cannot be usually measuraddee@e cannot directly
observe the process we measuré) I chosen with a large value (uncertainty), a poor
model can produce acceptable results. Measurement naiseecdetermined before

the filter operation.

2.4.2 Prediction-correction state estimator

The KF is a state estimator working on a prediction-coroecbasis. It estimates the
true state of systems and gives a measure of how certairhiaigte state estimate is
the true state. The state of the system changes over times affdcted by noise. Since
the variables of the state may not be directly observablesaeobservations are used
even though they are subject to noise.

The Kalman filter estimates a state by obtaining feedbackenform of noisy
measurement. The prediction-correction basis can alsbdaght of as time update
and measurement update. The time update is used to projeetrtbthe current state
and error covariance estimates to obtaindhgriori estimates for the next time step.
The measurement update incorporate a new measuremerti@@gtiori estimate to
obtain an improvea posterioriestimate.

In KF, 2, is defined asa priori state estimate at time stépgiven knowledge of
the system process prior to stepi; is defined as posterioristate estimate at stép

given measurement,. Thena priori anda posterioriestimate errors are defined as
e, =T — T, (2.14)

e = — Iy (2.15)
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The a priori estimate error covariance and thgosterioriestimate error covariance

are defined as

Py = Ele; ()], (2.16)
Py = Elef ()], (2.17)

Steps

The KF algorithm consists of an initialization step and aeralatively performed
prediction and correction steps. Before the KF performirgdction and correction
steps, it is initialized by specifying the initial posteritate estimateé; and the initial
system uncertainty in the posterior st&g.

In the prediction phase, the prior state estimate and tlog pyistem uncertainty
are computed in Egs. 2.18 and 2.19. These equations debokibthe KF updates the
belief when the system moves one step forward in time. The gtate is estimated
by the last posterior state and the system model. The systeertainty in the prior
state includes the propagation of the system uncertaiaty the last posterior state to
the current prior state and the state process noise. Thelikelgtstate of the system
is predicted by Eq. 2.18 and Eq. 2.19 represents how muchrtanty in the state
estimate being the true state:

iy = Az, (2.18)

P; = AP} AT + Qp_1. (2.19)

The correction phase consists of the correction of the stite estimate and the
prior system uncertainty. When a measuremgrdf the true state is available, a pos-
teriori state estimate;” is computed as a linear combination ofapriori estimate?;
and a weighted difference between an actual measurerpantd a measurement pre-

diction H(z, ). The difference is called the measurement innovation,@re¢hidual. A
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residual of zero means that there is no discrepancy betwegrédicted measurement
and the actual measurement. The uncertaifityis updated through Eq. 2.21 at the
same time as well. The correction phase is only performechwihere is a measure-
ment available. The new posterior belief then is used to aaenfhe new prior belief
for the next timestep:

ap = ay, + Ki(z, — H(zy)), (2.20)

Pl = (I — K.H)P,. (2.21)

In Egs. 2.20 and 2.21}, is called the Kalman gain and defined as
Ky =P, H'(HP; H" + Ry)™". (2.22)

The Kalman gain shows how much the measurement is takendontuat.

Figure 2.13 shows the organization of the computations iraK$imilation. The
input to the KF algorithms includes: the definition of theteys and the measurement
model, the initial condition forr and P, the sequence of measurements, and the se-
guence of model and observation error covariance matficasd R. The output is the
sequence of estimates of the model state and its error eoxea&matrix.

Kalman gaink,

The Kalman gain is chosen to minimize theposterioricovariance. This min-

imization can be accomplished by taking the derivative efdhposterioriestimate
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Figure 2.13: The organization of the computations in KFragation algorithm.
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error covariance with respect 16,, setting that to zero and then solving &y

Py = Blef ()]
= E[(zy, — &), — Kp(zp — Hiy)) (zy — & — Kp(ze — Hiy))')
= E[(zy, — &, — Kp(Hogp +vp — Hip))(wp — 3 — Kp(Hay, + vy, — Hip )
= B[((I = KiH)(wy, — &) + (Kpop) ) (I = KiH)(wy, — &3;) + (Kyvr))']
= (I — KxH)E[(xy, — &7, )(z, — 2)7)(I — K H)" + K E[ogol | KF
+2(I — KyH)E[(zy — o, )vf | K
= (I — K,H)P, (I — K H)' + KRy K]
(2.23)

On _ i[(I— KyH)P; (I — K. H)" + KRy K]
oK, _ 0K, Tk " S (2.24)

= 2P  H" + 2K,(HP; H” + Ry),

Ky=P,H' (HP;H" + R;)™"
(HP; HT + Ry,)~V

K, determines how much of the information from the measurestenild be taken
into account when updating the state estimate. As the me@asunt error covariance

approaches zero, it implies the measurement will be takenaiccount (Eq. 2.26). If

thea priori estimate error covariandg; is close to zero, which means there is almost

no uncertainty in the last state estimate, it results inti@aimeasurement is not taken

into great account (Eq. 2.27):

- _ -1
I%iIEOKk_H , (2.26)
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lim K = 0. (2.27)

P —0

2.4.3 The EKF and EnKF

The traditional Kalman filter addresses the problem of ediimy the state of a noisy
system that can be described by a linear system model aneka fimleasurement model
(Gelb, 1974). For nonlinear dynamic system consisting ob@alinear system model
and a nonlinear measurement model the Extended Kalmam fk-) may be ap-

plied. The two Eqgs. 2.10 and 2.11 can then be written as

= f(Tr-1) + wi—_1, (2.28)

2 = hx) + v, (2.29)

where f(-) and h(-) are a nonlinear system function and a nonlinear measurement
function. To predict the error statistics, an approximatedrized equation is used.
A simple closure scheme is applied where third- and higheéeromoments in the er-
ror covariance evolution equation are discarded. Thisuckoechnique results in an
unbounded error variance growth caused by the linearizagrformed when higher-
order moments are neglected (Evensen, 2003) (Evensen).1$ddce the compu-
tational demand resulting from the error covariance irgegn limits the size of the
problem, the EKF has been widely used in the application ofleting vertical soil
moisture profiles (Crosson et al., 2002).

The Ensemble Kalman Filter (EnKF) is an alternative to thé&HKhas been exam-
ined and successfully applied in a number of study fieldsesinwas first introduced
by Evensen (Evensen, 2003) (Evensen, 1994). The EnKF tadegistical approach

to the solution of the basic KF equations for the covarianegrices of analysis and
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background error. The EnKF avoids the expensive integratiohe state error covari-
ance matrix by propagating an ensemble of states from whiglhequired covariance
information is obtained at the time of the update. To gewreaastatistical sample of
analysis, EnKF runs the analysis system several times fivea gate, each time using
backgrounds which differ by an amount of background ermd, @bservations subject
to observation error.

The major difference between EKF and EnKF is the EKF usesalined equation
for the error covariance propagation while the EnKF propesgja finite ensemble of
model trajectories. Other differences include: the EnKir@ecount for a wider range
of model errors; the EnKF is easy to implement and more efficgirecomputation; the
EKF cannot account for horizontal correlations in the syste measurement error for

computational reasons.

2.5 Study sites

2.5.1 Conesus Lake

Conesus Lake, the westernmost Finger Lake;%46N, 77°43 W) of New York State,

is 12.6 km long and 1.06 km wide, with the long axis orientedimand south. The lake
has a surface area of about 13.4%and is 249 m above sea level (Bloomfield, 1978).
Although the maximum depth of the lake is about 20.2 m, leas 8 of the lake’s
volume is deeper than 13.7 m, with a mean depth 11.5 m. Thegtaphby of the lake’s
watershed is characterized by gentle slopes in the nortistaeg slopes in the middle
and southern portions of the lake (Figure 2.14). The ouslettithe north end, and
the perimeter of the lake is surrounded by small streamsbtiivag agricultural runoff

to the lake from the surrounding landscape, including famodlots, and vacation
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Figure 2.14: Bathymetry map (m) of Conesus Lake with streatteg (Forest et al.,

1978). The southern portion is deeper than the northermgpor€onesus Inlet, North
McMillan Creek, Sutton Point Gully, Cottonwood Gully, LoRgint Gully, Sand Point

Gully, Greywood Gully, and McPherson Point were the eigibutary mass sources.
Conesus Outlet was balanced to the mass sources.

homes that ring the lake. The major hydrologic inputs to &ke lare Conesus Inlet and
North McMillan Creek at the south end of the lake, which cifmtte as much as 70
of the water flowing into the lake. Conesus Lake is a dimi@idrophic lake covered
by ice from late December until late March in most years (Makacz, 2001).

Studies conducted at the State University of New York (SUMtBrockport have
demonstrated that nutrient loading during hydromete@iold events in Conesus Lake

contributes massive amounts of phosphorus and nitrateettakie in short periods of
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time (Makarewicz et al., 2003). One consequence of the exugtsients is a narrow
but dense band of macrophytes and metaphyton (D’Auito ,£2@04) that grows along
nearly the entire perimeter of the lake. In some shallowsangaticularly near streams,
the macrophytes form expansive beds that cover most of tfe@csuand bottom areas,
and have become a distinct feature of Conesus Lake in reearg.yResearch at SUNY
Geneseo suggests that nutrient input from agriculturadffunay be the single great-
est contributor for macrophyte growth in Conesus Lake (Didet al., 2004). How-
ever, the macrophyte beds are usually offset from the streaaths. Areas nearest to
streams typically have lower biomass, while the highestiaiss is usually found near
the middle of macrophyte bed which is often more than 100 mydvean the stream
source. Thus, studying the relationship between the magtebed locations and
stream sites and the effect of macrophytes on flow curremtsraterial distribution in
Conesus Lake is important for understanding the respongedéke to management

effects in the watershed.

2.5.2 Lake Ontario

Lake Ontario is the smallest and easternmost of the Greagd akth a surface area
of 18,960 km. However, it has the highest ratio of watershed area to lakiase
area. The lake is relatively deep, with an average depth ah8&hd a maximum
depth of 244 m. Lake Ontario lies 99 m below Lake Erie, at theebaf Niagara
Falls. Approximately 8% of the water flowing into Lake Ontario comes from Lake
Erie through the Niagara River. The remaining flow comes ftake Ontario basin
tributaries and precipitation. About 93 of the water in Lake Ontario flows out to the
St. Lawrence River and the remaining leaves through evéiparaigure 2.15 shows

the slope of the bottom topography is steep along the sootte stnd smooth along the



2.5 Study sites 62

44N 1
43.8N 4
43.6N
4JJN]

43.2N

79.5W 7w 78.5W 78W 77.5% 7 76.5¢

Figure 2.15: Lake Ontario bathymetry (Chang, 2003).

north shore. The freezing period of Lake Ontario is gengfatim middle January to
early April with 15% ice coverage. The thermal bar forms in middle April to middle
June, isolating the nearshore/offshore exchange of poltsitand thus affecting the
nearshore water quality. The thermocline is usually forinech early June to middle

October.

2.5.3 Niagara River mouth

The inflows play a significant role in introducing and redigiting substances in a
large lake and also affect the lake’s dynamic processes aterwguality. Niagara
River, estimated at 7000 sec, is the major inflow to Lake Ontario. Niagara River
carries approximately 4.7 million tons of sediment into edBntario annually, which
represents 52 of the total sediment load to the lake. Water-quality aredysf the
Niagara River have shown high concentrations of toxic cleataithat are introduced
into Lake Ontario (Murthy and Miners, 1992).

The Niagara River is usually 3 to°€ warmer than the ambient water in Lake On-
tario due to the high surface to volume ratio of Lake Erie. Ayant thermal plume

forms when the Niagara River discharges into Lake Ontariinducertain times of
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the year (Masse and Murthy, 1990). Much research has beatuctd to investi-
gate the mixing characteristics of the Niagara River plumeake Ontario (Murthy
and Miners, 1992). In the work of Murthy and Miners, three gibgl experiments
were performed to map the nearfield and farfield extent of ttag&ta River plume
in Lake Ontario. The mapping of the nearfield charactegstitthe Niagara River
plume was carried out by the conventional Lagrangian dréteeriments and elec-
tronic bathythermography thermal surveys. To map the fdribaracteristics of the
Niagara River plume, tracking Lagrangian drifting buoysshyellite over long periods
of time was used. The data obtained from three different xgats suggest a three
stage mixing process. In the initial stage, horizontal eitles from the Niagara River
mouth are reduced significantly, and the river water is galfly well mixed over the
shallow bar area. In the transition phase, a large clocketty of between 10 km
and 12 km in diameter is formed to the east of the Niagara Rnarth. The eddy ap-
pears often and lasts for a few days (Figure 2.16). In the §tage, the river plume is
deflected in response to lakewide circulation and the pliegavinds. In most circum-
stances, a plume develops from the Niagara River mouth aua$ te extend eastward
along the south shore of the lake (Figure 2.17). This neagshiea can be a zone in

which fine particulate material is deposited.

2.5.4 Rochester Embayment

The Rochester Embayment is an area of Lake Ontario formetdyntentation of
the Monroe County shoreline between Bogus Point (Parma,asd)Nine Mile Point
(Webster, NY). The northern boundary of the embayment iméated by the straight
line between these two points. The southern boundary ieslagproximately 9.6 km

of the Genesee River. The warm turbid water of the Geneseer Rigcharges into
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Figure 2.16: Nearfield horizontal distribution of Niagarnaét Plume on June 23, 1982
(Murthy and Miners, 1992).

Figure 2.17: Farfield Lagrangian drifter trajectories fr@uatober 15 to November
20, 1984 showing the spatial extent of the Niagara River Rl{turthy and Miners,
1992).
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Lake Ontario at the Charlotte Pier (Figure 2.18). Rochdstebayment is one of the
EPA areas of concern due to the point and non-point polluti©ntario beach, just
west of the mouth of the Genesee River, has been closed fequarter to one-half
of the beach season due to the poor water clarity resultioi fthe Genesee river
storm-water, the related bacteria level, and the excessijee.

Suspended sediment concentrations in the Genesee Rivguitgenigh, although
they remain less than 30 grfor at least 80; of a year, and exceed 200 gfrior no
more than 20 days due to highly energetic storms (Knauf, O0% process of advec-
tion and the dispersion of sediments and nutrients betwee@Genesee River system
and Lake Ontario are complicated. The Genesee River plumalyswings either to
the east or to the west after exiting from the port of Rochigstity. The prevailing
wind direction and subsurface circulation conditions &etivo factors affecting the
direction of the plume. Typically, the eastward track of gheme is usually seen dur-
ing summer months due to the predominant winds from the wekspashes the river
water away from the beach. However, easterly wind and wigdtdee currents push

potentially polluted river water onto the beach about:3# the time (Knauf, 2003).
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Ontario Beach, Rochester, NY

Figure 2.18: Turbid Genesee River plume flowing into Lakedtint Locations of
Ontario beach and the USGS water quality site are shown ds wel



Chapter 3

Model Review

3.1 ALGE: Hydrodynamic model

3.1.1 Governing equations

ALGE is a three-dimensional, time-dependent, hydrodycanuodel that is capable of
realistically predicting the movement and dissipationtoed@m plumes and the trans-
port, diffusion and deposition of materials. ALGE has besemsively used to simu-
late and tested against flow, temperature, and tracer aateefvariety of surface water
systems (Garrett and Hayes, 1997) (Garrett et al., 2005)GRAuUses a finite differ-
encing technique to solve the hydrostatic form of the pldiféerential equations that
model conservation of momentum, mass and thermal energyodula for predicting
resuspension, transport, and deposition of materialsisded in ALGE. Atmospheric
energy exchange is modeled through turbulent sensiblest@ltheat transfer, includ-
ing the effects of clouds. The amount of heat entering oritepa body of water

due to evaporation, convection, solar radiation absanpiod thermal radiation flux
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divergence is computed. ALGE is designed to produce higblagion simulations
for node-to-node matching with airborne and satellite ievgdGarrett, 2002) (Garrett
and Hayes, 1997) (Garrett et al., 2000). The set of goverlmyaigostatic equations in

a Cartesian coordinate system for ALGE model are given ag¢@al995):
e Momentum conservation
ou Juu  Ovu  Owu 10p
= - — - — ==+ fv
ot Ox dy 0z  pox

9 ou. 0. Ou 0. . 0
+a—x(KHa—Z) + L wKa 2+ L (kL — /A2, (3.2)

Ay dy 0z 0z
@ B _8uv_8vv_8wv_l@_f
ot ox oy 0z p Oy “

0 ov 0 ov 0 ov
o By )+ 8—y(KHa—y) + - (Kno-) = Callv/Az, (3.2)

0z
) (3.3)
e Mass conservation
L g_Z’ (3.4)
e Energy conservation
3_T _ _8uT _ ovT _ owT
ot or oy 02
b (Kno) + 5 (K ) 4 L (Kn5) +Q, 35)

whereu, v andw are the velocity component§; is the temperature)) represents

any energy coming into or out of water bogis the hydrostatic pressuré’y is the
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horizontal diffusion coefficientf is the Coriolis parameter evaluated at the central
latitude of the lake. The water temperat(ré°C) is related to density (kg/m?) by a
guadratic fit (Garrett, 2002):

p = 0.00001617* — 0.598T2 + 0.02197 + 999.97. (3.6)

Wind blowing at the surface constitutes a very importantidg force for currents
by transferring momentum from the wind to the water and psistster downwind.
Time-dependent wind stress is calculated as a functioneofitban wind speed and
direction. The bottom drag coefficiertt,, is spatially variable. For areas of the lake
bottom without macrophytes it is calculated as a functionooighness length by the
logarithmic lawCp = k?[In(z21/20)]?, wherek is von Karman’s constant angd is
the first node above the lake bottom. The roughness lengih set to 0.001 m for
all simulations in this research. Drag is also generatednwiater moves through
vegetation, which removes kinetic energy and momentum fifuenflow. For areas
of the lake bottom with macrophytes the drag term was moddied calculated as
a function of leaf densityeafden (m? of macrophyte per mof water) byCp =
a x lea fden for dense macrophyte beds in the lake, wheigconstant (Fischer-Antze
et al., 2001). The leaf density values were derived from oaghpublished by Gerber
and Les (Gerber and Les, 1994). Egs. (3.7) - (3.9) are véyticaegrated forms of
the momentum and mass conservation to predict the moverhantater body with a

free surface.
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e \ertically integrated momentum

Juh ou*h  Ouvh 0 ou 0 ou
5 - Tor y +h8_x<KH%>+h8_y<KH8_y)+fvh
g ,h?0h Oh 0z,
_J 2z B et
p0(2ax+p0 8x+p0 8x)
—CpUu + Cyp, W2 cos U/ py,, (3.7)
Ovh ovih  Ouvh 0 ov 0 ov
o - y T on _'_ha_x(KH%)—i_h@_y(KHa_y)_fUh
g ,h?0oh oh 0z,
_g 27 - jfptat']
; (5 5y TP 8y+,00 ay)
—CpUv + Cyp,Wsin W/ py, (3.8)
e \ertically integrated mass
oh Juh  Ovh
E - _% - a—y _'_ M37 (3.9)

whereh is water depthl/ = (u?+v?)'/2, W is the wind speed,, andCy are bottom

drag coefficient and air-water surface drag coefficienfpeesvely. As noted above,

drag is also generated when water moves through vegetatiooh removes kinetic

energy and momentum from the flow and results in reducing ftma velocities and

enhancing the sediment deposition rate.

Mixing

The horizontal eddy diffusivities are related to three comgnts which refer to

turbulent mixing as a result of bottom roughness, horizorgkocity shear and buoy-

ancy forces. The third component is important when the auirrelocities are low and

the water movement mainly depends on the buoyancy force&EAturrently uses a
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simplified version of the Yamada-Mellor closure model to pone vertical eddy dif-
fusivity (Yamada, 1983) (Garrett, 1983) (Mellor and Yama#i882). A prognostic

equation is solved for the turbulent kinetic energy:

oF ouE OvE OwE 0 oF 0 oF 0 OF
T o oy 0. Tanlngy) Talng,lt g ey
Ouy Qv o 10p (RE)'
HRZ[(0)" + (5) T+ 7% o (3.10)

whereF is the turbulent kinetic energy; is a constant, and the turbulent length scale
l defined byl = min(Az, ;). Az is the vertical grid spacing, aridis turbulent length
scale for a stably stratified conditidn= 0.76 E°° /w,, wherew, is the Brunt-Vaisala
frequency. The vertical eddy diffusivity is defined Ay, = I(2E)%*S,,, whereS,,

is a function that accounts for the effects of stable dersdittification on turbulence
(Yamada, 1983).

Material transport

The transport equations for a generic scalar variahlg(C, or C,), are obtained

by considering a balance between convection and diffusiordafined as:

e Dissolved tracer

8Cd 8UCd 8UCd 8de 8 8Cd 8 8Cd

Zzd _ _ Il Ty Pl

ot ox oy 0z +8x[ Hax]+8y[ H@y]
0 0C,

—‘—@[KZE] — O[(CKDCd — Cp) + Sd, (311)
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e Particulate tracer

oC, _BuCp_OvCp_ﬁw(w—ws)C 0[K OC] G[K 8(]]
ot oz Ay 0z R R M
0 oc,
e Sediment
9Cy — OuCy  Cy  Odw(w —ws)Cy L9 0 K 8C¢]
ot Oz dy 0z ox " o
0 0Cy 0 0C,
ay[KH 8y] 8Z[KZ 8 ] (Sk(E¢—D¢)/AZb, (313)

where Ky and K, are diffusivity coefficients for the transported quantitygach co-
ordinate directionf, and D, are the resuspension flux and deposition flux, apnes
the settling velocity.

Energy transfer

The heat transfer at the water surface in ALGE contains alicgdpalance of short-
wave solar radiation, long-wave atmospheric radiationgtavave radiation emitted
from the water surface, sensible heat transfer, and latsit thansfer between water
and air. Short-wave radiation is reduced by cloud cover ddd heat at the surface and
within a lake. Lakes lose heat via long-wave radiation, lbeth aeceive heat via long-
wave radiation from the air and clouds. Also, the sensibkg ansfer is driven by
the temperature difference between lake water and adjagesntd latent heat transfer
is driven by the relative humidity of the air. The energy exope between the water

body and atmosphere is specified as:

g o (H8+HL+Sw+Lw)
dt (AZpuwCpw)

(3.14)
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whereH,, H;, S,,, andL,, are the sensible heat, latent heat, solar radiation anchtier
radiation fluxes, respectivelyAZ; is surface layer depth angl,, is specific heat of

water.

3.1.2 Numerical scheme

Finite differencing

In general, Partial Differential Equations (PDE) are muabrendifficult to solve
analytically than Ordinary Differential Equations (ODH)p obtain analytical solu-
tions to PDEs, numerical methods such as finite differences@eded. The govern-
ing equations presented above are solved numerically trotite velocity field and
temperature distribution.

If a flow is described by a PDE of the form:

o _ o

5 = V5 (3.15)

the term on the right-hand-side is called the advectiontfeasing, drift), depending
upon the field of application. In early works for ComputatibRluid Dynamics (CFD),
a centered difference, which is accurate to second ordesgd to discretize this as

ot Az

. (3.16)

Second-order finite difference scheme is applied in ALGEe dtivection terms in
ALGE are solved by the conservative and transportive upwliffdrencing scheme.

Egs. (3.1) - (3.5) were transformed directly into finite diffncing equations, whereas
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Egs. (3.7) - (3.9) were rewritten as Egs. (3.18) - (3.20) giire following definitions:

QmZUhf
Q, = vh, (3.17)
0Q,  OQ2/h 9Q.Qu/h D, 9Qu/h 0, 0Q./h
o~  or oy +h%(KH o )"’ha_y(KH ay )+ fQy
g h2oh oh 0z,
_%<38_x + Pohﬁ—x + Poh%)
—CpUQu/h+ Csp W2 cos W/ py, (3.18)
0Qy, _ 0Q.Qy/h 0Q)/h 9 . Qu k. D . 0Qy/h.
o 0z oy T har g, ) thy (Ku—p =) = Q.
_gron,  oh 0%
,00( 2 Ox +p0h8x  poh 8x>
—CDUQy/h+CSpaW2sin\I!/pw, (3.19)

oh  0Q, 0Q,
3 oe oy T M (3.20)

After @),, @), andh are solvedy andv are computed from the updatédthrough
the updated values af

One dimensional advection equation and its finite diffeeiocm are defined as

Qs _  0Q:Qu/h
9. D/l (3.21)
AQ; _ (uQr — Q) (3.22)

At Ax ’
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where
_ Qin/hisi + Qifi)
uy = (@i/hi §i—1/hi—1)’ (3.23)
and

Qr = Q;,if u, >0
Qr = Qix1, 1 u, <0
Q= Qi—1,if uw >0
Qi = Quif <0 (3.24)

Also, to force the conservation, = 0 if the i+1 node is land and; = 0 if the i-1
node is land. Instead of upwind differences, centeredreiffees are used for solution
of the mass conservation Egs. (3.4) and (3.20).

The upwind differencing scheme is stable provided that tbar@nt-Friedrichs-
Lewy (CFL) stability criterion is satisfied. The CFL conditi on the vertically inte-

grated hydrodynamic equations limits the time step to:
At = [(gH)(Az™2 + Ay~2)] 2. (3.25)

Boundary conditions

Applying appropriate boundary conditions is the princigificulty in hydrody-
namic modeling of the open water body. There are three difteoptions for lateral
boundary conditions in ALGE. The boundary could have a zgealient for temper-

ature and the normal velocity component that is directecamdwrom the boundary.
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Secondly, the zero-gradient boundary conditions could &l leverywhere. In ad-
dition, the temperature and velocity could be fixed at thenolawy throughout the
simulation at their initial values. To create a land-waistribution array, all three dif-
ferent types of boundary conditions can be mixed as longamikture is physically
realistic.

Nudging

To accurately track a stream plume in a limited area and gémeealistic results,
the procedure known as nudging is applied in this study @&a1995). Nudging uses
the large scale solution to drive a high resolution, limieea simulation of the plume.
The simulation of the entire lake generates a time seriesiwént velocities which
are applied as a forcing term near the boundary of the limated simulation. The
additional nudging terms include a weighting function tthatreases the magnitude of
the nudging term at nodes close to shore. The weights areclosm® to shore and then

increase to 1.0 about halfway between the shoreline andfteooe boundary.

3.1.3 Inputs

The inputs to the ALGE include surface meteorological dapger air meteorological
data, land-water distribution, lake bathymetry, and nlianeous data, such as grid
size, number of nodes, etc. The tidal forcing is needed wimennoodels estuarine.
The nudging inputs and the corresponding weight functi@ragquired for limited-
area simulation.

Surface meteorological data

ALGE uses hourly surface meteorological data includingndwilirection (deg),
wind speed (m/s), air temperature (K), dewpoint tempeeatki), cloud cover (0.0 to

1.0), cloud height (km), and pressure (mb).
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Upper air meteorological data

The hourly upper air data at specific heights above the lakKaiincludes tem-
perature (K) and precipitable water (cm). There are 11 $efal upper air data with
the first observational height assumed to be 100 m and then 2 km and so on.

Land-water distribution

A 2-D array is used to identify the nodes that represent |&g) and nodes that
represent water (1's). All non-zero numbers are assumed taber in ALGE. How-
ever, three types of special locations over water are: mags®aergy sources (7's),
mass and energy sinks (6's), and inflow/outflow boundarissaf® 9’s, depending on
various boundary conditions).

Lake bathymetry

Water depths are read into ALGE via a 2-D array that contaires iateger per
node. Digits 1 through 9 and alphanumeric characters a gfwawefine the number
of levels at a horizontal location (X, y). The product of thismber and the vertical
grid spacing defines the real depths at location (X, y).

Other input parameters

The other input parameters include resolution of the ba#tyimdata, starting time
(in local hours and Julian days), total simulation time (outs), latitude, longitude,
roughness, leaf density (macrophyte leaf surface ard¢a/ahime, n¥/m?), tempera-
tures of boundary inflow/outflow and mass source, partictesigand diameter, num-
ber of nodes in each direction, tracer distribution coedfiti and flags for time and
parameter usage. Hourly discharge and hourly river sowderents and tracer con-
centration are used as dynamic variables to simulate tiee plume dissipation in
lakes. A full list of definitions and units for parameters dtatys used in ALGE is

given in Table 3.1.
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Table 3.1: Definitions and units for parameters and flags usttte ALGE model.

Parameter definition

Unit

Static variable
Horizontal grid spacing
Vertical grid spacing
Simulation time
Latitude
Longitude
Julian day
Roughness

Water grass surface area/unit volume

Multiplier for Courant limit
Initial timestep
Inflow/Outflow temperature
Mass source temperature
Particle density
Particle diameter
Distribution coefficient for tracer
Number of grids in x direction
Number of grids in y direction
Dynamic variable
River source TSS concentration
River discharge
Flag
Use of nudging data
Heat transfer functions
Outfall temperature
Restart option
Turbulence model
Fresh or salt water

Steady or time-varying mass source

m
m
hour
degree
degree
unitless

m
2 [y
unitless
second
°C
°C
g/cih
m
unitless
unitless
unitless

g/m
His

0 =off, 1=0n
0=off, 1=0n

0 = fixed, 1 = delta-t
0=off, 1=0n

0 = Yamada turbulence, 1=molecular viscos

O=fresh, 1=salt
O=steady-state, 1staneng
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3.1.4 Model calibration

To assess the impact of grid resolution of ALGE simulatigmi] independence study
was carried out in Conesus Lake by running identical sinutatwith the only differ-
ence being the number of nodes in the grid. Validation of rdrdddynamic model was
performed through the comparisons of the simulated tenyoeratructure in Conesus
Lake with the airborne thermal images and field data. ALGE alas employed to
determine the physical dynamics of the spring thermal baake Ontario and inves-
tigate its impact on water-quality conditions during theisgp season as well. Large
scale circulations were studied in Conesus Lake and Lakarf@dntThe impacts of
river plumes on the lake hydrodynamics were studied at mofithe Niagara River
and two stream gullies in Conesus Lake. It was done by siingldhe dispersion
and redistribution mechanism of the river (or stream gsjjltischarged mass and con-

stituents.

3.2 HYDROLIGHT: Radiative transfer model

HYDROLIGHT 4.1 is a radiative transfer numerical model tbatains the radiance
distribution within and leaving any plane-parallel waterdlg by solving the time-
independent radiative transfer equations (Mobley and Samg 2000b). The model
is designed to solve a wide range of problems in optical cogaphy and limnol-
ogy. The radiative transfer regimes for the HYDROLIGHT miosleown in Figure
3.1 include five modules: radiation in the air, transitioonfr air to water, reflection
under water, transition from water to air, and propagatemthe sensor. Input to the
model consists of the absorbing and scattering propertiggeavater body which can

vary with depth and wavelength, the concentration profifesaier constituents, the
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Hydrolight: atmosphere, surface, underwater
radiative transfer

Figure 3.1: Radiative transfer model regimes: air, airavatterface, water, water-air
interface, and air again (Fairbanks, 1999).

nature of the wind-blown water surface and of the bottom efwlater column, and
the sun and sky radiance incident on the water surface. Thiehadso includes the
effects of inelastic scatter by chlorophyll fluorescencBQB/ fluorescence, and Ra-
man scattering by the water itself. HYDROLIGHT can also datelinternal layers of

bioluminescing microorganisms.

3.2.1 Physical and mathematical design

Although the natural water body is horizontally inhomogeuns the horizontal scales
of significant optical variability are typically about ten§ meters to kilometers that
are much greater than the vertical scales (typically cestens to tens of meters). In
Hydrolight, the water body is treated as consisting of @ydndependent patches of

water, so that each patch can be modeled as a horizontallgdemeous water volume
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whose optical properties vary only with depth. To simuldte éntire, horizontally
inhomogeneous water body, a 1D radiative transfer modgiptied independently at
the center of each patch. Hydrolight can also be appliedgavdter patch associated
with each pixel in the remote sensing imagery.

One physical consideration is that the horizontal size chesater patch needs
to be at least several photon mean free paths. Photon meapdtes are defined as
the inverse of the beam attenuation coefficient. The hotaaariability in the open
ocean is usually on scales of several kilometers while tlmtqrhmean free paths are
usually less than 50 m. The optical properties and boundamgditons can change
horizontally on scales of meters to tens of meters in coag#dr due to river runoff,
sediment resuspension, and variable shallow bottom tepbgr However, the photon
mean free paths of this type water are only about tens ofroetdrs to a few meters
due to the increasing turbidity. In both cases the use of addiative transfer model is
still justified. In addition, the technique of time-indeplemt radiative transfer is valid
if the time required for the light field to reach a steady statthe water body after
the optical properties or boundary conditions changindes®than the time scales for
changes in environmental conditions.

The spectral radiance L{zg,)\) (wm~2 sr-t nm~!) describes the time-independent,
one-dimensional light field within the water body. The spalatadiance is completely
determined by the depth (z), directiéng), and wavelengthX) behavior of the light
field. Other variables, including various radiance, diffugtenuation functions (K-
functions), and remote sensing reflectance, can be comgiutaegyh the spectral radi-
ance based on the definitions.

The depth z is defined as positive downward from zero at thenraea surface.

The polar angl® (0 < # < 180°) is measured from zero in the nadir direction, and the
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azimuthal angle (0 < ¢ < 360) is measured from zero in the downwind direction.
The sensor-reading radiance is the average ofllfz) over the finite solid angle
A2 and the bandwidtiA\. The solid angle and bandwidth are determined by the
field of view of the instrument and the wavelength responsthefinstrument. The
directional averaging is performed by dividing all directs into small separate regions
bounded by lines of constaétand¢. The individual regions),,,, (qQuads), are labeled
by discrete indices = 1,2,...,20andv = 1,2, ..., 24 to show the and¢ positions.
Thus the resolutions of and¢ are 10 and 15, respectively. In order to solve the
RTE numerically in Hydrolight model, we discretize it by aaging over direction and
wavelength. The direction- and band-averaged radiancasyaselected set of depth

ze k=1,2,..., K, are computed in the Hydrolight:

uv J
qu A>\J

3.2.2 Simulation parameters

Numerical simulations of the remote sensing reflectance wairied out with Hydro-
light (version 4.1) radiative transfer model. The spectroinlight from 400 nm to
700 nm in 10 nm intervals was applied to compute the resulte. Bioluminescence,
chlorophyll fluorescence, CDOM fluorescence, and Ramarnestaj were included.
The wind speed was assumed to be a constant 5 m/s to simulatdogtinot com-
pletely smooth wave conditions. The illumination conditivas based on the illu-
mination in Rochester area during the summer near noon. dhaitcon of the lake
bottom was assumed to be covered with sand. It is feasiblertgpare the simulated
remote sensing reflectance with MODIS derived remote sgmsitectance, as well as

in situ measurements.
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Data Sources and Quality Control

4.1 Bathymetric grids

Conesus Lake

A coarse geo-referenced bathymetry data set of Conesushzaakieeen integrated
into the hydrodynamic model to study the lake surface teatpes distribution and
the circulation pattern. The whole lake simulations divikle lake into 76232 con-
trol volumes. Horizontal grid spacing is uniform in thiseasch. The grid spacing is
46.9 m in longitude and in latitude. In the z-direction (d@ghere are a maximum of
six levels with a resolution of 3.1 m. Figure 2.14 shows the laathymetry map and
the tributary streams used as mass sources and mass sinkdfodiinamic simula-
tions. Locations of weather stations providing meteoralgata for simulations and
distance away from the lake are given in Figure 2.14 as well.

A low cost bathymeter suitable for generation of bottom peafiaps of small to
mid-size lakes has been developed in the Digital ImagingRerdote Sensing (DIRS)

Laboratory at the Rochester Institute of Technology (RTHe device uses commer-
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cial components for depth finding (Garmin Fishfinder 100 despunder) and position-
ing (Garmin GPS eTrex) combined with a data storage and neanaigt unit developed
at DIRS. To obtain high-resolution bathymetry near a streamth, the unit was de-
ployed from a canoe. In this research, the high-resolutathymetry was re-sampled
to a grid with a 2 m horizontal spacing and a 1 m vertical spaéom input to ALGE.
Cottonwood Gully and Sand Point Gully were chosen as theystiids to carry out
stream plume simulations (Figure 2.14).

Lake Ontario

The water depth of Lake Ontario incorporated with ALGE irsttesearch is from
the new bathymetry released by the National Geophysica Banter (NGDC). The
custom grids shown in Figure 4.1 were created using the Gi€igdl DAta System
(GEODAS) Grid Translator Design-a-Grid system. The whalelwas divided into
34x194 horizontal lattice points. The horizontal grid spadsgniform, about 1.5 km
in longitude and in latitude. There are 35 levels with a rnesoh of 4.4 m in the
z-direction (depth).

The higher resolution bathymetric maps of the Niagara Rivauth and the Rochester
Embayment (Figure 4.1 (b) and (c)) were created with the saetbod. The horizon-
tal grid spacing are 325 m and 135 m for the Niagara River manththe Rochester
Embayment, respectively. The vertical spacing is 3 m fohlmaises. Figure 4.1 (b)
shows the bathymetry at the river mouth includes an inndiashahelf region with a
depth of 20 m extending approximately 5 to 6 km from the sholiewed by a shelf
edge from 20 to 100 m depth at a distance of 10 km offshore. dnagraphic features

affect the transport and mixing of the Niagara River plumthimlake.
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Figure 4.1. Bathymetric maps developed by the Grid Traoslahd Hydroplot of
GEODAS (GEOphysical DAta System). Depth (below lake leaal) elevation (above
sea level) are in meters. (a) Lake Ontario (b) Niagara Riventim(c) Genesee River
mouth
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4.2 Adjustment of forcing functions

To perform more accurate hydrodynamic simulations of the,ldorcing variables

such as wind speed, dew point temperature, and air tempe@tiadjusted to include
the effect of over land stations. Due to the much higher aarahic roughness over-
land compared to the much lower aerodynamic roughness atervthe wind speeds
from overland stations (airports and other surface stajiarere adjusted by an em-
pirical method to obtain a fairly good agreement with ovaeravind speeds. In this
study, we applied the empirical overland-overwater windespadjustment given by
(Resio and Vincent, 1977):

Uy = w By (ug) Fo(AT), (4.1)

whereFy(u;) = 1.2 + 1.85/w(ms™Y), Fy = 1 — (AT/|AT|)(|AT|/1920)Y/3, u, is
the overwater wind speed, is overland wind speed, aniT" = T, — T,,(°C).

To calculate the latent heat flux in the energy transfer maugie realistically,
the overwater dew point temperature was estimated fromaneralues by a simple

empirical formula (Phillips and Irbe, 1978):
Ty =Ty — ar(Ty — To), (4.2)

wherec; = 0.35, Ty, andTy, are the dewpoint temperatures of overwater and overland,
respectively. Air temperature was also adjusted with anieocap formula (Beletsky
and Schwab, 2001):

T, = 04T, + 0.6T,,, (4.3)

whereT,; andT,, are the air temperature overland and averaged water suéfiageer-
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ature, andl,, is the air temperature over water.

Hourly meteorological data are available from the Natidiahther System (NWS).
After the meteorological data were downloaded and adjusteder water values, for
the missing hours, the data from the very closest hours éeifiod after were extracted
and linearly interpolated. Triangular interpolation wapléed to provide lake-wide
mean meteorological forcing conditions.

Hourly meteorological data is available from three statitotated in Livingston
County around the Conesus Lake: Dansville Municipal Aitg@SV), Avon, and
Geneseo. Conesus Lake is a long, narrow lake and the hi sidi@acent to the lake
are generally forested with the agricultural land gengrati the hill tops. To include
the effect of trees on the wind speed over water, wind spemd bverland stations
was reduced to the square root of its original value. A timreeseof the daily forcing,
including wind speed, wind direction, and inflow discharipe, April, May, and June
2004 is presented in Figure 4.2. Wind is stronger in earlingpwhile it is relatively
weak in May and June, with an average speed of no more than.4Huovgever, there
are some occasions where wind speeds exceed 5 m/s, incMadin@0 and June 13,
which occurred before storm events. Northwest and soutlads appear to be the
dominant wind directions during April to June 2004.

Meteorological data from the station at the Buffalo Airp@BAN 14733) was ap-
plied to hydrodynamic simulations of Lake Ontario. Figur® gdhows a time series of
daily wind direction and speed for April, May, June, and J@04. Wind is stronger
in early spring and July, while it is relatively weak in Maydadune. The prevailing
winds blow from the west over Lake Ontario. With the majorsaixi the west-east

direction, the eastward wind can have a strong effect ondakalation pattern.
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Figure 4.2: Time series of simulation forcing factor coratis of April, May, and June,
2004 from the stream monitoring program and weather statiBnmajor storm event
is shown in late May lasting seven days with a peak flow rat&lfoth McMillan creek
of about 100 r¥s.
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Figure 4.3: Time series of simulation forcing factor cormais of April, May, June,
and July, 2004 from the Buffalo weather station.
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4.3 Insituoptical data collection and water sampling in

the Rochester Embayment

The field optical measurements are performed to charaeténiz light field and the
spectral IOPs of the aquatic medium. After an estimate obtlegall absorption and
scattering coefficients is given by field measurements tiaail laboratory analysis is
carried out to decompose these properties into the optieative components. The
absorption and scattering spectra of each component datnm the lab will be the

basic IOPs input to the radiative transfer model.

Field data were collected at several sites in the Rochestdralgment including
both inside and outside of the plume on August 9, 2006. Figuteshows a summary
of the sampling stations around the embayment. Stationd 2 ane plume-dominated
and stations 3 and 4 are offshore. Vertical profiles of oppflaeameters were measured
at each location and supplemented with water samples thattaleen to the laboratory
for more analysis.

A HydroRad-4 spectroradiometer was deployed in this stodyé¢asure the sur-
face and sub-surface AOPs. Irradiance sensors are aeaslatllare usually placed in
tandem. The HydroRad is an in-water profiling instrument sneag spectral down-
welling and upwelling irradiance in the wavelength ranget@® ~ 700 nm. It was
deployed away from the boat to reduce the background infegeatthe platforms on

the measured light field. Remote sensing reflectafg (alues were calculated as

L, FE,
Ry =2t = —n 4.4
E;  QFE; (44)

whereE, and E, are the HydroRad measured upwelling and downwelling ienack

evaluated just above the surface for each wavelen@tiactor is dependent on the
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1: Genesee River mouth

2: Inside Genesee River plume
3: Inthe lake
4: North of the Irondequoit Bay

>0de

Figure 4.4: Overview map of the four stations. Backgroundrismage of ALGE
predicted TSS distribution showing the Genesee River plilomeng eastward.

solar zenith angle and the I0Ps of the water column, speltyfitee volume scattering
function and the single scattering albedQ. is often considered to remain constant
over wide geographical areas as well as over the visibleispacin this study) was
assumed to be a constant 5.5. Spectral remote-sensindaefiecontains information
about the properties of the water body surface layer whaskrtbss depends on the
inherent and apparent optical properties. Figure 4.5 shiosvgalues of?,., calculated
by Eq. 4.4 for stations 2, 3, and 4.

Samples from the water bottles were taken for determinatforSS and CDOM
concentrations and the absorption spectrum for TSS, CD@NCHL. Table 4.1 lists
the average values of measured water quality parametérsagstl through lab analy-
sis on the water samples obtained from each of the statiarspefded solid concen-
trations were determined by filtration through 0.4 microe-preighed filters which
were dried and reweighed. The laboratory measured TSS oatens minimum

and maximum were 0.5 g/hat station 3 and 16.7 g/hat station 1. Since CDOM has
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Figure 4.5: Measured remote sensing reflectance at threenstéor the August 9th
collections.

typically exponential absorption spectrum and an incréasiee true CDOM concen-
tration is likely to produce a proportional increase in the@ption spectrum, a value
based on the mean CDOM absorption coefficient at 350 nm wasasan indirect
measure of concentration. The laboratory measured miniamomaximum absorp-
tion coefficients were 0.163 m at station 3 and 5.935 ™ at station 1. Chlorophyll
concentrations applied in this study were estimated froewmtater samples in 1999.
The minimum and maximum of CHL concentration were 0.594 midin offshore
Lake Ontario and 2.0 mg/hfor Genesee River mouth.

Figure 4.6 shows the measured absorption coefficient for @LTSS which is
a mean of the measurements from all the stations. The chigliogbsorption curve
was scaled to 0.05 at 450 nm with the two absorption peaksoeglat 440 nm and

670 nm. TSS has maximum absorption in the blue region. CHbrélsice causes
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Table 4.1: Water sampling estimates derived from laboyatogasurements.

Location Station1 Station2 Station3 Station 4
TSS (g/m) 16.7 5.8 0.5 0.8
CDOM (scalor)| 5.935 1.556 0.163 0.213
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Figure 4.6: Specific absorption coefficient for CHL and TS#rfrmeasurements taken
on August 9, 2006 in the Rochester Embayment.

a reflectance minimum near 440 nm. However, the reflectandgum region has
low sensitivity to CHL concentration because absorbanc€bBYM and scattering
by particles dominate the reflectance in this region. Them@®n spectrum is an
exponential function of wavelength, and most absorptiauosbefore 400 nm.

The specific scattering coefficient {fimg) for CHL in Lake Ontario is based on
Bukata’s published data of spectral scattering coeffisienthe last measurement
shows the specific scattering coefficient of chlorophyll i89% at 695 nm (Figure
4.7). The specific scattering coefficient¥img) for TSS in Lake Ontario is based on
Bukata’s published data as well (Figure 4.7).

The absorption spectrum of pure water and the scatteringtrsipe of pure sea

water from 380 to 800 nm are illustrated in Figure 4.8 (Smittd Baker, 1981). Pure
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Figure 4.7: Specific scattering coefficient for CHL and TS8&tdls based on Bukata’s
published data (Bukata et al., 1995).
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Figure 4.8: Absorption and scattering coefficients of pusgew (Smith and Baker,
1981).

water has most of its absorption at wavelengths longer ti#@nnm. The scattering
coefficient of pure water is less than 0.02 ' mFigure 4.9 shows the typical exponential

absorption spectrum of CDOM and the absorption coefficieag get to 1.0 at 350 nm.
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Figure 4.9: Absorption coefficient for CDOM from measuremsaaken on August 9,
2006 in the Rochester Embayment. CDOM has no scatteringilootion.

4.4 Use of remote sensing data

The MODerate resolution Imaging Spectroradiometer (MQDdSn advanced mul-
tipurpose NASA sensor, which is a key instrument aboard #real[EOS AM) and
Aqua (EOS PM) satellites. Terra MODIS and Aqua MODIS view¢hére earth sur-
face every 1 to 2 days, acquiring data in 36 spectral bandDIg®ands have spatial
resolutions of 250 m (bands 1-2), 500 m (bands 3-7) and 1 khih@lrest) (Table
4.2). For most applications in coastal areas the 1 km rasalof typical ocean color
sensors is not sufficient and the high-resolution sensaysl(@ndsat ETM) have draw-
backs such as a narrow swath, very infrequent overpasskgjgimcost, MODIS 250
m bands are very promising for coastal monitoring applocaiparticularly related to
sediment monitoring. Bands (1-2) with 250 m spatial resoiutire applied in this
research to detect features in coastal areas.

The MODIS surface reflectance data products (bands 1-7)de@n estimate of
the surface spectral reflectance for each band as it woulcebsumed at ground level in
the absence of atmospheric scattering or absorption. $rethdy, surface reflectance

data for the two MODIS bands with 250 m spatial resolutiom(lsal-2) were used to
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Table 4.2: MODIS bands and the principal areas of applioatio

Reflective Solar Bands

250 m 500 m 1 km
Land/Cloud/Aerosols  Land/Cloud/Aerosols  Ocean Coloyt&blankton/
Boundaries Properties Biogeochemistry

Band 1 (620-670 nm)  Band 3 (459-479 nm)
Band 2 (841-876 nm)  Band 4 (545-565 nm)
Band 5 (1230-1250 nm)
Band 6 (1628-1652 nm)
Band 7 (2105-2155 nm)

Band 8 (405-420 nm)
Band 9 (438-448 nm)
Band 10 (483-493 nm)
Band 11 (526-536 nm)
Band 12 (546-556 nm)
Band 13L (662-672 nm)
Band 13H (662-672 nm)
Band 14L (673-683 nm)
Band 14H (673-683 nm)
Band 15 (743-753 nm)
Band 16 (862-877 nm)
Band 17 (890-920 nm)
Band 18 (931-941 nm)
Band 19 (915-965 nm)
Band 26 (1.360-1.390m)

Emissive Bands

Band 20 (3.660-3.84pm)
Band 21 (3.929-3.988m)
Band 22 (3.939-3.988m)
Band 23 (4.020-4.080m)
Band 24 (4.433-4.498m)
Band 25 (4.482-4.549m)
Band 27 (6.535-6.895m)
Band 28 (7.175-7.476m)
Band 29 (8.400-8.700m)
Band 30 (9.580-9.880m)
Band 31 (10.780-11.280m)
Band 32 (11.770-12.270m)
Band 33 (13.185-13.485m)
Band 34 (13.485-13.785m)
Band 35 (13.785-14.085m)
Band 36 (14.085-14.385m)
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Figure 4.10: MODIS 250 m radiance data (645 nm) of Lake Oatahowing the
overview of the Genesee River plume (August 13, 2003). Righge is the zoomed
image of the Rochester Embayment.

detect the sediment dominated plume in the Rochester Endrgtyifhe best observa-
tions during a 24-hour period, as determined by overalllgjxality and observational
coverage, are matched geographically. Figure 4.10 is a MBKCI®0 m surface re-
flectance image showing the Genesee River plume on Augug003,

Since reflectance is dependent on both sun and sensor'faligmatural surfaces
create scattered reflection in all directions (Figure 4.1f)the energy reflected is
exactly the same along all directions, the surface is saidetc.ambertian (Figure
4.12). In this case radiance and reflectance are both indepéeaf the viewing angles.
As a result of the fact that radiance reflected back to thessemslefined directionally
whereas irradiance received by the surface comes from tive eipper hemisphere,
a numeratotr, is used as a normalization factor. By assuming that thervgatdace
is Lambertian, the remote-sensing reflectafcg can be calculated from the surface

reflectance? based on:

R E,JE, E,

= = . 4,
Rrs Lu/Ed Lu i ( 5)
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Figure 4.11: The geometry of the bidirectional reflectariceharacterizes the energy
scattered into the hemisphere above a surface as a resotidént radiation.

Lambertian indicatrix

Figure 4.12: Radiance indicatrix in polar coordinate isrespnted by a circle for a
perfect Lambertian surface.
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The MODIS thermal bands provide sea surface temperatuteimkim resolution
over the global oceans. Figure 4.13 shows the spatial paifeyeasonal warming and
cooling for Lake Ontario in 2004 for a series of MODIS imagegured from early
April to late July. Blue represents the cooler temperatackrad represents the warmer
temperature. The minimum surface temperature range d.68.3= occurs from early
April to late May. In early April 2004, the entire lake is $tdelow 4°C even though
the temperatures along the northern shoreline exceed énagestemperature. In mid-
May, the nearshore waters heat faster than offshore watmaube of the shallow
bathymetry and warmer discharge from the rivers. This phemmwn is seen in the
figure of Julian Day 132 along the north shore and around tlagéta River mouth.
Figure 4.13 (b) also shows a temperature gradient (theraraldeveloping along the
north shore. The spring thermal bar period lasts about 4 svélie lake surface warms
above 4°C after the disappearance of the thermal bar. A relativebl apwelling
region is seen in the figure of Julian Day 206 along the nortitesand in the western
basin. During this period, surface temperatures in the Umgezone are well below
surface temperatures outside the upwelling region.

Satellite remote sensing of the bio-optical propertiesazfstal waters can be im-
portant to monitor the coastal environment. Coastal watgtts high sediment load
usually have a higher reflectance in the visible region thesgpdvater. However, the
spatial resolution of the currently operating ocean catstruments is too coarse for
coastal applications. Smaller scale phenomena, suchagischarges and dynamics
of coastal sediment are resolved by high resolution imagéhe DIRS Laboratory
at RIT developed and operates an airborne spectrometeddak Modular Imaging
Spectrometer Instrument (MISI). MISI is an imaging specteter designed to provide

radiometrically accurate data sets (Schott et al., 20@13.4d line scanner system op-
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Figure 4.13: Image derived lake surface temperature lkigtan on Julian Day 96
(April 5 1820EST), Julian Day 132 (May 11 1800EST), JulianyD&b1(May 30
1830EST), Julian Day 167 (June 15 1830EST), Julian Day 1918 (D 1825EST)
and Julian Day 206 (July 24 1835EST), 2004.
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erating in 84 spectral channels covering the spectral rmnge0.4 to 14 micrometers.

Figure 4.14 shows example RGB renderings of the MISI imafé&seoGenesee River
plume in the Rochester Embayment on different dates. Exeswgflthermal band data
used in this study are shown in section 6.1. Images from thertal infrared detec-

tors are converted to apparent temperature using onbcacldadies that are imaged
during each scan (Schott et al., 2001). With a flight altitofl@,000 m, the spatial

resolution of the thermal images is about 3 m. RIT’s MISI hadarflown LANDSAT

5 and 7 to provide calibration of the LANDSAT thermal chanfgthott et al., 2001).

4.4.1 Atmospheric correction errors for MODIS

This study uses the MODIS reflectance product. Atmospheniection is a neces-
sary step in converting the top of the atmosphere signal tarface signal. In this
case, MODIS level 1B radiances are used to generate thecsudfiectance product
through an algorithm that compensates for the atmosphemicibution to the level 1B
radiance. MODIS land products including surface albedowstover, land cover, land
cover change, vegetation indices and biophysical vasataly on the solar reflective
portion of the spectrum. The quality of the atmosphericedion algorithm and the
accuracy of the surface reflectance are important to thetgualMODIS land prod-
ucts (Vermote and Vermeulen, 1999). The current atmospleerrection algorithm
corrects for the effects of gaseous and aerosol absorptidrseattering, adjacency
effects caused by variation of land cover, Bidirectionall@sance Distribution Func-
tion (BRDF), and atmosphere coupling effects (Vermote agminéulen, 1999). Figure
4.15 shows the variable constituents influencing the resensing signal at the top of
the atmosphere.

Uncertainty arises in the atmosphere correction procefdomemany sources. The
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Figure 4.14: A true color rendering of the VNIR spectromét@nds of MISI of Gene-
see River plume. (a) May 11, 1999 (b) July 5, 2000 (c) MarchZD3 (d) June 7,
2004.
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Figure 4.15: The components affect the remote sensingIsagtiae top of the atmo-
sphere in the 0.4 - 2.bm range (Vermote and Vermeulen, 1999).

reflectance at the top of the atmosphere is affected by thertamaty on the absolute
calibration. Research shows an erroe#% on the top of the atmosphere reflectance
can translate to higher error of surface reflectance (Vezraotl Vermeulen, 1999).
In addition, uncertainty of aerosol optical thickness ctiaca the surface reflectance
retrieval. Errors in the aerosol model and the Lambertigor@pmation add to the
uncertainty of the surface reflectance as well. Figure 4hibgvs the various impacts
of uncertainty on the errors of surface reflectance retrieVatal typical errors of

surface reflectance for MODIS bands 1 - 7 is given in Figur@ 4.1
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band rel. error % abs. error band abs. error
1 4 0.003 1 0.002
2 2 0.015 2 0.017
3 14 0.004 3 0.002
4 3.5 0.004 4 0.005
5 0.015 5 0.016
6 0.008 6 0.009
7 2 0.003 7 0.006
(a) (b)
band abs. error of SR abs. error of SR band rel. error (%) and abs. error
for 8,(.55um)=0.1  for 8,(.55um)=0.5 backscattering direction
1 0.003 0.008 1 9 | 0.003
2 0.008 0.018 2 2 0.011
3 0.006 0.013 3 8.5 0.002
4 0.003 0.007 4 4.5 0.003
5 0.007 0.016 5 1.5 0.007
6 0.003 0.007 6 1 0.003
7 0.002 0.004 7 1 0.001
(c) (d)

Figure 4.16: The impacts of uncertainty on the typical exrofr surface reflectance
retrieval: (a) absolute calibration (b) aerosol model @)osol optical thickness (d)

BRDF (Vermote and Vermeulen, 1999).

band abs. error rel. error %

(range)

1 0.005 | 10-33

2 0.014 | 3-6

3 0.008 | 50-80

4 0.005 5-12

5 0.012 | 3-7

6 0.006 | 2-8

7 0.003 2-8

Figure 4.17: Total theoretical absolute and relative sradthe atmospheric correction

algorithm (Vermote and Vermeulen, 1999).



Chapter 5

Ensemble Kalman Filter

Implementation

5.1 System design

The flow circulation around the river mouth is essential tdemstanding the transport
and the final distribution of the TSS and CDOM discharged iakes. River plumes
are typically dominated by optically complex water and eigrece significant seasonal
and episodic variation of optical properties. The conaditns of the constituents in
waters dominate the optical properties, as well as the waitality. Although the

ALGE model produces predictions of the distribution of th@STconstituents, visual
examination of MODIS 250 m reflectance data clearly showsrdmancies between
the model TSS output and the remote sensing data. In thigxiothte modeled TSS
is called a state variable. Like any model, these errors aeeta the uncertainties in
model physics, parameters, and initial conditions. A Kairfider-based method is

used in this research to provide a better estimate of the gtaiables. State variables
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are modeled through system equations between updates drasieel dynamics of the

system. When the remote observations are available, an Ed{#plied on the model

grid to update the predictions of the state variables. Thaltiag state variables are
then used to drive the system model until the next set of relyalata is available.

Clearly, only state variables that are remotely observedtebe updated.

The framework used in this research to implement the coupksmsurement-modeling
system with remote sensing as dynamic feedback is repezbenEigure 5.1. The pro-
cess begins with the initialization of the hydrodynamic mlodl. GE with dynamic and
static variables, which is indicated on the left side of Fegb.1. The dynamic variables
are as a function of time and are assumed to have a unifornalksgiatribution over the
simulation domain. They include the air/dew point tempaatwind speed/direction,
cloud cover/height, pressure, upper air temperatureiptakle water, river discharge,
and river TSS/CDOM concentration. The static variablesap@ied as the initializa-
tion of ALGE model. To compare the observed reflectance fro@ING scene and the
calculated reflectance from radiative transfer model, tsigidution of TSS in the river
plume is the primary output considered here even though AkiGttlates other phys-
ical variables (temperature, flow curreetc). When the remotely sensed reflectance
spectra are available, modeled TSS concentration proéikesyell as lab measured
IOPs and the concentration of CHL and CDOM, are entered h@ddrward radiative
transfer model Hydrolight to produce remote sensing reflez# spectra on the model
grid. Using modeled and remotely sensed reflectance vadumeBnKF is applied to
update the previous prediction of TSS concentration vadunesproduce a better es-
timate of them. The updated TSS concentration profiles ame fibd back to the hy-
drodynamic model. ALGE runs forward in time until the nextni@te observation is

available. An important advantage of this system is thaetieno need for an inverse
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Figure 5.1: Schematic representation of the coupled meamnt-modeling system.

radiative transfer model to predict the TSS from the renyoteéasured reflectance
spectra.

Table 5.1 lists the definitions of the variables in EnKF usethis research. The
TSS concentrations at the river mouth are defined as a staédbla Measurements
contain the remote-sensing reflectance derived from MOE& & data. The sys-
tem model is the hydrodynamic model ALGE which formulates éfolution of TSS
concentration profiles. The measurement model is the maadirepresentation of the
radiative transfer model Hydrolight.

The complete operation cycle including time update and oreasent update used
in EnKF in this research is illustrated in Figure 5.2. Fighr2also shows the equations

for each update as well. The basic steps for updating TSSeotration using the
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Table 5.1: EnKF definitions and notations

Variable Name Definition in this study
T state variable TSS concentration
A non-linear system model ALGE
Q process noise Estimated
Py system uncertainty Covariance between ensemble modesstat
H non-linear measurement model Hydrolight
2k observation MODIS derive®, ,
Ry measurement noise Derived from MODIS

EnKF are:

e Generate an ensemble of forcing variables and run the ALG&ehforward in
time to obtain a forecast estimate of state variables at firfer all ensemble

members.
e Compute the error covariance of the state variables and dasunements.

e Calculate the Kalman gain. It is a weighting factor that deiees how much
of the information from the measurement should be taken actmunt when

updating the state estimate.

e Update the predicted state variables and obtain a betteratstof the state vari-
able when the measurement is available. The state variatdagpdated at time
stepk by applying the Kalman gain to the difference between thesmesment

and the predicted measurement.
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I —"

Measurement Update (Correction)

Time Update (Prediction)

(1) Compute the Kalman gain
_ A e _ A 1
K. =5 HT(xk)[H(xk)Pk HT(xk)+Rk]—

(2) Update estimate with measurement

(1) Predict the state variable
5 =A%,
(2) Predict the system uncertainty

X =% +K, |z, -H(x
' :APktlAT-"QkA : g kl : ( k)J

(3) Update the system uncertainty

Pic+ = (I*K;cH)Pk_

‘ Initial estimates for x and P‘

Figure 5.2: A complete operation cycle of the Kalman filteowhng the equations of
time update and measurement update (Welch and Bishop,.2006)

5.2 Generation of ensemble forcings

To implement the ensemble Kalman filter, system model uargytis estimated by
running ALGE with an ensemble of forcing variables. Gerlgrahodel uncertainty
can be created from errors in forcing variables and modamaters. In this research,
only errors in the forcing data are included. The ensembleroing variables includes
hourly data for the river source TSS concentration ((/rthe river discharge (#s),
and the average wind speed/direction. An ensemble of méakelssat each time step
is generated by running ALGE with the forcing inputs whick &reated as stochastic
terms. The covariance between the ensemble of states peoaidestimate of system
model uncertainty. The open-loop simulations represerdehoncertainties through
an ensemble of model states. Each ensemble correspondsffierand realization of
the forcing data that drives ALGE to produce the TSS distidou The error terms

of both the system model and the measurement model are @i@pkigrward in time.
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This is an important distinction that separates Kalmanrfilesed assimilation meth-
ods from other simple methods. For EnKF, it's important tdkenaure the ensemble
spreads enough to cover the modeling system uncertainty.

Discharge and TSS concentration data of the Genesee Riverookected at the
USGS streamflow-gaging station (Genesee River at Roché»t2B82000) and the
USGS water quality site (Charlotte Pump station, 43151863%01) during the year
of 2003 (Figure 5.3 and 5.4). Heavy rainfall in late July amdlye August lead to
the streamflow with a peak of about 300/mand TSS concentration with a peak of
about 190 g/ The time series of discharge, river source TSS conceantratind
wind speed and wind direction are given in Figure 5.5 and&.@time period of July
26 to August 18, 2003. Discharge and river TSS concentratimwn in Figure 5.5
are from the same data source as Figure 5.3 and 5.4. Wind speedirection are
observations taken at the Rochester Airport (WBAN 14768)Figure 5.5 and 5.6,
the real observations from the stations are shown in redec(owred dots for wind
direction). Using the observations as mean values afitl tbt015% of that as stan-
dard deviations, Gaussian distributions at each time stepdch forcing variable are
created. These errors which are artificially introducedtofbrcing data are assumed
to be large enough to capture the uncertainty in the modslystem. The individual
ensemble member for each forcing input is obtained by ramglohoosing one value
from the Gaussian distributions at each time step and is sla@vwthe blue curve (blue
dots for wind direction).

Other than the four forcing variables mentioned above, ALi&BIso driven by
other parameters. Values for these static and dynamichblasand the methods to

obtain them are given in Table 5.2.
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Figure 5.3: Genesee River discharge during the year of 208&eamflow gaging
station 04232000 (Genesee River at Rochester).
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Figure 5.4: TSS concentration during the year of 2003 at wgtslity site
431510077363501 (Genesee River at Charlotte Pump Station)
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Figure 5.5: Discharge (a) and TSS concentration (b) of theeGee River during the
simulation period. The real observation is given in red, trelensemble of forcing
inputs with Gaussian distribution at each time step is giadsiack.
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Figure 5.6: Wind direction (a) and wind speed (b) during tineusation period. The
real observation is given in red, and the ensemble of forowpgt with errors con-

tributed is given in black.
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Table 5.2: Definitions, values, units and data sources frarpaters used in ALGE.

Parameter definition Value Unit Data source
Static variable
Horizontal grid spacing 135 m National Geophysical Datat€en
Vertical grid spacing 3 m National Geophysical Data Center
Simulation time 576 hour
Latitude 43.3  degree
Longitude 77.55 degree
Julian day 193 unitless
Roughness 0.001 m Estimated
Inflow/Outflow temperature 11.0 °C Estimated
Mass source temperature 13.0 °C Estimated
Particle density 2.5 g/cin Estimated
Particle diameter 2.0e-6 m Estimated
Number of grids in x direction 115 unitless
Number of grids in y direction 62  unitless
Dynamic variable
River source TSS concentration g/m USGS water quality site
431510077363501
River discharge s USGS streamflow-gaging station
04232000
Air temperature K Rochester airport (WBAN 14768)
Dew point temperature K
Cloud height km
Cloud cover unitless
Pressure mb
Wind direction degree
wind speed m/s
Upper air temperature K Buffalo airport (WBAN 14733)
Precipitable water cm
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5.3 Generation of ensemble observations

5.3.1 MODIS data for data assimilation

The ensemble Kalman filter applied in this research requibservations of remote
sensing reflectance with error estimates. Daily L2G MODIBaxe reflectance data
was obtained from Earth Observing System Data Gateway. pakasresolution is
250 m (bands 1-2) and the data is an estimate of the reflecéanteould be measured
at lake surface in the absence of atmospheric scatteringsarjgtion. The spectral
range of MODIS band 1 is 620-670 nm and the range of band 2 is83841nm. By
assuming the water surface is a Lambertian surface, theteesensing reflectance
values were calculated as

Rrs =

g, (5.1)

whereR is the surface reflectance retrieved from MODIS.

Daily MODIS data was examined and eight relatively clouekfimages were
downloaded during the simulation period of July 26 to Augi®t 2003. A land-
mask and cloud-mask were applied to the MODIS data based rh Daeflectance.
A Region Of Interest (ROI) was chosen around the Rochestdyayment for each
MODIS scene and the image map was converted from UTM to laditiongitude.
All pixels within the study area were inspected visually ngure they were free of
sun glint. Figure 5.7 is a false-color RGB combination udimgtwo 250 m bands of
MODIS. Vegetation appears red, clouds appear white, andrvegipears black. The
sediment-dominated plume water appears blue since banesZnddinclude plume in-
formation. Average wind speed and direction are shown irighwee as well. Ontario
beach was closed on July 29, August 13, August 14, AugustritbAagust 18, 2003
due to the extreme high flow of the Genesee River (Knauf, 2088)vever, on July 29
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and August 15, beach was closed although the plume was fl@astgvard. Almost no
plume is shown on August 16 compared with the previous dajctwindicates there

may be an error in atmosphere correction.

5.3.2 MODIS observation error statistics

With regard to observation error statistics within the iessisition theory, there are three
major requirements and any violation can result in bad aksion results (Albert,
2004). The three requirements are: 1) the measurementtddb®bias-free; 2) the
observation error should be close to a Gaussian distribuBpthe observation error
should have a small spatial correlation. In this researithhi@e requirements were
tested with the summer MODIS scene shown in Figure 4.10.

A small region in the center of deep lake was chosen as an RCidltolate the
measurement error. The mean value of surface reflectanc®im@s used as the
true value to calculate the observation bias. A small ovéias of less than 3.85% is
obtained by subtracting the mean.

The histogram of the MODIS observation error in that ROI bigtsacting the mean
is shown in Figure 5.8. The regression curve in red showsrtioe is approximately a
Gaussian distribution. The second requirement of the daiandation can be expected
to be satisfied by the MODIS measurements.

The spatial correlation of observation errors was caledland binned into 250 m
intervals. In Figure 5.9, the correlation between the fidtioin and the rest of the
image-ROI is shown as a function of distance. The spatiaktation values range
from -0.1 to 0.15. Thus, the third requirement of the dat@naitation can be expected

to be fulfilled by the MODIS observations.
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e T e . e s
(@) July 29 (west, 7.5 mph) (b) July 30 (southwest,4 mph)

b Tghy I

(c) August 8 (northwest, 9 mph) (d) August 13 (northeast, )mp

(e) August 14 (west, 9 mph)

(g) August 16 (northwest, 12 mph) (h) August 18 (east, 10 mph)

Figure 5.7: MODIS 250 m surface reflectance data showing s&En®&iver plume
dissipation in Lake Ontario during summer of 2003. The insagye false-color RGB
combination using bands 2-1-1.
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Figure 5.9: Spatial correlation of MODIS surface refleceanbservation errors as a
function of distance.



5.4 Open-loop simulations 119

5.4 Open-loop simulations

The Rochester Embayment study site was divided into a gridhi® ALGE simula-
tion with a horizontal grid spacing of 135 m and a verticatgspacing of 3 m. The
study period includes 24 days from July 26 to August 18, 20@%mall ensemble
space with 12 members is generated from the open-loop ruhsdifferent forcing
variables. The estimated plume dissipation at the study@iteach ensemble member
is nudged from a whole lake simulation to obtain a reasonbbiedary condition.
Model uncertainty is calculated as the error covariancehefdtate variables among
the ensemble members. Update is performed only when the I8@Bfa is available.
By equating the model variables with the assimilated qtiastithe matrice$/ and

R are re-binned to match the proper dimension of the MODIS tbageerform matrix

multiplication.



Chapter 6

Results and Discussion

6.1 Grid independence study and validation of ALGE
using airborne thermal imagery

To assess the impact of grid resolution on the ALGE simutati@ grid sensitivity
study was performed on Conesus Lake using identical simakatith the only dif-
ference being the number of nodes in the grid (Li et al., 20059r the whole lake
simulations, three grid sizes were tested, 23@x6 nodes with 40 m horizontal spac-
ing, 308x90x 6 nodes with 30 m horizontal spacing, and 53B8x 6 nodes with 20 m
horizontal spacing. The results show that the surface flosulation patterns are sim-
ilar for each grid size and that the nudging factors derivethfthe three simulations
are the same magnitude and direction.

The effect of horizontal grid spacing on high resolutionrpusimulations was
also examined. A grid with twice as many horizontal nodeS (f.spacing) as the
nominal grid (2 m spacing) was created for Cottonwood GUllye comparison of the

surface flow field shows that the simulation with a 1.5 m griceeds some small scale
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features such as eddies near the surface which are not pregbe simulation that
used 2 m spacing. The integrated sediment deposition pattedeled with the 1.5 m
grid is slightly wider spread to the south of the stream mpwuthich may be a result
of the higher resolution mesh allowing ALGE to generate arcatating cell that is

not resolved with the coarser mesh. It is concluded thaeasing the grid resolution
produces minor differences in the results but the basiclosions are the same.

The validation of ALGE began with comparison of surface tenagures of Cone-
sus Lake from the 2003 simulation with temperatures derfvech remote thermal
images. Figure 6.1 shows the thermal imagery (8 - 10 micrerpef the middle and
northern portions of Conesus Lake collected during MISirfiggnts in May and June
2003. Three regions were chosen from the images to retrieterwurface tempera-
ture from thermal radiance measured by MISI. The resultsvelddhe distribution of
water surface temperature was nearly uniform. Since theedakface temperature con-
verted from thermal radiance did not have noticeable grasljeve took the average
of the three regions for each image to compare with the aeesagace temperature
from the simulation. The comparison of lake surface tentpeeebetween the thermal
imagery and the simulation is provided in Table 6.1. The agrent has an RMSE
of 0.9 °C. With the errors associated with various blackbody sauesel calibration
assumptions, MISI’s on-board blackbody and transducdesysan be calibrated to
within 0.3 K. When we add uncertainties from approximation&LGE and the input
data used by ALGE, we consider these results for matchingteesensing data with
a two or three month simulation to be very good.

Further validation was provided by field measurements amthalagtion for spring
and summer 2004. Direct temperature measurements werne aékeong Point and

Cottonwood of Conesus Lake from a boat at noon on the day thelaiions ended.
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(b)

(d)

Figure 6.1: Thermal imagery of middle ((a) and (b)) and nemth((c) and (d)) portions
of Conesus Lake: (a) 14:25 on May 19, 2003 (b) 13:05 on Jun2d3B. Three regions
(Rectangle, Ellipse, and Polygon) were picked to convemnfthermal radiance to
surface temperature. The images were not corrected faa#imll and have been
enhanced with a histogram stretch to show variation withenlake. The horizontal
striping is an indication of line-to-line noise emphasibgydhe enhancement.
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Table 6.1: Comparison of lake surface temperature (LSTiyeefor MISI imagery
and simulation output

May 19 June 2§ May 19 June 28
Middle portion  Northern portion

Region 1 (Rectangle) 17.1 20.2 145 22.6
Region 2 (Ellipse) 15.1 21.0| 153 20.7
Region 3 (Polygon) 15.7 21.4) 15.8 211

Average LST from above' C) 16.0 20.9 15.2 21.2
Average LST from simulatiorrC)  15.1 20.0 15.6 20.2

The water temperatures were measured at various depthsngyaadibrated thermis-
tors attached to a weighted line. In addition, a chain of méiog temperature sensors
(Onset Stowaway TidBit sensor) at different depths wasqulatear Long Point Park
from April through October 2004. The Onset Stowaway TidBitsor is a completely
sealed underwater temperature logger and is used to prbuigddy temperature data
at several depths in the water column.

In Figure 6.2, a comparison of the whole lake simulation feypmil to June 2004
found overall good agreement between the model output ohgeesurface tempera-
ture as a function of time and the measured temperaturestfremear surface TidBit
sensor at Long Point. The accuracy of the TidBit sensor isiat®.2 °C over 0 to
50 °C. The model output is smoother than the temperature measateduring the
study period. Although the predicted surface temperatuwearmer than the observed
temperature in spring and colder than the observed temperiatsummer, the overall
comparison is very good with an RMSE of 0@.

Figure 6.3 shows the comparison of observed and simulatepe&ature profiles
at two locations where subsurface temperatures in Conestes\were measured at the

end of June, 2004. Overall, the agreement between obsendecomputed tempera-
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Figure 6.2: Simulated and observed average surface wateetature during April to
June, 2004 at Long Point.

ture profiles is again good. The RMSE temperature differdrteeen the observed

and simulated values above a depth of 9 m is less thafi@.Below a depth of 10

m, the simulated temperatures are significantly warmer tth@nbserved temperature.

The discrepancy may be partly caused by the lack of vertesdlution in the simu-
lation (dz = 3.1 m). The simulation with 1 m vertical resolution was runda better

temperature match at the surface and the bottom was foundevw, the intermedi-

ate layers still did not show the same well developed thelim®as the measurements.

Due to forest cover, the steep hillsides of the lake, andritexpolation into a single
wind speed, the estimate of the wind speed and directiontbedake has a large un-
certainty and therefore the effect of turbulent mixing maylme adequately simulated.
In any case the simulated currents are very similar for eactical resolution so the

nudging factors are also very similar.
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Figure 6.3: Observed and simulated temperature profilesilgnl) 2004 for stations:
(a) Long Point Gully (b) Cottonwood Gully.

6.2 Thermal structure in Lake Ontario

Characteristics of the temperature structure in Lake @mtae important for under-
standing both the entire lake and nearshore water cironl@tiocesses and the conse-
guentimpacts on lake water quality. The previous obsarmatand the satellite images
have clearly showed the spatial and temporal characterisfitemperature distribu-
tions during the thermal bar period. The surface tempezdiatd exhibits a warm
coastal ring and a cold interior core, whereas the verteralperature structure shows
a stratified coastal region and a well-mixed interior regiBatellite images from the
Great Lakes Forecasting System (GLFS) (Figure 6.4 and luSjrate the expansion
of the thermal bar in Lake Ontario in 1997. The thermal baisegith an incomplete
warm ring along the coast and expands lakeward during thagsprarming. After
the incomplete warm ring extends along the entire coastcdlastal band is formed
and confined to the coastal region throughout the thermgldradnd. Figure 6.6 shows
several observed temperature transects of Lake Ontano @bFS in 1997. The wa-

ter temperatures in the midlake are less tha@4nd the development of the thermal
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bar on the north shore is seen in Figure 6.6 (a). Due to thehdsfthe water and

the configuration of the bottom, the thermal bar is more dgped along the shallower
north shore compared to the deeper south shore (Figure)aédl{c)). As the heating
intensifies towards the midsummer period, the progresdidheothermal bar moves
towards the center of the lake. Figure 6.6 (d) shows typigairaer stratification oc-

curs when the surface water temperature warms over thesdakie and the thermal
bar disappears.

Figure 6.7 depicts a time series of the simulated surfacpéeature obtained for
four months of simulation for Lake Ontario in 2004. The waroastal ring starting
from the northern shoreline and Niagara River area is seEigire 6.7 (a) and (b) due
to the characteristics of the lake bathymetry. The bottapesis steep along the south
shore and smooth along the north shore. Since the inflowingreéNiagara River is
usually 3 to £C warmer than Lake Ontario, the warmest surface region scwar the
mouth of Niagara River during the early thermal bar periade(lApril and early half
May). Then the warm ring starts to complete the circle arothedlake’s perimeter
(Figure 6.7 (d)). The surface temperature contours apprabdly are parallel to the
depth contour. A much broader warm band starts to form northe cold core in late
May which moves the cold core towards the south. Figure §.gHews the cold core
breaks into two small pieces in the deepest region at the &t ehermal bar period
(late May and early June). Depending on meteorological itimmg, the thermal bar
may last for a period of from 1 to 3 months, varying from yeayear.

A time series of the simulated water temperature transéct.&W in Lake Ontario
is presented in Figure 6.8. It shows the lake changing frotinegynthermally mixed in
early spring to strongly stratified in late summer. Figui@ @) and (b) illustrate well

mixing from top to bottom at temperatures near or beloWC4in early spring. Then
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Figure 6.4: Surface temperature (color scale is in C as vgelhd& in Lake Ontario
from the GLFS on May 20 and May 30, 1997 (Chang, 2003).
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Figure 6.5: Surface temperature (color scale is in C as vgeilhd& in Lake Ontario
from the GLFS on June 10 and July 10, 1997 (Chang, 2003).

the spring-time warming tends to heat and stratify the sbare shallow areas first.
Figure 6.8 (c), (d) and (e) show that the thermal bar thatre¢gs the stratified and
homogeneous areas of the lake begins its offshore movemdmprapagates across
almost the entire lake. Stratification eventually covers wWhole lake, and a well-
developed thermocline generally persists throughoutuhenser.

Significant wind events can cause upwelling and downwelilogg the shoreline
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Figure 6.6: Observed temperature transects at 78.3W (solde is in C as well as in
F) in Lake Ontario from the GLFS on (a) May 20 (b) May 30 (c) Jaegd) July 10,
1997 (Chang, 2003).



6.2 Thermal structure in Lake Ontario

130

(9) (h)

o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Temperature (degree Celsius)

Figure 6.7: Simulated surface temperature distributidoatde Ontario on (a) April 20
(b) April 30 (c) May 10 (d) May 20 (e) May 25 (f) May 30 (g) June (i) June 20,
2004.
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Figure 6.8: Simulated temperature transects at 77.8W i ICGxtario on (a) April 20
(b) April 30 (c) May 10 (d) May 20 (e) May 25 (f) May 30 (g) June {©) June 20,
2004.
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during the summer stratified season. It is known that the gmemon of upwelling

along the north shore and downwelling along the south steoredulting from the

eastward component of the wind stress in Lake Ontario. Theelling events are

characterized by relatively weak eastward flow, and dowlimgekevents with strong

westward currents (Murthy and Miners, 1992). Research stdiat upwelling events
generally associate with cooling down the region, whereagnavelling events asso-
ciate with warming up the region. A relatively cool coastpluelling region at the

northeast corner on May 25, 2004 is shown in Figure 6.9. Tlaeshere temperature
is about 6 - $C whereas water temperatures of the rest part of the lakeDar&3°C.

The upwelling events result from the prevailing eastwanddron that day.

6.3 Numerical simulations of large scale circulations

Large-scale circulation patterns in lakes can be affecyedibd stress curl, topogra-
phy, and stratification. During the stratification seasbaMertical exchange is greatly
reduced and the main motions are almost entirely horizofithe large scale circu-
lations produced by the whole lake ALGE simulations are meguto develop the

nudging for stream plume simulations.

6.3.1 Conesus Lake

Figure 6.10 depicts a time series of the simulated surfaoemis obtained for three
months of simulation of 2004 for the Conesus Lake. The ariodiate the speed
and direction of the predicted motion at a node located abtiggn of each arrow. The
most striking features are the convergence zones and beeraplicated circulation

pattern in the north and south basins during a northwest @iglre 6.10 (a)). The
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Lake Surfoce Tampersture (Degrea C)

Figure 6.9: Simulated surface water temperature alongaimpbng transects on May
25, 2004. Curve |, II, and Il corresponding to the lines ipftam north to south.
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average current speed over the entire lake was 1.0-1.1 citifsasiaximum speed
reaching 4.4 cm/s during April. The average current speeu the entire lake was
0.7-0.8 cm/s with maximum speed up to 4.2 cm/s during May ame:.J The storm-
induced flow currents can be strong in Conesus Lake in sumiitienvaximum speed
up to several tens of cm/s. The maximum flow current during pnstorm in May
was 19.8 cm/s. The circulation and flow currents were stromgApril than in May
and June, when wind speeds were higher and the winds werenmadterly (Figure
4.2).

The predicted water circulation patterns at different deph Conesus Lake on
June 29, 2004 are presented in Figure 6.11. Circulationeasdinface, 3 m, and 6 m
is shown in Figure 6.11 (a), (b), and (c), respectively. OmeJ29 wind was blowing
from the southeast (about 150 For the surface layer, the currents are generally in
the direction of the wind. For examples, the velocity vestat the surface are south
to north and parallel to the shoreline along the westernesh®he overall effect of
the southerly wind is a conveyer belt behavior with downimgllat the north end and
upwelling at the south end. The currents are opposite tleetitin of the wind at a
depth of 3 min Figure 6.11 (b). Currents at a depth of 3 m amnggr than currents
at a depth of 6 m. Generally, the wind-induced currents atleardirection of the wind
near the surface and are in the opposite direction in lowgréa The conservation
of water volume in the enclosed lake basin is guaranteed &ydwersal in current

direction.

6.3.2 Lake Ontario

Large scale water movement in Lake Ontario during springsaamdmer of 2004 was

simulated by ALGE. The earlier observations showed a thigyrdaiven coastal cur-
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6.3 Numerical simulations of large scale circulations

(d)

(©)

(b)

(@)

Figure 6.10: Time series of simulated surface currentsgcfar the entire lake during
spring and summer conditions, 2004: (a) April 7 (b) April 2§ May 30 (d) June

29. Arrow length and direction represent the current stiteagd direction. Average
wind direction was northwest, southeast, southwest, anthscespectively. One out

of three nodes is plotted for clarity.
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Figure 6.11: Prediction of circulation (cm/s) at differelefpths for the entire lake with

wind blowing from the southeast (June 29, 2004): (a) surfardepth

3m (c) depth

6m. One out of three nodes is plotted for clarity.
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rent in the counterclockwise direction under the light wardl a wind-driven coastal
current in the wind direction under strong winds (Chang,30@igure 6.12 depicts
a time series of the simulated surface currents and the weatgyerature at each grid
point for Lake Ontario in 2004. Nearshore currents are galysstronger than offshore
currents. The average surface currents in Lake Ontarioadativiely weak through
spring and summer of the year (on the order of several cm/gWweier, under the
strong wind the flow currents can be strong in Lake Ontaridwiximum speed up
to several tens of cm/s. The average monthly simulated aidarrents from April
through July are 4.0 cm/s, 3.3 cm/s, 7.8 cm/s, and 7.7 cmks mvéximum speeds
reaching 16.9 cm/s, 13.7 cm/s, 19.2 cm/s, and 15.0 cm/s.

Figure 6.12 (a), (b), (d), and (e) show the surface windeadrigirculation in the
whole lake under the average wind direction of southwesitiswest, northwest, and
south, respectively. Comparing to Figure 6.12 (a), Figut@ @) shows a similar flow
circulation pattern but slightly weaker currents becahgerésulting wind speed was
slower on that day. Figure 6.12 (c) and (f) show a strong wastwurrent along the
north shore of Lake Ontario, which formed part of the cowsteckwise circulation
in the whole lake.

The predicted water circulation patterns at different et Lake Ontario on July
27, 2004 are presented in Figure 6.13. Circulation at thiaselr9 m, and 17 m is
shown in Figure 6.13 (a), (b), and (c), respectively. Fidgule3 (d) shows the simulated
surface temperature distribution on July 27, 2004. The mmimn surface temperature
is observed at the south-east corner and along the middteesoushoreline on that
particular day. The cold surface temperatures are reguitiom the coastal upwelling

events which bring up the colder water from the deep layers.
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for clarity.
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6.4 Numerical simulations of river plumes

6.4.1 Stream plumes in Conesus Lake

The hydrodynamic model results for the entire lake provithesoverall wind-driven
circulation in Conesus Lake during the spring and summewe¥er, during hydrome-
teorological events, water circulation can be locally niediby stream plumes. Nudg-
ing data from the whole lake simulations were applied tostigate the fate and trans-
port of tracer and sediment at stream mouths during stormigu@the late spring and
early summer.

Sand Point Gully

Figure 6.14 is a photograph of the Sand Point Gully streammplduring a storm
event of June 16-19, 2004. At the peak stream flow rate of 13§, the maximum
current velocity of the simulation was 0.8 m/s at the streasatimof Sand Point Gully,
which is over ten times the average velocity at deeper afFégsre 6.15 (a)). In Figure
6.15 (a) and (b), a convergence zone is seen southeast tfgamsnouth at Sand Point
Gully. During the storm event, the incoming water has a higleasity than that of the
lake due to its suspended load. Because of the higher derisigdiment laden water
flowing into the lake, the plume sinks creating the convecgerone and sediments are
more likely to deposit on the shallow nearshore zones. Eigut5 (c) shows tracer
moved toward the southeast at the surface and at 3 m during stent. This tracer
movement is consistent with the plume momentum and is ad@mtiwith moderate
but steady winds from the northwest. The nudging currentsal@ppear to strongly
affect the plume.

Cottonwood Gully

The storm event that occurred during May 20-25, 2004 at Gattwd Gully had a
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Figure 6.14: Plume at Sand Point Gully flowing southeast ireJa004 during a storm
event.

maximum flow of 0.6 m¥s, which produced a current velocity at the stream mouth of
about 0.45 m/s (Figure 6.16 (a)). Compared to Sand PointyGublteep slope along
the nearshore is found at Cottonwood Gully. For much of theddavood Gully area
depths of 3 m could occur within 15 m of the shore. Due to thatiredly deep bottom
near the stream mouth at Cottonwood Gully, the stream pladie®nts need a longer
residence time before depositing on the bottom of the laksurface and near surface
gyre is shown immediately adjacent to stream mouth in Figuté (a) and (b) which
increases the residence time. In Figure 6.16 (c), the plenobserved to stay near
the shoreline and then move north toward the macrophytevwdtaough the wind is
from the northwest. This plume appears to be strongly dipsethe nudging currents.

Site comparison

The nudging data from the whole lake simulation at CottorvGailly is point-
ing from south to north under all wind conditions even whea Wind was blowing

from north-northwest as indicated by the stream plume st (see Figure 6.10
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10.0 cm/s

Figure 6.15: Water circulation and passive tracer trartsggdhe mouth of Sand Point
Gully during a major storm event during June 16-19, 2004. fichees show the results
18 hours after the beginning of simulation. The wind was lohgafrom northwest.
Large vectors in (a) show nudging data (direction of flow ents, not to scale) from
whole lake simulation. The circled area indicates the natyte bed location. (a)
Surface (b) 2 m (c) Tracer transport at surface and contawacér distribution at 3 m.
The flow current vectors at the stream mouth are not on the seatein (a) and (b) as
the current vectors away from the stream because of theoegtinarily larger velocity
at stream mouth. One out of four nodes is plotted for clarity.
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Figure 6.16: Water circulation and passive tracer trartsgighe mouth of Cottonwood
Gully during a major storm event during May 20-25, 2004. Tharfes show the results
48 hours after the beginning of simulation. The wind was lhgwfrom northwest.
Large vectors in (a) show nudging data (direction of flow ents, not to scale) from
whole lake simulation. The circled area indicates the natyte bed location. (a)
Surface (b) 2 m (c) Tracer transport at surface and contawacér distribution at 3 m.
The flow current vectors at the stream mouth are not on the seatein (a) and (b) as
the current vectors away from the stream because of theoegtinarily larger velocity
at stream mouth. One out of four nodes is plotted for clarity.
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and 6.16). As a result of the steep bathymetry at Cottonwodda@aximum depth of

19 m, the stream plume is strongly affected by the main ctifrem the entire lake.

However, the nudging data do not appear to have such a strgragt on the plume at
Sand Point Gully. We also found out that the magnitude of mgldata at Sand Point
Gully is slightly smaller than that at Cottonwood Gully.

Slow flow currents are seen to form at the macrophyte bedstht®and Point
Gully and Cottonwood Gully (Figures 6.15 and 6.16). The agervelocity in the
middle of macrophyte beds are 2.9 cm/s at Sand Point Gullyla&idm/s at Cotton-
wood Gully. These velocities are much smaller than thossideithe macrophyte beds
and offshore in deeper water. The average velocities in ¢eper waters at those two
sites can reach 4.5 cm/s to 5 cm/s. The friction of the magr®srenhances tracer and
sediment residence time within the macrophyte beds.

The sediment deposition patterns show qualitative infélonmaabout where small
particles with small settling velocities will be transpeitand deposited at stream
mouths and create potential macrophyte habitat. The iategrsediment deposition
patterns at the two study sites with and without macrophyag @re given in Figure
6.17. We expect submerged macrophytes to slow down the floweahance sedi-
mentation and our results do show that process occurringtat ites. The region
of sediment deposition at Cottonwood Gully is much moreavwaly constrained than
at Sand Point Gully because of the strong control by the mantth flowing nudging
currents even though the simulation was about twice as lanh§and Point the deposi-
tion is more wide spread which may be a result of more compliexplay between the
weaker nudging currents which are more variable at thidshat site and the control
of the plume by the wind direction and plume density and mdoran This is further

supported by the size of the macrophyte beds in relatioretsitte of the watershed for
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Figure 6.17: Integrated sediment deposition pattern atl Bamt Gully after 53 hours
and Cottonwood Gully after 117 hours with and without mabsap bed. The circled
area indicated macrophyte beds location. (a) and (b) Samd Bally, (c) and (d)
Cottonwood Gully.

each stream. The macrophyte beds at both stream mouthsoare8ab00 M although

the Sand Point watershed (325 ha) is about 4.3 times largarthie Cottonwood wa-
tershed (76 ha). If we assume that the supply of sedimeréseath the size of the
watershed, then Cottonwood has much more focused and tntssediment depo-
sition pattern than Sand Point where sediment is depositedwider area and into

water too deep for macrophyte growth.
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6.4.2 Niagara River plume in Lake Ontario

In this research, high-resolution hydrodynamic simulaiovere carried out during
the period of two weeks in summer 2004 (June 5 - June 16) to dsimade the mixing
characteristics of Niagara River thermal plume in Lake @ataTime series flow
currents from the large scale whole lake simulations weeel @s nudging for plume
simulations. Eastward winds appear to be the dominant wirgttibn during early-
mid June. Wind is relatively weak in most of the simulationdiwith an average speed
of less than 1.5 m/s. However, there are some occasions wiiedespeeds reach up
to 7 m/s.

Figures 6.18 and 6.19 show the predicted movement of theakBagiver plume
during two weeks in summer 2004. Figure 6.18 shows the stdgstextension of the
Niagara River plume within the first two days of the simulattone. Figure 6.18 (c)
illustrates the inflowing water flows out of the mouth to aaiste of approximately 8.2
km. The flow is hydraulically controlled within the first 5 tokén from the mouth of
the river. The magnitude of horizontal flow currents is styoiring this momentum-
dominated period with maximum speeds up to several tens (. dfigure 6.19 shows
the stages of transition and slow deflection of the NiagakemRplume during the
next ten days of the simulation time. A large clockwise edalyriing to the east of
the Niagara River mouth is shown in Figure 6.19 (b). The eddyslfor a few days
(Figure 6.19 (b) and (d)). The spread of the Niagara Rivemglin Lake Ontario is
determined by the prevailing wind conditions and lake datian patterns. In Figure
6.19 (e), the river plume is diverted to the east, and the lydmloyant plume responds

to the prevailing winds and lakewide circulation forces.
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Figure 6.19: Simulated movement of the Niagara River Pluma fa two-week simu-
lation in summer 2004. Left column is the predicted movenoéthe plume and right
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6.5 Impacts of a turbid plume on optical dynamics in

Rochester Embayment

To evaluate the impacts of the Genesee River plume on theabplynamics of the
Rochester Embayment in Lake Ontario, high resolution plsmeilations were car-
ried out to study the transport and distribution of waterstiinents from the Genesee
River plume. TSS was simulated as single-sized particlés avameter of 2 microns
and density of 2.5 g/cfmand CDOM simulated as dissolved tracer in ALGE. The ini-
tial concentrations of TSS and CDOM in the lake were set to.Zéhe distribution of
TSS and CDOM built up as particles and tracer enter the laka the river. In this
study, the TSS discharged into Lake Ontario from Geneseer Rivassumed to be fine
particles with small settling velocities.

Figure 6.20 shows the distribution of TSS predicted by ALGtErawo weeks of
simulation for August 2006. The inflowing water flows out of tBenesee River mouth
and spreads to the east, and the weakly buoyant plume resfmti prevailing winds
and lake-wide circulation forces. Table 6.2 shows the sit@al concentrations of TSS
and CDOM at four stations on August 9, 2006. To validate oaulte from ALGE,
modeled values were compared to concurrently measurecotations of TSS and
CDOM at four stations in our sampling area (Figure 6.21). ddrecentrations of TSS
and CDOM varied significantly from near the river mouth totler offshore. The
correlations of TSS concentration indicate that modelddegawere slightly under-
estimating measured values except for station 1. This isistant with setting the
initial values in lake to zero. CDOM concentration corriglas were also strong, illus-
trating the strong control the Genesee River can exert onykieal properties of the

embayment.
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Figure 6.20: ALGE predicted TSS distribution showing then€see River plume.
Yellow represents the high concentration and blue repteska low concentration.

Table 6.2: TSS and CDOM concentrations predicted by ALGEoat ftations on
August 9, 2006.

Location Station 1 Station 2 Station 3 Station 4
TSS (g/m) 16.96 3.769 0.403 0.689
CDOM (scalar a(350)) 5.996 1.356 0.152 0.184

Simulated CDOM
concentration

Simulated TSS concentration

0 T T T T 0 T T

0 5 10 15 20 0 2 4 6 8

Measured TSS concentration (glms) Measured CDOM concentration

(@) (b)

Figure 6.21: Relationship between measured and modelecaM8&&DOM concen-
trations.
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Figure 6.22: An example of Chl profile obtained from Eq. 6.1.

In absence of the algal growth model, the vertical profile€ldt is approximated

by a Gaussian function plus a constant background (Straarsk&tramski, 2005):
Chl(z) = Chly + h/[o(2m)*)exp[—(2 — 2maz)? /207, (6.1)

where Chl(z) is the concentration profile of CHL, ¢l the background value of
CHL (mg/m?), Z,,.. is the depth of CHL maximum, and Ghl,=h/[c(27)"°] deter-
mines the amplitude of CHL maximum above the value of,Ch this study, h=20,
0=2, Chh=1.0, and z,,.=5.0. Figure 6.22 shows an example of CHL profile with the
maximum CHL concentration at a depth of 5 m.

Figure 6.23 shows the Hydrolight predicted remote sensfigatance values for
three stations using the in situ measured IOPs in Figurdlfe@&oncentration values in
Table 6.2, and the estimated CHL profile. The Lake Ontaritaserwater reflectance
of station 3 and 4 exhibit the characteristic spectrum ofevgatvith low constituent
concentrations. The sediment plume is characterized byreijectance values in the

green region. The reflectance of the plume-dominated statiows a decrease in the
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Figure 6.23: Modeled remote sensing reflectance at thréersta

blue region consistent with absorption due to large amoaft$SS and CDOM.
Figures 6.24 show the comparison of remote-sensing refleetaetween the model
prediction and the measured values for three stations drikrembayment. The mod-
eled and measurefl,, values tend to follow the same spectral trend for all three st
tions. The high concentrations of TSS and CDOM in areas mearmouth results in
the characteristic low blue reflectance. Reflectance abst&tand 4 is smaller in the
red wavelengths from absorption by CHL and water. Rangeeféfiectance values
in Figure 6.24 (c) is slightly greater than that in Figure46(B) due to the higher con-
stituent concentrations. Figure 6.24 (c) shows some of théetedR,., are larger than
the observed values at station 4. It is probably due to thmatt of CHL concentra-
tion is higher than the real values since station 4 is offshBeflectance values derived
from MODIS 1 km scene for stations 3 and 4 are also shown inréga.24 (b) and

(c). MODIS derived reflectance values are smaller than theeteo values in blue and
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green regions. Comparison to MODIS 1 km data is not good tbeeithe measured
or modeled reflectance both in magnitude and spectral shiipis. may be a result
of a misregistration between MODIS scene pixels picked toutate the reflectance
and the locations of stations 3 and 4 due to the low spatialugsn. In addition, the
discrepancy may be caused by the lack of accurate corremtt@mmospheric effect for
coastal areas. The modeled reflectance values are slighéljfes than the measured
values for all stations. One reason could be the scattedafficients and phase func-
tions of TSS used to calculate the reflectance values arerapepfor Lake Ontario
due to the lack of consideration for the effects of varioudiple size distributions

(PSD) on IOPs.

6.6 Updating ALGE with MODIS data via an EnKF

In this section, a test is performed at the simulation grichppat the mouth of the
Genesee River to validate the performance of the EnKF metliebults from the
model controlled runs are compared with the assimilatiorsruSince the ensemble
member simulations contain only the errors associated tiwgélmodel inputs and as-
sumptions, they provide a baseline of model accuracy withay satellite observa-
tions. The filtering estimate of the TSS concentration is garad with real observa-
tions which were obtained from one USGS water quality siteaf®tte Pump station,
431510077363501). Errors of estimates from a single ALGHcalled an open-loop
run), the ensemble mean, and the EnKF estimate are compa@heddifference be-
tween individual ensemble members and the mean of the daBoniresults demon-
strates the value of incorporating satellite measureniatishe model estimation of

TSS concentration.
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Figure 6.24: Measured and modeled remote sensing reflectdrstations 2, 3, and 4.
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The estimate of plume dissipation at the mouth of the GenBses for all grid
points by 2D spatial EnKF filtering is shown in this sectiormaadl. Due to the lack
of ground truth in the lake, it is difficult to validate the sigafiltering quantitatively.
The estimate of the plume dissipation from one open-loop M@DIS data, and 2D

EnKF filtering are compared.

6.6.1 Grid point test at the Genesee River mouth

Ontario beach has been a focus of research for unsafe comslitor swimmers due
to high flow of Genesee River and poor water quality (Knauf)30 Streamflow
has been measured at the Genesee River at Rochester twe@etithes per week.
Water samples are also collected from the Genesee Riveraatofte Pump station a
few times per week by automatic sample to provide waterityudhta, such as TSS
concentration (Sherwood, 2005). During the swimming sea$@003, heavy rainfall
causing Genesee river storm water in combination with tudoinditions in the near
shore resulted in beach closures on 25 days (Knauf, 2003).

Figure 6.25 shows the relation between the state varialuettaan measurement.
TSS concentration is converted to remote-sensing refleetasing the measurement
model Hydrolight. Higher TSS concentration results in leigreflectance values. Re-
flectance increases significantly when the TSS concemtradidow and approaches
saturation when TSS concentration is greater than 150.dline EnKF was applied
using simulated and observed remote-sensing reflectangeltde the TSS concentra-
tion profile estimates.

To validate the benefit of remote updates, a series of ALGHrolbed simula-
tions in which errors were intentionally introduced into aeb forcing variables are

performed. The model controlled simulations (or open-loams) are defined as the
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Figure 6.25: Relationship between TSS concentration{gand remote-sensing re-
flectanceR,, generated by Hydrologht at the wavelength of 645 nm. Conagon of
CHL and CDOM are assumed to be constants.
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Figure 6.26: TSS concentration (gfhat mouth of the Genesee River during the study

period from ALGE controlled simulations and truth. The enb& of model simula-
tions is given in black, the truth is given in red, and the fiftg estimate is given in
blue.

runs which are driven by various combinations of forcinguts In each simulation,
the model was run at one hour time steps. Figure 6.26 showE3Beconcentration
(g/m?) at the grid point at the mouth of Genesee River during thdysperiod for 12
ensemble members in black. Also shown in Figure 6.26 for @ispn is the obser-
vations of TSS concentration obtained from the USGS watalitysite. Results from
the ensemble runs match the basic trend of the real obsamgail he ensemble largely
envelopes the truth and over- or underestimate the TSS gtraten. Since the truth
falls within the ensemble all the times, it is evidence tovghioe previous choices for
forcing variables are very reasonable. Figure 6.26 alswshioe EnKF TSS concen-
tration estimate at the grid point at the mouth of GeneseerRinring the study period
in blue.

Kalman gain determines the inclusion of measurements tate sstimates and is
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influenced by the uncertainty in the prior state estimatethadincertainty in the mea-
surement estimate. According to the definition of Kalmamgas the measurement
error covariance? approaches zero, the Kalman gain moves towé;ds‘l’ he higher
the prior uncertainty, the less confidence the EnKF has irstifiie estimate and thus
the more it includes information from the measurements.h&stpriori estimate co-
variance P approaches zero, the Kalman gain moves towards zero. Higleertainty
in the measurements indicates less of the information fleemteasurements should
be taken into account.

In Figure 6.27, the Kalman gain value at the simulation gothpat the mouth of
the Genesee River is plotted. During the simulation pergaght MODIS scenes are
able to be used as a feedback via EnKF into ALGE. The valueseoKalman gain
reflect how much information of MODIS data can be included iR8S concentration
estimate by ALGE. On the days of July 29, August 8, August 1l August 15,
Kalman gain is large with the absolute values from 750 to 1404 those days the
EnKF will emphasize the MODIS data more than the prior stat@rgate. On the other
hand, on the days of July 30, August 13, and August 16, alesealties of the Kalman
gain are less than 100. For those days the information frenvi@DIS data is not that
trustworthy. For the last day of simulation period, the Kaingain has the value of
about 250 which indicates MODIS data is partly taken intamact.

One of the most straightforward ways to validate the perforoe of the EnKF
is to compare the EnKF estimate to the true state. In this tese are daily TSS
values from the Charlotte pumping station that providestthe state values. Figure
6.28 shows the errors of the EnKF estimate on each day dummgtudy period at
the river mouth. Errors shown in the figure are the absoluleegaof the difference

between the real observations and the EnKF estimate. Thiecthgles indicate a day
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Figure 6.27: Kalman gain calculated by the EnKF during thelgtperiod. Values
shown are for point-scale test.

MODIS is available for measurement updating. As expectetliimes when MODIS
data is available, the EnKF is very effective at correctimg TSS concentration to the
truth and reducing the errors. Figure 6.28 shows the iner@asincertainty due to
prediction and the decrease in uncertainty due to cormectidne error of the EnKF
estimate typically increases after the correction. In otnards, the EnKF prediction
deteriorates until a new observation becomes availablen&again determining the
balance of uncertainty between the system and measureeseiitsrin the error always
reaches the local minimum when the MODIS data is availablee fime between
updates also affects the magnitude of the error change.

One technique used to improve model forecast is to calcthatenean of the en-
semble prediction (Houtekamer and Derome, 1995) (MurpB§8) (Szunyogh and
Toth, 2002) (Whitaker and Loughe, 1998). Figure 6.29 shastisnate errors in TSS
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Figure 6.28: Errors of TSS concentration (g)jrfor the EnKF estimate with 11 en-
semble members for the period of July 26 to August 18.

concentration for the ensemble mean, one open-loop runtrenBnKF on each day
during the study period. The open-loop run was randomly ehdsom 12 ensemble
members. The root-mean-square error (rmse) was calcutatedch of them based

on:

(6.2)

wherez; is either the ensemble mean, the singel ALGE run, or the Erdtifate, and
x, is the real observations of TSS concentration. The RMSE & d@centration for
the open-loop simulation is 4.32 m/sompared with for the EnKF estimate 2.33 #n/s
It shows MODIS assimilation by EnKF improves the RMSE of T®8aeentration es-
timate for the grid point at the river mouth. The result aleows the mean improves

the model estimate nearly as well as EnKF. Figure 6.30 shbevsumulative errors
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of TSS concentration from the ensemble mean, one open-logmnd the EnKF es-
timate. The open-loop run of ALGE has the largest error towadahe end of study
period. Results from the mean of the state estimate fromhalensemble members
show slightly smaller errors than the EnKF estimate. Howetee EnKF estimation
accuracy can be easily traded off with computational effgrisimply adjusting the
number of ensemble members. Thus it is possible for the EnKffdduce better es-
timation if the ensemble space is increased. This exammati the performance of
the ensemble mean versus the EnKF also illustrates twoqteddie results. First, it
is reasonable to assume that the ensemble mean should bed argddction and this
is apparent from Figure 6.26. Since the ensemble boundsutiethe mean will lie
closer to the truth than any single run. Second the mean hawatking action so
that it does not capture real excursions in the TSS that atayito day as a result of
the episodic nature of storms. On the other hand, when dataitable, the EnKF
adjustment from one day to the next can be large if the Kalnzan ig large and the
maximum EnKF estimate error is considerably smaller thanntaximum ensemble

mean error.

6.6.2 Spatial update of plume dissipation via 2D filtering

Spatially demonstrating the improvements gained by usémgote-sensing data as
feedback can be difficult. Uniform spatial distribution b&tdynamic inputs to ALGE
has a large impact on the ability to model plume dissipaticcueately. Remotely
sensed data are also subject to various types of error sourcaddition, lack of ob-
servations from station networks as truth makes it diffibnltjuantify the benefits of
using MODIS data in the EnKF method.

Figures 6.31 and 6.32 show the comparison of TSS dominatedepdlissipation at
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Figure 6.29: Errors in TSS concentration (g)rfor the mean of the ensemble (green),
one ALGE open-loop run (magenta), and the EnKF estimates]idtr the period of
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Figure 6.30: Cumulative errors of TSS concentration (/for the mean of the en-
semble (green), one ALGE controlled open-loop run (mageatal the EnKF estimate
(blue) for the period of July 26 to August 18.
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the Genesee River mouth during the study period of July 26uiguat 18. Sediments
are simulated to show where the turbid plume flows into Lak&a@m The colors rep-
resent sediment concentration in the water. To illustfa¢emnpacts of using MODIS
data as a feedback, only results for eight days in which MOdda is available are
shown in the figures. The first column in Figures 6.31 and 6e38ahstrates MODIS
derived surface reflectance showing the plume dissipa@DIS scenes show that
most of the time the plume is flowing eastward, but on some déryd and lake cur-

rents can push the plume westward onto the beach. Estimiated jplissipation from

the mean of 12 ensemble members is shown in the second colurerenKF estimate

is given in the third column.

On July 29, the result of assimilating the MODIS data can lense the EnKF
estimate. On next day, the ensemble mean shows the plumadalightly westward
while MODIS shows the plume flowing eastward. The filteringreate updates the
direction from westward to eastward, but without a tail. Tdrgg tail is possibly due to
finer particles in water which is not included in the ALGE siation. On August 8, the
results of the MODIS scene, the ensemble mean, and therfgtestimate are similar.
On August 13th, the EnKF updates the direction of plume pé&&n in a westward
direction, but the area on the upper-left corner with higlectance value is missing.
That part of the plume shown in MODIS scene is possibly duesospension origi-
nating further west. On the 14th, 15th, and 18th, the diffeeebetween the filtering
estimate and the ensemble mean clearly shows the resuihgfMODIS as feedback.
However, on the 16th, the EnKF estimate takes more of the ptate estimate from
the ALGE open-loop runs into account. This matches the faaitthere might be an
atmosphere correction error on that day for MODIS. Ovetiad results show that with

more observations being assimilated into ALGE, the EnKFkedretter towards the
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end of the study period.

Since the ensemble mean has a smoothing action, it does ptoreaeal excur-
sions in the TSS that occur day to day as a result of the egisadure of storms. On
August 14 and 18, the EnKF adjustment is large enough to shevong tails as a
result of the storm events by using MODIS data as feedback.niéasure of estima-
tion error is the difference between the true state and thma® at any given time
and location. To validate the performance of the EnKF sphitering, MODIS data is
applied as the true state and compared with the ensembleandahe EnKF estimate
because of the lack of the ground truth in the lake. The TS$amration is converted
to the remote-sensing reflectance by a look-up table showigire 6.25. On August
18, the MODIS scene has a maximum remote-sensing refleaté@o@452, while the
maximum of the EnKF estimation is 0.0441. The RMSE averaged all pixels in
the study area is a convenient method to evaluate the EnKiroaheT he reflectance is
assumed to be zero on the land. The number of the pixels iy area is 115«
62. The spatial RMSE of remote-sensing reflectance betweeMODIS data and the
ensemble mean is 0.0083. It reduces to 0.0035 when comphep filtering result
and the MODIS data. Results show that the EnKF estimate RNMSibnisiderably
smaller than the ensemble mean RMSE. Results also suggesh¢hEnKF improves

the hydrodynamic simulation not only in point scale, bubafsspatial domain.
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Figure 6.31: TSS dissipation in the Rochester Embaymenapauly 29 (b) July 30
(c) August 8 (d) August 13, 2003. First column: MODIS derivedcond column:
ensemble mean, third column: EnKF estimate with 12 ensembhabers.
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Figure 6.32: TSS dissipation in the Rochester Embaymerd)ofi(gust 14 (b) August
15 (c) August 16 (d) August 18, 2003. First column: MODIS ded, second column:
ensemble mean, third column: EnKF estimate with 12 ensembhabers.



Chapter 7

Conclusions and Recommendations

7.1 Conclusions

A coupled water quality modeling system using DDDAS consdpit assimilates
remote sensing data into a hydrodynamic model was develpedested. The mod-
eling system includes the hydrodynamic model (ALGE), aatde transfer model
(Hydrolight), and remote imagery (MODIS) as a dynamic fesakh The DDDAS
is implemented through an Ensemble Kalman Filter (EnKFhwitsmall ensemble
space.

Validation of the ALGE simulations used airborne thermabhgas from RIT’s
MISI to assess the pattern of surface temperature acro€othesus Lake in mid May
and late June 2003. The comparison of lake surface temperbéiween the ther-
mal imagery and the ALGE simulation shows an RMSE of @9 MISI's on-board
blackbody and transducer system can be calibrated to witBiiK. Due to the uncer-
tainties from approximations in ALGE and the input data usgdLGE, these results

for matching remote sensing data with a two or three monthlsition are very good.
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The study of thermal structure in Conesus Lake in generaksteogood agreement
between measurements and simulations. The RMSE of avesagiedte temperature
between measurements and simulations is°G.8The simulated subsurface tempera-
tures show a better agreement with the observed tempeg@tfiles at a depth above
9 m since the inaccurate meteorological conditions migtrbduce excess vertical
mixing. In general ALGE is capable of simulating the vertitteermal structure in
Conesus Lake.

The maps of modeled seasonal water circulation in Conesks show strong
effects of lake shape and orientation on the circulatiotepat When the wind is
blowing from west-northwest perpendicularly to the lakeéy strong convergences are
seen easily in both the north and the south basins. In pkatjcine circulation is
stronger in early spring than in summer. The water circofatt different depths for
the entire lake also shows the effect of wind for a typical swenstratified lake.

With boundary conditions for currents generated from a wiheale simulation, the
results of specific stream plume simulations using a nestiedagproach show the
local fate of model-generated passive tracer and the patfesediment deposition at
stream mouths. Tracer via streams and creeks are contbyllx vertical mixing, the
net effect of local event-driven circulation, and main flawGonesus Lake. Macro-
phytes generate most of the resistance to flow because ofréigefarce they exert
when water moves through vegetation. The sediment depogttterns show the ef-
fect of macrophytes on enhancing sedimentation near streanths. Results show
that water circulation at stream mouths during storm eventsghly current-driven
at Cottonwood Gully and can explain the location of the mplyte beds with re-
spect to the stream mouth. However, at Sand Point Gully ikapgthe combination of

wind direction and nudging currents affect the plume résgin a less focused plume.
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These results suggest this type of detailed study of indalidtream plumes is neces-
sary to understand the linkage between tributary inputsutrients and macrophyte
distribution in the lake.

Further testing of ALGE used a four-month hydrodynamic sation for Lake On-
tario during April to July in 2004 to study the thermal stuet and water movement af-
fected by the thermal bar in spring and summer. The simutatxdhal cycles show the
spatial and temporal characteristics of temperatureilbigions during the thermal bar
period. The entire lake simulation also shows the upwebingjdownwelling along the
shoreline during the summer stratified season under théisat wind events. The
simulated large-scale current circulations show the thélyatdriven coastal currents in
the counterclockwise direction under the light wind andhed-driven coastal cur-
rents in the wind direction under the strong wind. A studyedirshore plume behavior
was also carried out at the Niagara River mouth to investitieg plume extension. The
simulated plume dissipation shows a three stage mixinggssimilar to that shown
for published results, and providing further validationAdfGE.

The effects of the turbid Genesee River plume on the optigahohics in the
Rochester Embayment are studied using the DDDAS couplectiingdsystem. The
comparisons of the concentrations of TSS and CDOM from fiegtiss show overall
good agreements between the estimates from lab analysth@mdodel output. The
simulated reflectance values of the plume-dominated stathow the characteristic
spectrum of turbid waters with absorption and scatterirgtddarge amounts of TSS
and CDOM. The Lake Ontario surface water reflectance of ofsistations exhibits
the characteristic spectrum of waters with low constitwemicentrations. Overall, the
agreement between the 250 m MODIS reflectance and the moddlectance values

is good although the data set is small. MODIS data with a apasolution of 1 km is
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not sufficient for most applications in coastal areas. Withtiigher spatial resolution,
MODIS 250 m band is sufficient to detect features in coastdsand very promising
for coastal monitoring applications.

A TSS data assimilation study was performed in which MODI8 &breflectance
data was used as a dynamic feedback to update the hydrodymardel ALGE. EnKF
was implemented to improve ALGE’s estimate of TSS concéptidby balancing the
uncertainties associated with meteorological and hydio& forcing variables and
MODIS observations. The modeling system was tested at tigtessimulation grid
point at the mouth of the Genesee River to validate the pedoce of the EnKF
method. The evaluation of the EnKF method is based on the aosgm between the
open-loop estimate, the ensemble mean, the EnKF estinmateha truth for the grid
point at the Genesee River mouth. The RMSE of TSS concemtrébir the open-
loop simulation is 4.32 g/Mvs. 2.33 g/m for the EnKF estimate. The difference
between individual ensemble members and the assimilagguits shows the improve-
ment gained by assimilating MODIS measurements into theddyshamic model via
EnKF. However, simply taking an average of all the ensemladdehstates reduces er-
rors as well, thus, the mean of the ensemble is also a chopreduoice better estimates
of state variables if not enough observations are availbfeedback. However, since
the mean has a smoothing action, it does not capture reatsansg in the TSS that
occur day to day as a result of the episodic nature of storms.

Further validation was undertaken to examine the effectsssimilating MODIS
data on the estimate of spatial plume dissipation. This tingeplume dissipation
observed in the MODIS scene was compared to the ensembleanddne EnKF esti-
mate with 12 ensemble members. The EnKF is able to recovec®®&ntration over

an 24-day simulation period with observations availableemit days. The spatial
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filtering for all simulation grid points via an EnKF is capaldf capturing the episodic
nature of storm event by using MODIS data as feedback. ThigaspaMSE (consid-
ering all grid points) of remote-sensing reflectance betwtee MODIS data and the
ensemble mean is 0.0083. The RMSE reduces to 0.0035 whenacioigphe spa-
tial EnKF result and the MODIS data. These results suggestiie EnKF improves
the hydrodynamic simulation not only at the river mouth, &lso across the spatial

domain of the Rochester Embayment.

7.2 Recommendations

The approach described in this research may be enhancetktttiptly provide better
accuracy of the estimate from hydrodynamic simulationsis Bkction describes the
main areas for further research.

To assimilate MODIS data, the measurement model, Hydrpliglapplied to con-
vert model state estimate (TSS concentration) to measuntgiig). However, the ef-
fects of sediment particle size distribution on scattedogfficients and phase function
was not considered in the calculation/®f, via Hydrolight. The scattering coefficients
and phase functions have a strong effect on the reflectariae @ihe proper particle
size distributions for Lake Ontario are needed to be takenancount to obtain more
accurate scattering properties.

In this research, only remote observations from day timbkshannels MODIS
are used as dynamic feedback into the hydrodynamic modebtade better estimate
of model states. Recent research shows that the error oftkE Estimates decreases
with time as more and more observations are assimilatedliiiReet al., 2002). One

of the recommendations is that other satellite data and diesrvations be used as
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feedback whenever they are available. One choice for gatdiita assimilation is
Landsat. The Landsat series of instruments [Thematic Mafd), Enhanced The-
matic Mapper (ETM+)] have a spatial resolution of 30 m, whiglgood for coastal
water monitoring. TM and ETM+ have three bands to represk, lgreen, and red
in visible region and two infrared bands as well. However tlu a revisit time of
about 16 days, Landsat data is not assimilated into hyddjcr modeling in this
research. But combining Landsat data and MODIS data, theFBmi{ have more
chances to update the hydrodynamic modeling and providera aczurate estimate
of state variables. Since MODIS thermal data with 1 km spegsolution shows the
plume dissipation at night time, those data can be assedil@to the hydrodynamic
model, providing more opportunities for obtaining clouddrdata. In addition, field
observations from sensors in the river or on buoys can beasadlynamic feedback
to the hydrodynamic model as well.

The ensemble of model states is generated by treating modaid)s as stochastic
variables. Bias errors were not included but could be addedture simulations.
One possible source of forcing bias could be wind directibtha lake versus wind
direction at the Rochester Airport which is about 15 km frdra take. Other than
forcing variables, model parameters contribute to systagetainty as well. In the
future, an artificial error can be introduced to some modehp@ters to generate a
wider spread of the ensemble to capture the uncertaintyenhe the system model.

Reichle et al. (2002) indicate that the errors of the EnKhreste decrease and
converge with increasing ensemble size. However, inangabie ensemble space may
easily increase the computational complexity. Thus, difjgshe number of ensemble
members to obtain better estimation accuracy should cengidomputational time

will be significantly increased.
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