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Abstract

Determination of the internal temperature of a mechanical draft cooling tower (MDCT)

from remotely-sensed thermal imagery is important for many applications that provide

input to energy-related process models. The problem of determining the temperature of

an MDCT is unique due to the geometry of the tower and due to the exhausted water

vapor plume. The radiance leaving the tower is dependent on the optical and thermal

properties of the tower materials (i.e., emissivity, BRDF, temperature, etc.) as well as the

internal geometry of the tower. The tower radiance is then propagated through the ex-

haust plume and through the atmosphere to arrive at the sensor. The expelled effluent

from the tower consists of a warm plume with a higher water vapor concentration than

the ambient atmosphere. Given that a thermal image has been atmospherically compen-

sated, the remaining sources of error in extracted tower temperature due to the exhausted

plume and the tower geometry must be accounted for. A temperature correction factor

due to these error sources is derived through the use of three-dimensional radiometric

modeling. A range of values for each important parameter are modeled to create a target

space (i.e., look-up table) that predicts the internal MDCT temperature for every combina-

tion of parameter values. The look-up table provides data for the creation of a fast-running

parameterized model. This model, along with user knowledge of the scene, provides a

means to convert the image-derived apparent temperature into the estimated absolute

temperature of an MDCT.
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”Be patient, for the world is broad and wide”

III



IV



In Memoria di Mio Nonno,

Giuseppe Bonomo

V



VI



Acknowledgements

Issac Newton famously said “If I have seen further it is only by standing on the shoul-

ders of giants.” This statement captures the reality of my time at RIT. I would not have

completed this degree if it were not for the continuous support of many people. I am

extremely grateful to my advisor, Carl Salvaggio, for his guidance, patience, trust, and

faith in me. I appreciate him taking me on as a student and for his constant support and

encouragement. Al Garrett of the Savannah River National Laboratory (SNRL) sponsored

the MDCT project on which this dissertation is based. His guidance and encouragement

is very appreciated. Dave Messinger was always available for help and to guide me in

the right direction. Ed Hensel graciously agreed to be on my committee. His suggestions

were very helpful during the process. I would also like to acknowledge the U.S. Depart-

ment of Energy for their sponsorship under contract number DE-AC09-96SR18500.

In addition to the committee members, there have been many others who have lent their

help and expertise over the past few years. Joel Kastner and Zoran Ninkov, who along

with Carl Salvaggio, encouraged me to pursue a graduate degree at the Center for Imag-

ing Science (CIS). Jim Bollinger of the SRNL was very helpful in providing data sets that

I requested. His guidance and encouragement is much appreciated. The entire MDCT

staff at the SRNL obtained and provided data on the imaging and ground measurement

campaign. Niek Sanders and Adam Goodenough have spent countless hours writing and

debugging DIRSIG code that was used in this dissertation. Paul Lee and David Pogorzala

took the time to give me a crash course in using DIRSIG when I first started my degree.

Guy Ward and Peter Falise provided surplus MDCT construction materials. Christina

Kucerak and Kyle Foster measured and recorded the spectral emissivities of the MDCT

materials. Mike Metzler, Carol May, and Doug Ratay were very helpful in deciphering the

NEFDS. Gail Anderson shared her MODTRAN expertise and answered many questions

even when she was on vacation. Frank Padula shared his atmospheric and meteorolog-

ical expertise. Steve LaLonde, Shawn Higbee, and Melissa Rura shared their expertise

in multivariate statistics. Paul Mezzanini, Ryan Lewis, and Gurcharan Khanna kept the

RIT Research Computing cluster running. Paul was always available to answer my many

emails to him no matter what time it was. Jim Bodie maintained the CIS servers and work-

stations on which much of the calculations in this dissertation were performed on. I am

thankful to the DIRS staff and students and to the RIT staff for all their help throughout

my years at DIRS and at RIT.

VII



I am indebted to Scott Brown for sharing his endless knowledge and expertise on the

wide range of subjects that have come up in our conversations. I greatly appreciate his

guidance and support. Mike Richardson, “my agent,” always looked out for me and was

very encouraging and supportative. John Schott, “the Godfather,” was always there for

advice and help although I am still afraid to look him in the eye for fear of turning to

stone. I am grateful for the opportunity and privilege to have worked with him. Cindy

Schultz, my “work mom,” has been a source of constant support throughout my time in

graduate school. She kept me in line everyday and always laughed when I passed by her

office on my many laps around the building. Aaron Gerace and Prudhvi Gurram started

the program with me four years ago and have accompanied me on many of those laps.

Over the years they have not only been a huge help but have also been a constant source

of reason to scare off the clowns.

I have many friends outside of RIT who always ask me how my work is going and who

always encourage me to continue. I am very thankful of my close friends who have been

the quiet keepers of my sanity.

Lastly, I am very grateful of my parents, Nicola and Romea Montanaro, and of my broth-

ers, Andrew, Christopher, and Patrick. I am very fortunate to have a family that has

always been supportative in all of my endeavours. My parents, along with my grandpar-

ents, Antonio, Antonietta, Giuseppe, and Luisa, immigrated to the United States leaving

their homes in the hillside towns of Italy. They have made many sacrifices to provide their

children with a new world of opportunities. This degree is for them as much as it is for me.

Thank you to all of you,

Matt Montanaro

Rochester, New York

May 2009

VIII



Contents

Abstract I

Table of Contents IX

List of Figures XV

List of Tables XXI

Nomenclature XXV

Acronyms XXVII

1 Introduction 1

2 Objectives 3

2.1 Cooling Tower Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Mechanical Draft Cooling Tower Anatomy . . . . . . . . . . . . . . . . . . . 5

2.3 MDCT Thermal Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Preliminary Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Theory 15

3.1 Self-Emitted Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Blackbody Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Directional Emissivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Reflected Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Bidirectional Reflectance Distribution Function . . . . . . . . . . . . . 17

3.2.1.1 BRDF models . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1.1.1 Lambertian Model . . . . . . . . . . . . . . . . . . . 18

3.2.1.1.2 Ward Model . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1.1.3 Torrance-Sparrow and Priest-Germer Models . . . 19

3.2.1.1.4 Beard-Maxwell Model and the NEFDS . . . . . . . 20

3.2.1.1.5 Shell Target Model . . . . . . . . . . . . . . . . . . 20

IX



3.2.2 Directional Hemispherical Reflectance . . . . . . . . . . . . . . . . . . 20

3.3 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Energy Paths Reaching a Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Material Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2 Atmospheric Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2.1 Atmospheric Transmission . . . . . . . . . . . . . . . . . . . 23

3.4.2.1.1 Absorption . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.2.1.2 Scattering . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.2.1.3 Total Transmission . . . . . . . . . . . . . . . . . . 26

3.4.2.2 Atmospheric Emission . . . . . . . . . . . . . . . . . . . . . 26

3.4.3 Governing Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Imaging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.2.1 Spatial Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.2.2 Temporal Sampling . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.2.3 Spectral Sampling . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.2.3.1 Band Effective Values . . . . . . . . . . . . . . . . . 32

3.5.2.4 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Apparent Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1 Planck Formula Inversion . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.2 Temperature-Radiance Look-Up Table . . . . . . . . . . . . . . . . . . 34

4 Background 37

4.1 Modeling Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 MODTRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.2 DIRSIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Temperature Retrieval Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Atmospheric Compensation . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1.1 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1.2 Single-Channel Method . . . . . . . . . . . . . . . . . . . . . 41

4.2.1.3 Multi-Channel Method . . . . . . . . . . . . . . . . . . . . . 42

4.2.1.4 Multi-Angle Method . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1.5 MTI Sea Surface Temperature Retrieval . . . . . . . . . . . . 44

4.2.1.6 AAC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 45

X



4.2.1.7 ISAC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1.8 Physics-Based Modeling . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Temperature/Emissivity Separation . . . . . . . . . . . . . . . . . . . 47

4.2.2.1 Reference Channel Method . . . . . . . . . . . . . . . . . . . 48

4.2.2.2 Normalizied Emissivity Method . . . . . . . . . . . . . . . . 48

4.2.2.3 Temperature/Emissivity Separation Algorithm . . . . . . . 48

4.2.2.4 ARTEMISS Algorithm . . . . . . . . . . . . . . . . . . . . . . 50

4.2.3 Temperature Retrieval Summary . . . . . . . . . . . . . . . . . . . . . 50

5 Methodology 51

5.1 Tower Leaving Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Spectral Measurements of MDCT Materials . . . . . . . . . . . . . . . 54

5.1.2 BRDF of NEFDS Materials . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.3 DIRSIG Model of Closed and Open Cavities . . . . . . . . . . . . . . 58

5.1.4 Effective Emissivity of Drift Eliminators . . . . . . . . . . . . . . . . . 61

5.1.5 MDCT DIRSIG Rendering with BRDF Materials . . . . . . . . . . . . 65

5.1.6 MDCT Fan Blade Motion . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.7 Atmospheric Downwelled Radiance . . . . . . . . . . . . . . . . . . . 72

5.1.8 Tower Leaving Radiance Summary . . . . . . . . . . . . . . . . . . . 74

5.2 sensor-reaching Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 MODTRAN Simulation of Air Column . . . . . . . . . . . . . . . . . 76

5.2.2 MODTRAN Simulation of MDCT Exhaust Plume . . . . . . . . . . . 82

5.2.3 Sensitivity of Plume Gradient . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.4 sensor-reaching Radiance Summary . . . . . . . . . . . . . . . . . . . 88

5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Physics Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2.1 Tower Leaving Radiance with DIRSIG . . . . . . . . . . . . 90

5.3.2.1.1 DIRSIG Parameters . . . . . . . . . . . . . . . . . . 92

5.3.2.2 Plume Leaving Radiance with MODTRAN . . . . . . . . . 93

5.3.2.2.1 MODTRAN Parameters . . . . . . . . . . . . . . . 94

5.3.2.3 Physics Model Summary . . . . . . . . . . . . . . . . . . . . 94

5.3.3 Sensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.3.1 Region of Interest - Mixed vs. Cavity . . . . . . . . . . . . . 96

5.3.4 Target Space Look-Up Table . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.5 Parameterized Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

XI



5.4 Methodology Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Results 99

6.1 Physics Model Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Sensor Model and LUT Generation . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Ideal Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.2 SC 2000 Inframetrics Sensor . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.2.1 SC 2000 Random Dataset . . . . . . . . . . . . . . . . . . . . 104

6.3 SRNL Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.1 Understanding the SRNL Data Set . . . . . . . . . . . . . . . . . . . . 107

6.3.2 Atmospheric Compensation . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.3 Actual Temperature Errors . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.4 Predicted Temperature Errors . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.5 Comparison of Atmospheric Uncertainties . . . . . . . . . . . . . . . 123

6.3.6 Comparison of Sensor Spectral Response . . . . . . . . . . . . . . . . 128

6.3.7 Validity of Parameterized Model . . . . . . . . . . . . . . . . . . . . . 133

6.3.8 Look-up Table Interpolation . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7 Summary and Conclusions 141

7.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A Derivation of the Planck Blackbody Radiation Equation 145

A.1 Statistical Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2 Planck Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.3 Total Energy of the States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.4 Planck Spectral Energy Density . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.5 Blackbody Spectral Exitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.6 Blackbody Spectral Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.7 Total Blackbody Radiated Power . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.8 Wavelength of Maximum Emission . . . . . . . . . . . . . . . . . . . . . . . . 152

B Multiple Regression Analysis 155

B.1 Least-Squares Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.2 Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B.2.1 Sum of Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B.2.2 Mean Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

XII



B.2.3 Coefficient of Multiple Determination . . . . . . . . . . . . . . . . . . 157

B.2.4 F-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.3 Aptness of the Fitted Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.3.1 Standardized Residuals vs. Fitted Responses . . . . . . . . . . . . . . 159

B.3.2 Normal Probability Plot of Standardized Residuals . . . . . . . . . . 159

C Propagation of Uncertainties 161

C.1 Analytical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

C.2 Empirical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

D Calculation of Effective Sky Temperature 163

E Estimation of Plume Path Length 165

F Precipitable Water in an Air Column 169

Bibliography 171

XIII



XIV



List of Figures

1.1 Electromagnetic Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Mechanical draft cooling towers at the Savannah River Site. . . . . . . . . . 3

2.2 Schematic drawing of a counter-flow MDCT . . . . . . . . . . . . . . . . . . 4

2.3 Location of ground-truth measurements taken by SRNL . . . . . . . . . . . . 6

2.4 SRNL 20may04D14 thermal image with mixed and cavity ROIs . . . . . . . 8

2.5 SRNL 20may04e02 thermal image with mixed and cavity ROIs . . . . . . . . 9

2.6 SRNL 20may04e04 thermal image with mixed and cavity ROIs . . . . . . . . 10

2.7 SRNL 20jun05G09 thermal image with mixed and cavity ROIs . . . . . . . . 11

2.8 Preliminary variables affecting the apparent temperature recorded by a

sensor of a MDCT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Planck curves for a 5800 Kelvin and 300 Kelvin blackbody. . . . . . . . . . . 17

3.2 Ward diffuse and specular BRDF models. . . . . . . . . . . . . . . . . . . . . 19

3.3 Atmospheric scattering as a function of particle radius and incident radia-

tion wavelength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Atmospheric spectral transmission along a vertical space-to-ground path

generated from a MODTRAN mid-latitude summer atmosphere. . . . . . . 26

3.5 Illustration of atmospheric emission as the sum of the emissions from each

homogeneous layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Illustration of the blurring effect and sampling as radiance from a point

source passes through an imaging system. . . . . . . . . . . . . . . . . . . . . 29

3.7 Airy disc pattern representing the PSF of a diffraction-limited circular aper-

ture system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Multispectral Thermal Imager (MTI) band locations . . . . . . . . . . . . . . 44

5.1 Diagram of a single photon path for an exposed object and a cavity object. . 52

5.2 Drift eliminator emissivity spectra of two separate physical locations on the

material measured with a SOC-400 instrument. . . . . . . . . . . . . . . . . . 54

5.3 Metal plate emissivity spectra of two separate physical locations on the ma-

terial measured with a SOC-400 instrument. . . . . . . . . . . . . . . . . . . . 54

XV



5.4 Wood support emissivity spectra of two separate physical locations on the

material measured with a SOC-400 instrument. . . . . . . . . . . . . . . . . . 55

5.5 Plastic disc emissivity spectra of two separate physical locations on the ma-

terial measured with a SOC-400 instrument. . . . . . . . . . . . . . . . . . . . 55

5.6 NEFDS BRDF of weathered galvanized bare steel (NEF #0525UUUSTLa)

measured at an illumination angle of 20°. . . . . . . . . . . . . . . . . . . . . 56

5.7 NEFDS BRDF of mildly weathered plastic tarp (NEF #1019UUUFABa) mea-

sured at an illumination angle of 20°. . . . . . . . . . . . . . . . . . . . . . . . 56

5.8 NEFDS BRDF of weathered bare construction lumber (NEF #0404UUU-

WOD) measured at an illumination angle of 20°. . . . . . . . . . . . . . . . . 57

5.9 NEFDS BRDF of weathered paint on insulation panel (NEF #0887UUUPNT)

measured at an illumination angle of 20°. . . . . . . . . . . . . . . . . . . . . 57

5.10 DIRSIG simulation layout of a closed box and an open well . . . . . . . . . . 58

5.11 Results of the closed box DIRSIG simulation. . . . . . . . . . . . . . . . . . . 59

5.12 Results of the open well DIRSIG simulation. . . . . . . . . . . . . . . . . . . 59

5.13 Comparison between a photograph of MDCT drift eliminators and a CAD

drawing of the drift eliminators. . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.14 Ward BRDF models used in the drift eliminator effective emissivity simu-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.15 CAD drawing of a counter-flow MDCT exterior view and interior view . . . 65

5.16 DIRSIG MDCT radiance images rendered with a diffuse Ward BRDF model

and a specular Ward BRDF model. . . . . . . . . . . . . . . . . . . . . . . . . 66

5.17 Apparent temperature profiles across the fan stack opening of the MDCT

for the diffuse Ward BRDF image and the specular Ward BRDF image. . . . 67

5.18 DIRSIG rendering of an MDCT looking into the fan stack opening with a

one-pixel-wide ring drawn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.19 Square-wave signal representing the fan blade and cavity radiances at each

pixel location in the ring at different times. . . . . . . . . . . . . . . . . . . . 69

5.20 DIRSIG rendering of an MDCT with a stationary fan and a blurred render-

ing representing a rotating fan. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.21 Temperature error from a 300 K object as a function of emissivity and MOD-

TRAN standard atmospheric profile. . . . . . . . . . . . . . . . . . . . . . . . 73

5.22 Illustration of the radiance from the tower passes through the exhaust plume

to reach the sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.23 Atmospheric column representing the plume layer and the ambient atmo-

sphere modeled in MODTRAN. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

XVI



5.24 Schematic of the atmospheric layers assigned in MODTRAN. The first seg-

ment represents the exhaust plume while the second segment represents

the rest of the air column. Standard atmospheric conditions are assigned to

every layer except for those in the first segment where the air temperature

and dew point temperature are varied. . . . . . . . . . . . . . . . . . . . . . . 78

5.25 Results of the MODTRAN plume mid-latitude summer simulation show-

ing the temperature error between the material blackbody temperature and

the sensor derived apparent temperature. . . . . . . . . . . . . . . . . . . . . 79

5.26 Results of the MODTRAN plume sub-arctic winter simulation showing the

temperature error between the material blackbody temperature and the

sensor derived apparent temperature. . . . . . . . . . . . . . . . . . . . . . . 80

5.27 Results of the MODTRAN plume-only mid-latitude summer simulation

showing the temperature error between the material blackbody tempera-

ture and the sensor derived apparent temperature. . . . . . . . . . . . . . . . 83

5.28 Results of the MODTRAN plume-only sub-arctic winter simulation show-

ing the temperature error between the material blackbody temperature and

the sensor derived apparent temperature. . . . . . . . . . . . . . . . . . . . . 84

5.29 Three plume gradient functions modeled in MODTRAN. . . . . . . . . . . . 87

5.30 Illustration of the procedure to predict the MDCT temperature error. . . . . 89

5.31 Ward BRDF model assigned to the facets in the DIRSIG CAD model. . . . . 91

5.32 Illustration of atmospheric layers in MODTRAN used to model the mois-

ture gradient in the plume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.33 High resolution DIRSIG image along with the mixed ROI and cavity-only

ROI drawn for sensor angle of 0°. . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 SRNL data set LWIR images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Interpolated atmospheric profiles used in MODTRAN to correct the SRNL

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Radiosonde station locations shown relative to SRS. . . . . . . . . . . . . . . 110

6.4 The actual and the predicted temperature error with uncertainty ranges

for the 20may04D14 image. ROI, atmosphere, and sensor uncertainty is

included in the error bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 The actual and the predicted temperature error with uncertainty ranges

for the 20may04E02 image. ROI, atmosphere, and sensor uncertainty is

included in the error bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

XVII



6.6 The actual and the predicted temperature error with uncertainty ranges

for the 20may04E04 image. ROI, atmosphere, and sensor uncertainty is

included in the error bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.7 The actual and the predicted temperature error with uncertainty ranges

for the 20jun05G09 image. ROI, atmosphere, and sensor uncertainty is in-

cluded in the error bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.8 The actual and the predicted temperature error with uncertainty ranges

for the 20may04D14 image. The uncertainty ranges are for an atmospheric

uncertainty of 0.1 K (top), 1.1 K (middle), and 2.2 K (bottom). . . . . . . . . . 124

6.9 The actual and the predicted temperature error with uncertainty ranges

for the 20may04E02 image. The uncertainty ranges are for an atmospheric

uncertainty of 0.1 K (top), 1.1 K (middle), and 2.2 K (bottom). . . . . . . . . . 125

6.10 The actual and the predicted temperature error with uncertainty ranges

for the 20may04E04 image. The uncertainty ranges are for an atmospheric

uncertainty of 0.1 K (top), 1.1 K (middle), and 2.2 K (bottom). . . . . . . . . . 126

6.11 The actual and the predicted temperature error with uncertainty ranges

for the 20jun05G09 image. The uncertainty ranges are for an atmospheric

uncertainty of 0.1 K (top), 1.1 K (middle), and 2.2 K (bottom). . . . . . . . . . 127

6.12 Comparison of an ideal, flat, unit spectral response and a realistic microbolome-

ter spectral response in the longwave infrared region. . . . . . . . . . . . . . 128

6.13 The actual and the predicted temperature error with uncertainty ranges for

the 20may04D14 image using the microbolometer spectral response. . . . . 129

6.14 The actual and the predicted temperature error with uncertainty ranges for

the 20may04E02 image using the microbolometer spectral response. . . . . . 130

6.15 The actual and the predicted temperature error with uncertainty ranges for

the 20may04E04 image using the microbolometer spectral response. . . . . . 131

6.16 The actual and the predicted temperature error with uncertainty ranges for

the 20jun05G09 image using the microbolometer spectral response. . . . . . 132

6.17 Diagonistic plots indicating a lack-of-fit of the multiple linear regression

model to the 20may04D14 mixed ROI LUT data. . . . . . . . . . . . . . . . . 133

6.18 The actual temperature errors and the predicted temperature errors based

on a LUT nearest neighbor interpolation with uncertainty ranges for the

20may04D14 image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.19 The actual temperature errors and the predicted temperature errors based

on a LUT nearest neighbor interpolation with uncertainty ranges for the

20may04E02 image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

XVIII



6.20 The actual temperature errors and the predicted temperature errors based

on a LUT nearest neighbor interpolation with uncertainty ranges for the

20may04E04 image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.21 The actual temperature errors and the predicted temperature errors based

on a LUT nearest neighbor interpolation with uncertainty ranges for the

20jun05G09 image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1 Photons escaping a blackbody cavity from a thin shell inside the cavity . . . 149

A.2 Spectral radiance for a blackbody at a temperature of 300 Kelvin . . . . . . . 154

E.1 Comparison of the six atmospheric stability classes using the associated

ambient temperature gradients in reference to dry and wet adiabatic lapse

rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

E.2 Gaussian plume model rendered in Matlab. The solid line represents the

sensor line-of-sight. The exit air velocity is set to 10 m/s, stack height is 9

m, stack radius is 2 m, wind speed is 0.75 m/s, and the atmospheric stability

is slightly unstable. The estimated path length through this plume is 6 m. . 168

XIX



XX



List of Tables

1 Radiometric Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXV

2 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXVII

2.1 SRNL 20may04D14 image ROI statistics. . . . . . . . . . . . . . . . . . . . . . 8

2.2 SRNL 20may04D14 ground measured temperatures compared to the mean

ROI temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 SRNL 20may04D14 ground measurements collected at 02:06 EDT on 20

May 2004. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 SRNL 20may04e02 image ROI statistics. . . . . . . . . . . . . . . . . . . . . . 9

2.5 SRNL 20may04e02 ground measured temperatures compared to the mean

ROI temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 SRNL 20may04e02 ground measurements collected at 02:06 EDT on 20 May

2004. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 SRNL 20may04e04 image ROI statistics . . . . . . . . . . . . . . . . . . . . . 10

2.8 SRNL 20may04e04 ground measured temperatures compared to the mean

ROI temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.9 SRNL 20may04e04 ground measurements collected at 02:06 EDT on 20 May

2004. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.10 SRNL 20jun05G09 image ROI statistics. . . . . . . . . . . . . . . . . . . . . . 11

2.11 SRNL 20jun05G09 ground measured temperatures compared to the mean

ROI temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.12 SRNL 20jun05G09 ground measurements collected at 22:17 EDT on 20 June

2005. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1 Results of the DIRSIG drift eliminator effective emissivity simulations. . . . 64

5.2 Effective sky apparent temperatures for the standard MODTRAN atmo-

spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Parameter values for the MODTRAN plume simulations. . . . . . . . . . . . 78

5.4 Parameter values for the plume-only MODTRAN simulations. . . . . . . . . 82

5.5 Apparent temperature errors for three plume gradient functions and for

three plume lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 MDCT physics model parameters and associated modeling tools. . . . . . . 99

XXI



6.2 MDCT parameter values used for the target-space LUT. . . . . . . . . . . . . 100

6.3 Regression model parameter labels. . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 MDCT random parameter values . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5 Radiosonde station information for the radiosonde profiles used to atmo-

spherically compensate the SRNL images. . . . . . . . . . . . . . . . . . . . . 108

6.6 Original and the atmospherically-corrected image ROI temperatures for the

SRNL 20may04D14 image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.7 Original and the atmospherically-corrected image ROI temperatures for the

SRNL 20may04E02 image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.8 Original and the atmospherically-corrected image ROI temperatures for the

SRNL 20may04E04 image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.9 Original and the atmospherically-corrected image ROI temperatures for the

SRNL 20jun05G09 image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.10 Temperature uncertainties in the measured ground, ROI, sensor, and atmo-

spheric variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.11 Temperature errors between the atmospherically-corrected mean ROI tem-

perature and the measured ground-truth exit air temperature for the SRNL

20may04D14 image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.12 Temperature errors between the atmospherically-corrected mean ROI tem-

perature and the measured ground-truth exit air temperature for the SRNL

20may04E02 image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.13 Temperature errors between the atmospherically-corrected mean ROI tem-

perature and the measured ground-truth exit air temperature for the SRNL

20may04E04 image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.14 Temperature errors between the atmospherically-corrected mean ROI tem-

perature and the measured ground-truth exit air temperature for the SRNL

20jun05G09 image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.15 Estimates of the sensor view zenith angle along with uncertainties. The

angles were estimated by measuring the vertical and horizontal pixel di-

ameters of the fan stack opening of each image. . . . . . . . . . . . . . . . . . 115

6.16 Predictor estimates and uncertainties used in the 20may04D14 parameter-

ized regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.17 Comparison of the actual and predicted temperature errors for the 20may04D14

image. ROI, atmosphere, and sensor uncertainty is included. . . . . . . . . . 117

6.18 Predictor estimates and uncertainties used in the 20may04E02 parameter-

ized regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

XXII



6.19 Comparison of the actual and predicted temperature errors for the 20may04E02

image. ROI, atmosphere, and sensor uncertainty is included. . . . . . . . . . 118

6.20 Predictor estimates and uncertainties used in the 20may04E04 parameter-

ized regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.21 Comparison of the actual and predicted temperature errors for the 20may04E04

image. ROI, atmosphere, and sensor uncertainty is included. . . . . . . . . . 119

6.22 Predictor estimates and uncertainties used in the 20jun05G09 parameter-

ized regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.23 Comparison of the actual and predicted temperature errors for the 20jun05G09

image. ROI, atmosphere, and sensor uncertainty is included. . . . . . . . . . 120

6.24 Predictor estimates and uncertainties used in the 20may04D14 parameter-

ized regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.25 Comparison of the actual and predicted temperature errors for the 20may04D14

image using the microbolometer spectral response. . . . . . . . . . . . . . . 129

6.26 Predictor estimates and uncertainties used in the 20may04E02 parameter-

ized regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.27 Comparison of the actual and predicted temperature errors for the 20may04E02

image using the microbolometer spectral response. . . . . . . . . . . . . . . 130

6.28 Predictor estimates and uncertainties used in the 20may04E04 parameter-

ized regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.29 Comparison of the actual and predicted temperature errors for the 20may04E04

image using the microbolometer spectral response. . . . . . . . . . . . . . . 131

6.30 Predictor estimates and uncertainties used in the 20jun05G09 parameter-

ized regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.31 Comparison of the actual and predicted temperature errors for the 20jun05G09

image using the microbolometer spectral response. . . . . . . . . . . . . . . 132

6.32 Predictor estimates used in the 20may04D14 LUT nearest neighbor interpo-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.33 Comparison of the actual temperature errors and the predicted tempera-

ture errors based on a LUT nearest neighbor interpolation for the 20may04D14

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.34 Predictor estimates used in the 20may04E02 LUT nearest neighbor interpo-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.35 Comparison of the actual temperature errors and the predicted tempera-

ture errors based on a LUT nearest neighbor interpolation for the 20may04E02

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

XXIII



6.36 Predictor estimates used in the 20may04E04 LUT nearest neighbor interpo-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.37 Comparison of the actual temperature errors and the predicted tempera-

ture errors based on a LUT nearest neighbor interpolation for the 20may04E04

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.38 Predictor estimates used in the 20jun05G09 LUT nearest neighbor interpo-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.39 Comparison of the actual temperature errors and the predicted tempera-

ture errors based on a LUT nearest neighbor interpolation for the 20jun05G09

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

E.1 Constants used in the calculation of the vertical and crosswind dispersion

coefficients for the Gaussian plume model in an urban environment. . . . . 166

E.2 Description of the six atmospheric stability classes and the associated am-

bient temperature gradients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

XXIV



Nomenclature

There is a strong emphasis on radiometry in this document. A list of common radiometric

terms used here are presented in Table 1. Square brackets are used to represent physical

units of variables and parameters. Wavelength units are in microns (1 µm = 10−6 m).

Temperatures are in units of Kelvin [K] (K = °C + 273.15). The following notations are

equivalent,
[
W/m2/sr/µm

]
=

[
W/(m2 sr µm)

]
=

[
W m−2 sr−1 µm−1] =

[
W

m2 sr µm

]
.

Symbol Units Term

λ µm Wavelength of photon

T K Absolute temperature

TApp K Apparent temperature

L(θ, φ, λ) W
m2 sr µm Spectral radiance in the θ, φ direction

L(θ, φ) W
m2 sr Radiance in the θ, φ direction

LBB(λ, T) W
m2 sr µm Spectral blackbody radiance

E(λ) W
m2 µm Spectral irradiance

Φ(λ) W
µm Spectral radiant flux

ρ′(θi, φi, θr, φr, λ) 1
sr Bidirectional Reflectance Distribution Function

ρ(θ, φ, λ) Directional hemispherical reflectance

ε(θ, φ, λ) Directional emissivity

α(λ) Spectral absorptivity or absorbance

τ(λ) Spectral transmission or transmittance

Latm (θ, φ, λ) W
m2 sr µm Spectral self-emitted atmospheric radiance

L̂λ
W

m2 sr µm Band effective spectral radiance

L̂ W
m2 sr Band effective radiance

R′(λ) Peak-normalized sensor spectral response

(θi, φi) Incident zenith and azimuth angle

(θr, φr) Reflected zenith and azimuth angle

Table 1: Summary of radiometric terms and units used in this document
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Acronyms

A number of acronyms are used in this document for the sake of brevity in certain areas.

A list of frequent acronyms used here are listed in Table 2.

Acronym Meaning

BRDF Bidirectional Reflectance Distribution Function

CAD Computer Aided Drafting

DHE Directional Hemispherical Emissivity

DHR Directional Hemispherical Reflectance

EDT Eastern Daylight Time (GMT - 4 hrs.)

DIRS Digital Imaging and Remote Sensing Laboratory

DIRSIG Digital Imaging and Remote Sensing Image Generation

DOE Department of Energy

GSD Ground Sampling Distance

GMT Greenwich Mean Time

IFOV Instantaneous Field of View

LWIR Longwave Infrared (approx. 8 - 14 µm)

LUT Look-up Table

MDCT Mechanical Draft Cooling Tower

MODTRAN MODerate spectral resolution TRANsmittance

MWIR Midwave Infrared (approx. 3 - 5 µm)

NEFDS Nonconventional Exploitation Factors Data System

PSF Point Spread Function

RIT Rochester Institute of Technology

RMS Root Mean Squared

ROI Region of Interest

SRNL Savannah River National Laboratory

SRS Savannah River Site

VNIR Visible and Near-Infrared (approx. 0.4 - 1.1 µm)

Table 2: Summary of acronyms used in this document
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Chapter 1

Introduction

If we knew what it was we were doing, it would not be called research, would it?

- Albert Einstein

The derivation of the absolute temperature of a material surface from remote thermal im-

agery is a complex process. Remote thermal imaging is necessary when it is impossible

or impractical to obtain a direct temperature measurement of a material surface. Only

photons that have been thermally emitted from the surface carry information about the

temperature of that surface. However, this self-emitted signal from the surface is not the

only signal entering a sensor. Signals from other background objects will enter the field

of view of the sensor and will be detected. Furthermore, the temperature signal from the

surface of interest will be altered by the optical properties of the surface and by its envi-

ronment. Separating out these unwanted signals and effects is a painstaking process.

Figure 1.1: Electromagnetic radiation spectrum

The topic of remote sensing involves analyzing the signals, or photons, that are collected

by a sensor. A photon contains a certain amount of energy depending on its wavelength.

For a beam of photons, the rate at which its energy is propagating is known as the radiant

flux, Φ, in units of energy per unit time, or Watts [1]. It is often convenient to express the

energy flux that originates from a surface and into a particular direction. The radiometric

term known as radiance, L, describes the flux per unit projected area per unit solid an-
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2 Introduction

gle [1]. The radiance when measured per wavelength has units of Watts per square meter

per steradian per micron,
[
W/m2/sr/µm

]
.

Although remote sensing may encompass the entire electromagnetic spectrum, only the

infrared region will be utilized here. From the ultraviolet to the short-wave infrared (ap-

proximately 0.1 - 2 µm), there will be several orders of magnitude more flux from the sun

than from self-emission of objects at the Earth ambient temperature of 300 K. This spectral

range is referred to as the reflective region and thermal or self-emitted flux is ignored. At

longwave infrared (LWIR) wavelengths (approximately 8 - 14 µm), there are several or-

ders of magnitude more flux from self-emission than from reflected solar flux. This region

is referred to as the thermal region [1]. The self-emitted radiation from objects at the ambi-

ent Earth temperature makes this spectral region ideal for determining the temperature of

such objects. For this reason, the discussion and analysis in this document will be limited

to this spectral region.

This document will present a detailed description of the problem, introduce the physics of

thermal radiometry, provide an overview of previous approaches to remote temperature

retrieval, propose a methodology to obtain the MDCT temperature from a remote thermal

image, and reveal the results and conclusions of the research.



Chapter 2

Objectives

Knowledge of the absolute temperature of a surface is useful for a wide range of appli-

cations ranging from environmental to industrial to security. The objective of this project

is to estimate the temperature of the air exiting a mechanical draft cooling tower (MDCT)

through the use of remote thermal imagery. Knowledge of the temperature of the cool-

ing towers is necessary for input into process models that yield information about the

industrial processes that the cooling towers service. A visible and thermal image of such

cooling towers is displayed in Figure 2.1.

A camera sensitive to the LWIR spectral region is used to observe the cooling tower. Each

pixel in the resulting thermal image is converted into an apparent temperature, or image-

derived temperature. The apparent temperature of pixels inside the fan stack of the tower is to

be correlated to the exit air temperature.

(a) Visible color image (b) LWIR image

Figure 2.1: Mechanical draft cooling towers at the Savannah River Site.

2.1 Cooling Tower Basics

Industrial plants generate substantial amounts of excess heat. Water is a popular medium

used to transport excess heat from an industrial process. Waste heat is absorbed by wa-

ter having a cooler temperature than the process. This warm water must now either be

discharged into a body of water, or cooled and recycled. In the latter method, a cooling

3



4 2.1. COOLING TOWER BASICS

Figure 2.2: Schematic drawing of a counter-flow MDCT (Burger 1995 [2]).

tower is a standard option to recycle the water. In the cooling tower, the waste heat from

the water is rejected into the atmosphere and the cooled water is recirculated through the

system [2]. There are various types of cooling towers but all function on the same physics.

The basic principle governing the cooling of the water is evaporative cooling and the

exchange of sensible heat. Water exposed to cooling air streams will release heat and

evaporate. The penalty is the loss of water which is discharged into the atmosphere as

hot moist water vapor. When the water is warmer than the ambient air, the air cools the

water. Air gets warmer as it gains sensible heat of the water and the water is cooled as

sensible heat is transferred to the air. The evaporative effect of the release of latent heat

of vaporization also cools the water. Approximately 75% of the cooling is latent heat and

25% is due to sensible heat transfer [2].

Air becomes heated and saturated as it passes through the cooling tower. Atmospheric

cooling is limited by the ambient wet bulb temperature. Wet bulb is determined from a

psychrometric chart as the intersection of the ambient dry bulb temperature and the dew

point temperature. Therefore, the wet bulb temperature is always between the dry bulb

and dew point temperatures. Wet bulb is an indication of the evaporative potential of the

atmosphere. The water cannot be cooled to a lower temperature than the wet bulb [2].
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2.2 Mechanical Draft Cooling Tower Anatomy

The counter-flow variety of MDCT is presented here in detail since this type is widely

used in industry and at the Savannah River Site (SRS). A schematic drawing of a counter-

flow tower is shown in Figure 2.2. Water that has been heated through an industrial

process is pumped to the top of the cooling tower. A water distribution system turns the

heavy stream of water into light droplets as preparation to being cooled by the air stream.

The water is sprayed onto a baffle material, called fill, that provides large water surface

areas to facilitate heat transfer. Air enters the tower from below and contacts the water

falling through the fill. The cooled water is collected at the base of the tower in a basin

to be recirculated to the industrial plant. Moisture-laden air rises through the distribu-

tion plumbing and is exhausted out the stack of the tower. The flowing air will pick up

mist and droplets and will carry them with the air flow out of the tower. Material known

as drift eliminators is placed between the water distribution system and the tower stack

to minimize the dispersal of entrained water droplets into the surrounding atmosphere.

Drift eliminators are a series of baffles which cause air to gently change direction at least

three times thereby obtaining greater surface contact to release water droplets [2]. A fan

is situated in the stack to induce air flow through the tower. It is the presence of this fan

that gives the MDCT its name.

The towers exist in one of three states. Water on, fans on refers to water flowing through

the tower and the fan is operating to force air through the tower. Water on, fans off refers to

water flowing through the tower but the fan is inactive. This is a so called “natural draft”

mode in which air exits the fan stack opening through natural convection. The final state

is water off, fans off in which the tower is not operating.

2.3 MDCT Thermal Imagery

The Savannah River National Laboratory (SRNL) recorded thermal imagery of the cool-

ing towers at the Savannah River Site in the late spring of 2004 and 2005. The images

were captured with an Inframetrics SC 2000 microbolometer thermal camera having a 7.6

- 13.5 µm spectral range, an instantaneous field of view (IFOV) of 1.4 milliradians, and

a sensitivity of less than 0.1 K. The sensor was flying on board a helicopter at altitudes

between 350 and 2000 feet (106.7 and 610 meters) above the ground. The output image is

converted directly into a brightness, or apparent, temperature by the sensor.



6 2.3. MDCT THERMAL IMAGERY

Figure 2.3: Location of ground-truth measurements taken by SRNL [2] [3].

Thermal images of the H-area and F-Area cooling units at SRS are presented in the fol-

lowing figures. Regions of interest (ROIs) were drawn for each tower and statistics across

these regions were determined. The ROIs were first drawn to include the entire fan stack

opening of the tower. This first set of ROIs simulate low spatial resolution imagery in

which the ground sample distance (GSD) of the sensor is large enough to encompass the

fan stack opening of the tower. A second set of ROIs were drawn in such a manner that

avoided visible obstructions such as fan blades and internal support structures. Ground-

truth measurements were taken nearly simultaneous with the airborne imagery. The ex-

haust air temperature exiting the cooling tower is Tex. The exhaust is either forced out of

the fan stack when fans are operating or it is expelled by natural convection when fans

are off. This temperature was measured with a HOBO temperature sensor mounted on

a metal pipe positioned about 0.5 meters inside the edge of the shroud by the motor that

drives the fan. The corresponding dew point temperature of the exhaust air is Tdex and

was measured by the same HOBO in the same place. The temperature of the hot water

coming into the tower is Tin while Tout is the average temperature of the cooled water

collected in the basin at the base of the towers. The ambient air temperature Tamb, dew

point temperature Tdamb, and pressure P were taken approximately two meters above the

ground and five meters from the base of the towers [3]. Simultaneous wind speed and

direction data is also available for each image. The wind measurements were obtained at

heights of 4 meters and 60 meters.
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Each data set presented here includes the original image with the ROIs overlaid. Brighter

pixels represent higher apparent temperatures while darker pixels represent lower appar-

ent temperatures. Each image has two sets of ROIs: one in which the ROI was drawn

over the entire fan stack opening of the tower (ROI·1) and another in which the fans and

other structures were avoided (ROI·2). A table of ROI statistics is included for each set of

ROIs and another table contains the coincident measured ground data. All temperatures

are displayed in Kelvin. The operating status of each tower in the image is also given

along with a comparison of the ground measured exit air temperature and the mean ROI

temperatures from the image. Ground temperature, pressure, and wind measurements

are presented in the ground measurements table. The images were all collected at night

and span observation altitudes of 350 to 2000 feet (106.7 to 610 meters).
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SRNL 20may04D14 image (Night)

02:02 EDT 20 May 2004 at 500 ft. Towers are labeled F1 through F6 from right to left.

Figure 2.4: ROI·1 (left) and ROI·2 (right). The N arrow indicates the direction of north while the
vω arrow indicates the surface wind velocity direction. The GSD is approximately 0.22 m.

ROI·1 Statistics [K] ROI·2 Statistics [K]

ID Min Max Mean St. Dev. Min Max Mean St. Dev.

F1 294.05 295.75 294.96 0.30 294.85 295.75 295.26 0.25

F2 293.15 294.55 293.89 0.25 293.45 294.55 294.01 0.22

F3 293.45 295.35 294.55 0.31 293.75 295.35 294.65 0.27

F4 294.65 296.15 295.33 0.32 294.75 296.15 295.50 0.29

F5 294.05 296.35 295.14 0.38 294.85 296.35 295.51 0.25

F6 291.35 292.85 292.03 0.28 291.85 292.85 292.27 0.18

Table 2.1: SRNL 20may04D14 image ROI statistics.

ID Water/Fan Tex [K] Tdex [K] TROI·1 − Tex [K] TROI·2 − Tex [K]

F1 On/Off 295.55 295.45 -0.59 -0.29

F2 On/50% 294.25 294.15 -0.36 -0.24

F3 On/100% 294.75 294.35 -0.20 -0.10

F4 On/Off 295.65 295.45 -0.32 -0.15

F5 On/Off 296.75 296.75 -1.61 -1.24

F6 Off/Off 294.45 293.45 -2.42 -2.18

Table 2.2: Ground measured temperatures compared to the mean ROI temperatures.

Tin [K] Tout [K] Tamb [K] Tdamb [K] P [mb] 4m Wind [m/s] 60m Wind [m/s]

297.61 296.09 292.87 291.06 1011.39 0.48 @ 117.5° 4.86 @ 178.6°

Table 2.3: Ground measurements collected at 02:06 EDT on 20 May 2004.
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SRNL 20may04e02 image (Night)

02:04 EDT 20 May 2004 at 1000 ft. Towers are labeled F1 through F6 from right to left.

Figure 2.5: ROI·1 (left) and ROI·2 (right). The N arrow indicates the direction of north while the
vω arrow indicates the surface wind velocity direction. The GSD is approximately 0.43 m.

ROI·1 Statistics [K] ROI·2 Statistics [K]

ID Min Max Mean St. Dev. Min Max Mean St. Dev.

F1 294.45 295.35 294.88 0.22 294.45 295.35 294.99 0.21

F2 293.25 293.35 293.91 0.22 293.75 294.35 294.03 0.16

F3 294.05 294.95 294.53 0.24 294.15 294.95 294.59 0.20

F4 294.75 295.65 295.13 0.21 294.85 295.65 295.22 0.21

F5 294.65 295.65 295.13 0.26 294.95 295.65 295.28 0.18

F6 291.65 292.85 292.34 0.26 292.15 292.85 292.53 0.16

Table 2.4: SRNL 20may04e02 image ROI statistics.

ID Water/Fan Tex [K] Tdex [K] TROI·1 − Tex [K] TROI·2 − Tex [K]

F1 On/Off 295.55 295.45 -0.67 -0.56

F2 On/50% 294.25 294.15 -0.34 -0.22

F3 On/100% 294.75 294.35 -0.22 -0.16

F4 On/Off 295.65 295.45 -0.52 -0.43

F5 On/Off 296.75 296.75 -1.62 -1.47

F6 Off/Off 294.45 293.45 -2.11 -1.92

Table 2.5: Ground measured temperatures compared to the mean ROI temperatures.

Tin [K] Tout [K] Tamb [K] Tdamb [K] P [mb] 4m Wind [m/s] 60m Wind [m/s]

297.61 296.09 292.87 291.06 1011.39 0.48 @ 117.5° 4.86 @ 178.6°

Table 2.6: Ground measurements collected at 02:06 EDT on 20 May 2004.
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SRNL 20may04e04 image (Night)

02:07 EDT 20 May 2004 at 2000 ft. Towers are labeled F1 through F6 from right to left.

Figure 2.6: ROI·1 (left) and ROI·2 (right). The N arrow indicates the direction of north while the
vω arrow indicates the surface wind velocity direction. The GSD is approximately 0.85 m.

ROI·1 Statistics [K] ROI·2 Statistics [K]

ID Min Max Mean St. Dev. Min Max Mean St. Dev.

F1 294.65 295.05 294.82 0.14 294.65 295.05 294.83 0.14

F2 293.75 294.15 293.88 0.12 293.35 294.15 293.81 0.22

F3 293.85 294.45 294.22 0.17 293.55 294.75 294.24 0.29

F4 294.65 295.05 294.84 0.14 293.75 295.05 294.63 0.40

F5 294.45 294.85 294.68 0.14 294.45 294.85 294.70 0.11

F6 292.25 292.85 292.58 0.19 292.55 292.85 292.65 0.11

Table 2.7: SRNL 20may04e04 image ROI statistics

ID Water/Fan Tex [K] Tdex [K] TROI·1 − Tex [K] TROI·2 − Tex [K]

F1 On/Off 295.55 295.45 -0.73 -0.72

F2 On/50% 294.25 294.15 -0.37 -0.44

F3 On/100% 294.75 294.35 -0.53 -0.51

F4 On/Off 295.65 295.45 -0.81 -1.02

F5 On/Off 296.75 296.75 -2.08 -2.05

F6 Off/Off 294.45 293.45 -1.87 -1.80

Table 2.8: Ground measured temperatures compared to the mean ROI temperatures.

Tin [K] Tout [K] Tamb [K] Tdamb [K] P [mb] 4m Wind [m/s] 60m Wind [m/s]

297.61 296.09 292.87 291.06 1011.39 0.48 @ 117.5° 4.86 @ 178.6°

Table 2.9: Ground measurements collected at 02:06 EDT on 20 May 2004.
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SRNL 20jun05G09 image (Night)

22:17 EDT, 20 June 2005 at 350 ft. Towers are labeled H1 through H4 from right to left.

Figure 2.7: ROI·1 (left) and ROI·2 (right). The N arrow indicates the direction of north while the
vω arrow indicates the surface wind velocity direction. The GSD is approximately 0.15 m.

ROI·1 Statistics [K] ROI·2 Statistics [K]

ID Min Max Mean St. Dev. Min Max Mean St. Dev.

H1 296.05 299.15 297.56 0.48 297.15 298.45 297.81 0.27

H2 296.35 301.45 297.70 0.46 297.35 298.25 297.86 0.21

H3 291.95 296.85 294.59 1.06 294.45 296.85 295.80 0.49

H4 295.75 300.15 297.45 0.54 296.65 298.35 297.64 0.29

Table 2.10: SRNL 20jun05G09 image ROI statistics.

ID Water/Fan Tex [K] Tdex [K] TROI·1 − Tex [K] TROI·2 − Tex [K]

H1 On/On 297.16 297.12 0.40 0.65

H2 On/On 296.78 296.51 0.92 1.08

H3 On/Off 296.01 290.72 -1.42 -0.21

H4 On/On 296.39 294.99 1.06 1.25

Table 2.11: Ground measured temperatures compared to the mean ROI temperatures.

Tin [K] Tout [K] Tamb [K] Tdamb [K] P [mb] 4m Wind [m/s] 60m Wind [m/s]

299.66 295.46 296.39 293.17 1008.67 0.75 @ 91° 4.37 @ 104°

Table 2.12: Ground measurements collected at 22:17 EDT on 20 June 2005.
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2.4 Analysis

The data presented in Figures 2.4 through 2.7 are representative of images obtained at

night, at various collection altitudes, for various tower operating conditions, and for

different view angles. The mean ROI temperatures, TROI·1 and TROI·2, and the ground-

measured exit air temperature, Tex, are not equal. This difference must be accounted for.

Several statements can be made about the data presented here.

For the nadir images (Figures 2.4 to 2.6), the temperature errors are all less than zero which

means that the mean ROI temperature is less than the measured exit air temperature. This

is expected since factors such as the emissivity, atmospheric effects, and blurring would

tend to cause the apparent temperature to be less than the absolute temperature.

The magnitude of the temperature errors, |∆T|, is smaller in the fans on case than in the

fans off case for all altitudes. The spinning fan forces the air inside the tower cavity out

of the tower stack. Therefore the interior and exterior air are closer to being the same

temperature. On the other hand, in the fans off case air is expelled from the tower through

natural convection. As a consequence, the air exiting the tower stack is at a slightly lower

temperature since it cools as it expands and rises. The |∆T| is therefore larger for the fans

off case than in the fans on case.

The magnitude of the temperature errors are smaller for ROI·2 than for ROI·1 for alti-

tudes of 500 feet (152.5 m) and 1000 feet (305.0 m). This is expected because when the

fan blades are avoided, as in ROI·2, the ROI contains pixels from the interior of the tower

only. When the ROI does not avoid the fan blades, as in ROI·1, the ROI contains pixels

from both the interior and exterior (fan blades) of the tower. The exterior pixels will have

a lower apparent temperature since they will reflect a lower radiance from the sky and

will be at a lower absolute temperature because of radiative cooling at night. Also, the

ROI·1 and ROI·2 temperatures are roughly the same at an observation altitude of 2000

feet (610.0 m). The optical blur of the pixels at this higher altitude cause ROI·2 to behave

as ROI·1 and therefore the apparent temperatures are roughly equal.

Lastly, |∆T| increases for both ROIs as the observation altitude increases. This decrease

in apparent temperature with increasing altitude is caused by the increase in atmospheric

path.
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The dataset also contains an image acquired at an oblique angle (Figure 2.7). For this

scene, the temperature error is greater than zero for the fans on case but is less than zero

for the fans off case. In other words, the apparent temperature is greater than the exit air

temperature when the fans are operating. The opposite is true when the fans are not oper-

ating. The lower apparent temperature in the fans off case is expected since the emissivity,

atmospheric radiance loss, etc. would decrease the sensor-reaching radiance and there-

fore yield a lower apparent temperature. This trend was observed in the nadir imagery.

The higher apparent temperature for the fans on towers is most likely due to the motion of

the fan. The fan motor drives a gearbox which in turn drives the fan blades. This gearbox

was obscured by the fan hub in the nadir imagery. For the oblique image however, the

gearbox is slightly exposed. The heat generated by friction within the gearbox causes its

absolute temperature to increase. This contributes to an increase in sensor-reaching radi-

ance which results in a higher apparent temperature.

The magnitude of the temperature error, |∆T|, is smaller for ROI·2 than for ROI·1 in the

fans off case. As with the nadir images, when the fan blades are avoided, as in ROI·2,

the ROI contains pixels from the warm interior of the tower only and does not contain

cooler pixels from the exterior of the tower. Therefore, the apparent temperature is closer

to the true exit air temperature for ROI·2 in the fans off case. Conversely, |∆T| is greater

for ROI·2 than for ROI·1 in the fans on case. Although the fan blades and internal struc-

ture were avoided as best as possible in ROI·2, some of the warmer pixels caused by the

fan gearbox may have blurred into the cavity pixels. The cooler fan blade pixels are not

included in the ROI. Therefore, the pixels in ROI·2 would have a warm bias which causes

|∆T| to be greater than the ROI·1 case.

2.5 Preliminary Variables

It is clear from the previous section that there are many factors that may affect the radiance

reaching the sensor and therefore the derived exit air temperature. The thermal images

of MDCTs provided an initial look at the factors that might be important in accurately

determining the exit air temperature. The atmosphere will attenuate the radiance as it

leaves the tower and travels to the sensor. In addition, the atmosphere will blur the signal

reaching the sensor so that a given pixel will contain some radiance from its neighbors.

The viewing geometry of the sensor also greatly affects the derived temperature. The

altitude and view angle of the sensor defines the path length through the atmosphere.

The ground sampling distance (GSD) of the sensor will influence whether the internal
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Figure 2.8: Preliminary variables affecting the apparent temperature recorded by a sensor of a
MDCT.

structure is visible or if the entire fan stack opening is covered by a single pixel. The

operating status of the fans determine the air flow through the tower which in turn affects

the derived temperature. The ROI chosen will also determine what pixels are included in

the temperature derivation.

2.6 Summary

To reiterate, the objective is to derive the exit air temperature of a MDCT from remote

thermal imagery. The apparent temperature of the tower from the thermal image will be

correlated to the exit air temperature. The temperature of the exhausted air is one of the

required inputs into an energy-related process model.

In the following chapters, the physical phenomeonology of the factors that affect the ra-

diance reaching the sensor will be investigated. Constraints will then be placed on these

variables and a method will be developed to correct for the error between the apparent

temperature and measured exit air temperature of the MDCT.



Chapter 3

Theory

Remote sensing involves the gathering of information about a target of interest by ana-

lyzing the radiant energy emanating from that target. The energy detected by a sensor,

however, is a collection of light from many sources traveling various paths to reach the

sensor. Many of these paths are unrelated to the target of interest and the paths directly

between the target and sensor are modified by the radiometric environment. The factors

affecting the signal entering the sensor cannot be easily separated and therefore must be

modeled or estimated in order to extract the desired information about the target of inter-

est. An overview of temperature extraction from remote thermal imagery is presented in

this chapter.

3.1 Self-Emitted Radiance

The amount of thermal energy contained in a material is represented by its absolute tem-

perature, T, expressed in units of Kelvin. All materials have an absolute temperature

above zero since all materials interact with their environment through the laws of ther-

modynamics. A material having an absolute temperature, T, will continuously radiate

and absorb energy in order to reach thermal equilibrium with its environment.

3.1.1 Blackbody Radiation

An idealized surface in which all electromagnetic radiation is completely absorbed at all

wavelengths and then re-radiated is known as a blackbody. These surfaces have the prop-

erty that their absorptivity is unity while their reflectivity is zero. Max Planck derived

an expression for the spectral radiance of a blackbody in 1901 (See Appendix A) [4]. The

Planck blackbody radiation equation describes the spectral distribution of the emitted energy

of a blackbody at temperature, T, into a solid angle above the blackbody surface. Planck’s

law is defined as

LBB(λ, T) =
2hc2

λ5
1

e hc/λkT − 1

[
W

m2 sr µm

]
, (3.1)
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where:

h Planck constant 6.6256 · 10−34 [J · s]

c speed of light in vacuum 2.9979 · 108 [m/s]

k Boltzmann constant 1.3807 · 10−23 [J/K]

λ wavelength of emission [µm]

T absolute temperature [K].

The Planck equation is dependent on both the temperature of the object and on the wave-

length of emission. The units of the variables and constants in equation (3.1) must be

handled with care in order to arrive at the desired dimensions of
[
W/m2/sr/µm

]
.

The relationship between the wavelength of peak emission of a blackbody and its tem-

perature is Wien’s displacement law stated as

λpeak =
2897.768 [µm K]

T
[µm] . (3.2)

The sun is approximately a blackbody at a temperature of 5800 Kelvin having a peak emis-

sion in the visible region (approximately 0.5 µm). The average temperature of the Earth

is about 300 Kelvin with a peak emission in the longwave infrared region (approximately

10 µm). Most terrestrial emissive remote sensing is done in the longwave infrared since

most objects on the Earth are near 300 Kelvin. The Planck distribution for blackbodies of

different temperatures are shown in Figure 3.1.

3.1.2 Directional Emissivity

Ideal blackbodies do not exist in nature. Real objects are not perfect emitters and will

therefore emit less radiance than a blackbody. The spectral emissivity, ε(λ), is a measure

of the effectiveness of an object as a radiator. The emissivity of a material at wavelength

λ and temperature T is defined as the ratio of the radiation emitted by the material at

that wavelength to the radiation emitted by a blackbody at the same temperature and

wavelength [5]. For Lambertian surfaces, the emitted radiance is distributed equally into

the hemisphere above the surface. The self-emission for Lambertian surfaces is defined as

L(λ, T) = ε(λ)LBB(λ, T)
[

W
m2 sr µm

]
. (3.3)
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Figure 3.1: Planck curves for a 5800 Kelvin (top) and 300 Kelvin (bottom) blackbody.

Most materials are not Lambertian and will radiate more in some directions than in others.

The emissivity term is modified to incorporate this dependence on view angle. The self-

emission for non-Lambertian surfaces is then

L(θ, φ, λ, T) = ε(θ, φ, λ)LBB(λ, T)
[

W
m2 sr µm

]
(3.4)

where (θ, φ) indicate the direction of the sensor. The parameter ε(θ, φ, λ) is known as the

directional emissivity.

3.2 Reflected Radiance

Reflected radiance can be treated in a similar, complementary fashion to the self-emitted

radiance. The reflectance properties of a surface describe how radiance from background

sources is scattered into the hemisphere above the material surface. As with the self-

emitted radiance, both the magnitude and directional distribution of the reflected radi-

ance must be taken into account.

3.2.1 Bidirectional Reflectance Distribution Function

The reflectance of a surface generally depends on the illumination angle, the view angle,

and the wavelength. This angular dependence is characterized by a bidirectional reflectance

distribution function (BRDF). It is defined as the ratio of the radiance, L, reflected from the
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surface into the direction (θr, φr) to the irradiance, E, incident on the surface from direction

(θi, φi) [1] and is written as

ρ′(θi, φi, θr, φr, λ) =
L(θr, φr, λ)
E(θi, φi, λ)

[
1
sr

]
. (3.5)

The BRDF describes the distribution of reflected radiance into the hemisphere from a

given source geometry. It can be thought of as a probability distribution function for

the reflected radiance in any direction [1].

3.2.1.1 BRDF models

The BRDF is a function of all combinations of the incident and reflected angles as well as

wavelength. The large number of angles and wavelengths needed to fully describe the

directional distribution makes measuring a BRDF a tedious process. As a result, models

have been introduced that approximate a true BRDF with only a hand full of adjustable

parameters. These parameters control the shape of the BRDF so that any range of a spec-

ular to a diffuse BRDF can be modeled.

3.2.1.1.1 Lambertian Model Probably the simplest BRDF model is the Lambertian model.

A Lambertian, or diffuse, surface is one that reflects equally in all directions [1]. The model

is written as

ρ′(θi, φi, θr, φr) =
ρ

π

[
1
sr

]
, (3.6)

where ρ is the reflectance of the material. This model is often used for quick calculations

when a “directional” BRDF is not necessary.

3.2.1.1.2 Ward Model The BRDF model described by Ward [6] adds a specular compo-

nent to the Lambertian model. It is a mathematical model designed to approximate a true

physical BRDF. The objective was to fit measured isotropic and anisotropic reflectance

data with a simplistic formula with intuitively meaningful parameters. For an isotropic

surface, the slope only varies in one dimension and is based on a Gaussian distribution.

The BRDF of this case is modeled as

ρ′(θi, φi, θr, φr) =
ρd

π
+

ρs√
cos θi cos θr

e− tan2 α/σ2

4πσ2

[
1
sr

]
, (3.7)

where ρd is the diffuse reflectance, ρs is the specular reflectance, σ is the root-mean-square

(RMS) of the surface slope (similar to surface roughness), and α is the angle between the
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(a) ρd = 0.4, ρs = 0.0, σ = 0.13, θi = 45◦ (b) ρd = 0.0, ρs = 0.07, σ = 0.13, θi = 45◦

Figure 3.2: Ward BRDF model: diffuse (left) and specular (right). The thin line on the right hand
side in the figures indicates the incident ray.

surface normal~n and vector~n′ that bisects the incident and reflected rays. Ward notes that

the reflectance values in equation (3.7) may have a spectral dependence and may vary as

a function of angle so long as the sum of ρd and ρs is less than unity. The normalization

factor is valid as long as σ is not much greater than 0.2. A proper normalization is nec-

essary to ensure physically meaningful results [6]. The α and φ angles are determined by

the geometry of the incident and reflected rays. The user is only responsible for providing

estimates of ρd, ρs, and σ. A small value of σ corresponds to a narrow specular lobe, while

a large value corresponds to a wide lobe. The Ward BRDF model is appealing due to its

simplicity. However, the model and its input parameters are not based on any physical

measurements. Figure 3.2 illustrates two Ward reflectance functions.

3.2.1.1.3 Torrance-Sparrow and Priest-Germer Models Torrance and Sparrow devel-

oped a BRDF model based on the microfacet theory [7]. A rough surface is modeled as a

collection of tiny facets. The slopes of these microfacets are assumed to be randomly ori-

ented according to a probability distribution. Each microfacet acts as a specular reflector

that obeys the law of reflection so that reflection occurs in the plane of incidence and the

reflected angle equals the incident angle. The reflectance of the microfacet is calculated

from the Fresnel equations. Torrance and Sparrow also account for the effect of shadow-

ing and masking of a facet by adjacent facets. See reference [7] for a complete description

of the Torrance-Sparrow BRDF model.

Priest and Germer extended the Torrance-Sparrow model to provide a polarized bidirec-

tional reflectance function [8]. The Priest-Germer model itself only provides the specular
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component of the BRDF. It assumes that the polarized reflectance is due to specular re-

flection while the diffuse reflection is unpolarized. Like the Torrance-Sparrow model, the

Priest-Germer model is based on the assumption that the rough surface of the material is

a collection of tiny, specular, and randomly oriented microfacets. Refer to reference [8] for

details of the Priest-Germer BRDF model.

3.2.1.1.4 Beard-Maxwell Model and the NEFDS The Beard-Maxwell model is also

based on the microfacet theory in which reflection occurs at the first surface but adds

a volumetric component in which scattering occurs beneath the surface [5] [9]. The model

requires seven input parameters that adjust the scatter from the first surface and from

beneath the surface. The number of free parameters in this model is large compared to

the previously mentioned BRDF models. These parameters are based on actual measured

data for real materials which allow the model to more accurately describe a BRDF. The

Beard-Maxwell model serves as the basis for the Nonconventional Exploitation Factors

Data System (NEFDS) [5]. The NEF database contains measured input parameters for

several hundred materials. The Beard-Maxwell model along with NEF materials provide

a powerful way to generate reflectance models from a few measured parameters for sev-

eral hundred materials.

3.2.1.1.5 Shell Target Model Shell generalized the previously mentioned BRDF mod-

els in his Ph.D. dissertation in 2005 [10]. Shell decomposes these models into a general

form to allow for polarization of the model based on the polarized Priest-Germer model.

Shell splits the BRDF model into a specular and a volumetric component. The specular

component results from specular scattering from the front surface via the Fresnel equa-

tions. The volumetric component results from subsurface scattering and is assumed to be

completely depolarizing.

3.2.2 Directional Hemispherical Reflectance

The ratio of the total power reflected into the entire hemisphere by a surface to the power

incident on the surface from a specified direction is the directional hemispherical reflectance

(DHR). It is the integral of the BRDF over the entire hemisphere above a surface for a fixed

incident angle. The directional hemispherical reflectance is

ρ(θi, φi, λ) =
∫

2π
ρ′(θi, φi, θr, φr, λ) cos(θr)dωr, (3.8)



3.3. CONSERVATION OF ENERGY 21

where the integral is taken over all solid angles, dωr, of the hemisphere. The DHR is a

unitless quantity whose range of values are 0 ≤ ρ ≤ 1. The DHR is also defined through

the reciprocal relation as the ratio of the radiance reflected by a surface into direction

(θr, φr) to the radiance uniformly incident on the surface from the entire hemisphere. The

two definitions are equivalent so that ρ(θi, φi, λ) = ρ(θr, φr, λ). If a material is isotropic,

then the azimuthal dependence in equation (3.8) can be ignored,

ρ(θi, φi, λ) = ρ(θ, λ). (3.9)

Furthermore, if the angular dependence is ignored altogether, then the familiar reflectance

of a material is ρ(λ).

3.3 Conservation of Energy

When radiance is incident on an object, it may be absorbed, reflected, or transmitted.

These phenomena are represented by the unitless quantities of absorptivity α(λ), reflec-

tivity ρ(λ), and transmittance τ(λ), respectively [1]. The conservation of energy requires

that these quantities sum to unity so that all the incident radiance is accounted for:

α(λ) + ρ(λ) + τ(λ) = 1. (3.10)

Kirchhoff’s work in thermal radiation led to the conclusion that energy being absorbed

at a particular wavelength must be equal to the energy emitted at that same wavelength

for an object in thermal equilibrium. Therefore, the absorptivity is equal to the emissivity

α(λ) = ε(λ) [11]. For an opaque object where transmission is zero, Kirchhoff’s law is

ε(λ) + ρ(λ) = 1. (3.11)

This relation can be generalized so that the angular dependence of the emissivity and

reflectivity manifests itself,

ε(θ, φ, λ) + ρ(θ, φ, λ) = 1. (3.12)

The quantities ε(θ, φ, λ) and ρ(θ, φ, λ) are the previously defined directional emissivity

and directional hemispherical reflectance from Sections 3.1.2 and 3.2.2.
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3.4 Energy Paths Reaching a Sensor

The radiance incident on a sensor has many components. These components come from

a variety of sources and depend on the material optical properties and on the radiometric

properties of the surrounding scene. Photons will be traced from the major energy paths

entering the sensor to produce a generic equation describing the radiance at the sensor.

3.4.1 Material Radiance

In thermal remote sensing, information about the temperature of the target is of interest.

This temperature information is carried by the self-emitted radiance term. It is a function

of the Planck equation modified by the object’s directional emissivity (see Section 3.1).

Given that the emissivity is less than unity and through Kirchoff’s relation, real material

surfaces will also reflect radiance from the surround. The reflected background compo-

nent is due to the self-emission from background sources due to the temperature of these

sources. The reflected component depends on the BRDF of the material surface (see Sec-

tion 3.2). The radiance leaving the surface of an object headed toward the sensor is written

as

L(θ, φ, λ) = ε(θ, φ, λ)LBB(λ, T) +
∫

2π
Lbkgd(θi, φi, λ) ρ′(θi, φi, θ, φ, λ) cos(θi)dωi, (3.13)

where the units are
[
W/m2/sr/µm

]
. In the reflected term, the background radiance inci-

dent from direction (θi, φi) is weighted by the BRDF and solid angle in that direction and

the integral is evaluated over the hemisphere above the surface. The emissive term is the

familiar self-emission from equation (3.4). The angles (θ, φ) indicate the direction of the

sensor. Note that the background radiance is a generic term representing all the surround-

ing radiation sources. These sources may include the sun, the sky, other objects, etc. For

a uniform background, Lbkgd is independent of direction and is a constant of integration.

The resulting integral is simply the directional hemispherical reflectance from equation

(3.8) so the surface-leaving radiance reduces to

L(θ, φ, λ) = ε(θ, φ, λ)LBB(λ, T) + ρ(θ, φ, λ)Lbkgd(λ)
[

W
m2 sr µm

]
. (3.14)

3.4.2 Atmospheric Effects

The radiance leaving the material surface must then propagate through the atmosphere to

reach the sensor. The atmosphere may considerably modify this radiance along the line of

sight to the sensor. The constituent gases and aerosols attenuate the signal by absorption
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and scattering out of photons. This phenomenon is captured by the atmospheric trans-

mission parameter, τ(λ). The atmospheric constituents also have a finite temperature and

will emit their own self-emitted radiance in all directions, thereby adding to the apparent

material radiance [5]. This radiance from the atmosphere may be reflected off the target,

thereby contributing to the background radiance, Lbkgd, or may enter the sensor directly.

3.4.2.1 Atmospheric Transmission

Atmospheric transmission refers to the loss of photons by a volume of atmosphere. It

encompasses both the absorption and scattering out of photons.

3.4.2.1.1 Absorption Absorption refers to the removal of photons by a material through

the conversion of electromagnetic energy to some other form of energy, usually thermal. It

occurs when the energy (wavelength) of the incoming photon is sufficient to cause a rota-

tional, vibrational, or electronic energy transition in a molecule present in the atmosphere.

The molecule absorbs the photon and makes a quantum jump to a higher energy state.

The molecule will quickly lose this excess energy through collisions with other molecules

and return to its original energy state. The photon energies (wavelengths) that will be

absorbed by a molecule depend on the transition energies between states of that molecule

[11]. The amount of absorption by atmospheric gases is dependent on the quanitity of the

gas and on its temperature and pressure [5]. These discrete energy absorptions manifest

themselves as discrete lines in the absorption spectrum of a gas. However, interactions

between the gas molecules will cause perturbations in their energy states which results

in broadening of the absorption lines. When the broadened lines are close to each other,

they combine to form a continuum of absorption [1]. A typical gas absorption spectrum

will therefore exhibit both discrete (molecular) and continuum absorption features. Major

absorbers in Earth’s atmosphere in the LWIR are O3, CO2, and H2O.

The amount of absorption of a propagating beam of radiation in a given path length

depends on the effective size and density of absorbing particles. The absorption cross

section, Cα(λ), is a measure of the effectiveness of a particle as an absorber to a particular

wavelength of radiation. The fractional amount of flux that is absorbed per unit length is

defined as

βα(λ) = m Cα(λ)
[

1
m

]
(3.15)

where m is the number of particles per unit volume and βα(λ) is known as the absorption

coefficient. It is the fractional amount of flux lost to absorption per unit length [1].
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For a horizontal layer of gas of infinitesimally small thickness, dz, the fractional amount

of absorption through the layer is

dα(λ) =
dΦ(λ)
Φ(λ)

= −βα(λ) sec θ dz (3.16)

where θ is the zenith angle through the layer, Φ is the incident flux entering the layer and

dΦ is the flux lost to absorption in the layer. Integrating both sides and taking the antilog

yields the transmission,

τα(θ, φ, λ) = e
−

z2∫
z1

βα(λ) sec θ dz

(3.17)

where the integral is performed over the starting and ending altitudes of the path. If there

is more than one constituent gas in the layer, then the absorption coefficient is the sum of

the absorption coefficients of the constituent gases.

3.4.2.1.2 Scattering Transmission losses are also the result of photons being scattered

out of the propagating beam. The transmission loss due to scattering can be written simi-

lar to the transmission loss due to absorption as

τs(θ, φ, λ) = e
−

z2∫
z1

βs(λ) sec θ dz

(3.18)

where βs(λ) is the scattering coefficient. The scattering coefficient is a function of the index

of refraction of the scattering particles. It can also be expressed as a function of a size

parameter a = 2πr/λ which is a measure of the size of particles in comparision to the

wavelength of radiation [12].

A complete theory on the scattering of electromagnetic radiation involves developing so-

lutions to the Maxwell equations. In a given volume of air, a variety of particle shapes

and sizes are present [12]. For the idealized case of spherical particles, Gustav Mie de-

veloped a complete analytical solution to Maxwell’s equations. The Mie solution, com-

monly referred to as Mie scattering, is valid for all possible size parameters, a. The angular

distribution of the scattered radiation varies greatly depending on the particle size and

wavelength of radiation. In general, however, forward scattering dominates over back

scattering. Mie scattering also depends weakly on wavelength and becomes independent

of it when the particle size exceeds the wavelength [11].
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Figure 3.3: Atmospheric scattering as a function of particle radius and incident radiation wave-
length. (Adopted from Wallace and Hobbs, pg. 307) [12])

For the special case where the particle size is much less than the wavelength of radi-

ation (a << 1), Lord Rayleigh showed that for a given refractive index, the scattering

coefficient is inversely proportional to the fourth power of wavelength
(

βs ∝ λ−4). The

predominance of short wavelengths scattered by air molecules is responsible for the blue-

ness of the sky in the visible region. The scattered radiance is also evenly divided between

the forward and back scattered hemispheres [12]. This small-size limiting case of the Mie

solution is commonly known as Rayleigh scattering.

When the size of the particles are much larger than the wavelengths of the incoming

radiation (a > 50), the angular distribution of the scattered radiation can be described

by the principles of geometrical optics. In this so-called nonselective scattering regime, the

scattering is independent of wavelength. For example, at visible wavelengths scattering

by cloud droplets, raindrops, and ice crystals fall within this regime and are responsible

for distinctive phenomena such as rainbows and halos [12].

Figure 3.3 illustrates the dependence of scattering on particle size and wavelength in the

atmosphere. Ordinary gas molecules in the atmosphere do not produce significant scat-

tering in the longwave infrared [1] [12]. Scattering will become important in the LWIR if

dust particles and aerosols are present in the atmosphere [12].
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Figure 3.4: Atmospheric spectral transmission along a vertical space-to-ground path generated
from a MODTRAN mid-latitude summer atmosphere[13].

3.4.2.1.3 Total Transmission The transmission due to absorption and scattering effects

can be combined to describe the total transmission by

τ(θ, φ, λ) = e
−

z2∫
z1

βext(λ) sec θ dz

(3.19)

where βext(λ) is known as the extinction coefficient and is the sum of the absorption and

scattering coefficients. The total spectral atmospheric transmission is visualized in Fig-

ure 3.4.

3.4.2.2 Atmospheric Emission

The constituents of the atmosphere have a finite temperature and will therefore be a

source of energy [1]. To calculate this radiance, the continuously varying atmosphere is

approximated as a set of homogeneous layers as in Figure 3.5. Each layer has an effective

transmission, ∆τi, along the line of sight of the sensor defined by the angles (θ, φ). Since

scattering is negligible in the LWIR, the effective emissivity of the ith layer is ∆ε i = 1−∆τi

[1]. The self-emitted radiance of the ith layer is the blackbody radiance, LBB(Ti), due to

its temperature, modified by the effective emissivity of that layer and the product of the

effective transmissions of the (i− 1) layers. If the number of layers in direction (θ, φ) is N,
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Figure 3.5: Self-emitted atmospheric radiance into the (θ, φ) direction is the sum of the self-emitted
radiance from each homogeneous atmospheric layer (Adopted from Schott 1997, pg 109 [1]).

then the atmospheric radiance is

Latm (θ, φ, λ) =
N

∑
i=1

LBB (λ, Ti) [1− ∆τi( θ, φ, λ)]
i−1

∏
j=1

∆τj(θ, φ, λ)
[

W
m2 sr µm

]
. (3.20)

The atmospheric radiance that is emitted towards the target material is known as the

emissive downwelled radiance, Ld(θ, φ, λ). This may contribute to the background radi-

ance that is reflected from the target material (see Section 3.4.1). The atmospheric thermal

energy that is emitted towards the sensor is known as the emissive upwelled radiance,

Lu(θ, φ, λ). The upwelled radiance and the reflected downwelled radiance add to the tar-

get material’s signal as recorded by the sensor [1].

3.4.3 Governing Equation

Combining all these radiometric effects into a single equation, the total spectral radiance

reaching the sensor is then

L(θ, φ, λ) = (3.21)[
ε(θ, φ, λ)LBB(λ, T) +

∫

2π
Lbkgd(θi, φi, λ) ρ′(θi, φi, θ, φ, λ) cos(θi)dωi

]
τ(θ, φ, λ)

+Lu(θ, φ, λ),
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in units of
[
W/m2/sr/µm

]
and where (θ, φ) indicate the direction of the sensor. This is

the governing equation for radiance reaching the sensor. For uniform backgrounds, the re-

flected component in equation (3.21) reduces to the DHR multiplied by the background

radiance.

From equation (3.21) it is clear that the radiance from the target itself is substantially mod-

ified on its way to the sensor. The directional emissivity, BRDF, background radiances,

atmospheric transmission and upwelled radiances all work to alter the blackbody radi-

ance from the target. This makes deriving the temperature of the target rather difficult.

Each of the mentioned variables must be modeled or estimated in order to reconstruct the

original blackbody radiance. Uncertainities in these parameters will lead to uncertainity

in the derived temperature.

3.5 Imaging System

The combined spectral radiance from all the energy paths, L(θ, φ, λ), is then incident on

the sensor, or imaging system. In the general sense, an imaging system is a series of pro-

cesses in which the incoming spectral radiances are represented as an image. The spectral

radiances from all points visible to the sensor are collected, sampled, and measured to

produce a quantifiable signal. The imaging system can be divided into several steps serv-

ing a specific task. Each step in this process unavoidably degrades the incoming signal so

that the final image cannot be a perfect representation of the original signal.

3.5.1 Collection

The radiance incident on the sensor must first be collected. This operation is performed by

the optical elements of the sensor. The radiance entering the aperture is focused onto the

focal plane. Ideally, radiance from a point entering the aperture (i.e., a point on the object

plane) would be perfectly focused onto a point on the focal plane (image plane). However,

for a diffraction-limited system, radiance from a point source on the object plane will be

spread out over a finite area on the focal plane [11]. In other words, even a perfect point

source (mathematically represented by a delta function [14]) will be blurred by the optical

system. Figure 3.6 demonstrates this effect.

The image produced by a point source is called the point-spread function (PSF). For a

shift-invariant linear system, the output signal (image) is the summation of spatially dis-
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Figure 3.6: Illustration of the blurring effect and sampling as radiance from a point source passes
through an imaging system (Adopted from Hecht 2002 [11]).

tributed PSF spots resulting from each point on the object plane [15]. Therefore, the output

image can be described as the convolution of the input radiance signal (object) with the

PSF of the optical system. This statement is written mathematically as

g (X, Y) = f (x, y) ∗ h (x, y) =
+∞∫

−∞

+∞∫

−∞

f (x, y) h (X− x, Y− y) dx dy, (3.22)

where g (X, Y) is the radiance pattern on the image plane, f (x, y) is the radiance pattern

on the object plane, and h (x, y) is the point-spread function. The h (x, y) term is also

known as the impulse response function. In general, other steps in the imaging process will

have an impulse response function which describes the degradation of the signal as a re-

sult of that process. The impulse responses of each process may be convolved together to

arrive at the total impulse response of the entire imaging system.

In essence, the PSF accounts for the spatial loss of detail that is inherent in the optical sys-

tem [15]. It is worth noting that a typical optical system will consist of a circular aperture.

In this case, the diffraction-limited PSF is known as an Airy disc [11]. The formula for the

Airy disc pattern is

h (r) =
[

2 J1 (π r/r0)
π r/r0

]2

, (3.23)
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Figure 3.7: Airy disc pattern representing the PSF of a diffraction-limited circular aperture system.

where J1() is the first-order Bessel function of the first kind [15], r is the radial distance

from the center of the Airy disc on the image plane, and r0 is the radial distance from the

center of the disc to the first minimum (see Figure 3.7). The Bessel function is written as

J1(r) =
1
π

π∫

0

cos (t− r sin(t)) dt. (3.24)

The constant r0 is computed by

r0 =
1.22 λ f

a
[µm], (3.25)

where a is the diameter of the circular aperture, f is the focal length, and λ is the wave-

length of the radiation.

3.5.2 Detection

The optical system focuses the sensor reaching radiance onto the focal plane. Detectors

located on the focal plane then convert this radiance into a quantifiable signal. For electro-

optical systems, the detector converts the incident flux on it into an electronic signal. This

is accomplished when a photon is absorbed by the detector material and induces a charge

in the material. The accumulated charge is then read out as an electronic signal. A typical

sensor might consist of a two-dimensional array of detector elements called pixels. Each

pixel acts as a tiny detector that absorbs the incident photons and stores the accumulated
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charge. The two-dimensional array therefore allows the spatial distribution of the inci-

dent flux to be recorded as an image. As with the collection process, the detector process

further degrades the incoming radiance signal.

3.5.2.1 Spatial Sampling

The incoming flux is sampled and quantizied by the detector in order to convert that flux

into a digital form. Each pixel spans a finite area such that photons that are absorbed in

this area contribute to the signal in that pixel. Therefore, the incident photon flux is es-

sentially integrated over the physical dimensions of the pixel resulting in a loss of spatial

information within the pixel. The physical dimensions of the pixels influence the ground

sampling distance (GSD) of the sensor. The GSD corresponds to the projection of the pixel

size onto the ground. The GSD can be calculated from basic geometry and knowledge of

the focal length, pixel size, and distance to the target (ground).

As mentioned previously, each step in the imaging process might have an impulse re-

sponse associated with it. The impulse response associated with the loss of spatial de-

tail in the sampling process could be described by a two-dimensional RECT function,

h(x, y) = RECT
(

x
px

, y
py

)
, where px and py are the x and y pixel dimensions. In some

circumstances, the GSD may be defined as the full-width at half-maximum amplitude of

the total system impulse response projected onto the ground [1]. See Gaskill (1978) [14]

for detailed information about impulse response functions.

3.5.2.2 Temporal Sampling

The detector material is only exposed to the incident flux for a finite time. The interval

of time in which the detector is allowed to absorb photons is known as the integration

time. It is typically controlled with a mechanical shutter or through electronic means. The

integration time represents the temporal averaging of the incident photon flux over the

finite time interval which results in a loss of temporal information.

3.5.2.3 Spectral Sampling

In addition to spatial and temporal sampling, the detector also performs spectral sampling

of the incident photon flux. The detector is only sensitive to a certain range of wavelengths

known as the bandpass. The sensitivity of the detector to each wavelength is represented

by the spectral response function, R(λ). It is defined as the signal output, S, per unit
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incident flux, Φi(λ) at a particular wavelength. The detector material is carefully chosen

such that photons of the desired wavelength are absorbed with relatively high efficiency.

A detector designed for LWIR photons would consist of Mercury Cadmium Telluride

(HgCdTe) semiconductor material, for example, which has a high response in the 8 - 14 µm

region.

The incident flux on the detector is weighted by the response function and integrated

over all wavelengths (essentially the bandpass of the sensor) to produce an output signal.

Mathematically, this detector signal relative to the spectral response of the sensor is stated

as

S =
∫

Φi(λ) R(λ) dλ. (3.26)

The signal is typically expressed in units of Amperes or Volts depending on the detector.

3.5.2.3.1 Band Effective Values

In general, the term ”band effective” value is often used to describe the effective value of

a spectral parameter in the sensor band of interest. For a generic spectral parameter, ϕ(λ),

its band effective value is written as

ϕ̂ =
∫

ϕ(λ) R′(λ) dλ. (3.27)

The hat (̂) indicates a band effective value and R′(λ) is the spectral response function of

the detector normalized by its maximum value.

The band effective value may be expressed “per wavelength” by normalizing equation

(3.27) by the sensor response,

ϕ̂λ =
∫

ϕ(λ) R′(λ) dλ∫
R′(λ) dλ

. (3.28)

3.5.2.4 Noise

Another degradation of the signal as it passes through the imaging system will be the

addition of noise. Noise corresponds to random variations in the output signal level even

when the detector is exposed to a uniform flux. These random fluctuations are due to such

factors as thermal variation in the detector and the random occurence of photon events.

Noise is usually characterized as the root mean square (RMS) variation about the mean

signal.
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For thermal imaging, it may be useful to express the concept of noise in terms of detectable

temperature [1]. The noise equivalent change in temperature (NE∆T) is a measure of the

change in temperature of a blackbody at the front of the sensor that would produce a

change in the sensor output equal to the sensor’s noise level [1].

3.5.3 Calibration

The result of the imaging process is a temporally-averaged, and a spatially- and spectrally-

integrated signal for each pixel. This signal is then read out by the sensor electronics. The

amplitude of the output signal is quantitized into discrete digital values. The resulting

digital image consists of a spatial distribution of recorded digital count values.

Sensors are usually calibrated so that the digital count values can be converted into a

sensor-reaching radiance. This calibration may be performed in a laboratory in which ra-

diance from a known source is recorded by the sensor. A calibration curve is constructed

by altering the source radiance and recording the resulting output signal from the sensor.

The digital image may now be presented as a distribution of radiance values in which

each pixel contains the spatially, temporally, and spectrally degraded radiance for that

pixel location. These radiance values are essentially the output sensor digital count val-

ues projected back to the front of the sensor. This effective radiance is denoted here as L̂.

3.6 Apparent Temperature

In the previous sections, the energy paths reaching a sensor were examined. The effective

radiance recorded by the sensor, L̂, is usually expressed in terms of an apparent tempera-

ture (also called brightness temperature in the literature). The apparent temperature is the

equivalent temperature of a spatially homogeneous and temporally constant blackbody

that will produce the same sensor effective radiance when cascaded with the spectral re-

sponse of the sensor [16]. This is written mathematically as

L̂ =
∫ ∞

0
LBB(λ, Tapp) R′(λ) dλ

[
W

m2 sr

]
. (3.29)

It is important to note that the temperature derived from the integrated sensor radiance

is an “apparent” temperature since the Planck function predicts radiances from a perfect

blackbody in a perfect transmitting, non-scattering, non-absorbing media. Real-world

objects with emissivities less than unity radiate less than a blackbody at the same tem-

perature. Furthermore, the radiance reaching the sensor is not solely from the target of
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interest, but rather from a variety of energy paths as described in Section 3.4.

3.6.1 Planck Formula Inversion

Given the integrated radiance as measured by the sensor for a particular band L̂, the

apparent temperature of the blackbody, Tapp, can be estimated by inverting the Planck

equation,

Tapp =
hc
λ̂k

[
ln

(
2hc2 Ψ

L̂ λ̂5
+ 1

)]−1

[K], (3.30)

where λ̂ is the effective wavelength in the band (see Section 3.5.2.3.1), Ψ is the integral of

the sensor response function in the spectral band, and L̂ is the integrated radiance in the

band in
[
W/m2/sr

]
. Note that by equation (3.28), L̂λ = L̂/Ψ.

This method is attractive due to its simplicity, however, it overlooks the spectral nature

of the signal. The Planck formula produces a spectral radiance for a given temperature

and wavelength. Since the sensor output is an integrated radiance and not a spectral ra-

diance, the radiance used in equation (3.30) should be deconvolved to separate out the

sensor’s spectral response and the spectral blackbody radiance. This is a very difficult

task and therefore the integrated radiance and the effective wavelength are used instead.

As an example, the DIRSIG tool (see Section 4.1.2) was used to simulate the radiance from

a blackbody plate as recorded by a LWIR sensor. The blackbody had a temperature of

300 K and the sensor had a perfect response from 8 to 14 µm with a wavelength spacing

of 0.001 µm. There was no intervening atmosphere in the simulation. The integrated radi-

ance reported by the sensor was 54.9410
[
W/m2/sr

]
. The resulting apparent temperature

is 297.0071 K. This difference from the actual temperature of 300 K is due to the use of the

effective wavelength in the Planck function. The spectral aspect of the Planck function

was not taken into account.

3.6.2 Temperature-Radiance Look-Up Table

To incorporate the spectral nature of the blackbody radiance and the spectral response

of the sensor, a look-up table (LUT) can be generated to convert the sensor’s integrated

radiance into an apparent temperature. Sospedra et al. (1998) notes that this is the most

accurate way to perform the band radiance to temperature conversion [17].

The Planck equation is evaluated at the sensor wavelengths and weighted by the sensor

response and finally integrated to produce an integrated effective radiance via equation
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(3.29) for a range of temperatures. The temperature range should be wide enough to cover

the suspected range of temperatures for the objects in the scene. The temperature resolu-

tion should also be very high (temperatures were calculated in 0.001 K increments for this

project). Note that the sensor response function is taken into account so the LUT is only

valid for that particular sensor. It must be regenerated for other sensors with different

responses. The LUT now provides a relationship between the integrated sensor radiance

and the blackbody temperature.

The integrated radiance from the sensor is then compared to the radiances in the LUT and

a temperature is chosen through an interpolation scheme. For example, a nearest neighbor

interpolation would select the temperature whose associated integrated radiance in the

table had the smallest absolute difference with the sensor’s reported integrated radiance.

For the same DIRSIG simulation in Section 3.6.1, an integrated LWIR sensor radiance of

54.9410
[
W/m2/sr

]
yields an apparent temperature of 299.9970 K using the LUT method.
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Chapter 4

Background

In the last chapter, the interaction between the self-emitted signal from a target and its ra-

diometric environment was discussed. The self-emitted radiance from the target, carrying

the desired information about the target’s temperature, is heavily modified before it is fi-

nally recorded by the sensor. The objective of temperature retrieval from remote thermal

imagery is to account for the discrepancy between the at-sensor apparent temperature

and the absolute temperature of the target as accurately as possible. There are several

tools and methods used to extract the absolute temperature from the radiance recorded

by the sensor. There is currently no single approach that is widely accepted and used

by the thermal remote sensing community [1]. Therefore, a number of different methods

exist that are useful for a particular type of problem. An overview of common methods is

presented in this chapter.

4.1 Modeling Tools

It is clear from the previous chapter that the signal from a target material is significantly

altered before being recorded by the sensor. The terms in the governing equation may be

modeled in order to back out the original target signal. There are several tools available

to model radiometric phenomena and radiation propagation. The two major tools used

in this project are MODTRAN and DIRSIG.

4.1.1 MODTRAN

The MODerate spectral resolution TRANsmittance tool is an atmospheric radiative trans-

fer code [18]. It was developed by the Air Force Research Laboratory (AFRL) and Spectral

Sciences, Inc (SSI). MODTRAN models the atmosphere as a series of stacked homoge-

neous layers. The pressure and temperature of each layer is provided by several preset at-

mospheric profiles or by user-supplied radiosonde data. The concentration of permanent

gases can be estimated from the radiosonde or from the generic preset profiles. MOD-

TRAN contains six predefined atmospheres that can be supplemented with radiosonde

37
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data if available. The user may also specify meteorological conditions such as visibility,

season, air mass type, etc. to estimate the size and distribution of aerosols [1]. MODTRAN

will provide the spectral absorption, transmission, emission and scattering characteristics

of the atmosphere based on the given input data for a spectral range of 0 to 50,000 cm−1

[19]. It is based on the lower spectral resolution LOWTRAN 7 code. MODTRAN 4 incor-

porates all the LOWTRAN 7 options but also improves the spectral resolution to 2 cm−1

[18].

As previously mentioned, MODTRAN divides the atmosphere into homogeneous layers

as illustrated in Figure 3.5. The transmission between the sensor and target is calculated

from equations (3.15) and (3.19). The transmission is expressed as

τ(θ, λ) = ∏
i

e
−∑

k
mikCik(λ) sec θ zi

(4.1)

where again mik and Cik(λ) are the number density and extinction cross-section of the kth

atmospheric constituent in the ith layer, respectively. The thickness of the layer is zi and

the zenith view angle is θ. The summation in the exponent is taken over all the constituent

gases and the total transmission is the product of the transmissions of the individual lay-

ers. MODTRAN derives the number densities from the atmospheric profile data and de-

rives extinction cross-sections from database values of the atmospheric constituents [1].

The emission of the atmosphere is calculated similar to equation (3.20) rewritten here as

Latm (θ, λ) =
N

∑
i=1

LBB (λ, Ti) [1− ∆τi( θ, λ)]
i−1

∏
j=1

∆τj(θ, λ)
[

W
m2 sr µm

]
. (4.2)

where Ti and ∆τi are the temperature and transmission of the ith layer, respectively. Note

that the transmission and self-emitted atmospheric radiance are independent of the az-

imuth angle since the atmosphere is modeled as a series of homogeneous layers.

MODTRAN can be manipulated to estimate the atmospheric parameters in the governing

equation (Section 3.4.3). The total spectral transmission and upwelling radiance are pro-

vided in the MODTRAN output. The downwelling radiance can be calculated through

equation (4.2) for various look angles. MODTRAN can also provide the spectral trans-

missions of the individual gas species and aerosols in the path. The aerosol models in

MODTRAN are defined by regions that contain typical aerosol sources. The sources are
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representative of rural, urban, desert and maritime environments [20]. The predefined at-

mospheric profiles are characteristic of tropical, mid-latitude, and arctic atmospheres for

summer and winter seasons [20].

4.1.2 DIRSIG

The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool was developed

by the Digital Imaging and Remote Sensing (DIRS) Laboratory at the Rochester Institute

of Technology (RIT) [21]. It is a synthetic image generation application that produces sim-

ulated visible through thermal imagery. DIRSIG utilizes ray tracing and first principle

physics, chemistry, and mathematical theories to accurately reproduce the radiometry of

a scene [22]. The simulated images are generated through the integration of first prin-

ciple based sub-models. These sub-models include BRDF predictions, facet temperature

prediction, sensor models, and atmospheric models, among others. The modeled compo-

nents are combined spectrally to create a simulated integrated radiance image of the scene

for the given sensor and viewing geometry. DIRSIG also has the capability to model po-

larimetric, RADAR, and LIDAR imaging systems.

A DIRSIG scene consists of full three-dimensional facetized object geometries usually

created with a CAD software package. A material’s physical and optical properties are

assigned to each facet. These properties may be obtained through field and laboratory

measurements or from material databases. A temperature prediction model estimates the

temperature of every facet in the scene based on material thermodynamic and optical

properties, illumination history, and local weather history. The atmospheric model uses

the MODTRAN radiative transfer code. DIRSIG creates a MODTRAN look-up table for a

series of atmospheric paths of interest. An accurate estimate of the atmospheric transmis-

sion, upwelling and downwelling radiances is therefore possible. The geometric sensor

model allows the user to simulate broadband, multispectral, and hyperspectral sensors in

a variety of geometries such as framing arrays, line scanners, etc. [22].

DIRSIG is a powerful tool for the remote sensing community [22]. The synthetic data pro-

duced by the model is useful for a range of applications. These application areas range

from algorithm training and testing to instrument prototyping.
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4.2 Temperature Retrieval Methods

The ultimate goal in thermal remote sensing is to obtain the absolute temperature of a

material surface. The atmospheric and emissivity effects must be isolated and accounted

for in order to arrive at the “pure” blackbody signal from the target material.

4.2.1 Atmospheric Compensation

The term atmospheric compensation refers to the removal of atmospheric effects in an image.

Specifically, these effects are the atmospheric transmission and upwelling radiance from

equation (3.21). The sensor-reaching radiance is atmospherically corrected to arrive at the

surface-leaving radiance. Since the emissivity and other surface effects are not accounted

for, the surface-leaving radiance will yield only the apparent surface temperature and not

the absolute surface temperature.

4.2.1.1 Ground Truth

Probably the most straightforward method of atmospheric compensation is to perform

surface measurements of objects in the scene coincident with the time of image acquisi-

tion [1]. These “ground truth” collects are measurements of the absolute temperatures

of fully resolved targets with known emissivities in the scene. Recall that the radiance

reaching a sensor from a surface after passing through the atmosphere is

L̂sensor =
[
ε̂ L̂BB(T) + (1− ε̂) L̂d

]
τ̂ + L̂u

[
W

m2 sr

]
. (4.3)

If the calibration targets are blackbodies (ε = 1), then the downwelling term in equa-

tion (4.3) is zero. By taking temperature measurements of blackbody objects in the scene

having a range of temperatures, a linear regression can be performed to yield the band

effective transmission and upwelling radiances from the slope and intercept of the regres-

sion for the given scene atmosphere. Once the atmospheric terms are known, a calibration

curve now exists that relates the sensor effective radiance to the surface-leaving effective

radiance. This can then be converted into an apparent temperature of the surface.

This method may also work for non-blackbody targets if the emissivity is known. In

this case, the downwelling sky radiance must also be known. It can be measured with

a radiometer in the scene that collects and integrates the radiance over the same pass

band as the sensor [1]. The downwelling radiance may also be approximated through an
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atmospheric modeling tool such as MODTRAN.

4.2.1.2 Single-Channel Method

The absolute temperature of the target may be obtained from radiance measurements in

a single IR channel which have been corrected for atmospheric effects [23]. A radiative

transfer model is used to derive the atmospheric terms in equation (3.21). This method

assumes knowledge of the bidirectional reflectance characteristics of the target material.

The MODTRAN tool is commonly used to model the state of the atmosphere and numer-

ically calculate the spectral transmission and upwelling and downwelling radiances for

the given image acquistion time and location. The horizontal and vertical distribution of

temperature and water vapor must be accurately known for input into the radiative trans-

fer model. Atmospheric profiles may be obtained from satellite sounding instruments,

numerical weather prediction models, and radiosondes. Since profile data is discrete in

time and space, the data must be spatially and temporally interpolated for the target of

interest. Once the atmospheric terms are accounted for, the kinetic temperature of the tar-

get can be determined given that its BRDF and geometry are known [23].

For the given spectral channel, the surface radiance can be computed from the sensor

radiance and the MODTRAN calculated transmission and upwelling radiance as

L̂sur f =
L̂sensor − L̂u

τ̂

[
W

m2 sr

]
(4.4)

where each of the parameters are band effective values [1]. The surface radiance can then

be converted into an apparent surface temperature (see Section 3.6).

An alternative approach is to make use of a LUT to relate the apparent surface tempera-

ture to an effective sensor radiance in the channel of interest. The method is similar to the

one presented in Section 3.6.2. For a given temperature, the spectral blackbody radiance

is calculated from the Planck equation. This radiance is then multiplied by wavelength

by the spectral transmission and then added to the spectral upwelled radiance generated

from MODTRAN. Finally, this spectral radiance is multiplied with the sensor response

and integrated to arrive at a band effective radiance for the given blackbody temperature.

This is written mathematically as

L̂ =
∫

[LBB(λ, T) τ(λ) + Lu(λ)] R′(λ) dλ

[
W

m2 sr

]
. (4.5)
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A LUT is created that relates a range of blackbody temperatures to a range of effective

radiances. The surface apparent temperature is therefore the temperature from the LUT

whose radiance is the closest match to the actual effective radiance recorded by the sensor.

The single channel method was successfully used by Qin et al. (2001) to retrieve desert

land surface temperatures using the Landsat TM thermal band [24]. The authors used in

situ atmospheric profile data that was coincident with the satellite pass to compensate for

the atmosphere. The resulting temperature errors were approximately 1.1 K.

4.2.1.3 Multi-Channel Method

The multi-channel method uses differential absorption in several spectral channels to

eliminate atmospheric effects. The split-window technique makes use of two channels

within one atmospheric window [23]. The target’s temperature is usually taken as a linear

or quadratic function of the apparent temperatures in the two channels [25]. The coeffi-

cients of these temperature retrieval algorithms are usually determined by a regression

of the apparent temperature measured by the sensor with coincident in situ surface tem-

perature measurements. The regression analysis can also be performed on synthetic data

generated from a large sample of atmospheric profiles using a radiative transfer model.

There are numerous split-window algorithms depending on the specific sensor and ap-

plication [23]. Schott (1997) describes a general split-window technique in which the ap-

parent surface temperature can be derived from the apparent temperature in two spectral

bands as

Tsur f =
Ti − b Tj

1− b
[K], (4.6)

where Ti and Tj are the apparent temperatures in the two bands and b = β̂ext,i/β̂ext,j, the

ratio of the effective extinction coefficients in the two channels [1]. The extinction coeffi-

cients can be computed through the use of radiation propagation models [1].

Prata (1993) developed a dual-channel method to retrieve land surface temperatures [26].

This approach uses the brightness temperatures in the two channels along with an esti-

mate of the atmospheric transmission, the downwelling radiance, and the surface emis-

sivity in each channel. Prata’s method yielded land surface temperatures to within± 1.5 K

for flat terrain with uniform surface composition in relatively dry atmospheres [26].

The split-window technique has been used successfully on data from the Advanced Very
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High Resolution Radiometer (AVHRR) instrument on the NOAA polar-orbiting satellites

[27]. The instrument uses three bands for sea surface temperature retrieval at 3.7 µm

(band 3), 11 µm (band 4), and 12 µm (band 5). The non-linear algorithm uses two bands

for daytime temperature retrieval and three bands for nighttime temperature retrieval.

The coefficients of these algorithms are calculated by matching a set of AVHRR data with

buoy observations. A global dataset is assembled of AVHRR data and coincident tem-

perature measurements from buoys. This dataset contains a global range of sea surface

temperatures and atmospheric moisture content. A regression analysis is then performed

on this dataset to calculate coefficients for the split-window algorithms. A validation of

these algorithms by Li et al. (2001) indicate a small temperature bias of 0.08 °C to 0.14 °C

with a standard deviation of 0.50 °C or less [27].

4.2.1.4 Multi-Angle Method

The multi-angle approach takes advantage of the differential absorption arising from the

difference in path length when a target is viewed from two different angles [23]. The same

target is viewed from a small zenith angle (usually at nadir) and then near-simultaneously

from a high zenith angle. The ATSR instrument aboard the ERS-1 satellite uses a nadir

view and a forward-looking 55° view, for example. The atmospheric transmission and

upwelling radiance are approximated from the differing radiances resulting from the dif-

ferent view angles. This method assumes a spatially uniform air column. It also strictly

requires that one view path be significantly longer than the other [23]. The angular vari-

ation of the target’s emissivity is assumed to be negligible. However, to reduce errors in

the derived apparant surface temperature, angular emissivity effects should be taken into

account if known.

Schott (1997) provides an overview of the procedure for this method [1]. Assuming that

the targets in the scene are Lambertian, the relationship between the observed radiance at

nadir, L(θ = 0), and at some other angle, L(θ = θ′), is given as

L̂(θ = θ′) =
[

τ̂(θ′)
τ̂(0)

]
L̂(θ = 0) +

[
L̂u(θ′)− τ̂(θ′)

τ̂(0)
L̂u(0)

]
(4.7)

If several Lambertian targets are imaged, then a linear regression may be performed in

which the first bracketed term in equation (4.7) is the slope, m, and the second bracketed

term is the intercept, b. For clear atmospheres, the effective transmission and upwelled
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Figure 4.1: Multispectral Thermal Imager (MTI) band locations (Szymanski and Weber 2005 [28]).

radiance for nadir-viewing can be derived from the slope and intercept by

τ̂(0) = m1/(sec θ′)−1 (4.8)

L̂u(0) =
b

sec θ′ −m
.

4.2.1.5 MTI Sea Surface Temperature Retrieval

The Multispectral Thermal Imager (MTI) is a Department of Energy (DOE) mission to

demonstrate technology and algorithms for industrial and environmental remote sensing

research [28]. The MTI sensor contains 15 spectral bands between 0.4 and 11 µm which

include two bands in the MWIR (bands J and K) and three bands in the LWIR (bands L,

M, and N) (See Figure 4.1). The visible and infrared bands have a GSD of 5 m and 20

m, respectively. Borel et al. (1999) developed a method to use the thermal bands on MTI

to retrieve sea surface temperatures [29]. The method is based on linear combinations of

the brightness temperatures in the MTI bands J, K, L, M, and N for night time imaging.

It also relies on two view angles of a body of water at nadir and at 60°. First an atmo-

spheric database (LUT) is created using a radiative transfer code such as MODTRAN. The

database contains the atmospheric transmission, upwelling, and downwelling radiances

for a wide range atmospheric conditions as seen in the five MTI bands at the two view

angles. Next, from the atmospheric database, the top-of-atmosphere (TOA) radiance is

computed for a given water emissivity and temperature. A TOA database is created from
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the atmospheric database and a range of water temperatures. Finally, a linear regression

model is fit to this database. The sea surface temperature is then a linear combination

of the brightness temperatures in the five bands [29]. Preliminary post-launch validation

of this algorithm was performed by Clodius et al. (2002) using available ocean and lake

buoy data [30]. The results indicated that the algorithm was able to retrieve sea surface

temperatures to within approximately ± 3 K.

4.2.1.6 AAC Algorithm

The autonomous atmospheric compensation (AAC) algorithm was designed to compen-

sate for atmospheric effects in high resolution, hyperspectral thermal infrared imagery [31].

In particular, atmospheric compensation of natural land surface image data is of interest.

It was developed out of the desire to have an atmospheric correction technique using only

data from the image.

This method attempts to separate atmospheric effects from temperature/emissivity ef-

fects by assuming the image data obey certain conditions. The first condition is that the

atmospheric parameters vary significantly less than the land surface parameters. The vari-

ability of atmospheric parameters occur on larger spatial scales compared to land surface

parameters. The local atmosphere is therefore generally homogeneous. The high vari-

ability of the land surface is ensured if the sensor has high spatial resolution. The second

assumption of this method is the at-surface spectral radiances are significantly smoother

than the atmospheric spectral absorption and emission. This assumption depends on the

spectral resolution of the sensor and the spectral emissivity of the surface. A high emissiv-

ity surface is ideal so that the reflected downwelling sky radiance is small. Therefore, the

algorithm may not be directly applied to scenes with low-emissivity man-made surfaces.

The water absorption band at 11.73 µm is used to estimate the atmospheric profile. If

the two conditions previously mentioned hold, then the variability at this wavelength is

predominately the result of atmospheric effects. A strong absorption channel at 11.73 µm

and an adjacent, weak absorption channel are used to calculate a transmission index and

an upwelled radiance index. These indices, along with a radiative transfer code, are used

to derive the spectral transmission and upwelled radiance.

Gu et al. (2000) show that the accuracy of the AAC algorithm in retrieving surface ap-

parent temperatures is comparable to the accuracy of algorithms based on radiosonde
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measurements [31]. The algorithm also does not have the temporal and spatial limita-

tions of radiosonde measurements. The authors note too that it is possible to automate

the process since the algorithm is driven by the image data alone.

4.2.1.7 ISAC Algorithm

The in-scene atmospheric compensation (ISAC) method attempts to correct for the at-

mosphere to recover the apparent surface temperature for hyperspectral imagery [32].

The algorithm assumes that the atmosphere is homogeneous over the entire scene. It

depends on the natural occurrences of blackbodies in the scene, such as vegetation and

water. For each pixel, the sensor radiance in each channel, L(λi), is converted into an

apparent temperature. The channel with the highest apparent temperature for the given

pixel is denoted as λm. The channel with the most occurrences (pixels) of λm is chosen as

the reference channel, λre f . For each channel λi, the blackbody radiance from the appar-

ent temperature in that channel is calculated for only the pixels where λm = λi. A scatter

plot of L(λi) versus L′BB(λi) is constructed for each channel. Pixels for which ε(λ) ≈ 1

(blackbodies) are represented by points near the top edge of the scatter plot. The slope of

a line fit through these points represents the effective spectral transmission, τ′(λi), while

the vertical intercept is the effective spectral upwelling radiance, L′u(λi) in the channel.

These effective values may not be physical. For example, the slope may be greater than

one. Estimated quantitative values can be obtained by scaling these effective values to

true atmospheric conditions. This can be done by creating an independent estimate of

the spectral transmission and upwelled radiance at the reference channel using an atmo-

spheric model such as MODTRAN. The effective values are then scaled to the modeled

values at the reference channel. The effective transmission and upwelled radiance values

may also be scaled by taking advantage of the water vapor absorption band at 11.7µm. A

detailed procedure for this method is presented in Young et al. (2002) [32].

4.2.1.8 Physics-Based Modeling

The atmospheric compensation methods discussed thus far remove atmospheric effects

by converting the sensor-reaching radiance into a surface-leaving radiance. This is ac-

complished using in-scene or auxiliary information about the state of the atmosphere.

Another approach is to take advantage of physics-based models to anticipate the radi-

ance reaching the sensor from a target for a variety of atmospheric conditions. These

anticipated sensor radiances form a target space of possible sensor radiances from a fixed

surface leaving target radiance.
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The invariant method proposed by Healey and Slater (1999) uses a physical model for

the sensor-reaching radiance along with MODTRAN to generate a target space of spectral

radiance vectors [33]. Healey and Slater used their method to perform target detection at

visible and near-infrared (VNIR) wavelengths. The sensor reaching radiance is calculated

by a physics-based governing equation similar to equation (3.21) except with the emissiv-

ity replaced with the VNIR spectral reflectance. Only the spectral reflectance contains any

information about the target. The other parameters in the radiative transfer equation de-

scribe the atmospheric effects. For a known target spectrum, the atmospheric parameters

are varied in MODTRAN to generate a multitude of spectral sensor-reaching radiances.

Healey and Slater produced 17,920 physical estimates of how a given target signature

might appear to a sensor [33]. An image pixel containing the target of interest is then

compared to the spectra in the target space. The target space is essentially a look-up table

relating the atmospheric parameters to the sensor radiance from the target. The closest

estimate of the atmospheric parameters in the scene correspond to the closest match of

the given pixel spectrum to the spectra in the target space.

Borel developed a physics-based algorithm for temperature retrieval using the MTI instru-

ment [29]. This approach uses a radiative transfer model such as MODTRAN to model

the atmospheric column. The water vapor column density and the effective water va-

por temperature is varied in the model and for each combination of these two parameter

values, an estimate of the water surface temperature in the MTI bands is produced. The

water vapor density and temperature combination that produced the most consistent wa-

ter surface temperature over the region of interest is selected as the best atmosphere. It

is then used to retrieve the water surface temperature for the whole image. Clodius et al.

notes that the combination of bands L, M, and N produced consistently good results [30].

4.2.2 Temperature/Emissivity Separation

Atmospheric compensation allows for the recovery of the surface-leaving radiance. This

radiance must now be deconvolved in order to extract the absolute temperature of the

surface. If there is a priori knowledge of the surface emissivity and BRDF, then the abso-

lute temperature can be calculated from equation (3.21). However, if the emissivity is un-

known, then it is not possible to obtain the surface temperature from a passive radiometer

alone [23]. Given a sensor with N channels, there are always N + 1 unknowns: an emis-

sivity value for each of the N channels plus the absolute temperature of the surface. This

yields an infinite number of solutions to the corresponding system of equations. There-
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fore, an assumption is usually made to constrain the extra degree of freedom. There are

several temperature/emissivity separation techniques that rely on different assumptions.

All of the following techniques assume that the image has already been atmospherically

compensated.

4.2.2.1 Reference Channel Method

The reference channel method is based on the assumption that a pixel will have a con-

stant emissivity at some spectral channel [34]. If the emissivity in this reference channel

is known then the temperature in the channel can be calculated using the methods in Sec-

tion 3.6. This temperature is then used along with equations (3.1) and (3.3) to calculate the

emissivity in the other channels. The drawback of this method is the requirement for a pri-

ori knowledge of the material’s emissivity at some wavelength. However, this is possible

if laboratory measurements of the material exist. Kealy and Hook (1993) demonstrated

the use of the reference channel method on data from the Thermal Infrared Multispectral

Scanner (TIMS) instrument for land surface studies [34]. The authors used channel 6 with

an emissivity of 0.95 since it represents an average emissivity value for silicate rocks in

channel 6 (11.655 µm).

4.2.2.2 Normalizied Emissivity Method

The normalized emissivity method (NEM) is similar to the reference channel method ex-

cept that it assumes a constant emissivity in every channel [34]. The apparent temperature

is calculated for each channel using the assumed emissivity value. The highest channel

temperature is designated as the temperature of the pixel. Now that the temperature of

the material is defined, the emissivity of every channel can be calculated. Kealy and Hook

(1993) note that an emissivity of 0.96 is often used for land surface studies since it repre-

sents an average of likely values for geologic surfaces [34].

4.2.2.3 Temperature/Emissivity Separation Algorithm

The Temperature/Emissivity Separation (TES) algorithm was developed for the Advanced

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor [35]. ASTER

has five bands in the LWIR to estimate land surface temperatures and emissivity spec-

tra with a noise equivalent temperature (NE∆T) of <0.3 K. The sensor data must first

be atmospherically compensated to arrive at the surface-leaving radiance for each pixel.

The algorithm also requires the downwelling radiance in the scene. The ASTER standard

product AST09 provides the necessary surface-leaving and downwelling radiances [36].



4.2. TEMPERATURE RETRIEVAL METHODS 49

The TES algorithm uses several modules to arrive at the temperature and emissivity spec-

tra of the surface. The first module is the NEM module which assumes a maximum emis-

sivity. Using this emissivity and the provided downwelling radiance, the surface-emitted

radiance is estimated from the surface-leaving radiance as

Lsel f (λ) = Lsur f (λ)− [1− ε(λ)] Ld(λ)
[

W
m2 sr µm

]
, (4.9)

where Lsur f is the atmospherically-corrected surface-leaving radiance in the channel, and

Lsel f is the estimated self-emitted radiance. The assumed maximum emissivity is used for

the value of ε. As with the normalized emissivity method, the apparent temperature is

calculated in each band and the estimated surface temperature is taken as the maximum

apparent temperature over all bands. This NEM temperature is then used to calculate the

emissivity in each channel. The self-emitted term from equation (4.9) is then re-calculated

using the NEM channel emissivities. This process is repeated until the change in the esti-

mated self-emitted radiance is less than a defined threshold [36].

Next, the NEM emissivities are scaled by the Ratio module. The relative emissivity, β(λ),

is found by divding each NEM emissivity by its average for the channel. Finally, the

relative emissivities are scaled to absolute emissivities by the maximum-minimum rela-

tive emissivity difference (MMD) module. An empirical relationship predicts the min-

imum emissivity from the maximum-minimum relative emissivity difference, MMD =

β(λ)|max − β(λ)|min. The minimum emissivity/MMD relationship was established using

laboratory and field spectra of naturally occurring materials. This process is described in

Gillespie et al. (1998) and the result is written here as

εmin = 0.994− 0.687× MMD0.737. (4.10)

The absolute emissivities are then calculated by

ε(λ) = β(λ)
[

εmin

β(λ)|min

]
. (4.11)

The surface temperature must be recalculated from these new emissivities and from the

atmospherically corrected radiances. These TES temperature and emissivity values com-

prise the ASTER Standard Products [35]. Gillespie et al. (1998) demonstrate that the TES

algorithm was able to recover the surface temperature and emissivity to within 1.5 K and

0.015, respectively, for an ASTER test data set [35].



50 4.2. TEMPERATURE RETRIEVAL METHODS

4.2.2.4 ARTEMISS Algorithm

The Automatic Retrieval of Temperature and Emissivity using Spectral Smoothness (ARTE-

MISS) is a temperature/emissivity method developed by Borel (2003) [37]. It is based on

the observation that in the thermal infrared region, the spectra of solids are smoother than

the spectra of gases. First, an atmospheric LUT of transmission, upwelling, and down-

welling radiance is created for a range of atmospheric conditions. The ISAC algorithm

is used to narrow down the number of atmospheres in the LUT to a handful of candi-

date atmospheres. Next, the spectral emissivity is estimated. Given knowledge of the

atmosphere, the surface temperature can be estimated by

Test = L−1
BB

[
λ0,

Li − Lu − (1− ε0) Ld τ

ε0 τ

]
, (4.12)

where ε0 is an assumed emissivity of 0.95, λ0 is a channel where the atmosphere is highly

transmissive, and Li is the measured radiance in the channel. The estimated surface tem-

perature is used to calculate an estimated spectral emissivity by

ε =
Li − Lu − Ld τ

[LBB(λ, Test − Ld] τ
. (4.13)

This emissivity spectrum will show some atmospheric line features. The smoothness of

the spectrum is measured by the standard deviation of the spectral emissivity and the lo-

cal 3-point average emissivity. Low standard deviation values indicate smoother spectra.

The transmission, upwelling, and downwelling radiance from each candidate atmosphere

from the ISAC algorithm are used in equations 4.12 and 4.13. The atmospheric case with

the smallest smoothness is found for every pixel. The atmosphere that occurs the most

often is selected as the best atmosphere. Now that an atmosphere has been chosen, the es-

timated emissivity can be smoothed by adding an offset to the estimated surface temper-

ature Test. A range of temperature offsets is applied until a minimum standard deviation

is found. The result is an accurate estimate of the surface emissivity and temperature.

4.2.3 Temperature Retrieval Summary

Each of the temperature retrieval techniques just presented is useful for a particular set of

scene and sensor characteristics. The modeling tools presented in Section 4.1 are intended

to aid the temperature retrieval process. The methods and modeling tools will now be

adapted to derive the temperature of a mechanical draft cooling tower.



Chapter 5

Methodology

Derivation of the exit air temperature of a mechanical draft cooling tower (MDCT) is a

complex radiometric problem. The ultimate goal is to reconstruct the blackbody radiance

of the tower from a thermal image in order to solve for the absolute temperature. The

problem is unique due to the cavity properties of the tower and due to the presence of an

exhausted water vapor plume. This chapter explores the role that these factors have on

the apparent temperature of the MDCT. A detailed methodology is developed that will

provide a correction factor to convert the image-derived apparent temperature into the

exit air temperature of the MDCT.

5.1 Tower Leaving Radiance

Recall from equation (3.13) that the radiance leaving the surface of an object consists of

a self-emitted term and a reflected background term. Equation (3.13), representing the

tower-leaving radiance, is rewritten here as

Ltower(θ, φ, λ) = ε(θ, φ, λ)LBB(λ, T) +
∫

2π
Lbkgd(θi, φi, λ) ρ′(θi, φi, θ, φ, λ) cos(θi)dωi, (5.1)

where again the units are
[
W/m2/sr/µm

]
and (θ, φ) indicate the direction of the sensor.

From this equation, it is apparent that the tower-leaving radiance will be affected by the

background radiance and by the optical properties of the tower. The background radiance

will depend on the geometry of the tower and on the reflected downwelling radiance from

the interior elements of the tower. The optical properties consist of the BRDF and direc-

tional emissivity of the tower materials.

The geometry of an MDCT introduces an added complexity when determining the tower-

leaving radiance. For an exposed, level surface the reflected background Lbkgd(θi, φi, λ) is

the reflected downwelled radiance from the (θi, φi) direction. The downwelling radiance

is the self-emitted radiance from the skydome. However, for a cavernous object such as an

MDCT, the background radiance is a collection of the self-emitted and reflected energies

51
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Figure 5.1: Diagram of a single photon path for an exposed object (left) and a cavity object (right).
The photon is emitted from the sky and reflects off the target surface into the sensor. The dotted
outline indicates the BRDF of the surface and the thickness of the BRDF in a particular direction
represents the magnitude of the reflected component in that direction. The self-emitted photons
from the object are not shown here.

from the interior surfaces of the cavity as well as the downwelling sky radiance. The back-

ground radiance Lbkgd(θi, φi, λ) from a particular direction may be the downwelling sky

radiance or radiance from one of the other interior surfaces of the cavity. In the latter case,

the radiance leaving another interior surface would be the sum of its self-emitted com-

ponent and its reflected background. The reflected background therefore does not “stop”

with the sky as in the exposed surface case. For a cavity object, the reflected background

must be calculated for each generation and for every angle, hence the added complexity

of cavernous objects. Figure 5.1 illustrates the importance of the object geometry on the

target-leaving radiance.

The reflective/emissivity properties are summarized by the BRDF of the material. The

magnitude and directional characteristics of the BRDF greatly influence the target-leaving

radiance since the BRDF will determine the proportion of sky radiance and interior sur-

face radiance that contributes to the background radiance. Recall from Section 3.2 that the

integral of the BRDF over the hemisphere above a surface is the DHR and that the DHR

and directional emissivity are related through Kirchhoff’s law. The magnitude of the DHR

controls the magnitude of the self-emitted term in equation (5.1) while the angular char-

acteristics of the BRDF influence the reflected term. The BRDF affects what direction in

the hemisphere has the largest contribution to the reflected background radiance. For ex-

ample, for a diffuse BRDF every direction is equally weighted so the background radiance

from the entire hemisphere has equal importance. For a specular BRDF, radiances in the

specular direction will contribute more to the target-leaving radiance than radiances in

non-specular directions.
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Since an MDCT is a large cavity, the tower-leaving radiance might reduce to the black-

body radiance of the interior tower surfaces under certain conditions.

Emissivity: Relatively low DHR values of the tower materials in the thermal infrared

would translate to high emissivities. This would cause the self-emissive term in equa-

tion (5.1) to dominate the tower-leaving radiance. The tower-leaving radiance would

therefore approach the blackbody radiance if the actual emissivities were sufficiently high.

BRDF: The shape of the BRDF of the tower materials would greatly influence the reflected

radiance within the tower. For a sensor placed above the tower and targeted at an interior

surface through the fan stack opening, a specular BRDF would allow more radiance from

within the tower to be reflected back to the sensor.

Bounces: As with a perfect blackbody cavity, the radiance exiting the cavity approaches

the blackbody radiance as the number of internal reflections within the cavity increase.

The magnitude and shape of the BRDF and also the number of reflections within the

tower are therefore free parameters that affect the radiance leaving the tower. In the fol-

lowing sections, constraints are placed on these parameters through measurements and

modeling of the physical phenomena.
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5.1.1 Spectral Measurements of MDCT Materials

Spectral reflectance measurements were taken of several MDCT construction materials

obtained from the Johnston Equipment Company in Rochester, New York. The reflectance

spectrum from approximately 2 to 25 µm was measured with a SOC-400 instrument. The

device illuminates the sample with an infrared beam at a 20° angle to the surface nor-

mal of the sample and measures the total directional reflectance of the sample [38]. The

reflectance measurements have been converted to an emissivity spectrum through Kirch-

hoff’s law. In each figure, a photograph of the material is shown at left and the emissivity

spectrum is shown at right. There are two emissivity curves for each material which were

measured from two different points on the material. This was meant to show any varia-

tion in emissivity for the material.

(a) Photograph of Sample (b) Emissivity Spectrum

Figure 5.2: Drift eliminator emissivity spectra of two separate physical locations on the material.

(a) Photograph of Sample (b) Emissivity Spectrum

Figure 5.3: Metal plate emissivity spectra of two separate physical locations on the material.
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(a) Photograph of Sample (b) Emissivity Spectrum

Figure 5.4: Wood support emissivity spectra of two separate physical locations on the material.

(a) Photograph of Sample (b) Emissivity Spectrum

Figure 5.5: Plastic disc emissivity spectra of two separate physical locations on the material.

The spectra shown here cover a wide range of construction materials encompassing metal,

plastic, wood, and vinyl. The MWIR and LWIR spectra of the materials exhibit emissivity

values above 0.75 for all the sample points of measure in the 3-5 µm and 8-14 µm bands.

These results demonstrate that, in general, typical cooling tower materials will have rela-

tively high emissivities (low DHR) in the midwave and longwave infrared regions.
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5.1.2 BRDF of NEFDS Materials

Materials similar to those in Section 5.1.1 were found in the NEF database. Recall from

Section 3.2.1.1.4 that the NEFDS is a collection of BRDF model parameters for several

hundred different materials. The materials selected represent metal, wood, plastic, and

insulation and all have a DHE of at least 0.93. The BRDF of each material at 3.5 µm and at

10.0 µm at an incident illumination angle of 20° are plotted in Figures 5.6 - 5.9.

(a) BRDF at 3.5 µm (MWIR) (DHE = 0.9512) (b) BRDF at 10.0µm (LWIR) (DHE = 0.9533)

Figure 5.6: NEFDS BRDF of weathered galvanized bare steel (NEF #0525UUUSTLa) measured at
an illumination angle of 20°.

(a) BRDF at 3.5 µm (MWIR) (DHE = 0.9978) (b) BRDF at 10.0µm (LWIR) (DHE = 0.9589)

Figure 5.7: NEFDS BRDF of mildly weathered plastic tarp (NEF #1019UUUFABa) measured at an
illumination angle of 20°.
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(a) BRDF at 3.5 µm (MWIR) (DHE = 0.9431) (b) BRDF at 10.0µm (LWIR) (DHE = 0.9375)

Figure 5.8: NEFDS BRDF of weathered bare construction lumber (NEF #0404UUUWOD) mea-
sured at an illumination angle of 20°.

(a) BRDF at 3.5 µm (MWIR) (DHE = 0.9510) (b) BRDF at 10.0µm (LWIR) (DHE = 0.9335)

Figure 5.9: NEFDS BRDF of weathered paint on insulation panel (NEF #0887UUUPNT) measured
at an illumination angle of 20°.

The BRDF plots indicate that typical MDCT construction materials are relatively specular

in the MWIR and LWIR. In addition, these selected materials also have high emissivity (at

least 0.93) at these wavelengths as consistent with Section 5.1.1.
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5.1.3 DIRSIG Model of Closed and Open Cavities

The geometry of an object will have an important influence on its apparent temperature.

A three-dimensional cavity was modeled in DIRSIG to study the relationship between

the number of internal reflections resulting from the cavity geometry and the reflectance

characteristics of the internal surfaces on the apparent temperature of the cavity. Both a

closed cavity and an open cavity were studied.

(a) Closed box layout (b) Open well layout

Figure 5.10: DIRSIG cavity simulation layouts (not to scale)

The first simulation consisted of a sealed six-facet box. A broadband 8 - 14 µm sensor with

a unit spectral response was placed inside the box and targeted at one of the interior faces

at a 45° angle (Figure 5.10(a)). The total number of reflections that a photon is allowed to

make before being recorded by the sensor can be set manually in DIRSIG. Several runs

were performed with a diffuse (no specular component) Ward BRDF and then with a

specular (no diffuse component) Ward BRDF in which the number of internal reflections

were increased incrementally. The BRDF shapes used in the simulations were shown in

Figure 3.2. The model parameters were carefully chosen so that that DHR values were

0.05, 0.15, and 0.25 for the diffuse and specular models. These DHR values correspond

to emissivity values of 0.95, 0.85, and 0.75, respectively, through equation (3.12). The box

facets were also assigned a temperature of 306 K. The radiance recorded by the sensor

is an integrated radiance between 8 and 14 µm. This radiance is then converted into an

apparent temperature. For both the diffuse and specular BRDF models and for each DHR

value, trends in the apparent temperature as a function of the number of internal bounces

were investigated.

The second scenario consisted of an open, deep well. A broadband 8 - 14 µm sensor with a
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unit spectral response was placed outside the well and targeted at one of the interior faces

at a 45° angle (Figure 5.10(b)). Several runs were performed with a diffuse (no specular

component) Ward BRDF and then with a specular (no diffuse component) Ward BRDF in

which the number of internal reflections were increased incrementally. As before, DHR

values of 0.05, 0.15, and 0.25 were chosen for the diffuse and specular models. The well

facets were assigned a temperature of 306 K while the atmosphere was a spectrally flat

240 K source with a transmission of unity. Again, the integrated radiance recorded by the

sensor was converted into an apparent temperature. For both the diffuse and specular

BRDF models and for each DHR value, trends in the apparent temperature as a function

of the number of internal bounces were investigated.

(a) Diffuse Ward BRDF (b) Specular Ward BRDF

Figure 5.11: Results of the closed box simulation. Actual temperature is 306 K (indicated by arrow)

(a) Diffuse Ward BRDF (b) Specular Ward BRDF

Figure 5.12: Results of the open well simulation. Actual temperature is 306 K (indicated by arrow)
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The results of the sealed box and open well simulations are shown in Figures 5.11 and

5.12, respectively. The DIRSIG output is an integrated 8 - 14 µm radiance image. The av-

erage radiance of 100 pixels was converted to an apparent temperature using a radiance-

to-temperature look-up table. The apparent temperature for up to six internal reflections

are shown for each DHR value on the same plot.

Theoretically, the apparent temperature should increase and approach a final apparent

temperature as the number of bounces increases. The radiance reaching a sensor is the

self-emitted radiance of the target facet, modified by its emissivity, plus the reflected back-

ground radiances written as

Lsensor = εLtarget + ρLbackground. (5.2)

The BRDF of the target facet will affect which direction in the hemisphere has the largest

contribution to the reflected background radiance. For example, for a diffuse BRDF, every

direction is equally weighted so the background radiance from the entire hemisphere has

equal importance. For a specular BRDF, radiances in the specular direction will contribute

more to the sensor-reaching radiance than radiances in non-specular directions. For the

sealed box, since the background radiances are always just the other facets of the box (at

the same temperature) the shape of the BRDF should not matter so the apparent temper-

ature should approach the actual assigned blackbody temperature of 306 K. This can be

seen in Figure 5.11. However, in the open well case, the background consists both of the

other well facets and also the much colder sky. A specular BRDF would cause the sensor

to see more of the warmer well than the colder sky, so the apparent temperature should

still approach the actual blackbody temperature of 306 K as it does in Figure 5.12(b). On

the other hand, a diffuse BRDF would cause the sensor to see both the other well facets

and the sky. The apparent temperature in this last case will therefore be a weighted aver-

age of the cold sky and the warm well temperature as seen in Figure 5.12(a).

In addition, the DHR of the BRDF will affect how quickly the apparent temperature ap-

proaches its asymptote. A lower DHR value will result in a higher emissivity by equa-

tion (3.12). A higher emissivity will cause the apparent temperature to approach its

asymptote more quickly since a higher emissivity indicates an object has a higher effi-

ciency as a radiator. In other words, a high-emissivity object behaves more like a black-

body and the dependence on the number of internal reflections is diminished. This trend

is evident in all of the plots shown in Figures 5.11 and 5.12.
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The results of this study confirm that a cavity will behave as a blackbody radiator if there

have been a sufficient number of internal reflections. The sealed box scenario demon-

strated that the apparent temperature approaches the actual blackbody temperature after

approximately one, two, and three reflections for DHR values of 0.05, 0.15, and 0.25, re-

spectively. This scenario also confirmed that the shape of the facet BRDF does not matter

since the sensor will always see one of the box facets. The open well scenario demon-

strated that the shape of the facet BRDF is important when there are multiple background

sources at disparate temperatures. A diffuse BRDF will cause more radiometric mixing

between the warm well radiance and the cold sky radiance, resulting in a lower apparent

temperature than the blackbody temperature of the well. A specular BRDF on the other

hand will cause more of the warm well radiance to reach the sensor, producing a result

similar to the sealed box simulation. Again, the DHR will determine how quickly the ap-

parent temperature approaches its asymptotic temperature.

For an MDCT, the open well, diffuse case represents the worst-case scenario in terms of

the internal geometry and material properties. If the internal tower materials are perfectly

diffuse and have sufficiently high emissivities in the longwave infrared, then the apparent

temperature will be within one or two Kelvin of the actual blackbody temperature if there

has been approximately three internal reflections.

5.1.4 Effective Emissivity of Drift Eliminators

The primary interior component of a counter-flow MDCT that is visible to an overhead

sensor is the drift eliminators. This material has a complex geometry that must be care-

fully modeled in order to determine its contribution to the radiance leaving the tower. An

investigation was performed to determine if the geometry and optical properties of the

drift eliminators would cause them to behave as a blackbody. If the effective emissivity

is indeed unity, then the complex drift eliminators could be replaced with a simple black-

body plate in the radiometry models, allowing for much more rapid simulations to be

used in the development of the parametric model for temperature error prediction.

As suggested by Figure 2.2, an overhead sensor targeted at the fan stack opening will

probably not be able to see past the drift eliminator layer. Therefore, the drift eliminators

are the last surface seen by the sensor which makes them very important since they are

the closest surface to the hot cooling water.
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(a) (b)

Figure 5.13: Photograph of the drift eliminators (a) and the CAD drawing reproduction (b).

The drift eliminators have a complex cavity geometry. As mentioned in Section 2.1, they

are designed to change the direction of the air stream multiple times. In order to model

their radiometry, a detailed representation of the drift eliminators must be produced. A

high fidelity geometric model contains a very large number of facets and may greatly af-

fect the execution speed of the simulations. A close-up photograph and a carefully drawn

CAD model of the drift eliminator are shown in Figure 5.13.

Spectral reflectance measurements were taken of a drift eliminator sample as shown in

Figure 5.2. The spectral emissivity plots demonstrate that the drift eliminators have a

relatively high emissivity in the longwave infrared. The average emissivity of all the

measured spectra from the sample in the 8 to 14 µm range is 0.941.

The BRDF of the drift eliminator material also demands careful attention. The sample

material appears to be plastic or vinyl. Although a direct BRDF measurement of this

sample is not available, the BRDF of a similar material can be found in the Nonconven-

tional Exploitation Factors Data System (NEFDS). Two such materials were found: mildly

weathered plastic tarp (NEF 1019UUUFABa) and weathered paint on insulation panel

(NEF 0887UUUPNT). The BRDF of each material at a wavelength of 10 µm was shown in

Figures 5.7 and 5.9. The BRDF for both of these materials is very specular in the longwave

infrared. Since the drift eliminator material is similar to these materials, the drift elimina-

tors could be considered fairly specular in the LWIR.

The study in Section 5.1.3 investigated the apparent temperature and effective emissivity

of an open cavity for multiple internal reflections. That study concluded that an open

cavity with high emissivity and a specular BRDF would have an effective emissivity of

unity if photons underwent at least three internal reflections before exiting the cavity.
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The DIRSIG simulations conducted in that study are now adapted to the drift eliminators

specifically. A detailed CAD drawing of the drift eliminators as shown in Figure 5.13(b)

was created. The Ward BRDF model was used to represent the BRDF of the drift elimina-

tor material. The spectral measurements of the sample indicated an average emissivity of

0.941 in the longwave infrared. The Ward model was adjusted to provide several BRDFs

having a directional emissivity of 0.941 measured at 20° to the surface normal. Since drift

eliminators are designed to allow air to change direction three times, photons were al-

lowed to make a maximum of three bounces in the simulation. A broadband 8 - 14 µm

sensor was placed approximately 150 meters above the drift eliminators. The entire drift

eliminator was assigned a temperature of 306 K. A flat blackbody plate having a tem-

perature of 276 K was placed under the drift eliminator to provide a low temperature

background source. The atmosphere was a spectrally flat 240 K source with a transmis-

sion of unity. The apparent temperature of the drift eliminator was determined from the

at-sensor radiance.

The shape of the BRDF and the sensor zenith view angle were varied in these simulations.

Ward BRDF models included one diffuse-only BRDF and four specular-only BRDFs. The

specular BRDFs had lobes exhibiting various widths as shown in Figure 5.14(b) - 5.14(e).

The drift eliminators were viewed from zenith angles of 0, 10, and 20 degrees.

The results of these various simulations are listed in Table 5.1. The drift eliminators were

assigned a temperature of 306 K. The table shows the apparent temperature recorded by

the sensor as a function of the sensor view angle and the shape of the BRDF. Recall that

for all the BRDF shapes, the directional emissivity was fixed at 0.941.

The data indicates that the apparent temperature increases and approaches the absolute

(a) (b) (c) (d) (e)

Figure 5.14: Ward BRDF shapes used in the DIRSIG simulations. Diffuse (a), specular, σ = 0.35 (b),
specular, σ = 0.22 (c), specular, σ = 0.15 (d), and specular, σ = 0.03 (e).
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Sensor Perfectly Specular Specular Specular Specular
Angle Diffuse σ = 0.35 σ = 0.22 σ = 0.15 σ = 0.03

0° 305.638 K 305.955 K 305.975 K 305.985 K 305.997 K
10° 305.363 K 305.938 K 305.971 K 305.982 K 305.995 K
20° 305.282 K 305.931 K 305.970 K 305.982 K 305.995 K

Table 5.1: Results of the DIRSIG drift eliminator simulations. The apparent temperature of the
drift eliminators is shown as a function of the BRDF shape of the material and the sensor view
angle. The absolute temperature is 306 K.

temperature of 306 K as the BRDF becomes more specular. For the specular BRDF shapes,

all apparent temperatures are within 0.1 K of the absolute temperature. Since typical

longwave infrared sensors have a sensitivity of about 0.1 K, the results show that a spec-

ular BRDF will reveal the absolute temperature of the drift eliminators. This is true even

for a broad-lobed BRDF. A diffuse BRDF, however, can be several tenths of a Kelvin less

than the absolute temperature. The results also indicate that the apparent temperature

decreases slightly as the sensor angle increases. This decrease is significant for the diffuse

BRDF. However, for the specular BRDFs, the decrease in apparent temperature with sen-

sor angle is negligible since the difference is still within typical sensor noise.

These simulations revealed that the apparent temperature of the drift eliminators as record-

ed by a LWIR sensor will equal the absolute temperature of the drift eliminators under

certain conditions. Previous studies and measurements have shown that the drift elimi-

nator material has a high emissivity and is specular in the LWIR. Furthermore, due to the

complex geometry of the drift eliminators, photons will undergo at least three internal

reflections. These conditions imply that the effective emissivity of the drift eliminators

will be unity over the range of sensor zenith angles typical for remote sensing of MDCTs.

Therefore, the complex geometry and optical properties of the drift eliminators can be

represented as a simple blackbody plate for subsequent DIRSIG simulations.
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Figure 5.15: CAD drawing of a counter-flow MDCT exterior view (left) and interior view (right).

5.1.5 MDCT DIRSIG Rendering with BRDF Materials

The DIRSIG modeling tool was used to investigate the apparent temperature of an MDCT

model. The DIRSIG rendering was generated by assigning basic thermal properties to a

geometric model of a tower. The geometrically detailed three-dimensional CAD draw-

ing was intended to mimic a counter-flow tower similar to the F-area and H-area units at

the Savannah River Site (SRS). The geometry of the drawing was based on measurements

taken at SRS and on schematics obtained from SPX Cooling Technologies [39]. A high

fidelity geometric model is necessary to reproduce the geometry for multiple reflections

within the cooling tower.

Recall that a sensor targeted at the fan stack opening will not be able to see past the drift

eliminator layer. Therefore, the geometry above the drift eliminators was carefully re-

produced, as it would have the greatest influence on the observed radiance. Structures

located below the drift eliminators were only approximated or deleted altogether. De-

tailed views of the CAD drawing are shown in Figure 5.15.

For the DIRSIG model, each facet of the CAD drawing was assigned a temperature of

306 K. In the first scenario, a diffuse Ward BRDF (no specular component) was assigned

to every facet. The model parameters were adjusted to produce a DHR of 0.15. In the sec-

ond scenario, a specular Ward BRDF (no diffuse component) was assigned to every facet.

The approximate shapes of the Ward models used were shown in Figure 3.2.
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(a) (b)

Figure 5.16: DIRSIG radiance image with diffuse Ward BRDF (a) and specular Ward BRDF (b).

The total number of reflections that a photon is allowed to make before being recorded by

the sensor can be set manually in DIRSIG. This parameter was held fixed at three bounces

since it has been shown that for a relatively low DHR value, the apparent temperature

would reach the blackbody temperature after approximately three internal reflections (see

Section 5.1.3). In the DIRSIG environment, the time was set to 23:00 local time in mid-June

in the south-eastern United States. A broadband 8 - 14 µm sensor was positioned 25° from

zenith at a distance of 120 m from the fan stack opening. A standard mid-latitude summer

atmosphere was generated. These parameters were chosen to approximate the conditions

at the Savannah River Site where actual infrared images of such towers were obtained.

DIRSIG outputs a radiance image of the scene visible by the sensor. Bright pixels indicate

higher radiances while dark pixels indicate lower radiance values. The DIRSIG render-

ings for both scenarios are shown in Figure 5.16.

A quick look at the DIRSIG image indicates that the general output is as expected. The

brightest pixels, representing the highest temperatures, are deep within the tower. The

exterior of the tower is cooler than the interior because it partially reflects the colder sky.

The ground plane was assigned a temperature of 288 K and makes up the darkest pixels

in the image, as expected. The differences in the two Ward models are apparent in the

images. In the right hand image, the warm pixels on the deck and on the ground plane
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(a) (b)

Figure 5.17: Apparent temperature profiles across the fan stack opening of the MDCT for the
diffuse Ward BRDF image (a) and the specular Ward BRDF image (b).

are the result of specular reflections from the hot tower surfaces due to the specular Ward

BRDF. An analysis of the DIRSIG images was performed by taking profiles across the fan

stack openings. The radiances were converted into apparent temperatures. These profiles

are shown in Figure 5.17.

The profiles indicate that for both BRDF models, the maximum apparent temperature de-

tected is the blackbody temperature of the tower, 306 K. The highest values in the plots

are pixels located deep within the tower. The central depression indicates the fan hub

while the low values at the left and right extremes of the plots indicate the tower decking.

The apparent temperatures at these points are lower than the interior of the tower due to

the reflected sky radiance. The specular material contains more pixels at 306 K because it

reflects the warm interior directly into the sensor. The diffuse material, on the other hand,

reflects the warm interior and the cooler sky into the sensor, resulting in a lower apparent

temperature.

The results of the DIRSIG simulation show that a detailed geometric model along with

basic thermal properties can produce a good approximation of the apparent temperatures

of a mechanical draft cooling tower. For both a diffuse and specular material with a low

DHR of 0.15, the apparent temperature of the MDCT approaches the blackbody tempera-

ture of the tower if there are at least three internal reflections.
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Figure 5.18: DIRSIG rendering of an MDCT with a one-pixel-wide ring drawn.

5.1.6 MDCT Fan Blade Motion

A methodology is needed to model the spinning fan blades of an MDCT. Recall from

Section 2.2 that an MDCT may operate in two states. In the fans off case, hot water is

flowing through the tower and the warm, moist air exits the tower stack through natural

convection. The fan blades are motionless so the fan blades and tower cavity can be dis-

tinguished in an image from an overhead sensor of fine enough spatial resolution. In the

fans on case, the fan in the stack rotates to force the warm, moist air out of the fan stack

opening. The spinning fan blades will appear blurred in an image from an overhead sen-

sor assuming a significant temporal integration time. The effect of the spinning fan blades

on the tower-leaving radiance was investigated.

The first study conducted was to determine if the radiance from the tower opening de-

pends on the fan speed and/or on the integration time of the sensor. Consider the image

of the tower opening in Figure 5.18. At any radius r, a ring may be drawn that is one

pixel in thickness. In the fans off case, the pixels in this ring can be distinguished as “fan”

pixels or “cavity” pixels. In the fans on case, however, the fan and cavity pixels in this

ring cannot be distinguished due to the blurring effect caused by the rotating fans and

due to the integration time of the sensor. To model the fans on case, a square-wave sig-

nal was generated in Matlab. The signal has a value of one to represent cavity pixels
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Figure 5.19: Square-wave signal representing the fan blade and cavity radiances at each pixel
location in the ring at different times.

and a value of zero to represent fan pixels. To give the simulation some physical mean-

ing, the fan pixels were given a blackbody radiance at 10 µm for a temperature of 280 K

(L = 7.0286 [W/m2/sr/µm]) while the cavity pixels were given a blackbody radiance at

10 µm for a temperature of 300 K (L = 9.9240 [W/m2/sr/µm]).

The signal was modified so that for each iteration, the signal would shift by v pixels.

The variable v represents the speed of the signal (i.e., the linear speed of the fan blades

at the given radius). One iteration represents one unit of time (e.g., one second). The ra-

diance value is observed at each pixel location on the signal and for every iteration. The

number of iterations (the number of seconds) represents the integration time of the sensor.

For each pixel location, the radiance was summed for the time interval and then normal-

ized by the total integration time. In other words, for a particular pixel, the “shutter”

was opened for the specified integration time so that the time-averaged signal could be

collected. This simulation is illustrated in Figure 5.19.

The result is a vector of radiance values that represent the time-averaged radiances of a

square-wave passing through each pixel location. These integrated radiance values differ

for each pixel location and will depend on the speed of the signal and on the integration

time. The mean value of the radiances is always constant regardless of the signal speed

or the integration time. The reason for this observation is that, for the entire sampling
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(a) (b)

Figure 5.20: DIRSIG rendering of an MDCT with a stationary fan (a) and a blurred rendering
representing a rotating fan (b).

ring (vector) in Figure 5.18, there are always the same number of fan pixels and the same

number of cavity pixels. Therefore, the average value of the vector remains constant.

The conclusion of this investigation was that the average radiance in a ring at radius r

was the same for a stationary fan blade as it was for a spinning fan blade. Based on this

information, the next study seeks to determine if the spinning fan blade can be modeled

using the stationary fan model. In other words, is it possible to represent the fans on case

from the fans off model?

As mentioned previously, the rotating fan blade will blur the radiances in each ring drawn

in the fan stack opening. The average value in each ring is constant. For every ring, the

pixel values in the ring were replaced with the average pixel value of the ring. This ring

averaging represents the blur caused by the rotating fan. Figure 5.20 illustrates a station-

ary fan image and a motion-blurred spinning fan image.

The images in Figure 5.20 show the apparent temperature of each pixel (bright pixels are

hot). In a fans on case, the user would have to take an average value over the entire open-

ing since the fan and cavity pixels cannot be distinguished. Therefore, a region of interest

(ROI) was drawn over the entire opening for the fans off and the fans on image and the av-

erage value was computed. The average value for both the fans off and the fans on image

is 294.57 K.
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This result is expected since in the fans on image the average was taken over the fan stack

opening which was a collection of rings whose values were the average values in each

ring. This is essentially an ”average of averages” problem. The mean of the means of

subsets of a population is the same as the mean of the entire population. The mean value

in a subset is

x̄j =
nj

∑
i=1

p (xi) xi, (5.3)

where nj is the number of samples in the j th subset and p (xi) is the probability that ob-

servation xi occurs. The mean value of the means of the subsets is then

x̄ =
m

∑
j=1

p
(

x̄j
)

x̄j, (5.4)

where m is the number of subsets and p
(
x̄j

)
is the probability that the x̄j subset mean

occurs. Combining equations (5.3) and (5.4) yields

x̄ =
m

∑
j=1

p
(
x̄j

)
x̄j =

m

∑
j=1

p
(

x̄j
) nj

∑
i=1

p (xi) xi =
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∑
j=1
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N
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∑
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1
nj

xi =
1
N

m

∑
j=1

nj

∑
i=1

xi =
1
N

N

∑
i=1

xi, (5.5)

where N is the total number of observations (pixels) in the population. This confirms that

the average value over the fan stack opening is equal to the average of the rings, where

the value in each ring is the average value in that ring.

The result of these studies indicates that the fans on case can be modeled by taking the

average pixel value over the entire fan stack opening of the MDCT from the fans off case.

Since cavity pixels and fan pixels cannot be distinguished in the fans on case, an ROI can

be drawn over the entire fan stack opening and the average radiance in this ROI can be

taken as the tower-leaving radiance. For modeling purposes, the DIRSIG model with the

stationary fan blades will be sufficient in representing the spinning fan blades due to this

equivalency. As with a real image, an ROI can be drawn over the entire fan stack opening

in the DIRSIG model and the average radiance can be used as the tower-leaving radiance.

This result is important since it eliminates the need to run DIRSIG temporally (to model

fan blades in motion) which would drastically increase run time.
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5.1.7 Atmospheric Downwelled Radiance

The previous sections investigated the behavior of the self-emitted radiance of the MDCT.

The reflected component of the tower-leaving radiance must also be considered. An anal-

ysis was performed to determine how sensitive the derived apparent temperature is to

changes in the atmospheric downwelling radiance. The MODTRAN atmospheric model-

ing tool was used to aid this analysis. The total sky downwelling radiances in the long-

wave infrared spectral region for the six MODTRAN standard atmospheres were com-

puted. These spectral radiances were used in the reflected term of the governing radiom-

etry equation. The influence of each atmosphere on the radiance reaching the sensor was

investigated.

The reflected radiance component consists of the sky downwelling radiance modified by

the reflectance of the object. By Kirchhoff’s law, the sum of the reflectivity and the emis-

sivity of an opaque object is unity. For a diffuse object, the reflectance is the same for every

view angle. The surface-leaving radiance from equation (3.14) is then

Lsur f (λ) = ε(λ) LBB(λ, T) + [1− ε(λ)] Ld(λ), (5.6)

where Ld(λ) is the downwelling sky spectral radiance and is assumed to be uniform. The

spectral response of the sensor is then applied to the surface-leaving spectral radiance to

arrive at an integrated radiance value for the passband of the sensor. This band radiance

is converted into an apparent temperature. A temperature error metric is defined as the

difference between the apparent temperature at the sensor and the actual temperature of

the object.

The six MODTRAN standard atmospheres used in this study were tropical, mid-latitude

summer, mid-latitude winter, sub-arctic summer, sub-arctic winter, and 1976 U.S. stan-

dard [13]. These atmospheric profiles were processed in the DIRSIG utility called make adb [22].

The utility samples the hemispheric sky dome at discrete angles and for each sample di-

rection, the path radiance is computed from MODTRAN. A table is built of the zenith and

azimuth angle of the sample and the spectral downwelling radiance from the sample. The

sky is sampled from 7.5 to 82.5 degrees on 15 degree intervals in the zenith direction and

from 0 to 330 degrees on 30 degree intervals in the azimuth direction. This results in six

zenith samples and twelve azimuth samples which yield 72 total sky samples. The sam-

ples are then integrated over the hemisphere to arrive at the diffuse spectral downwelling

radiance [22].
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The downwelling radiance can be converted into an apparent temperature. This temper-

ature is the effective blackbody temperature of the sky. Table 5.2 lists these temperatures

for each atmospheric profile. The sky temperatures shown in this table cover a wide range

from 203 K to 276 K. The range in effective sky temperatures is due to the differences in

the air and dew point temperature profiles for each standard atmosphere.

MLS MLW SAS SAW Trop US Std.

262.40 K 218.62 K 245.97 K 203.09 K 276.15 K 235.87 K

Table 5.2: Effective sky apparent temperatures for the standard MODTRAN atmospheres.

Next the sensitivity of the downwelling radiance on the apparent temperature error was

investigated. A broadband sensor with a spectral response of unity between 8 and 14 µm

was used. The absolute temperature of the object was assigned a value of 300 K. For each

atmospheric profile, the diffuse spectral downwelling sky radiance that was computed

from the make adb utility was used in the reflected term in equation (5.6). The apparent

temperature at the sensor was calculated for each profile and for a range of emissivity

values from 1.0 to 0.7. The temperature error was defined as the difference between the

apparent temperature and the assigned absolute temperature of the object (300 K). Fig-

ure 5.21 illustrates the results.

Figure 5.21: Temperature error from a 300 K object as a function of emissivity and MODTRAN
standard atmospheric profile.
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The magnitude of the temperature errors increase as the emissivity decreases. This is due

to a decrease of the self-emitted radiance component as the emissivity decreases resulting

in more of the colder sky radiance being included in the sensor-reaching radiance. The

temperature errors also increase as the apparent sky temperature decreases. The sky tem-

peratures are less than the object temperature of 300 K for all the atmospheric profiles.

Therefore, if a “colder” radiance is reflected to the sensor, the apparent temperature at the

sensor will be colder as well, resulting in a higher temperature error.

This study demonstrated that the atmospheric downwelling radiance may have a sig-

nificant effect on the derived temperature error. Knowledge of the atmospheric profile is

important to accurately determine the temperature of a remotely-sensed object.

5.1.8 Tower Leaving Radiance Summary

The radiance leaving the tower consists of both self-emitted radiance and also reflected

downwelled radiance. Typical MDCT construction materials have relatively high emissiv-

ities at longwave infrared wavelengths (Section 5.1.1). Therefore, the self-emissive term

in equation (5.1) will be dominant. Emissivities of 0.80 and 0.90 translate into DHR values

of 0.20 and 0.10, respectively. These DHR values are still significant so the reflected terms

cannot be ignored. an MDCT can be represented as an open well. If the tower materials

are relatively specular for longwave infrared wavelengths, as indicated by Section 5.1.2,

then background radiance reflected to an airborne sensor will be dominated by the self-

emitted radiances from the other interior surfaces of the tower. Finally, given the above

constraints, the radiance leaving the tower will be the blackbody radiance of the tower

materials if there has been at least three internal reflections. Given the complex internal

geometry of an MDCT, there is a high probability a photon will undergo at least three re-

flections before exiting the tower. Therefore, pixels from deep within the tower cavity will

have an effective emissivity of unity. On the other hand, pixels from ”shallow” regions of

the tower will have an effective emissivity less than unity.
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Figure 5.22: Radiance from the tower passes through the exhaust plume to reach the sensor.

5.2 sensor-reaching Radiance

Radiance leaving the tower cavity must now propagate through the intervening column

of air between the tower and the sensor. Recall from Section 3.4.2 that the atmosphere

will both attenuate and exaggerate the signal through transmission losses and additive

upwelling radiance. The radiance reaching the front of the sensor after passing through

the air column is

Lsensor(θ, φ, λ) = τ(θ, φ, λ) Ltower(θ, φ, λ) + Lu(θ, φ, λ)
[

W
m2 sr µm

]
. (5.7)

For a mechanical draft cooling tower, the target-to-sensor air column not only consists

of the ambient atmosphere, but will also include a localized water vapor plume directly

above the tower. The additional water vapor introduced by this plume will contribute an

additional error in the derived apparent temperature. Figure 5.22 demonstrates radiance

from the tower passing through the exhaust plume to reach the sensor. The air column

can be divided into two segments. The first segement falls within the exhaust plume of

the tower. The second segment is the free atmosphere not influenced by the plume.

The exhaust plume from an MDCT would introduce water vapor at an elevated temper-

ature into the volume immediately above the tower. Radiance emitted within the tower

must pass through this plume to reach an airborne sensor. Transmission values of less

than unity will decrease the radiance at the sensor resulting in an apparent temperature

that is lower than the actual material temperature. Conversely, the upwelled radiance

will increase the radiance at the sensor resulting in an apparent temperature that is higher
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Figure 5.23: Atmospheric column representing the plume layer and the ambient atmosphere mod-
eled in MODTRAN.

than the actual material temperature. These two effects compete with each other so that

the apparent temperature at the sensor may be higher or lower than the actual temper-

ature depending on the atmospheric conditions. The atmospheric conditions must be

carefully modeled in order to correct for errors in the derived temperature.

The first segment of the air column would contain a higher water vapor concentration

than the second segment (in most cases). The free parameters of the plume are the air

temperature, the water vapor concentration, and the height. The ambient atmospheric

conditions (second segment) will also affect the transmission and upwelled radiance sep-

arately.

5.2.1 MODTRAN Simulation of Air Column

The MODTRAN radiative transfer model was used to simulate how the water vapor con-

centration affects the target-to-sensor transmission and upwelled radiance in the atmo-

sphere at longwave infrared wavelengths. The dew point depression and air temperature

were chosen as measures of the water vapor concentration in the column due to their feasi-

bility of measurement in situ. The air column was divided into two layers in MODTRAN.

The first layer extends from the ground to a height of z meters to represent the exhausted

plume. The second layer extends from the terminating point of the first layer up to an

observation altitude of 100 meters. The second layer was assigned standard atmospheric

conditions. The first layer was also assigned standard conditions for all parameters except

the air temperature and the dew point depression which were varied to simulate various

temperatures and water vapor concentrations. Figure 5.23 illustrates this layout.

Several MODTRAN runs were conducted under a variety of conditions. The air temper-
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ature in the first layer was varied in increments of 5 K from 280 K to 310 K. For each

temperature, dew point depressions of 0, 2, 5, 10, and 20 K were used. The dew point

depression is the difference between the air temperature and the dew point temperature.

A dew point depression close to zero indicates near saturated air while a large depres-

sion indicates dryer air. The observation altitude was held fixed at 100 m. The thickness

of the first layer, z, was set to values of 1, 5, 10, and 20 m representing various plume

thicknesses under a variety of ambient wind conditions (i.e., lower wind speed indicates

a more vertical plume and a thicker layer). The above parameters were run for standard

mid-latitude summer conditions and then repeated for sub-arctic winter conditions rep-

resenting relatively wet and dry ambient atmospheres, respectively. The target material

was a perfect blackbody. Several runs were performed with blackbody targets of 302 K,

306 K, and 310 K. MODTRAN4v3r1 was run in solar/thermal radiance mode between 8

and 14 µm at a resolution of 0.3 µm with an 8-stream discrete ordinate multiple scattering

algorithm [40].

The intent of the MODTRAN simulation was to model an air column containing a high

water vapor concentration layer within a column of standard water vapor conditions. The

transition between this lower layer and the standard atmosphere is marked by a dramatic

gradient in the water vapor profile. In a user-defined atmosphere, MODTRAN allows

the user to specify the height, pressure, temperature and dew point of the atmospheric

layer at each altitude. These supplied values are used at the exact heights specified. How-

ever, MODTRAN’s interpolation scheme is inadequate for such large gradients across

large, relatively broad altitude ranges [41]. Therefore, in order to realize the strength of

this gradient, several thinner (one meter thick) layers were inserted between the standard

layers of the upper atmosphere and the user-defined, high humidity conditions of the

lowest layer. These extra layers provided the necessary buffer to allow a sharp fall off in

temperature and dew point depression between the first and second layers. Figure 5.24

demonstrates the layers set in MODTRAN.

The variables for the MODTRAN simulations were the height of the plume segment, the

air temperature and dew point depression in the plume, and the ambient atmospheric

conditions. Table 5.3 summarizes the values used in the simulation. A MODTRAN run

was performed for every combination of the variables. The model output contains spec-

tral values of the transmission (TRANS) and upwelled radiance (PATH THERMAL) be-

tween wavelengths of 8 and 14 µm. These spectral values were used to calculate the

radiance reaching a sensor from several blackbody targets through equation (5.7). The
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Figure 5.24: Schematic of the atmospheric layers assigned in MODTRAN. The first segment repre-
sents the exhaust plume while the second segment represents the rest of the air column. Standard
atmospheric conditions are assigned to every layer except for those in the first segment where the
air temperature and dew point temperature are varied (not to scale).

material radiance was taken as the spectral blackbody radiance from the Planck equation.

Temperatures of 302 K, 306 K, and 310 K were used for the targets. The spectral radi-

ance at the sensor from equation (5.7) was integrated between 8 and 14 µm to arrive at

an integrated radiance at the sensor. The sensor had a flat, unit spectral response func-

tion between 8 and 14 µm and a zero response outside that region. The integrated sensor

radiance was converted to an apparent temperature. Finally, the temperature error was

defined as the difference between the blackbody temperature used in the Planck equation

and the apparent temperature derived from the integrated sensor radiance. The results

are shown in Figures 5.25 and 5.26.

Blackbody Plume Plume Air Plume Dew Pt. Ambient
Temp. [K] Height [m] Temp. [K] Depression [K] Conditions

302 1 280 0 mid-latitude summer
306 5 285 2 sub-arctic winter
310 10 290 5

20 295 10
300 20
305
310

Table 5.3: Parameter values for the MODTRAN plume simulations.
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Mid-Latitude Summer Conditions
Atmospheric Conditions at z = 25m: P = 1010.065mb, T = 294.09K, Dew Pt. Depress. = 4.41K

(a) 1 meter plume (b) 5 meter plume

(c) 10 meter plume (d) 20 meter plume

Figure 5.25: Errors between material blackbody temperature and the sensor derived apparent
temperature. The surfaces are for material blackbody temperatures of 310 K, 306 K, and 302 K
from top to bottom in each plot.
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Sub-Arctic Winter Conditions

Atmospheric Conditions at z = 25m: P = 1009.664mb, T = 257.25K, Dew Pt. Depress. = 2.36K

(a) 1 meter plume (b) 5 meter plume

(c) 10 meter plume (d) 20 meter plume

Figure 5.26: Errors between material blackbody temperature and the sensor derived apparent
temperature. The surfaces are for material blackbody temperatures of 310 K, 306 K, and 302 K
from top to bottom in each plot.
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Several trends are apparent in the plots. By visual inspection, the material blackbody

temperature has the greatest influence on the temperature error, followed by the ambient

atmospheric conditions, and then the plume. In general, the target blackbody temperature

and the ambient atmospheric conditions affect the overall magnitude of the temperature

errors (magnitude of the surfaces in Figures 5.25 and 5.26) and the plume influences the

shape of the surface.

The material kinetic temperature influences the temperature errors. A greater kinetic tem-

perature for the material results in a higher temperature error. The reason for this trend

is apparent from equation (5.7). The temperature error is proportional to the difference

between the material blackbody radiance and the sensor-reaching radiance such that,

Terror ∝ LBB − Lsensor (5.8)

∝ LBB − (τ LBB + Lu)

∝ (1− τ) LBB − Lu.

A higher blackbody temperature, LBB, would result in a higher radiance. Although the

transmission does not change as the blackbody temperature changes, the result of the

blackbody radiance multiplied by the transmission is greater for high target temperatures

than for low temperatures. The first term is larger for a higher blackbody radiance than

for a lower blackbody radiance. The sensor radiance will therefore also be higher as will

the resulting temperature errors.

The effect of the plume becomes apparent as the plume thickness increases, thus increas-

ing the integrated water vapor along the path. There is a competing effect of transmission

losses and additive upwelled radiance. The temperature error seems to peak for a plume

temperature of 295 K to 300 K at a dew point depression of 0 K (saturated). The mini-

mum temperature error occurs for the highest set plume temperature of 310 K and a dew

point depression of 0 K. The range of temperature errors increase as the plume thickness

increases.

Finally the overall temperature errors are greater under mid-latitude summer conditions

than for sub-arctic winter conditions. A mid-latitude summer atmosphere is warmer and

contains a greater amount of water vapor which leads to a decreased transmission and

increased upwelled radiance. However, the transmission loss has a greater effect than the

upwelled radiance in this case which results in increased temperature errors. Conversely,
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a sub-arctic winter atmosphere is much drier and colder. The transmission values are

higher and the upwelled radiance is less for this atmosphere. The combined effect is a

lower temperature error.

The result of this analysis reveals that knowledge of the water vapor content in the target-

to-sensor path is very important to accurately derive the temperature of the MDCT. There

is a competing effect of transmission loss and additive upwelled radiance. In general,

the temperature errors are higher for a thicker plume and when the ambient conditions

are warmer and wetter. The target’s blackbody temperature also affects the temperature

errors such that a higher blackbody temperature results in a higher temperature error.

5.2.2 MODTRAN Simulation of MDCT Exhaust Plume

The effect of the plume is not immediately apparent from the plots in Section 5.2.1. This

indicates that the influence of the plume becomes less significant with increasing sensor

altitude compared to the effects of the ambient atmosphere. In order to isolate the ef-

fects of the plume, the MODTRAN simulations were modified so that the sensor altitude

equals the plume height. In this scenario, the target-to-sensor air column consists of only

the water vapor plume. As with the previous simulations, a standard atmosphere is first

assigned to the air column. The air temperature and the dew point depression in the

air column were varied in the same fashion as the original MODTRAN simulations. The

plume/sensor height was set to values of 1, 5, 10, 20, 50, and 100 meters in order to span

the range of physically realistic plume heights. Blackbody target temperatures of 302, 306,

and 310 Kelvin were also used. Table 5.4 lists the parameter values for these simulations.

The difference between the target blackbody temperature and the apparent temperature

from a 8 - 14 µm broadband sensor for each combination of parameter values were ob-

served. The results are shown in Figures 5.27 and 5.28.

Blackbody Plume Plume Air Plume Dew Pt. Ambient
Temp. [K] Height [m] Temp. [K] Depression [K] Conditions

302 1 280 0 mid-latitude summer
306 5 285 2 sub-arctic winter
310 10 290 5

20 295 10
50 300 20

100 305
310

Table 5.4: Parameter values for the plume-only MODTRAN simulations.
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Mid-Latitude Summer Conditions

(a) 1 meter plume (b) 5 meter plume

(c) 10 meter plume (d) 20 meter plume

(e) 50 meter plume (f) 100 meter plume

Figure 5.27: Errors between material blackbody temperature and the sensor derived apparent
temperature. The surfaces are for material blackbody temperatures of 310 K, 306 K, and 302 K
from top to bottom in each plot.
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Sub-Arctic Winter Conditions

(a) 1 meter plume (b) 5 meter plume

(c) 10 meter plume (d) 20 meter plume

(e) 50 meter plume (f) 100 meter plume

Figure 5.28: Errors between material blackbody temperature and the sensor derived apparent
temperature. The surfaces are for material blackbody temperatures of 310 K, 306 K, and 302 K
from top to bottom in each plot.
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The effect of the plume is apparent in that it affects the shape of the plot. There is a

competing effect of transmission losses and additive upwelled radiance. The largest tem-

perature errors occur for a plume temperature of 290 K to 295 K and for a temperature

of 310 K with a dew point depression of 0 K (saturated). The absolute magnitude of the

errors increase as the plume height increases. The maximum temperature errors intro-

duced by plumes with heights of 1, 5, 10, 20, 50, and 100 meters are approximately±0.03,

±0.1, ±0.2, ±0.4, ±0.8, and ±1.4 Kelvin, respectively. The blackbody target temperature

along with the plume air temperature and dew point depression determine whether the

additional temperature error introduced by the plume is less than or greater than zero.

Finally, the ambient atmospheric conditions appear to have an insignificant effect on the

temperature errors.

To provide a context for the error introduced by the plume, it is compared to a typical

residual error after a standard atmospheric compensation method. For example, Qin et

al. (2001) used the Landsat TM thermal band to retrieve desert land surface tempera-

tures [24]. The authors used in situ atmospheric profile data that was coincident with the

satellite pass to compensate for the atmosphere. The resulting temperature errors were

approximately 1.1 K. When in situ atmospheric data is not available, a multi-channel ap-

proach can be used. Using such a dual-channel method, the algorithm presented by Prata

(1993) yielded land surface temperatures to within ±1.5 K for flat terrain with uniform

surface composition in relatively dry atmospheres [26]. These temperature errors are sev-

eral times the temperature errors introduced from plumes with heights of zero to 20 me-

ters. However, 50 and 100 meter high plumes will introduce errors roughly the same as

the residual errors of the atmospheric compensation methods mentioned. The temper-

ature error caused by the plume can also be compared to the temperature error due to

uncertainties in the surface emissivity. Dash et al. (2002) points out that for mid-latitude

vegetated areas, for example, an emissivity error of ±0.025 results in a land surface tem-

perature error of ±2 K when a single channel is used [23].

From these studies, it appears that the temperature error introduced by plumes with

heights less than about 20 meters is roughly an order of magnitude less than the mag-

nitude of the residual errors from the aforementioned atmospheric compensation tech-

niques and sensitivity of surface emissivity. The additional temperature errors caused by

the plume will become significant as the plume height reaches approximately 50 meters

and greater.
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5.2.3 Sensitivity of Plume Gradient

In an MDCT, the air mass inside the tower between the drift eliminators and the fan stack

opening is assumed to be at a homogeneous temperature. The initial air temperature

of the plume in the tower throat is therefore assumed to be at the same temperature as

the internal air. Since the tower operates through evaporative processes, the initial dew

point depression of the plume is assumed to be very close to zero. As the plume rises

and travels downwind, it will diffuse within the ambient air. The plume air temperature

will gradually cool and the moisture content will decrease. Therefore, there will be a tem-

perature and moisture gradient along the line-of-sight of the sensor through the plume.

The gradient in the plume is of interest since it may affect the derived apparent tempera-

ture of the cooling tower. A perfect atmospheric compensation is assumed to have been

performed on the image. This compensation essentially removes the atmospheric effect

along the line-of-sight path from the sensor down to the edge of the plume. This ”edge”

of the plume is not well defined since the diffusion of the plume is a gradual process. The

edge will be dependant on the functional form of the gradient in the plume.

To investigate this ”edge” problem further, several gradients were modeled using the

MODTRAN software. The purpose of this study was to determine the effect of various

plume air temperature and dew point temperature gradients. A user-defined atmospheric

profile was created in MODTRAN. The air temperature and dew point temperature at the

first level (ground) was set to 295.0 K. A sensor covering the 8 to 14 µm spectral range

was placed at an altitude of 20 meters. This altitude represents the ”top” of the plume.

In other words, in a real scene, it is assumed that an atmospheric compensation has been

performed that removes the atmospheric effect from the sensor to the ”top” of the plume

(the ”top” being 20 meters in this case). The temperature gradient in the intervening

levels determines how the air temperature and dew point temperature changes from the

initial temperature at the surface to the ambient temperature and dew point at the ”top”

of the plume. For this study, the ambient air temperature was 290 K and the ambient

dew point temperature was 285 K. Three different gradients were investigated. The first

profile followed a Gaussian function in which the maximum value of the Gaussian is the

initial temperature. The temperature gradually decreases to the ambient temperature as

the height increases. The standard deviation of the Gaussian was 10 meters. The top of

the plume (20 meters) is defined as two standard deviations. The second profile was a

Step function in which the temperature remained constant at the initial temperature up to

a height of 10 meters, and then dropped suddenly to the ambient temperature for heights
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(a) (b)

Figure 5.29: Linear, Step, and Gaussian temperature gradients modeled in MODTRAN. Air tem-
perature (a) and dew point temperature (b). The sensor altitude is marked at 20 meters..

greater than 10 meters. The last profile was a linear gradient in which the temperature

decreased linearly from the initial temperature at zero meters to the ambient temperature

at 20 meters. Figure 5.29 illustrates the three gradients used in the simulation.

For each profile, the spectral transmission and spectral upwelled radiance was computed

in MODTRAN. Recall that the initial temperature of the plume equals the internal tem-

perature of the MDCT. The tower cavity is modeled as a blackbody with a temperature

of 295 K. The sensor-reaching radiance is computed through equation (5.7). The spectral

radiance was then multiplied with the spectral response of the sensor to arrive at an in-

tegrated radiance value. For this analysis, a broadband sensor with a spectral response

of unity between 8 and 14 µm was used. This band radiance is converted into an ap-

parent temperature. A temperature error metric is defined as the difference between the

apparent temperature at the sensor and the internal temperature (also the initial plume

temperature) of 295 K.

The resulting temperature errors for the Gaussian, step, and linear gradients are shown in

Table 5.5. Plume lengths of 20, 50, and 100 meters were simulated. These results indicate

Plume Length Gaussian Step Linear
20 m -0.0269 K -0.0245 K -0.0317 K
50 m -0.0637 K -0.0607 K -0.0744 K

100 m -0.1162 K -0.1121 K -0.1350 K

Table 5.5: Apparent temperature errors for three plume gradient functions and for three plume
lengths.
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that the error which occurs is independent of gradient type. The Gaussian gradient, how-

ever, is believed to be more representative of actual plume scenarios.

The conclusion of this study is that the effect of the MDCT exhaust plume will be mod-

eled using the MODTRAN software. The initial air temperature of the plume will be

equal to the selected internal temperature of the tower. The initial dew point depression

of the plume will be zero to indicate a saturated water vapor plume. The air temperature

and dew point temperature gradient will follow a Gaussian function in which the plume

length is defined as two standard deviations from the tower opening. The air temper-

ature of the plume will approach the ambient air temperature as the distance from the

tower throat increases. Similarly, the dew point temperature will approach the ambient

dew point temperature as the distance from the opening increases. The plume parameters

that will be varied in the MDCT target space are the initial plume temperature (the inter-

nal MDCT temperature), the plume length, the ambient air temperature, and the ambient

dew point temperature.

5.2.4 sensor-reaching Radiance Summary

The atmosphere greatly affects the derived temperature at the sensor. For an MDCT, the

target-to-sensor air column consists of an additional water vapor plume. The air temper-

ature, moisture content, and path length through the plume are all parameters that in-

fluence the transmission and upwelling radiance of the plume. The ambient atmosphere

also influences the signal at the sensor for the reasons discussed in Section 3.4.2. The at-

mospheric effects become more apparent as the observation altitude increases. Accurate

atmospheric compensation of the recorded signal is key to determine the temperature of

an MDCT. In general, for a moderately sized plume of approximately 10 to 20 meters in

height, the temperature error introduced by the plume is smaller than the residual error

from standard atmospheric compensation techniques (see Section 4.2.1).
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5.3 Approach

The studies discussed to this point in this chapter allow constraints to be placed on the

parameters listed in Figure 2.8. The construction materials of an MDCT were found to

be relatively specular and to have relatively high emissivities in the LWIR. Due to the

geometry of the tower, a photon is likely to undergo approximately three internal reflec-

tions before escaping the tower. These properties indicate that the radiance originating

from deep in the tower cavity will be the blackbody radiance of the internal tower sur-

faces. This means that the tower cavity has an effective emissivity of unity. Radiances

from shallow portions of the tower, such as the fan blades and throat, will not be the

blackbody radiance. This means that the effective emissivity of these surfaces is less than

unity since their actual emissivity is less than unity, there is a greater amount of reflected

downwelling sky radiance, and there is not more than one reflection off these surfaces.

These conclusions imply that the ground sampling distance (GSD) of the sensor is impor-

tant since it will determine whether the “shallow” and “deep” surfaces can be resolved

and separated. This was seen in the imagery from Section 2.3 which indicated that the

temperature error increased as the GSD increased.

The atmosphere will have a profound effect on the temperature error. The error increases

as the observation altitude increases due to the increase in atmospheric path. A warmer

and more moist atmosphere will produce a greater temperature error than a cooler and

drier atmosphere. This difference is magnified as the observation altitude increases. The

atmosphere will introduce the largest error if not accurately accounted for. The exhaust

plume of the MDCT also introduces an error in the derived temperature. Depending on

the characteristics of the plume, an additional temperature error as much as ±1.4 K is in-

troduced by the plume in the extreme case.

Several assumptions are made before beginning the approach. First, only night time imag-

ing will be used. The radiometric effects that occur during the day will not be considered.

Second, the internal surfaces of the MDCT and the exit air are assumed to be at the same

Figure 5.30: Illustration of the procedure to predict the MDCT temperature error.
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temperature. The exit air is also assumed to be nearly saturated. Lastly, an atmospheric

compensation is assumed to have been performed on the images. Therefore, the effects of

the atmospheric column (other than the exhausted vapor plume) are not considered.

5.3.1 Overview

A camera sensitive to the LWIR spectral region (approximately 8 - 14 µm) is used to ob-

serve the cooling tower. Each pixel in the resulting thermal image is converted into an

apparent temperature, or image-derived temperature. The apparent temperature of pix-

els inside the fan stack opening of the tower is to be correlated to the exit air temperature.

To do so, a 3-D physics model of the radiation transfer is necessary to accurately derive the

exhaust air temperature from the thermal image. A sensor model is necessary to derive

the apparent temperature of the MDCT from the simulated image for a particular sensor.

Finally, a target space is constructed to predict the apparent temperature of the MDCT

for a range of model parameters. This target space information will allow a temperature

correction factor to be assembled that will be applied to the thermal image to produce an

accurate MDCT temperature.

5.3.2 Physics Model

Based on the studies performed in Sections 5.1 and 5.2, a methodology is developed to

accurately model the radiance field from the MDCT, through the exhausted plume, and

into the sensor. The DIRSIG software developed at RIT and the MODTRAN software

developed by the AFRL are used to model the internal and propagated radiometry of the

MDCT. The parameters used in these simulations are listed here along with a detailed

description of how they will be modeled. Eventually, every combination of parameter

values will be used to create a target space (look-up table) that will predict the at-sensor

radiance and therefore the necessary temperature correction factor.

5.3.2.1 Tower Leaving Radiance with DIRSIG

The tower-leaving radiance is modeled using DIRSIG. This radiance includes the self-

emitted radiance and any reflected radiance from the tower surfaces. The simulation is

based on a CAD drawing of an MDCT. Given the results from Section 5.1, a highly de-

tailed CAD model does not appear to be necessary to reproduce the exact radiometry

inside the tower. Instead, a simplified drawing derived from that shown in Figure 5.15

will be used. The diagonal internal support structure, water distribution system, and fill

was deleted. The exterior surfaces (i.e., the siding and decking) were drawn as plain facets
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Figure 5.31: Ward BRDF model assigned to the facets in the DIRSIG CAD model.

instead of grooved facets. The siding, decking, and shroud of the drawing were redrawn

as double-sided facets so that different temperatures may be assigned to the interior and

exterior facets. The drift eliminators are represented by a single blackbody plate as per

the results of Section 5.1.4. The geometry of the fan blades and mechanical system will

remain unchanged.

The facets of the CAD drawing are assigned a Ward BRDF model. A description of the

Ward BRDF was presented in Section 3.2.1.1.2. The diffuse and specular weights of the

Ward BRDF model are adjusted to provide a mostly specular reflectance with a small dif-

fuse component. The Ward parameters for this BRDF model are ρd = 0.12, ρs = 0.03,

and σ = 0.10. This BRDF shape is consistent with typical MDCT construction materials

found in the NEFDS (See Section 5.1.2). Figure 5.31 illustrates the BRDF shape used for

the DIRSIG model. The reflectance (DHR) of this BRDF when measured from an angle

of 20° is 0.15. Therefore, the emissivity (DHE) is 0.85 through Kirchhoff’s law. The mea-

surement angle of 20° was selected to keep the model consistent with the measurements

in Sections 5.1.1 and 5.1.2. Every facet in the CAD model except for the drift eliminator

blackbody plate was assigned this BRDF.

The DIRSIG simulation provides a spatially and spectrally high resolution tower-leaving

radiance. The output image is 110 by 110 pixels that cover the entire fan stack opening and

part of the tower deck. The ground sampling distance (GSD) of this high resolution image

is 0.05 meters. The spectral extent of the image covers the LWIR wavelength regions at a

spectral resolution of one wavenumber.
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5.3.2.1.1 DIRSIG Parameters

The list of DIRSIG parameters that will be varied are presented here along with a descrip-

tion of each.

MDCT Internal Temperature is the temperature assigned to the internal facets of the

MDCT DIRSIG model. These internal facets include the interior faces of the deck-

ing and siding, the drift eliminator plate, the internal tower support structures, the

fan support structure, and the fan mechanical structures. This internal temperature

is important since it is the desired temperature to be retrieved from the remotely-

sensed image.

MDCT External Temperature is the temperature assigned to the exterior facets of the

MDCT DIRSIG model. These external facets include the exterior faces of the decking

and siding, the fan stack shroud (cowling), and the fan blades. The important exter-

nal facets for the physics model are the fan blades and the shroud since these objects

are in the line-of-sight between the sensor and the tower cavity. The MDCT external

temperature is set to be less than or equal to the assigned MDCT internal tempera-

ture (assuming night time imaging only). From the MDCT experimental collection

performed at SRS in the spring of 2004 and 2005, the external apparent tempera-

tures appear to be between 0 and 4 Kelvin less than the internal temperature for the

nighttime scenes (see Section 2.3).

Fan Blade Emissivity can be adjusted by altering the Ward BRDF model parameters

for the fan blade facets. The fan blade emissivity parameter is used to scale the magni-

tude of the BRDF assigned to the fan blades. To do so, a reference Ward BRDF is set

in which the diffuse and specular weights were chosen to produce the desired BRDF

shape of a mostly specular lobe with a small diffuse component (ρd = 0.0408 and ρs

= 0.0102). The integral of this BRDF shape yields a DHR of 0.05 for a measurement

angle of 20°. To scale the magnitude of this BRDF while maintaining its shape, the

diffuse and specular weights are adjusted by

[ρd , ρs] =
1− ε f an

0.05
[0.0408 , 0.0102] . (5.9)

Effective Sky Temperature is the apparent temperature of the sky computed from the

integrated downwelling sky radiance. This is the equivalent blackbody tempera-

ture of the sky. It can be computed from a known atmospheric temperature and

moisture profile (sounding). The profile is used as input into MODTRAN and the
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Figure 5.32: Illustration of atmospheric layers in MODTRAN used to model the moisture gradient
in the plume.

path radiance from sample points covering the entire sky hemisphere is computed.

The downwelling radiance from the computed samples is integrated over the entire

sky hemisphere and converted into an apparent temperature. The effective sky tem-

perature is used by DIRSIG to compute the thermal downwelling radiance from the

sky. This downwelling radiance is necessary since it reflects off the tower facets and

therefore becomes a component of the tower-leaving radiance. A utility is provided

that calculates the effective sky temperature given an atmospheric sonde profile (See

Appendix D).

Sensor Zenith Angle is the view angle of the sensor measured relative to a nadir (down-

looking) viewing position of the MDCT. The radiance leaving the tower has an an-

gular distribution. The view angle is important since it determines what features of

the tower, such as the tower cavity and shroud side, are visible by the sensor and

may therefore be included in the interior radiance field due to optical, mechanical,

and atmospheric blurring.

5.3.2.2 Plume Leaving Radiance with MODTRAN

The tower-leaving radiance produced by DIRSIG must now propagate through the ex-

hausted water vapor plume to reach the sensor. The MODTRAN software is used to

model the plume. A standard atmosphere is used as the base atmosphere to be modified.

A plume layer is then defined that extends from the ground to a height, z. The surface

temperature in this profile is assigned the same value that was used for the MDCT inter-

nal temperature in the DIRSIG model since the assumption is made that the interior MDCT

surfaces and the exit air are at the same temperature. Similarly, the surface dew point
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depression is set to zero since the assumption is made that the exit air is nearly saturated.

The sensor is placed at the height of the plume layer (z) so that the atmospheric effect of

the plume is isolated. Figure 5.32 illustrates this layout.

A temperature and moisture gradient established in the atmospheric profile follows a

Gaussian function decay. The temperature approaches the ambient air temperature as

the height increases. Similarly, the dew point temperature approaches the ambient dew

point temperature as the height increases. The height of the plume is defined as the two

standard deviations distance of the Gaussian (2σ) as per the results of Section 5.2.3. The

MODTRAN simulation provides spectral atmospheric transmission and spectral atmo-

spheric path radiance curves for the same spectral range as the DIRSIG simulation.

5.3.2.2.1 MODTRAN Parameters

The list of MODTRAN parameters that will be varied are presented here along with a

description of each.

Ambient Air Temperature is the temperature of the ambient air measured at the sur-

face. This value will be the final temperature the plume approaches.

Ambient Dew Point Temperature is the dew point temperature of the ambient air mea-

sured at the surface. This value will be the final dew point temperature of the plume.

Water Vapor Plume Path Length is the effective length of the line-of-site path through

the plume. This parameter is estimated by the user based on knowledge of the

sensor view angle, air flow through the tower, and wind speed and direction. The

plume path length is modeled as the height of the plume layer (z) in the MODTRAN

user-defined atmosphere. A utility has been produced to estimate the plume path

length if a more sophisticated plume model is not available (See Appendix E).

5.3.2.3 Physics Model Summary

Each spectral pixel in the DIRSIG tower-leaving radiance image is multiplied by wave-

length with the spectral transmission data and then added by wavelength to the spectral

path radiance from MODTRAN. The result of the DIRSIG and MODTRAN simulations

is a sensor-reaching radiance that is spatially and spectrally high resolution. Note that it

is assumed that an atmospheric compensation has been performed on the image that re-

moved the effect of the air column from the sensor to the ground. The remaining sources

of error to account for are due to the effects of the tower geometry and of the exhausted
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plume. Therefore, the result of the DIRSIG and MODTRAN run is essentially a ”top of

plume” radiance.

5.3.3 Sensor Model

The high spatial and spectral resolution image generated by the physics model represents

the radiance reaching the sensor. The sensor will degrade and record the incident radiance

as described in Section 3.5. The sensor model accepts sensor specifications from the user

and applies those specifications to the high resolution physics model radiance image. An

algorithm was written in the Matlab programming environment that processes the high

resolution image according to the sensor information provided by the user. Specifically,

the spectral response, the GSD, and the radius of the system point spread function are

necessary.

The sensor spectral response consists of a vector of wavelengths and a corresponding

vector of response weights for a particular spectral band. The algorithm first spectrally

samples the radiance images with the supplied spectral response. The spectral response

function is resampled to the wavelengths used in the radiance image. The response func-

tion and the high resolution image radiance are then multiplied together by wavelength

for every pixel and integrated over all wavelengths to arrive at a band integrated image.

This new image now consists of a single band but is still spatially high resolution (110 by

110 pixels).

Next, a system point spread function (PSF) (modeled as an Airy disc) whose radius was

provided by the user is applied to the image thereby blurring it. The user-supplied radius

is in units of microns. If the user does not wish to apply a PSF, the radius should be set

to zero. An image of an Airy disc with the proper radius is created that has the same di-

mensions as the radiance image. To make the computations easier, the Fourier transform

of the Airy image and of the radiance image were taken. The transformed images were

multiplied together and then the inverse Fourier transform was taken. The result of the

PSF application is a blurred image that still consists of 110 by 110 pixels.

Finally, the image must be down-sampled such that the final image has the user required

GSD. The GSD of the high resolution radiance image is 0.05 meters. The user-supplied

GSD is rounded to the nearest 0.05 meters so that the final GSD is an integer multiple of

the original GSD to make the computations easier. The image is then divided into blocks
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(a) (b) (c)

Figure 5.33: High resolution DIRSIG image (a) along with the mixed ROI (b) and cavity-only
ROI (c) drawn for sensor angle of 0 degrees. White pixels in the masks indicate pixels that were
included in the apparent temperature mean.

whose dimensions are equal to the ratio of the original GSD to the new GSD. The mean

value in each block is taken as the value of the corresponding pixel location in the final

down-sampled image. For example, if the user required a GSD of 0.1 meters, the original-

to-new GSD ratio would be two. Therefore, the image would be divided into 2 by 2 blocks

and the mean radiance value in each 2 by 2 block is calculated. The final down-sampled

image would be 55 by 55 pixels.

The result of the sensor application is a final down-sampled and band integrated image

whose pixel GSD, system blur, and spectral band was specified by the user.

5.3.3.1 Region of Interest - Mixed vs. Cavity

The MDCT apparent temperature may now be derived from the processed images. Two

region of interest (ROI) masks were created. The first mask covered the entire fan stack

opening. The second mask was carefully constructed to avoid the fan blades and visible

support structures so that only the cavity pixels were taken. Figure 5.33 illustrates the

high resolution images for a sensor zenith angle of 0 degrees and the mixed and cavity

ROIs for the radiance images. The same sensor model used on the high resolution image

is also applied to the ROI masks so that the masks fit the processed image.

Recall from Section 5.1.6 that the fans on operating state of an MDCT may be modeled

from the fans off case. Each simulated image contains stationary fan blades. If the fans on

case is desired, then a mixed ROI should be used.

The mean radiance for the pixels in each ROI is then calculated and then converted into
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an apparent temperature. The predicted temperature error was defined as the difference be-

tween the predicted apparent temperature (i.e., mean ROI apparent temperature) and the

assigned MDCT internal temperature. The temperature errors were calculated for both the

mixed ROI and the cavity-only ROI.

5.3.4 Target Space Look-Up Table

The physics model and the sensor model generate a single simulated thermal image for a

given set of parameter values and for a given sensor. The result is a predicted temperature

error (temperature correction) for the set of parameter values. To be useful for an image

analyst, a temperature correction must be known for any scene. Since the values of each

of the eight parameters will probably not be known exactly, the physics model may be run

many times with various parameter values. The resulting list of temperature correction

factors for each combination of parameter values is known as a target space. This concept

is similar to the target space used by Healey and Slater [33] and Ientilucci and Schott [42]

for target detection (See Section 4.2.1.8). The target space is essentially a look-up table

(LUT) that lists the predicted image-derived apparent temperature for a specific sensor

for each combination of parameter values.

5.3.5 Parameterized Model

Multiple regression analysis may be performed on the LUT of temperature corrections

(Appendix B). A multiple linear regression equation may be fit to the dataset to arrive

at a single multi-parameter equation that predicts the temperature error given a set of

parameter values. A multiple linear regression model has the form [43],

yi = β0 + βi,1 xi,1 + βi,2 xi,2 + ... + βi,p−1 xi,p−1 + ε i (5.10)

where the β variables are the model-fit coefficients. A relationship between the response

variable (the temperature error) and the predictor variables (the target-space parameters)

is desired. Since the first target-space parameter, MDCT internal temperature, is the ulti-

mate variable that is to be determined, it is not included in the regression model. The

model predictors are therefore the other seven parameters.

The least-squares regression equation may be expressed in matrix form as

Y = X β + ε. (5.11)
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The estimated fit coefficients, b, are found by

b =
(
X′ X

)−1 X′ Y. (5.12)

Therefore, the predicted temperature error, Ŷ, is

Ŷ = X b. (5.13)

5.4 Methodology Summary

The problem of determining the exit air temperature of an MDCT is unique due to the

geometry of the tower and due to the exhausted water vapor plume. These two factors

represent the remaining sources of error in the extracted tower temperature that must be

accounted for given that the image has been atmospherically compensated. The stud-

ies presented in this chapter investigated the sensitivity of these factors and placed con-

straints on the variables affecting the derived temperature estimation. The results of those

investigations allowed a methodology to be developed to estimate the temperature cor-

rection factor that must be applied to a thermal image to remove the effects of the tower

geometry and the exhausted plume. The result should be a more accurate estimate of the

MDCT exit air temperature.



Chapter 6

Results

The methodology developed in the previous chapter may now be implimented in order

to achieve the ultimate goal of deriving a temperature correction factor for an MDCT

thermal image. The process yields a LUT of predicted correction factors for each set of

model parameters. A parameterized model is then fit to this data set. The parameterized

model is tested with simulated data and then applied to the SRNL data set to test its utility

with actual image data.

6.1 Physics Model Generation

All eight target space parameters described in Sections 5.3.2.1.1 and 5.3.2.2.1 were varied

in this study. The physics model consists of the DIRSIG and MODTRAN simulation tools.

The model parameters are listed in Table 6.1 for reference.

Parameter Modeling Tool
MDCT Internal Temperature DIRSIG
MDCT External Temperature DIRSIG
Fan Blade Emissivity DIRSIG
Effective Sky Temperature DIRSIG
Sensor Zenith Angle DIRSIG
Ambient Air Temperature MODTRAN
Ambient Dew Point Temperature MODTRAN
Plume Path Length MODTRAN

Table 6.1: MDCT physics model parameters and associated modeling tools.

UNIX scripts were written to easily change these parameter values in the DIRSIG and

MODTRAN models. The values for each parameter were chosen to cover the possible

range of values for the datasets presented in Section 2.3. These values are summarized in

Table 6.2.

The DIRSIG simulation was set at midnight local time. There was no atmospheric trans-

mission loss or path radiance. Therefore, the DIRSIG simulation represents the tower-

99
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Internal External Fan Sky Angle Ambient Ambient Plume
Temp. [K] Temp. [K] ε Temp. [K] [°] Temp. [K] Dew Pt. [K] Length [m]

290 Int. Temp. - 0 0.95 276.15 0 290 Amb. Temp. - 1 5
295 Int. Temp. - 2 0.80 262.40 10 294 Amb. Temp. - 5 10
300 Int. Temp. - 4 0.65 245.97 20 298 Amb. Temp. - 10 20
305 218.62 30 50

203.09 100

Table 6.2: MDCT parameter values used for the target-space LUT.

leaving radiance. Each run produced a spatially and spectrally high resolution radiance

image. The images were 110 by 110 pixels with a GSD of 0.05 meters. There were 746

spectral channels spanning approximately 1425 to 680 wavenumbers at a resolution of

one wavenumber. This corresponds to roughly 7.0 to 14.7 µm in wavelength. The MOD-

TRAN simulation produced spectral transmission and path radiance curves for the same

spectral range and resolution as the DIRSIG simulations. Midwave infrared wavelengths

may be included in the target space if desired by running the DIRSIG and MODTRAN

models for the appropriate wavelengths values of interest.

The DIRSIG and MODTRAN simulations were run on the research computing cluster at

RIT. The cluster consists of ninety-six 64-bit x86 processor cores running at approximately

3 Ghz. A single DIRSIG simulation runs in roughly 2.5 days on a single core. A single

MODTRAN simulation runs in approximately one second on a single core.

6.2 Sensor Model and LUT Generation

There are 32,400 parameter value combinations from those listed in Table 6.2. Therefore

there are 32,400 high resolution sensor-reaching radiance images from the physics model.

The next step in the method involves processing these high resolution radiance images

with the sensor model. The resulting temperature errors can be organized into a LUT of

32,400 entries that lists the temperature error for the mixed and cavity ROI for every com-

bination of target space parameter values.

Statistical analysis was performed on this 32,400 element dataset. The model predictors

are the MDCT external temperature, the fan blade emissivity, the effective sky temperature, the

sensor zenith angle, the ambient air temperature, the ambient dew point temperature, and the

plume path length are labeled x1 through x7, respectively. As mentioned previously, the

first target-space parameter, MDCT internal temperature, is not included in the regression

model since it is the ultimate variable that is to be determined. The temperature error for
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Label Physical Term
x1 MDCT External Temperature
x2 Fan Blade Emissivity
x3 Effective Sky Temperature
x4 Sensor Zenith Angle
x5 Ambient Air Temperature
x6 Ambient Dew Point Temperature
x7 Plume Path Length
y1 Temperature Error (Mixed ROI)
y2 Temperature Error (Cavity ROI)

Table 6.3: Regression model parameter labels.

the mixed ROI is labeled y1 while the cavity ROI is labeled y2. The parameter labels are

included in Table 6.3 for reference.

To gain confidence in the method, first an ideal sensor is used to produce the tempera-

ture error LUT. Then, sensor specifications from an actual sensor is used to generate a

LUT.

6.2.1 Ideal Sensor

An ideal sensor was selected for the initial attempt to create the LUT. This sensor causes

no spatial degradation of the image. Only a spectral sampling is performed on the high

resolution radiance images. The sensor had an ideal spectral response of unity between

8.0 and 14.0 µm with a resolution of 0.3 µm.

The regression analysis was performed on the ideal sensor data in Matlab and the results

were confirmed and analyzed for quality using the Minitab statistical software. Follow-

ing the procedure in Section 5.3.5, the resulting multiple linear regression equation for the

mixed ROI temperature error is

ŷ1 = −17.2534− 0.0340224 x1 + 11.2511 x2 + 0.0357615 x3

− 0.0068026 x4 + 0.019290 x5 + 0.001709 x6 + 0.0023038 x7. (6.1)

This regression equation predicts the mixed ROI temperature error, ŷ1, given the seven

predictors, x1 through x7.

To investigate the sensitivity of the regression equation, a regression analysis may be per-

formed on standardized variables. Standardization involves transforming a variable so

that it has a zero mean and a unit standard deviation [44]. This is accomplished by sub-
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tracting the mean from every observation of a variable and then dividing by the standard

deviation of the observations. The standardization makes it easier to compare the relative

magnitudes of the different regression coefficients since the variables all have a variance

of one.

The standardized regression equation for the mixed ROI case is

ŷ1s = 0.000000− 0.106243 x1s + 0.738871 x2s + 0.518510 x3s

− 0.040781 x4s + 0.033781 x5s + 0.004510 x6s + 0.043430 x7s. (6.2)

The unstandardized regression coefficients measure the expected change in the response

variable, ŷ1, associated with a one unit change in the predictor variables. Therefore, the

standardized regression coefficients measure the expected standard deviation change in

the dependent variable associated with a one standard deviation change in the indepen-

dent variable.

For the mixed ROI standardized regression equation, the fan blade emissivity parameter,

x2, has the highest standardized coefficient which signifies that the temperature error is

most sensitive to the fan emissivity. This makes physical sense since for the mixed ROI,

the fan emissivity variable affects both the self-emitted radiance of the pixel and also af-

fects the reflected background radiance of the pixel. The MDCT external temperature and

the effective sky temperature parameters, x1 and x3, also have a high standardized coeffi-

cient which also makes physical sense since the two parameters represent the self-emitted

and the reflected radiance terms of the pixels.

The multiple linear regression equation for the cavity-only ROI temperature error is

ŷ2 = 0.67484− 0.0193120 x1 − 0.000000 x2 + 0.00000000 x3

− 0.00000000 x4 + 0.0189788 x5 − 0.0019372 x6 − 0.00196813 x7. (6.3)

This regression equation predicts the cavity ROI temperature error, ŷ2, given the seven

predictors, x1 through x7. The corresponding standardized regression equation for the

cavity ROI case calculated in Minitab is

ŷ2s = 0.000000− 0.611796 x1s + 0.000000 x2s + 0.000000 x3s

+ 0.000000 x4s + 0.337175 x5s − 0.051861 x6s − 0.376387 x7s. (6.4)
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For this case, the highest coefficient occurs for the MDCT external temperature parameter.

Caution must be taken in interpreting this result. Recall that only a spectral integration

was performed on the high resolution images. There was no spatial blurring of the images

for this study. Unlike for the mixed ROI case, the cavity ROI does not include any pixels

from the fan. Therefore, the only influence on the temperature error for the cavity pixel

should be due to the plume. The DIRSIG parameters should have coefficients of zero, as

the fan blade emissivity, the effective sky temperature, and the sensor zenith angle do. The non-

zero coefficient occurs due to the relationship between the MDCT internal temperature and

the MDCT external temperature. Recall from Table 6.2 that the MDCT external temperature

is always less than or equal to the MDCT internal temperature. The non-zero coefficients

on the MODTRAN parameters, however, agree with the physical understanding that the

plume should be the only influential parameter over the temperature errors in the cavity

ROI case.

Finally, the 32,400 observations for each parameter were used as input into the unstan-

dardized regression equations. The root-mean-square (RMS) of the residuals was com-

puted. For the mixed ROI regression equation, the RMS error was 0.767 K. The RMS error

for the cavity ROI regression equation was 0.115 K. These RMS values represent an initial

estimate of the error in the temperature correction factor.

6.2.2 SC 2000 Inframetrics Sensor

Now that the methodology has been established, the LUT may be generated for an ac-

tual sensor, the SC 2000 Inframetrics thermal camera. Recall from Section 2.3 that the SC

2000 was used to obtain LWIR imagery of several MDCT units at SRS. The camera is an

un-cooled microbolometer having a 7.6 - 13.5 µm spectral range, an instantaneous field

of view (IFOV) of 1.4 milliradians, an accuracy of ± 2 K, and a sensitivity of 0.1 K. The

sensor altitude was between 350 and 2000 feet (106.7 and 610 meters) above the ground

for the imagery presented in Section 2.3. For this study, the GSD was set to 0.22 m which

corresponds to a sensor altitude of 500 feet (Figure 2.4)

The regression equation for the mixed ROI case is

ŷ1 = −17.5651− 0.0340 x1 + 10.7236 x2 + 0.0350 x3

− 0.0083 x4 + 0.0223 x5 + 0.0016 x6 + 0.0021 x7. (6.5)
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This regression has a calculated RMS error of 0.785 K. Notice that the RMS error is slightly

higher in this case than in the ideal sensor case due to the spatial blurring that occurred

with this sensor. The standardized regression for the mixed ROI case is calculated as

ŷ1s = 0.0000− 0.1090 x1s + 0.7236 x2s + 0.5208 x3s

− 0.0509 x4s + 0.0402 x5s + 0.0044 x6s + 0.0407 x7. (6.6)

As in the ideal sensor case, the fan blade emissivity appears to have the most impact on the

predicted temperature error since its standardized coefficient has the highest value.

The regression equation for the cavity ROI case for the SC 2000 is

ŷ2 = −6.3753− 0.0268 x1 + 4.0693 x2 + 0.0136 x3

− 0.0054 x4 + 0.0220 x5 − 0.0006 x6 − 0.0004 x7. (6.7)

The RMS error for this regression is 0.355 K. This RMS is similarly higher than in the ideal

sensor case since spatial blurring occurs. The corresponding standardized form of this

equation is

ŷ2s = 0.0000− 0.2117 x1s + 0.6769 x2s + 0.4983 x3s

− 0.0826 x4s + 0.0976 x5s − 0.0040 x6s − 0.0171 x7. (6.8)

Unlike the ideal sensor case, the DIRSIG coefficients for the SC 2000 LUT are non-zero.

This is due to the spatial blurring that occurs with the SC 2000 sensor and blurring due

to the atmosphere. The spatial blurring causes radiance from non-cavity pixels to be in-

cluded in the cavity-only pixels and therefore alters the temperature estimate for these

pixels.

6.2.2.1 SC 2000 Random Dataset

A set of 1944 random physics model runs were generated and processed using the SC

2000 sensor parameters. Each parameter value was randomly chosen from the range of

the values of that parameter in the LUT (Table 6.2). The 1944 point random dataset was

used with the regression equations for the SC 2000 sensor and the RMS errors between the

actual temperature error for each random run and the predicted error from the regression

were calculated. The parameter values used in the random dataset are listed in Table 6.4.
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Internal External Fan Sky Angle Ambient Ambient Plume
Temp. [K] Temp. [K] ε Temp. [K] [°] Temp. [K] Dew Pt. [K] Length [m]

304.3 Int. Temp. - 2.1 0.79 235.60 27.7 293.2 Amb. Temp. - 1.7 89.9
293.5 Int. Temp. - 0.4 0.66 248.10 22.1 297.5 Amb. Temp. - 6.3 10.5
299.1 Int. Temp. - 1.0 0.90 260.90 5.3

Table 6.4: MDCT random parameter values

The corresponding LUT for these random runs were used as input for the SC 2000 re-

gression equations (6.5) and (6.7). The RMS error for the mixed ROI data is 0.381 K while

the RMS error for the cavity ROI data is 0.224 K which both indicate that the method

performs quite well for simulated data.
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6.3 SRNL Data Set

The parameterized model can now be used to derive temperature corrections for the

SRNL imagery from Section 2.3. There are several issues with the data that must be ad-

dressed before proceeding. Once these issues are understood, the images may be cor-

rected using the parameterized model to obtain the desired exit air temperature of the

MDCTs. The images in the data set are shown in Figure 6.1 for reference.

(a) 20may04D14 (b) 20may04E02

(c) 20may04E04 (d) 20jun05G09

Figure 6.1: SRNL data set LWIR images.
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6.3.1 Understanding the SRNL Data Set

The images and associated ground measurements in Section 2.3 have many unknown

variables that must be examined. These variables include aspects of the ground measure-

ments, the atmosphere, and the sensor.

First, the collection of simultaneous ground truth measurements is a very difficult task

in general. Recall from Section 2.3 that a temperature measurement was obtained of the

air exiting the fan stack. The measurement was made about two feet inside the edge of

the fan stack shroud for each tower. The exit air temperature is the desired temperature

that is to be determined from the thermal image. This measurement represents the only

ground truth of the desired target. Ideally, several measurements of the exit air tempera-

ture would have been obtained at several places in the fan stack opening to determine any

spatial variation to the exit air temperature. The uncertainty in the ground temperature

measurement can be estimated as ± 0.4 K. This is based on measured accuracies for simi-

lar temperature measurement technologies. In addition, one of the predictor variables of

the parameterized model is the MDCT external temperature. This is the temperature of the

surrounding deck material. No ground-truth temperature measurements are available for

the decking.

Another non-characterized aspect of the ground measurements is the atmospheric state.

A meteorological station recorded ambient air temperature, dew point temperature, and

wind velocity data approximately five meters away from the tower units. These environ-

mental conditions recorded at this location are not exactly the same as those directly next

to the towers. Ideally, several measurements would be obtained around the direct perime-

ter of the towers. Wind measurements would be taken directly at the fan stack opening to

infer the exact direction of the exhausted plume. A more significant problem is the lack of

atmospheric profile information. Such information is necessary to correct the images for

the atmospheric effects of path transmission and path radiance.

In addition to environmental variables, there are uncertainties in the sensor used to col-

lect the images. As mentioned previously, the SRNL images were obtained with a SC 2000

Inframetrics camera. The detector size and field of view are known fairly well so that the

GSD can be calculated accurately. However, the exact spectral response of the camera is

unknown. Information from the manufacturer lists the spectral response as between 7.6

and 13.5 µm. Since the exact response in this wavelength region is not available, an as-
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sumption is made that the response is unity between 7.6 and 13.5 µm and is zero outside

this region. Furthermore, the images are in terms of apparent temperature at the sensor.

Ideally, the image would have been kept in terms of radiance at the sensor to eliminate

any errors associated with converting radiance to temperature. The manufacturer reports

a temperature accuracy of± 2 K and a thermal sensitivity of 0.1 K. The thermal sensitivity

is the precision level of the camera (i.e., image temperatures are reported to one decimal

place). The accuracy value is a measure of the sensor noise. The value of ± 2 K can be

interpreted as the three standard deviation value (3σ) for a random normal distribution

of noise. Therefore, the uncertainty in the camera measurement is ± 0.66 K.

6.3.2 Atmospheric Compensation

Most of the factors discussed in the previous section are already set and cannot be changed.

The atmospheric compensation issue, however, is managable to a certain extent. Although

a true atmospheric sounding at the time of image acquisition is not available, the atmo-

spheric profile can be interpolated from nearby radiosonde stations. These radiosonde

profiles must be spatially and temporally interpolated to estimate the profile at SRS at the

time of image aquisition. The five surrounding radiosonde locations are listed in Table 6.5.

Each radiosonde profile contains measurements of the atmospheric pressure, air temper-

ature, and dew point temperature at various pressure levels. The measurement altitude is

calculated from the atmospheric pressure through the hydrostatic equation and the ideal

gas equation [12]. The radiosonde measurements are not taken at regular altitude inter-

vals. Therefore, each radiosonde profile is first interpolated to regular altitude intervals.

Next, a temporal interpolation is performed. Each radiosonde location contains a pro-

file before and after the time of image acquisition. A linear interpolation is performed to

calculate the atmospheric profile for each of the five locations for the time of image acqui-

sition. The next step is a spatial interpolation. A weighted average of the five radiosonde

station profile is taken to calculate the atmospheric profile at SRS. The weights are based

Station ID Location Latitude/Longitude/Altitude Distance to SRS
72206 Jacksonville, FL 30.50°/ -81.70°/ 9.0 m 308.74 km
72208 Charleston, SC 32.92°/ -80.02°/ 15.0 m 157.82 km
72214 Tallahassee, FL 30.45°/ -84.30°/ 53.0 m 401.52 km
72215 Peach Tree City, GA 33.35°/ -84.57°/244.0 m 271.15 km
72317 Greensboro, NC 36.07°/ -79.95°/ 270.0 m 345.52 km

Table 6.5: Radiosonde station information for the radiosonde profiles used to atmospherically
compensate the SRNL images.
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(a) 20 May 2004 at 06:00 GMT (b) 21 June 2005 at 02:30 GMT

Figure 6.2: Interpolated atmospheric profiles used in MODTRAN to correct the SRNL images.
These profiles are linearly interpolated both spatially and temporally from five radiosonde stations
near SRS.

on the distance of each station to SRS as listed in Table 6.5. Finally, a surface correction

is performed on the temporally and spatially interpolated profile for SRS. A meteorolog-

ical station recorded the ambient air temperature and ambient dew point for the scenes

in Section 2.3. The atmospheric pressure, air temperature, and dew point temperature

of the surface level for the interpolated profile is replaced with the actual measurements

obtained from the SRS meteorological station. The interpolated profiles for the SRS scenes

are shown in Figure 6.2.

The spectral transmission and path radiance of this interpolated profile is then calculated

in MODTRAN. Following the method in Section 4.2.1.2, the blackbody radiance is calcu-

lated for a given temperature and multiplied by wavelength by the spectral transmission

and then added to the spectral path radiance. This sensor-reaching radiance is then multi-

plied and integrated with the spectral response function of the sensor to arrive at an inte-

grated band radiance which is expressed as an apparent temperature. A LUT is generated

that relates a range of possible surface blackbody temperatures to at-sensor apparent tem-

peratures. The apparent temperature at the sensor can then be converted to an apparent

temperature at the surface through the LUT. Note that the surface apparent temperature

does not take into account any emissivity effects.

This procedure was applied to the SRNL images from Section 2.3. The mean temperature

for both the mixed ROI and the cavity-only ROI was corrected for atmospheric effects.

An ROI drawn on the decking of each tower was also corrected to remove these atmo-

spheric effects. This deck ROI temperature will be used in the regression model since an
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Figure 6.3: Radiosonde station locations shown relative to SRS. Graphic taken from Google™
Earth.

actual ground measurement of the deck is not available. It is important to note that the

uncertainty in the atmospheric correction may range from ± 0.6 K to as high as ± 1.1 K,

depending on the atmospheric conditions [45].

The raw image temperatures for the mixed, cavity, and decking ROI and their associ-

ated atmospherically-corrected values for each tower are listed in Tables 6.6 through 6.9.

The ROI temperature is written as the mean value in the ROI ± the standard deviation of

the values in the ROI. The standard deviation of the ROI values will be used as a measure

of the uncertainty in the ROI temperature.



6.3. SRNL DATA SET 111

Image ROI Temperature [K] Atm-Corrected ROI Temperature [K]
ID Mixed Cavity Decking Mixed Cavity Decking
F1 294.96 ± 0.30 295.26 ± 0.25 293.23 ± 0.29 295.04 ± 0.33 295.38 ± 0.28 293.11 ± 0.32
F2 293.89 ± 0.25 294.01 ± 0.22 292.62 ± 0.21 293.84 ± 0.28 293.98 ± 0.25 292.42 ± 0.23
F3 294.55 ± 0.31 294.65 ± 0.27 292.66 ± 0.31 294.58 ± 0.35 294.69 ± 0.30 292.46 ± 0.34
F4 295.33 ± 0.32 295.50 ± 0.29 292.99 ± 0.28 295.46 ± 0.36 295.65 ± 0.33 292.83 ± 0.32
F5 295.14 ± 0.38 295.51 ± 0.25 293.12 ± 0.33 295.24 ± 0.42 295.66 ± 0.28 292.98 ± 0.36
F6 292.03 ± 0.28 292.27 ± 0.18 291.46 ± 0.23 291.75 ± 0.31 292.02 ± 0.20 291.12 ± 0.26

Table 6.6: Original and the atmospherically-corrected image ROI temperatures for the SRNL
20may04D14 image.

Image ROI Temperature [K] Atm-Corrected ROI Temperature [K]
ID Mixed Cavity Decking Mixed Cavity Decking
F1 294.88 ± 0.22 294.99 ± 0.21 293.32 ± 0.34 294.99 ± 0.27 295.12 ± 0.26 293.11 ± 0.41
F2 293.91 ± 0.22 294.03 ± 0.16 292.79 ± 0.22 293.82 ± 0.27 293.97 ± 0.20 292.34 ± 0.27
F3 294.53 ± 0.24 294.59 ± 0.20 292.68 ± 0.26 294.58 ± 0.29 294.65 ± 0.24 292.34 ± 0.32
F4 295.13 ± 0.21 295.22 ± 0.21 293.03 ± 0.24 295.30 ± 0.26 295.41 ± 0.25 292.76 ± 0.33
F5 295.13 ± 0.26 295.28 ± 0.18 293.18 ± 0.25 295.29 ± 0.31 295.48 ± 0.22 292.95 ± 0.31
F6 292.34 ± 0.26 292.53 ± 0.16 291.86 ± 0.13 291.93 ± 0.32 292.16 ± 0.19 291.35 ± 0.16

Table 6.7: Original and the atmospherically-corrected image ROI temperatures for the SRNL
20may04E02 image.

Image ROI Temperature [K] Atm-Corrected ROI Temperature [K]
ID Mixed Cavity Decking Mixed Cavity Decking
F1 294.82 ± 0.14 294.83 ± 0.14 293.38 ± 0.23 295.07 ± 0.19 295.09 ± 0.18 293.18 ± 0.31
F2 293.88 ± 0.12 293.81 ± 0.22 293.05 ± 0.13 293.84 ± 0.16 293.75 ± 0.28 292.74 ± 0.17
F3 294.22 ± 0.17 294.24 ± 0.29 293.13 ± 0.20 294.28 ± 0.22 294.32 ± 0.38 292.84 ± 0.27
F4 294.84 ± 0.14 294.63 ± 0.40 293.39 ± 0.27 295.11 ± 0.18 294.83 ± 0.53 293.19 ± 0.36
F5 294.68 ± 0.14 294.70 ± 0.11 293.34 ± 0.26 294.89 ± 0.18 294.92 ± 0.14 293.13 ± 0.35
F6 292.58 ± 0.19 292.65 ± 0.11 292.28 ± 0.13 292.13 ± 0.25 292.21 ± 0.15 291.72 ± 0.18

Table 6.8: Original and the atmospherically-corrected image ROI temperatures for the SRNL
20may04E04 image.

Image ROI Temperature [K] Atm-Corrected ROI Temperature [K]
ID Mixed Cavity Decking Mixed Cavity Decking
H1 297.56 ± 0.48 297.81 ± 0.27 293.88 ± 0.41 297.32 ± 0.53 298.00 ± 0.29 293.68 ± 0.46
H2 297.70 ± 0.46 297.86 ± 0.21 293.86 ± 0.69 297.88 ± 0.50 298.06 ± 0.23 293.65 ± 0.76
H3 294.59 ± 1.06 295.80 ± 0.49 292.37 ± 0.20 294.45 ± 1.17 295.79 ± 0.54 292.01 ± 0.22
H4 297.45 ± 0.54 297.64 ± 0.29 293.70 ± 0.44 297.60 ± 0.60 297.81 ± 0.31 293.48 ± 0.49

Table 6.9: Original and the atmospherically-corrected image ROI temperatures for the SRNL
20jun05G09 image.
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6.3.3 Actual Temperature Errors

The actual temperature error between the image-derived temperature and the measured

ground-truth can now be re-calculated for the atmospherically compensated images. The

exit air temperature, Tex, of the towers is the desired temperature to be retrieved. The

temperature error is defined as the difference between the image mean ROI temperature

and the recorded exit air temperature. The uncertainty in the temperature error can be

calculated from uncertainties in the ROI temperature, the sensor measurement, the atmo-

spheric compensation, and the measured exit air temperature. The uncertainties in all

these factors are listed in Table 6.10.

Variable Uncertainty
Ground measurement ± 0.4 K
ROI temperature ± (ROI St. Dev.) K
Sensor measurement ± 0.66 K
Atmospheric compensation ± 0.6 K - ± 1.1 K

Table 6.10: Temperature uncertainties in the measured ground, ROI, sensor, and atmospheric vari-
ables

The square of the uncertainty in the temperature error can be found by summing the

squares of the uncertainties in the exit air measurements, the ROI temperatures, the atmo-

spheric compensation, and the sensor measurement assuming that each term is indepen-

dent. This can be written as

δT2
error = δT2

ROI + δT2
atm + δT2

sensor + δT2
ex. (6.9)

This method of calculating the uncertainty in the temperature error is described in Ap-

pendix C.

The actual temperature errors and their associated uncertainties for each operating tower

in each image are listed in Tables 6.11 through 6.14. All of the uncertainties from Table 6.10

where taken into account. The operating towers are those in which water is flowing (i.e.,

water on, fans on or water on, fans off ).
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ID Tex [K] Mixed ROI [K] Cavity ROI [K] Mixed ∆T [K] Cavity ∆T [K]
F1 295.55 ± 0.40 295.04 ± 0.33 295.38 ± 0.28 -0.51 ± 1.03 -0.17 ± 1.02
F2 294.25 ± 0.40 293.84 ± 0.28 293.98 ± 0.25 -0.41 ± 1.02 -0.27 ± 1.01
F3 294.75 ± 0.40 294.58 ± 0.35 294.69 ± 0.30 -0.17 ± 1.04 -0.06 ± 1.02
F4 295.65 ± 0.40 295.46 ± 0.36 295.65 ± 0.33 -0.19 ± 1.04 0.00 ± 1.03
F5 296.75 ± 0.40 295.24 ± 0.42 295.66 ± 0.28 -1.51 ± 1.06 -1.09 ± 1.02

Table 6.11: Temperature errors between the atmospherically-corrected mean ROI temperature and
the measured ground-truth exit air temperature for the SRNL 20may04D14 image.

ID Tex [K] Mixed ROI [K] Cavity ROI [K] Mixed ∆T [K] Cavity ∆T [K]
F1 295.55 ± 0.40 294.99 ± 0.27 295.12 ± 0.26 -0.56 ± 1.01 -0.43 ± 1.01
F2 294.25 ± 0.40 293.82 ± 0.27 293.97 ± 0.20 -0.43 ± 1.01 -0.28 ± 1.00
F3 294.75 ± 0.40 294.58 ± 0.29 294.65 ± 0.24 -0.17 ± 1.02 -0.10 ± 1.01
F4 295.65 ± 0.40 295.30 ± 0.26 295.41 ± 0.25 -0.35 ± 1.01 -0.24 ± 1.01
F5 296.75 ± 0.40 295.29 ± 0.31 295.48 ± 0.22 -1.46 ± 1.03 -1.27 ± 1.00

Table 6.12: Temperature errors between the atmospherically-corrected mean ROI temperature and
the measured ground-truth exit air temperature for the SRNL 20may04E02 image.

ID Tex [K] Mixed ROI [K] Cavity ROI [K] Mixed ∆T [K] Cavity ∆T [K]
F1 295.55 ± 0.40 295.07 ± 0.19 295.09 ± 0.18 -0.48 ± 1.00 -0.46 ± 0.99
F2 294.25 ± 0.40 293.84 ± 0.16 293.75 ± 0.28 -0.41 ± 0.99 -0.50 ± 1.02
F3 294.75 ± 0.40 294.28 ± 0.22 294.32 ± 0.38 -0.47 ± 1.00 -0.43 ± 1.05
F4 295.65 ± 0.40 295.11 ± 0.18 294.83 ± 0.53 -0.54 ± 0.99 -0.82 ± 1.11
F5 296.75 ± 0.40 294.87 ± 0.18 294.92 ± 0.14 -1.88 ± 0.99 -1.83 ± 0.99

Table 6.13: Temperature errors between the atmospherically-corrected mean ROI temperature and
the measured ground-truth exit air temperature for the SRNL 20may04E04 image.

ID Tex [K] Mixed ROI [K] Cavity ROI [K] Mixed ∆T [K] Cavity ∆T [K]
H1 297.16 ± 0.40 297.32 ± 0.53 298.00 ± 0.29 0.16 ± 1.11 0.84 ± 1.02
H2 296.78 ± 0.40 297.88 ± 0.50 298.06 ± 0.23 1.10 ± 1.10 1.28 ± 1.00
H3 296.01 ± 0.40 294.45 ± 1.17 295.79 ± 0.54 -1.56 ± 1.52 -0.22 ± 1.12
H4 296.39 ± 0.40 297.60 ± 0.60 297.81 ± 0.31 1.21 ± 1.15 1.42 ± 1.03

Table 6.14: Temperature errors between the atmospherically-corrected mean ROI temperature and
the measured ground-truth exit air temperature for the SRNL 20jun05G09 image.
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6.3.4 Predicted Temperature Errors

The SRNL data will serve as a test of the methodology developed in Chapter 5. The

physics model data presented in Section 6.1 must be processed using the SC 2000 sensor

model with the appropriate GSD. A LUT is generated for GSD values of 0.22 m, 0.43 m,

0.85 m, and 0.15 m which correspond to the 20may04D14, 20may04E02, 20may04E04, and

20jun05G09 images, respectively. Next, a multiple linear regression model for the mixed

ROI case and one for the cavity-only ROI case were fit to each LUT. The associated RMS

error was calculated for each regression model.

Now that a parameterized regression equation has been found, the values of the predictor

variables must be estimated. Recall from Section 6.2 that the seven predictor parameters

are the MDCT external temperature (x1), the fan blade emissivity (x2), the effective sky temper-

ature (x3), the sensor zenith angle (x4), the ambient air temperature (x5), the ambient dew point

temperature (x6), and the plume path length (x7). The response variable ŷ1 is the predicted

temperature error for the mixed ROI case. The response variable ŷ2 is the predicted tem-

perature error for the cavity-only ROI case.

Each predictor parameter value and uncertainty must be estimated:

MDCT external temperature (x1) is the temperature of the decking. The deck ROI tem-

perature from Tables 6.6 through 6.9 will be used as the estimate of this predictor. The

deck ROI temperature does not take into account emissivity effects. If an emissivity of

0.95 is assumed for the decking material then the actual temperature of the deck would

be roughly 3 K higher than the deck ROI temperature. Therefore, the uncertainty in this

predictor estimate will be set to ± 3 K. (If the emissivity was underestimated as 0.90, then

the uncertainty would increase to ± 7 K.)

Fan blade emissivity (x2) is estimated to be 0.90. This value is based on the observation

that most materials in the LWIR have relatively high emissivities. The uncertainty is set

as ± 0.04 which is intended to cover the expected conditions of the fan blade material.

Effective sky temperature (x3) can be computed from the interpolated atmospheric profile

from Section 6.3.2. The DIRSIG make adb utility calculates the total hemispherical spec-

tral downwelling radiance from the profile data (Appendix D). This radiance is then in-

tegrated with the SC 2000 spectral response and converted into an apparent temperature.
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The uncertainty in the sky temperature is taken as the approximate difference between

the interpolated profile sky temperature and the MODTRAN standard tropical profile

sky temperature (276 K). The uncertainty is ± 9 K for the nadir images and ± 12 K for the

oblique image.

Sensor zenith angle (x4) is estimated from the image. The apparent diameter of the fan

stack opening in the horizontal and vertical image directions are compared and an ap-

proximate view angle is computed by

θzenith = cos−1
(

Dv

Dh

)
, (6.10)

where Dv and Dh are the diameter of the fan stack opening in the vertical and horizontal

image directions, respectively, in terms of the number of pixels. The uncertainty in this

measurement is found by adding and subtracting one pixel from the vertical and horizon-

tal diameters and recalculating the angle. Half of the range bounded by these two angles

is taken as the uncertainty. For example, for the D14 image, the vertical and horizontal

diameters were found to be 22 and 22 pixels, respectively. One pixel is subtracted from

the vertical diameter and one pixel is added to the horizontal diameter to yield 21 and

23, respectively. This yields an angle of 24°. The estimated view angle is then taken as

0° ± 12°. The estimated angles and the uncertainties for each image are listed in Table

6.15.

Image 20may04D14 20may04E02 20may04E04 20jun05G09
Angle 0°± 12° 0°± 17° 0°± 22° 29°± 6°

Table 6.15: Estimates of the sensor view zenith angle along with uncertainties. The angles were
estimated by measuring the vertical and horizontal pixel diameters of the fan stack opening of
each image.

Ambient air temperature (x5) is an actual measured ground value. The uncertainty is± 0.4 K

for the HOBO temperature sensor measurement error.

Ambient dew point temperature (x6) is an actual measured ground value. The uncertainty is

approximately ± 2 K for the HOBO temperature sensor measurement error.

Plume path length (x7) is estimated via the utility in Appendix E. The utility takes into

account the environmental information from the scene and the sensor geometry to cal-

culate an approximate path length through the plume. The calculations are based on a
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Gaussian plume model. The uncertainty in the plume path length is between 1 m and 5 m

for the conditions found in the SRNL data set.

Once estimates of the predictor parameters are set, the predicted temperature error for the

mixed and cavity ROIs can be calculated from the regression equations. The uncertainty

in the predicted temperature is found from the uncertainties of each predictor parameter

using the methods in Appendix C. The uncertainty was calculated by equation (C.5) and

the result was verified empirically using a set of 100,000 trials to numerically determine

the uncertainty (see Section C.2). Note that the RMS error of the regression equation is

included in the uncertainty in the predicted temperature. The regression RMS error is a

measure of the fit of the regression model to the LUT data.

The data tables in the following pages present the regression equations for the mixed

and cavity ROI and the estimates and uncertainties for each parameter value used in the

regression. The resulting predicted temperature errors are compared to the actual tem-

perature errors presented in the previous section. Finally, a plot is shown of the actual

and predicted temperature errors along with the associated uncertainties for each tower.
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SRNL 20may04D14 image
02:02 EDT 20 May 2004 at 500 ft (152.5 m) with a GSD of 0.22 m.

(Parameterized Model Prediction)

Mixed ROI: (RMS error = 0.79 K)

ŷ1 = −17.5651− 0.0340 x1 + 10.7236 x2 + 0.0350 x3 − 0.0083 x4 + 0.0223 x5 + 0.0016 x6 + 0.0021 x7

Cavity ROI: (RMS error = 0.36 K)

ŷ2 = −6.3753− 0.0268 x1 + 4.0693 x2 + 0.0136 x3 − 0.0054 x4 + 0.0220 x5 − 0.0006 x6 − 0.0004 x7

ID x1 [K] x2 [ ] x3 [K] x4 [°] x5 [K] x6 [K] x7 [m]
F1 293.11 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 12 292.87 ± 0.40 291.06 ± 2.00 3 ± 1
F2 292.42 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 12 292.87 ± 0.40 291.06 ± 2.00 15 ± 5
F3 292.46 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 12 292.87 ± 0.40 291.06 ± 2.00 20 ± 5
F4 292.83 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 12 292.87 ± 0.40 291.06 ± 2.00 3 ± 1
F5 292.98 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 12 292.87 ± 0.40 291.06 ± 2.00 3 ± 1

Table 6.16: Predictor estimates used in the 20may04D14 parameterized regression model.

Mixed ROI Cavity ROI
ID Image ∆T [K] Predicted ∆T [K] Image ∆T [K] Predicted ∆T [K]
F1 -0.51 ± 1.03 -1.52 ± 0.96 -0.17 ± 1.02 -0.66 ± 0.42
F2 -0.41 ± 1.02 -1.47 ± 0.96 -0.27 ± 1.01 -0.65 ± 0.42
F3 -0.17 ± 1.04 -1.46 ± 0.96 -0.06 ± 1.02 -0.65 ± 0.42
F4 -0.19 ± 1.04 -1.51 ± 0.96 0.00 ± 1.03 -0.66 ± 0.42
F5 -1.51 ± 1.06 -1.51 ± 0.96 -1.09 ± 1.02 -0.66 ± 0.42

Table 6.17: Comparison of the actual and predicted temperature errors for the 20may04D14 image.
ROI, atmosphere, and sensor uncertainty is included.

(a) Mixed ROI (b) Cavity ROI

Figure 6.4: The actual and the predicted temperature error with uncertainty ranges for the
20may04D14 image. ROI, atmosphere, and sensor uncertainty is included in the error bars.
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SRNL 20may04E02 image
02:04 EDT 20 May 2004 at 1000 ft (305.0 m) with a GSD of 0.43 m.

(Parameterized Model Prediction)

Mixed ROI: (RMS error = 0.80 K)

ŷ1 = −17.8511− 0.0335 x1 + 10.8209 x2 + 0.0350 x3 − 0.0070 x4 + 0.0223 x5 + 0.0016 x6 + 0.0021 x7

Cavity ROI: (RMS error = 0.46 K)

ŷ2 = −7.6545− 0.0277 x1 + 4.7703 x2 + 0.0165 x3 − 0.0124 x4 + 0.0220 x5 − 0.0003 x6 − 0.0000 x7

ID x1 [K] x2 [ ] x3 [K] x4 [°] x5 [K] x6 [K] x7 [m]
F1 293.11 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 17 292.87 ± 0.40 291.06 ± 2.00 3 ± 1
F2 292.48 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 17 292.87 ± 0.40 291.06 ± 2.00 15 ± 5
F3 292.34 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 17 292.87 ± 0.40 291.06 ± 2.00 20 ± 5
F4 292.76 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 17 292.87 ± 0.40 291.06 ± 2.00 3 ± 1
F5 292.95 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 17 292.87 ± 0.40 291.06 ± 2.00 3 ± 1

Table 6.18: Predictor estimates used in the 20may04E02 parameterized regression model.

Mixed ROI Cavity ROI
ID Image ∆T [K] Predicted ∆T [K] Image ∆T [K] Predicted ∆T [K]
F1 -0.56 ± 1.01 -1.56 ± 0.97 -0.43 ± 1.01 -0.71 ± 0.57
F2 -0.43 ± 1.01 -1.51 ± 0.97 -0.28 ± 1.00 -0.70 ± 0.57
F3 -0.17 ± 1.02 -1.50 ± 0.97 -0.10 ± 1.01 -0.69 ± 0.57
F4 -0.35 ± 1.01 -1.55 ± 0.97 -0.24 ± 1.01 -0.70 ± 0.57
F5 -1.46 ± 1.03 -1.55 ± 0.97 -1.27 ± 1.00 -0.71 ± 0.57

Table 6.19: Comparison of the actual and predicted temperature errors for the 20may04E02 image.
ROI, atmosphere, and sensor uncertainty is included.

(a) Mixed ROI (b) Cavity ROI

Figure 6.5: The actual and the predicted temperature error with uncertainty ranges for the
20may04E02 image. ROI, atmosphere, and sensor uncertainty is included in the error bars.
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SRNL 20may04E04 image
02:07 EDT 20 May 2004 at 2000 ft (610.0 m) with a GSD of 0.85 m.

(Parameterized Model Prediction)

Mixed ROI: (RMS error = 0.82 K)

ŷ1 = −18.1448− 0.0325 x1 + 10.4140 x2 + 0.0356 x3 − 0.0050 x4 + 0.0224 x5 + 0.0017 x6 + 0.0022 x7

Cavity ROI: (RMS error = 0.60 K)

ŷ2 = −12.3001− 0.0296 x1 + 7.2994 x2 + 0.0247 x3 − 0.0117 x4 + 0.0222 x5 + 0.0006 x6 + 0.0009 x7

ID x1 [K] x2 [ ] x3 [K] x4 [°] x5 [K] x6 [K] x7 [m]
F1 293.18 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 22 292.87 ± 0.40 291.06 ± 2.00 3 ± 1
F2 292.74 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 22 292.87 ± 0.40 291.06 ± 2.00 15 ± 5
F3 292.84 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 22 292.87 ± 0.40 291.06 ± 2.00 20 ± 5
F4 293.19 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 22 292.87 ± 0.40 291.06 ± 2.00 3 ± 1
F5 293.13 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 22 292.87 ± 0.40 291.06 ± 2.00 3 ± 1

Table 6.20: Predictor estimates used in the 20may04E04 parameterized regression model.

Mixed ROI Cavity ROI
ID Image ∆T [K] Predicted ∆T [K] Image ∆T [K] Predicted ∆T [K]
F1 -0.48 ± 1.00 -1.73 ± 0.98 -0.46 ± 0.99 -1.16 ± 0.75
F2 -0.41 ± 0.99 -1.69 ± 0.98 -0.50 ± 1.02 -1.13 ± 0.75
F3 -0.47 ± 1.00 -1.68 ± 0.98 -0.43 ± 1.05 -1.13 ± 0.75
F4 -0.54 ± 0.99 -1.73 ± 0.98 -0.82 ± 1.11 -1.16 ± 0.75
F5 -1.88 ± 0.99 -1.73 ± 0.98 -1.83 ± 0.99 -1.16 ± 0.75

Table 6.21: Comparison of the actual and predicted temperature errors for the 20may04E04 image.
ROI, atmosphere, and sensor uncertainty is included.

(a) Mixed ROI (b) Cavity ROI

Figure 6.6: The actual and the predicted temperature error with uncertainty ranges for the
20may04E04 image. ROI, atmosphere, and sensor uncertainty is included in the error bars.
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SRNL 20jun05G09 image
22:17 EDT, 20 June 2005 at 350 ft (106.7 m) with a GSD of 0.15 m.

(Parameterized Model Prediction)

Mixed ROI: (RMS error = 0.78 K)

ŷ1 = −17.5961− 0.0340 x1 + 10.7930 x2 + 0.0349 x3 − 0.0075 x4 + 0.0223 x5 + 0.0016 x6 + 0.0021 x7

Cavity ROI: (RMS error = 0.35 K)

ŷ2 = −6.3769− 0.0273 x1 + 4.1551 x2 + 0.0138 x3 − 0.0049 x4 + 0.0220 x5 − 0.0006 x6 − 0.0003 x7

ID x1 [K] x2 [ ] x3 [K] x4 [°] x5 [K] x6 [K] x7 [m]
H1 293.68 ± 3.00 0.90 ± 0.04 264 ± 12 29 ± 6 296.39 ± 0.40 293.17 ± 2.00 8 ± 3
H2 293.65 ± 3.00 0.90 ± 0.04 264 ± 12 29 ± 6 296.39 ± 0.40 293.17 ± 2.00 8 ± 3
H3 292.01 ± 3.00 0.90 ± 0.04 264 ± 12 29 ± 6 296.39 ± 0.40 293.17 ± 2.00 4 ± 1
H4 293.48 ± 3.00 0.90 ± 0.04 264 ± 12 29 ± 6 296.39 ± 0.40 293.17 ± 2.00 8 ± 3

Table 6.22: Predictor estimates used in the 20jun05G09 parameterized regression model.

Mixed ROI Cavity ROI
ID Image ∆T [K] Predicted ∆T [K] Image ∆T [K] Predicted ∆T [K]
H1 0.16 ± 1.11 -1.76 ± 1.00 0.84 ± 1.02 -0.79 ± 0.43
H2 1.10 ± 1.10 -1.76 ± 1.00 1.28 ± 1.00 -0.79 ± 0.43
H3 -1.56 ± 1.52 -1.71 ± 1.00 -0.22 ± 1.12 -0.75 ± 0.43
H4 1.21 ± 1.15 -1.76 ± 1.00 1.42 ± 1.03 -0.79 ± 0.43

Table 6.23: Comparison of the actual and predicted temperature errors for the 20jun05G09 image.
ROI, atmosphere, and sensor uncertainty is included.

(a) Mixed ROI (b) Cavity ROI

Figure 6.7: The actual and the predicted temperature error with uncertainty ranges for the
20jun05G09 image. ROI, atmosphere, and sensor uncertainty is included in the error bars.
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The comparison of the actual temperature error and the predicted temperature error is

presented in Figures 6.4 to 6.7. Several statements can be made about the data.

In general, the predicted errors are less than zero for both the mixed and cavity ROIs.

The magnitude of the predicted errors are greater than the magnitude of the actual errors

for the nadir images (20may04D14, 20may04E02, 20may04E04). The uncertainty ranges

overlap for the mixed and cavity ROIs for all the nadir images. Compared to the actual er-

rors, the predicted temperature errors were within± 1.3 K for the mixed ROIs and within

± 0.7 K for the cavity ROIs.

For the oblique image (20jun05G09), the actual errors vary more from tower to tower

than in the nadir images. The uncertainty ranges overlap for two of the four towers for

the mixed ROI and overlap for only one tower for the cavity ROI. The predicted temper-

ature errors differed from the actual errors by as much as ± 3 K for the mixed and cavity

ROIs. However, the predicted temperature error was within ± 0.5 K for the H3 tower for

both ROIs.

These results can be attributed to several factors. First, the the SRNL data set issues dis-

cussed in Section 6.3.1 will influence the actual temperature errors. Although uncertain-

ties were assigned to the ground measurements based on expected errors in the tempera-

ture sensors, this does not take into account the prospect that the recorded measurement

was not the actual measurement desired. The exit air temperature measurement, for ex-

ample, may not have been the true exit air temperature since the measurement could have

been altered by the ambient conditions. The uncertainties are due to the physical process

of temperature measurement and are not due to statistical sampling of the temperature.

In addition, estimates were made for the uncertainty in the atmospheric compensation

and in the sensor measurement. Ideally, these uncertainties would have been understood

in detail.

These results may also be attributed to the modeling process. Imperfect information was

used in parameterized model. The exact MDCT external temperature had to be estimated

from the images. The value for the fan blade emissivity was estimated based on similar,

but not exact, materials. The effective sky temperature was estimated from the interpolated

atmospheric profile used to atmospherically correct the images. The sensor view angle was

estimated from the images. Actual sensor orientation data could be used in practice to

obtain the value for the view angle. The ambient air temperature and ambient dew point
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temperature measurements were subject to the uncertainties described previously. Finally,

the plume path length was roughly estimated using a Gaussian plume model. This model

yields a time-averaged estimate of the plume path length and is not sensitive to instan-

taneous changes in the environment around the MDCT. The regression model fit to each

sensor LUT was also not a perfect fit to the data. The RMS errors for the regression fits

indicated that the parameterized model itself may introduce errors of up to 0.82 K and

0.60 K for the mixed and cavity ROIs, respectively.

Although this demonstration produced mixed results, it did work very well for the nadir

images which lends confidence in the use of this methodology and parameterized model

for real data sets. The connection between the performance of the parameterized model

and the properties of the MDCT units is arbitrary, however. As an example, for the nadir

images the parameterized model for the F5 tower performed the best for the mixed ROI.

There is nothing unique about this tower. Recall from Section 2.3 that the F1, F4, and F5

units were operating as water on, fans off while the F2 and F3 units were water on, fans on.

The fan status does not appear to be an indication of model performance since there was

no correlation between fan status and model performance for the other units. Similarly

for the oblique image, the parameterized model performed the best for the H3 tower. This

unit was also operating in the water on, fans off model while the other units were operat-

ing in the water on, fans on mode. In this particular case, it appears that the parameterized

model was more accurate for the fans off unit than for the fans on unit. However, no con-

clusion can be drawn from this observation since it is not consistent with the nadir images.

The poorer performance of the parameterized model predictions for the oblique image

might be due to several factors that were not accounted for in the physics model. The

oblique viewing geometry means that the emissivity will be different from the nadir

viewing geometry due to directional emissivity effects. For external pixels this means

that these facets will have a higher reflectance thereby increasing the amount of reflected

background radiance. Although the directional emissivity is accounted for in the physics

model, the temperature error might be more sensitive to background radiances. The sky

was modeled as a uniform radiator. In reality, the skydome radiance will be a function of

zenith and azimuth angle depending on the weather conditions. These factors combine

to have an increased effect on the sensor-reaching radiance in the oblique case than in the

nadir case. Given the physical processes discussed and investigated in Chapters 3 and 5

(i.e., emissivity, atmospheric tranmission and path radiance, etc.), the actual temperature

errors should be less than zero given the atmospheric information provided. The actual
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errors for the oblique image are greater than zero for three of the towers. This suggests

that there were errors in the ground-truth measurements or that the physics model did

not account for a physical attribute in the scene. For example, an assumption is made

that the internal surfaces of the MDCT are the same temperature as the exit air. If this is

not true, the measured exit air temperature would be lower than the internal temperature

given that the ambient temperature was also less than the internal temperature. In addi-

tion, the increased temperature of the gear box associated with the fan mechanical system

was not modeled. The high temperature of the gear box for the fans on towers might have

contributed to the higher apparent temperatures for those towers.

6.3.5 Comparison of Atmospheric Uncertainties

The data presented in Section 6.3.4 included uncertainty ranges that incorporated the sus-

pected errors due to the ROI measurement, the atmospheric compensation, and the sen-

sor measurement along with the uncertainty in the ground measurement (Table 6.10). The

total uncertainty for the temperature error was found through equation (6.9). The uncer-

tainties in the ROI temperature and the sensor measurement is fixed for a given sensor.

The atmospheric compensation error, however, is dependent on how well atmospheric

effects can be removed. This is dependent on knowledge of the atmospheric state. The

atmospheric uncertainty was set to ± 0.6 K in Figures 6.4 - 6.7 but this uncertainty in the

atmospheric compensation may vary considerable. To demonstrate the effect of this un-

certainty, the atmospheric uncertainty was varied between ± 0.1 K, ± 1.1 K, and ± 2.2. K

and the corresponding total uncertainty in the image temperature error was calculated for

each image. The results are shown in Figures 6.8 - 6.11.

The plots demonstrate the influence of the atmospheric uncertainty on the overall process.

As expected, the overall uncertainty increases as the atmospheric uncertainty increases.

The overall uncertainty ranges between ± 1.0 K to ± 2.5 K over the atmospheric uncer-

tainty range of ± 0.1 K to ± 2.2 K. This study demonstrates the importance of accurate

atmospheric compensation.
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SRNL 20may04D14 image

(a) Atmospheric Uncertainty = 0.1 K (Mixed) (b) Atmospheric Uncertainty = 0.1 K (Cavity)

(c) Atmospheric Uncertainty = 1.1 K (Mixed) (d) Atmospheric Uncertainty = 1.1 K (Cavity)

(e) Atmospheric Uncertainty = 2.2 K (Mixed) (f) Atmospheric Uncertainty = 2.2 K (Cavity)

Figure 6.8: The actual and the predicted temperature error with uncertainty ranges for the
20may04D14 image. The uncertainty ranges are for an atmospheric uncertainty of 0.1 K (top),
1.1 K (middle), and 2.2 K (bottom).
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SRNL 20may04E02 image

(a) Atmospheric Uncertainty = 0.1 K (Mixed) (b) Atmospheric Uncertainty = 0.1 K (Cavity)

(c) Atmospheric Uncertainty = 1.1 K (Mixed) (d) Atmospheric Uncertainty = 1.1 K (Cavity)

(e) Atmospheric Uncertainty = 2.2 K (Mixed) (f) Atmospheric Uncertainty = 2.2 K (Cavity)

Figure 6.9: The actual and the predicted temperature error with uncertainty ranges for the
20may04E02 image. The uncertainty ranges are for an atmospheric uncertainty of 0.1 K (top),
1.1 K (middle), and 2.2 K (bottom).
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SRNL 20may04E04 image

(a) Atmospheric Uncertainty = 0.1 K (Mixed) (b) Atmospheric Uncertainty = 0.1 K (Cavity)

(c) Atmospheric Uncertainty = 1.1 K (Mixed) (d) Atmospheric Uncertainty = 1.1 K (Cavity)

(e) Atmospheric Uncertainty = 2.2 K (Mixed) (f) Atmospheric Uncertainty = 2.2 K (Cavity)

Figure 6.10: The actual and the predicted temperature error with uncertainty ranges for the
20may04E04 image. The uncertainty ranges are for an atmospheric uncertainty of 0.1 K (top),
1.1 K (middle), and 2.2 K (bottom).
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SRNL 20jun05G09 image

(a) Atmospheric Uncertainty = 0.1 K (Mixed) (b) Atmospheric Uncertainty = 0.1 K (Cavity)

(c) Atmospheric Uncertainty = 1.1 K (Mixed) (d) Atmospheric Uncertainty = 1.1 K (Cavity)

(e) Atmospheric Uncertainty = 2.2 K (Mixed) (f) Atmospheric Uncertainty = 2.2 K (Cavity)

Figure 6.11: The actual and the predicted temperature error with uncertainty ranges for the
20jun05G09 image. The uncertainty ranges are for an atmospheric uncertainty of 0.1 K (top), 1.1 K
(middle), and 2.2 K (bottom).



128 6.3. SRNL DATA SET

6.3.6 Comparison of Sensor Spectral Response

The sensor model used to generate the target space LUT for the SRNL data set required

the spectral response function of the SC 2000 Inframetrics sensor. Recall from Section 6.3.1

that since the exact spectral response was not known, it was approximated by using a flat,

unit response between 7.6 and 13.5 µm and zero otherwise.

To investigate the influence of the sensor spectral response function on the predicted tem-

perature error, a realistic spectral response was used in the sensor model to compare the

predicted temperature errors to the errors predicted using the flat response. The Long-

wave Infrared Camera (LIR) described by Taguchi et al. (2007) [46] is a microbolometer

array with a LWIR filter to get the desired spectral range of 8 - 12 µm. The design of this

sensor is similar to the SC 2000 sensor. Therefore, the spectral response curve of the LIR

was modified so that the full spectral width at half its maximum value fell between 7.6 and

13.5 µm while maintaining the same spectral shape. A comparison of this microbolometer

spectral response and the flat spectral response is shown in Figure 6.12.

The microbolometer response function is then used in the sensor model in the genera-

tion of the LUT of each image. A regression model is fit to the LUT and the predicted

temperature errors are compared to the actual temperature errors. The results are shown

in Figures 6.13 through 6.16.

(a) Ideal, flat, unit spectral response (b) Realistic microbolometer spectral response

Figure 6.12: Comparison of an ideal, flat, unit spectral response and a realistic microbolometer
spectral response in the longwave infrared region.
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SRNL 20may04D14 image
02:02 EDT 20 May 2004 at 500 ft (152.5 m) with a GSD of 0.22 m.

(Parameterized Model Prediction - Microbolometer Response)

Mixed ROI: (RMS error = 0.77 K)

ŷ1 = −17.0516− 0.0338 x1 + 10.8467 x2 + 0.0345 x3 − 0.0074 x4 + 0.0208 x5 + 0.0015 x6 + 0.0019 x7

Cavity ROI: (RMS error = 0.22 K)

ŷ2 = −2.6939− 0.0233 x1 + 2.0021 x2 + 0.0066 x3 − 0.0034 x4 + 0.0204 x5 − 0.0012 x6 − 0.0011 x7

ID x1 [K] x2 [ ] x3 [K] x4 [°] x5 [K] x6 [K] x7 [m]
F1 293.11 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 12 292.87 ± 0.40 291.06 ± 2.00 3 ± 1
F2 292.42 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 12 292.87 ± 0.40 291.06 ± 2.00 15 ± 5
F3 292.46 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 12 292.87 ± 0.40 291.06 ± 2.00 20 ± 5
F4 292.83 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 12 292.87 ± 0.40 291.06 ± 2.00 3 ± 1
F5 292.98 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 12 292.87 ± 0.40 291.06 ± 2.00 3 ± 1

Table 6.24: Predictor estimates used in the 20may04D14 parameterized regression model.

Mixed ROI Cavity ROI
ID Image ∆T [K] Predicted ∆T [K] Image ∆T [K] Predicted ∆T [K]
F1 -0.51 ± 1.03 -1.45 ± 0.94 -0.17 ± 1.02 -0.34 ± 0.25
F2 -0.41 ± 1.02 -1.40 ± 0.94 -0.27 ± 1.01 -0.34 ± 0.25
F3 -0.17 ± 1.04 -1.39 ± 0.94 -0.06 ± 1.02 -0.34 ± 0.25
F4 -0.19 ± 1.04 -1.44 ± 0.94 0.00 ± 1.03 -0.33 ± 0.25
F5 -1.51 ± 1.06 -1.44 ± 0.94 -1.09 ± 1.02 -0.33 ± 0.25

Table 6.25: Comparison of the actual and predicted temperature errors for the 20may04D14 image
using the microbolometer spectral response.

(a) Mixed ROI (b) Cavity ROI

Figure 6.13: The actual and the predicted temperature error with uncertainty ranges for the
20may04D14 image using the microbolometer spectral response.
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SRNL 20may04E02 image
02:04 EDT 20 May 2004 at 1000 ft (305.0 m) with a GSD of 0.43 m.

(Parameterized Model Prediction - Microbolometer Response)

Mixed ROI: (RMS error = 0.77 K)

ŷ1 = −17.3534− 0.0338 x1 + 10.8467 x2 + 0.0345 x3 − 0.0074 x4 + 0.0208 x5 + 0.0015 x6 + 0.0019 x7

Cavity ROI: (RMS error = 0.22 K)

ŷ2 = −2.6939− 0.0233 x1 + 2.0021 x2 + 0.0066 x3 − 0.0034 x4 + 0.0204 x5 − 0.0012 x6 − 0.0011 x7

ID x1 [K] x2 [ ] x3 [K] x4 [°] x5 [K] x6 [K] x7 [m]
F1 293.11 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 17 292.87 ± 0.40 291.06 ± 2.00 3 ± 1
F2 292.48 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 17 292.87 ± 0.40 291.06 ± 2.00 15 ± 5
F3 292.34 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 17 292.87 ± 0.40 291.06 ± 2.00 20 ± 5
F4 292.76 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 17 292.87 ± 0.40 291.06 ± 2.00 3 ± 1
F5 292.95 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 17 292.87 ± 0.40 291.06 ± 2.00 3 ± 1

Table 6.26: Predictor estimates used in the 20may04E02 parameterized regression model.

Mixed ROI Cavity ROI
ID Image ∆T [K] Predicted ∆T [K] Image ∆T [K] Predicted ∆T [K]
F1 -0.56 ± 1.01 -1.51 ± 0.96 -0.43 ± 1.01 -0.55 ± 0.49
F2 -0.43 ± 1.01 -1.47 ± 0.96 -0.28 ± 1.00 -0.53 ± 0.49
F3 -0.17 ± 1.02 -1.46 ± 0.96 -0.10 ± 1.01 -0.53 ± 0.49
F4 -0.35 ± 1.01 -1.50 ± 0.96 -0.24 ± 1.01 -0.54 ± 0.49
F5 -1.46 ± 1.03 -1.51 ± 0.96 -1.27 ± 1.00 -0.54 ± 0.49

Table 6.27: Comparison of the actual and predicted temperature errors for the 20may04E02 image
using the microbolometer spectral response.

(a) Mixed ROI (b) Cavity ROI

Figure 6.14: The actual and the predicted temperature error with uncertainty ranges for the
20may04E02 image using the microbolometer spectral response.
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SRNL 20may04E04 image
02:07 EDT 20 May 2004 at 2000 ft (610.0 m) with a GSD of 0.85 m.

(Parameterized Model Prediction - Microbolometer Response)

Mixed ROI: (RMS error = 0.81 K)

ŷ1 = −17.4717− 0.0327 x1 + 10.4363 x2 + 0.0352 x3 − 0.0048 x4 + 0.0208 x5 + 0.0016 x6 + 0.0020 x7

Cavity ROI: (RMS error = 0.56 K)

ŷ2 = −11.3297− 0.0283 x1 + 6.9223 x2 + 0.0232 x3 − 0.0147 x4 + 0.0207 x5 + 0.0004 x6 + 0.0007 x7

ID x1 [K] x2 [ ] x3 [K] x4 [°] x5 [K] x6 [K] x7 [m]
F1 293.18 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 22 292.87 ± 0.40 291.06 ± 2.00 3 ± 1
F2 292.74 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 22 292.87 ± 0.40 291.06 ± 2.00 15 ± 5
F3 292.84 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 22 292.87 ± 0.40 291.06 ± 2.00 20 ± 5
F4 293.19 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 22 292.87 ± 0.40 291.06 ± 2.00 3 ± 1
F5 293.13 ± 3.00 0.90 ± 0.04 267 ± 9 0 ± 22 292.87 ± 0.40 291.06 ± 2.00 3 ± 1

Table 6.28: Predictor estimates used in the 20may04E04 parameterized regression model.

Mixed ROI Cavity ROI
ID Image ∆T [K] Predicted ∆T [K] Image ∆T [K] Predicted ∆T [K]
F1 -0.48 ± 1.00 -1.69 ± 0.97 -0.46 ± 0.99 -1.05 ± 0.74
F2 -0.41 ± 0.99 -1.65 ± 0.97 -0.50 ± 1.02 -1.02 ± 0.74
F3 -0.47 ± 1.00 -1.64 ± 0.97 -0.43 ± 1.05 -1.02 ± 0.74
F4 -0.54 ± 0.99 -1.69 ± 0.97 -0.82 ± 1.11 -1.05 ± 0.74
F5 -1.88 ± 0.99 -1.68 ± 0.97 -1.83 ± 0.99 -1.04 ± 0.74

Table 6.29: Comparison of the actual and predicted temperature errors for the 20may04E04 image
using the microbolometer spectral response.

(a) Mixed ROI (b) Cavity ROI

Figure 6.15: The actual and the predicted temperature error with uncertainty ranges for the
20may04E04 image using the microbolometer spectral response.
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SRNL 20jun05G09 image
22:17 EDT, 20 June 2005 at 350 ft (106.7 m) with a GSD of 0.15 m.

(Parameterized Model Prediction - Microbolometer Response)

Mixed ROI: (RMS error = 0.76 K)

ŷ1 = −17.0723− 0.0339 x1 + 10.9377 x2 + 0.0345 x3 − 0.0066 x4 + 0.0208 x5 + 0.0015 x6 + 0.0019 x7

Cavity ROI: (RMS error = 0.18 K)

ŷ2 = −1.9687− 0.0228 x1 + 1.5928 x2 + 0.0051 x3 − 0.0007 x4 + 0.0204 x5 − 0.0014 x6 − 0.0013 x7

ID x1 [K] x2 [ ] x3 [K] x4 [°] x5 [K] x6 [K] x7 [m]
H1 293.68 ± 3.00 0.90 ± 0.04 264 ± 12 29 ± 6 296.39 ± 0.40 293.17 ± 2.00 8 ± 3
H2 293.65 ± 3.00 0.90 ± 0.04 264 ± 12 29 ± 6 296.39 ± 0.40 293.17 ± 2.00 8 ± 3
H3 292.01 ± 3.00 0.90 ± 0.04 264 ± 12 29 ± 6 296.39 ± 0.40 293.17 ± 2.00 4 ± 1
H4 293.48 ± 3.00 0.90 ± 0.04 264 ± 12 29 ± 6 296.39 ± 0.40 293.17 ± 2.00 8 ± 3

Table 6.30: Predictor estimates used in the 20jun05G09 parameterized regression model.

Mixed ROI Cavity ROI
ID Image ∆T [K] Predicted ∆T [K] Image ∆T [K] Predicted ∆T [K]
H1 0.16 ± 1.11 -1.47 ± 0.98 0.84 ± 1.02 -0.24 ± 0.21
H2 1.10 ± 1.10 -1.47 ± 0.98 1.28 ± 1.00 -0.24 ± 0.21
H3 -1.56 ± 1.52 -1.42 ± 0.98 -0.22 ± 1.12 -0.20 ± 0.21
H4 1.21 ± 1.15 -1.48 ± 0.98 1.42 ± 1.03 -0.25 ± 0.21

Table 6.31: Comparison of the actual and predicted temperature errors for the 20jun05G09 image
using the microbolometer spectral response.

(a) Mixed ROI (b) Cavity ROI

Figure 6.16: The actual and the predicted temperature error with uncertainty ranges for the
20jun05G09 image using the microbolometer spectral response.
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The data presented in Figures 6.13 through 6.16 indicate that the spectral response func-

tion of the sensor does have a noticeable impact on the predicted temperature errors. The

predicted errors are closer to the actual errors for both ROIs for the nadir images. The

cavity ROI case shows the largest improvement in the prediction model performance. For

the oblique image, the predicted errors moved slightly closer to the actual errors. There

is a slight improvement in performance in that the uncertainty ranges now overlap for

two of the four towers for the cavity ROI as opposed to just one of the towers for the flat

spectral response.

6.3.7 Validity of Parameterized Model

The validity of the parameterized model may be checked to determine if the multiple lin-

ear regression model is a good fit to the LUT data. The tests described in Section B.3 were

applied to the 20may04D14 data set with the flat spectral response and the mixed ROI to

determine if the parameterized model adequately fit the LUT data.

A plot of the standardized residuals versus the fitted responses (predicted temperature

errors) is shown in Figure 6.17(a). The data points in this plot should not display any

distinct pattern if the regression model was a good fit to the data. Instead, the data points

clearly resemble an overall parabolic pattern. This is a visual indication that the regres-

sion model is not a good fit to the LUT data.

(a) Residual Plot (b) Normal Probability Plot

Figure 6.17: Diagonistic plots indicating a lack-of-fit of the multiple linear regression model to the
20may04D14 mixed ROI LUT data.
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To get a quantitative understanding of possible lack-of-fit of the regression model, a nor-

mal probability plot of the standardized residuals was created (Figure 6.17(b)). The data

points should lie on a straight line if the regression model was a good fit to the data.

However, the data points exhibit curvature at extreme values. The Ryan-Joiner statistic

computed in Minitab yielded a value of 0.9970. The critical value for the Ryan-Joiner test

at α = 0.05 is greater than 0.9984 [47]. Since the test statistic is below the critical value, the

assumption of normality is invalid and therefore the regression model exhibits a lack-of-fit

to the LUT data [48].
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6.3.8 Look-up Table Interpolation

The analysis in Section 6.3.7 indicated that the multiple linear regression model did not

adequately fit the LUT data. Although the parameterized model suffered from lack-of-fit,

the errors introduced by the model were taken into account when predicting the temper-

ature errors. The regression equations had an associated RMS error that described how

well the regression model fit the look-up table data and these errors were incorporated

into the uncertainties reported for the predicted temperature errors. In order to elim-

inated the error introduced by the regression, the predicted temperature error may be

determined from the look-up table data directly without the use of a regression model.

The predicted temperature error is selected from the LUT through a nearest neighbor

interpolation using all of the seven predictor parameters. The effectiveness of this LUT

search method depends on the sampling resolution of the LUT. A more densely populated

LUT should yield a better temperature error prediction.

For each of the SRNL images, the MDCT temperature errors were predicted using the

LUT method. The estimated uncertainties in the predicted temperature errors were found

from 1944 random physics model runs that were spanned by the LUT. The predicted tem-

perature error for each random run using the LUT nearest neighbor interpolation method

was compared to the actual temperature error of the random run. The RMS of all 1944

temperature error residuals was taken as the uncertainty for the LUT method. The results

are shown in Figures 6.18 through 6.21.

The predicted temperature errors are similar to the predicted errors from the regression

model. For nadir images, the LUT method and the parameterized model predicted tem-

perature errors to within approximately 0.1 K of each other. The estimated uncertainty

ranges are approximately one-third to one-half as much as the regression model uncer-

tainties. The uncertainties associated with the LUT table are due to the coarse sampling of

the LUT data. These results indicated that the LUT nearest neighbor interpolation method

does not show a significant improvement over the parameterized model.
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SRNL 20may04D14 image
02:02 EDT 20 May 2004 at 500 ft (152.5 m) with a GSD of 0.22 m.

(LUT Nearest Neighbor Interpolation)

ID x1 [K] x2 [ ] x3 [K] x4 [°] x5 [K] x6 [K] x7 [m]
F1 293.11 0.90 267 0 292.87 291.06 3
F2 292.42 0.90 267 0 292.87 291.06 15
F3 292.46 0.90 267 0 292.87 291.06 20
F4 292.83 0.90 267 0 292.87 291.06 3
F5 292.98 0.90 267 0 292.87 291.06 3

Table 6.32: Predictor estimates used in the 20may04D14 LUT nearest neighbor interpolation.

Mixed ROI Cavity ROI
ID Image ∆T [K] Predicted ∆T [K] Image ∆T [K] Predicted ∆T [K]
F1 -0.51 ± 1.03 -1.56 ± 0.36 -0.17 ± 1.02 -0.69 ± 0.14
F2 -0.41 ± 1.02 -1.54 ± 0.36 -0.27 ± 1.01 -0.69 ± 0.14
F3 -0.17 ± 1.04 -1.53 ± 0.36 -0.06 ± 1.02 -0.69 ± 0.14
F4 -0.19 ± 1.04 -1.56 ± 0.36 0.00 ± 1.03 -0.69 ± 0.14
F5 -1.51 ± 1.06 -1.56 ± 0.36 -1.09 ± 1.02 -0.69 ± 0.14

Table 6.33: Comparison of the actual temperature errors and the predicted temperature errors
based on a LUT nearest neighbor interpolation for the 20may04D14 image.

(a) Mixed ROI (b) Cavity ROI

Figure 6.18: The actual temperature errors and the predicted temperature errors based on a LUT
nearest neighbor interpolation with uncertainty ranges for the 20may04D14 image.
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SRNL 20may04E02 image
02:04 EDT 20 May 2004 at 1000 ft (305.0 m) with a GSD of 0.43 m.

(LUT Nearest Neighbor Interpolation)

ID x1 [K] x2 [ ] x3 [K] x4 [°] x5 [K] x6 [K] x7 [m]
F1 293.11 0.90 267 0 292.87 291.06 3
F2 292.48 0.90 267 0 292.87 291.06 15
F3 292.34 0.90 267 0 292.87 291.06 20
F4 292.76 0.90 267 0 292.87 291.06 3
F5 292.95 0.90 267 0 292.87 291.06 3

Table 6.34: Predictor estimates used in the 20may04E02 LUT nearest neighbor interpolation.

Mixed ROI Cavity ROI
ID Image ∆T [K] Predicted ∆T [K] Image ∆T [K] Predicted ∆T [K]
F1 -0.56 ± 1.01 -1.59 ± 0.37 -0.43 ± 1.01 -0.89 ± 0.24
F2 -0.43 ± 1.01 -1.58 ± 0.37 -0.28 ± 1.00 -0.88 ± 0.24
F3 -0.17 ± 1.02 -1.57 ± 0.37 -0.10 ± 1.01 -0.88 ± 0.24
F4 -0.35 ± 1.01 -1.59 ± 0.37 -0.24 ± 1.01 -0.89 ± 0.24
F5 -1.46 ± 1.03 -1.59 ± 0.37 -1.27 ± 1.00 -0.89 ± 0.24

Table 6.35: Comparison of the actual temperature errors and the predicted temperature errors
based on a LUT nearest neighbor interpolation for the 20may04E02 image.

(a) Mixed ROI (b) Cavity ROI

Figure 6.19: The actual temperature errors and the predicted temperature errors based on a LUT
nearest neighbor interpolation with uncertainty ranges for the 20may04E02 image.
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SRNL 20may04E04 image
02:07 EDT 20 May 2004 at 2000 ft (610.0 m) with a GSD of 0.85 m.

(LUT Nearest Neighbor Interpolation)

ID x1 [K] x2 [ ] x3 [K] x4 [°] x5 [K] x6 [K] x7 [m]
F1 293.18 0.90 267 0 292.87 291.06 3
F2 292.74 0.90 267 0 292.87 291.06 15
F3 292.84 0.90 267 0 292.87 291.06 20
F4 293.19 0.90 267 0 292.87 291.06 3
F5 293.13 0.90 267 0 292.87 291.06 3

Table 6.36: Predictor estimates used in the 20may04E04 LUT nearest neighbor interpolation.

Mixed ROI Cavity ROI
ID Image ∆T [K] Predicted ∆T [K] Image ∆T [K] Predicted ∆T [K]
F1 -0.48 ± 1.00 -1.74 ± 0.38 -0.46 ± 0.99 -1.31 ± 0.25
F2 -0.41 ± 0.99 -1.72 ± 0.38 -0.50 ± 1.02 -1.30 ± 0.25
F3 -0.47 ± 1.00 -1.71 ± 0.38 -0.43 ± 1.05 -1.29 ± 0.25
F4 -0.54 ± 0.99 -1.74 ± 0.38 -0.82 ± 1.11 -1.31 ± 0.25
F5 -1.88 ± 0.99 -1.74 ± 0.38 -1.83 ± 0.99 -1.31 ± 0.25

Table 6.37: Comparison of the actual temperature errors and the predicted temperature errors
based on a LUT nearest neighbor interpolation for the 20may04E04 image.

(a) Mixed ROI (b) Cavity ROI

Figure 6.20: The actual temperature errors and the predicted temperature errors based on a LUT
nearest neighbor interpolation with uncertainty ranges for the 20may04E04 image.
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SRNL 20jun05G09 image
22:17 EDT, 20 June 2005 at 350 ft (106.7 m) with a GSD of 0.15 m.

(LUT Nearest Neighbor Interpolation)

ID x1 [K] x2 [ ] x3 [K] x4 [°] x5 [K] x6 [K] x7 [m]
H1 293.68 0.90 264 29 296.39 293.17 8
H2 293.65 0.90 264 29 296.39 293.17 8
H3 292.01 0.90 264 29 296.39 293.17 4
H4 293.48 0.90 264 29 296.39 293.17 8

Table 6.38: Predictor estimates used in the 20jun05G09 LUT nearest neighbor interpolation.

Mixed ROI Cavity ROI
ID Image ∆T [K] Predicted ∆T [K] Image ∆T [K] Predicted ∆T [K]
H1 0.16 ± 1.11 -1.71 ± 0.36 0.84 ± 1.02 -0.74 ± 0.16
H2 1.10 ± 1.10 -1.71 ± 0.36 1.28 ± 1.00 -0.74 ± 0.16
H3 -1.56 ± 1.52 -1.73 ± 0.36 -0.22 ± 1.12 -0.76 ± 0.16
H4 1.21 ± 1.15 -1.71 ± 0.36 1.42 ± 1.03 -0.74 ± 0.16

Table 6.39: Comparison of the actual temperature errors and the predicted temperature errors
based on a LUT nearest neighbor interpolation for the 20jun05G09 image.

(a) Mixed ROI (b) Cavity ROI

Figure 6.21: The actual temperature errors and the predicted temperature errors based on a LUT
nearest neighbor interpolation with uncertainty ranges for the 20jun05G09 image.



140 6.4. RESULTS SUMMARY

6.4 Results Summary

The methodology developed in Chapter 5 was used to generate a parameterized model

to predict the temperature error of an MDCT from a thermal image. The physics model

parameter values were chosen to cover the range of expected values in the SRNL data set.

A parameterized model was generated for the SC 2000 sensor. It was first tested against a

simulated data set with 1944 data points. The parameterized model performed well with

this random data set producing RMS errors of less than 0.4 K. The model was then used

to predict the temperature errors found in the SRNL data set. After taking into account

uncertainties in the ground-truth measurements, image ROI temperature, atmospheric

compensation, and sensor accuracy, the predicted temperature errors could be compared

to the actual temperature errors. The results show that the parameterized model was able

to predict the temperature error of the MDCTs to within 1.3 K and 0.7 K of the actual tem-

perature errors for the nadir images for the mixed and cavity ROIs, respectively. For the

oblique image, the predicted temperature errors were within 3 K of the actual tempera-

ture errors but were as good as 0.5 K in one case. The actual temperature errors are greatly

influenced by the amount of error in the atmospheric compensation. The sensitivity of the

spectral response of the sensor was also investigated. Using a realistic spectral response

function for a microbolometer instead of an ideal flat response, the predicted temperature

errors were similar to the previous results for the nadir images. For the oblique image

however, the predicted temperature errors with the realistic spectral response improved

to within 2.7 K and 1.7 K for the mixed and cavity ROI, respectively. Finally, the predicted

temperature errors could also be determined from the LUT data directly through the use

of a nearest neighbor interpolation scheme. The resulting predicted temperature errors

were similar to those determined from the parameterized regression model. To avoid in-

troducing additional errors due to any lack-of-fit of the parameterized model, the use of

the LUT directly to determine the temperature correction factor is recommended.



Chapter 7

Summary and Conclusions

Before I came here I was confused about this subject. Having listened to your lecture I am still

confused, but on a higher level.

- Enrico Fermi

Determining the internal temperature of a mechanical draft cooling tower from remotely-

sensed thermal imagery is important for many applications that provide input to energy-

related process models. Data taken of MDCT units at SRS by the Savannah River National

Lab indicated a difference between the measured ground-truth temperature of the cooling

towers and the derived apparent temperature from the thermal images. The temperature

error was defined as the difference between the apparent temperature of the MDCT in the

thermal image and the ground-truth temperature. The objective of this research was to

estimate the temperature of the air exiting an MDCT by correlating the temperature of the

exit air to the apparent temperature of pixels inside the fan stack of the tower in a thermal

image.

The derivation of the absolute temperature of a material surface from remote imagery is a

complex process in general. The imaging chain approach was followed from the emission

of thermal photons of a material, through their interaction with the radiometric environ-

ment, their collection and detection by a sensor, and finally the production of a thermal

image. Many methods and tools exist to convert the at-sensor apparent temperature into

the absolute temperature of the target material. Each of these methods is specific to a

certain set of circumstances. The problem of determining the temperature of an MDCT is

unique due to the geometry of the tower and due to the exhausted water vapor plume.

Given the existing methods of temperature retrieval and the uniqueness of this problem,

a methodology was developed to predict the temperature correction needed to determine

the exit air temperature of an MDCT from a thermal image.
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The methodology is based on physically modeling the three-dimensional radiometric en-

vironment of an MDCT. Studies were performed on the sensitivity of specific aspects of

the radiance leaving the fan stack opening of the tower and on the radiance propagating

through the exhausted plume. These studies allowed constraints to be placed on sev-

eral variables in order to assist the creation of the physical model. Conclusions of these

studies showed that pixels within the cavity of an MDCT have a unit effective emissiv-

ity while pixels from shallow surfaces of an MDCT have an effective emissivity less than

unity. Results of the plume studies show that the contribution of the exhausted plume to

the temperature error was less than the expected residual error from typical atmospheric

compensation techniques.

The approach constructed to predict the MDCT temperature error begins with the phys-

ical model. The physics model was used to simulate and predict the radiance reaching

the sensor from the MDCT. It consisted of 32,400 parameter value combinations to cover

the range of suspected values in the SRNL data set. These runs were processed with an

ideal LWIR sensor that consisted of a unit spectral response between 8 - 14 µm and no

spatial blurring. A multiple linear regression model was fit to this sensor data set. The

RMS error of the regression model was 0.77 K and 0.12 K for the mixed ROI and cavity

ROI, respectively.

A sensor model based on specifications from an actual sensor was then used to process

the physics model data set. The Inframetrics SC 2000 IR camera was used to collect ther-

mal imagery of MDCT units at SRS. Next, 1944 random physics model data points were

produced such that the parameter values were emcompassed by the range of values in

the physics data set. The random data points were tested with the SC 2000 regression

equation. The corresponding RMS values for the mixed ROI and cavity ROI were 0.38 K

and 0.22 K, respectively, which indicates a good temperature error prediction by the re-

gression model.

The ultimate test of the regression model was to use it with actual image data. The SRNL

data set was first atmospherically compensated using an interpolated radiosonde profile.

The actual temperature error is the difference between the ground-truth measurement

and the image mean ROI temperature. Uncertainties in the ground measurement, ROI

temperature, atmospheric compensation, and sensor temperature measurement were all

incorporated to produce an overall temperature error uncertainty. The uncertainty in the

atmospheric compensation was found to have a significant impact on the uncertainty in
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temperature error. The parameterized regression model was then used to predict the tem-

perature error for the MDCTs in each SRNL image. Values for the seven predictor pa-

rameters of the parameterized model were estimated based on actual measurements or

on models of the processes occurring in the scene. The uncertainties in the estimates of

each predictor value were incorporated into the uncertainty in the overall predicted tem-

perature error. The predicted temperature errors were compared to the actual measured

temperature errors in each SRNL image. For some units, the parameterized model was

able to predict the error to within less than 0.5 K. Overall, the parameterized model pre-

dictions for the nadir images were within 1.3 K and 0.7 K for the mixed and cavity ROIs,

respectively. For the oblique image, the parameterized model predictions were within 3 K

of the actual temperature errors. The MDCT temperature errors were also determined

from the LUT data directly through the use of a nearest neighbor interpolation scheme.

The LUT method produced similar results to that of the parameterized model method.

Lastly, the spectral response of the sensor was found to have an important influence on

the predicted temperature errors. Using a realistic spectral response function, the temper-

ature error prediction showed improved results.

The exit air temperature of a mechanical draft cooling tower can be derived from a remotely-

sensed thermal image. The parameterized model produced excellent results with a sim-

ulated data set. The model had very good success with the actual SRNL images with a

nadir viewing geometry. The performance was less than ideal for the SRNL image with

an oblique viewing geometry.

7.1 Recommendations

To rigoriously test the methodology, another ground-truth measurement collect is recom-

mended. Atmospheric profile and MDCT measurements should be made as accurately as

possible. This would include the use of a radiosonde launched at the time of image acqui-

sition to obtain an accurate atmospheric temperature and humidity profile. Also, multi-

ple temperature measurements of the target from different temperature sensors is highly

desirable. These targets would include the exit air temperature of the MDCT at multi-

ple heights in and above the fan stack opening, the decking temperature, the fan blade

temperature, the interior fan stack temperature, the drift eliminator temperature, and the

ambient temperature and dew point from multiple points around the MDCT perimeter.

Emissivity measurements of the fan blades, fan stack shroud, and decking should also

be obtained. A thermally stable LWIR camera with a well-known spectral response and
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noise characteristics is also recommended to reduce errors in the data collection. The

camera should be mounted on a stable platform with accurately measured orientation

information. The result of this project emphasized the need for accurate ground truth

measurements, atmospheric state knowledge, and sensor design information.



Appendix A

Derivation of the Planck Blackbody

Radiation Equation

A blackbody is an object that absorbs all electromagnetic radiation that falls onto it. No

light is transmitted through it or reflected off it. Black bodies emit only thermal radiation

and the amount is directly related to their temperature. A small opening into a large

cavity is considered a blackbody. Any light entering the hole would have to reflect off the

walls of the cavity multiple times before it escapes. If the cavity is heated, the spectrum of

the hole’s radiation will be continuous and will not depend on the material in the cavity.

This derivation is adopted from Schroeder (2000) [49].

A.1 Statistical Physics

The key concept in statistical mechanics is the probability of finding a system in a par-

ticular microstate when that system is in thermal equilibrium with its environment. The

system can be almost anything but here a single particle will be considered as the system

of interest. The microstates are the energy levels the particle may exist in. If the parti-

cle was completely isolated from the rest of universe then its energy would be fixed and

all the microstates associated with that energy would be equally probable. For a particle

constantly interacting with its environment, it may still be found in any microstate but

some states will be more likely than others depending on the energy of the microstate.

The probability of microstate s occuring is

P(s) =
1
Z

e−ε(s)/kT, (A.1)

where ε(s) is the energy of the microstate, T is the absolute temperature of the system,

and k is Boltzmann’s constant (k = 1.38 · 10−23 J/K). The normalization factor, Z, is found
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by realizing that the total probability of finding the system in some state is unity so

1 = ∑
s

P(s) = ∑
s

1
Z

e−ε(s)/kT =
1
Z ∑

s
e−ε(s)/kT. (A.2)

Solving for Z therefore gives

Z = ∑
s

e−ε(s)/kT. (A.3)

The quantity Z is known as the partition function and the quantity e−ε(s)/kT is known as

the Boltzmann factor. The partition function essentially counts how many microstates are

accessible to the system. It does not depend on any particular state, s, but does depend

on the temperature, T. In words, equation (A.1) gives the probability that the particle will

have energy, ε(s), given a temperature, T (probability that the particle will be in state s

given temperature, T).

The average value of the particle energies, ε̄, at a particular temperature is the sum of

the energy of a microstate multiplied by the probability of that state occuring:

ε̄ = ∑
s

ε (s) P(s) =
1
Z ∑

s
ε (s) e−ε(s)/kT (A.4)

The average energy can be rewritten by letting β = 1/kT and writing the term inside the

summation as a partial derivative:

ε̄ =
1
Z ∑

s
ε e−βε = − 1

Z ∑
s

∂

∂β
e−βε = − 1

Z
∂

∂β

(
∑

s
e−βε

)
= − 1

Z
∂Z
∂β

(A.5)

A.2 Planck Distribution

The basic quantum of electromagnetic radiation is known as a photon. Photons have both

particle-like properties such as momentum, and wave-like properties such as frequency.

The energy of a single photon depends only on its frequency:

ε = hν (A.6)

where ν is the frequency and h is Planck’s constant (h = 6.626 · 10−34 J s).

Radiation trapped inside a box can be thought of as a combination of standing wave pat-

terns. Each standing wave acts as a harmonic oscillator with frequency, ν. Planck made
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the assertion that each oscillator could take on only certain energy values. The allowed

energy states for a quantum oscillator are

εn = (n + 1/2)hν = 1/2hν + nhν, f or n = 0, 1, 2, ... (A.7)

Considering only the energy with respect to the ground state, the allowed energy levels

are

εn = nhν = nε, f or n = 0, 1, 2, ... (A.8)

The partition function for a single oscillator is then

Z = 1 + e−hν/kT + e−2hν/kT + e−3hν/kT + ... =
1

1− e−hν/kT
, (A.9)

where the geometric series,

1
1− q

= 1 + q + q2 + q3 + ..., (A.10)

was used with q = e−hν/kT to arrive at the result in equation (A.9). The average energy of

the photons is calculated from equation (A.5) as

ε̄ =
ε

e ε/kT − 1
=

h ν

e h ν/kT − 1
. (A.11)

This equation is known as the Planck distribution and gives the average energy of the

photons at temperature, T.

A.3 Total Energy of the States

For a photon in a box, its wavefunction must vanish at the walls. In a one-dimensional

box of length L, the allowed wavelengths of the photon are

λ =
2 L
n

f or n = 1, 2, 3, ... (A.12)

The energy of a photon is given as

ε = p c =
hcn
2L

(A.13)

where de Boglie’s relation, p = h/λ, was used to write the momentum of the photon in

terms of its wavelength. In three dimensions the momentum becomes a vector and the
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energy is the speed of light times the magnitude of the vector:

ε = c
√

p2
x + p2

y + p2
z =

hc
2L

√
n2

x + n2
y + n2

z =
hcn
2L

(A.14)

where n is now the magnitude of the~n vector.

The total energy in all states is the sum of the average energy of the states,

U = 2 ∑
nx

∑
ny

∑
nz

ε̄ = 2 ∑
nx

∑
ny

∑
nz

ε

e ε/kT − 1
= 2 ∑

nx

∑
ny

∑
nz

hcn
2L

1
e hcn/2LkT − 1

, (A.15)

where the factor of two is needed to account for the two polarization states of the photon

since both polarization states have the same energy (same frequency). Equations (A.11)

and (A.14) were used to express the total energy in terms of n. Since the number of terms

is so large, the expression in the sum can be considered continuous. The summations can

then be written as integrals. The integration is performed in spherical coordinates over a

volume, dV, in n-space as

U =
∫ ∞

n=0

∫ π/2

θ=0

∫ π/2

φ=0

hcn
L

1
e hcn/2LkT − 1

n2 sin θ dθ dφ dn, (A.16)

where dV = n2 sin θ dθ dφ dn. The angular limits of the θ and φ integrals are necessary to

take the volume of 1/8 of a sphere in n-space in order to count only the positive values of

n. Evaluating the angular integrals in equation (A.16) reduces the equation to

U =
∫ ∞

n=0

hc
L

π

2
n3

e hcn/2LkT − 1
dn. (A.17)

The total energy can be expressed in terms of the photon energy using equation (A.14) to

change variables which results in

U =
∫ ∞

0

8πL3

h3c3
ε 3

e ε/kT − 1
dε. (A.18)

The volume of the box containing the photons is V = L3. The total energy per unit volume

can then be expressed as
U
V

=
∫ ∞

0

8π

h3c3
ε 3

e ε/kT − 1
dε. (A.19)
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A.4 Planck Spectral Energy Density

The integrand in equation (A.19) is known as the energy density per unit photon energy,

u(ε) =
8π

h3c3
ε 3

e ε/kT − 1
. (A.20)

This is the Planck equation for the energy density of the photons.

Changing units in equation (A.19) from energy to frequency through the relation, ε = hν

yields

u(ν) =
8πhν3

c3
1

e hν/kT − 1
. (A.21)

Changing units in equation (A.19) from energy to wavelength through the relation, ε =
hc/λ yields

u(λ) =
8πhc

λ5
1

e hc/λkT − 1
. (A.22)

A.5 Blackbody Spectral Exitance

The energy density derived in the last section is the energy of the photons in the box per

unit volume. Suppose a small hole is cut in the box so photons are allowed to escape. The

photons that escape out the hole during time interval dt are from a hemispherical shell of

radius R inside the box. The thickness of the shell is c · dt. The photons in the shell that

escape are those that were traveling towards the hole.

Figure A.1: Photons escaping the cavity from a thin shell inside the cavity [49]
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Consider a small volume element in spherical coordinates, dV = R2 sin θ dθ dφ c dt. Pho-

tons in this element are oriented in all directions. The probability of a photon traveling

towards the hole is the apparent area of the hole (as viewed from the element) divided by

the total area of a sphere of radius R centered on the element. This is written as

Probability o f escape =
dA cos θ

4πR2 . (A.23)

The energy from the element escaping out the hole is then the energy density times the

volume of the element times the probability of the photons escaping:

Energy escaping f rom element = u(ε)
dA cos θ

4πR2 R2 sin θ dθ dφ c dt. (A.24)

The total energy escaping from the hole in time dt is the integral over the entire shell:

Uexit = u(ε)
dA c dt

4π

∫ 2π

φ=0

∫ π/2

θ=0
cos θ sin θ dθ dφ

=
c
4

dA dt u(ε). (A.25)

The irradiance leaving the hole, or exitance M, is the energy per unit time per unit area

and is found by rearranging equation (A.25) as

M =
Uexit

dA dt
=

c
4

u(ε). (A.26)

The blackbody spectral exitance can now be found from the energy density as

MBB(ε) =
2π

h3c2
ε3

e ε/kT − 1
, (A.27)

or in terms of frequency and wavelength as

MBB(ν, T) =
2πhν3

c2
1

e hν/kT − 1
(A.28)

MBB(λ, T) =
2πhc2

λ5
1

e hc/λkT − 1
. (A.29)
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A.6 Blackbody Spectral Radiance

The radiance, L, is the energy per unit time per unit area emitted per unit solid angle. The

relationship between the radiance and the exitance of a material is defined as

dM = L cos θdΩ = L cos θ sin θ dθ dφ. (A.30)

The total exitance into the hemisphere above the blackbody is found by integrating both

sides over the entire hemisphere:

M =
∫ 2π

φ=0

∫ π/2

θ=0
L cos θ sin θ dθ dφ. (A.31)

A blackbody is a Lambertian radiator by definition so the radiance, L, does not depend

on angle and may be considered a constant of integration. The result of the integration

over the hemisphere is π. The relation between the radiance and exitance of a blackbody

is then

L =
M
π

. (A.32)

The spectral radiance of a blackbody is finally

LBB(ε, T) =
2

h3c2
ε3

e ε/kT − 1
, (A.33)

or in terms of frequency and wavelength as

LBB(ν, T) =
2 h ν3

c2
1

e hν/kT − 1
(A.34)

LBB(λ, T) =
2 h c2

λ5
1

e hc/λkT − 1
. (A.35)

A.7 Total Blackbody Radiated Power

The total radiated power of a blackbody can be found by integrating the Planck equa-

tion over all wavelengths. Equation (A.29) gives the radiant flux per unit area per unit

wavelength and is rewritten here as

Φ
dA dλ

=
2πhc2

λ5
1

e hc/λkT − 1
. (A.36)
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The total power is found by rearranging the equation and integrating over all wavelengths

as

Φ = dA
∞∫

0

2πhc2

λ5
1

e hc/λkT − 1
dλ. (A.37)

Substituting x = hc/λkT yields

Φ = dA
2πk4T4

h3c2

∞∫

0

x3

ex − 1
dx. (A.38)

The integral over x evaluates to π4/15. Substituting this value yields

Φ = dA
2π5k4

15h3c2 T4. (A.39)

Grouping the constants and representing the differential area as the radiating surface area,

A, the total radiated power of a blackbody of a given area is

Φ = A σ T4. (A.40)

The constant σ equals 5.6704 · 10−8 [
J/s/m2/K4] and is known as the Stefan-Boltzmann

constant. Equation (A.40) is usually referred to as the Stefan-Boltzmann Law.

A.8 Wavelength of Maximum Emission

The Planck spectrum is a well-behaved function with a single maximum as indicated in

Figure A.2. The wavelength corresponding to the maximum emission can be found by

differentiating equation (A.29) and equating it to zero:

∂L
∂λ

=
2hc2

ehc/λkT − 1

[
− 5

λ6

]
+

2hc2

λ5

[
ehc/λkT

(ehc/λkT − 1)2
hc
kT

1
λ2

]
= 0. (A.41)

Rearranging equation (A.41) yields

hc
λkT

· 1
1− ehc/λkT

− 5 = 0. (A.42)

Let x = hc/λkT and substitute to yield

x
1− ex − 5 = 0. (A.43)
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The solution to equation (A.43) is x = 4.96511423. Solving for λ yields

λ =
hc

xkT
. (A.44)

Evaluating the constants yields a relationship between the wavelength associated with

the maximum radiance of a blackbody and the temperature of the blackbody:

λpeak =
2897.768 [µm K]

T
[µm] . (A.45)

This relationship is referred to as Wien’s displacement law.
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Figure A.2: Spectral radiance for a blackbody at a temperature of 300 Kelvin



Appendix B

Multiple Regression Analysis

Multiple regression analysis seeks to find a relationship between two or more quantita-

tive variables so that one variable can be predicted from the others [43]. The variable

to be predicted is known as the response (dependent variable) while the other variables

are called predictors (independent variables). Since a perfect relationship between the

response and the predictors may not exist, it is desirable to minimize the differences be-

tween the predicted values and the actual measured values of the responses. A brief

overview of finding a statistical relationship between a dependent variable and multiple

independent variables along with ways to test the fit of the model to the data is presented

in this chapter.

B.1 Least-Squares Regression

An actual data set may contain a set of independent variables that were varied so that a de-

pendent variable could be observed and measured. For the ith observation, the dependent

variable is denoted as Yi and the independent variables are denoted as xi,1, xi,2, ... xi,p−1

where p− 1 is the number of independent variables.

A linear model can be fit to this data in the form

Yi = β0 + βi,1 xi,1 + βi,2 xi,2 + ... + βi,p−1 xi,p−1 + ε i, (B.1)

where ε i is the error term between the predicted response and the actual response. The

error is a random variable and it expected to have a normal distribution with a zero

mean [48]. Note that each predictor may be a power or product of other predictors (i.e.,

x3 = x1 x2). Equation (B.1) can be expressed in matrix notation as

Y = Xβ + ε, (B.2)
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where the matrices are

Y
(nx1)

=




Y1

Y2

...

Yn




, X
(nxp)

=




1 x11 x12 . . . x1,p−1

1 x21 x22 . . . x2,p−1

...
...

...
...

1 xn1 xn2 . . . xn,p−1




, β
(px1)

=




β0

β1

...

βp−1




, ε
(nx1)

=




ε1

ε2

...

εn




.

Let b represent the vector of estimated regression coefficients so that the fitted (estimated)

response values, Ŷ, are represented by

Ŷ = X b. (B.3)

The difference between the observed values and the fitted values is known as the residuals

(e = Y− Ŷ). Least-squares regression attempts to choose b in order to minimize the sum of

the square residuals e’e. The least-squares regression coefficients are calculated by

b =
(
X′X

)−1 X′ Y. (B.4)

B.2 Analysis of Variance

The analysis of variance is based on sums of squares and on degrees of freedom associated

with the response, Y [43]. There are several metrics that must be defined.

B.2.1 Sum of Squares

Error Sum of Squares (SSE) is a measure of the variation of the observations around the

regression model:

SSE = ∑
(
Yi − Ŷi

)2 = e′e = Y′Y− b′X′Y (B.5)

The SSE is the sum of the squared residuals and SSE = 0 if the regression model predicted

all the observations perfectly.

Regression Sum of Squares (SSR) is the sum of the square deviations between the pre-

dicted responses and the mean observed response:

SSE = ∑
(
Ŷi − Ȳ

)2 = b′X′Y− n Ȳ2 (B.6)
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For least-squares regression, the mean of the fitted values equals the mean of the observed

responses.

Total Sum of Squares (SSTO) is the sum of the deviations between each response vari-

able, Yi, and the mean response:

SSTO = ∑ (Yi − Ȳ)2 = Y′Y− n Ȳ2 (B.7)

If SSTO = 0, then all observations are the same. The total sum of squares is related to the

square error and square regression by

SSTO = SSE + SSR. (B.8)

B.2.2 Mean Squares

A sum of squares divided by its associated degree of freedom is called a mean square [43].

Regression Mean Square (MSR) is the SSR divided by its degrees of freedom:

MSR =
SSR
p− 1

. (B.9)

Error Mean Square (MSE) is the SSE divided by its degrees of freedom:

MSE =
SSE

n− p
. (B.10)

Recall from equation (B.1) that there are p coefficients and p − 1 independent variables.

Note that the degrees of freedom of the SSTO is the sum of the degrees of freedom of the

SSR and SSE: (p− 1) + (n− p) = n− 1.

B.2.3 Coefficient of Multiple Determination

The coefficient of multiple determination is used as a goodness of fit of a regression

model [44]. The coefficient is defined as

R2 =
SSR

SSTO
= 1− SSE

SSTO
. (B.11)

The value of R2 lies between 0 and 1. Higher values of R2 correspond to smaller devia-

tions (a better fit) between the predicted and observed response values.
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The coefficient of determination is often adjusted to take into account the number of ob-

servations and the number of degrees of freedom [43]. The adjusted coefficient is then

defined as,

R2
a = 1− (n− 1)

(n− p)
SSE

SSTO
. (B.12)

B.2.4 F-Test

It may be useful to test whether there is a statistically significant relation between a depen-

dent variable, Y, and a set of independent variables, xk. In terms of regression variables, it

is possible to simultaneously test whether all βk = 0 or alternatively whether at least one

βk 6= 0. This statement is written as

H0 : β1 = β2 = ... = βp−1 = 0

H1 : at least one βk 6= 0.

If all βk = 0, then the response function reduces to Ŷ = β0. Therefore, the predicted

value of the response is the same for all xk values and there is no regression relationship

between the response and the independent variables [50]. The test statistic for this case is

denoted F∗ and is defined as

F∗ =
MSR
MSE

. (B.13)

The decision as to whether to include a variable in the regression equation or not is defined

by,

H0 : F∗ ≤ F (1− α; p− 1, n− p)

H1 : F∗ > F (1− α; p− 1, n− p) ,

where F( ) is the F distribution and (1− α)100 is the percentile of the F distribution. F dis-

tribution tables are included in many statistics textbooks.

B.3 Aptness of the Fitted Model

Once a model has been fit to the data, it is important to check the fit of the model to de-

termine if the model is appropriate for the given data. A common way to check the fit

of a model is through the use of residual diagnostic plots [48]. For these plots, standard-

ized residuals are used. Standardization involves subtracting the mean value from each

residual and then dividing by the standard deviation.
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B.3.1 Standardized Residuals vs. Fitted Responses

A plot of the standardized residuals, e∗, versus the fitted responses, ŷ, provides a visual

diagnostic of the fit of the model. The data points in this plot should be randomly dis-

tributed about zero, usually with the standardized residuals falling mostly between ± 2.

A good model fit is indicated by the lack of any distinct patterns in the plot [48].

B.3.2 Normal Probability Plot of Standardized Residuals

A normal probability plot of the standardized residuals investigates the assumption that

the residuals from a least squares regression model should be normally distributed [48].

If the data points come from a normal distribution, they will fall on an approximately

straight line which indicates a good model fit. If the data points come from some alterna-

tive distribution, the plot will exhibit some degree of curvature which would indicate a

poor model fit.

A Ryan-Joiner test may be performed on the normal probability data to determine if the

points fall sufficiently on a line. The Ryan-Joiner statistic is essentially a correlation coeffi-

cient of the data points in the normal probability plot. If the Ryan-Joiner statistic is below

the critical value, the null hypothesis of a normal distribution is rejected and therefore the

model is not a good fit to the data [47]. A Ryan-Joiner test may be computed in statis-

tical analysis software such as Minitab. Some critical values for the Ryan-Joiner test are

included in reference [47].
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Appendix C

Propagation of Uncertainties

The uncertainty in a response can be calculated from the uncertainties of each predictor.

An analytical solution can be derived from random variable statistics. An empirical so-

lution can be found by observing the calculated responses of a large number of predictor

distribution values. Both of these methods are based on a weighted sum of random vari-

ables to yield a response variable. Let y be a weighted sum of p random variables, xi, so

that

y = α0 + α1 x1 + α2 x2 + ... + αp xp = α0 +
p

∑
i=1

αi xi, (C.1)

where the αi are real weighting constants [51].

C.1 Analytical Method

The uncertainty in the response may be derived analytically from equation (C.1). The

expected value (mean) of the response, y, is written as

E [y] = E

[
α0 +

p

∑
i=1

αi xi

]
= E [α0] + E

[
p

∑
i=1

αi xi

]
= α0 +

p

∑
i=1

αi E [xi] . (C.2)

The interpretation of equation (C.2) is that the mean value of a weighted sum of random

variables is the weighted sum of the mean values of the random variables. The difference

between the response and the expected value of the response (residual) is written as

y− E [y] =

(
α0 +

p

∑
i=1

αi xi

)
−

(
α0 +

p

∑
i=1

αi E [xi]

)

=
p

∑
i=1

αi xi −
p

∑
i=1

αi E [xi] =
p

∑
i=1

αi (xi − E [xi]) . (C.3)
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The variance in the response, σ2
y , is the expected value of the square of the residual in y

written as

σ2
y = E

[
(y− E [y])2

]
= E

[(
p

∑
i=1

αi (xi − E [xi])

)
·
(

p

∑
i=1

αi (xi − E [xi])

)]

=
p

∑
i=1

p

∑
j=1

αi αj E
[
(xi − E [xi]) ·

(
xj − E

[
xj

])]
=

p

∑
i=1

p

∑
j=1

αi αj Cij, (C.4)

where Cij is the covariance between xi and xj.

For the case where the random variables are uncorrelated such that Cij = σ2
xi

for i = j

and Cij = 0 for i 6= j, the variance in the response becomes

σ2
y =

p

∑
i=1

α2
i σ2

xi
. (C.5)

Equation (C.5) means that the variance of a weighted sum of uncorrelated random vari-

ables is the weighted sum of the variances of the random variables.

C.2 Empirical Method

The uncertainty in the response may also be found empirically from equation (C.1). For

each random variable, a random value is selected based on a Gaussian distribution. The

mean of the Gaussian is equal to the expected value of that random variable while the

standard deviation is equal to the uncertainty value. A large number of trials (N À p) of

each random variable is generated and then used in equation (C.1) to calculate the asso-

ciated responses. The mean of these responses equals the expected value of the response

and the standard deviation of the responses is equal to the uncertainty in the response.
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Calculation of Effective Sky

Temperature

The effective temperature of the sky dome in a given spectral band of a sensor can be com-

puted from the DIRSIG make adb utility. The utility uses a user-provided atmospheric

profile in the form of a MODTRAN input data file (tape5) to calculate the hemispherically-

integrated, spectral downwelling radiance. This radiance can then be spectrally sampled

by a user-provided sensor spectral response and converted into an apparent temperature.

A MODTRAN input file (tape5) is supplied by the user. The file contains the atmospheric

profile information (i.e., altitude, pressure, temperature, humidity, etc.) derived from ei-

ther one of the standard MODTRAN atmospheres or as a custom atmosphere created by

the user. The purpose of the make adb utility is to create an atmospheric database for

scenes modeled in the DIRSIG environment. The database contains the spectral transmis-

sions and path radiances for the viewing angles of the sensor. It also calculates the spatial

distribution of the atmospheric downwelling radiance. To do so, the make adb utility di-

vides the sky hemisphere into discrete samples known as quads. The elevation direction

is divided into six angles and the azimuth direction is divided into twelve angles. This

results in 72 quads covering the hemisphere that are 15° tall in the elevation direction

and 30° wide in the azimuth direction. For each point in the center of these quads, the

path radiance is computed from MODTRAN using the profile specified by the user and

auxiliary scene information (i.e., time of day, location, etc.). In other words, the sensor is

placed on the ground and targeted at the center of one of the quads. MODTRAN is run

for this geometry and the thermal path radiance is recorded for that direction (quad). A

table is built of the zenith and azimuth angle of the sample and the spectral path radiance

from the sample. Therefore, the table contains spectral radiances for a total of 72 samples

in the hemisphere which represent the spectral downwelling radiances for each of the 72

directions (quads). Finally, these 72 spectral radiances are spatially integrated to produce
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a diffuse spectral downwelling radiance. The spatial integration is written as

Ld(λ) =
∫

2π
L(θ, φ, λ) cos θ dΩ =

2π∫

φ=0

π
2∫

θ=0

L(θ, φ, λ) cos θ sin θ dθ dφ

[
W

m2 sr µm

]
. (D.1)

This diffuse downwelling spectral radiance is then sampled by the sensor’s spectral re-

sponse function and integrated to arrive at the integrated band radiance. This is written

as

L̂ =
∫

Ld(λ) R′(λ) dλ

[
W

m2 sr

]
. (D.2)

This integrated band radiance is then converted into an apparent temperature using the

methods described in Section 3.6. The apparent temperature is known as the effective sky

temperature in the given sensor spectral band.
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Estimation of Plume Path Length

The plume length is the line-of-sight path length through the plume between the sen-

sor and the tower throat. To assist the user in estimating the plume length, a simple

plume model is considered. The estimated plume length is based on a Gaussian, contin-

uous point-source plume model [52]. In this model, the centerline of the plume at any

downrange distance, x, is calculated from knowledge of the wind speed, exhaust velocity,

plume temperature and ambient temperature. The plume concentration at any point can

also be calculated. The shape of the plume resembles a cone in which diffusion occurs

only in the vertical and crosswind directions (z and y directions, respectively). The plume

disperses in the vertical and crosswind directions according to a Gaussian distribution

with dispersion coefficients σz and σy.

The plume is assumed to be a continuous point-source. The downwind direction is la-

beled x and the dispersion of the plume gas occurs only in the crosswind and vertical

directions (y and z directions, respectively). The plume therefore has the appearance of

a cone with the vertex as the source of emission. This model also assumes that the hori-

zontal wind speed is constant and the mean wind direction is constant. The height of the

plume source is He.

The centerline of the plume at a downwind distance x is calculated as

∆h = 1.6 F1/3 x2/3 u−1 [m], (E.1)

where ∆h is the change in centerline height relative to the height of the emission source, F

is the buoyancy flux parameter, x is the downwind distance in meters, and u is the wind

speed in meters per second. The buoyancy parameter characterizes the buoyancy of the

stack exit gas and can be written as

F = g vs r2 Ts − Ta

Ts

[
m4

s3

]
, (E.2)

165



166 Estimation of Plume Path Length

where g = 9.807 [m/s] is the acceleration due to gravity at earth’s surface, vs is the exit air

velocity from the stack in meters per second, r is the radius of the stack in meters, Ts and

Ta are the initial plume temperature as it exits the stack and the ambient air temperature

in Kelvin, respectively.

Now that the centerline of the plume as been established, the dispersion in the vertical

and crosswind directions may be calculated. The Gaussian dispersion coefficients are cal-

culated by

σ = (L x) (1 + M x)N [m]. (E.3)

The constants L, M, and N are defined in Table E.1.

For Obtaining σz For Obtaining σy

Stability L M N L M N
A - B 240 1.00 0.50 320 0.40 -0.50

C 200 0.00 0.00 220 0.40 -0.50
D 140 0.30 -0.50 160 0.40 -0.50

E - F 80 1.00 -0.50 110 0.40 -0.50

Table E.1: Constants used in the calculation of the vertical and crosswind dispersion coefficients
for the Gaussian plume model in an urban environment [52].

The stability class mentioned in Table E.1 describes the atmospheric stability. The stabil-

ity is determined by the ambient temperature gradient. The stability classes are listed in

Table E.2 along with the average ambient gradient. The ambient temperature gradients

are illustrated in Figure E.1.

Stability Class Avg. Ambient Gradient [°C / km]
A - very unstable < -18.96
B - unstable -18.05
C - slighty unstable -16.04
D - neutral -10.03
E - slighty stable 5.10
F - stable > 14.95

Table E.2: Description of the six atmospheric stability classes and the associated ambient temper-
ature gradients [52].

The continuous point-source Gaussian plume can now be described by the centerline

(equation E.1) and the vertical and crosswind dispersion coefficients (equation E.3). The

dispersion coefficients are the standard deviation of plume gas concentration for the ver-
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Figure E.1: Comparison of the six atmospheric stability classes using the associated ambient tem-
perature gradients in reference to the dry and wet adiabatic lapse rates [52].

tical and crosswind Gaussian profiles.

The path length through the plume between the fan stack opening and the sensor can

be estimated with the Gaussian model and with knowledge of the sensor viewing geom-

etry. The point-source model is modified so that the entire area of the fan stack aperture is

the source of emission. First, the coordinates of the centerline trajectory of the plume are

computed through equation E.1. For each point along the centerline trajectory, a sphere is

drawn whose radius in the vertical and crosswind directions equals the sum of the radius

of the stack opening and twice the vertical and crosswind dispersion coefficients, r + 2σz

and r + 2σy, respectively. The radius in the downwind direction x is taken as r + 2σy. In

other words, the “edge” of the plume is a distance of two standard deviations from the

centerline of the plume in the z and y directions plus the radius of the stack opening. This

concept is illustrated from a Matlab rendering in Figure E.2.

The sensor viewing vector is determined from the distance to the stack opening and the

sensor zenith and azimuth viewing angles. This vector originates at the center of the

stack opening and points in the direction of the sensor. The points on this vector that are

within two standard deviations of the plume centerline are considered points contained

within the plume. The length of the vector containing these enclosed points equals the

path length through the plume.

The necessary user inputs for this model are the stack height [m], the stack radius [m],
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Figure E.2: Gaussian plume model rendered in Matlab. The solid line represents the sensor line-
of-sight. The exit air velocity is set to 10 m/s, stack height is 9 m, stack radius is 2 m, wind speed
is 0.75 m/s, and the atmospheric stability is slightly unstable. The estimated path length through
this plume is 6 m.

the approximate stack gas and ambient air temperatures [K], the wind speed [m/s], the

vertical exit gas speed [m/s], and the sensor zenith and azimuth direction angles [o] (the

azimuth angle is measured from the downwind direction, x).



Appendix F

Precipitable Water in an Air Column

The atmospheric precipitable water is defined as the total atmospheric water vapor con-

tained in a vertical column of unit cross-sectional area extending between any two speci-

fied levels [53]. This concept is commonly expressed in terms of the height to which that

water would stand if completely condensed and collected in a vessel of the same unit

cross section. The precipitable water, W, can be expressed mathematically as

W =
1
g

p2∫

p1

w(p) dp [mm], (F.1)

where p is the atmospheric pressure in Pascals (Pa = N/m2), g is the acceleration due to

gravity at the earth’s surface (g = 9.807 m/s2), and w(p) is the water vapor mixing ratio.

The integral is computed between two pressure levels, p1 and p2. The result has units of

millimeters which represents the height of the precipitable water in the air column. The

mixing ratio is defined from the pressure and vapor pressure as

w(p) = 0.622
e

p− e
, (F.2)

where e is the water vapor pressure expressed in the same units as the pressure, p (usually

in [mb] or [Pa]). The vapor pressure can be calculated from the dew point temperature [K]

at a given pressure as

e = 0.01 · exp
[
1.391499− 0.048640239 Td + (0.41764768 · 10−4) T2

d

− (0.14452093 · 10−7) T3
d + 6.5459673 log e (Td)− 5800.2206

1
Td

]
[mb]. (F.3)

Finally, the dew point can be calculated from the relative humidity [%] and the dry-bulb

temperature [K] as

Td =
243.5 ·

[
log e

( RH
100

)
+ 17.67 (T−273.15)

243.5+(T−273.15)

]

17.67−
[
log e

( RH
100

)
+ 17.67 (T−273.15)

243.5+(T−273.15)

] + 273.15 [K]. (F.4)
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Equations (F.3) and (F.4) were obtained from http://cires.colorado.edu/∼voemel/vp.pro.
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